Coexistence of spin crossover and magnetic ordering in a dendrimeric Fe(III) complex
NASA Astrophysics Data System (ADS)
Vorobeva, V. E.; Domracheva, N. E.; Pyataev, A. V.; Gruzdev, M. S.; Chervonova, U. V.
2015-01-01
The magnetic properties of a new dendrimeric spin crossover Fe(III) complex, [Fe(L)2]+PF6-, where L = 3,5-di[3,4,5-tris(tetradecyloxy) benzoyloxy]benzoyl-4-salicylidene-N-ethyl-N-ethylene-diamine, are reported for the first time. EPR studies show that this compound undergoes a gradual spin transition in the temperature range 70-300 K and has antiferromagnetic ordering below 10 K. Mössbauer spectroscopy at 5 K confirms the presence of magnetic ordering in the dendrimeric iron complex.
Pure electronic metal-insulator transition at the interface of complex oxides
Meyers, D.; Liu, Jian; Freeland, J. W.; ...
2016-06-21
We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less
Magnetic order and phase transition in the iron oxysulfide La2O2Fe2OS2
NASA Astrophysics Data System (ADS)
Oogarah, Reeya K.; Suard, Emmanuelle; McCabe, Emma E.
2018-01-01
The Mott-insulating iron oxychalcogenides exhibit complex magnetic behaviour and we report here a neutron diffraction investigation into the magnetic ordering in La2O2Fe2OS2. This quaternary oxysulfide adopts the anti-Sr2MnO2Mn2Sb2-type structure (described by space group I4/mmm) and orders antiferromagnetically below TN = 105 K. We consider both its long-range magnetic structure and its magnetic microstructure, and the onset of magnetic order. It adopts the multi-k vector "2k" magnetic structure (k = (1/2 0 1/2) and k = (0 1/2 1/2) and has similarities with related iron oxychalcogenides, illustrating the robust nature of the "2k" magnetic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, D.; Liu, Jian; Freeland, J. W.
We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less
Defect charge states in Si doped hexagonal boron-nitride monolayer
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.
2016-02-01
We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q = -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.
Complex magnetic structure of clusters and chains of Ni and Fe on Pt(111)
Bezerra-Neto, Manoel M.; Ribeiro, Marcelo S.; Sanyal, Biplab; Bergman, Anders; Muniz, Roberto B.; Eriksson, Olle; Klautau, Angela B.
2013-01-01
We present an approach to control the magnetic structure of adatoms adsorbed on a substrate having a high magnetic susceptibility. Using finite Ni-Pt and Fe-Pt nanowires and nanostructures on Pt(111) surfaces, our ab initio results show that it is possible to tune the exchange interaction and magnetic configuration of magnetic adatoms (Fe or Ni) by introducing different numbers of Pt atoms to link them, or by including edge effects. The exchange interaction between Ni (or Fe) adatoms on Pt(111) can be considerably increased by introducing Pt chains to link them. The magnetic ordering can be regulated allowing for ferromagnetic or antiferromagnetic configurations. Noncollinear magnetic alignments can also be stabilized by changing the number of Pt-mediated atoms. An Fe-Pt triangularly-shaped nanostructure adsorbed on Pt(111) shows the most complex magnetic structure of the systems considered here: a spin-spiral type of magnetic order that changes its propagation direction at the triangle vertices. PMID:24165828
Recent advances in magnetofection and its potential to deliver siRNAs in vitro.
Mykhaylyk, Olga; Zelphati, Olivier; Hammerschmid, Edelburga; Anton, Martina; Rosenecker, Joseph; Plank, Christian
2009-01-01
This chapter describes how to design and conduct experiments to deliver siRNA to adherent mammalian cells in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles. These magnetic complexes are targeted to the cell surface by the application of a magnetic gradient field. In this chapter, first we describe the synthesis of magnetic nanoparticles for magnetofection and the association of siRNA with the magnetic components of the transfection complex. Second, a simple protocol is described in order to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Third, protocols are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA, magnetofection, downregulation of gene expression, and the determination of cell viability. The addition of INF-7 peptide, a fusogenic peptide, to the magnetic transfection triplexes improved gene silencing in HeLa cells. The described protocols are also valuable for screening vector compositions and novel magnetic nanoparticle preparations to optimize siRNA transfection by magnetofection in every cell type.
VLA Zeeman Observations of the NGC 6334 Complex
NASA Astrophysics Data System (ADS)
Mayo, E. A.; Sarma, A. P.; Troland, T. H.
2004-05-01
We present OH 1665 and 1667 MHz observations of the NGC 6334 complex taken with the Very Large Array in the BnA configuration. We have combined our data with the lower resolution CnB data of Sarma et al (1999), in order to perform a detailed study of Source A, a compact continuum source in the SW region of the complex. Our observations reveal magnetic fields with peak values of the order of 700μ G toward Source A. Virial estimates presented indicate the significance of the magnetic field in the support of the molecular cloud against gravitational collapse.
Upadhyay, Apoorva; Vignesh, Kuduva R; Das, Chinmoy; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran
2017-11-20
A series of monomeric lanthanide Schiff base complexes with the molecular formulas [Ce(HL) 3 (NO 3 ) 3 ] (1) and [Ln(HL) 2 (NO 3 ) 3 ], where Ln III = Tb (2), Ho (3), Er (4), and Lu (5), were isolated and characterized by single-crystal X-ray diffraction (XRD). Single-crystal XRD reveals that, except for 1, all complexes possess two crystallographically distinct molecules within the unit cell. Both of these crystallographically distinct molecules possess the same molecular formula, but the orientation of the coordinating ligand distinctly differs from those in complexes 2-5. Alternating-current magnetic susceptibility measurement reveals that complexes 1-3 exhibit slow relaxation of magnetization in the presence of an optimum external magnetic field. In contrast to 1-3, complex 4 shows a blockade of magnetization in the absence of an external magnetic field, a signature characteristic of a single-ion magnet (SIM). The distinct magnetic behavior observed in 4 compared to other complexes is correlated to the suitable ligand field around a prolate Er III ion. Although the ligand field stabilizes an easy axis of anisotropy, quantum tunnelling of magnetization (QTM) is still predominant in 4 because of the low symmetry of the complex. The combination of low symmetry and an unsuitable ligand-field environment in complexes 1-3 triggers faster magnetization relaxation; hence, these complexes exhibit field-induced SIM behavior. In order to understand the electronic structures of complexes 1-4 and the distinct magnetic behavior observed, ab initio calculations were performed. Using the crystal structure of the complexes, magnetic susceptibility data were computed for all of the complexes. The computed susceptibility and magnetization are in good agreement with the experimental magnetic data [χ M T(T) and M(H)] and this offers confidence on the reliability of the extracted parameters. A tentative mechanism of magnetization relaxation observed in these complexes is also discussed in detail.
Fringe Field Effects on Bending Magnets, Derived for TRANSPORT/TURTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molloy, Riley; Blitz, Sam
2013-08-05
A realistic magnetic dipole has complex effects on a charged particle near the entrance and exit of the magnet, even with a constant and uniform magnetic field deep within the interior of the magnet. To satisfy Maxwell's equations, the field lines near either end of a realistic magnet are significantly more complicated, yielding non-trivial forces. The effects of this fringe field are calculated to first order, applying both the paraxial and thin lens approximations. We find that, in addition to zeroth order effects, the position of a particle directly impacts the forces in the horizontal and vertical directions.
Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers
NASA Astrophysics Data System (ADS)
Woodall, Christopher H.; Craig, Gavin A.; Prescimone, Alessandro; Misek, Martin; Cano, Joan; Faus, Juan; Probert, Michael R.; Parsons, Simon; Moggach, Stephen; Martínez-Lillo, José; Murrie, Mark; Kamenev, Konstantin V.; Brechin, Euan K.
2016-12-01
Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the `transformation' from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, `squeezing' the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure.
Field-controlled structures in ferromagnetic cholesteric liquid crystals.
Medle Rupnik, Peter; Lisjak, Darja; Čopič, Martin; Čopar, Simon; Mertelj, Alenka
2017-10-01
One of the advantages of anisotropic soft materials is that their structures and, consequently, their properties can be controlled by moderate external fields. Whereas the control of materials with uniform orientational order is straightforward, manipulation of systems with complex orientational order is challenging. We show that a variety of structures of an interesting liquid material, which combine chiral orientational order with ferromagnetic one, can be controlled by a combination of small magnetic and electric fields. In the suspensions of magnetic nanoplatelets in chiral nematic liquid crystals, the platelet's magnetic moments orient along the orientation of the liquid crystal and, consequently, the material exhibits linear response to small magnetic fields. In the absence of external fields, orientations of the liquid crystal and magnetization have wound structure, which can be either homogeneously helical, disordered, or ordered in complex patterns, depending on the boundary condition at the surfaces and the history of the sample. We demonstrate that by using different combinations of small magnetic and electric fields, it is possible to control reversibly the formation of the structures in a layer of the material. In such a way, different periodic structures can be explored and some of them may be suitable for photonic applications. The material is also a convenient model system to study chiral magnetic structures, because it is a unique liquid analog of a solid helimagnet.
NASA Astrophysics Data System (ADS)
Snezhko, Alexey
2007-03-01
Collective dynamics and pattern formation in ensembles of magnetic microparticles suspended at the liquid/air interface and subjected to an alternating magnetic field are studied. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (``snakes'') emerging in such systems in a certain range of field magnitudes and frequencies. These remarkable structures are directly related to surface waves in the liquid generated by the collective response of magnetic microparticles to the alternating magnetic field. In addition, a large-scale vortex flows are induced in the vicinity of the dynamic structures. Some features of the self-localized snake structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density. Self-assembled snakes have a complex magnetic order: the segments of the snake exhibit long-range antiferromagnetic ordering mediated by the surface wave, while each segment is composed of ferromagnetically aligned chains of microparticles. A phenomenological model describing magnetic behavior of the magnetic snakes in external magnetic fields is proposed.
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2013-02-01
Ternary rare-earth osmates Ln3OsO7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr3OsO7 exhibits magnetic transitions at 8 and 73 K, and Tb3OsO7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice.
A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase.
Bonnet, Sylvestre; Siegler, Maxime A; Costa, José Sánchez; Molnár, Gábor; Bousseksou, Azzedine; Spek, Anthony L; Gamez, Patrick; Reedijk, Jan
2008-11-21
The two-step spin crossover of a new mononuclear iron(ii) complex is studied by magnetic, crystallographic and calorimetric methods revealing two successive first-order phase transitions and an ordered intermediate phase built by the repetition of the unprecedented [HS-LS-LS] motif.
On the multiferroic skyrmion-host GaV4S8
NASA Astrophysics Data System (ADS)
Widmann, S.; Ruff, E.; Günther, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Tsurkan, V.; Bordács, S.; Kézsmárki, I.; Loidl, A.
2017-12-01
The lacunar spinel GaV4S8 exhibits orbital ordering at 44 K and shows a complex magnetic phase diagram below 12.7 K, which includes ferromagnetic and cycloidal spin order. At low but finite external magnetic fields, Néel-type skyrmions are formed in this material. Skyrmions are whirl-like spin vortices that have received great theoretical interest because of their non-trivial spin topology and that are also considered as basic entities for new data-storage technologies. Interestingly, we found that the orbitally ordered phase shows sizable ferroelectric polarisation and that excess spin-driven polarisations appear in all magnetic phases, including the skyrmion-lattice phase. Hence, GaV4S8 shows simultaneous magnetic and polar order and belongs to the class of multiferroics materials that attracted enormous attention in recent years. Here, we summarise the existing experimental information on the magnetic, electronic and dielectric properties of GaV4S8. By performing detailed magnetic susceptibility, resistivity, specific heat and dielectric experiments, we complement the low-temperature phase diagram. Specifically, we show that the low-temperature and low-field ground state of GaV4S8 seems to have a more complex spin configuration than purely collinear ferromagnetic spin order. In addition, at the structural Jahn-Teller transition the magnetic exchange interaction changes from antiferromagnetic to ferromagnetic. We also provide experimental evidence that the vanadium V4 clusters in GaV4S8 can be regarded as molecular units with spin 1/2. However, at high temperatures deviations in the susceptibility show up, indicating that either the magnetic moments of the vanadium atoms fluctuate independently or excited states of the V4 molecule become relevant.
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators
NASA Astrophysics Data System (ADS)
Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian
2017-08-01
Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers
Woodall, Christopher H.; Craig, Gavin A.; Prescimone, Alessandro; Misek, Martin; Cano, Joan; Faus, Juan; Probert, Michael R.; Parsons, Simon; Moggach, Stephen; Martínez-Lillo, José; Murrie, Mark; Kamenev, Konstantin V.; Brechin, Euan K.
2016-01-01
Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the ‘transformation' from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, ‘squeezing' the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure. PMID:28000676
RTD fluxgate performance for application in magnetic label-based bioassay: preliminary results.
Ando, B; Ascia, A; Baglio, S; Bulsara, A R; Trigona, C; In, V
2006-01-01
Magnetic bioassay is becoming of great interest in several application including magnetic separation, drug delivery, hyperthermia treatments, magnetic resonance imaging (MRI) and magnetic labelling. The latter can be used to localize bio-entities (e.g. cancer tissues) by using magnetic markers and high sensitive detectors. To this aim SQUIDs can be adopted, however this result in a quite sophisticated and complex method involving high cost and complex set-up. In this paper, the possibility to adopt RTD fluxgate magnetometers as alternative low cost solution to perform magnetic bio-sensing is investigated. Some experimental results are shown that encourage to pursue this approach in order to obtain simple devices that can detect a certain number of magnetic particles accumulated onto a small surface such to be useful for diagnosis purposes.
Magnetic Microhelix Coil Structures
NASA Astrophysics Data System (ADS)
Smith, Elliot J.; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M.; Schmidt, Oliver G.
2011-08-01
Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials.
The complex magnetic field topology of the cool Ap star 49 Cam
NASA Astrophysics Data System (ADS)
Silvester, J.; Kochukhov, O.; Rusomarov, N.; Wade, G. A.
2017-10-01
49 Cam is a cool magnetic chemically peculiar star that has been noted for showing strong, complex Zeeman linear polarization signatures. This paper describes magnetic and chemical surface maps obtained for 49 Cam using the Invers10 magnetic Doppler imaging code and high-resolution spectropolarimetric data in all four Stokes parameters collected with the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and Pic du Midi Observatory. The reconstructed magnetic field maps of 49 Cam show a relatively complex structure. Describing the magnetic field topology in terms of spherical harmonics, we find significant contributions of modes up to ℓ = 3, including toroidal components. Observations cannot be reproduced using a simple low-order multipolar magnetic field structure. 49 Cam exhibits a level of field complexity that has not been seen in magnetic maps of other cool Ap stars. Hence, we concluded that relatively complex magnetic fields are observed in Ap stars at both low and high effective temperatures. In addition to mapping the magnetic field, we also derive surface abundance distributions of nine chemical elements, including Ca, Sc, Ti, Cr, Fe, Ce, Pr, Nd and Eu. Comparing these abundance maps with the reconstructed magnetic field geometry, we find no clear relationship of the abundance distributions with the magnetic field for some elements. However, for other elements some distinct patterns are found. We discuss these results in the context of other recent magnetic mapping studies and theoretical predictions of radiative diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.
Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less
Physical realization of a quantum spin liquid based on a complex frustration mechanism
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Balz, Christian; Lake, Bella
Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.
Role of 4 f electrons in crystallographic and magnetic complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Arjun K.; Paudyal, Durga; Mudryk, Yaroslav
2017-08-09
Here, the functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4f-electron energy landscapes of Dy (4f 9) and Er (4f 11) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in Er 1–xDy xCo 2, and likely many other mixed lanthanide systems. Unlike the parentmore » binaries—DyCo 2 and ErCo 2—Er 1–xDy xCo 2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4f electrons in controlling the magnetism and structure of lanthanide intermetallics.« less
NASA Astrophysics Data System (ADS)
Nassief, A. R.; Abdel-Hafiez, M.; Hassen, A.; Khalil, A. S. G.; Saber, M. R.
2018-04-01
The solvo-thermal syntheses of [(CoSalphen)2Co (SCN)2]n (1), CoSalphen(NH3)(N3)(2), Na[CoIIIsalphen(N3)2](3), Na[CoIIIsalen(N3)2](4) and CoIIIsalen(NH3)(N3) (5) {salphen = N,N'-o-phenylene-bis(salicylideneimine)} are reported. The structural studies using X-ray diffraction measurements revealed that 1 crystalizes in a monoclinic C2/c space group. Two cobalt (II) metal centers in penta-coordinated and octahedral local coordination environments are bridged via alternating O and μ1,3 SCN bridges resulting in a novel 2D layered coordination polymer. Compound 2 is a trivalent mononuclear cobalt azido complex with an octahedral coordination environment. The magnetic investigations of 1 revealed ferromagnetic coupling (J = +49.1 cm-1) and meta-magnetic ordering. Time resolved photoluminescence studies of the complexes showed excited state lifetimes of (τ1 = 0.4675 ns, τ2 = 5.23 ns) for 1 and (τ1 = 0.5078 ns, τ2 = 6.79 ns) for 2.
Magnetically induced ferroelectricity in Bi2CuO4
NASA Astrophysics Data System (ADS)
Zhao, L.; Guo, H.; Schmidt, W.; Nemkovski, K.; Mostovoy, M.; Komarek, A. C.
2017-08-01
The tetragonal copper oxide Bi2CuO4 has an unusual crystal structure with a three-dimensional network of well separated CuO4 plaquettes. The spin structure of Bi2CuO4 in the magnetically ordered state below TN˜43 K remains controversial. Here we present the results of detailed studies of specific heat, magnetic, and dielectric properties of Bi2CuO4 single crystals grown by the floating zone technique, combined with the polarized neutron scattering and high-resolution x-ray measurements. Down to 3.5 K our polarized neutron scattering measurements reveal ordered magnetic Cu moments which are aligned within the a b plane. Below the onset of the long range antiferromagnetic ordering we observe an electric polarization induced by an applied magnetic field, which indicates inversion symmetry breaking by the ordered state of Cu spins. For the magnetic field applied perpendicular to the tetragonal axis, the spin-induced ferroelectricity is explained in terms of the linear magnetoelectric effect that occurs in a metastable magnetic state. A relatively small electric polarization induced by the field parallel to the tetragonal axis may indicate a more complex magnetic ordering in Bi2CuO4 .
Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates
Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...
2017-08-01
Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less
New concepts for molecular magnets
NASA Astrophysics Data System (ADS)
Pilawa, Bernd
1999-03-01
Miller and Epstein (1994) define molecular magnets as magnetic materials which are prepared by the low-temperature methods of the preparative chemistry. This definition includes molecular crystals of neutral radicals, radical salts and charge transfer complexes as well as metal complexes and polymers with unpaired spins (Dormann 1995). The challenge of molecular magnets consists in tailoring magnetic properties by specific modifications of the molecular units. The combination of magnetism with mechanical or electrical properties of molecular compounds promise materials of high technical interest (Gatteschi 1994a and 1994b, Möhwald 1996) and both the chemical synthesis of new molecular materials with magnetic properties as well as the physical investigation and explanation of these properties is important, in order to achieve any progress. This work deals with the physical characterization of the magnetic properties of molecular materials. It is organized as follows. In the first part molecular crystals of neutral radicals are studied. After briefly discussing the general magnetic properties of these materials and after an overview over the physical principles of exchange interaction between organic radicals I focus on the interplay between the crystallographic structure and the magnetic properties of various derivatives of the verdazyl and nitronyl nitroxide radicals. The magnetic properties of metal complexes are the subject of the second part. After an overview over the experimental and theoretical tools which are used for the investigation of the magnetic properties I shortly discuss the exchange coupling of transition metal ions and the magnetic properties of complexes of two and three metal ions. Special emphasis is given to spin cluster compounds. Spin cluster denote complexes of many magnetic ions. They are attractive as building blocks of molecular magnets as well as magnetic model compounds for the study of spin frustration, molecular super-paramagnetism and quasi one-dimensional magnets.
Snezhko, Alexey
2011-04-20
Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.
A model for metastable magnetism in the hidden-order phase of URu2Si2
NASA Astrophysics Data System (ADS)
Boyer, Lance; Yakovenko, Victor M.
2018-01-01
We propose an explanation for the experiment by Schemm et al. (2015) where the polar Kerr effect (PKE), indicating time-reversal symmetry (TRS) breaking, was observed in the hidden-order (HO) phase of URu2Si2. The PKE signal on warmup was seen only if a training magnetic field was present on cool-down. Using a Ginzburg-Landau model for a complex order parameter, we show that the system can have a metastable ferromagnetic state producing the PKE, even if the HO ground state respects TRS. We predict that a strong reversed magnetic field should reset the PKE to zero.
NASA Astrophysics Data System (ADS)
Samatham, S. Shanmukharao; Suresh, K. G.
2017-01-01
The detailed magnetic study of complex 3d-electron based Fe3Ga4 is reported. It undergoes paramagnetic to antiferromagnetic (TN) and antiferromagnetic to ferromagnetic (TC) transitions respectively around 380 and 70 K. The thermal hysteresis of field-cooled cooling (FCC) and field-cooled warming (FCW) hints at first order phase transition below Curie temperature. A weak phase coexistence of ferro and antiferromagnetic phases is suggested by exploring the arrest-like first-order phenomenon. In the intermediate temperature range, field-driven metamagnetic transition from antiferro to ferromagnetic phase is confirmed. Further bringing the system very near to TN, field-induced transitions disappear and above TN predominant paramagnetic contribution is evident. The magnetic H-T phase diagram distinguishing different magnetic phases of Fe3Ga4 is obtained.
Spin density wave instability in a ferromagnet.
Wu, Yan; Ning, Zhenhua; Cao, Huibo; Cao, Guixin; Benavides, Katherine A; Karna, S; McCandless, Gregory T; Jin, R; Chan, Julia Y; Shelton, W A; DiTusa, J F
2018-03-27
Due to its cooperative nature, magnetic ordering involves a complex interplay between spin, charge, and lattice degrees of freedom, which can lead to strong competition between magnetic states. Binary Fe 3 Ga 4 is one such material that exhibits competing orders having a ferromagnetic (FM) ground state, an antiferromagnetic (AFM) behavior at intermediate temperatures, and a conspicuous re-entrance of the FM state at high temperature. Through a combination of neutron diffraction experiments and simulations, we have discovered that the AFM state is an incommensurate spin-density wave (ISDW) ordering generated by nesting in the spin polarized Fermi surface. These two magnetic states, FM and ISDW, are seldom observed in the same material without application of a polarizing magnetic field. To date, this unusual mechanism has never been observed and its elemental origins could have far reaching implications in many other magnetic systems that contain strong competition between these types of magnetic order. Furthermore, the competition between magnetic states results in a susceptibility to external perturbations allowing the magnetic transitions in Fe 3 Ga 4 to be controlled via temperature, magnetic field, disorder, and pressure. Thus, Fe 3 Ga 4 has potential for application in novel magnetic memory devices, such as the magnetic components of tunneling magnetoresistance spintronics devices.
Exotic magnetic states in Pauli-limited superconductors.
Kenzelmann, M
2017-03-01
Magnetism and superconductivity compete or interact in complex and intricate ways. Here we review the special case where novel magnetic phenomena appear due to superconductivity, but do not exist without it. Such states have recently been identified in unconventional superconductors. They are different from the mere coexistence of magnetic order and superconductivity in conventional superconductors, or from competing magnetic and superconducting phases in many materials. We describe the recent progress in the study of such exotic magnetic phases, and articulate the many open questions in this field.
Spontaneous magnetic order in complex materials: Role of longitudinal spin-orbit interactions
NASA Astrophysics Data System (ADS)
Chakraborty, Subrata; Vijay, Amrendra
2017-06-01
We show that the longitudinal spin-orbit interactions (SOI) critically determine the fate of spontaneous magnetic order (SMO) in complex materials. To study the magnetic response of interacting electrons constituting the material, we implement an extension of the Hubbard model that faithfully accounts for the SOI. Next, we use the double-time Green functions of quantum statistical mechanics to obtain the spontaneous magnetization, Msp , and thence ascertain the possibility of SMO. For materials with quenched SOI, in an arbitrary dimension, Msp vanishes at finite temperatures, implying the presence of the disordered (paramagnetic) phase. This is consistent with and goes beyond the Bogolyubov's inequality based analysis in one and two dimensions. In the presence of longitudinal SOI, Msp , for materials in an arbitrary dimension, remains non-zero at finite temperatures, which indicates the existence of the ordered (ferromagnetic) phase. As a plausible experimental evidence of the present SOI-based phenomenology, we discuss, inter alia, a recent experimental study on Y4Mn1-xGa12-yGey, an intermetallic compound, which exhibits a magnetic phase transition (paramagnetic to ferromagnetic) upon tuning the fraction of Ge atoms and thence the vacancies of the magnetic centers in this system. The availability of Ge atoms to form a direct chemical bond with octahedral Mn in this material appears to quench the SOI and, as a consequence, favours the formation of the disordered (paramagnetic) phase.
Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Ness, N. F.; Acuna, M. H.
1982-01-01
An analysis of the magnetic field of Saturn is presented which takes into account both the Voyager 1 and 2 vector magnetic field observations. The analysis is based on the traditional spherical harmonic expansion of a scale potential to derive the magnetic field within 8 Saturn radii. A third-order zonal harmonic model fitted to Voyager 1 and 2 observations is found to be capable of predicting the magnetic field characteristics at one encounter based on those observed at another, unlike models including dipole and quadrupole terms only. The third-order model is noted to lead to significantly enhanced polar surface field intensities with respect to dipole models, and probably represents the axisymmetric part of a complex dynamo field.
Magnetic Ordering in Sr 3YCo 4O 10+x
Kishida, Takayoshi; Kapetanakis, Myron D.; Yan, Jiaqiang; ...
2016-01-28
Transition-metal oxides often exhibit complex magnetic behavior due to the strong interplay between atomic-structure, electronic and magnetic degrees of freedom. Cobaltates, especially, exhibit complex behavior because of cobalt’s ability to adopt various valence and spin state configurations. The case of the oxygen-deficient perovskite Sr 3YCo 4O 10+x (SYCO) has gained considerable attention because of persisting uncertainties about its structure and the origin of the observed room temperature ferromagnetism. Here we report a combined investigation of SYCO using aberration-corrected scanning transmission electron microscopy and density functional theory calculations.
Gavrilenko, Konstantin S; Cador, Olivier; Bernot, Kevin; Rosa, Patrick; Sessoli, Roberta; Golhen, Stéphane; Pavlishchuk, Vitaly V; Ouahab, Lahcène
2008-01-01
Homo- and heterometallic 1D coordination polymers of transition metals (Co II, Mn II, Zn II) have been synthesized by an in-situ ligand generation route. Carboxylato-based complexes [Co(PhCOO)2]n (1 a, 1 b), [Co(p-MePhCOO)2]n (2), [ZnMn(PhCOO)4]n (3), and [CoZn(PhCOO)4]n (4) (PhCOOH=benzoic acid, p-MePhCOOH=p-methylbenzoic acid) have been characterized by chemical analysis, single-crystal X-ray diffraction, and magnetization measurements. The new complexes 2 and 3 crystallize in orthorhombic space groups Pnab and Pcab respectively. Their crystal structures consist of zigzag chains, with alternating M(II) centers in octahedral and tetrahedral positions, which are similar to those of 1 a and 1 b. Compound 4 crystallizes in monoclinic space group P2 1/c and comprises zigzag chains of M II ions in a tetrahedral coordination environment. Magnetic investigations reveal the existence of antiferromagnetic interactions between magnetic centers in the heterometallic complexes 3 and 4, while ferromagnetic interactions operate in homometallic compounds (1 a, 1 b, and 2). Compound 1 b orders ferromagnetically at TC=3.7 K whereas 1 a does not show any magnetic ordering down to 330 mK and displays typical single-chain magnet (SCM) behavior with slowing down of magnetization relaxation below 0.6 K. Single-crystal measurements reveal that the system is easily magnetized in the chain direction for 1 a whereas the chain direction coincides with the hard magnetic axis in 1 b. Despite important similarities, small differences in the molecular and crystal structures of these two compounds lead to this dramatic change in properties.
NASA Astrophysics Data System (ADS)
Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme
2015-12-01
Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.
Magnetic Phase Diagram of α-RuCl3
NASA Astrophysics Data System (ADS)
Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey
The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.
NASA Astrophysics Data System (ADS)
Maurice, Rémi; de Graaf, Coen; Guihéry, Nathalie
2010-06-01
This paper studies the physical basis of the giant-spin Hamiltonian, which is usually used to describe the anisotropy of single-molecule magnets. A rigorous extraction of the model has been performed in the weak-exchange limit of a binuclear centrosymmetric Ni(II) complex, using correlated ab initio calculations and effective Hamiltonian theory. It is shown that the giant-spin Hamiltonian is not appropriate to describe polynuclear complexes as soon as spin mixing becomes non-negligible. A relevant model is proposed involving fourth-order operators, different from the traditionally used Stevens operators. The new giant-spin Hamiltonian correctly reproduces the effects of the spin mixing in the weak-exchange limit. A procedure to switch on and off the spin mixing in the extraction has been implemented in order to separate this effect from other anisotropic effects and to numerically evaluate both contributions to the tunnel splitting. Furthermore, the new giant-spin Hamiltonian has been derived analytically from the multispin Hamiltonian at the second order of perturbation and the theoretical link between the two models is studied to gain understanding concerning the microscopic origin of the fourth-order interaction in terms of axial, rhombic, or mixed (axial-rhombic) character. Finally, an adequate method is proposed to extract the proper magnetic axes frame for polynuclear anisotropic systems.
Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2
NASA Astrophysics Data System (ADS)
Pikul, A. P.; Kaczorowski, D.; Gajek, Z.; Stȩpień-Damm, J.; Ślebarski, A.; Werwiński, M.; Szajek, A.
2010-05-01
Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific-heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab initio band-structure calculations performed within the density-functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma No.74, Pearson symbol: oI24 ) with the lattice parameters a=7.1330(14)Å , b=9.7340(19)Å , and c=5.6040(11)Å . Analysis of the magnetic and XPS data revealed the presence of well-localized magnetic moments of trivalent cerium ions. All the physical properties were found to be highly anisotropic over the whole temperature range studied and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN=4.70(1)K and their subsequent spin rearrangement at Tt=4.48(1)K manifest themselves as distinct anomalies in the temperature characteristic of all the physical properties investigated and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2 , similar to that recently reported for an isostructural compound CeIr3Si2 . The electronic band-structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well-reproduced the experimental XPS valence-band spectrum.
Complete magnetic field dependence of SABRE-derived polarization.
Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L
2018-07-01
Signal amplification by reversible exchange (SABRE) is a promising hyperpolarization technique, which makes use of spin-order transfer from parahydrogen (the H 2 molecule in its singlet spin state) to a to-be-polarized substrate in a transient organometallic complex, termed the SABRE complex. In this work, we present an experimental method for measuring the magnetic field dependence of the SABRE effect over an ultrawide field range, namely, from 10 nT to 10 T. This approach gives a way to determine the complete magnetic field dependence of SABRE-derived polarization. Here, we focus on SABRE polarization of spin-1/2 hetero-nuclei, such as 13 C and 15 N and measure their polarization in the entire accessible field range; experimental studies are supported by calculations of polarization. Features of the field dependence of polarization can be attributed to level anticrossings in the spin system of the SABRE complex. Features at magnetic fields of the order of 100 nT-1 μT correspond to "strong coupling" of protons and hetero-nuclei, whereas features found in the mT field range stem from "strong coupling" of the proton system. Our approach gives a way to measuring and analyzing the complete SABRE field dependence, to probing NMR parameters of SABRE complexes and to optimizing the polarization value. Copyright © 2017 John Wiley & Sons, Ltd.
Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.
2016-09-01
We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.
Superexchange coupling and slow magnetic relaxation in a transuranium polymetallic complex.
Magnani, N; Colineau, E; Eloirdi, R; Griveau, J-C; Caciuffo, R; Cornet, S M; May, I; Sharrad, C A; Collison, D; Winpenny, R E P
2010-05-14
{Np(VI)O2Cl2}{Np(V)O2Cl(thf)3}2 is the first studied example of a polymetallic transuranic complex displaying both slow relaxation of the magnetization and effective superexchange interactions between 5f centers. The coupling constant for Np(V)-Np(VI) pairs is 10.8 K, more than 1 order of magnitude larger than the common values found for rare-earth ions in similar environments. The dynamic magnetic behavior displays slow relaxation of magnetization of molecular origin with an energy barrier of 140 K, which is nearly twice the size of the highest barrier found in polymetallic clusters of the d block. Our observations also suggest that future actinide-based molecular magnets will have very different behavior to lanthanide-based clusters.
Complex magnetic order in the kagome ferromagnet Pr3Ru4Al12
NASA Astrophysics Data System (ADS)
Henriques, M. S.; Gorbunov, D. I.; Andreev, A. V.; Fabrèges, X.; Gukasov, A.; Uhlarz, M.; Petříček, V.; Ouladdiaf, B.; Wosnitza, J.
2018-01-01
In the hexagonal crystal structure of Pr3Ru4Al12 , the Pr atoms form a distorted kagome lattice, and their magnetic moments, are subject to competing exchange and anisotropy interactions. We performed magnetization, magnetic-susceptibility, specific-heat, electrical-resistivity, and neutron-scattering measurements. Pr3Ru4Al12 is a uniaxial ferromagnet with TC=39 K that displays a collinear magnetic structure (in the high-temperature range of the magnetically ordered state) for which the only crystallographic position of Pr is split into two sites carrying different magnetic moments. A spin-reorientation phase transition is found at 7 K. Below this temperature, part of the Pr moments rotate towards the basal plane, resulting in a noncollinear magnetic state with a lower magnetic symmetry. We argue that unequal RKKY exchange interactions competing with the crystal electric field lead to a moment instability and qualitatively explain the observed magnetic phases in Pr3Ru4Al12 .
Fabrication of ZnCoO nanowires and characterization of their magnetic properties
2014-01-01
Hydrogen-treated ZnCoO shows magnetic behavior, which is related to the formation of Co-H-Co complexes. However, it is not well known how the complexes are connected to each other and with what directional behavior they are ordered. In this point of view, ZnCoO nanowire is an ideal system for the study of the magnetic anisotropy. ZnCoO nanowire was fabricated by trioctylamine solution method under different ambient gases. We found that the oxidation of trioctylamine plays an essential role on the synthesis of high-quality ZnCoO nanowires. The hydrogen injection to ZnCoO nanowires induced ferromagnetism with larger magnetization than ZnCoO powders, while becoming paramagnetic after vacuum heat treatment. Strong ferromagnetism of nanowires can be explained by the percolation of Co-H-Co complexes along the c-axis. PMID:24910575
Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd2Os2O7.
Nguyen, Thi Minh Hien; Sandilands, Luke J; Sohn, C H; Kim, C H; Wysocki, Aleksander L; Yang, In-Sang; Moon, S J; Ko, Jae-Hyeon; Yamaura, J; Hiroi, Z; Noh, Tae Won
2017-08-15
5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2 Os 2 O 7 . Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii-Moriya and exchange interactions play a significant role in the spin-wave dispersions. The Raman data also reveal complex spin-charge-lattice coupling and indicate that the metal-insulator transition in Cd 2 Os 2 O 7 is Lifshitz-type. Our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.Pyrochlore 5d transition metal oxides are expected to have interesting forms of magnetic order but are hard to study with conventional probes. Here the authors show that Raman scattering can be used to measure magnetic excitations in Cd 2 Os 2 O 7 and that it exhibits complex spin-charge-lattice coupling.
Zaleski, Curtis M; Tricard, Simon; Depperman, Ezra C; Wernsdorfer, Wolfgang; Mallah, Talal; Kirk, Martin L; Pecoraro, Vincent L
2011-11-21
The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.
Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming
2017-11-01
An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.
NASA Astrophysics Data System (ADS)
Gao, S.; Guratinder, K.; Stuhr, U.; White, J. S.; Mansson, M.; Roessli, B.; Fennell, T.; Tsurkan, V.; Loidl, A.; Ciomaga Hatnean, M.; Balakrishnan, G.; Raymond, S.; Chapon, L.; Garlea, V. O.; Savici, A. T.; Cervellino, A.; Bombardi, A.; Chernyshov, D.; Rüegg, Ch.; Haraldsen, J. T.; Zaharko, O.
2018-04-01
In spinels A Cr2O4(A =Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002), 10.1154/1.1479738], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(1/2 1/2 0 ) ,k2=(1 0 1/2 ) appear. The ordered moment reaches 1.94(3) μB/Cr3 + for k1 and 2.08(3) μB/Cr3 + for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1 -10 ] diagonals and a smaller c component. We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.
NASA Astrophysics Data System (ADS)
Snezhko, Alexey
2010-03-01
Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.
Interactions and reversal-field memory in complex magnetic nanowire arrays
NASA Astrophysics Data System (ADS)
Rotaru, Aurelian; Lim, Jin-Hee; Lenormand, Denny; Diaconu, Andrei; Wiley, John. B.; Postolache, Petronel; Stancu, Alexandru; Spinu, Leonard
2011-10-01
Interactions and magnetization reversal of Ni nanowire arrays have been investigated by the first-order reversal curve (FORC) method. Several series of samples with controlled spatial distribution were considered including simple wires of different lengths and diameters (70 and 110 nm) and complex wires with a single modulated diameter along their length. Subtle features of magnetic interactions are revealed through a quantitative analysis of the local interaction field profile distributions obtained from the FORC method. In addition, the FORC analysis indicates that the nanowire systems with a mean diameter of 70 nm appear to be organized in symmetric clusters indicative of a reversal-field memory effect.
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
Tailoring Spin Textures in Complex Oxide Micromagnets
Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...
2016-09-12
Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less
Yan, J.-Q.; Cao, H. B.; McGuire, M. A.; ...
2013-06-10
The spin and orbital ordering in Dy₁₋ xTb xVO₃ (x=0 and 0.2) was studied by measuring x-ray powder diffraction, magnetization, specific heat, and neutron single-crystal diffraction. The results show that G-OO/C-AF and C-OO/G-AF phases coexist in Dy 0.8Tb 0.20VO 3 in the temperature range 2–60 K, and the volume fraction of each phase is temperature and field dependent. The ordering of Dy moments at T* = 12 K induces a transition from G-OO/C-AF to a C-OO/G-AF phase. Magnetic fields suppress the long-range order of Dy moments and thus the C-OO/G-AF phase below T*. The polarized moments induced at the Dymore » sublattice by external magnetic fields couple to the V 3d moments, and this coupling favors the G-OO/C-AF state. Also discussed is the effect of the Dy-V magnetic interaction and local structure distortion on the spin and orbital ordering in Dy₁₋ xTb xVO₃.« less
Model for dynamic self-assembled magnetic surface structures
NASA Astrophysics Data System (ADS)
Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.
2010-07-01
We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.
Observation of a second metastable spin-ordered state in ferrimagnet Cu2OSeO3
NASA Astrophysics Data System (ADS)
Huang, C. L.; Tseng, K. F.; Chou, C. C.; Mukherjee, S.; Her, J. L.; Matsuda, Y. H.; Kindo, K.; Berger, H.; Yang, H. D.
2011-02-01
dc and ac magnetization measurements were performed on single-crystal Cu2OSeO3 under magnetic field (H) and hydrostatic pressure (P) conditions. Increasing H shifts the ferrimagnetic transition observed at TC~60 K to a higher-temperature region. Moreover, the TC increases linearly and magnetization is enhanced with P. Features of the ladder in the M-vs-H curve or the peak in the dM/dH-vs-H curve are observed at HSF~0.5 kOe, suggesting a competing ordered state under magnetic fields below TC. Remarkably, a second shoulder is observed at ˜1 kOe in the dM/dH-vs-H curve, revealing another metastable spin-ordered state in Cu2OSeO3. This state is retained and enhanced by applying pressure. As H rises to 55 T, no further slope changes in the M-H curve are observed. These magnetic properties indicate a complex spin orientation in the geometrically spin-frustrated system Cu2OSeO3.
Intralayer magnetic ordering in Ge/Mn digital alloys
NASA Astrophysics Data System (ADS)
Otrokov, M. M.; Ernst, A.; Ostanin, S.; Fischer, G.; Buczek, P.; Sandratskii, L. M.; Hergert, W.; Mertig, I.; Kuznetsov, V. M.; Chulkov, E. V.
2011-04-01
We present a first-principles investigation of the electronic properties of Ge/Mn digital alloys obtained by the insertion of Mn monolayers in the Ge host. The main attention is devoted to the study of the magnetic properties of the Mn layers for various types of ordering of the Mn atoms. Depending on the type of Mn position three different structures are considered: substitutional, interstitial, and combined substitutional-interstitial. In all three cases numerical structural relaxation of the atomic positions has been performed. We find that the intralayer exchange parameters depend strongly on the crystal structure. For the substitutional and interstitial types of structure the stable magnetic order was found to be ferromagnetic. For the mixed substitutional-interstitial structure the ferromagnetic configuration appears unstable and a complex ferrimagnetic structure forms. The spin-wave excitations are calculated within the Heisenberg model. The critical temperatures of the magnetic phase transitions are determined using Monte Carlo simulations with interatomic exchange parameters obtained for two different magnetic reference states: a ferromagnetic and a disordered local moment state.
Interplay of structure and magnetism in ruthenocuprates: a Raman scattering and dilatometry study
NASA Astrophysics Data System (ADS)
Fainstein, A.; Ramos, C. A.; Pregliasco, R. G.; Butera, A.; Trodahl, H. J.; Williams, G. V. M.; Tallon, J. L.
2002-07-01
We present a Raman scattering and dilatometry study of polycrystalline samples of the magnetic superconducting ruthenocuprates RuSr 2Gd 2- xCe xCu 2O 10+ δ (RuGd 1222) and RuSr 2GdCu 2O 8 (RuGd 1212). In the Raman spectra a high-temperature diffusive-like laser-tail develops below the magnetic ordering temperature ( TM) into an underdamped peak which shifts up to ˜130 cm-1. A line assigned to O(Ru) phonons hardens, narrows and strengthens strongly below TM. Finally, a phonon peak appears below TM at ˜590 cm-1. These three magnetic-order-dependent features are observed for RuGd 1212 and for RuGd 1222 with x=1.0, but do not appear for x=0.5. Dilatometry measurements, on the other hand, evidence a change of the expansion coefficient at TM. These results point to a structural effect accompanying the magnetic order, and suggest a complex interplay of spin and lattice degrees of freedom in these ruthenocuprates.
Excitonic magnet in external field: Complex order parameter and spin currents
NASA Astrophysics Data System (ADS)
Geffroy, D.; Hariki, A.; Kuneš, J.
2018-04-01
We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.
Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P
2010-03-24
The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.
Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme
2015-01-01
Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987
Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan
2005-04-28
Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.
Andreou, Anna P.; Holland, Philip R.; Akerman, Simon; Summ, Oliver; Fredrick, Joe
2016-01-01
Abstract A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. PMID:27246325
Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas
NASA Astrophysics Data System (ADS)
Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.
2009-12-01
The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.
Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface
Forst, M.; Wilkins, S. B.; Caviglia, A. D.; ...
2015-07-06
Static strain in complex oxide heterostructures 1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium 3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically 4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO 3 substrate we induce magnetic order melting in a NdNiO 3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speedmore » that suggests electronically driven motion. Lastly, light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.« less
Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin
NASA Astrophysics Data System (ADS)
Drain, John F.; Drautz, Ralf; Pettifor, D. G.
2014-04-01
It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts a complex χ-phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely, α, β, γ, δ, and ɛ-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn, the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ-, δ-, and ɛ-Mn that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants, which require further moments. The current TB model, however, predicts values of the shear moduli and the vacancy formation energies that are approximately a factor of 2 too small, so that a future more realistic model for MD simulations will require these properties to be included from the outset in the fitting database.
Complex magnetic phase diagram with multistep spin-flop transitions in L a0.25P r0.75C o2P2
NASA Astrophysics Data System (ADS)
Tan, Xiaoyan; Garlea, V. Ovidiu; Kovnir, Kirill; Thompson, Corey M.; Xu, Tongshuai; Cao, Huibo; Chai, Ping; Tener, Zachary P.; Yan, Shishen; Xiong, Peng; Shatruk, Michael
2017-01-01
L a0.25P r0.75C o2P2 crystallizes in the tetragonal ThC r2S i2 structure type and shows multiple magnetic phase transitions driven by changes in temperature and magnetic field. The nature of these transitions was investigated by a combination of magnetic and magnetoresistance measurements and both single crystal and powder neutron diffraction. The Co magnetic moments order ferromagnetically (FM) parallel to the c axis at 282 K, followed by antiferromagnetic (AFM) ordering at 225 K. In the AFM structure, the Co magnetic moments align along the c axis with FM [C o2P2] layers arranged in an alternating sequence, ↑↑↓↓ , which leads to the doubling of the c axis in the magnetic unit cell. Another AFM transition is observed at 27 K, due to the ordering of a half of Pr moments in the a b plane. The other half of Pr moments undergoes AFM ordering along the c axis at 11 K, causing simultaneous reorientation of the previously ordered Pr moments into an AFM structure with the moments being canted with respect to the c axis. This AFM transition causes an abrupt decrease in electrical resistivity at 11 K. Under applied magnetic field, two metamagnetic transitions are observed in the Pr sublattice at 0.8 and 5.4 T. They correlate with two anomalies in magnetoresistance measurements at the same critical fields. A comparison of the temperature- and field-dependent magnetic properties of L a0.25P r0.75C o2P2 to the magnetic behavior of PrC o2P2 is provided.
Complex magnetic orders in small cobalt-benzene molecules.
González, J W; Alonso-Lanza, T; Delgado, F; Aguilera-Granja, F; Ayuela, A
2017-06-07
Organometallic clusters based on transition metal atoms are interesting because of their possible applications in spintronics and quantum information processing. In addition to the enhanced magnetism at the nanoscale, the organic ligands may provide a natural shield against unwanted magnetic interactions with the matrices required for applications. Here we show that the organic ligands may lead to non-collinear magnetic order as well as the expected quenching of the magnetic moments. We use different density functional theory (DFT) methods to study the experimentally relevant three cobalt atoms surrounded by benzene rings (Co 3 Bz 3 ). We found that the benzene rings induce a ground state with non-collinear magnetization, with the magnetic moments localized on the cobalt centers and lying on the plane formed by the three cobalt atoms. We further analyze the magnetism of such a cluster using an anisotropic Heisenberg model where the involved parameters are obtained by a comparison with the DFT results. These results may also explain the recent observation of the null magnetic moment of Co 3 Bz 3 + . Moreover, we propose an additional experimental verification based on electron paramagnetic resonance.
NASA Astrophysics Data System (ADS)
Hu, P. X.; Zhao, X.; Roberts, A. P.; Heslop, D.; Viscarra Rossel, R. A.
2018-02-01
First-order reversal curve (FORC) diagrams provide information about domain states and magnetostatic interactions that underpin paleomagnetic interpretations. FORC diagrams are a complex representation of remanent, induced, and transient magnetizations that can be assessed individually using additional FORC-type measurements along with conventional measurements. We provide the first extensive assessment of the information provided by remanent, transient, and induced FORC diagrams for a diverse range of soil, loess/paleosol, and marine sediment samples. These new diagrams provide substantial information in addition to that provided by conventional FORC diagrams that aids comprehensive domain state diagnosis for mixed magnetic particle assemblages. In particular, we demonstrate from transient FORC diagrams that particles occur routinely in the magnetic vortex state. Likewise, remanent FORC diagrams provide information about the remanence-bearing magnetic particles that are of greatest interest in paleomagnetic studies.
Coexistence of superconductivity and magnetism by chemical design
NASA Astrophysics Data System (ADS)
Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J.; Baker, Peter J.
2010-12-01
Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at ~4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.
MTL distributed magnet measurement system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogiec, J.M.; Craker, P.A.; Garbarini, J.P.
1993-04-01
The Magnet Test Laboratory (MTL) at the Superconducting Super collider Laboratory will be required to precisely and reliably measure properties of magnets in a production environment. The extensive testing of the superconducting magnets comprises several types of measurements whose main purpose is to evaluate some basic parameters characterizing magnetic, mechanic and cryogenic properties of magnets. The measurement process will produce a significant amount of data which will be subjected to complex analysis. Such massive measurements require a careful design of both the hardware and software of computer systems, having in mind a reliable, maximally automated system. In order to fulfillmore » this requirement a dedicated Distributed Magnet Measurement System (DMMS) is being developed.« less
Dirac and non-Dirac conditions in the two-potential theory of magnetic charge
NASA Astrophysics Data System (ADS)
Scott, John; Evans, Timothy J.; Singleton, Douglas; Dzhunushaliev, Vladimir; Folomeev, Vladimir
2018-05-01
We investigate the Cabbibo-Ferrari, two-potential approach to magnetic charge coupled to two different complex scalar fields, Φ _1 and Φ _2, each having different electric and magnetic charges. The scalar field, Φ _1, is assumed to have a spontaneous symmetry breaking self-interaction potential which gives a mass to the "magnetic" gauge potential and "magnetic" photon, while the other "electric" gauge potential and "electric" photon remain massless. The magnetic photon is hidden until one reaches energies of the order of the magnetic photon rest mass. The second scalar field, Φ _2, is required in order to make the theory non-trivial. With only one field one can always use a duality rotation to rotate away either the electric or magnetic charge, and thus decouple either the associated electric or magnetic photon. In analyzing this system of two scalar fields in the Cabbibo-Ferrari approach we perform several duality and gauge transformations, which require introducing non-Dirac conditions on the initial electric and magnetic charges. We also find that due to the symmetry breaking the usual Dirac condition is altered to include the mass of the magnetic photon. We discuss the implications of these various conditions on the charges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs; Novaković, Nikola; Matović, Branko
2016-02-15
Highlights: • Zn{sub 0.95}Co{sub 0.05}O nanopowders are characterized by high structural order. • Co atoms show no tendency for Co–Co clustering and Co–Ov complexes formation. • Co–O–Co clustering along the c-axis has not lead to ferromagnetic order. • XMCD provides no evidence of magnetic polarization of O 2p and Co 3d states. - Abstract: X-ray absorption (XANES, EXAFS, XMCD) and photoelectron (XPS) spectroscopic techniques were employed to study local structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders. The substitutional Co{sup 2+} ions are incorporated in ZnO lattice at regular Zn sites and the sample is characterized by highmore » structural order. There was no sign of ferromagnetic ordering of Co magnetic moments and the sample is in paramagnetic state at all temperatures down to 5 K. The possible connection of the structural defects with the absence of ferromagnetism is discussed on the basis of theoretical calculations of the O K-edge absorption spectra.« less
Colossal magnetocapacitive effects in geometrically frustrated chalcogenide spinels
NASA Astrophysics Data System (ADS)
Lunkenheimer, Peter
2006-03-01
It is well known that the spinel structure is susceptible to the occurrence of geometrical frustration, which in the past was invoked to explain a number of unusual observations concerning the magnetic and orbital degrees of freedom in these materials. We demonstrate that several chalcogenide spinels also exhibit very unusual dielectric behavior, especially an extremely strong coupling of magnetic and dielectric properties and the simultaneous occurrence of magnetic and polar order. Especially, in CdCr2S4 a colossal magnetocapacitive effect is observed, which shows up as a sharp upturn of the dielectric constant ɛ' when the sample becomes ferromagnetic and as a variation of ɛ' up to a factor of 30 when the sample is subjected to external magnetic fields. As revealed by linear and non-linear dielectric measurements, this material shows the typical signatures of relaxor ferroelectrics, i.e. a strong increase of the static dielectric constant with decreasing temperature and considerable frequency dispersion of the complex permittivity. While in most relaxor ferroelectrics the freezing of polar moments is driven by frustrated interactions related to substitutional disorder, in the present pure system geometrical frustration seems a plausible mechanism to explain the relaxor behavior. However, one may also speculate on completely different mechanisms of ferroelectric polarization, e.g., the ordering of electronic degrees of freedom. The concomitant occurrence of polar and magnetic order makes CdCr2S4 another example of the rare species of multiferroic materials. In contrast to other members of this group of materials, it has sizable ordering temperatures and moments. A detailed investigation of the relaxational dynamics in this material provides clear evidence that the observed magnetocapacitive effect stems from an enormous acceleration of the relaxation dynamics induced by the development of magnetic order. In addition, recent results reveal even larger magnetocapacitive effects in In-doped CdCr2S4. In addition to CdCr2S4, we found similar effects also in ferromagnetic CdCr2Se4 and, most astonishing, in HgCr2S4, which exhibits a complex type of antiferromagnetic magnetic order at low temperatures. In the latter system, the magnetocapacitive effect, exemplified by the relative increase of ɛ' in a field of 5 T, reaches values up to 8x10^5 %.
A second metastable spin-ordered state on ferrimagnetic single crystal Cu2 OSeO 3
NASA Astrophysics Data System (ADS)
Chou, Chih Chieh; Huang, C. L.; Tseng, K. F.; Mukherjee, S.; Her, J. L.; Matsuda, Y. H.; Kindo, K.; Berger, H.; Yang, H. D.
2011-03-01
DC and AC susceptibilities were executed on ferrimagnetic single crystal Cu 2 OSe O3 under magnetic field (H) and hydrostatic pressure (P) circumstance. With increasing H , the ferrimagnetic transition at TC ~ 60 K tends to a higher temperature. Furthermore, the TC rises with a linear slope and magnetization is enhanced with increasing P . Features of the ladder shown in the M vs. H curve or the peak observed in the d M / d H vs. H curve are noted at HSF ~ 0.5 kOe, exhibiting a competing ordered state in magnetic fields below TC . Remarkably, another shoulder is observed at ~ 1 kOe in the d M / d H vs. H curve, revealing a metastable spin ordered state in Cu 2 OSe O3 . In addition, the novel state is retained and enhanced by applied pressure. However, at H up to 55 T, there is no more observable slop change in magnetization. These magnetic properties suggest a complex spin orientation in the spin-frustrated system Cu 2 OSe O3 .
Andreou, Anna P; Holland, Philip R; Akerman, Simon; Summ, Oliver; Fredrick, Joe; Goadsby, Peter J
2016-07-01
A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Magnon spectrum of the helimagnetic insulator Cu 2OSeO 3
Portnichenko, P. Y.; Romhányi, J.; Onykiienko, Y. A.; ...
2016-02-25
We report that complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu 2OSeO 3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu 2OSeO 3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a modelmore » of entangled Cu 4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu 2OSeO 3 that are essential for understanding its abundant low-temperature magnetically ordered phases.« less
Magnon spectrum of the helimagnetic insulator Cu2OSeO3
Portnichenko, P. Y.; Romhányi, J.; Onykiienko, Y. A.; Henschel, A.; Schmidt, M.; Cameron, A. S.; Surmach, M. A.; Lim, J. A.; Park, J. T.; Schneidewind, A.; Abernathy, D. L.; Rosner, H.; van den Brink, Jeroen; Inosov, D. S.
2016-01-01
Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases. PMID:26911567
Magnon spectrum of the helimagnetic insulator Cu2OSeO3.
Portnichenko, P Y; Romhányi, J; Onykiienko, Y A; Henschel, A; Schmidt, M; Cameron, A S; Surmach, M A; Lim, J A; Park, J T; Schneidewind, A; Abernathy, D L; Rosner, H; van den Brink, Jeroen; Inosov, D S
2016-02-25
Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases.
Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens
2016-11-01
Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)-a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks-to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.
Yamabayashi, Tsutomu; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro
2017-06-15
Single-molecule magnet (SMM) properties of crystals of a terbium(III)-phthalocyaninato double-decker complex with different molecular packings ( 1 : TbPc₂, 2 : TbPc₂·CH₂Cl₂) were studied to elucidate the relationship between the molecular packing and SMM properties. From single crystal X-ray analyses, the high symmetry of the coordination environment of 2 suggested that the SMM properties were improved. Furthermore, the shorter intermolecular Tb-Tb distance and relative collinear alignment of the magnetic dipole in 2 indicated that the magnetic dipole-dipole interactions were stronger than those in 1 . This was confirmed by using direct current magnetic measurements. From alternating current magnetic measurements, the activation energy for spin reversal for 1 and 2 were similar. However, the relaxation time for 2 is three orders of magnitude slower than that for 1 in the low- T region due to effective suppression of the quantum tunneling of the magnetization. These results suggest that the SMM properties of TbPc₂ highly depend on the molecular packing.
Oxygen vacancy ordering in transition-metal-oxide LaCoO3 films
NASA Astrophysics Data System (ADS)
Biskup, Neven; Salafranca, Juan; Mehta, Virat; Suzuki, Yuri; Pennycook, Stephen; Pantelides, Sokrates; Varela, Maria
2013-03-01
Oxygen vacancies in complex oxides affect the structure and the electronic and magnetic properties. Here we use atomically-resolved Z-contrast imaging, electron-energy-loss spectroscopy and densityfunctional calculations to demonstrate that ordered oxygen vacancies may act as the controlling degree of freedom for the structural, electronic, and magnetic properties of LaCoO3 thin films. We find that epitaxial strain is released through the formation of O vacancy superlattices. The O vacancies donate excess electrons to the Co d-states, resulting in ferromagnetic ordering. The appearance of Peierls-like minigaps followed by strain relaxation triggers a nonlinear rupture of the energy bands, which explains the observed insulating behavior. We conclude that oxygen vacancy ordering constitutes a degree of freedom that can be used to engineer novel behavior in complex-oxide films. Research at ORNL supported by U.S. DOE-BES, Materials Sciences and Engineering Div. and by ORNL's ShaRE User Program (DOE-BES), at UCM by the ERC Starting Inv. Award, at UC Berkeley and LBNL by BES-DMSE, at Vanderbilt by U.S DOE and the McMinn Endowment.
Critical phenomena at the complex tensor ordering phase transition
NASA Astrophysics Data System (ADS)
Boettcher, Igor; Herbut, Igor F.
2018-02-01
We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.
Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective.
Pardo, Emilio; Ruiz-García, Rafael; Cano, Joan; Ottenwaelder, Xavier; Lescouëzec, Rodrigue; Journaux, Yves; Lloret, Francesc; Julve, Miguel
2008-06-07
The aim and scope of this review is to show the general validity of the 'complex-as-ligand' approach for the rational design of metallosupramolecular assemblies of increasing structural and magnetic complexity. This is illustrated herein on the basis of our recent studies on oxamato complexes with transition metal ions looking for the limits of the research avenue opened by Kahn's pioneering research twenty years ago. The use as building blocks of mono-, di- and trinuclear metal complexes with a novel family of aromatic polyoxamato ligands allowed us to move further in the coordination chemistry-based approach to high-nuclearity coordination compounds and high-dimensionality coordination polymers. In order to do so, we have taken advantage of the new developments of metallosupramolecular chemistry and in particular, of the molecular-programmed self-assembly methods that exploit the coordination preferences of metal ions and specifically tailored ligands. The judicious choice of the oxamato metal building block (substitution pattern and steric requirements of the bridging ligand, as well as the electronic configuration and magnetic anisotropy of the metal ion) allowed us to control the overall structure and magnetic properties of the final multidimensional nD products (n = 0-3). These species exhibit interesting magnetic properties which are brand-new targets in the field of molecular magnetism, such as single-molecule or single-chain magnets, and the well-known class of molecule-based magnets. This unique family of molecule-based magnetic materials expands on the reported examples of nD species with cyanide and related oxalato and dithiooxalato analogues. Moreover, the development of new oxamato metal building blocks with potential photo or redox activity at the aromatic ligand counterpart will provide us with addressable, multifunctional molecular materials for future applications in molecular electronics and nanotechnology.
Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe 2As 2
Kissikov, T.; Sarkar, R.; Lawson, M.; ...
2018-03-13
The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom. The nematic state observed in these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion. A subtle and less-explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. We present nuclear magnetic resonance studies, which reveal that the magnetic fluctuation spectrum in the paramagneticmore » phase of BaFe 2As 2 acquires an anisotropic response in spin-space upon application of a tetragonal symmetry-breaking strain field. Lastly, our results unveil an internal spin structure of the nematic order parameter, indicating that electronic nematic materials may offer a route to magneto-mechanical control.« less
NASA Astrophysics Data System (ADS)
Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.
2015-06-01
A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.
NASA Astrophysics Data System (ADS)
Mazet, T.; Ihou-Mouko, H.; Marêché, J.-F.; Malaman, B.
2010-04-01
We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.
Magnetic Doppler imaging of 53 Camelopardalis in all four Stokes parameters
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Bagnulo, S.; Wade, G. A.; Sangalli, L.; Piskunov, N.; Landstreet, J. D.; Petit, P.; Sigut, T. A. A.
2004-02-01
We present the first investigation of the structure of the stellar surface magnetic field using line profiles in all four Stokes parameters. We extract the information about the magnetic field geometry and abundance distributions of the chemically peculiar star 53 Cam by modelling time-series of high-resolution spectropolarimetric observations with the help of a new magnetic Doppler imaging code. This combination of the unique four Stokes parameter data and state-of-the-art magnetic imaging technique makes it possible to infer the stellar magnetic field topology directly from the rotational variability of the Stokes spectra. In the magnetic imaging of 53 Cam we discard the traditional multipolar assumptions about the structure of magnetic fields in Ap stars and explore the stellar magnetic topology without introducing any global a priori constraints on the field structure. The complex magnetic model of 53 Cam derived with our magnetic Doppler imaging method achieves a good fit to the observed intensity, circular and linear polarization profiles of strong magnetically sensitive Fe II spectral lines. Such an agreement between observations and model predictions was not possible with any earlier multipolar magnetic models, based on modelling Stokes I spectra and fitting surface averaged magnetic observables (e.g., longitudinal field, magnetic field modulus, etc.). Furthermore, we demonstrate that even the direct inversion of the four Stokes parameters of 53 Cam assuming a low-order multipolar magnetic geometry is incapable of achieving an adequate fit to our spectropolarimetric observations. Thus, as a main result of our investigation, we discover that the magnetic field topology of 53 Cam is considerably more complex than any low-order multipolar expansion, raising a general question about the validity of the multipolar assumption in the studies of magnetic field structures of Ap stars. In addition to the analysis of the magnetic field of 53 Cam, we reconstruct surface abundance distributions of Si, Ca, Ti, Fe and Nd. These abundance maps confirm results of the previous studies of 53 Cam, in particular dramatic antiphase variation of Ca and Ti abundances. Based on observations obtained with the Bernard Lyot telescope of the Pic du Midi Observatory and Isaac Newton Telescope of the La Palma Observatory.
Optical spectroscopic study of multiferroic BiFeO3 and LuFe2O4
NASA Astrophysics Data System (ADS)
Xu, Xiaoshan
2010-03-01
Iron-based multiferroics such as BiFeO3 and LuFe2O4 exhibit the highest magnetic and ferroelectric ordering temperatures among known multiferroics. LuFe2O4 is a frustrated system with several phase transitions that result in electronically driven multiferroicity. To understand how this peculiar multiferroic mechanism correlates with magnetism, we studied electronic excitations by optical spectroscopy and other complementary techniques. We show that the charge order, which determines the dielectric properties, is due to the ``order by fluctuation'' mechanism, evidenced by the onset of charge fluctuation well below the charge ordering transition. We also find a low temperature monoclinic distortion driven by both temperature and magnetic field, indicating strong coupling between structure, magnetism and charge order. BiFeO3 is the only known single phase multiferroics with room temperature magnetism and ferroelectricity. To investigate the spin-charge coupling, we measured the optical properties of BiFeO3. We find that the absorption onset occurs due to on-site Fe^3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. The sensitivity of the magnon sidebands allows us to map out the magnetic-field temperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near 10 T. Work done in collaboration with T.V. Brinzari, R.C. Rai, M. Angst, R.P. Hermann, A.D. Christianson, J.-W. Kim, Z. Islam, B.C. Sales, D. Mandrus, S. Lee, Y.H. Chu, L. W. Martin, A. Kumar, R. Ramesh, S.W. Cheong, S. McGill, and J.L. Musfeldt.
Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...
2012-04-27
The Heusler-derived multiferroic alloy Ni 50–xCo xMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390more » K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less
Strong magnetic coupling in the hexagonal R5Pb3 compounds (R=Gd-Tm)
NASA Astrophysics Data System (ADS)
Marcinkova, Andrea; de la Cruz, Clarina; Yip, Joshua; Zhao, Liang L.; Wang, Jiakui K.; Svanidze, E.; Morosan, E.
2015-06-01
We have synthesized the R5Pb3 (R=Gd-Tm) compounds in polycrystalline form and performed neutron scattering and magnetization measurements. For all R5Pb3 reported here the Weiss temperatures θW are several times smaller than the ordering temperatures TORD, while the latter are remarkably high (TORD up to 275 K for R=Gd) compared to other known R-M binaries (M=Si, Ge, Sn and Sb). The magnetic order changes from ferromagnetic (FM) in R=Gd, Tb to antiferromagnetic (AFM) in R=Dy-Tm. Below TORD, the magnetization measurements together with neutron powder diffraction show complex magnetic behaviors and reveal the existence of up to three additional phase transitions, believed to be a result of large anisotropic exchange and/or crystal electric field effects, induced high anisotropy. The R5Pb3 magnetic unit cells for R=Tb-Tm can be described with incommensurate magnetic wave vectors with spin modulation either along the c axis in R=Tb, Er and Tm, or within the ab plane in R=Dy and Ho.
Nuclear spin circular dichroism.
Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-04-07
Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.
Kim, Jae Il; Kwak, Hyun Young; Yoon, Jung Hee; Ryu, Dae Won; Yoo, In Young; Yang, Namgeun; Cho, Beong Ki; Park, Je-Geun; Lee, Hyosug; Hong, Chang Seop
2009-04-06
Four cyanide-linked Fe(III)-Mn(III) complexes were prepared by reacting Mn Schiff bases with a new molecular precursor (PPh(4))[Fe(qcq)(CN)(3)] [1; qcq = 8-(2-quinolinecarboxamido)quinoline anion]. They include a dimeric molecule, [Fe(qcq)(CN)(3)][Mn(3-MeOsalen)(H(2)O)] x 2 H(2)O [2 x 2 H(2)O; 3-MeOsalen = N,N'-ethylenebis(3-methoxysalicylideneiminato) dianion], and three 1D zigzag chains, [Fe(qcq)(CN)(3)][Mn(5-Clsalen)] x 3 H(2)O [3 x 2 MeOH; 5-Clsalen = N,N'-ethylenebis(5-chlorosalicylideneiminato) dianion], [Fe(qcq)(CN)(3)][Mn(5-Brsalen)] x 2 MeOH [4 x 2 MeOH; 5-Brsalen = N,N'-ethylenebis(5-bromosalicylideneiminato) dianion], and Fe(qcq)(CN)(3)][Mn(salen)].MeCN x H(2)O [5 x MeCN; salen = N,N'-ethylenebis(salicylideneiminato) dianion]. The complexes consist of extensive hydrogen bonding and pi-pi stacking interactions, generating multidimensional structures. Magnetic studies demonstrate that antiferromagnetic couplings are operative between Fe(III) and Mn(III) centers bridged by cyanide ligands. On the basis of an infinite chain model, magnetic coupling parameters of 2-5 range from -9.3 to -14.1 cm(-1). A long-range order is observed at 2.3 K for 3 and 2.2 K for 4, while compound 5 shows spin glass behavior possibly coupled with magnetic ordering.
Interfacial Symmetry Control of Emergent Ferromagnetism
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Borchers, Julie; Kirby, Brian; He, Chunyong; Arenholz, Elke; Vailionis, Arturas; Flint, Charles; Suzuki, Yuri
Atomically precise complex oxide heterostructures provide model systems for the discovery of new emergent phenomena since their magnetism, structure and electronic properties are strongly coupled. Octahedral tilts and rotations have been shown to alter the magnetic properties of complex oxide heterostructures, but typically induce small, gradual magnetic changes. Here, we demonstrate sharp switching between ferromagnetic and antiferromagnetic order at the emergent ferromagnetic interfaces of CaRuO3/CaMnO3 superlattices. Through synchrotron X-ray diffraction and neutron reflectometry, we show that octahedral distortions in superlattices with an odd number of CaMnO3 unit cells in each layer are symmetry mismatched across the interface. In this case, the rotation symmetry switches across the interface, reducing orbital overlap, suppressing charge transfer from Ru to Mn, and disrupting the interfacial double exchange. This disruption switches half of the interfaces from ferromagnetic to antiferromagnetic and lowers the saturation magnetic of the superlattice from 1.0 to 0.5 μB/interfacial Mn. By targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state with extremely small changes in layer thickness.
NASA Astrophysics Data System (ADS)
Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens
2016-11-01
Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)—a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks—to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.
Magnetotransport in Artificial Kagome Spin Ice
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei
2017-12-01
Magnetic nanoarrays with special geometries exhibit nontrivial collective behaviors similar to those observed in spin-ice materials. Here, we present a circuit model to describe the complex magnetotransport phenomena in artificial kagome spin ice. In this picture, the system can be viewed as a resistor network driven by voltage sources that are located at vertices of the honeycomb array. The differential voltages across different terminals of these sources are related to the ice rules that govern the local magnetization ordering. The circuit model relates the transverse Hall voltage of kagome ice to the underlying spin correlations. Treating the magnetic nanoarray as metamaterials, we present a mesoscopic constitutive equation relating the Hall resistance to magnetization components of the system. We further show that the Hall signal is significantly enhanced when the kagome ice undergoes a magnetic-charge-ordering transition. Our analysis can be readily generalized to other lattice geometries, providing a quantitative method for the design of magnetoresistance devices based on artificial spin ice.
Symmetry-breaking inelastic wave-mixing atomic magnetometry.
Zhou, Feng; Zhu, Chengjie J; Hagley, Edward W; Deng, Lu
2017-12-01
The nonlinear magneto-optical rotation (NMOR) effect has prolific applications ranging from precision mapping of Earth's magnetic field to biomagnetic sensing. Studies on collisional spin relaxation effects have led to ultrahigh magnetic field sensitivities using a single-beam Λ scheme with state-of-the-art magnetic shielding/compensation techniques. However, the NMOR effect in this widely used single-beam Λ scheme is peculiarly small, requiring complex radio-frequency phase-locking protocols. We show the presence of a previously unknown energy symmetry-based nonlinear propagation blockade and demonstrate an optical inelastic wave-mixing NMOR technique that breaks this NMOR blockade, resulting in an NMOR optical signal-to-noise ratio (SNR) enhancement of more than two orders of magnitude never before seen with the single-beam Λ scheme. The large SNR enhancement was achieved simultaneously with a nearly two orders of magnitude reduction in laser power while preserving the magnetic resonance linewidth. This new method may open a myriad of applications ranging from biomagnetic imaging to precision measurement of the magnetic properties of subatomic particles.
Symmetry-breaking inelastic wave-mixing atomic magnetometry
Zhou, Feng; Zhu, Chengjie J.; Hagley, Edward W.; Deng, Lu
2017-01-01
The nonlinear magneto-optical rotation (NMOR) effect has prolific applications ranging from precision mapping of Earth’s magnetic field to biomagnetic sensing. Studies on collisional spin relaxation effects have led to ultrahigh magnetic field sensitivities using a single-beam Λ scheme with state-of-the-art magnetic shielding/compensation techniques. However, the NMOR effect in this widely used single-beam Λ scheme is peculiarly small, requiring complex radio-frequency phase-locking protocols. We show the presence of a previously unknown energy symmetry–based nonlinear propagation blockade and demonstrate an optical inelastic wave-mixing NMOR technique that breaks this NMOR blockade, resulting in an NMOR optical signal-to-noise ratio (SNR) enhancement of more than two orders of magnitude never before seen with the single-beam Λ scheme. The large SNR enhancement was achieved simultaneously with a nearly two orders of magnitude reduction in laser power while preserving the magnetic resonance linewidth. This new method may open a myriad of applications ranging from biomagnetic imaging to precision measurement of the magnetic properties of subatomic particles. PMID:29214217
Supersolid-like magnetic states in a mixed honeycomb-triangular lattice system.
NASA Astrophysics Data System (ADS)
Garlea, Ovidiu
Field-induced magnetic states that occur in layered triangular antiferromagnets have been of broad interest due to the emergence of new exotic phases, such as topologically ordered states and supersolids. Experimental realization of the supersolid states where spin components break simultaneously the translational and rotational symmetries remains scarce. In this context, the mixed vanadate -carbonate K2Mn3(VO4)2CO3 is a very promising system. This compound contains two types of two-dimensional layers alternately stacked along the crystallographic c-axis: one layer consists of a honeycomb web structure made of edge sharing MnO6 octahedra, while the other consists of MnO5 trigonal bipyramids linked by [CO3] triangles to form a triangular magnetic lattice. Magnetization and heat capacity measurements reveal a complex magnetic phase diagram that includes three phase transition associated with sequential long range magnetic ordering of the different sublattices. The lowest temperature state resembles a supersolid state that was predicted to occur in two-dimensional frustrated magnet with easy axis anisotropy. Such a supersolid phase is defined by a commensurate √3× √3 magnetic superlattice, where two thirds of the spins are canted away from the easy axis direction. Applied magnetic field destabilizes this ordered state and induces a cascade of new exotic magnetic ground states. The nature of these field-induced magnetic states is evaluated by using neutron scattering techniques. Work at the Oak Ridge National Laboratory was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division and Materials Sciences and Engineering Division.
Shim, Sang-Heon; Bengtson, Amelia; Morgan, Dane; Sturhahn, Wolfgang; Catalli, Krystle; Zhao, Jiyong; Lerche, Michael; Prakapenka, Vitali
2009-01-01
Recent studies have shown that high pressure (P) induces the metallization of the Fe2+–O bonding, the destruction of magnetic ordering in Fe, and the high-spin (HS) to low-spin (LS) transition of Fe in silicate and oxide phases at the deep planetary interiors. Hematite (Fe2O3) is an important magnetic carrier mineral for deciphering planetary magnetism and a proxy for Fe in the planetary interiors. Here, we present synchrotron Mössbauer spectroscopy and X-ray diffraction combined with ab initio calculations for Fe2O3 revealing the destruction of magnetic ordering at the hematite → Rh2O3-II type (RhII) transition at 70 GPa and 300 K, and then the revival of magnetic ordering at the RhII → postperovskite (PPv) transition after laser heating at 73 GPa. At the latter transition, at least half of Fe3+ ions transform from LS to HS and Fe2O3 changes from a semiconductor to a metal. This result demonstrates that some magnetic carrier minerals may experience a complex sequence of magnetic ordering changes during impact rather than a monotonic demagnetization. Also local Fe enrichment at Earth's core-mantle boundary will lead to changes in the electronic structure and spin state of Fe in silicate PPv. If the ultra-low-velocity zones are composed of Fe-enriched silicate PPv and/or the basaltic materials are accumulated at the lowermost mantle, high electrical conductivity of these regions will play an important role for the electromagnetic coupling between the mantle and the core. PMID:19279204
NASA Astrophysics Data System (ADS)
Pei, Zongrui; Eisenbach, Markus; Stocks, G. Malcolm
Simulating order-disorder phase transitions in magnetic materials requires the accurate treatment of both the atomic and magnetic interactions, which span a vast configuration space. Using FeCo as a prototype system, we demonstrate that this can be addressed by combining the Locally Self-consistent Multiple Scattering (LSMS) method with the Wang-Landau (WL) Monte-Carlo algorithm. Fe-Co based materials are interesting magnetic materials but a reliable phase diagram of the binary Fe-Co system is still difficult to obtain. Using the combined WL-LSMS method we clarify the existence of the disordered A2 phase and predict the Curie temperature between it and the ordered B2 phase. The WL-LSMS method is readily applicable to the study of second-order phase transitions in other binary and multi-component alloys, thereby providing a means to the direct simulation of order-disorder phase transitions in complex alloys without need of intervening classical model Hamiltonians. We also demonstrate the capability of our method to guide the design of new magnetic materials. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and it used Oak Ridge Leadership Computing Facility resources at Oak Ridge National Laboratory.
Ni, Zhong-Hai; Kou, Hui-Zhong; Zhao, Yi-Hua; Zheng, Lei; Wang, Ru-Ji; Cui, Ai-Li; Sato, Osamu
2005-03-21
A dicyano-containing [Fe(bpb)(CN)2]- building block has been employed for the synthesis of cyano-bridged heterometallic Ni(II)-Fe(III) complexes. The presence of steric bpb(2-) ligand around the iron ion results in the formation of low-dimensional species: five are neutral NiFe2 trimers and three are one-dimensional (1D). The structure of the 1D complexes consists of alternating [NiL]2+ and [Fe(bpb)(CN)2]- generating a cyano-bridged cationic polymeric chain and the perchlorate as the counteranion. In all complexes, the coordination geometry of the nickel ions is approximately octahedral with the cyano nitrogen atoms at the trans positions. Magnetic studies of seven complexes show the presence of ferromagnetic interaction between the metal ions through the cyano bridges. Variable temperature magnetic susceptibility investigations of the trimeric complexes yield the following J(NiFe) values (based on the spin exchange Hamiltonian H = -2J(NiFe) S(Ni) (S(Fe(1)) + S(Fe(2))): J(NiFe) = 6.40(5), 7.8(1), 8.9(2), and 6.03(4) cm(-1), respectively. The study of the magneto-structural correlation reveals that the cyanide-bridging bond angle is related to the strength of magnetic exchange coupling: the larger the Ni-N[triple bond]C bond angle, the stronger the Ni- - -Fe magnetic interaction. One 1D complex exhibits long-range antiferromagnetic ordering with T(N) = 3.5 K. Below T(N) (1.82 K), a metamagnetic behavior was observed with the critical field of approximately 6 kOe. The present research shows that the [Fe(bpb)(CN)2]- building block is a good candidate for the construction of low-dimensional magnetic materials.
Leong, Sim Siong; Yeap, Swee Pin; Lim, JitKang
2016-12-06
Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m -1 is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications.
Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan
2014-04-07
Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed.
μ+SR Study on Layered Chromium Perovskites: Srn+1CrnO3n+1 (n = 1-3)
NASA Astrophysics Data System (ADS)
Nozaki, Hiroshi; Sakurai, Hiroya; Umegaki, Izumi; Ansaldo, Eduardo J.; Morris, Gerald D.; Hitti, Bassam; Arseneau, Donald J.; Andreica, Daniel; Amato, Alex; Månsson, Martin; Sugiyama, Jun
The magnetic nature of layered chromium perovskites, Srn+1CrnO3n+1 (n = 1-3) was studied by μ+SR using powder samples prepared by a high pressure synthesis technique. According to the weak transverse field measurements, each sample entered a magnetically ordered state below 110, 200, and 90 K for the n = 1, 2, and 3 samples, respectively. Zero field (ZF) spectra below the transition temperature exhibited a clear oscillation due to the formation of quasi-static magnetic order. The Fourier transform frequency-spectrum for the ZF time-spectrum indicated the existence of the multiple oscillation components. The frequencies for the multiple oscillatory signals showed a complex temperature dependence, implying the occurrence of structural change/transitions below TN.
Anisotropy of magnetic susceptibility (AMS) in the Siilinjärvi carbonatite complex, eastern Finland
NASA Astrophysics Data System (ADS)
Almqvist, Bjarne; Karell, Fredrik; Högdahl, Karin; Malehmir, Alireza; Heino, Pasi; Salo, Aleksi
2017-04-01
We present a set of AMS measurements on samples from the Siilinjärvi alkaline-carbonatite complex in eastern Finland. The complex has a tabular shape (ca. 16 km long, 1.5 km wide) that strikes north-south and is constrained within a steeply dipping N-S oriented deformation zone. It consists of a mixture of lithologies, including carbonatite, fenite and glimmerite (mica-rich rocks), which is hosted within a Precambrian granite and gneiss. After emplacement of the carbonatite, the complex was subsequently intruded by diabase dykes. Deformation has occurred in several episodes after dyke intrusions, and strain is heterogeneously distributed among the different lithologies. Strain localizes mainly within glimmerite and carbonatite, and at the contacts between dykes and glimmerite/carbonatite where shear zones develop locally. Structures provide indications for both simple (strike-slip) and pure shear components in the deformation history of the complex, although the former may dominate. Thirty-six localities were sampled, providing 272 specimens for AMS measurements, within the southern and eastern parts of the Siilinjärvi open-pit mine (within the complex), mainly from diabase dykes, glimmerite and carbonatites; a smaller number of samples were collected from fenite. Sampling was carried out in order to investigate magnetic fabrics in relation to the emplacement of the dykes and their structural relationship to the glimmerite/carbonatite. Structural measurements were made to accompany the magnetic fabric study. The magnetic fabric shows a magnetic foliation plane that is oriented north-south, with sub-horizontal k3-axes oriented nearly east-west. Magnetic lineation (k1) clusters sub-vertically, but does show a tendency to spread along the north-south magnetic foliation great circle. The dataset can be further divided into two sub-sets based on the bulk susceptibility (km) and degree of anisotropy (P). The bulk of the data set ( 70 %), belonging to samples of diabase, is characterized by bulk susceptibility ranging from 1.26e-4 to 1.29e-3 [SI], and P <1.15 (i.e., <15 %). Glimmerites (and carbonatites) show considerably higher bulk susceptibility (4.27e-4 to 2.09e-1 [SI]) and P (up to 1.61), indicative of 1) a much higher magnetite content and 2) larger strain. The glimmerite/carbonatite shows a well-defined N-S magnetic lineation, with k1 and k2 dispersed along the foliation great circle. The diabase AMS shows greater scattering when considering the complete data set, which is likely tied to the individual orientations of dykes in the complex. Ongoing analysis focuses on the details of structural and AMS relationships, between dykes and glimmerite/carbonatite, in order to unravel their emplacement and subsequent deformation. This study was carried out within the ERA-MIN 1 StartGeoDelineation project sponsored by Vinnova (project number 2014-06238), SGU, Tekes, Nordic Iron Ore, and Yara.
Low Dimensionality Effects in Complex Magnetic Oxides
NASA Astrophysics Data System (ADS)
Kelley, Paula J. Lampen
Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.
In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification
NASA Astrophysics Data System (ADS)
Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.
2017-11-01
In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.
Consecutive magnetic phase diagram of UCoGe-URhGe-UIrGe system
NASA Astrophysics Data System (ADS)
Pospíšil, Jiří; Haga, Yoshinori; Miyake, Atsushi; Kambe, Shinsaku; Tateiwa, Naoyuki; Tokunaga, Yo; Honda, Fuminori; Nakamura, Ai; Homma, Yoshiya; Tokunaga, Masashi; Aoki, Dai; Yamamoto, Etsuji
2018-05-01
We prepared single crystals in UCo1-xRhxGe and UIr1-xRhxGe systems to establish a complex dU-U-T (dU-U is the shortest interatomic uranium distance and T is temperature) magnetic phase diagram. This recognized a characteristic maximum in magnetic susceptibility at temperature Tmax along the b axis as an important parameter. Three magnetically ordered regions can be distinguished within this scope; first a ferromagnetic region with Curie temperature
NASA Astrophysics Data System (ADS)
Striplin, Durwin Ray
Complexes with the generic formula, Re(I)Cl(CO) _3(alpha,alpha-diimine), where alpha,alpha-diimine = 2,2^'-bipyridine, 1,10 -phenanthroline, or methyl-substituted analogs, were subjected to detailed optical investigations in the 77-4 K range, both in rigid glasses and in PMMA plastics. Excitation spectra, absorption spectra, and decay kinetics of the phosphorescing manifolds were complemented by detailed measurements of polarization ratios to arrive at a coherent picture of the emitting manifolds. Symmetry assignments and energy orderings of the ^3MLCT (metal-to-ligand charge transfer) spin sublevels were made. Analogous assignments for the ^3MLCT spin -sublevels of Ru(alpha, alpha -diimine)_3^{2+} and Os(alpha,alpha-diimine) _{3}^{2+} ions are implied by this analysis. Increases in luminescence decay rates and emission intensities with increasing external magnetic field strength were observed at 4 K. The decay rates were found to be non-quadratic with respect to magnetic field strength. A simple parametric model that includes spin-orbit coupling and a magnetic field perturbation was developed to describe the MLCT excited states. The energies, symmetry assignments, and magnetic field mixing of the ^3MLCT states were rationalized by the model. Fluorescence, phosphorescence, and excitation spectra were measured on a series of mu -bridged bis(diphenylphosphinomethane) homo- and heterobimetallic compounds of Rh(I), Ir(I), Pt(II), and Au(I). These results were augmented with polarization ratios obtained at 77 K and detailed studies of the temperature dependence of the phosphorescence in the 77-4 K range. The triplet manifold is split by spin-orbit coupling into a forbidden state lying lowest in energy followed by a quasi-degenerate pair lying a few wavenumbers higher that decays two orders of magnitude faster. A quadratic dependence of the decay rate on magnetic field strength was recorded at 4 K for ail complexes. The results are consistent with a rm d_{sigma*}to p_sigma orbital promotion, and the direction of charge-transfer for heterobimetallic complexes was unambiguously assigned. Electronic structural models based on D_{rm 4h}, D_{rm 2h}, and C _{rm 2v} micro-symmetries about the axial chromophore were employed to make explicit symmetry assignments of the excited states.
Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.
Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V
2016-06-08
Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.
NASA Astrophysics Data System (ADS)
Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat
2009-06-01
For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.
The effect of zealots on the rate of consensus achievement in complex networks
NASA Astrophysics Data System (ADS)
Kashisaz, Hadi; Hosseini, S. Samira; Darooneh, Amir H.
2014-05-01
In this study, we investigate the role of zealots on the result of voting process on both scale-free and Watts-Strogatz networks. We observe that inflexible individuals are very effective in consensus achievement and also in the rate of ordering process in complex networks. Zealots make the magnetization of the system to vary exponentially with time. We obtain that on SF networks, increasing the zealots' population, Z, exponentially increases the rate of consensus achievement. The time needed for the system to reach a desired magnetization, shows a power-law dependence on Z. As well, we obtain that the decay time of the order parameter shows a power-law dependence on Z. We also investigate the role of zealots' degree on the rate of ordering process and finally, we analyze the effect of network's randomness on the efficiency of zealots. Moving from a regular to a random network, the re-wiring probability P increases. We show that with increasing P, the efficiency of zealots for reducing the consensus achievement time increases. The rate of consensus is compared with the rate of ordering for different re-wiring probabilities of WS networks.
NASA Astrophysics Data System (ADS)
Hermkens, Niels K. J.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco
2017-03-01
SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H2) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2 min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.
Complex collective dynamics of active torque-driven colloids at interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snezhko, Alexey
Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched bymore » strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations.« less
Petit, L.; Paudyal, D.; Mudryk, Y.; ...
2015-11-09
We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar –1 for GdCd confirmed by our experimental measurements of +1.6 K kbar –1. Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. As a result, replacing 35% of the Mg atoms withmore » Zn removes this transition, in excellent agreement with long-standing experimental data.« less
Origin of the spin Seebeck effect in compensated ferrimagnets
Geprägs, Stephan; Kehlberger, Andreas; Coletta, Francesco Della; Qiu, Zhiyong; Guo, Er-Jia; Schulz, Tomek; Mix, Christian; Meyer, Sibylle; Kamra, Akashdeep; Althammer, Matthias; Huebl, Hans; Jakob, Gerhard; Ohnuma, Yuichi; Adachi, Hiroto; Barker, Joseph; Maekawa, Sadamichi; Bauer, Gerrit E. W.; Saitoh, Eiji; Gross, Rudolf; Goennenwein, Sebastian T. B.; Kläui, Mathias
2016-01-01
Magnons are the elementary excitations of a magnetically ordered system. In ferromagnets, only a single band of low-energy magnons needs to be considered, but in ferrimagnets the situation is more complex owing to different magnetic sublattices involved. In this case, low lying optical modes exist that can affect the dynamical response. Here we show that the spin Seebeck effect (SSE) is sensitive to the complexities of the magnon spectrum. The SSE is caused by thermally excited spin dynamics that are converted to a voltage by the inverse spin Hall effect at the interface to a heavy metal contact. By investigating the temperature dependence of the SSE in the ferrimagnet gadolinium iron garnet, with a magnetic compensation point near room temperature, we demonstrate that higher-energy exchange magnons play a key role in the SSE. PMID:26842873
Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas
2016-01-01
We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.
RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2015-10-29
A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.
NASA Astrophysics Data System (ADS)
Lingos, P. C.; Wang, J.; Perakis, I. E.
2015-05-01
Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.
Rheological behavior of magnetic powder mixtures for magnetic PIM
NASA Astrophysics Data System (ADS)
Kim, Sung Hun; Kim, See Jo; Park, Seong Jin; Mun, Jun Ho; Kang, Tae Gon; Park, Jang Min
2012-06-01
Powder injection molding (PIM) is a promising manufacturing technology for the net-shape production of small, complex, and precise metal or ceramic components. In order to manufacture high quality magnets using PIM, the magneto-rheological (MR) properties of the PIM feedstock, i.e. magnetic powder-binder mixture, should be investigated experimentally and theoretically. The current research aims at comprehensive understanding of the rheological characteristics of the PIM feedstock. The feedstock used in the experiment consists of strontium ferrite powder and paraffin wax. Steady and oscillatory shear tests have been carried out using a plate-and-plate rheometer, under the influence of a uniform magnetic field applied externally. Rheological properties of the PIM feedstock have been measured and characterized for various conditions by changing the temperature, the powder fraction and the magnetic flux density.
Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert.
Trainer, C; Yim, C M; McLaren, M; Wahl, P
2017-09-01
Spin-polarized scanning tunneling microscopy (SP-STM) performed in vector magnetic fields promises atomic scale imaging of magnetic structure, providing complete information on the local spin texture of a sample in three dimensions. Here, we have designed and constructed a turntable system for a low temperature STM which in combination with a 2D vector magnet provides magnetic fields of up to 5 T in any direction relative to the tip-sample geometry. This enables STM imaging and spectroscopy to be performed at the same atomic-scale location and field-of-view on the sample, and most importantly, without experiencing any change on the tip apex before and after field switching. Combined with a ferromagnetic tip, this enables us to study the magnetization of complex magnetic orders in all three spatial directions.
Granqvist, Pehr; Fredrikson, Mats; Unge, Patrik; Hagenfeldt, Andrea; Valind, Sven; Larhammar, Dan; Larsson, Marcus
2005-04-29
Transcranial magnetic stimulation (TMS) with weak (micro Tesla) complex waveform fields have been claimed to evoke the sensed presence of a sentient being in up to 80% in the general population. These findings have had a questionable neurophysiological foundation as the fields are approximately six orders of magnitude weaker than ordinary TMS fields. Also, no independent replication has been reported. To replicate and extend previous findings, we performed a double-blind experiment (N=89), with a sham-field control group. Personality characteristics indicating suggestibility (absorption, signs of abnormal temporal lobe activity, and a "new age"-lifestyle orientation) were used as predictors. Sensed presence, mystical, and other somatosensory experiences previously reported from the magnetic field stimulation were outcome measures. We found no evidence for any effects of the magnetic fields, neither in the entire group, nor in individuals high in suggestibility. Because the personality characteristics significantly predicted outcomes, suggestibility may account for previously reported effects. Our results strongly question the earlier claims of experiential effects of weak magnetic fields.
Mazuel, François; Mathieu, Samuel; Di Corato, Riccardo; Bacri, Jean-Claude; Meylheuc, Thierry; Pellegrino, Teresa; Reffay, Myriam; Wilhelm, Claire
2017-08-01
In order to provide insight into how anisotropic nano-objects interact with living cell membranes, and possibly self-assemble, magnetic nanorods with an average size of around 100 nm × 1 µm are designed by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. The nano-bio interface at the cell membrane under the influence of a rotating magnetic field is then explored. A complex structuration of the nanorods intertwined with the membranes is observed. Unexpectedly, after a magnetic rotating stimulation, the resulting macrorods are able to rotate freely for multiple rotations, revealing the creation of a biomagnetic torsion pendulum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, A.; Chatterjee, S.; Das, D., E-mail: ddas@alpha.iuc.res.in
2016-05-23
TbMn{sub 1-x}Fe{sub x}O{sub 3} nanoparticles (NPs) with x = 0, 0.1 and 0.2 have been prepared by adopting the chemical sol-gel method. Phase identification and particle size estimation are done by XRD analysis. M-H measurements at 5 K indicate a complete ferromagnetic behaviour in the Fe-doped samples with large coercivity whereas the pristine sample shows presence of both ferromagnetic and antiferromagnetic orders. ZFC and FC magnetization curves of all samples show signature of antiferromagnetic ordering of both terbium and manganese magnetic moments along with a systematic shift of ordering temperatures with Fe substitution. {sup 57}Fe Mössbauer spectroscopic measurements of the Fe-dopedmore » samples at room temperature confirm the paramagnetic behaviour and reduction of electric field gradient around Fe probe atoms with increase of Fe concentration.« less
Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.
Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F
2015-11-14
In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.
NASA Astrophysics Data System (ADS)
Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin
2018-02-01
A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.
High-spin ribbons and antiferromagnetic ordering of a Mn(II)-biradical-Mn(II) complex.
Fatila, Elisabeth M; Clérac, Rodolphe; Rouzières, Mathieu; Soldatov, Dmitriy V; Jennings, Michael; Preuss, Kathryn E
2013-09-11
A binuclear metal coordination complex of the first thiazyl-based biradical ligand 1 is reported (1 = 4,6-bis(1,2,3,5-dithiadiazolyl)pyrimidine; hfac =1,1,1,5,5,5,-hexafluoroacetylacetonato-). The Mn(hfac)2-biradical-Mn(hfac)2 complex 2 is a rare example of a discrete, molecular species employing a neutral bridging biradical ligand. It is soluble in common organic solvents and can be easily sublimed as a crystalline solid. Complex 2 has a spin ground state of S(T) = 4 resulting from antiferromagnetic coupling between the S(birad) = 1 biradical bridging ligand and two S(Mn) = 5/2 Mn(II) ions. Electrostatic contacts between atoms with large spin density promote a ferromagnetic arrangement of the moments of neighboring complexes in ribbon-like arrays. Weak antiferromagnetic coupling between these high-spin ribbons stabilizes an ordered antiferromagnetic ground state below 4.5 K. This is an unusual example of magnetic ordering in a molecular metal-radical complex, wherein the electrostatic contacts that direct the crystal packing are also responsible for providing an efficient exchange coupling pathway between molecules.
Double interpenetration in a chiral three-dimensional magnet with a (10,3)-a structure.
Grancha, Thais; Mon, Marta; Lloret, Francesc; Ferrando-Soria, Jesús; Journaux, Yves; Pasán, Jorge; Pardo, Emilio
2015-09-21
A unique chiral three-dimensional magnet with an overall racemic double-interpenetrated (10,3)-a structure of the formula [(S)-(1-PhEt)Me3N]4[Mn4Cu6(Et2pma)12](DMSO)3]·3DMSO·5H2O (1; Et2pma = N-2,6-diethylphenyloxamate) has been synthesized by the self-assembly of a mononuclear copper(II) complex acting as a metalloligand toward Mn(II) ions in the presence of a chiral cationic auxiliary, constituting the first oxamato-based chiral coordination polymer exhibiting long-range magnetic ordering.
Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude
2014-05-14
NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.
Magnetic flux density reconstruction using interleaved partial Fourier acquisitions in MREIT.
Park, Hee Myung; Nam, Hyun Soo; Kwon, Oh In
2011-04-07
Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive modality to visualize the internal conductivity and/or current density of an electrically conductive object by the injection of current. In order to measure a magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels the systematic artifacts accumulated in phase signals and also reduces the random noise effect. However, it is important to reduce scan duration maintaining spatial resolution and sufficient contrast, in order to allow for practical in vivo implementation of MREIT. The purpose of this paper is to develop a coupled partial Fourier strategy in the interleaved sampling in order to reduce the total imaging time for an MREIT acquisition, whilst maintaining an SNR of the measured magnetic flux density comparable to what is achieved with complete k-space data. The proposed method uses two key steps: one is to update the magnetic flux density by updating the complex densities using the partially interleaved k-space data and the other is to fill in the missing k-space data iteratively using the updated background field inhomogeneity and magnetic flux density data. Results from numerical simulations and animal experiments demonstrate that the proposed method reduces considerably the scanning time and provides resolution of the recovered B(z) comparable to what is obtained from complete k-space data.
Yeap, Swee Pin; Lim, JitKang
2016-01-01
Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m−1 is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications. PMID:27920891
Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.
Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A
2013-10-07
In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.
Anomalous Thermal Conductivity and Magnetic Torque Response in the Honeycomb Magnet α -RuCl3
NASA Astrophysics Data System (ADS)
Leahy, Ian A.; Pocs, Christopher A.; Siegfried, Peter E.; Graf, David; Do, S.-H.; Choi, Kwang-Yong; Normand, B.; Lee, Minhyea
2017-05-01
We report on the unusual behavior of the in-plane thermal conductivity κ and torque τ response in the Kitaev-Heisenberg material α -RuCl3 . κ shows a striking enhancement with linear growth beyond H =7 T , where magnetic order disappears, while τ for both of the in-plane symmetry directions shows an anomaly at the same field. The temperature and field dependence of κ are far more complex than conventional phonon and magnon contributions, and require us to invoke the presence of unconventional spin excitations whose properties are characteristic of a field-induced spin-liquid phase related to the enigmatic physics of the Kitaev model in an applied magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Messina, D.; Rustan, G. E.
In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperaturemore » metastable structures.« less
NASA Astrophysics Data System (ADS)
Barth, Daniel S.; Sutherling, William; Engle, Jerome; Beatty, Jackson
1984-01-01
Neuromagnetic measurements were performed on 17 subjects with focal seizure disorders. In all of the subjects, the interictal spike in the scalp electroencephalogram was associated with an orderly extracranial magnetic field pattern. In eight of these subjects, multiple current sources underlay the magnetic spike complex. The multiple sources within a given subject displayed a fixed chronological sequence of discharge, demonstrating a high degree of spatial and temporal organization within the interictal focus.
VLBA Archive &Distribution Architecture
NASA Astrophysics Data System (ADS)
Wells, D. C.
1994-01-01
Signals from the 10 antennas of NRAO's VLBA [Very Long Baseline Array] are processed by a Correlator. The complex fringe visibilities produced by the Correlator are archived on magnetic cartridges using a low-cost architecture which is capable of scaling and evolving. Archive files are copied to magnetic media to be distributed to users in FITS format, using the BINTABLE extension. Archive files are labelled using SQL INSERT statements, in order to bind the DBMS-based archive catalog to the archive media.
Magnetism and charge density wave in GdNiC2 and NdNiC2
NASA Astrophysics Data System (ADS)
Klimczuk, Tom; Kolincio, Kamil; Wianiarski, Michal; Strychalska-Nowak, Judyta; Górnicka, Karolina
The RNiC2 compounds form in an orthorhombic Amm2 crystal structure with Ni and the rare-earth (R) metal chains along the crystallographic a-axis. This system is of particular interest because both a CDW and a long range magnetic ordering phases have been observed together. We report the specific heat, magnetic, magnetotransport and galvanomagnetic properties of GdNiC2 and NdNiC2 antiferromagnets. Complex B-T phase diagrams were built based on the specific heat data. Large negative magnetoresistance due to Zeeman splitting of the electronic bands and partial destruction of a charge density wave ground state is observed above TN. The magnetoresistance and Hall measurements show that at low temperatures a magnetic field induced transformation from antiferromagnetic order to a metamagnetic phase results in the partial suppression of the CDW. This project is financially supported by National Science Centre (Poland), Grant Number: UMO-2015/19/B/ST3/03127.
Soft ferromagnetism in mixed valence Sr(1-x)La(x)Ti(0.5)Mn(0.5)O₃ perovskites.
Qasim, Ilyas; Blanchard, Peter E R; Kennedy, Brendan J; Ling, Chris D; Jang, Ling-Yun; Kamiyama, Takashi; Miao, Ping; Torii, Shuki
2014-05-14
The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.
NASA Astrophysics Data System (ADS)
Patz, Aaron; Li, Tianqi; Ran, Sheng; Fernandes, Rafael M.; Schmalian, Joerg; Bud'Ko, Sergey L.; Canfield, Paul C.; Perakis, Ilias E.; Wang, Jigang
2014-02-01
Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behaviour these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven nematicity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe1-xCox)2As2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.
Electronic Structure and Magnetic Interactions in the Radical Salt [BEDT-TTF]2[CuCl4].
Calzado, Carmen J; Rodríguez-García, Bárbara; Galán Mascarós, José Ramón; Hernández, Norge Cruz
2018-06-07
The magnetic behavior and electric properties of the hybrid radical salt [BEDT-TTF] 2 [CuCl 4 ] have been revisited through extended experimental analyses and DDCI and periodic DFT plane waves calculations. Single crystal X-ray diffraction data have been collected at different temperatures, discovering a phase transition occurring in the 250-300 K range. The calculations indicate the presence of intradimer, interdimer, and organic-inorganic π-d interactions in the crystal, a magnetic pattern much more complex than the Bleaney-Bowers model initially assigned to this material. Although this simple model was good enough to reproduce the magnetic susceptibility data, our calculations demonstrate that the actual magnetic structure is significantly more intricate, with alternating antiferromagnetic 1D chains of the organic BEDT-TTF + radical, connected through weak antiferromagnetic interactions with the CuCl 4 2- ions. Combination of experiment and theory allowed us to unambiguously determine and quantify the leading magnetic interactions in the system. The density-of-states curves confirm the semiconductor nature of the system and the dominant organic contribution of the valence and conduction band edges. This general and combined approach appears to be fundamental in order to properly understand the magnetic structure of these complex materials, where experimental data can actually be fitted from a variety of models and parameters.
Gogolashvili, Ann; Tatunashvili, Elene; Chankvetadze, Lali; Sohajda, Tamas; Szeman, Julianna; Salgado, Antonio; Chankvetadze, Bezhan
2017-08-01
In the present study, the enantiomer migration order (EMO) of enilconazole in the presence of various cyclodextrins (CDs) was investigated by capillary electrophoresis (CE). Opposite EMO of enilconazole were observed when β-CD or the sulfated heptakis(2-O-methyl-3,6-di-O-sulfo)-β-CD (HMDS-β-CD) was used as the chiral selectors. Nuclear magnetic resonance (NMR) spectroscopy was used to study the mechanism of chiral recognition between enilconazole enantiomers and those two cyclodextrins. On the basis of rotating frame nuclear Overhauser (ROESY) experiments, the structure of an inclusion complex between enilconazole and β-CD was derived, in which (+)-enilconazole seemed to form a tighter complex than the (-)-enantiomer. This correlates well with the migration order of enilconazole enantiomers observed in CE. No evidence of complexation between enilconazole and HMDS-β-CD could be gathered due to lack of intermolecular nuclear Overhauser effect (NOE). Most likely the interaction between enilconazole and HMDS-β-CD leads to formation of a shallow external complex that is sufficient for separation of enantiomers in CE but cannot be evidenced based on ROESY experiment. Thus, in this particular case CE documents the presence of intermolecular interactions which are at least very difficult to be evidenced by other instrumental techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chow, Chun Y.; Bolvin, Hélène; Campbell, Victoria E.; Guillot, Régis; Kampf, Jeff W.; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen
2015-01-01
We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga4Ln2(shi3–)4(Hshi2–)2(H2shi–)2(C5H5N)4(CH3OH)x(H2O)x]·xC5H5N·xCH3OH·xH2O (where H3shi = salicylhydroxamic acid and Ln = GdIII1; TbIII2; DyIII3; ErIII4; YIII5; YIII0.9DyIII0.16). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled DyIII ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy2 than for the Er2 complex. PMID:29218180
Magnetocapacitance and the physics of solid state interfaces
NASA Astrophysics Data System (ADS)
Hebard, Arthur
2008-10-01
When Herbert Kroemer stated in his Nobel address [1] that ``the interface is the device,'' he was implicitly acknowledging the importance of understanding the physics of interfaces. If interfaces are to have character traits, then ``impedance'' (or complex capacitance) would be a commonly used descriptor. In this talk I will discuss the use of magnetic fields to probe the ``character'' of a variety of interfaces including planar capacitor structures with magnetic electrodes, simple metal/semiconductor contacts (Schottky barriers) and the interface-dominated competition on microscopic length scales between ferromagnetic metallic and charge-ordered insulating phases in complex oxides. I will show that seeking experimental answers to surprisingly simple questions often leads to striking results that seriously challenge theoretical understanding. Perhaps Herbert Kroemer should have said, ``the interface is the device with a magnetic personality that continually surprises.'' [3pt] [1] Herbert Kroemer, ``Quasielectric fields and band offsets: teaching electron s new tricks,'' Nobel Lecture, December 8, 2000:
A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang
2007-10-01
We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.
Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.
Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C
2015-09-29
NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.
Chow, Chun Y; Bolvin, Hélène; Campbell, Victoria E; Guillot, Régis; Kampf, Jeff W; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen; Pecoraro, Vincent L; Mallah, Talal
2015-07-01
We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga 4 Ln 2 (shi 3- ) 4 (Hshi 2- ) 2 (H 2 shi - ) 2 (C 5 H 5 N) 4 (CH 3 OH) x (H 2 O) x ]· x C 5 H 5 N· x CH 3 OH· x H 2 O (where H 3 shi = salicylhydroxamic acid and Ln = Gd III 1 ; Tb III 2 ; Dy III 3 ; Er III 4 ; Y III 5 ; Y III 0.9 Dy III 0.1 6 ). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled Dy III ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy 2 than for the Er 2 complex.
Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13
NASA Astrophysics Data System (ADS)
Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.
1995-11-01
The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, M.; Hong, Tao; Peng, J.
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
Zhu, M.; Hong, Tao; Peng, J.; ...
2018-01-09
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
L a A l O3 / S r T i O3 -A Tale of Two Magnetisms
NASA Astrophysics Data System (ADS)
Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy
Ten years since the first report of magnetism by Brinkman et al., a unified picture of magnetism at the two-dimensional electron system (2DES) between LaAlO3 / SrTiO3 is still lacking. The understanding is further hindered by the complex interplay of magnetism and many other aspects of this system: multi-band superconductivity, quantum paraelectricity, multiferroicity, to name but a few. We argue that the reported magnetic signatures in this system can come from two principal origins: (1) a ferromagnetic long-range order resulting from local magnetic moments mediated by itinerant electrons, and (2) metamagnetic phenomena associated with electron pairing without superconductivity. Finally, we discuss possible experimental tests of this framework. We gratefully acknowledge financial support from NSF (DMR-1124131, DMR-1609519) and ONR N00014-15-1-2847.
Non-rigid precession of magnetic stars
NASA Astrophysics Data System (ADS)
Lander, S. K.; Jones, D. I.
2017-06-01
Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.
Dynamic properties along the neutral line of a delta spot inferred from high-resolution observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristaldi, A.; Guglielmino, S. L.; Zuccarello, F.
2014-07-10
Delta (δ) spots are complex magnetic configurations of sunspots characterized by umbrae of opposite polarity sharing a common penumbra. In order to investigate the fine structure of the region separating the two magnetic polarities of a δ spot, we studied the morphology, the magnetic configuration, and the velocity field in such a region using observations of active region (AR) NOAA 11267 obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish Solar Telescope on 2011 August 6. The analysis of CRISP data shows upflows and downflows of ∼ ± 3 km s{sup –1} in proximity of the δ spot polaritymore » inversion line (PIL), and horizontal motions along the PIL of the order of ∼1 km s{sup –1}. The results obtained from the SIR inversion of CRISP data also indicate that the transverse magnetic field in the brighter region separating the two opposite magnetic polarities of the δ spot is tilted about ∼45° with respect to the PIL. Solar Dynamics Observatory/Helioseismic and Magnetic Imager observations confirm the presence of motions of ∼ ± 3 km s{sup –1} in proximity of the PIL, which were observed to last 15 hr. From the data analyzed, we conclude that the steady, persistent, and subsonic motions observed along the δ spot PIL can be interpreted as being due to Evershed flows occurring in the penumbral filaments that show a curved, wrapped configuration. The fluting of the penumbral filaments and their bending, continuously increased by the approaching motion of the negative umbra toward the positive one, give rise to the complex line-of-sight velocity maps that we observed.« less
Hermkens, Niels K J; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2017-03-01
SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H 2 ) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H 2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay. Copyright © 2017 Elsevier Inc. All rights reserved.
Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2014-12-07
A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields. SABRE is a method, which utilizes spin order transfer from para-hydrogen to the spins of a substrate in transient complexes using suitable catalysts. Such a transfer of spin order is efficient at low magnetic fields, notably, in the Level Anti-Crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields in the rotating reference frame under the action of an RF-field. Spin mixing at LACs allows one to polarize substrates at high fields as well; the achievable NMR enhancements are around 360 for the ortho-protons of partially deuterated pyridine used as a substrate and around 700 for H2 and substrate in the active complex with the catalyst. High-field SABRE effects have also been found for several other molecules containing a nitrogen atom in the aromatic ring.
Phillips, Jordan J; Peralta, Juan E
2013-05-07
We present a method for calculating magnetic coupling parameters from a single spin-configuration via analytic derivatives of the electronic energy with respect to the local spin direction. This method does not introduce new approximations beyond those found in the Heisenberg-Dirac Hamiltonian and a standard Kohn-Sham Density Functional Theory calculation, and in the limit of an ideal Heisenberg system it reproduces the coupling as determined from spin-projected energy-differences. Our method employs a generalized perturbative approach to constrained density functional theory, where exact expressions for the energy to second order in the constraints are obtained by analytic derivatives from coupled-perturbed theory. When the relative angle between magnetization vectors of metal atoms enters as a constraint, this allows us to calculate all the magnetic exchange couplings of a system from derivatives with respect to local spin directions from the high-spin configuration. Because of the favorable computational scaling of our method with respect to the number of spin-centers, as compared to the broken-symmetry energy-differences approach, this opens the possibility for the blackbox exploration of magnetic properties in large polynuclear transition-metal complexes. In this work we outline the motivation, theory, and implementation of this method, and present results for several model systems and transition-metal complexes with a variety of density functional approximations and Hartree-Fock.
MCG measurement in the environment of active magnetic shield.
Yamazaki, K; Kato, K; Kobayashi, K; Igarashi, A; Sato, T; Haga, A; Kasai, N
2004-11-30
MCG (Magnetocardiography) measurement by a SQUID gradiometer was attempted with only active magnetic shielding (active shielding). A three-axis-canceling-coil active shielding system, where three 16-10-16 turns-coil sets were put in the orthogonal directions, produces a homogeneous magnetic field in a considerable volume surrounding the center. Fluxgate sensors were used as the reference sensors of the system. The system can reduce environmental magnetic noise at low frequencies of less than a few Hz, at 50 Hz and at 150 Hz. Reducing such disturbances stabilizes biomagnetic measurement conditions for SQUIDs in the absence of magnetically shielded rooms (MSR). After filtering and averaging the measured MCG data by a first-order SQUID gradiometer with only the active shielding during the daytime, the QRS complex and T wave was clearly presented.
Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic
Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, Kevin; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.
2011-01-01
New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.
NASA Astrophysics Data System (ADS)
Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi
2002-11-01
The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.
Ferromagnetism and spin-dependent transport at a complex oxide interface
NASA Astrophysics Data System (ADS)
Ayino, Yilikal; Xu, Peng; Tigre-Lazo, Juan; Yue, Jin; Jalan, Bharat; Pribiag, Vlad S.
2018-03-01
Complex oxide interfaces are a promising platform for studying a wide array of correlated electron phenomena in low dimensions, including magnetism and superconductivity. The microscopic origin of these phenomena in complex oxide interfaces remains an open question. Here we investigate the magnetic properties of semi-insulating NdTi O3/SrTi O3 (NTO/STO) interfaces and present the first millikelvin study of NTO/STO. The magnetoresistance (MR) reveals signatures of local ferromagnetic order and of spin-dependent thermally activated transport, which are described quantitatively by a simple phenomenological model. We discuss possible origins of the interfacial ferromagnetism. In addition, the MR also shows transient hysteretic features on a time scale of ˜10 -100 s . We demonstrate that these are consistent with an extrinsic magnetothermal origin, which may have been misinterpreted in previous reports of magnetism in STO-based oxide interfaces. The existence of these two MR regimes (steady-state and transient) highlights the importance of time-dependent measurements for distinguishing signatures of ferromagnetism from other effects that can produce hysteresis at low temperatures.
Multiferroic behavior in CdCr2X4(X=S,Se)
NASA Astrophysics Data System (ADS)
Hemberger, J.; Lunkenheimer, P.; Fichtl, R.; Weber, S.; Tsurkan, V.; Loidl, A.
2006-05-01
The recently discovered multiferroic material CdCr2S4 shows a coexistence of ferromagnetism and relaxor ferroelectricity together with a colossal magnetocapacitive effect. The complex dielectric permittivity of this compound and of the structurally related CdCr2Se4 was studied by means of broadband dielectric spectroscopy using different electrode materials. The observed magnetocapacitive coupling at the magnetic transition is driven by enormous changes of the relaxation dynamics induced by the development of magnetic order.
Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan
2013-01-01
Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382
Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan
2013-01-01
Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.
Self-assembly of smallest magnetic particles
Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan
2015-01-01
The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000
Classical Spin Nematic Transition in LiGa0.95In0.05Cr4O8
NASA Astrophysics Data System (ADS)
Wawrzyńczak, R.; Tanaka, Y.; Yoshida, M.; Okamoto, Y.; Manuel, P.; Casati, N.; Hiroi, Z.; Takigawa, M.; Nilsen, G. J.
2017-08-01
We present the results of a combined 7Li -NMR and diffraction study on LiGa0.95In0.05Cr4O8, a member of the LiGa1 -xInxCr4O8 "breathing" pyrochlore family. Via specific heat and NMR measurements, we find that the complex sequence of first-order transitions observed for LiGaCr4O8 is replaced by a single second-order transition at Tf=11 K . Neutron and x-ray diffraction rule out both structural symmetry lowering and magnetic long-range order as the origin of this transition. Instead, reverse Monte Carlo fitting of the magnetic diffuse scattering indicates that the low-temperature phase may be described as a collinear spin nematic state, characterized by a quadrupolar order parameter. This state also shows signs of short-range order between collinear spin arrangements on tetrahedra, revealed by mapping the reverse Monte Carlo spin configurations onto a three-state color model.
Magnetic fabrics in tectonically inverted sedimentary basins: a review
NASA Astrophysics Data System (ADS)
García-Lasanta, Cristina; Román-Berdiel, Teresa; Casas-Sainz, Antonio; Oliva-Urcia, Belén; Soto, Ruth; Izquierdo-Llavall, Esther
2017-04-01
Magnetic fabric studies in sedimentary rocks were firstly focused on strongly deformed tectonic contexts, such as fold-and-thrust belts. As measurement techniques were improved by the introduction of high-resolution equipments (e.g. KLY3-S and more recent Kappabridge susceptometers from AGICO Inc., Czech Republic), more complex tectonic contexts could be subjected to anisotropy of magnetic susceptibility (AMS) analyses in order to describe the relationship between tectonic conditions and the orientation and shape of the resultant magnetic ellipsoids. One of the most common complex tectonic frames involving deformed sedimentary rocks are inverted extensional basins. In the last decade, multiple AMS studies revealed that the magnetic fabric associated with the extensional stage (i.e. a primary magnetic fabric) can be preserved despite the occurrence of subsequent deformational processes. In these cases, magnetic fabrics may provide valuable information about the geometry and kinematics of the extensional episode (i.e. magnetic ellipsoids with their minimum susceptibility axis oriented perpendicular to the deposit plane and magnetic lineation oriented parallel to the extension direction). On the other hand, several of these studies have also determined how the subsequent compressional stage can modify the primary extensional fabric in some cases, particularly in areas subjected to more intense deformation (with development of compression-related cleavage). In this contribution we present a compilation of AMS studies developed in sedimentary basins that underwent different degree of tectonic inversion during their history, in order to describe the relationship of this degree of deformation and the degree of imprint that tectonic conditions have in the previous magnetic ellipsoid (primary extension-related geometry). The inverted basins included in this synthesis are located in the Iberian Peninsula and show: i) weak deformation (W Castilian Branch and Maestrazgo basin, Iberian Range); ii) transport along the hangingwall of thrusts with very slight internal deformation (Organyà basin, Central Pyrenees); iii) record of incipient compressive strain and foliation development (Cabuerniga basin, Basque-Cantabrian Basin; Lusitanian basin, W Portugal); iv) complete inversion associated with a remarkable transport along the hangingwall of thrusts and relatively large internal deformation (Cameros basin, Iberian Range); and v) major folding and flattening linked to foliation (Mauléon basin, Northern Pyrenees; Nogueres unit, Pyrenean Axial Zone).
Physical properties and spin excitations in the lacunar spinels AV4S8(A =Ga, Ge)
NASA Astrophysics Data System (ADS)
Pokharel, Ganesh; Christianson, Andrew; Mandrus, David; Liusuo Wu Team; Mark Lumsden Collaboration; Rupam Mukherjee Collaboration; Matthew Stone Collaboration; Georg Ehlers Collaboration
In the lacunar spinels AV4S8 (A = Ga, Ge), the interplay of spin, charge, and orbital degrees of freedom results in a complex phase diagram which includes: ferroelectric, orbitally ordered, and Néel type skyrmion phases. Below 12.7 K GaV4S8 exhibits cycloidal and ferromagnetic order and the application of a magnetic field results in a Néel type skyrmion spin structure. On the other hand, GeV4S8 orders antiferromagentically below 18 K. To illuminate the underlying physics driving the formation of these novel phases, we have measured the magnetization, resistivity, thermal conductivity, and inelastic neutron scattering spectrum of these spinels. The inelastic neutron scattering data shows broadened spin excitations which extend to 6 meV within the magnetically order phases for both GaV4S8 and GeV4S8. The similarity of the spectra for ferromagnetic GaV4S8 and antiferromagnetic GeV4S8 reflects the close balance of ferromagnetic and antiferromagnetic interactions in these materials. This research is funded by the Gordon and Betty Moore Foundation's EPIQS Initiative through Grant GBMF4416.
Method of detecting luminescent target ions with modified magnetic microspheres
Shkrob, Ilya A; Kaminski, Michael D
2014-05-13
This invention provides methods of using modified magnetic microspheres to extract target ions from a sample in order to detect their presence in a microfluidic environment. In one or more embodiments, the microspheres are modified with molecules on the surface that allow the target ions in the sample to form complexes with specific ligand molecules on the microsphere surface. In one or more embodiments, the microspheres are modified with molecules that sequester the target ions from the sample, but specific ligand molecules in solution subsequently re-extract the target ions from the microspheres into the solution, where the complexes form independent of the microsphere surface. Once the complexes form, they are exposed to an excitation wavelength light source suitable for exciting the target ion to emit a luminescent signal pattern. Detection of the luminescent signal pattern allows for determination of the presence of the target ions in the sample.
Studies of magnetism in rhenium and manganese based perovskite oxides
NASA Astrophysics Data System (ADS)
Wiebe, Christopher Ryan
The bulk of this thesis consists of studies of geometric frustration in S = ½ FCC perovskites based upon the chemical formula A2BReO 6. The magnetism of these materials is expected to exhibit geometric frustration, a situation in which the ideal spin arrangements cannot be achieved for antiferromagnetic interactions between adjacent spins. It is proposed that subtle quantum effects are driving these systems to unique ground states in the absence of chemical disorder. Both compounds Sr2CaReO 6 and Sr2MgReO6 exhibit spin glass behaviour at low temperatures (TG ˜ 14 K and TG ˜ 50 K respectively), in which the magnetic moments freeze out in random orientations instead of an ordered array. This work shows that these materials possess several unconventional properties, which suggest that interesting spin dynamics may be present. Other perovskite and perovskite-related materials studied in this thesis include the magnetoresistive CaMnO3-delta and the "pillared" material La5Re3MnO16. Neutron diffraction studies have shown that both CaMnO2.94 and CaMnO2.89 order at TN ˜ 125 K, but possess unique yet related magnetic structures. CaMnO2.94 orders into a simple G-type magnetic structure, as observed in the compound CaMnO3. The slightly more doped sample CaMnO2.89, on the other hand, orders into a magnetic structure related to the G-type, and involves a Mn3+/Mn 4+ charge ordering over every four lattice spacings. The new material La5Re3MnO16 consists of layers of corner shared ReO6 and MnO6 octahedra that are separated by layers of Re2O10 dimer units. Metal-metal bonding involving Re atoms have been postulated for these dimers which separate the Re/Mn layers by approximately 10 A. The magnetic behaviour exhibited by this new class of materials is rich and complex. Despite the large distances separating the perovskite layers, the Re and Mn magnetic moments order into a ferrimagnetic Q = (0, 0, ½) structure below a relatively high T N of 161 K. There may be an additional spin rearrangement at lower temperatures as evidenced by weak magnetic Bragg peaks below ˜50 K.
Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
NASA Astrophysics Data System (ADS)
Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.
2017-09-01
Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.
The magnetic early B-type stars I: magnetometry and rotation
NASA Astrophysics Data System (ADS)
Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration
2018-04-01
The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements
Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex
NASA Astrophysics Data System (ADS)
Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo
2016-04-01
The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.
Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip.
Berenguel-Alonso, Miguel; Granados, Xavier; Faraudo, Jordi; Alonso-Chamarro, Julián; Puyol, Mar
2014-10-01
While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal--i.e. only trapping is achieved, with aggregation of the beads--or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.
Lattice-mediated magnetic order melting in TbMnO 3
Baldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.; ...
2018-03-15
Recent ultrafast magnetic-sensitive measurements have revealed a delayed melting of the long-range cycloid spin order in TbMnO 3 following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting andmore » is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. In conclusion, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.« less
Dirac’s magnetic monopole and the Kontsevich star product
NASA Astrophysics Data System (ADS)
Soloviev, M. A.
2018-03-01
We examine relationships between various quantization schemes for an electrically charged particle in the field of a magnetic monopole. Quantization maps are defined in invariant geometrical terms, appropriate to the case of nontrivial topology, and are constructed for two operator representations. In the first setting, the quantum operators act on the Hilbert space of sections of a nontrivial complex line bundle associated with the Hopf bundle, whereas the second approach uses instead a quaternionic Hilbert module of sections of a trivial quaternionic line bundle. We show that these two quantizations are naturally related by a bundle morphism and, as a consequence, induce the same phase-space star product. We obtain explicit expressions for the integral kernels of star-products corresponding to various operator orderings and calculate their asymptotic expansions up to the third order in the Planck constant \\hbar . We also show that the differential form of the magnetic Weyl product corresponding to the symmetric ordering agrees completely with the Kontsevich formula for deformation quantization of Poisson structures and can be represented by Kontsevich’s graphs.
Lattice-mediated magnetic order melting in TbMnO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.
Recent ultrafast magnetic-sensitive measurements have revealed a delayed melting of the long-range cycloid spin order in TbMnO 3 following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting andmore » is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. In conclusion, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.« less
First-principles analysis of X-ray magnetic circular dichroism for transition metal complex oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeno, Hidekazu, E-mail: h-ikeno@21c.osakafu-u.ac.jp
2016-10-14
X-ray magnetic circular dichroism (XMCD) is widely used for the characterization of magnetism of materials. However, information from XMCD related to the atomic, electronic, and magnetic structures is not fully utilized due to the lack of reliable theoretical tools for spectral analysis. In this work, the first-principles configuration interaction (CI) calculations for X-ray absorption spectra developed by the author were extended for the calculation of XMCD, where the Zeeman energy was taken into the Hamiltonian of the CI to mimic magnetic polarization in the solid state. This technique was applied to interpret the L{sub 2,3} XMCD from 3d transition metalmore » complex oxides, such as NiFe{sub 2}O{sub 4} and FeTiO{sub 3}. The experimental XMCD spectra were quantitatively reproduced using this method. The oxidation states as well as the magnetic ordering between transition metal ions on crystallographically different sites in NiFe{sub 2}O{sub 4} can be unambiguously determined. A first-principles analysis of XMCD in FeTiO{sub 3} revealed the presence of Fe{sup 3+} and Ti{sup 3+} ions, which indicates that the charge transfer from Fe to Ti ions occurs. The origin of magnetic polarization of Ti ions in FeTiO{sub 3} was also discussed.« less
Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.
Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J
2009-12-01
In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.
Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode
NASA Astrophysics Data System (ADS)
Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.
2009-12-01
In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.
NASA Astrophysics Data System (ADS)
Burlaga, L. F.; Ness, N. F.; Belcher, J. W.; Szabo, A.; Isenberg, P. A.; Lee, M. A.
1994-11-01
Five pressure-balanced structures, each with a scale of the order of a few hundredths of an astonomical unit (AU), were identified in two merged interaction regions (MIRs) near 35 AU in the Voyager 2 plasma and magnetic field data. They include a tangential discontinuity, simple and complex magnetic holes, slow correlated variations among the plasma and magnetic field parameters, and complex uncorrelated variations among the parameters. The changes in the magnetic pressure in these events are balanced by changes in the pressure of interstellar pickup protons. Thus the pickup protons probably play a major role in the dynamics of the MIRs. The solar wind proton and electron pressures are relatively unimportant in the MIRs at 35 AU and beyond. The region near 35 AU is transition region: the Sun is the source of the magnetic field, but the interstellar medium in source of pickups protons. Relative to the solar wind proton guyroadius, the thicknesses of the discontinuities and simple magnetic holes observed near 35 AU are at least an order of magnitude greater than those observed at 1 AU. However, the thicknesses of the tangential discontinuity and simple magnetic holes observed near 35 AU (in units of the pickup proton Larmor radius) are comparable to those observed at 1 AU (in units of the solar wind proton gyroradius). Thus the gyroradius of interstellar pickup protons controls the thickness of current sheets near 35 AU. We determine the interstellar pickup proton pressure in the PBSs. Using a model for the pickup proton temperature, we estimate that the average interstellar pickup proton pressure, temperature, and density in the MIRs at 35 AU are (0.53 +/- 0.14) x 10-12 erg/cu cm, (5.8 +/- 0.4) x 106 K and (7 +/- 2) x 10-4/cu cm.
Ordered defects in Fe1-xS generate additional magnetic anisotropy symmetries
NASA Astrophysics Data System (ADS)
Koulialias, D.; Charilaou, M.; Schäublin, R.; Mensing, C.; Weidler, P. G.; Löffler, J. F.; Gehring, A. U.
2018-01-01
Non-stoichiometric monoclinic 4C pyrrhotite (Fe7S8), a ferrimagnetic monosulfide that has been intensively used as a remanence carrier to infer the magnetization of the Earth's crust and extraterrestrial materials, exhibits a characteristic low-temperature transition accompanied by complex modifications in anisotropy and magnetization. We demonstrate that the magnetic rotational symmetry of the 4C pyrrhotite is critically affected by the order of the defective Fe-sites, and this in turn is a key to decipher the physics behind the low-temperature transition. Our torque experiments and numerical simulations show an emergent four-fold rotational symmetry in the c-plane of the 4C pyrrhotite at T < 30 K. This symmetry breaking associated with the transition is caused by the competitive interaction of two inherently hexagonal systems generated by two groups of Fe-sites with different local anisotropy fields that stem from the vacancy arrangement in the 4C stacking sequence, and it is triggered by changes in the spin orbit coupling due to the overlap of Fe-Fe electron orbitals at low-temperature. This mechanism provides a new explanation for the magnetic transition in 4C pyrrhotite at low temperature and could also cast light on non-trivial magnetic phenomena in defective systems.
Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4
Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois
2017-01-01
Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038
Dissipation processes in the insulating skyrmion compound Cu2OSeO3
NASA Astrophysics Data System (ADS)
Levatić, I.; Šurija, V.; Berger, H.; Živković, I.
2014-12-01
We present a detailed study of the phase diagram surrounding the skyrmion lattice (SkL) phase of Cu2OSe2O3 using high-precision magnetic ac susceptibility measurements. An extensive investigation of transition dynamics around the SkL phase using the imaginary component of the susceptibility revealed that at the conical-to-SkL transition a broad dissipation region exists with a complex frequency dependence. The analysis of the observed behavior within the SkL phase indicates a distribution of relaxation times intrinsically related to SkL. At the SkL-to-paramagnet transition a narrow first-order peak is found that exhibits a strong frequency and magnetic field dependence. Surprisingly, very similar dependence has been discovered for the first-order transition below the SkL phase, i.e., where the system enters the helical and conical state(s), indicating similar processes across the order-disorder transition.
Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Gautam, Archana
2007-01-01
A series of metal complexes of Cu(II) and Ni(II) having the general composition [M(L)X2] with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. PMID:18273385
Synthesis, Structure, and Complex Magnetism of MIr 2In 8 (M = Eu, Sr)
Calta, Nicholas P.; L. Bud’ko, Sergey; Rodriguez, Alexandra P.; ...
2016-03-07
In this paper, we report the synthesis, crystal structure, and physical properties of two new polar intermetallic compounds, EuIr 2In 8 and SrIr 2In 8. Both were synthesized in good yield using In metal as a reactive flux medium, enabling the growth of large crystals for physical property measurements. They crystallize in the orthorhombic space group Pbam with the CeFe 2Al 8 structure type, which is sometimes also referred to as the CaCo 2Al 8 structure type. The two analogues have unit cell parameters of a = 13.847(3) Å, b = 16.118(3) Å, and c = 4.3885(9) Å for Mmore » = Eu and a = 13.847(3) Å, b = 16.113(3) Å, and c = 4.3962(9) Å for M = Sr at room temperature. SrIr 2In 8 is a diamagnetic metal with no local magnetic moments on either the Sr or Ir sites, and the diamagnetic contribution from core electrons overwhelms the expected Pauli paramagnetism normally seen in intermetallic compounds. Magnetism in EuIr 2In 8 is dominated by the local Eu moments, which order antiferromagnetically at 5 K in low applied fields. Increasing the field strength depresses the magnetic ordering temperature and also induces a spin reorientation at lower temperature, indicating complex competing magnetic interactions. Finally, low-temperature heat capacity measurements show a significant enhancement of the Sommerfeld coefficient in EuIr 2In 8 relative to that in SrIr 2In 8, with estimated values of γ = 118(3) and 18.0(2) mJ mol –1 K –2, respectively.« less
NASA Astrophysics Data System (ADS)
Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa
2015-11-01
A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.
Vignesh, Kuduva R; Soncini, Alessandro; Langley, Stuart K; Wernsdorfer, Wolfgang; Murray, Keith S; Rajaraman, Gopalan
2017-10-18
Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr III Dy III 6 } complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr III Dy III 6 } reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.
Acceleration during magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresnyak, Andrey; Li, Hui
2015-07-16
The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipationmore » in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.« less
Central Arctic Crustal Modeling Constrained by Potential Field data and recent ECS Seismic Data
NASA Astrophysics Data System (ADS)
Evangelatos, John; Oakey, Gordon; Saltus, Rick
2017-04-01
2-D gravity and magnetic models have been generated for several transects across the Alpha-Mendeleev ridge complex to study the regional variability of the crustal structure and identify large scale lateral changes. The geometry and density parameters for the models have been constrained using recently acquired seismic reflection and refraction data collected jointly by Canada and the United States as part of their collaborative Arctic ECS programs. A total of fifteen models have been generated perpendicular to the ridge complex, typically 50 to 150 km apart. A minimalist approach to modeling involved maintaining a simple, laterally continuous density structure for the crust while varying the model geometry to fit the observed gravity field. This approach is justified because low amplitude residual Bouguer anomalies suggest a relatively homogenous density structure within the ridge complex. These models have provided a new measure of the regional variability in crustal thickness. Typically, models with thinner crust correspond with deeper bathymetric depths of the ridge which is consistent with regional isostatic equilibrium. Complex "chaotic" magnetic anomalies are associated with the Alpha-Mendeleev ridge complex, which extends beneath the surrounding sedimentary basins. Pseudogravity inversion (magnetic potential) of the magnetic field provides a quantifiable areal extent of ˜1.3 x106 km2. Forward modeling confirms that the magnetic anomalies are not solely the result of magnetized bathymetric highs, but are caused to a great extent by mid- and lower crustal sources. The magnetization of the crust inferred from modeling is significantly higher than available lab measurements of onshore volcanic rocks. Although the 2-D models cannot uniquely identify whether the crustal protolith was continental or oceanic, there is a necessity for a significant content of high density and highly magnetic (ultramafic) material. Based on the crustal thickness estimates from our regional 2-D gravity models and the two possible protoliths, we determine volumetric estimates of the volcanic composition to ˜ 6 × 106 km3 for the mid- and upper-crust and between 10 × 106 and 14 × 106 km3 within the lower crust — for a total of at least ˜16 × 106 km3. This exceeds any estimates for the onshore circum-Arctic HALIP by more than an order of magnitude.
NASA Astrophysics Data System (ADS)
Sarwar, T.; Qamar, A.; Nadeem, M.
2017-07-01
Dynamics of spin ordering in the manganite Nd0.5Ca0.5MnO3 have been investigated in this paper. It was observed that the complex mixed magnetic ordering in pellets is comprised of antiferromagnetic ordering at 160 K (TN) and complete charge ordering at 250 K (TCO). Under ac field, appearance of unstable ferromagnetic correlations is observed above TCO, which is badly frustrated due to strong spin disorder induced by Jahn Teller distortions. Impedance measurements reveal the spin glass like scenario, suppressing the strong antiferromagnetic and charge ordering states below TN.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
VLA OH Zeeman Observations of the NGC 6334 Complex Source A
NASA Astrophysics Data System (ADS)
Mayo, E. A.; Sarma, A. P.; Troland, T. H.; Abel, N. P.
2004-12-01
We present a detailed analysis of the NGC 6334 complex source A, a compact continuum source in the SW region of the complex. Our intent is to determine the significance of the magnetic field in the support of the surrounding molecular cloud against gravitational collapse. We have performed OH 1665 and 1667 MHz observations taken with the Very Large Array in the BnA configuration and combined these data with the lower resolution CnB data of Sarma et al. (2000). These observations reveal magnetic fields with values of the order of 350 μ G toward source A, with maximum fields reaching 500 μ G. We have also theoretically modeled the molecular cloud surrounding source A using Cloudy, with the constraints to the model based on observation. This model provides significant information on the density of H2 through the cloud and also the relative density of H2 to OH which is important to our analysis of the region. We will combine the knowledge gained through the Cloudy modeling with Virial estimates to determine the significance of the magnetic field to the dynamics and evolution of source A.
Complexity methods applied to turbulence in plasma astrophysics
NASA Astrophysics Data System (ADS)
Vlahos, L.; Isliker, H.
2016-09-01
In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the observed time series of the explosive events, (d) finally, when the AR reaches the turbulently reconnecting state (in the language of the SOC theory this is called SOC state) it is densely populated by UCS which can act as local scatterers (replacing the magnetic clouds in the Fermi scenario) and enhance dramatically the heating and acceleration of charged particles.
Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes
NASA Astrophysics Data System (ADS)
Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.
2012-04-01
A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis, IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral, Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms.
NASA Astrophysics Data System (ADS)
Diop, L. V. B.; Kastil, J.; Isnard, O.; Arnold, Z.; Kamarad, J.
2014-10-01
The magnetism and transport properties were studied for Laves (Hf,Ta)Fe2 itinerant-electron compounds, which exhibit a temperature-induced first-order transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) state upon heating. At finite temperatures, the field-induced metamagnetic phase transition between the AFM and FM has considerable effects on the transport properties of these model metamagnetic compounds. A large negative magnetoresistance of about 14% is observed in accordance with the metamagnetic transition. The magnetic phase diagram is determined for the Laves Hf1-xTaxFe2 series and its Ta concentration dependence discussed. An unusual behavior is revealed in the paramagnetic state of intermediate compositions, it gives rise to the rapid increase and saturation of the local spin fluctuations of the 3d electrons. This new result is analysed in the frame of the theory of Moriya. For a chosen composition Hf0.825Ta0.175Fe2, exhibiting such remarkable features, a detailed investigation is carried out under hydrostatic pressure up to 1 GPa in order to investigate the volume effect on the magnetic properties. With increasing pressure, the magnetic transition temperature TFM-AFM from ferromagnetic to antiferromagnetic order decreases strongly non-linearly and disappears at a critical pressure of 0.75 GPa. In the pressure-induced AFM state, the field-induced first-order AFM-FM transition appears and the complex temperature dependence of the AFM-FM transition field is explained by the contribution from both the magnetic and elastic energies caused by the significant temperature variation of the amplitude of the local Fe magnetic moment. The application of an external pressure leads also to the progressive decrease of the Néel temperature TN. In addition, a large pressure effect on the spontaneous magnetization MS for pressures below 0.45 GPa, dln(Ms)/dP = -6.3 × 10-2 GPa-1 was discovered. The presented results are consistent with Moriya's theoretical predictions and can significantly help to better understand the underlying physics of itinerant electron magnetic systems nowadays widely investigated for both fundamental and applications purposes.
Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.
Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang
2014-01-01
A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.
Hollandites as a new class of multiferroics
Liu, Shuangyi; Akbashev, Andrew R.; Yang, Xiaohao; Liu, Xiaohua; Li, Wanlu; Zhao, Lukas; Li, Xue; Couzis, Alexander; Han, Myung-Geun; Zhu, Yimei; Krusin-Elbaum, Lia; Li, Jackie; Huang, Limin; Billinge, Simon J. L.; Spanier, Jonathan E.; O'Brien, Stephen
2014-01-01
Discovery of new complex oxides that exhibit both magnetic and ferroelectric properties is of great interest for the design of functional magnetoelectrics, in which research is driven by the technologically exciting prospect of controlling charges by magnetic fields and spins by applied voltages, for sensors, 4-state logic, and spintronics. Motivated by the notion of a tool-kit for complex oxide design, we developed a chemical synthesis strategy for single-phase multifunctional lattices. Here, we introduce a new class of multiferroic hollandite Ba-Mn-Ti oxides not apparent in nature. BaMn3Ti4O14.25, designated BMT-134, possesses the signature channel-like hollandite structure, contains Mn4+ and Mn3+ in a 1:1 ratio, exhibits an antiferromagnetic phase transition (TN ~ 120 K) with a weak ferromagnetic ordering at lower temperatures, ferroelectricity, a giant dielectric constant at low frequency and a stable intrinsic dielectric constant of ~200 (1-100 MHz). With evidence of correlated antiferromagnetic and ferroelectric order, the findings point to an unexplored family of structures belonging to the hollandite supergroup with multifunctional properties, and high potential for developing new magnetoelectric materials. PMID:25160888
Results from the GSFC fluxgate magnetometer on Pioneer 11
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.
Machine learning phases of matter
NASA Astrophysics Data System (ADS)
Carrasquilla, Juan; Melko, Roger G.
2017-02-01
Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.
Analysis of tristable energy harvesting system having fractional order viscoelastic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumbé Tékam, G. T.; Woafo, P.; Kitio Kwuimy, C. A.
2015-01-15
A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the systemmore » response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.« less
Initial development of the DIII–D snowflake divertor control
NASA Astrophysics Data System (ADS)
Kolemen, E.; Vail, P. J.; Makowski, M. A.; Allen, S. L.; Bray, B. D.; Fenstermacher, M. E.; Humphreys, D. A.; Hyatt, A. W.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Maingi, R.; Nazikian, R.; Petrie, T. W.; Soukhanovskii, V. A.; Unterberg, E. A.
2018-06-01
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasma and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. The SFD resulted in a 2.5× reduction in the peak heat flux for many energy confinement times (2–3 s) without any adverse effects on core plasma performance.
Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong
2017-07-01
To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.
2017-04-01
A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local effects of serpentinization.
Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates
NASA Astrophysics Data System (ADS)
Karpus, John Francis
In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7 changes the lattice parameter along the c-axis and also adds an extra electron, providing bandwidth and band filling control, respectively. This addition of La also lowers the orbital ordering temperature to T ˜ 43 K, and provides a greater sensitivity of the orbital phases to applied magnetic fields, as evidenced by changes in the phases occurring at lower fields and over a greater field range than seen in the undoped system.
SATO, Osamu
2012-01-01
Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438
Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example
NASA Technical Reports Server (NTRS)
Smart, D. F.; Shea, M. A.
2001-01-01
The access of charged particles to the earth from space through the geomagnetic field has been of interest since the discovery of the cosmic radiation. The early cosmic ray measurements found that cosmic ray intensity was ordered by the magnetic latitude and the concept of cutoff rigidity was developed. The pioneering work of Stoermer resulted in the theory of particle motion in the geomagnetic field, but the fundamental mathematical equations developed have 'no solution in closed form'. This difficulty has forced researchers to use the 'brute force' technique of numerical integration of individual trajectories to ascertain the behavior of trajectory families or groups. This requires that many of the trajectories must be traced in order to determine what energy (or rigidity) a charged particle must have to penetrate the magnetic field and arrive at a specified position. It turned out the cutoff rigidity was not a simple quantity but had many unanticipated complexities that required many hundreds if not thousands of individual trajectory calculations to solve. The accurate calculation of particle trajectories in the earth's magnetic field is a fundamental problem that limited the efficient utilization of cosmic ray measurements during the early years of cosmic ray research. As the power of computers has improved over the decades, the numerical integration procedure has grown more tractable, and magnetic field models of increasing accuracy and complexity have been utilized. This report is documentation of a general FORTRAN computer program to trace the trajectory of a charged particle of a specified rigidity from a specified position and direction through a model of the geomagnetic field.
NASA Astrophysics Data System (ADS)
Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat
2009-03-01
For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).
Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex
Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo
2016-01-01
The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418
Therapeutic magnetic microcarriers characterization by measuring magnetophoretic attributes
NASA Astrophysics Data System (ADS)
Vidal Ibacache, Guillermo
Micro/nano robots are considered a promising approach to conduct minimally invasive interventions. We have proposed to embed magnetic nanoparticles in therapeutic or diagnostic agents in order to magnetically control them. A modified clinical Magnetic Resonance Imaging (MRI) scanner is used to provide the driving force that allows these magnetically embedded microcarriers to navigate the vascular human network. By using specific Magnetic Resonance (MR) gradient sequences this method has been validated in previous research works. Magnetophoresis is the term used to describe the fact that a magnetic particle changes its trajectory under the influence of a magnetic force while being carried by a fluid flow. This movement depends on the particle's magnetic characteristics, the particle's geometric shape, the fluid flow's attributes and other factors. In our proposed method, magnetic microcarriers can be produced in several different ways, and so their response will differ to the same magnetic force and fluid flow conditions. The outcome of the therapeutic treatment using our method depends on the adequate selection of the therapeutic and/or diagnosis agents to be used. The selected therapeutic and/or diagnosis magnetic microcarrier also influences the selection of the MR gradient sequence that best fit for a given treatment. This master's thesis presents the design of a device intended to assess the magnetophoretic properties of magnetic therapeutic microcarriers and/or diagnostic agents. Such characterization is essential for determining the optimal sequences of magnetic gradients to deflect their trajectory through relatively complex vascular networks in order to reach a pre-defined target. A microfluidic device was fabricated to validate the design. Magnetophoretic velocities are measured and a simple tracking method is proposed. The preliminary experimental results indicate that, despite some limitations, the proposed technique has the potential to be appropriate to characterize any drug and/or diagnosis magnetic microcarrier containing different magnetic nanoparticle content.
NASA Astrophysics Data System (ADS)
Erokhin, Sergey; Berkov, Dmitry; Ito, Masaaki; Kato, Akira; Yano, Masao; Michels, Andreas
2018-03-01
We demonstrate how micromagnetic simulations can be employed in order to characterize and analyze the magnetic microstructure of nanocomposites. For the example of nanocrystalline Nd-Fe-B, which is a potential material for future permanent-magnet applications, we have compared three different models for the micromagnetic analysis of this material class: (i) a description of the nanocomposite microstructure in terms of Stoner-Wohlfarth particles with and without the magnetodipolar interaction; (ii) a model based on the core-shell representation of the nanograins; (iii) the latter model including a contribution of superparamagnetic clusters. The relevant parameter spaces have been systematically scanned with the aim to establish which micromagnetic approach can most adequately describe experimental data for this material. According to our results, only the last, most sophisticated model is able to provide an excellent agreement with the measured hysteresis loop. The presented methodology is generally applicable to multiphase magnetic nanocomposites and it highligths the complex interrelationship between the microstructure, magnetic interactions, and the macroscopic magnetic properties.
Origin of the magnetic-field controlled polarization reversal in multiferroic TbMn2 O 5
NASA Astrophysics Data System (ADS)
Leo, N.; Meier, D.; Pisarev, R. V.; Park, S.; Cheong, S.-W.; Fiebig, M.
2011-03-01
The interplay of multi-dimensional complex magnetic order parameters leads to interesting effects like magnetically induced ferroelectricity. A particular interesting example is TbMn 2 O5 because of the associated magnetic-field controllable electric polarization. By optical second harmonic generation we show that the gigantic magnetoelectric effect originates in three independent ferroelectric contributions. Two of these are manganese-generated. The third contribution is related to the magnetism of the Tb 3+ sublattice and has not been identified so far. It mediates the remarkable magnetic-field induced polarization reversal. This model is verified by experiments on the isostructural YMn 2 O5 where Y3+ ions are nonmagnetic and only two polarization contributions are present and no magnetoelectric coupling is observed. These results underline the importance of the 3 d - 4 f -interaction for the intricate magnetoelectric coupling in the class of isostructural RMn 2 O5 compounds. This work was supported by the DFG through SFB 608.
High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.
NASA Astrophysics Data System (ADS)
Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof
Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.
NASA Astrophysics Data System (ADS)
Finley, Adam J.; Matt, Sean P.
2018-02-01
During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.
[Blood detoxification using superparamagnetic nanoparticles (magnetic hemodialysis)].
Ciochină, Al D; Untu, Alina; Iacob, Gh
2010-01-01
The authors present an experimental study realized in order to simulate blood detoxification with the help of supermagnetic nanoparticles. The particles used are red oxide nanoparticles which are considered to be equivalent from a magnetic susceptibility and dynamic diameter point of view to the complex structures of magnetite nanoparticles. Two types of custom HGMS matrices have been used--a threaded one and a micro-spheres one. For testing red oxide particles have been purposefully created to have a lower magnetic susceptibility than magnetite or iron-carbon particles used in other experimental studies. Different concentrations of iron oxide, glycerine and water have been prepared, creating a 3.5 cP viscosity (equivalent to the one of the blood); the concentrations of the prepared solutions varied between 0.16 mg/mL and 2 mg/mL, with the background magnetic field value ranging from 0.25 T to 0.9 T, in order to observer the effectiveness of filtering at different intensities. The efficiency of HGMS filtering in experimental conditions was almost completely successful (99.99%) in all experimental conditions, both with the threaded and micro-spheres matrices. The high gradient magnetic separation system of nanoparticles has maximum efficiency and has the potential of being implemented in a medical blood detoxification device.
On the nature of the phase transition in uranium dioxide
NASA Astrophysics Data System (ADS)
Gofryk, K.; Mast, D.; Antonio, D.; Shrestha, K.; Andersson, D.; Stanek, C.; Jaime, M.
Uranium dioxide (UO2) is by far the most studied actinide material as it is a primary fuel used in light water nuclear reactors. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. UO2 crystalizes in the face-centered-cubic fluorite structure and is a Mott-Hubbard insulator with well-localized uranium 5 f-electrons. In addition, below 30 K, a long range antiferromagnetic ordering of the electric-quadrupole of the uranium moments is observed, forming complex non-collinear 3-k magnetic structure. This transition is accompanied by Jahn-Teller distortion of oxygen atoms. It is believed that the first order nature of the transition results from the competition between the exchange interaction and the Jahn-Teller distortion. Here we present results of our extensive thermodynamic investigations on well-characterized and oriented single crystals of UO2+x (x = 0, 0.033, 0.04, and 0.11). By focusing on the transition region under applied magnetic field we are able to study the interplay between different competing interactions (structural, magnetic, and electrical), its dynamics, and relationship to the oxygen content. We will discuss implications of these results. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.
Magnetic imaging of the feeding system of oceanic volcanic islands: El Hierro (Canary Islands)
NASA Astrophysics Data System (ADS)
Blanco-Montenegro, Isabel; Nicolosi, Iacopo; Pignatelli, Alessandro; Chiappini, Massimo
2008-04-01
El Hierro is the youngest of the Canary Islands, a volcanic archipelago in the central Atlantic, near the African coast. The subaerial part of the island shows the characteristic shape of three convergent ridges that has been interpreted as a triple-arm rift system. At least four giant landslides formed wide, horseshoe embayments that separate these ridges. Recent studies based on high-resolution bathymetry, however, showed that the submarine rift structure is much more complex. We analysed an aeromagnetic anomaly data set acquired in 1993 by the Spanish National Geographic Institute in order to obtain a structural model of the island from a magnetic point of view. A digital elevation model of the volcanic edifice was divided into a mesh of prismatic cells, each of them with a top corresponding to the topographic height (or bathymetric depth in the marine area) and a bottom at a constant depth of 4000 m below sea level. A three-dimensional (3-D) inversion algorithm and forward modelling along representative profiles provided us with a magnetization distribution containing valuable information about the inner structure of the island. The magnetic model cast new light on the rift structure of El Hierro. In particular, high magnetization values have been mainly interpreted as intrusive complexes on which rift zones are rooted. Their location confirms the hypothesis of a complex rift structure in the marine area. The inverse magnetization that characterizes the NE submarine rift area implies that this part of the volcanic edifice formed during the Matuyama and, therefore, predates the NW submarine rift zone, which is normally magnetized. The N-S rift zone extending southwards from the island seems to be shifted to the west with respect to the bathymetric high in this area. This result suggests that the original rift zone was located in the area where the highest magnetizations presently occur so that the present morphology may reflect the westward collapse of the original ridge. In addition, very low magnetizations characterize the areas affected by giant landslides, indicating that magnetic anomalies can provide important constraints on the distribution of these catastrophic events.
Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbacz, Piotr, E-mail: pgarbacz@chem.uw.edu.pl
2016-08-14
It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for {sup 205}Tl nucleus in a Pt-Tl bonded complex, Pt(CN){sub 5}Tl, the transverse relaxation rate induced by the electric fieldmore » is of the order of 1 s{sup −1} at E = 5 kV/mm and B = 10 T.« less
Advertising and Irreversible Opinion Spreading in Complex Social Networks
NASA Astrophysics Data System (ADS)
Candia, Julián
Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.
NASA Astrophysics Data System (ADS)
Jia, Yue; Chopdekar, Rajesh V.; Shafer, Padraic; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Takamura, Yayoi
2017-12-01
The magnetic structure of exchange-coupled antiferromagnetic (AF) layers in epitaxial L a0.7S r0.3Mn O3 (LSMO)/L a0.7S r0.3Fe O3 (LSFO) superlattices grown on (111)-oriented SrTi O3 substrates was studied using angle-dependent x-ray absorption spectroscopy utilizing linearly polarized x rays. We demonstrate the development of the measurement protocols needed to determine the orientation of the LSFO antiferromagnetic spin axis and how it responds to an applied magnetic field due to exchange interactions with an adjacent ferromagnetic layer. A small energy difference exists between two types of AF order: the majority of the AF moments cant out-of-the-plane of the film along the 110 or 100 directions depending on the LSFO layer thickness. In response to an applied magnetic field, these canted moments are aligned with a single 110 or 100 direction that maintains a nearly perpendicular orientation relative to the LSMO sublayer magnetization. The remaining AF moments lie within the (111 ) plane and these in-plane moments can be reoriented to an arbitrary in-plane direction to lie parallel to the LSMO sublayer magnetization. These results demonstrate that the magnetic order of AF thin films and heterostructures is far more complex than in bulk LSFO and can be tuned with orientation, thickness, and applied magnetic field.
Magnetic memory of a single-molecule quantum magnet wired to a gold surface.
Mannini, Matteo; Pineider, Francesco; Sainctavit, Philippe; Danieli, Chiara; Otero, Edwige; Sciancalepore, Corrado; Talarico, Anna Maria; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante; Sessoli, Roberta
2009-03-01
In the field of molecular spintronics, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when deposited on ferromagnetic surfaces, information storage at the molecular level requires molecules exhibiting an intrinsic remnant magnetization, like the so-called single-molecule magnets (SMMs). These have been intensively investigated for their rich quantum behaviour but no magnetic hysteresis has been so far reported for monolayers of SMMs on various non-magnetic substrates, most probably owing to the chemical instability of clusters on surfaces. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism synchrotron-based techniques, pushed to the limits in sensitivity and operated at sub-kelvin temperatures, we have now found that robust, tailor-made Fe(4) complexes retain magnetic hysteresis at gold surfaces. Our results demonstrate that isolated SMMs can be used for storing information. The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.
NASA Astrophysics Data System (ADS)
Choi, Eunsong
Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We conclude the study by showing an excellent agreement between the simulation and the experiment.
Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo
2015-01-01
Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II) > Cu(II) > Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation. PMID:25861683
Electronic and magnetic properties of epitaxial SrRh O 3 films
Nichols, John A.; Yuk, Simuck F.; Sohn, Changhee; ...
2017-06-16
The strong interplay of fundamental order parameters in complex oxides is known to give rise to exotic physical phenomena. The 4$d$ transition-metal oxide SrRh O 3 has generated much interest, but advances have been hindered by difficulties in preparing single-crystalline phases. Here we epitaxially stabilize high-quality single-crystalline SrRh O 3 films and investigate their structural, electronic, and magnetic properties. Lastly, we determine that their properties significantly differ from the paramagnetic metallic ground state that governs bulk samples and are strongly related to rotations of Rh O 6 octahedra.
Schubert, M; Schaefer, H; Mayer, J; Laptev, A; Hettich, M; Merklein, M; He, C; Rummel, C; Ristow, O; Großmann, M; Luo, Y; Gusev, V; Samwer, K; Fonin, M; Dekorsy, T; Demsar, J
2015-08-14
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
NASA Astrophysics Data System (ADS)
Schubert, M.; Schaefer, H.; Mayer, J.; Laptev, A.; Hettich, M.; Merklein, M.; He, C.; Rummel, C.; Ristow, O.; Großmann, M.; Luo, Y.; Gusev, V.; Samwer, K.; Fonin, M.; Dekorsy, T.; Demsar, J.
2015-08-01
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
NASA Astrophysics Data System (ADS)
Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.
2007-07-01
New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T < 10 K. For this complex, the structure is identified and the distance between the copper ions is determined. It is shown that the nitrate counterion plays the role of a bridge between the hexaaqua copper(II) complex and the dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.
Multiphase magnetic systems: Measurement and simulation
NASA Astrophysics Data System (ADS)
Cao, Yue; Ahmadzadeh, Mostafa; Xu, Ke; Dodrill, Brad; McCloy, John S.
2018-01-01
Multiphase magnetic systems are common in nature and are increasingly being recognized in technical applications. One characterization method which has shown great promise for determining separate and collective effects of multiphase magnetic systems is first order reversal curves (FORCs). Several examples are given of FORC patterns which provide distinguishing evidence of multiple phases. In parallel, a visualization method for understanding multiphase magnetic interaction is given, which allocates Preisach magnetic elements as an input "Preisach hysteron distribution pattern" to enable simulation of different "wasp-waisted" magnetic behaviors. These simulated systems allow reproduction of different major hysteresis loops and FORC patterns of real systems and parameterized theoretical systems. The experimental FORC measurements and FORC diagrams of four commercially obtained magnetic materials, particularly those sold as nanopowders, show that these materials are often not phase pure. They exhibit complex hysteresis behaviors that are not predictable based on relative phase fraction obtained by characterization methods such as diffraction. These multiphase materials, consisting of various fractions of BaFe12O19, ɛ-Fe2O3, and γ-Fe2O3, are discussed.
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We investigate the necessary conditions for the emergence of complex, noncoplanar magnetic configurations in a Kondo lattice model with classical local moments on the geometrically frustrated Shastry-Sutherland lattice and their evolution in an external magnetic field. We demonstrate that topologically nontrivial spin textures, including a new canted flux state, with nonzero scalar chirality arise dynamically from realistic short-range interactions. Our results establish that a finite Dzyaloshinskii-Moriya (DM) interaction is necessary for the emergence of these novel magnetic states when the system is at half filling, for which the ground state is insulating. We identify the minimal set of DM vectors that are necessary for the stabilization of chiral magnetic phases. The noncoplanarity of such structures can be tuned continually by applying an external magnetic field. This is the first part in a series of two papers; in the following paper the effects of frustration, thermal fluctuations, and magnetic field on the emergence of novel noncollinear states at metallic filling of itinerant electrons are discussed. Our results are crucial in understanding the magnetic and electronic properties of the rare-earth tetraboride family of frustrated magnets with separate spin and charge degrees of freedom.
NASA Astrophysics Data System (ADS)
Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David
2017-10-01
We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.
Initial development of the DIII–D snowflake divertor control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolemen, Egemen; Vail, P. J.; Makowski, M. A.
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less
Initial development of the DIII–D snowflake divertor control
Kolemen, Egemen; Vail, P. J.; Makowski, M. A.; ...
2018-04-11
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less
Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun
2017-09-19
In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.
Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun
2017-01-01
In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Wade, G. A.
2010-04-01
Context. Strong organized magnetic fields have been studied in the upper main sequence chemically peculiar stars for more than half a century. However, only recently have observational methods and numerical techniques become sufficiently mature to allow us to record and interpret high-resolution four Stokes parameter spectra, leading to the first assumption-free magnetic field models of these stars. Aims: Here we present a detailed magnetic Doppler imaging analysis of the spectropolarimetric observations of the prototypical magnetic Ap star α2 CVn. This is the second star for which the magnetic field topology and horizontal chemical abundance inhomogeneities have been inferred directly from phase-resolved observations of line profiles in all four Stokes parameters, free from the traditional assumption of a low-order multipolar field geometry. Methods: We interpret the rotational modulation of the circular and linear polarization profiles of the strong Fe II and Cr II lines in the spectra of α2 CVn recorded with the MuSiCoS spectropolarimeter. The surface abundance distributions of the two chemical elements and a full vector map of the stellar magnetic field are reconstructed in a self-consistent inversion using our state-of-the-art magnetic Doppler imaging code Invers10. Results: We succeeded in reproducing most of the details of the available spectropolarimetric observations of α2 CVn with a magnetic map which combines a global dipolar-like field topology with localized spots of higher field intensity. We demonstrate that these small-scale magnetic structures are inevitably required to fit the linear polarization spectra; however, their presence cannot be inferred from the Stokes I and V observations alone. We also found high-contrast surface distributions of Fe and Cr, with both elements showing abundance minima in the region of weaker and topologically simpler magnetic field. Conclusions: Our magnetic Doppler imaging analysis of α2 CVn and previous results for 53 Cam support the view that the upper main sequence stars can harbour fairly complex surface magnetic fields which resemble oblique dipoles only at the largest spatial scales. Spectra in all four Stokes parameters are absolutely essential to unveil and meaningfully characterize this field complexity in Ap stars. We therefore suggest that understanding magnetism of stars in other parts of the H-R diagram is similarly incomplete without investigation of their linear polarization spectra. Based on data obtained using the Télescope Bernard Lyot at Observatoire du Pic du Midi.
NASA Astrophysics Data System (ADS)
Scott, G. R.; Brownlee, S. J.; Feinberg, J. M.; Renne, P. R.
2008-12-01
Rocks provide a compound paleomagnetic signal from mixtures of various iron minerals with different grain sizes and magnetic stabilities. To unravel this complex signal, specific mineral phases with stable remanence can be individually examined as single crystals. In the case of the Ecstall Pluton (~91 Ma), intra-pluton discordance of paleomagnetic directions may be the result of post-crystallization deformation, or mineralogical changes caused by re-heating from the adjacent Quottoon Pluton (~52 Ma). In order to distinguish between these two hypotheses we conducted rock magnetic experiments on single crystals of finely-exsolved hematite-ilmenite along a transect approaching the Quottoon Pluton. Reflected light, and SEM observations show grains of hematite and ilmenite as the dominant Fe-oxide throughout the Ecstall. Nearest the Quottoon Pluton, the hematite-ilmenite grains exhibit the classic rutile blitz texture. The lamellar microstructure observed in the hematite-ilmenite grains, as well as the rutile blitz texture are linked to the thermal history of the Ecstall Pluton, and have important effects on the magnetic properties of these grains (i.e. lamellar magnetism). Our results include the magnetic unmixing of isothermal remanence magnetization (IRM) acquisition, First Order Reversal Curve (FORC) diagrams, temperature vs. remanence experiments (MPMS), and TEM studies. These data provide a spatially resolved record of rock magnetic variations across the Ecstall Pluton, showing evidence of thermally activated reduction of hematite to magnetite in samples within 13 km of the Quottoon Pluton. TEM analysis shows the magnetite is present as 20-50 nm-sized particles within hematite. This mineralogic change may be responsible for the variations in paleomagnetic directions across the Ecstall Pluton, and clear evidence for this reaction cannot be found by traditional rock characterization techniques, illustrating the need to couple detailed rock magnetic, paleomagnetic, and mineralogic analyses.
Chilton, Nicholas F; Deacon, Glen B; Gazukin, Olga; Junk, Peter C; Kersting, Berthold; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Schleife, Frederik; Shome, Mahasish; Turner, David R; Walker, Julia A
2014-03-03
Three complexes of the form [Ln(III)3(OQ)9] (Ln = Gd, Tb, Dy; OQ = 8-quinolinolate) have been synthesized and their magnetic properties studied. The trinuclear complexes adopt V-shaped geometries with three bridging 8-quinolinolate oxygen atoms between the central and peripheral eight-coordinate metal atoms. The magnetic properties of these three complexes differ greatly. Variable-temperature direct-current (dc) magnetic susceptibility measurements reveal that the gadolinium and terbium complexes display weak antiferromagnetic nearest-neighbor magnetic exchange interactions. This was quantified in the isotropic gadolinium case with an exchangecoupling parameter of J = -0.068(2) cm(-1). The dysprosium compound displays weak ferromagnetic exchange. Variable-frequency and -temperature alternating-current magnetic susceptibility measurements on the anisotropic cases reveal that the dysprosium complex displays single-molecule-magnet behavior, in zero dc field, with two distinct relaxation modes of differing time scales within the same molecule. Analysis of the data revealed anisotropy barriers of Ueff = 92 and 48 K for the two processes. The terbium complex, on the other hand, displays no such behavior in zero dc field, but upon application of a static dc field, slow magnetic relaxation can be observed. Ab initio and electrostatic calculations were used in an attempt to explain the origin of the experimentally observed slow relaxation of the magnetization for the dysprosium complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturza, Mihai; Allred, Jared M.; Malliakas, Christos D.
Effecting and controlling ferromagnetic-like properties hi senticonductors has proven to be a complex problem, especially when approaching room temperature. Here, we demonstrate the important role of defects in the magnetic properties of semiconductors by reporting the structures and properties of the iron chalcogenides (BaF)(2)Fe2-x Q(3) (Q= S, Se), which exhibit anomalous Magnetic properties that are correlated' with detects in the Fe-sublattice, The compounds form in both long-range ordered and disordered polytypes of a new structure typified by the alternate stacking of fluorite (BaF)(2)(2+) and (Fe(2-x)Q(3))(2-) layers. The latter layers exhibit an ordered array of strong Pe-Pe dimers in edge-Sharing tetrahedra.more » Given the strong Fe-Fe interaction, it is expected that the Fe-Fe dimer is,antiferromagnetically coupled, yet crystals exhibit a Weak ferromagnetic moment that orders at relatively-high temperature: below 280-315 K and 240275 K for the sulfide and selenide analogues, respectively. This transition temperature positively correlates with the concentration of defect in the Fe-sublattice, as determined by single-crystal X-ray diffraction. Our results indicate that internal defects in Fe(2-x)Q(3) layers play an important role in dictating the magnetic properties of newly discovered (BaF)2Fe(2),Q-3, (Q= 5-, Se), which can yield switchable ferromagnetically ordered mother-its at or above room temperature.« less
Solvent effects on the adsorption and self-organization of Mn12 on Au(111).
Pineider, Francesco; Mannini, Matteo; Sessoli, Roberta; Caneschi, Andrea; Barreca, Davide; Armelao, Lidia; Cornia, Andrea; Tondello, Eugenio; Gatteschi, Dante
2007-11-06
A sulfur-containing single molecule magnet, [Mn12O12(O2CC6H4SCH3)16(H2O)4], was assembled from solution on a Au(111) surface affording both submonolayer and monolayer coverages. The adsorbate morphology and the degree of coverage were inspected by scanning tunneling microscopy (STM), while X-ray photoelectron spectroscopy (XPS) allowed the determination of the chemical nature of the adsorbate on a qualitative and quantitative basis. The properties of the adsorbates were found to be strongly dependent on the solvent used to dissolve the magnetic complex. In particular, systems prepared from tetrahydrofuran solutions gave arrays of isolated and partially ordered clusters on the gold substrate, while samples prepared from dichloromethane exhibited a homogeneous monolayer coverage of the whole Au(111) surface. These findings are relevant to the optimization of magnetic addressing of single molecule magnets on surfaces.
NASA Astrophysics Data System (ADS)
Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.
2018-01-01
We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.
Synthesis, magnetic and electrical properties of R3AlCx (R = Ce, Pr and Nd)
NASA Astrophysics Data System (ADS)
Ghule, S. S.; Garde, C. S.; Ramakrishnan, S.; Singh, S.; Rajarajan, A. K.; Laad, Meena; Karmakar, Koushik
2017-09-01
R3AlCx (R = Ce, Pr and Nd; x = 0-1) series has been synthesized by arc melting. Rietveld analysis of x-ray powder diffraction reveals cubic (Pm-3m) structure. A Kondo temperature TK 1 K is estimated for Ce3AlC0.65 from the susceptibility and resistivity data. Magnetic susceptibility measurements indicate antiferromagnetic (AFM) order for R = Pr (x = 0.8 and 1) and Nd (x = 0.6, 0.8 and 1) and ferromagnetic (FM) for Nd3Al. Metamagnetic behaviour in the magnetization curve indicates complex magnetic structure. Band structure calculations indicate growth of a pseudo-gap in the density of states (DOS) from Ce3AlC to Pr3AlC to Nd3AlC. The DOS calculations predict a metallic behaviour which is consistent with the resistivity measurements.
Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe
2013-01-01
The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. PMID:23340418
Residual Field Correction of Pulsed Bending Magnet
NASA Astrophysics Data System (ADS)
Takano, Junpei; Igarashi, Susumu; Kamikubota, Norihiko; Meigo, Shin-ichiro; Sato, Kenichi; Shirakata, Masashi; Yamada, Shuei
The Japan Proton Accelerator Research Complex (J-PARC) has an accelerator chain, Linac, Rapid Cycling Synchrotron (RCS), and Main Ring (MR). The RCS accelerates the proton beam up to 3 GeV every 40 msec. After the beam is extracted from the RCS, it is delivered to a beam transport line, which is 3NBT for the Material and Life Science Experimental Facility (MLF). Some bunches of the proton beam are bended from the 3NBT to another beam transport line, which is 3-50BT for the MR, by using a pulsed bending magnet (PB) [1]. However, the beam orbit in the 3NBT is kicked by the residual magnetic field of the PB. In order to correct the residual magnetic field, additional coils had been wound on the PB poles. As a result of scanning the current pattern of the correction coils, the orbit distortion in the 3NBT has been reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thi Minh Hien; Sandilands, Luke J.; Sohn, C. H.
5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2Os 2O 7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii–Moriya and exchange interactions play a significant role in the spin-wavemore » dispersions. The Raman data also reveal complex spin–charge–lattice coupling and indicate that the metal–insulator transition in Cd 2Os 2O 7 is Lifshitz-type. In conclusion, our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.« less
NASA Astrophysics Data System (ADS)
Nikolic, V.; Perovic, M.; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V.
2015-03-01
Spherical γ-Fe2O3 nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe2O3 nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.
Spin Transfer torques in Antiferromagnets
NASA Astrophysics Data System (ADS)
Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration
2013-03-01
Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.
The Bilinear Product Model of Hysteresis Phenomena
NASA Astrophysics Data System (ADS)
Kádár, György
1989-01-01
In ferromagnetic materials non-reversible magnetization processes are represented by rather complex hysteresis curves. The phenomenological description of such curves needs the use of multi-valued, yet unambiguous, deterministic functions. The history dependent calculation of consecutive Everett-integrals of the two-variable Preisach-function can account for the main features of hysteresis curves in uniaxial magnetic materials. The traditional Preisach model has recently been modified on the basis of population dynamics considerations, removing the non-real congruency property of the model. The Preisach-function was proposed to be a product of two factors of distinct physical significance: a magnetization dependent function taking into account the overall magnetization state of the body and a bilinear form of a single variable, magnetic field dependent, switching probability function. The most important statement of the bilinear product model is, that the switching process of individual particles is to be separated from the book-keeping procedure of their states. This empirical model of hysteresis can easily be extended to other irreversible physical processes, such as first order phase transitions.
Mössbauer Magnetic Scan experiments
NASA Astrophysics Data System (ADS)
Pasquevich, G. A.; Mendoza Zélis, P.; Lencina, A.; Veiga, A.; Fernández van Raap, M. B.; Sánchez, F. H.
2014-06-01
We report an application of the Mössbauer Effect designed to retrieve specific information on the magnetic response of iron-containing materials. It consists in the measurement of the nuclear absorption of gamma-rays as a function of an external magnetic field for a specific nuclear transition between magnetically-split nuclear levels. The experiments, here termed Mössbauer Magnetic Scan experiments, were carried out recording the absorption of 57Fe 14.4 keV gamma-ray in α-Fe at constant Doppler energies coincident with some of the spectral lines of the magnetically split Mössbauer spectrum. Due to the dependence of the transition probabilities on the relative orientation between the nuclear magnetic moment and the gamma-ray direction, the present application results in a useful method to study the magnetic-field evolution of the distribution of atomic-magnetic-moment orientations. The proposed technique inherit from the Mössbauer Spectroscopy the chemical-element selectiveness as well as the ability to differentiate responses from iron atoms located at inequivalent site or at different phases. In this work, we show that the data analysis for these experiments depends on the sample thickness that the gamma-ray has to cross. For thin samples (i.e.samples with Mössbauer effective thicknesses lower than one) the magnetic-field dependence of the second-order-moment of the orientation distribution in the direction of the gamma ray is obtained. On the other hand, for thicker samples, although the data analysis is more complex, the dependences of the three second-order-moments of the orientation distribution are obtained. The experiments were performed on two α-Fe foils of different Mössbauer effective thicknesses. They were chosen to represent the cases of thin and thick Mössbauer absorbers. The magnetic evolution of the orientations distribution is compared with results obtained from magnetometric measurements showing a good agreement as well indicating the complementarity of both techniques. A complete description of the experimental set up and the formalism for Mössbauer Magnetic Scan data analysis are presented.
NASA Astrophysics Data System (ADS)
Le Maire, P.; Munschy, M.
2017-12-01
Interpretation of marine magnetic anomalies enable to perform accurate global kinematic models. Several methods have been proposed to compute the paleo-latitude of the oceanic crust as its formation. A model of the Earth's magnetic field is used to determine a relationship between the apparent inclination of the magnetization and the paleo-latitude. Usually, the estimation of the apparent inclination is qualitative, with the fit between magnetic data and forward models. We propose to apply a new method using complex algebra to obtain the apparent inclination of the magnetization of the oceanic crust. For two dimensional bodies, we rewrite Talwani's equations using complex algebra; the corresponding complex function of the complex variable, called CMA (complex magnetic anomaly) is easier to use for forward modelling and inversion of the magnetic data. This complex equation allows to visualize the data in the complex plane (Argand diagram) and offers a new way to interpret data (curves to the right of the figure (B), while the curves to the left represent the standard display of magnetic anomalies (A) for the model displayed (C) at the bottom of the figure). In the complex plane, the effect of the apparent inclination is to rotate the curves, while on the standard display the evolution of the shape of the anomaly is more complicated (figure). This innovative method gives the opportunity to study a set of magnetic profiles (provided by the Geological Survey of Norway) acquired in the Norwegian Sea, near the Jan Mayen fracture zone. In this area, the age of the oceanic crust ranges from 40 to 55 Ma and the apparent inclination of the magnetization is computed.
Collaborative Research: Polymeric Multiferroics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shenqiang
2017-04-20
The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less
Characterization of Imposed Ordered Structures in MDPX
NASA Astrophysics Data System (ADS)
Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene
2016-10-01
It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.
Competing exchange interactions in multiferroic and ferrimagnetic CaBaCo 4 O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishman, Randy Scott; Bordacs, S.; Kocsis, Vilmos
Competing exchange interactions can produce complex magnetic states together with spin-induced electric polarizations. With competing interactions on alternating triangular and kagome layers, the swedenborgite CaBaCo 4O 7 may have one of the largest measured spin-induced polarizations of ~1700 nC/cm 2 below its ferrimagnetic transition temperature at 70 K. Upon rotating our sample about c = [0,0,1] while the magnetic field is fixed along [1,0,0], the threefold splitting of the spin-wave frequencies indicates that our sample is hexagonally twinned. In addition, magnetization measurements then suggest that roughly 20% of the sample is in a domain with the a axis along [1,0,0]more » and that 80% of the sample is in one of two other domains with the a axis along either [-1/2,√3/2, 0] or [-1/2, -√3/2, 0] . Powder neutron-diffraction data, magnetization measurements, and terahertz (THz) absorption spectroscopy reveal that the complex spin order in each domain can be described as a triangular array of bitetrahedral c-axis chains ferrimagnetically coupled to each other in the ab plane. In conclusion, the electric-field dependence of bonds coupling those chains produces the large spin-induced polarization of CaBaCo 4O 7 .« less
Competing exchange interactions in multiferroic and ferrimagnetic CaBaCo 4 O 7
Fishman, Randy Scott; Bordacs, S.; Kocsis, Vilmos; ...
2017-01-23
Competing exchange interactions can produce complex magnetic states together with spin-induced electric polarizations. With competing interactions on alternating triangular and kagome layers, the swedenborgite CaBaCo 4O 7 may have one of the largest measured spin-induced polarizations of ~1700 nC/cm 2 below its ferrimagnetic transition temperature at 70 K. Upon rotating our sample about c = [0,0,1] while the magnetic field is fixed along [1,0,0], the threefold splitting of the spin-wave frequencies indicates that our sample is hexagonally twinned. In addition, magnetization measurements then suggest that roughly 20% of the sample is in a domain with the a axis along [1,0,0]more » and that 80% of the sample is in one of two other domains with the a axis along either [-1/2,√3/2, 0] or [-1/2, -√3/2, 0] . Powder neutron-diffraction data, magnetization measurements, and terahertz (THz) absorption spectroscopy reveal that the complex spin order in each domain can be described as a triangular array of bitetrahedral c-axis chains ferrimagnetically coupled to each other in the ab plane. In conclusion, the electric-field dependence of bonds coupling those chains produces the large spin-induced polarization of CaBaCo 4O 7 .« less
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
NASA Astrophysics Data System (ADS)
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-03-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.
Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi2
NASA Astrophysics Data System (ADS)
Chaudhuri, Dipanjan; Cheng, Bing; Yaresko, Alexander; Gibson, Quinn D.; Cava, R. J.; Armitage, N. P.
2017-08-01
Strong spin-orbit coupling (SOC) can result in ground states with nontrivial topological properties. The situation is even richer in magnetic systems where the magnetic ordering can potentially have strong influence over the electronic band structure. The class of A MnBi2 (A = Sr, Ca) compounds are important in this context as they are known to host massive Dirac fermions with strongly anisotropic dispersion, which is believed to be due to the interplay between strong SOC and magnetic degrees of freedom. We report the optical conductivity of YbMnBi2, a newly discovered member of this family and a proposed Weyl semimetal (WSM) candidate with broken time reversal symmetry. Together with density functional theory (DFT) band-structure calculations, we show that the complex conductivity can be interpreted as the sum of an intraband Drude response and interband transitions. We argue that the canting of the magnetic moments that has been proposed to be essential for the realization of the WSM in an otherwise antiferromagnetically ordered system is not necessary to explain the optical conductivity. We believe our data is explained qualitatively by the uncanted magnetic structure with a small offset of the chemical potential from strict stochiometry. We find no definitive evidence of a bulk Weyl nodes. Instead, we see signatures of a gapped Dirac dispersion, common in other members of A MnBi2 family or compounds with similar 2D network of Bi atoms. We speculate that the evidence for a WSM seen in ARPES arises through a surface magnetic phase. Such an assumption reconciles all known experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk
Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less
Spectral Studies of Iron Coordination in Hemeprotein Complexes
Brill, Arthur S.; Sandberg, Howard E.
1968-01-01
In order to evaluate the feasibility of observing the spectral behavior of protein groups in the coordination sphere of the iron in hemeproteins, criteria are developed to determine whether or not the application of difference absorption spectroscopy to the study of complex formation will be successful. Absolute absorption spectra, 300-1100 mμ, from bacterial catalase complexes are displayed, and the infrared bands correlated with magnetic susceptibility values of similar complexes of other hemeproteins. Dissociation constants for the formation of cyanide and azide complexes of metmyoglobin, methemoglobin, bacterial catalase, and horseradish peroxidase are given. Difference spectra, 210-280 mμ, are displayed for cyanide and azide complexes of these hemeproteins. A band at 235-241 mμ is found in the difference spectra of all low-spin vs. high-spin complexes. The factors which favor the assignment of this band to a transition involving a histidine residue are presented. PMID:5699802
NASA Astrophysics Data System (ADS)
Sharma, Mohit K.; Yadav, Kavita; Mukherjee, K.
2018-05-01
The binary intermetallic compound Er5Pd2 has been investigated using dc and ac magnetic susceptibilities, magnetic memory effect, isothermal magnetization, non-linear dc susceptibility, heat capacity and magnetocaloric effect studies. Interestingly, even though the compound does not show geometrical frustration it undergoes glassy magnetic phase transition below 17.2 K. Investigation of dc magnetization and heat capacity data divulged absence of long-ranged magnetic ordering. Through the magnetic memory effect, time dependent magnetization and ac susceptibility studies it was revealed that the compound undergoes glass-like freezing below 17.2 K. Analysis of frequency dependence of this transition temperature through scaling and Arrhenius law; along with the Mydosh parameter indicate, that the dynamics in Er5Pd2 are due to the presence of strongly interacting superspins rather than individual spins. This phase transition was further investigated by non-linear dc susceptibility and was characterized by static critical exponents γ and δ. Our results indicate that this compound shows the signature of superspin glass at low temperature. Additionally, both conventional and inverse magnetocaloric effect was observed with a large value of magnetic entropy change and relative cooling power. Our results suggest that Er5Pd2 can be classified as a superspin glass system with large magnetocaloric effect.
Lattice-mediated magnetic order melting in TbMnO3
NASA Astrophysics Data System (ADS)
Baldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.; Ma, Chao; Koohpayeh, Seyed M.; Zhu, Yimei; Bernhard, Christian; Johnson, Steven L.; Carbone, Fabrizio
2018-03-01
Recent ultrafast magnetic-sensitive measurements [Johnson et al., Phys. Rev. B 92, 184429 (2015), 10.1103/PhysRevB.92.184429; Bothschafter et al., Phys. Rev. B 96, 184414 (2017), 10.1103/PhysRevB.96.184414] have revealed a delayed melting of the long-range cycloid spin order in TbMnO3 following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting and is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. Furthermore, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.
Fernandez-Roldan, Jose Angel; Perez Del Real, Rafael; Bran, Cristina; Vazquez, Manuel; Chubykalo-Fesenko, Oksana
2018-03-29
Diameter-modulated nanowires offer an important paradigm to design the magnetization response of 3D magnetic nanostructures by engineering the domain wall pinning. With the aim to understand its nature and to control the process, we analyze the magnetization response in FeCo periodically modulated polycrystalline nanowires varying the minor segment diameter. Our modelling indicates a very complex behavior with a strong dependence on the disorder distribution and an important role of topologically non-trivial magnetization structures. We demonstrate that modulated nanowires with a small diameter difference are characterized by an increased coercive field in comparison to the straight ones, which is explained by a formation of topologically protected walls formed by two 3D skyrmions with opposite chiralities. For a large diameter difference we report the occurrence of a novel pinning type called here the "corkscrew": the magnetization of the large diameter segment forms a skyrmion tube with a core position in a helical modulation along the nanowire. This structure is pinned at the constriction and in order to penetrate the narrow segments the vortex/skyrmion core size should be reduced.
Filling the holes in the CaFe4As3 structure: Synthesis and magnetism of CaCo5As3
NASA Astrophysics Data System (ADS)
Rosa, P. F. S.; Scott, B. L.; Ronning, F.; Bauer, E. D.; Thompson, J. D.
2017-07-01
Here, we investigate single crystals of CaCo5As3 by means of single-crystal x-ray diffraction, microprobe, magnetic susceptibility, heat capacity, and pressure-dependent transport measurements. CaCo5As3 shares the same structure of CaFe4As3 with an additional Co atom filling a lattice vacancy and undergoes a magnetic transition at TM=16 K associated with a frustrated magnetic order. CaCo5As3 displays metallic behavior and its Sommerfeld coefficient (γ =70 mJ/mol K2) indicates a moderate enhancement of electron-electron correlations. Transport data under pressures to 2.5 GPa reveal a suppression of TM at a rate of -0.008 K/GPa. First-principles electronic structure calculations show a complex three-dimensional band structure and magnetic moments that depend on the local environment at each Co site. Our results are compared with previous data on CaFe4As3 and provide a scenario for a magnetically frustrated ground state in this family of compounds.
A substantial amount of hidden magnetic energy in the quiet Sun.
Bueno, J Trujillo; Shchukina, N; Ramos, A Asensio
2004-07-15
Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only approximately 1 per cent of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99 per cent. Here we report three-dimensional radiative transfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data, we find a ubiquitous tangled magnetic field with an average strength of approximately 130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.
NASA Astrophysics Data System (ADS)
Zheng, Ming; Xu, Xiao-Ke; Ni, Hao; Qi, Ya-Ping; Li, Xiao-Min; Gao, Ju
2018-03-01
The phase separation, i.e., the competition between coexisting multi-phases, can be adjusted by external stimuli, such as magnetic field, electric field, current, light, and strain. Here, a multiferroic heterostructure composed of a charge-ordered Nd0.5Sr0.5MnO3 thin film and a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal is fabricated to investigate the lattice strain and magnetic field co-control of phase separation in resistive switching. The stable and nonvolatile resistance tuning is realized at room temperature using the electric-field-induced reversible ferroelastic strain effect, which can be enhanced by 84% under the magnetic field. Moreover, the magnetoresistance can be effectively tuned by the electrically driven ferroelastic strain. These findings reveal that the ferroelastic strain and the magnetic field strongly correlate with each other and are mediated by phase separation. Our work provides an approach to design strain-engineered multifunctional memory devices based on complex oxides by introducing an extra magnetic field stimulus.
Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd 2Os 2O 7
Nguyen, Thi Minh Hien; Sandilands, Luke J.; Sohn, C. H.; ...
2017-08-15
5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2Os 2O 7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii–Moriya and exchange interactions play a significant role in the spin-wavemore » dispersions. The Raman data also reveal complex spin–charge–lattice coupling and indicate that the metal–insulator transition in Cd 2Os 2O 7 is Lifshitz-type. In conclusion, our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.« less
Resonant Magnetic Field Sensors Based On MEMS Technology.
Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías
2009-01-01
Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.
Resonant Magnetic Field Sensors Based On MEMS Technology
Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías
2009-01-01
Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480
Laghi, A; Iafrate, F; Paolantonio, P; Iannaccone, R; Baeli, I; Ferrari, R; Catalano, C; Passariello, R
2002-04-01
To assess the normal anatomy of the anal sphincter complex using high-resolution MR imaging with phased -array coil. Twenty patients, 13 males and 7 females, ranging in age between 27 and 56 years underwent MRI evaluation of the pelvic region, using a superconductive 1.5 T magnet (maximum gradient strength, 25 mT/m; minimum rise time 600 microseconds, equipped with phased-array coil. High-resolution T2-weighted Turbo Spin Echo sequences (TR, 4055 ms; TE, 132 ms; matrix 390x512; in-plane resolution, 0.67x0.57 mm) were acquired on multiple axial, sagittal and coronal planes. Images were reviewed by two experienced gastrointestinal radiologists in order to evaluate the normal anal sphincter complex. Optimal image quality of the anal sphincter complex was obtained in all cases. Different muscular layers were observed between the upper and lower aspects of the anal canal. In the lower part of the anal canal, internal and external sphincter muscles could be observed; in the upper part, puborectal and internal sphincter muscles were depicted. Good visualization of intersphincteric space, levator ani muscle and ischioanal space was also obtained in all cases. High-resolution MR images with phased-array coil provide optimal depiction of the anal canal and the anal sphincter complex.
NASA Astrophysics Data System (ADS)
Yu, Jun; Hao, Du; Li, Decai
2018-01-01
The phenomenon whereby an object whose density is greater than magnetic fluid can be suspended stably in magnetic fluid under the magnetic field is one of the peculiar properties of magnetic fluids. Examples of applications based on the peculiar properties of magnetic fluid are sensors and actuators, dampers, positioning systems and so on. Therefore, the calculation and measurement of magnetic levitation force of magnetic fluid is of vital importance. This paper concerns the peculiar second-order buoyancy experienced by a magnet immersed in magnetic fluid. The expression for calculating the second-order buoyancy was derived, and a novel method for calculating and measuring the second-order buoyancy was proposed based on the expression. The second-order buoyancy was calculated by ANSYS and measured experimentally using the novel method. To verify the novel method, the second-order buoyancy was measured experimentally with a nonmagnetic rod stuck on the top surface of the magnet. The results of calculations and experiments show that the novel method for calculating the second-order buoyancy is correct with high accuracy. In addition, the main causes of error were studied in this paper, including magnetic shielding of magnetic fluid and the movement of magnetic fluid in a nonuniform magnetic field.
Jia, Tingting; Fan, Ziran; Yao, Junxiang; Liu, Cong; Li, Yuhao; Yu, Junxi; Fu, Bi; Zhao, Hongyang; Osada, Minoru; Esfahani, Ehsan Nasr; Yang, Yaodong; Wang, Yuanxu; Li, Jiang-Yu; Kimura, Hideo; Cheng, Zhenxiang
2018-06-20
Single-phase materials that combine electric polarization and magnetization are promising for applications in multifunctional sensors, information storage, spintronic devices, etc. Following the idea of a percolating network of magnetic ions (e.g., Fe) with strong superexchange interactions within a structural scaffold with a polar lattice, a solid solution thin film with perovskite structure at a morphotropic phase boundary with a high level of Fe atoms on the B site of perovskite structure is deposited to combine both ferroelectric and ferromagnetic ordering at room temperature with magnetoelectric coupling. In this work, a 0.85BiTi 0.1 Fe 0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film has been deposited by pulsed laser deposition (PLD). Both the ferroelectricity and the magnetism were characterized at room temperature. Large polarization and a large piezoelectric effective coefficient d 33 were obtained. Multifield coupling of the thin film has been characterized by scanning force microscopy. Ferroelectric domains and magnetic domains could be switched by magnetic field ( H), electric field ( E), mechanical force ( F), and, indicating that complex cross-coupling exists among the electric polarization, magnetic ordering and elastic deformation in 0.85BiTi 0.1 F e0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film at room temperature. This work also shows the possibility of writing information with electric field, magnetic field, and mechanical force and then reading data by magnetic field. We expect that this work will benefit information applications.
Tectonic Interpretation of CHAMP Geopotential Data over the Northern Adriatic Sea.
NASA Astrophysics Data System (ADS)
Taylor, P. T.; Kim, H. R.; Mayer-Gürr, T.
2006-05-01
Recent aeromagnetic anomaly compilations (Chiappini et al., 2000 and Tontini et al., 2004) show a large positive (>700 nT) northwest-southeast trending magnetic anomaly off the Dalmatian coast. Unfortunately these aeromagnetic data cover only a part of this anomaly. We wanted to investigate if this large magnetic anomaly could be detected at satellite altitude and what is the extent and source of this feature. Therefore, magnetic and gravity anomaly maps were made from the CHAMP geopotential data, measured at the current low altitude of 345-350 km over the northern Adriatic Sea. We made the magnetic anomaly map over this relatively small region using 36 descending and 85 ascending orbits screened to be at the lowest altitude and the most magnetically quietest data. We removed the main field component (i.e., IGRF-10 up to degree and order 13) and then demeaned individual tracks and subtracted a second order polynomial to remove regional and/or un-modeled external field features. The resulting map from these well-correlated anomalies revealed a positive magnetic anomaly (>2 nT). Reduction-to-the pole brought these CHAMP anomaly features into coincidence with the aeromagnetic data. Previously Cantini et al. (1999) compared the surface magnetic data with MAGSAT by continuing upward the former and downwards the latter to 100 km and found a good correlation for wavelengths of 300-500 km. We also investigated the CHAMP gravity data. They were reduced using the kinematic short-arc integration method (Ilk et al., 2005 and Mayer Gürr et al., 2005). However, no corresponding short-wavelength gravity anomaly was observed in our study area. This tectonically complex region is under horizontal stress and the source of the large magnetic anomaly can be modelled by an associated ophiolite melange.
Codoping of Sb2Te3 thin films with V and Cr
NASA Astrophysics Data System (ADS)
Duffy, L. B.; Figueroa, A. I.; van der Laan, G.; Hesjedal, T.
2017-11-01
Magnetically doped topological insulators (TIs) are key to realizing the quantum anomalous Hall (QAH) effect, with the prospect of enabling dissipationless electronic devices in the future. Doping of the well-established three-dimensional TIs of the (Bi,Sb) 2(Se,Te) 3 family with the transition metals Cr and V is now an established approach for observing the QAH state at very low temperatures. While the magnetic transition temperatures of these materials are on the order of tens of degrees Kelvin, full quantization of the QAH state is achieved below ˜100 mK, governed by the size of the magnetic gap and thus the out-of-plane magnetic moment. In an attempt to raise the size of the magnetic moment and transition temperature, we carried out a structural and magnetic investigation of codoped (V,Cr):Sb2Te3 thin films. Starting from singly doped Cr:Sb2Te3 films, free of secondary phases and with a transition temperature of ˜72 K, we introduced increasing fractions of V and found a doubling of the transition temperature, while the magnetic moment decreases. In order to separate the properties and contributions of the two transition metals in the complex doping scenario independently, we employed spectroscopic x-ray techniques. Surprisingly, already small amounts of V lead to the formation of the secondary phase Cr2Te3 . No V was detectable in the Sb2Te3 matrix. Instead, it acts as a surfactant and can be found in the near-surface layers at the end of the growth. Our paper highlights the importance of x-ray-based studies for the doping of van der Waals systems, for which the optimization of magnetic moment or transition temperature alone is not necessarily a good strategy.
Controlling spin flips of molecules in an electromagnetic trap
NASA Astrophysics Data System (ADS)
Reens, David; Wu, Hao; Langen, Tim; Ye, Jun
2017-12-01
Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.
Biocolloids with ordered urease multilayer shells as enzymatic reactors.
Lvov, Y; Caruso, F
2001-09-01
The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.
Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells
NASA Astrophysics Data System (ADS)
Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.
2018-04-01
Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We demonstrate that further research focusing on the accurate manipulation of the aforementioned magnetic field exposure parameters could lead to the development of successful non-invasive therapeutic anticancer approaches.
Figuerola, Albert; Diaz, Carmen; Ribas, Joan; Tangoulis, Vassilis; Sangregorio, Claudio; Gatteschi, Dante; Maestro, Miguel; Mahía, José
2003-08-25
The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).
NASA Astrophysics Data System (ADS)
Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen
2016-04-01
Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.
NASA Astrophysics Data System (ADS)
Czajkowski, Klaus; Ratzke, Markus; Varlamova, Olga; Reif, Juergen
2017-09-01
We investigate femtosecond laser induced periodic surface structures (LIPSS) on a complex multilayer target, namely a 20-GB computer hard disk (HD), consisting of a metallic substrate, a magnetic layer, and a thin polymeric protective layer. Depending on the dose (fluence × number of pulses) first the polymeric cover layer is completely removed, revealing a periodic surface modulation of the magnetic layer which seems not to be induced by the laser action. At higher dose, the magnetic layer morphology is strongly modified by laser-induced periodic structures (LIPS) and, finally, kind of an etch stop is reached at the bottom of the magnetic layer. The LIPS shows very high modulation depth below and above the original surface level. In the present work, the role of magnetization and magneto-mechanic forces in the structure formation process is studied by monitoring the bit-wise magnetization of the HD with a magnetic force microscope. It is shown that the structures at low laser dose are reflecting the magnetic bits. At higher dose the magnetic influence appears to be extinguished on the account of LIPS. This suggests a transient overcoming the Curie temperature and an associated loss of magnetic order. The results compare well with our model of LIPS/LIPSS formation by self-organized relaxation from a laser-induced thermodynamic instability.
Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karličić, Danilo; Cajić, Milan; Murmu, Tony
2014-06-21
Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelasticallymore » coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form solutions for the free vibration response of multiple nanostructure systems under the influence of magnetic field.« less
Synthesis and Characterization of Ferromagnetic/Antiferromagnetic Perovskite Oxide Superlattices
NASA Astrophysics Data System (ADS)
Jia, Yue
Perovskite oxides span a diverse range of functional properties such as ferromagnetism, superconductivity, and ferroelectricity, which makes them promising candidate materials for applications such as sensors, energy conversion and data storage devices. With recent advances in thin film deposition techniques, the precise manipulation of atomic layers on the unit cell level make it possible to synthesize epitaxial thin film heterostructures consisting of layers with different properties. The structural compatibility of perovskite oxides allows them to be epitaxially grown in complex heterostructures such as superlattices with a large density of interfaces where the interplay between spin, charge, orbital, and lattice degrees of freedom gives rise to new behaviors. The ferromagnetic (FM)/antiferromagnetic (AF) interface is particularly interesting due to exchange coupling which is not only of interest for fundamental research but also is of great significance for industrial applications. Unlike metallic systems that have been studied for decades with wide ranges of applications in devices such as hard disk drives, thin films of complex metal oxides is a relatively new field. Perovskite oxides show much more diverse functional properties than metals and open new pathways for tailoring propertiestowards specific device applications. Epitaxial La0.7Sr0.3MnO3 (LSMO)/La 0.7Sr0.3FeO3 (LSFO) superlattices serve as model systems to explore the magnetic structure and exchange coupling at perovskite oxide interfaces. Earlier work suggested that (001)-oriented LSMO/LSFO superlattices with compensated AF spins at the interface display spin-flop coupling characterized by perpendicular alignment between the AF spin axes and the FM moments at a sublayer thickness of 6 unit cells (u.c.). Changing the crystallographic orientation of the interface from (001) to (111) introduces changes to factors such as the charge density of each stacking layer, the magnetic iiistructure of the AF layer at the interface, the symmetry of the lattice, and the orbital degeneracy. Therefore, different properties and exchange coupling mechanisms are expected. (111)-oriented LSMO/LSFO superlattices with sublayer thicknesses ranging from 3 to 60 u.c. were synthesized and characterized. Detailed analysis of their structural, electronic, and magnetic properties were performed using synchrotron radiation based resonant x-ray reflectivity, soft x-ray magnetic spectroscopy, and photoemission electron microscopy to explore the effect of sublayer thickness on the magnetic structure and exchange coupling at (111)-oriented perovskite oxide interfaces. Interfacial effects and ultrathin superlattice sublayers can stabilize orientations of the LSFO AF spin axis which differ from that of LSFO films and LSMO/LSFO bilayers. In the ultrathin limit (3 to 6 u.c.), it was found that the AF properties of the LSFO sublayers are preserved with an out-of-plane canting of the AF spin axis, while the FM properties of the LSMO sublayers are significantly depressed. For thicker LSFO layers (> 9 u.c.), the out-of-plane canting of the AF spin axis is only present in superlattices with thick LSMO sublayers. As a result, exchange coupling in the form of spin-flop coupling exists only in superlattices which display both robust ferromagnetism and out-of-plane canting of the AF spin axis. A portion of the AF moments can be reoriented by a moderate external magnetic field through spin-flop coupling with the FM LSMO sublayers that have low magnetocrystalline anisotropy in the (111) plane. The AF order in the spin-flop coupled superlattices was studied using angle-dependent x-ray magnetic linear dichroism. The AF order can be categorized into two types: majority of the AF moments cant out-of-the-plane of the film along the or directions depending on the LSFO layer thickness, while a minority portion lies within the (111) plane in different AF domains. The energy difference between domains with their spin axes along the in-plane or out-of-plane directions is small, and the magnetic order of AF thin films is far ivmore complex than in bulk LSFO. The complex AF structure in these (111)-oriented LSMO/LSFO superlattices illustrates that complex metal oxide heterostructures can serve as fertile ground for discovery of new magnetic phases, which have potential applications in next generation information technology devices.
Saturn's Magnetic Field Model: Birotor Dipole From Cassini RPWS and MAG Experiments
NASA Astrophysics Data System (ADS)
Galopeau, P. H. M.
2016-12-01
The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. We believe that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining the planetary dynamo and they can be a starting point for the study of Saturn's inner structure and the comparison with the interior of Jupiter.
Hyperhoneycomb Iridate β -Li2IrO3 as a Platform for Kitaev Magnetism
NASA Astrophysics Data System (ADS)
Takayama, T.; Kato, A.; Dinnebier, R.; Nuss, J.; Kono, H.; Veiga, L. S. I.; Fabbris, G.; Haskel, D.; Takagi, H.
2015-02-01
A complex iridium oxide β -Li2IrO3 crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with Jeff=1 /2 moment. Ir ions are connected to the three neighboring Ir ions via Ir -O2-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the Jeff=1 /2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between Jeff=1 /2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ (T ) which shows a positive Curie-Weiss temperature θCW˜+40 K . A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of Jeff=1 /2 moments, is observed at Tc=38 K . With the application of magnetic field to the ordered state, a large moment of more than 0.35 μB/Ir is induced above 3 T, a substantially polarized Jeff=1 /2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β -Li2IrO3 is located in close proximity of a Kitaev spin liquid.
NASA Astrophysics Data System (ADS)
Shang, Tao; Lu, Qingshan; Chao, Luomeng; Qin, Yanli; Yun, Yuehou; Yun, Guohong
2018-03-01
Low-density ordered mesoporous CoFe2O4 (Osbnd CFO) and CoLa0.12Fe1.88O4 (Osbnd CLFO) are prepared by nanocasting method using mesoporous silica SBA-15 as a hard-template. The crystal structure, surface chemical state, magnetic properties and electromagnetic parameters are characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurement, X-ray photoelectron spectroscopy, physical property measurement system and vector network analyzer. The results show that all the samples formed a single phase with cubic spinel structure. Meanwhile Osbnd CFO and Osbnd CLFO possess a highly ordered mesostructure. Comparing with particle CoFe2O4 (P-CFO), Osbnd CFO with high specific surface area exhibits lower magnetic saturation (Ms), higher imaginary part of complex permittivity (ε‧‧) and imaginary part of the complex permeability (μ‧‧). The minimum reflection loss (RL) of Osbnd CFO reaches -27.36 dB with a matching thickness of 3.0 mm. The enhancement of the microwave absorbing performances of Osbnd CFO can be mainly attributed to the good impedance matching, high electromagnetic wave attenuation and multiple reflections of electromagnetic wave originated from the ordered mesoporous structure. The Ms of Osbnd CLFO decreases after La3+ doping, while the specific surface area, coercivity value, ε‧‧ and μ‧‧ of Osbnd CLFO increase. The minimum RL of Osbnd CLFO reaches -46.47 dB with a thickness of 3.0 mm, and the effective absorption frequency bandwidth reaches 4.9 GHz.
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.
2016-10-01
Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the perspective of computational accuracy and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Madeleine; Stanley, Ann Marie; Wang, Guangshun
Paralogous enzymes arise from gene duplication events that confer a novel function, although it is unclear how cross-reaction between the original and duplicate protein interaction network is minimized. We investigated HPr:EIsugar and NPr:EINtr, the initial complexes of paralogous phosphorylation cascades involved in sugar import and nitrogen regulation in bacteria, respectively. Although the HPr:EIsugar interaction has been well characterized, involving multiple complexes and transient interactions, the exact nature of the NPr:EINtr complex was unknown. We set out to identify the key features of the interaction by performing binding assays and elucidating the structure of NPr in complex with the phosphorylation domainmore » of EINtr (EINNtr), using a hybrid approach involving X-ray, homology, and sparse nuclear magnetic resonance. We found that the overall fold and active-site structure of the two complexes are conserved in order to maintain productive phosphorylation, however, the interface surface potential differs between the two complexes, which prevents cross-reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ya-Hui; Hsieh, Min-Shiu; Yu, Hsiu-Shan
It is often believed that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. This work investigates the dependence of flare activity on the AR properties and clarifies the influence of AR magnetic parameters on the flare productivity, based on two data sets of daily sunspot and flare information as well as the GOES soft X-ray measurements and HMI vector magnetograms. By considering the evolution of magnetic complexity, we find that flare behaviors are quite different in the short- and long-lived complex ARs and the ARs with more complex magnetic configurationsmore » are likely to host more impulsive and intense flares. Furthermore, we investigate several magnetic quantities and perform the two-sample Kolmogorov–Smirnov test to examine the similarity/difference between two populations in different types of ARs. Our results demonstrate that the total source field strength on the photosphere has a good correlation with the flare activity in complex ARs. It is noted that intense flares tend to occur at the regions of strong source field in combination with an intermediate field-weighted shear angle. This result implies that the magnetic free energy provided by a complex AR could be high enough to trigger a flare eruption even with a moderate magnetic shear on the photosphere. We thus suggest that the magnetic free energy represented by the source field rather than the photospheric magnetic complexity is a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.« less
Zhao, Jiong-Peng; Hu, Bo-Wen; Lloret, Francesc; Tao, Jun; Yang, Qian; Zhang, Xiao-Feng; Bu, Xian-He
2010-11-15
By changing template cation but introducing trivalent iron ions in the known niccolite structural metal formate frameworks, three complexes formulated [NH(2)(CH(3))(2)][Fe(III)M(II)(HCOO)(6)] (M = Fe for 1, Mn for 2, and Co for 3) were synthesized and magnetically characterized. The variation in the compositions of the complexes leads to three different complexes: mixed-valent complex 1, heterometallic but with the same spin state complex 2, and heterometallic heterospin complex 3. The magnetic behaviors are closely related to the divalent metal ions used. Complex 1 exhibits negative magnetization assigned as Néel N-Type ferrimagnet, with an asymmetric magnetization reversal in the hysteresis loop, and complex 2 is an antiferromagnet with small spin canting (α(canting) ≈ 0.06° and T(canting) = 35 K), while complex 3 is a ferrimagnet with T(N) = 32 K.
Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip
NASA Astrophysics Data System (ADS)
Alam, Manjurul; Golozar, Matin; Darabi, Jeff
2018-04-01
A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.
Search for the elusive magnetic state of hexagonal iron: The antiferromagnetic Fe71Ru29 hcp alloy
NASA Astrophysics Data System (ADS)
Petrillo, C.; Postorino, P.; Orecchini, A.; Sacchetti, F.
2018-03-01
The magnetic states of iron and their dependence on crystal structure represent an important case study for the physics of magnetism and its role in fundamental and applied science, including geophysical sciences. hcp iron is the most elusive structure as it exists only at high pressure but, at the same time, it is expected to be stable up to very high temperature. Exploring the magnetic state of pure Fe at high pressure is difficult and no conclusive results have been obtained. Simple binary alloys where the hexagonal phase of Fe is stabilized, offer a more controllable alternative to investigate iron magnetism. We carried out a neutron diffraction experiment on hcp Fe71Ru29 disordered alloy as a function of temperature. Fe in the hexagonal lattice of this specific alloy results to be antiferromagnetically aligned with a rather complex structure and a small magnetic moment. The temperature dependence suggests a Néel temperature TN = 124 ± 10 K, a value consistent with the low magnetic moment of 1.04 ± 0.10 μB obtained from the diffraction data that also suggest a non-commensurate magnetic structure with magnetic moments probably aligned along the c axis. The present data provide evidence for magnetic ordering in hcp Fe and support the theoretical description of magnetism of pure Fe at high pressure.
Magnetic field effects and waves in complex plasmas
NASA Astrophysics Data System (ADS)
Kählert, Hanno; Melzer, André; Puttscher, Marian; Ott, Torben; Bonitz, Michael
2018-05-01
Magnetic fields can modify the physical properties of a complex plasma in various different ways. Weak magnetic fields in the mT range affect only the electrons while strong fields in the Tesla regime also magnetize the ions. In a rotating dusty plasma, the Coriolis force substitutes the Lorentz force and can be used to create an effective magnetization for the strongly coupled dust particles while leaving electrons and ions unaffected. Here, we present a summary of our recent experimental and theoretical work on magnetized complex plasmas. We discuss the dynamics of dust particles in magnetized discharges, the wave spectra of strongly coupled plasmas, and the excitations in confined plasmas. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Heterogeneity in magnetic complex oxides
NASA Astrophysics Data System (ADS)
Arenholz, Elke
Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by imprinting the BiFeO3 domain pattern in an adjacent La0.7Sr0.3MnO3 layer, understanding the metal-insulator transition in strained VO2 thin films and identifying a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Sama, Farasha; Dhara, Ashish Kumar; Akhtar, Muhammad Nadeem; Chen, Yan-Cong; Tong, Ming-Liang; Ansari, Istikhar A; Raizada, Mukul; Ahmad, Musheer; Shahid, M; Siddiqi, Zafar A
2017-08-14
Herein, the coordination chemistry of a series of Cu(ii) complexes of various aminoalcohol and benzoate ligands was explored. The pH-dependent reactions of copper(ii) salts with propanolamine (Hpa), N-methyl diethanolamine (H 2 mdea), triethanolamine (H 3 tea), and n butyl-diethanolamine (H 2 budea) were carried out in the presence of various benzoates (benzoic acid, 2-hydroxy benzoic acid, 4-hydroxy benzoic acid, 3-methoxy benzoic acid, and 4-methoxy benzoic acid). The resulting complexes [Cu 2 (pa) 2 (benzoate) 2 ] (1), [Cu 2 (pa) 2 (3-methoxybenzoate) 2 ] (2), [Cu 2 (pa) 2 (4-methoxybenzoate) 2 ] (3), [Cu 2 (H 2 tea) 2 (benzoate) 2 ]·2H 2 O (4), [Cu 2 (H 2 tea) 2 (2-hydroxybenzoate) 2 ]·2H 2 O (5), [Cu 2 (H 3 tea) 2 (4-hydroxybenzoate) 2 ][Cu(Htea) 2 ]·2H 2 O (6), [Cu(H 2 mdea) 2 ][benzoate] 2 (7), [Cu(H 2 mdea) 2 ][4-methoxybenzoate] 2 (8), [Cu(H 2 bdea) 2 ][2-hydroxybenzoate] 2 (9), [Cu 2 (benzoate) 4 (benzoic acid) 2 ] (10), [Cu 2 (4-methoxybenzoate) 4 (CH 3 CN) 2 ]·4CH 3 CN (11) and [Cu 3 (H 2 tea) 2 (benzoate) 2 (NO 3 ) 2 ] (12) were formed as mono-, di- or trinuclear entities depending upon the pH conditions of the reaction. The complexes were characterized employing spectral, magnetic, single-crystal X-ray and DFT/TDDFT studies. 7 and 8 exhibited emission peaks at 510 and 460 nm, respectively, in the solid-state photoluminescence (PL) spectra. The temperature variable magnetic properties of 1-12 revealed the presence of antiferromagnetic (in 1-3 and 7-11) or ferromagnetic interactions (in 4-6 and 12) with Curie constants C = 0.24 (7), 0.28 (8) or 0.35 cm 3 K mol -1 (9) and Weiss constants θ = -0.34 (7), -0.32 (8) or -0.40 (9) K for the mononuclear complexes. The dinuclear complexes demonstrated J values of -89.2(2) (1), -71.1(3) (2), -59.6(1) (3), 98(1) (4), 79.1(2) (5), -85.4(2) (10) and -89.5(2) (11) cm -1 . Strong ferromagnetic interactions were observed in the case of 6 (J = 172(3) cm -1 and zJ' = 2.3(2) cm -1 ), which were comparable with those of 12 (J 12 = 197(2) cm -1 , J 13 = -9.3(3) cm -1 ). A correlation exists between the Cu-O-Cu angle and magnetic coupling in di- and trinuclear Cu(ii) complexes. Moreover, 4-6 were active catalysts for the oxidation of 3,5-DTBC to 3,5-DTBQ and showed catecholase activity in the order 4 > 5 > 6 (K cat = 943 (4), 698 (5) and 553 h -1 (6)). This order can be rationalized in terms of the electron density on the ligand, which neutralizes the effective positive charge on Cu(ii), thus forming the less or more stable intermediate. The order of catecholase activity and the electronic spectral properties of 4-6 were also investigated by DFT and TDDFT studies, respectively.
Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.
Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit
2017-05-01
Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.
NASA Astrophysics Data System (ADS)
Barcelona, H.; Mena, M.; Sanchez-Bettucci, L.
2009-05-01
The Valle Chico Complex, at southeast Uruguay, is related Paraná-Etendeka Province. The study involved basaltic lavas, quarz-syenites, and rhyolitic and trachytic dikes. Samples were taken from 18 sites and the AMS of 250 specimens was analyzed. The AMS is modeled by a second order tensor K and it graphical representation is a symmetric ellipsoid. The axes relations determine parameters which describe different properties like shape, lineation, and foliation, degree of anisotropy and bulk magnetic susceptibility. Under this perspective, one lava, dike, or igneous body can be considered a mosaic of magnetic susceptibility domains (MSD). The DSM is an area with specific degree of homogeneity in the distribution of parameters values and cinematic conditions. An average tensor would weigh only one MSD, but if the site is a mosaic, subsets of specimens with similar parameters can be created. Hypothesis tests can be used to establish parameter similarities. It would be suitable considered as a MSD the subsets with statistically significant differences in at least one of its means parameters, and therefore, be treated independently. Once defined the MSDs the tensor analysis continues. The basalt-andesitic lavas present MSD with an NNW magnetic foliation, dipping 10. The K1 are sub-horizontal, oriented E-W and reprsent the magmatic flow direction. The quartz-syenites show a variable magnetic fabric or prolate ellipsoids mayor axes dispose parallel to the flow direction (10 to the SSE). Deformed syenites show N300/11 magnetic foliation, consistent with the trend of fractures. The K1 is subvertical. The MSD defined in rhyolitic dikes have magnetic foliations consistent with the structural trend. The trachytic dikes show an important indetermination in the magnetic response. However, a 62/N90 magnetic lineation was defined. The MSDs obtained are consistent with the geological structures and contribute to the knowledge of the tectonic, magmatic and kinematic events.
Li, Qimeng; Wang, Zheng; Li, Qiang; Shuang, Chendong; Zhou, Qing; Li, Aimin; Gao, Canzhu
2017-07-01
This paper aimed to investigate the removal of combined Cu 2+ and atenolol (ATL) in aqueous solution by using a newly synthesized magnetic cation exchange resin (MCER) as the adsorbent. The MCER exhibited efficient removal performance in sole, binary, pre-loading and saline systems. The adsorption kinetics of Cu 2+ and ATL fitted both pseudo-first-order and pseudo-second order model, while better described by pseudo-second order model in binary system. In mixed Cu 2+ and ATL solution, the adsorption of ATL was suppressed due to direct competition of carboxylic groups, while Cu 2+ adsorption was enhanced because of the formation of surface complexes. This increasing in heterogeneity was demonstrated by adsorption isotherms, which were more suitable for Freundlich model in binary system, while better described by Langmuir model in sole system. As proved by FTIR and XPS spectra, both amino and hydroxyl groups of ATL could form complexes with Cu 2+ . Decomplexing-bridging interaction was elucidated as the leading mechanism in coremoval of Cu 2+ and ATL, which involved [Cu-ATL] decomplexing and newly created Cu- or ATL sites for additional bridging. For saline system, the resulting competition and enhancement effects in mixed solution were amplified with the addition of co-existing cations. Moreover, the MCER could be effectively regenerated by 0.01 M HCl solution and maintain high stability over 5 adsorption-desorption cycles, which render it great potential for practical applications. Copyright © 2017. Published by Elsevier Ltd.
Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1989-12-15
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator.
Remanent and induced contributions of the Earth's magnetization
NASA Astrophysics Data System (ADS)
Vervelidou, Foteini; Lesur, Vincent; Thébault, Erwan; Dyment, Jérôme; Holschneider, Matthias
2016-04-01
Inverting the magnetic field of crustal origin for the magnetization distribution that generates it suffers from non-uniqueness. The reason for this is the so-called annihilators, i.e. structures that produce no visible magnetic field outside the sources. Gubbins et al., 2011 uses the complex vector Spherical Harmonics notation in order to separate the Vertical Integrated Magnetization (VIM) distribution into the parts that do and do not contribute to the magnetic field measured in source free regions. We use their formalism and convert a crustal SH model based on the WDMAM into a model for the equivalent magnetization. However, we extend their formalism and assume that the magnetization is confined within a layer of finite thickness. A different thickness is considered for the oceanic crust than for the continental one. It is well known that the large scales of the crustal field are entirely masked by the Earth's main field. Therefore, we complement the WDMAM based magnetization map (SH degrees 16 to 800) with the magnetization map for the large wavelengths (SH degrees 1-15) that was recently derived by Vervelidou and Thébault (2015) from a series of regional statistical analyses of the World Digital Magnetic Anomaly Map. Finally we propose a tentative separation of this magnetization map into induced and remanent contributions on a regional scale. We do so based on the direction of the core magnetic field. We discuss the implications of these results in terms of the tectonic history of the Earth.
Stripes developed at the strong limit of nematicity in FeSe film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Zhang, Yan; Deng, Peng
A single monolayer of iron selenide grown on strontium titanate shows an impressive enhancement of superconductivity compared with the bulk, as well as a novel Fermi surface topology, extreme two-dimensionality, and the possibility of phonon-enhanced electron pairing. For films thicker than one unit cell, however, the electronic structure is markedly different, with a drastically suppressed superconductivity and strong nematicity appearing. The physics driving this extraordinary dichotomy of superconducting behaviour is far from clear. In this paper, we use low-temperature scanning tunnelling microscopy to study multilayers of iron selenide grown by molecular beam epitaxy, and find a stripe-type charge ordering instabilitymore » that develops beneath the nematic state. The charge ordering is visible and pinned in the vicinity of impurities. And as it emerges in the strong limit of nematicity, it suggests that a magnetic fluctuation with a rather small wavevector may be competing with the ordinary collinear antiferromagnetic ordering in multilayer films. Finally, the existence of stripes in iron-based superconductors, which resemble the stripe order in cuprates, not only suggests that electronic anisotropy and correlation are playing an important role, but also provides a platform for probing the complex interactions between nematicity, charge ordering, magnetism and superconductivity in high-temperature superconductors.« less
Stripes developed at the strong limit of nematicity in FeSe film
Li, Wei; Zhang, Yan; Deng, Peng; ...
2017-07-17
A single monolayer of iron selenide grown on strontium titanate shows an impressive enhancement of superconductivity compared with the bulk, as well as a novel Fermi surface topology, extreme two-dimensionality, and the possibility of phonon-enhanced electron pairing. For films thicker than one unit cell, however, the electronic structure is markedly different, with a drastically suppressed superconductivity and strong nematicity appearing. The physics driving this extraordinary dichotomy of superconducting behaviour is far from clear. In this paper, we use low-temperature scanning tunnelling microscopy to study multilayers of iron selenide grown by molecular beam epitaxy, and find a stripe-type charge ordering instabilitymore » that develops beneath the nematic state. The charge ordering is visible and pinned in the vicinity of impurities. And as it emerges in the strong limit of nematicity, it suggests that a magnetic fluctuation with a rather small wavevector may be competing with the ordinary collinear antiferromagnetic ordering in multilayer films. Finally, the existence of stripes in iron-based superconductors, which resemble the stripe order in cuprates, not only suggests that electronic anisotropy and correlation are playing an important role, but also provides a platform for probing the complex interactions between nematicity, charge ordering, magnetism and superconductivity in high-temperature superconductors.« less
Magnetic stripes and skyrmions with helicity reversals.
Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori
2012-06-05
It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.
NASA Astrophysics Data System (ADS)
Longhinos, Biju; Thanu Iyer, Radhakrishnan; Mohan, Karthika
2014-05-01
The geological and geophysical complexities in Indian ocean basin, pointed out by many earlier workers remained unresolved. Instead, taking aid from stop gap arguments, the data has been construed to follow plate tectonics format. The concept of large igneous complexes emplaced through crustal drifting ( between the India and Mozambique) during later Mesozoic to Recent fail to address geophysical characteristics exhibited here. The geophysical signatures of the sub crustal part of the ocean here resemble to that of continental regions elsewhere. Granites, greenstones and mylonized gabbro, recovered from the western Indian ocean basin, rather give Late Pre- Cambrian and Paleozoic isotopic dates. Under this light, the present paper looks into the ocean bottom characteristics of a region between iles Rodrigues and Chagos- Maldives archipelago. The region has first order curvilienar fractures, with along which the crust has displaced more than 1000m. The sea-bottom topography of the region has been modeled in Geographical Information System environment using Modified ETOPO5 provided by National Institute of Oceanography. The spatial relationship of topography with gravity and magnetic data area are analysed visually and mathematically. The detail bathymetry, gravity and magnetic data give morphology similar to that of half graben formed on a felsic crust, which later has undergone basification / eclogitization through first order fracture zones.
Mobile metallic domain walls in an all-in-all-out magnetic insulator
Ma, Eric Yue; Cui, Yong -Tao; Ueda, Kentaro; ...
2015-10-30
Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd 2Ir 2O 7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smoothmore » morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order.« less
Mobile metallic domain walls in an all-in-all-out magnetic insulator.
Ma, Eric Yue; Cui, Yong-Tao; Ueda, Kentaro; Tang, Shujie; Chen, Kai; Tamura, Nobumichi; Wu, Phillip M; Fujioka, Jun; Tokura, Yoshinori; Shen, Zhi-Xun
2015-10-30
Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd2Ir2O7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smooth morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order. Copyright © 2015, American Association for the Advancement of Science.
Neutron Scattering Studies on Correlated Transition-Metal Oxides
NASA Astrophysics Data System (ADS)
Zhu, Mengze
We have explored the collective phenomena of correlated electrons in two different transition-metal oxides, Ruddlesden-Popper type ruthenates (Sr,Ca) n+1RunO3n+1 and inverse-trirutile chromates Cr2MO6 (M = Te, Mo and W), using neutron scattering in combination with various material characterization methods. (Sr,Ca)n+1RunO 3n+1 are 4d transition-metal oxides exhibiting competing magnetic and electronic tendencies. The delicate balance among the competing states can be readily tuned by perturbations, such as chemical doping and magnetic field, which gives rise to emergent phenomena. We have investigated the effects of 3d transition-metal doping on the magnetic and electronic properties of layered ruthenates. For instance, the single-layer (n = 1) Sr2RuO4 is an unconventional superconductor possessing an incommensurate spin density wave instability with a wave vector qic= (0.3 0.3 L) driven by Fermi surface nesting. Upon Fe substitution, we have unveiled an unexpected commensurate spin density wave order with a propagation vector qc= (0.25 0.25 0) in Sr2Ru1-xFexO 4 (x = 0.03 and 0.05), despite the magnetic fluctuations persisting at qic. The latter feature is corroborated by the first principles calculations, which show that Fe doping barely changes the nesting vector of the Fermi surface. These results suggest that in addition to the known incommensurate magnetic instability, Sr2RuO4 is also in proximity to a commensurate magnetic tendency that can be stabilized via Fe doping. We have also studied the effects of a magnetic field. For example, the bilayer (n = 2) Ca3(Ru1-xTi x)2O7 (x = 0.03) is a G-type antiferromagnetic Mott insulator. We have revealed that a modest magnetic field can lead to colossal magnetoresistance arising from an anomalous collapse of the Mott insulating state. Such an insulator-to-metal transition is accompanied by magnetic and structural transitions. These findings call for deeper theoretical studies to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities, as a magnetic field usually stabilizes the insulating ground state in Mott-Hubbard systems. Cr2MO6 (M = Te, W and Mo) are spin dimer systems with the magnetic ions Cr3+ structurally dimerized favoring a singlet ground state. However, all three compounds investigated exhibit long-range antiferromagnetic orders at low temperature owing to the inter-dimer interactions. We have shown that the inter-dimer exchange coupling can be tuned from antiferromagnetic in Cr2TeO6 to ferromagnetic in Cr2WO6 and Cr2MoO6, by altering the degree of d-p orbital hybridization between W(Mo) and O atoms. The tunability of the inter-dimer interactions without introducing additional complexities such as structural distortions and carrier doping offers a rare opportunity to drive the system toward the quantum critical point (QCP) separating the dimer-based quantum disordered state and the classical long-range antiferromagnetic order. Moreover, we have unraveled Higgs amplitude modes in the magnetic excitation spectra of Cr2TeO6 and Cr2WO6, which are generally believed to survive only in systems close to the QCP where the ordered moment is suppressed significantly from its fully saturated value by quantum fluctuations. However, these two compounds are away from the QCP with the ordered moment reduced only by 24%. This study suggests that Higgs amplitude modes are not the privilege of ordered systems in the vicinity of the QCP, but may be common excitation modes in ordered spin dimer systems.
Circularly polarized attosecond pulse generation and applications to ultrafast magnetism
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun
2017-12-01
Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.
Electronic and magnetic properties of SnS2 monolayer doped with 4d transition metals
NASA Astrophysics Data System (ADS)
Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Chen, Qiao; Wang, Ling-Ling
2017-09-01
We investigate the electronic structures and magnetic properties of SnS2 monolayers substitutionally doped with 4-d transition-metal through systematic first principles calculations. The doped complexes exhibit interesting electronic and magnetic behaviors, depending on the interplay between crystal field splitting, Hund's rule, and 4d levels. The system doped with Y is nonmagnetic metal. Both the Zr- and Pd-doped systems remain nonmagnetic semiconductors. Doping results in half-metallic states for Nb-, Ru-, Rh-, Ag, and Cd doped cases, and magnetic semiconductors for systems with Mo and Tc dopants. In particular, the Nb- and Mo-doped systems display long-ranged ferromagnetic ordering with Curie temperature above room temperature, which are primarily attributable to the double-exchange mechanism, and the p-d/p-p hybridizations, respectively. Moreover, The Mo-doped system has excellent energetic stability and flexible mechanical stability, and also possesses remarkable dynamic and thermal (500 K) stability. Our studies demonstrate that Nb- and Mo-doped SnS2 monolayers are promising candidates for preparing 2D diluted magnetic semiconductors, and hence will be a helpful clue for experimentalists.
Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric
In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
Spatially Resolved Large Magnetization in Ultrathin BiFeO 3
Guo, Er-Jia; Petrie, Jonathan R.; Roldan, Manuel A.; ...
2017-06-19
Complex interactions across the interface in heterostructures can generate novel functionalities not present in the constituent materials. Here, we create a unique ferromagnetic ground state out of normally antiferromagnetic BiFeO 3 (BFO) by interleaving it with layers of ferromagnetic La 0.7Sr 0.3MnO 3. Intriguingly, we found that the magnetization of BFO was aligned opposite to that of the manganite layers. Based on polarized neutron reflectometry (PNR) depth profiling of custom-designed layers, we obtained a net magnetization in the BFO layers of 275 kA/m (~1.83 B/Fe) at 10 K, which is two times larger than the previously reported values. Additionally, ferromagneticmore » order in the BFO persists up to 200 K, which is much higher than previously seen in BFO heterostructures. Our unprecedented understanding of the evolution of magnetism and functional coupling across the interface between antiferromagnetic and ferromagnetic layers provides a blueprint towards advanced spintronic devices.« less
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Magnetocaloric effect in Gd1-x Ndx Zn2
NASA Astrophysics Data System (ADS)
Matsumoto, Keisuke T.; Hiraoka, Koichi
2017-09-01
The magnetization of Gd1-xNdxZn2 (0 < x ⩽ 1) was measured to study the effect of Nd substitution in GdZn2 with a Curie temperature of 85 K and a spin-reorientation transition temperature of 58 K on the magnetocaloric effect. The Nd counterpart NdZn2 shows antiferromagnetic order at 23 K. Samples of Gd1-xNdxZn2 (0 < x ⩽ 1) were prepared by the melt-growth method. In Nd-substituted systems, the anomaly due to spin-reorientation disappeared. For x ⩾ 0.6 , field-induced metamagnetic transitions were observed, indicating an antiferromagnetic ground state. This complex magnetism may originate from competition between ferromagnetic and antiferromagnetic interactions. Magnetic entropy change ΔSm was calculated based on the magnetization measurements. ΔSm was suppressed by Nd substitution for x values up to 0.6. For x = 1 (NdZn2), the maximum value of ΔSm was -9 J/K kg, which is almost the same as those of other Nd-based magnetocaloric materials.
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2017-04-01
We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
NASA Astrophysics Data System (ADS)
Qureshi, N.; Díaz, M. T. Fernández; Chapon, L. C.; Senyshyn, A.; Schweika, W.; Valldor, M.
2018-02-01
We present a study that combines polarized and unpolarized neutrons to derive the magnetic structure of the swedenborgite compound CaBa (Co3Fe ) O7. Integrated intensities from a standard neutron diffraction experiment and polarization matrices from spherical neutron polarimetry have been simultaneously analyzed revealing a complex order, which differs from the usual spin configurations on a kagome lattice. We find that the magnetic structure is well described by a combination of two one-dimensional representations corresponding to the magnetic superspace symmetry P 21' , and it consists of spins rotating around an axis close to the [110] direction. Due to the propagation vector q =(1/3 00 ) , this modulation has cycloidal and helicoidal character rendering this system a potential multiferroic. The resulting spin configuration can be mapped onto the classical √{3 }×√{3 } structure of a kagome lattice, and it indicates an important interplay between the kagome and the triangular layers of the crystal structure.
Rajaraman, Gopalan; Totti, Federico; Bencini, Alessandro; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante
2009-05-07
Density functional calculations have been performed on a [Gd(iii)Cu(ii)] complex [L(1)CuGd(O(2)CCF(3))(3)(C(2)H(5)OH)(2)] () (where L(1) is N,N'-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato) with an aim of assessing a suitable functional within the DFT formalism to understand the mechanism of magnetic coupling and also to develop magneto-structural correlations. Encouraging results have been obtained in our studies where the application of B3LYP on the crystal structure of yields a ferromagnetic J value of -5.8 cm(-1) which is in excellent agreement with the experimental value of -4.42 cm(-1) (H = JS(Gd).S(Cu)). After testing varieties of functional for the method assessment we recommend the use of B3LYP with a combination of an effective core potential basis set. For all electron basis sets the relativistic effects should be incorporated either via the Douglas-Kroll-Hess (DKH) or zeroth-order regular approximation (ZORA) methods. A breakdown approach has been adopted where the calculations on several model complexes of have been performed. Their wave functions have been analysed thereafter (MO and NBO analysis) in order to gain some insight into the coupling mechanism. The results suggest, unambiguously, that the empty Gd(iii) 5d orbitals have a prominent role on the magnetic coupling. These 5d orbitals gain partial occupancy via Cu(ii) charge transfer as well as from the Gd(iii) 4f orbitals. A competing 4f-3d interaction associated with the symmetry of the complex has also been observed. The general mechanism hence incorporates both contributions and sets forth rather a prevailing mechanism for the 3d-4f coupling. The magneto-structural correlations reveal that there is no unique parameter which the J values are strongly correlated with, but an exponential relation to the J value found for the O-Cu-O-Gd dihedral angle parameter is the most credible correlation.
Intelligent design of permanent magnet synchronous motor based on CBR
NASA Astrophysics Data System (ADS)
Li, Cong; Fan, Beibei
2018-05-01
Aiming at many problems in the design process of Permanent magnet synchronous motor (PMSM), such as the complexity of design process, the over reliance on designers' experience and the lack of accumulation and inheritance of design knowledge, a design method of PMSM Based on CBR is proposed in order to solve those problems. In this paper, case-based reasoning (CBR) methods of cases similarity calculation is proposed for reasoning suitable initial scheme. This method could help designers, by referencing previous design cases, to make a conceptual PMSM solution quickly. The case retain process gives the system self-enrich function which will improve the design ability of the system with the continuous use of the system.
Appleby, Kate M; Mewis, Ryan E; Olaru, Alexandra M; Green, Gary G R; Fairlamb, Ian J S; Duckett, Simon B
2015-07-01
The reaction of [Ir(IMes)(COD)Cl], [IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, COD = 1,5-cyclooctadiene] with pyridazine (pdz) and phthalazine (phth) results in the formation of [Ir(COD)(IMes)(pdz)]Cl and [Ir(COD)(IMes)(phth)]Cl. These two complexes are shown by nuclear magnetic resonance (NMR) studies to undergo a haptotropic shift which interchanges pairs of protons within the bound ligands. When these complexes are exposed to hydrogen, they react to form [Ir(H) 2 (COD)(IMes)(pdz)]Cl and [Ir(H) 2 (COD)(IMes)(phth)]Cl, respectively, which ultimately convert to [Ir(H) 2 (IMes)(pdz) 3 ]Cl and [Ir(H) 2 (IMes)(phth) 3 ]Cl, as the COD is hydrogenated to form cyclooctane. These two dihydride complexes are shown, by NMR, to undergo both full N-heterocycle dissociation and a haptotropic shift, the rates of which are affected by both steric interactions and free ligand p K a values. The use of these complexes as catalysts in the transfer of polarisation from para -hydrogen to pyridazine and phthalazine via signal amplification by reversible exchange (SABRE) is explored. The possible future use of drugs which contain pyridazine and phthalazine motifs as in vivo or clinical magnetic resonance imaging probes is demonstrated; a range of NMR and phantom-based MRI measurements are reported.
An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.
Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro
2013-01-01
Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.
Self-consistent linear response for the spin-orbit interaction related properties
NASA Astrophysics Data System (ADS)
Solovyev, I. V.
2014-07-01
In many cases, the relativistic spin-orbit (SO) interaction can be regarded as a small perturbation to the electronic structure of solids and treated using regular perturbation theory. The major obstacle on this route comes from the fact that the SO interaction can also polarize the electron system and produce some additional contributions to the perturbation theory expansion, which arise from the electron-electron interactions in the same order of the SO coupling. In electronic structure calculations, it may even lead to the necessity of abandoning the perturbation theory and returning to the original self-consistent solution of Kohn-Sham-like equations with the effective potential v̂, incorporating simultaneously the effects of the electron-electron interactions and the SO coupling, even though the latter is small. In this work, we present the theory of self-consistent linear response (SCLR), which allows us to get rid of numerical self-consistency and formulate the last step fully analytically in the first order of the SO coupling. This strategy is applied to the unrestricted Hartree-Fock solution of an effective Hubbard-type model, derived from the first-principles electronic structure calculations in the basis of Wannier functions for the magnetically active states. We show that by using v̂, obtained in SCLR, one can successfully reproduce results of ordinary self-consistent calculations for the orbital magnetization and other properties, which emerge in the first order of the SO coupling. Particularly, SCLR appears to be an extremely useful approach for calculations of antisymmetric Dzyaloshinskii-Moriya (DM) interactions based on the magnetic force theorem, where only by using the total perturbation one can make a reliable estimate for the DM parameters. Furthermore, due to the powerful 2n+1 theorem, the SCLR theory allows us to obtain the total energy change up to the third order of the SO coupling, which can be used in calculations of magnetic anisotropy of compounds with low crystal symmetry. The fruitfulness of this approach for the analysis of complex magnetic structures is illustrated in a number of examples, including the quantitative description of the spin canting in YTiO3 and LaMnO3, formation of the spin-spiral order in BiFeO3, and the magnetic inversion symmetry breaking in BiMnO3, which gives rise to both ferroelectric activity and DM interactions, responsible for the ferromagnetism. In all these cases, the use of SCLR tremendously reduces the computational efforts related to the search for noncollinear magnetic structures in the ground state.
MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, D.; Gingell, P. W.; Matteini, L.
2016-05-01
In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence may generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long timescales, in order to capture the evolution from linear growthmore » of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of newborn interstellar pickup protons does not strongly affect these results. Finally, we conclude that reconnection between multiple current sheets can act as an important source of turbulence in the outer heliosphere, with implications for energetic particle acceleration and propagation.« less
Giant positive magnetoresistance in half-metallic double-perovskite Sr2CrWO6 thin films
Zhang, Ji; Ji, Wei-Jing; Xu, Jie; Geng, Xiao-Yu; Zhou, Jian; Gu, Zheng-Bin; Yao, Shu-Hua; Zhang, Shan-Tao
2017-01-01
Magnetoresistance (MR) is the magnetic field–induced change of electrical resistance. The MR effect not only has wide applications in hard drivers and sensors but also is a long-standing scientific issue for complex interactions. Ferromagnetic/ferrimagnetic oxides generally show negative MR due to the magnetic field–induced spin order. We report the unusually giant positive MR up to 17,200% (at 2 K and 7 T) in 12-nm Sr2CrWO6 thin films, which show metallic behavior with high carrier density of up to 2.26 × 1028 m−3 and high mobility of 5.66 × 104 cm2 V−1 s−1. The possible mechanism is that the external magnetic field suppresses the long-range antiferromagnetic order to form short-range antiferromagnetic fluctuations, which enhance electronic scattering and lead to the giant positive MR. The high mobility may also have contributions to the positive MR. These results not only experimentally confirm that the giant positive MR can be realized in oxides but also open up new opportunities for developing and understanding the giant positive MR in oxides. PMID:29119138
NASA Astrophysics Data System (ADS)
Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis
2014-04-01
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch-Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge-Kutta-Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.
Cylinders vs. Spheres: Biofluid Shear Thinning in Driven Nanoparticle Transport
Cribb, Jeremy A.; Meehan, Timothy D.; Shah, Sheel M.; Skinner, Kwan; Superfine, Richard
2011-01-01
Increasingly, the research community applies magnetophoresis to micro and nanoscale particles for drug delivery applications and the nanoscale rheological characterization of complex biological materials. Of particular interest is the design and transport of these magnetic particles through entangled polymeric fluids commonly found in biological systems. We report the magnetophoretic transport of spherical and rod-shaped particles through viscoelastic, entangled solutions using lambda-phage DNA (λ-DNA) as a model system. In order to understand and predict the observed phenomena, we fully characterize three fundamental components: the magnetic field and field gradient, the shape and magnetic properties of the probe particles, and the macroscopic rheology of the solution. Particle velocities obtained in Newtonian solutions correspond to macroscale rheology, with forces calculated via Stokes Law. In λ-DNA solutions, nanorod velocities are 100 times larger than predicted by measured zero-shear viscosity. These results are consistent with particles experiencing transport through a shear thinning fluid, indicating magnetically driven transport in shear thinning may be especially effective and favor narrow diameter, high aspect ratio particles. A complete framework for designing single-particle magnetic-based delivery systems results when we combine a quantified magnetic system with qualified particles embedded in a characterized viscoelastic medium. PMID:20571853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Gourab, E-mail: gourab@tifr.res.in; Singh, Prashant Kumar; Adak, Amitava
A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of themore » probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.« less
Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi
2015-12-31
Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimizationmore » of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.« less
SYNTHESIS of MOLECULE/POLYMER-BASED MAGNETIC MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Joel S.
2016-02-01
We have synthesized and characterized several families of organic-based magnets, a new area showing that organic species can exhibit the technologically important property of magnetic ordering. Thin film magnets with ordering temperatures exceeding room temperature have been exceeded. Hence, organic-based magnets represent a new class of materials that exhibit magnetic ordering and do not require energy-intensive metallurgical processing and are based upon Earth-abundant elements.
Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2016-04-01
SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco
2016-04-01
SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.
Sekhar, Ashok; Bain, Alex D; Rumfeldt, Jessica A O; Meiering, Elizabeth M; Kay, Lewis E
2016-02-17
A set of coupled differential equations is presented describing the evolution of magnetization due to an exchange reaction whereby a pair of identical monomers form an asymmetric dimer. In their most general form the equations describe a three-site exchange process that reduces to two-site exchange under certain limiting conditions that are discussed. An application to the study of sparsely populated, transiently formed sets of aberrant dimers, symmetric and asymmetric, of superoxide dismutase is presented. Fits of concentration dependent CPMG relaxation dispersion profiles provide measures of the dimer dissociation constants and both on- and off-rates. Dissociation constants on the order of 70 mM are extracted from fits of the data, with dimeric populations of ∼2% and lifetimes of ∼6 and ∼2 ms for the symmetric and asymmetric complexes, respectively. This work emphasizes the important role that NMR relaxation experiments can play in characterizing very weak molecular complexes that remain invisible to most biophysical approaches.
Shaw, Rachel; Laye, Rebecca H; Jones, Leigh F; Low, David M; Talbot-Eeckelaers, Caytie; Wei, Qiang; Milios, Constantinos J; Teat, Simon; Helliwell, Madeleine; Raftery, James; Evangelisti, Marco; Affronte, Marco; Collison, David; Brechin, Euan K; McInnes, Eric J L
2007-06-11
We report the synthesis, by solvothermal methods, of the tetradecametallic cluster complexes [M14(L)6O6(OMe)18Cl6] (M=FeIII, CrIII) and [V14(L)6O6(OMe)18Cl6-xOx] (L=anion of 1,2,3-triazole or derivative). Crystal structure data are reported for the {M14} complexes [Fe14(C2H2N3)6O6(OMe)18Cl6], [Cr14(bta)6O6(OMe)18Cl6] (btaH=benzotriazole), [V14O6(Me2bta)6(OMe)18Cl6-xOx] [Me2btaH=5,6-Me2-benzotriazole; eight metal sites are VIII, the remainder are disordered between {VIII-Cl}2+ and {VIV=O}2+] and for the distorted [FeIII14O9(OH)(OMe)8(bta)7(MeOH)5(H2O)Cl8] structure that results from non-solvothermal synthetic methods, highlighting the importance of temperature regime in cluster synthesis. Magnetic studies reveal the {Fe14} complexes to have ground state electronic spins of S
Solomentsev, Gleb; Diehl, Carl; Akke, Mikael
2018-03-06
FKBP12 (FK506 binding protein 12 kDa) is an important drug target. Nuclear magnetic resonance (NMR) order parameters, describing amplitudes of motion on the pico- to nanosecond time scale, can provide estimates of changes in conformational entropy upon ligand binding. Here we report backbone and methyl-axis order parameters of the apo and FK506-bound forms of FKBP12, based on 15 N and 2 H NMR relaxation. Binding of FK506 to FKBP12 results in localized changes in order parameters, notably for the backbone of residues E54 and I56 and the side chains of I56, I90, and I91, all positioned in the binding site. The order parameters increase slightly upon FK506 binding, indicating an unfavorable entropic contribution to binding of TΔ S = -18 ± 2 kJ/mol at 293 K. Molecular dynamics simulations indicate a change in conformational entropy, associated with all dihedral angles, of TΔ S = -26 ± 9 kJ/mol. Both these values are significant compared to the total entropy of binding determined by isothermal titration calorimetry and referenced to a reactant concentration of 1 mM ( TΔ S = -29 ± 1 kJ/mol). Our results reveal subtle differences in the response to ligand binding compared to that of the previously studied rapamycin-FKBP12 complex, despite the high degree of structural homology between the two complexes and their nearly identical ligand-FKBP12 interactions. These results highlight the delicate dependence of protein dynamics on drug interactions, which goes beyond the view provided by static structures, and reinforce the notion that protein conformational entropy can make important contributions to the free energy of ligand binding.
Is magnetic topology important for heating the solar atmosphere?
Parnell, Clare E; Stevenson, Julie E H; Threlfall, James; Edwards, Sarah J
2015-05-28
Magnetic fields permeate the entire solar atmosphere weaving an extremely complex pattern on both local and global scales. In order to understand the nature of this tangled web of magnetic fields, its magnetic skeleton, which forms the boundaries between topologically distinct flux domains, may be determined. The magnetic skeleton consists of null points, separatrix surfaces, spines and separators. The skeleton is often used to clearly visualize key elements of the magnetic configuration, but parts of the skeleton are also locations where currents and waves may collect and dissipate. In this review, the nature of the magnetic skeleton on both global and local scales, over solar cycle time scales, is explained. The behaviour of wave pulses in the vicinity of both nulls and separators is discussed and so too is the formation of current layers and reconnection at the same features. Each of these processes leads to heating of the solar atmosphere, but collectively do they provide enough heat, spread over a wide enough area, to explain the energy losses throughout the solar atmosphere? Here, we consider this question for the three different solar regions: active regions, open-field regions and the quiet Sun. We find that the heating of active regions and open-field regions is highly unlikely to be due to reconnection or wave dissipation at topological features, but it is possible that these may play a role in the heating of the quiet Sun. In active regions, the absence of a complex topology may play an important role in allowing large energies to build up and then, subsequently, be explosively released in the form of a solar flare. Additionally, knowledge of the intricate boundaries of open-field regions (which the magnetic skeleton provides) could be very important in determining the main acceleration mechanism(s) of the solar wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.
2013-12-01
The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.
Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands.
Alcoba, Diego R; Oña, Ofelia B; Massaccesi, Gustavo E; Torre, Alicia; Lain, Luis; Melo, Juan I; Peralta, Juan E; Oliva-Enrich, Josep M
2018-06-12
We analyze the magnetic properties of three mononuclear Co(II) coordination complexes using quantum chemical complete active space self-consistent field and N-electron valence perturbation theory approaches. The complexes are characterized by a distorted tetrahedral geometry in which the central ion is doubly chelated by the icosahedral ligands derived from 1,2-(HS) 2 -1,2-C 2 B 10 H 10 (complex I), from 1,2-(HS) 2 -1,2-C 2 B 10 H 10 and 9,12-(HS) 2 -1,2-C 2 B 10 H 10 (complex II), and from 9,12-(HS) 2 -1,2-C 2 B 10 H 10 (complex III), which are two positional isomers of dithiolated 1,2-dicarba- closo-dodecaborane (complex I). Complex I was realized experimentally recently (Tu, D.; Shao, D.; Yan, H.; Lu, C. Chem. Commun. 2016, 52, 14326) and served to validate the computational protocol employed in this work, while the remaining two proposed complexes can be considered positional isomers of I. Our calculations show that these complexes present different axial and rhombic zero-field splitting anisotropy parameters and different values of the most significant components of the g tensor. The predicted axial anisotropy D = -147.2 cm -1 for complex II is twice that observed experimentally for complex I, D = -72.8 cm -1 , suggesting that this complex may be of interest for practical applications. We also analyze the temperature dependence of the magnetic susceptibility and molar magnetization for these complexes when subject to an external magnetic field. Overall, our results suggest that o-carborane-incorporated Co(II) complexes are worthwhile candidates for experimental exploration as single-ion molecular magnets.
Magnetic relaxation pathways in lanthanide single-molecule magnets.
Blagg, Robin J; Ungur, Liviu; Tuna, Floriana; Speak, James; Comar, Priyanka; Collison, David; Wernsdorfer, Wolfgang; McInnes, Eric J L; Chibotaru, Liviu F; Winpenny, Richard E P
2013-08-01
Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.
Single molecule magnet behaviour in robust dysprosium-biradical complexes.
Bernot, Kevin; Pointillart, Fabrice; Rosa, Patrick; Etienne, Mael; Sessoli, Roberta; Gatteschi, Dante
2010-09-21
A Dy-biradical complex was synthesized and characterized down to very low temperature. ac magnetic measurements reveal single molecule magnet behaviour visible without any application of dc field. The transition to the quantum tunneling regime is evidenced. Photophysical and EPR measurements provide evidence of the excellent stability of these complexes in solution.
Fetal anterior abdominal wall defects: prenatal imaging by magnetic resonance imaging.
Victoria, Teresa; Andronikou, Savvas; Bowen, Diana; Laje, Pablo; Weiss, Dana A; Johnson, Ann M; Peranteau, William H; Canning, Douglas A; Adzick, N Scott
2018-04-01
Abdominal wall defects range from the mild umbilical cord hernia to the highly complex limb-body wall syndrome. The most common defects are gastroschisis and omphalocele, and the rarer ones include the exstrophy complex, pentalogy of Cantrell and limb-body wall syndrome. Although all have a common feature of viscera herniation through a defect in the anterior body wall, their imaging features and, more important, postnatal management, differ widely. Correct diagnosis of each entity is imperative in order to achieve appropriate and accurate prenatal counseling and postnatal management. In this paper, we discuss fetal abdominal wall defects and present diagnostic pearls to aid with diagnosis.
Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir
2017-01-01
In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566
NASA Astrophysics Data System (ADS)
Yoo, Jongsoo; Jara-Almonte, J.; Majeski, S.; Frank, S.; Ji, H.; Yamada, M.
2016-10-01
FLARE (Facility for Laboratory Reconnection Experiments) will be operated as a flexible user facility, and so a complete set of research diagnostics is under development, including magnetic probe arrays, Langmuir probes, Mach probes, spectroscopic probes, and a laser interferometer. In order to accommodate the various requirements of users, large-scale (1 m), variable resolution (0.5-4 cm) magnetic probes have been designed, and are currently being prototyped. Moreover, a fully fiber-coupled laser interferometer has been designed to measure the line-integrated electron density. This fiber-coupled interferometer system will reduce the complexity of alignment processes and minimize maintenance of the system. Finally, improvements to the electrostatic probes and spectroscopic probes currently used in the Magnetic Reconnection Experiment (MRX) are discussed. The specifications of other subsystems, such as integrators and digitizers, are also presented. This work is supported by DoE Contract No. DE-AC0209CH11466.
Hollaus, K; Magele, C; Merwa, R; Scharfetter, H
2004-02-01
Magnetic induction tomography of biological tissue is used to reconstruct the changes in the complex conductivity distribution by measuring the perturbation of an alternating primary magnetic field. To facilitate the sensitivity analysis and the solution of the inverse problem a fast calculation of the sensitivity matrix, i.e. the Jacobian matrix, which maps the changes of the conductivity distribution onto the changes of the voltage induced in a receiver coil, is needed. The use of finite differences to determine the entries of the sensitivity matrix does not represent a feasible solution because of the high computational costs of the basic eddy current problem. Therefore, the reciprocity theorem was exploited. The basic eddy current problem was simulated by the finite element method using symmetric tetrahedral edge elements of second order. To test the method various simulations were carried out and discussed.
Magnetically-induced electric polarization in an organo-metallic magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapf, W S; Fabris, F W; Balakirev, F F
2009-01-01
The coupling between magnetic order and ferroelectricity has been under intense investigation in a wide range of transition metal oxides. The strongest coupling is obtained in so-called magnetically induced multiferroics where ferroelectricity arises directly from magnetic order that breaks inversion symmetry. However, it has been difficult to find non-oxide based materials in which these effects occur. Here we present a study of copper dimethyl sulfoxide dichloride (CDC), an organometallic quantum magnet containing S =1/1 Cu spins, in which a switchable electric polarization arises from field-tuned magnetic order. Fast magnetic field pulses allow us to perform sensitive measurements of the electricmore » polarization and demonstrate that the electric state is present only if the magnetic order is non-collinear. Furthermore, we show that the electric polarization can be switched in a stunning hysteretic fashion. Because the magnetic order in CDC is mediated by large organic molecules, our study shows that magnetoelectric interactions can exist in this important class of materials, opening the road to designing magnetoelectrics and multiferroics using large molecules as building blocks. Further, we demonstrate that CDC undergoes a magnetoelectric quantum phase transition -the first of its kind, where both ferroelectric and magnetic order emerge simultaneously as a function of magnetic field at very low temperatures.« less
Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.
Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi
2017-06-28
In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.
Dispersion-free pulse propagation in a negative-index material.
D'Aguanno, Giuseppe; Akozbek, Neset; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J; Zheltikov, Aleksei M
2005-08-01
The possibility of controlling the spectral position of the zero group-velocity dispersion point of a negative-index material can be exploited by varying the ratio between the electric and the magnetic plasma frequency to obtain dispersion-free propagation in spectral regions otherwise inaccessible using conventional positive-index materials. Our predictions are confirmed by pulse propagation simulations where all the orders of the complex dispersion of the material are taken into account.
Electric and Magnetic Interactions
NASA Astrophysics Data System (ADS)
Chabay, Ruth W.; Sherwood, Bruce A.
1994-08-01
The curriculum has been restructured so that students will have the necessary fundamental understanding of charges and fields before going on to more complex issues. Qualitative reasoning and quantitative analysis are discussed equally in order to provide a meaningful conceptual framework within which the quantitative work makes more sense. Atomic-level analysis is stressed and electrostatics and circuits are unified. Desktop experiments can be conducted at home or in the classroom and are tightly integrated with the theoretical treatment.
Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate
Lampen-Kelley, Paige; Banerjee, Arnab; Aczel, Adam A.; ...
2017-12-06
The insulating honeycomb magnet α–RuCl 3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir 3+ substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru 1–xIr xCl 3 show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x > 0.3. Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the fullmore » range of x investigated. In conclusion, the depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl 3.« less
Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate
NASA Astrophysics Data System (ADS)
Lampen-Kelley, P.; Banerjee, A.; Aczel, A. A.; Cao, H. B.; Stone, M. B.; Bridges, C. A.; Yan, J.-Q.; Nagler, S. E.; Mandrus, D.
2017-12-01
The insulating honeycomb magnet α -RuCl3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T =0 , fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir3 + substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru1 -xIrxCl3 show that the magnetic ordering temperature is suppressed with increasing x , and evidence of zizag magnetic order is absent for x >0.3 . Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the full range of x investigated. The depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl3 .
DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeClair, Patrick R.; Gary, Mankey J.
2015-05-25
The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include themore » study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures using polarized neutron reflectometry. Through application of these techniques to understand the materials fabricated in our laboratory, we will employ a tight feedback loop to tailor the magnetic properties on demand. Developing the ability to control magnetic anisotropy is essential for creating the next generation of magnetic storage media (for hard disks, for example), where individual bit sizes have already become smaller than 100nm in the largest dimension. Still smaller bits and higher storage density will require the ability to exquisitely tailor magnetic media properties at the atomic level, the ultimate goal of our study.« less
Low Temperature Magnetic Ordering of the Magnetic Ionic Plastic Crystal, Choline[FeCl4
NASA Astrophysics Data System (ADS)
de Pedro, I.; García-Saiz, A.; Andreica, D.; Fernández Barquín, L.; Fernández-Díaz, M. T.; Blanco, J. A.; Amato, A.; Rodríguez Fernández, J.
2015-11-01
We report on the nature of the low temperature magnetic ordering of a magnetic ionic plastic crystal, Choline[FeCl4]. This investigation was carried out using heat capacity measurements, neutron diffraction experiments and muon spin relaxation (μSR) spectroscopy. The calorimetric measurements show the onset of an unusual magnetic ordering below 4 K with a possible second magnetic phase transition below 2 K. Low temperature neutron diffraction data reveal a three dimensional antiferromagnetic ordering at 2 K compatible with the previous magnetometry results. The analysis of μSR spectra indicates a magnetic phase transition below 2.2 K. At 1.6 K, the analysis of the shape of the μSR spectra suggests the existence of an additional magnetic phase with features of a possible incommensurate magnetic structure.
Short- and long-range magnetic order in LaMnAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A.; Garlea, Vasile Ovidiu
2016-02-02
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature T N = 360(1) K. Below T N the critical exponent describing the magnetic order parameter is β=0.33–0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to T SRO = 650(10) K. Morevoer, the magnetic susceptibility shows a weak anomaly at T SRO and no anomaly at T N. Analysis of the diffuse scattering data using a reverse Montemore » Carlo algorithm indicates that above T N nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. When we compared it with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above T N is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.« less
NASA Astrophysics Data System (ADS)
Robinson, Peter; McEnroe, S. A.; Fabian, K.; Harrison, R. J.; Thomas, C. I.; Mukai, H.
2014-03-01
Magnetic experiments, a Monte Carlo simulation and transmission electron microscopy observations combine to confirm variable chemical phase separation during quench and annealing of metastable ferri-ilmenite compositions, caused by inhomogeneous Fe-Ti ordering and anti-ordering. Separation begins near interfaces between growing ordered and anti-ordered domains, the latter becoming progressively enriched in ilmenite component, moving the Ti-impoverished hematite component into Fe-enriched diffusion waves near the interfaces. Even when disordered regions are eliminated, Fe-enriched waves persist and enlarge on anti-phase boundaries between growing and shrinking ordered and anti-ordered domains. Magnetic results and conceptual models show that magnetic ordering with falling T initiates in the Fe-enriched wave crests. Although representing only a tiny fraction of material, identified at highest Ts on a field-cooling curve, they control the `pre-destiny' of progressive magnetization at lower T. They can provide a positive magnetic moment in a minority of ordered ferrimagnetic material, which, by exchange coupling, then creates a self-reversed negative moment in the remaining majority. Four Ts or T ranges are recognized on typical field-cooling curves: TPD is the T range of `pre-destination'; TC is the predominant Curie T where major positive magnetization increases sharply; TMAX is where magnetization reaches a positive maximum, beyond which it is outweighed by self-reversed magnetization and TZM is the T where total magnetization passes zero. Disposition of these Ts on cooling curves indicate the fine structure of self-reversed thermoremanent magnetization. These results confirm much earlier suspicions that the `x-phase' responsible for self-reversed magnetization resides in Fe-enriched phase boundaries.
Temporal and structural evolution of the Early Palæogene rocks of the Seychelles microcontinent.
Shellnutt, J Gregory; Yeh, Meng-Wan; Suga, Kenshi; Lee, Tung-Yi; Lee, Hao-Yang; Lin, Te-Hsien
2017-03-14
The Early Palæogene Silhouette/North Island volcano-plutonic complex was emplaced during the rifting of the Seychelles microcontinent from western India. The complex is thought to have been emplaced during magnetochron C28n. However, the magnetic polarities of the rocks are almost entirely reversed and inconsistent with a normal polarity. In this study we present new in situ zircon U/Pb geochronology of the different intrusive facies of the Silhouette/North Island complex in order to address the timing of emplacement and the apparent magnetic polarity dichotomy. The rocks from Silhouette yielded weighted mean 206 Pb/ 238 U ages from 62.4 ± 0.9 Ma to 63.1 ± 0.9 Ma whereas the rocks from North Island yielded slightly younger mean ages between 60.6 ± 0.7 Ma to 61.0 ± 0.8 Ma. The secular latitudinal variation from Silhouette to North Island is consistent with the anticlockwise rotation of the Seychelles microcontinent and the measured polarities. The rocks from Silhouette were emplaced across a polarity cycle (C26r-C27n-C27r) and the rocks from North Island were emplaced entirely within a magnetic reversal (C26r). Moreover, the rocks from North Island and those from the conjugate margin of India are contemporaneous and together mark the culmination of rift-related magmatism.
Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.
2015-01-01
Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.
Evolution of magnetism in LnCuGa3 (Ln = La-Nd, Sm-Gd) studied via μSR and specific heat
NASA Astrophysics Data System (ADS)
Graf, M. J.; Hettinger, J. D.; Nemeth, K.; Dally, R.; Baines, C.; Subbarao, U.; Peter, S. C.
2017-12-01
Muon spin rotation/relaxation (μSR) and specific heat measurements are presented for polycrystalline LnCuGa3, with Ln = La-Nd, and Sm-Gd. All materials undergo magnetic ordering transitions, apart from non-magnetic LaCuGa3, and PrCuGa3, which shows the onset of short range correlations below 3 K but no long-range magnetic order down to T = 25 mK. While magnetic order in the Ce and Nd compounds is incommensurate with the lattice, the order is commensurate for the Sm and Eu compounds. The strong damping in GdCuGa3 prevents us from determining the nature of magnetism in that system. SmCuGa3 exhibits two precessional frequencies, which appear at different temperatures, suggesting inhomogeneous magnetic ordering or a second magnetic/structural phase transition.
The emergence of complex behaviours in molecular magnetic materials.
Goss, Karin; Gatteschi, Dante; Bogani, Lapo
2014-09-14
Molecular magnetism is considered an area where magnetic phenomena that are usually difficult to demonstrate can emerge with particular clarity. Over the years, however, less understandable systems have appeared in the literature of molecular magnetic materials, in some cases showing features that hint at the spontaneous emergence of global structures out of local interactions. This ingredient is typical of a wider class of problems, called complex behaviours, where the theory of complexity is currently being developed. In this perspective we wish to focus our attention on these systems and the underlying problematic that they highlight. We particularly highlight the emergence of the signatures of complexity in several molecular magnetic systems, which may provide unexplored opportunities for physical and chemical investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, S. G.; Hillenbrand, L. A.; Donati, J.-F.
2012-08-20
Zeeman-Doppler imaging studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (H-R) diagrams for the stars in the sample. Intriguingly, the large-scale field topology of a given pre-main-sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we arguemore » that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the H-R diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the H-R diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of {approx}40% of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars above {approx}> 0.5 M{sub Sun} appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main-sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars ({approx}< 0.5 M{sub Sun} at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the H-R diagram are confirmed, they may provide a new method of constraining PMS stellar evolution models.« less
Melt Stabilization of PbSnTe in a Magnetic Field
NASA Technical Reports Server (NTRS)
Fripp, Archibald L.; Debnam, William J.; Rosch, William; Chait, Arnon; Yao, Minwu; Szofran, Frank R.
1999-01-01
Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic field of only a few kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and control solute segregation. Therefore, this work confirms the idea that the combination of microgravity environment and the magnetic damping will indeed be sufficient to produce the desired diffusion-controlled growth state for PbSnTe.
Coupling between crystal structure and magnetism in transition-metal oxides
NASA Astrophysics Data System (ADS)
Barton, Phillip Thomas
Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable-temperature synchrotron X-ray diffraction reveal a magnetostructural transition and capacitance measurements show evidence for magnetodielectric behavior. The above work uncovered a Co10Ge3O16 phase that had a known structure but whose physical properties were largely uncharacterized. This project examined its metamagnetic properties using detailed magnetometry experiments. Upon the application of a magnetic field, this material goes through a first-order phase transition from a noncollinear antiferromagnet to an unknown ferrimagnetic state. Lastly, this thesis explored the chemical dilution of magnetism in some perovskite and delafossite solid solutions. In the perovskite structure, compositions intermediate to the endmembers SrRuO3, a ferromagnetic metal, and LaRhO3, a diamagnetic semiconductor, were investigated. While the magnetism of this system is poised between localized and itinerant behavior, a compositionally-driven metal to insulator transition, revealed by electrical resistivity measurements, did not strongly impact the magnetic properties. Instead, both octahedral tilting and magnetic dilution had strong effects, and comparison of this characterization to Sr1-- x CaxRuO3 reinforces the important role of structural distortions in determining magnetic ground state. The final materials studied were of composition CuAl1-- xCrxO2 (0 < x < 1) in the delafossite structure. The primary interest was the geometric frustration of antiferromagnetism in CuCrO 2 and significant short-range correlations were observed above TN. The analysis found that reducing the number of degenerate states through Al substitution did not enhance magnetic ordering because of the weakening of magnetic exchange.
Progress Towards Left-Handed Electromagnetic Waves in Rare-Earth Doped Crystals
NASA Astrophysics Data System (ADS)
Brewer, Nicholas Riley
In 1968 Victor Veselago determined that a material with both a negative permittivity and negative permeability would have some extraordinary properties. The index of refraction of this material would be negative and light propagating inside would be 'left-handed'. This research went relatively unnoticed until the year 2000 when John Pendry discovered that a lens with an index of refraction of n = -1 could, in principle, have infinite resolution. Since 2000, research into negative index materials has exploded. The challenging part of this research is to get a material to respond to magnetic fields at optical frequencies. Artificially created metamaterials are able to achieve this and have been the focus of most negative index research. The long term goal of our project is to produce left-handed light in an atomic system. In order to do this, an atomic transition needs to be utilized that is magnetic dipole in character. Pure magnetic dipole transitions in the optical regime are more rare and fundamentally much weaker than the electric dipole transitions typically used in atomic physics experiments. They can be found, however, in the complex atomic structure of rare-earth elements. The 7F0 → 5D 1 transition in europium doped yttrium orthosilicate (Eu3+:Y 2SiO5) has a wavelength of 527.5 nm and is a pure magnetic dipole transition. We measured its dipole moment to be (0.063 +/- 0.005)mu B via Rabi oscillations, inferring a magnetization on the order of 10 -2 A/m. Demonstrating this large magnetic response at an optical frequency is a major first step in realizing left-handed light in atomic systems.
Synthesis, characterization and antimicrobial studies of Schiff base complexes
NASA Astrophysics Data System (ADS)
Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali
2015-10-01
The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).
The magnetic low of central Europe: analysis and interpretation by a multi scale approach.
NASA Astrophysics Data System (ADS)
Milano, Maurizio; Fedi, Maurizio
2016-04-01
The objective of this work is an interpretation of the European magnetic low (EML) which is the main magnetic anomaly characterizing the magnetic field of central Europe at high-altitude, extending from the eastern France to Poland and placed above the main geological boundary of Europe, the Trans European Suture Zone (TESZ), that separates the western and thinner Paleozoic platform from the eastern and thicker Precambrian platform. In particular, the EML has a relative magnetic high north-east of it, showing a reverse dipolar behavior that many authors tried to interpret in past also by high-altitude satellite exploration. We used an aeromagnetic dataset and employed a level-to-level upward continuation from 1 km up to 200 km, following a multiscale approach thanks to which the anomalies generated by sources placed at different depths can be discriminated. Low-altitude magnetic maps show a complex pattern of high-frequency anomalies up to an altitude of 50 km; then, increasing the altitude up to 200 km, the field simplifies gradually. In order to interpret the anomalies we generated the maps of the total gradient (|T|) of the field at each upward continued altitude, thanks to its property in localizing in a very simple way the edges of the sources and their horizontal position without specifying a priori information about source parameters. From the total gradient maps at low altitude we obtained information about the position of shallow and localized sources producing patterns of small anomalies. In central Europe, most of them have a reverse dipolar behavior, being related probably to metasedimentary rocks in the upper crust containing pyrrhotite and a strong remament component. At higher altitude the total gradient maps has been useful to give a more complex explanation of the EML taking in consideration the results obtained in previous studies. The maps at 150-200 km show that the maximum amplitude of |T| is exactly localized along the TESZ in the NW-SE direction. So, a simple contact model was performed in order to demonstrate that the main source that generates the EML is the complex fault system of the TESZ. However, the |T| maxima are positioned not only along the suture zone, but also in Central Europe, showing that the contributions to the EML derive also from sources placed in the Paleozoic platform with a reverse dipolar aspect. From these results it appears that the contributions responsible for the nature of this anomaly are to be reconnected first to the presence of the TESZ, which puts in contact two different platforms with different thicknesses, and also to the presence of bodies with a strong remanent component, which characterize part of the Central European crust.
Intertwined order in a frustrated four-leg t - J cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodaro, John F.; Jiang, Hong -Chen; Kivelson, Steven A.
Here, we report a density-matrix renormalization group study of the t–J model with nearest (t 1 and J 1) and next-nearest (t 2 and J 2) interactions on a four-leg cylinder with concentration δ=1/8 of doped holes. We observe an astonishingly complex interplay between uniform d-wave superconductivity (SC) and strong spin and charge-density wave ordering tendencies (SDW and CDW). Depending on parameters, the CDWs can be commensurate with period 4 or 8. By comparing the charge ordering vectors with 2k F, we rule out Fermi surface nesting-induced density wave order in our model. Magnetic frustration (i.e., J 2/J 1~1/2) significantlymore » quenches SDW correlations with little effect on the CDW. Typically, the SC order is strongly modulated at the CDW ordering vector and exhibits d-wave symmetry around the cylinder. There is no evidence of a near-degenerate tendency to pair-density wave (PDW) ordering, charge 4e SC, or orbital current order.« less
Intertwined order in a frustrated four-leg t - J cylinder
Dodaro, John F.; Jiang, Hong -Chen; Kivelson, Steven A.
2017-04-12
Here, we report a density-matrix renormalization group study of the t–J model with nearest (t 1 and J 1) and next-nearest (t 2 and J 2) interactions on a four-leg cylinder with concentration δ=1/8 of doped holes. We observe an astonishingly complex interplay between uniform d-wave superconductivity (SC) and strong spin and charge-density wave ordering tendencies (SDW and CDW). Depending on parameters, the CDWs can be commensurate with period 4 or 8. By comparing the charge ordering vectors with 2k F, we rule out Fermi surface nesting-induced density wave order in our model. Magnetic frustration (i.e., J 2/J 1~1/2) significantlymore » quenches SDW correlations with little effect on the CDW. Typically, the SC order is strongly modulated at the CDW ordering vector and exhibits d-wave symmetry around the cylinder. There is no evidence of a near-degenerate tendency to pair-density wave (PDW) ordering, charge 4e SC, or orbital current order.« less
Continuum kinetic modeling of the tokamak plasma edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.
2016-05-15
The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.
NASA Astrophysics Data System (ADS)
Galopeau, P. H. M.
2017-12-01
Since the insertion of Cassini in the Saturnian system in July 2004, the radio and plasma wave science (RPWS) experiment on board the spacecraft revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. The present study is based on the hypothesis that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A continuous wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. The rotation phases associated to the main two periods allow us to define a North and South longitude system essential for such a study. In this context, a dipole model ("birotor dipole") was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining the planetary dynamo and they can be a starting point for the study of Saturn's inner structure and the comparison with the interior of Jupiter.
Coupled ferroelectric polarization and magnetization in spinel FeCr2S4
Lin, L.; Zhu, H. X.; Jiang, X. M.; Wang, K. F.; Dong, S.; Yan, Z. B.; Yang, Z. R.; Wan, J. G.; Liu, J.-M.
2014-01-01
One of the core issues for multiferroicity is the strongly coupled ferroelectric polarization and magnetization, while so far most multiferroics have antiferromagnetic order with nearly zero magnetization. Magnetic spinel compounds with ferrimagnetic order may be alternative candidates offering large magnetization when ferroelectricity can be activated simultaneously. In this work, we investigate the ferroelectricity and magnetism of spinel FeCr2S4 in which the Fe2+ sublattice and Cr3+ sublattice are coupled in antiparallel alignment. Well defined ferroelectric transitions below the Fe2+ orbital ordering termperature Too = 8.5 K are demonstrated. The ferroelectric polarization has two components. One component arises mainly from the noncollinear conical spin order associated with the spin-orbit coupling, which is thus magnetic field sensitive. The other is probably attributed to the Jahn-Teller distortion induced lattice symmetry breaking, occuring below the orbital ordering of Fe2+. Furthermore, the coupled ferroelectric polarization and magnetization in response to magnetic field are observed. The present work suggests that spinel FeCr2S4 is a multiferroic offering both ferroelectricity and ferrimagnetism with large net magnetization. PMID:25284432
A trimetallic strategy towards ZnDyCr and ZnDyCo single-ion magnets.
Hu, Kong-Qiu; Jiang, Xiang; Wu, Shu-Qi; Liu, Cai-Ming; Cui, Ai-Li; Kou, Hui-Zhong
2015-09-21
Two cyano- and phenoxo-bridged octanuclear complexes ZnDyCo (complex ) and ZnDyCr (complex ) with diamagnetic Zn(ii) and Co(iii) are reported. Dy(iii) is surrounded by nine oxygen atoms of two [Zn(Me2valpn)] (Me2valpn(2-) = dianion of N,N'-2,2-dimethylpropylenebis(3-methoxysalicylideneimine)) and one water molecule. Magnetic studies reveal that both exhibit single-ion magnet (SIM) behavior with the energy barrier of 85.9 K for complex and 100.9 K for complex .
The Crab Pulsar and Relativistic Wind
NASA Astrophysics Data System (ADS)
Coroniti, F. V.
2017-12-01
The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.
The precession dynamo experiment at HZDR
NASA Astrophysics Data System (ADS)
Giesecke, A.; Albrecht, T.; Gerbeth, G.; Gundrum, T.; Nore, C.; Stefani, F.; Steglich, C.
2013-12-01
Most planets of the solar system are accompanied by a magnetic field with a large scale structure. These fields are generated by the dynamo effect, the process that provides for the transfer of kinetic energy from a flow of a conducting fluid into magnetic energy. In case of planetary dynamos it is generally assumed that these flows are driven by thermal and/or chemical convection but other driving sources like libration, tidal forcing or precession are possible as well. Precessional forcing, in particular, has been discussed since long as an at least additional power source for the geodynamo. A fluid flow of liquid sodium, solely driven by precession, will be the source for magnetic field generation in the next generation dynamo experiment currently under development at the Helmholz-Zentrum Dresden-Rossendorf (HZDR). In contrast to previous dynamo experiments no internal blades, propellers or complex systems of guiding tubes will be used for the optimization of the flow properties. However, in order to reach sufficiently high magnetic Reynolds numbers required for the onset of dynamo action rather large dimensions of the container are necessary making the construction of the experiment a challenge. At present state a small scale water experiment is running in order to estimate the hydrodynamic flow properties in dependence of precession angle and precession rate. The measurements are utilized in combination with numerical simulations of the hydrodynamic case as input data for kinematic simulations of the induction equation. The resulting growth rates and the corresponding critical magnetic Reynolds numbers will provide a restriction of the useful parameter regime and will allow an optimization of the experimental configuration.
Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)
NASA Astrophysics Data System (ADS)
Li, L.; Wu, Y.
2017-12-01
Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou
We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores andmore » the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffner, D. A.; Brown, M. R.; Rock, A. B.
The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which canmore » then be compared to the behavior of the frequency spectrum.« less
Ground state of dipolar hard spheres confined in channels
NASA Astrophysics Data System (ADS)
Deißenbeck, Florian; Löwen, Hartmut; Oǧuz, Erdal C.
2018-05-01
We investigate the ground state of a classical two-dimensional system of hard-sphere dipoles confined between two hard walls. Using lattice sum minimization techniques we reveal that at fixed wall separations, a first-order transition from a vacuum to a straight one-dimensional chain of dipoles occurs upon increasing the density. Further increase in the density yields the stability of an undulated chain as well as nontrivial buckling structures. We explore the close-packed configurations of dipoles in detail, and we find that, in general, the densest packings of dipoles possess complex magnetizations along the principal axis of the slit. Our predictions serve as a guideline for experiments with granular dipolar and magnetic colloidal suspensions confined in slitlike channel geometry.
NASA Astrophysics Data System (ADS)
Majewski, Kurt
2018-03-01
Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.
Ziegler, Alexander; Faber, Cornelius; Bartolomaeus, Thomas
2009-06-09
The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. We therefore analyzed numerous species of almost all sea urchin orders by magnetic resonance imaging, dissection, histology, and transmission electron microscopy and compared the results with findings from published studies spanning almost two centuries. These combined analyses demonstrate that the axial complex is present in all sea urchin orders and has remained structurally conserved for a long time, at least in the "regular" species. Within the Irregularia, a considerable morphological variation of the axial complex can be observed with gradual changes in topography, size, and internal architecture. These modifications are related to the growing size of the gastric caecum as well as to the rearrangement of the morphology of the digestive tract as a whole. The structurally most divergent axial complex can be observed in the highly derived Atelostomata in which the reorganization of the digestive tract is most pronounced. Our findings demonstrate a structural interdependence of various internal organs, including digestive tract, mesenteries, and the axial complex.
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.
2014-02-01
A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.
Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Xiaoyue; Yang, Feifei; Antono, Erin
Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less
Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet
Duan, Xiaoyue; Yang, Feifei; Antono, Erin; ...
2016-09-29
Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less
Tectonic Uplift of the Danba Area in the Eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Chang, C. P.; Ho, H. P.; Horng, C. S.; Hsu, Y. C.; Tan, X. B.
2017-12-01
The Danba anticline in the eastern Tibetan Plateau is located between the Longmenshan orogen to the east and the Xianshuihe sinistral fault zone to the west. This anticline has been recognized as an area with extreme exhumation by previous studies. The Tibetan plateau was built by the convergence between Indo-Australian plate and Eurasian plate since early Cenozoic. The eastward lower crustal flow under the plateau obstructed by the Yangtze craton soon after this convergence generated a very complex structural situation in the southeastern side of the Tibetan plateau. In this study, in order to understand the processes and mechanisms of the structural complexity of the Danba area, we apply two methods: stress analysis and magnetic measurement. By measuring the brittle deformation recorded in the strata, we carry out a series of stress analysis to demonstrate the stress field of this area. In addition, due to comprehend the magnetic characteristics of low-grade metamorphic rocks and volcanic rocks in this area, we process the rock magnetic measurement of hysteresis loop and X-ray diffraction analysis. The occurrence of pyrrhotite can be taken as an important isograd in low-grade metamorphic rocks, which is helpful for stratigraphic and structural studies. Based on our results, we try to explain the mechanism of this rapid uplift, which involves material, structural, and kinematic interaction.
Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal
2016-01-01
A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule–electrode interface. PMID:27929089
Novel thermoelectric properties of complex transition-metal oxides.
Terasaki, Ichiro; Iwakawa, Manabu; Nakano, Tomohito; Tsukuda, Akira; Kobayashi, Wataru
2010-01-28
We report how the thermopower of complex transition-metal oxides is susceptible to small changes in material parameters. In the A-site ordered perovskite oxide R(2/3)Cu(3)Ti(3.6)Ru(0.4)O(12), the thermopower changes from 15 to -100 microV K(-1) at 300 K in going from R = La to Er. We associate this with the hybridization between Cu 3d and Ru 4d electrons, which depends on R. For stronger hybridization, the Cu 3d electrons become more itinerant leading to positive thermopower. In the A-site ordered perovskite cobalt oxide Sr(3)YCo(4)O(10.5), the spin state of the Co(3+) ions determines the magnitude of the thermopower, where partial isovalent substitution (Ca for Sr and Rh for Co) enhances the thermopower whilst keeping the resistivity intact. These substitutions stabilize the low spin state of the Co(3+) ions, which affects the thermopower through the entropy of the background for the carriers. We propose that the control of the magnetism plays a pivotal role in determining the thermopower in a certain class of complex oxides.
Conventional magnetic superconductors
Wolowiec, C. T.; White, B. D.; Maple, M. B.
2015-07-01
We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less
Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan
2017-01-31
We report the synthesis, structural characterisation, magnetic properties and provide an ab initio analysis of the magnetic behaviour of two new heterometallic octanuclear coordination complexes containing Co III and Dy III ions. Single-crystal X-ray diffraction studies revealed molecular formulae of [Co III 4 Dy III 4 (μ-OH) 4 (μ 3 -OMe) 4 {O 2 CC(CH 3 ) 3 } 4 (tea) 4 (H 2 O) 4 ]⋅4 H 2 O (1) and [Co III 4 Dy III 4 (μ-F) 4 (μ 3 -OH) 4 (o-tol) 8 (mdea) 4 ]⋅ 3 H 2 O⋅EtOH⋅MeOH (2; tea 3- =triply deprotonated triethanolamine; mdea 2- =doubly deprotonated N-methyldiethanolamine; o-tol=o-toluate), and both complexes display an identical metallic core topology. Furthermore, the theoretical, magnetic and SMM properties of the isostructural complex, [Cr III 4 Dy III 4 (μ-F 4 )(μ 3 -OMe) 1.25 (μ 3 -OH) 2.75 (O 2 CPh) 8 (mdea) 4 ] (3), are discussed and compared with a structurally similar complex, [Cr III 4 Dy III 4 (μ 3 -OH) 4 (μ-N 3 ) 4 (mdea) 4 (O 2 CC(CH 3 ) 3 ) 4 ] (4). DC and AC magnetic susceptibility data revealed single-molecule magnet (SMM) behaviour for 1-4. Each complex displays dynamic behaviour, highlighting the effect of ligand and transition metal ion replacement on SMM properties. Complexes 2, 3 and 4 exhibited slow magnetic relaxation with barrier heights (U eff ) of 39.0, 55.0 and 10.4 cm -1 respectively. Complex 1, conversely, did not exhibit slow relaxation of magnetisation above 2 K. To probe the variance in the observed U eff values, calculations by using CASSCF, RASSI-SO and POLY_ANISO routine were performed on these complexes to estimate the nature of the magnetic coupling and elucidate the mechanism of magnetic relaxation. Calculations gave values of J Dy-Dy as -1.6, 1.6 and 2.8 cm -1 for complexes 1, 2 and 3, respectively, whereas the J Dy-Cr interaction was estimated to be -1.8 cm -1 for complex 3. The developed mechanism for magnetic relaxation revealed that replacement of the hydroxide ion by fluoride quenched the quantum tunnelling of magnetisation (QTM) significantly, and led to improved SMM properties for complex 2 compared with 1. However, the tunnelling of magnetisation at low-lying excited states was still operational for 2, which led to low-temperature QTM relaxation. Replacement of the diamagnetic Co III ions with paramagnetic Cr III led to Cr III ⋅⋅⋅Dy III coupling, which resulted in quenching of QTM at low temperatures for complexes 3 and 4. The best example was found if both Cr III and fluoride were present, as seen for complex 3, for which both factors additively quenched QTM and led to the observation of highly coercive magnetic hysteresis loops above 2 K. Herein, we propose a synthetic strategy to quench the QTM effects in lanthanide-based SMMs. Our strategy differs from existing methods, in which parameters such as magnetic coupling are difficult to control, and it is likely to have implications beyond the Dy III SMMs studied herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical modeling of higher order magnetic moments in UXO discrimination
Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.
2008-01-01
The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.
Large-scale patterns formed by solar active regions during the ascending phase of cycle 21
NASA Astrophysics Data System (ADS)
Gaizauskas, V.; Harvey, K. L.; Harvey, J. W.; Zwaan, C.
1983-02-01
Synoptic maps of photospheric magnetic fields prepared at the Kitt Peak National Observatory are used in investigating large-scale patterns in the spatial and temporal distribution of solar active regions for 27 solar rotations between 1977 and 1979. The active regions are found to be distributed in 'complexes of activity' (Bumba and Howard, 1965). With the working definition of a complex of activity based on continuity and proximity of the constituent active regions, the phenomenology of complexes is explored. It is found that complexes of activity form within one month and that they are typically maintained for 3 to 6 solar rotations by fresh injections of magnetic flux. During the active lifetime of a complex of activity, the total magnetic flux in the complex remains steady to within a factor of 2. The magnetic polarities are closely balanced, and each complex rotates about the sun at its own special, constant rate. In certain cases, the complexes form two diverging branches.
NASA Astrophysics Data System (ADS)
Chen, Jing-Han; Us Saleheen, Ahmad; Adams, Philip W.; Young, David P.; Ali, Naushad; Stadler, Shane
2018-04-01
In this work, we discuss measurement protocols for the determination of the magnetic entropy change associated with first-order magneto-structural transitions from both magnetization and calorimetric experiments. The Cu-doped Ni2MnGa Heusler alloy with a first-order magneto-structural phase transition is used as a case study to illustrate how commonly-used magnetization measurement protocols result in spurious entropy evaluations. Two magnetization measurement protocols which allow for the accurate assessment of the magnetic entropy change across first-order magneto-structural transitions are presented. In addition, calorimetric measurements were performed to validate the results from the magnetization measurements. Self-consistent results between the magnetization and calorimetric measurements were obtained when the non-equilibrium thermodynamic state was carefully handled. Such methods could be applicable to other systems displaying giant magnetocaloric effects caused by first-order phase transitions with magnetic and thermal hysteresis.
Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4
Gauthier, N.; Fennell, A.; Prévost, B.; ...
2017-05-30
Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less
Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.
2017-05-01
The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan
2017-03-06
The synthesis and magnetic and theoretical studies of three isostructural heterometallic [Co III 2 Ln III 2 (μ 3 -OH) 2 (o-tol) 4 (mdea) 2 (NO 3 ) 2 ] (Ln = Dy (1), Tb (2), Ho (3)) "butterfly" complexes are reported (o-tol = o-toluate, (mdea) 2- = doubly deprotonated N-methyldiethanolamine). The Co III ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two Ln III ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier U eff of 81.2 cm -1 , while complexes 2 and 3 exhibit field induced SMM behavior, with a U eff value of 34.2 cm -1 for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the Ln III -Ln III magnetic coupling and to develop an understanding of the role the diamagnetic Co III ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the Co III ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic Co III ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {Dy III 2 } complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {K I 2 Dy III 2 } (1b), {Zn II 2 Dy III 2 } (1c), and {Ti IV 2 Dy III 2 } (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics. The results indicate very strong dependence of diamagnetic ions in the magnetization blocking and the magnitude of the energy barriers. Here we propose a synthetic strategy to enhance the energy barrier in lanthanide-based SMMs by incorporating s- and d-block diamagnetic ions. The presented strategy is likely to have implications beyond the single-molecule magnets studied here.
NASA Astrophysics Data System (ADS)
Zapf, Sina; Dressel, Martin
2017-01-01
Despite decades of intense research, the origin of high-temperature superconductivity in cuprates and iron-based compounds is still a mystery. Magnetism and superconductivity are traditionally antagonistic phenomena; nevertheless, there is basically no doubt left that unconventional superconductivity is closely linked to magnetism. But this is not the whole story; recently, also structural effects related to the so-called nematic phase gained considerable attention. In order to obtain more information about this peculiar interplay, systematic material research is one of the most important attempts, revealing from time to time unexpected effects. Europium-based iron pnictides are the latest example of such a completely paradigmatic material, as they display not only spin-density-wave and superconducting ground states, but also local Eu2+ magnetism at a similar temperature scale. Here we review recent experimental progress in determining the complex phase diagrams of europium-based iron pnictides. The conclusions drawn from the observations reach far beyond these model systems. Thus, although europium-based iron pnictides are very peculiar, they provide a unique platform to study the common interplay of structural-nematic, magnetic and electronic effects in high-temperature superconductors.
Non-ideal magnetohydrodynamics on a moving mesh
NASA Astrophysics Data System (ADS)
Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker
2018-05-01
In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, K.; Antonio, D.; Jaime, M.
Uranium nitride (UN) is one of the most studied actinide materials as it is a promising fuel for the next generation of nuclear reactors. Despite large experimental and theoretical efforts, some of the fundamental questions such as degree of 5 f–electron localization/delocalization and its relationship to magneto-vibrational properties are not resolved yet. We show that the magnetostriction of UN measured in pulsed magnetic fields up to 65 T and below the Néel temperature is large and exhibits complex behavior with two transitions. While the high field anomaly is a field-induced metamagnetic-like transition and affects both magnetisation and magnetostriction, the lowmore » field anomaly does not contribute to the magnetic susceptibility. Our data suggest a change in the nature of the metamagnetic transition from first to second order-like at a tricritical point at T tri ~24 K and H tri ~52 T. The induced magnetic moment at 60 T might suggest that only one subset of magnetic moments has aligned along the field direction. Using the results obtained here we have constructed a magnetic phase diagram of UN. Our studies demonstrate that dilatometry in high fields is an effective method to investigate the magneto-structural coupling in actinide materials.« less
Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo
2012-01-01
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.
DeGayner, Jordan A; Jeon, Ie-Rang; Harris, T David
2015-11-13
The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N , N ', N '', N '''-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone ( NMePh LH 2 ) was metalated to give the series of dinuclear complexes [(TPyA) 2 M 2 ( NMePh L 2- )] 2+ (TPyA = tris(2-pyridylmethyl)amine, M = Mn II , Fe II , Co II ). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = -1.64(1) and -2.16(2) cm -1 for M = Mn II and Fe II , respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA) 2 M 2 ( NMePh L 3- ˙)] + . Following a slightly different synthetic procedure, the related complex [(TPyA) 2 CrIII2( NMePh L 3- ˙)] 3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePh L 3- ˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = -626(7), -157(7), -307(9), and -396(16) cm -1 for M = Cr III , Mn II , Fe II , and Co II , respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M-L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA) 2 Fe 2 ( NMePh L 3- ˙)] + behaves as a single-molecule magnet with a relaxation barrier of U eff = 52(1) cm -1 . These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal-radical coupling trends across a transmetallic series of complexes.
NASA Astrophysics Data System (ADS)
Sumitro, Sutiman B.; Alit, Sukmaningsih
2018-03-01
Developing Complexity Science and Nano Biological perspective giving the ideas of interfacing between modern physical and biological sciences for more comprehensive understanding of life. The study of bioinorganic is a trans-disciplinary, and will initiate the way to more comprehensive and better understanding life. We can talk about energy generation, motive forces and energy transfer at the level of macromolecules. We can then develop understanding biological behavior on nano size biological materials and its higher order using modern physics as well as thermodynamic law. This is a necessity to ovoid partial understanding of life that are not match with holism. In animal tissues, the accumulation or overwhelmed production of free radicals can damage cells and are believed to accelerate the progression of cancer, cardiovascular disease, and age-related diseases. Thus a guarded balance of radical species is imperative. Edward Kosower [1] proposed an idea of biradical in an aromatic organic compounds. Each of which having unpaired electrons. The magnetic force of this compound used for making agregation based on their magnetic characters. Bioinorganic low molecular weight complex compounds composing herbal medicine can bind toxic metals. This low molecular weight complex molecules then easily excerted the metals from the body, removing them from their either intracellular or extracellular existences. This bioinorganic chelation potential is now inspiring a new therapeutic strategies.
NASA Astrophysics Data System (ADS)
Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos
2015-04-01
The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.
Zero-field magnetic response functions in Landau levels
Gao, Yang; Niu, Qian
2017-01-01
We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models. PMID:28655849
Magnetic anomalies in self-assembled SrRuO3 -CoFe2O4 nanostructures studied by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Yi-Chun; Huang, Yen-Chin; Chien, Chia-Hsien; Liu, Heng-Jui; Chu, Ying-Hao
2015-03-01
Self-assembled nanostructures with high interface-to-volume ratio usually possess interesting physical properties through the coupling between neighboring materials. In complex-oxide nanocomposites, the interplay of spin, charge, orbital, and lattice degrees of freedom especially provides various functionalities. Our recent study had shown photo-induced magnetization switching in a self-assembled system, CoFe2O4 (CFO)- SrRuO3(SRO), where the CFO nanopillars were embedded in the SRO matrix. Moreover, this system also has significant magnetoresistance behaviors. In this study, we used Raman spectroscopy to investigate the magnetic coupling mechanisms in CFO-SRO nanostructures. Compared to the pure CFO films, the CFO nano-pillars under out-of-plane compressive strain show a slightly increase of A1g(Co)/A1g(Fe) intensity ratio, which corresponds to a migration of Co ions from O-site (oxygen octahedron) to T-site (oxygen tetrahedron). This behavior can be further tuned by external stimulus, such as magnetic fields and temperatures. A strong increase of A1g(Co)/A1g(Fe) ratio together with a discontinuous A1g frequency shift occur at the SRO magnetic transition temperature. This result indicated that the spin-orbital interaction in CFO can be modulated by the SRO magnetic orderings.
Detailed ADM-based Modeling of Shock Retreat and X-ray Emission of τ Sco
NASA Astrophysics Data System (ADS)
Fletcher, C. L.; Petit, V.; Cohen, D. H.; Townsend, R. H.; Wade, G. A.
2018-01-01
Leveraging the improvement of spectropolarimeters over the past few decades, surveys have found that about 10% of OB-type stars host strong (˜ kG) and mostly dipolar surface magnetic fields. One B-type star, τ Sco, has a more complex surface magnetic field than the general population of OB stars. Interestingly, its X-ray luminosity is an order of magnitude higher than predicted from analytical models of magnetized winds. Previous studies of τ Sco's magnetosphere have predicted that the region of closed field loops should be located close to the stellar surface. However, the lack of X-ray variability and the location of the shock-heated plasma measured from forbidden-to-intercombination X-ray line ratios suggest that the hot plasma, and hence the closed magnetic loops, extend considerably farther from the stellar surface, implying a significantly lower mass loss rate than initially assumed. We present an adaptation of the Analytic Dynamical Magnetosphere model, describing the magnetic confinement of the stellar wind, for an arbitrary field loop configuration. This model is used to predict the shock-heated plasma temperatures for individual field loops, which are then compared to high resolution grating spectra from the Chandra X-ray Observatory. This comparison shows that larger closed magnetic loops are needed.
Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials
NASA Astrophysics Data System (ADS)
Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.
2014-11-01
One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.
Development of New Cooling System Using Gm/jt Cryocoolers for the SKS Magnet
NASA Astrophysics Data System (ADS)
Aoki, K.; Haruyama, T.; Makida, Y.; Araoka, O.; Kasami, K.; Takahashi, T.; Nagae, T.; Kakiguchi, Y.; Sekimoto, M.; Tosaka, T.; Miyazaki, H.; Kuriyama, T.; Ono, M.; Orikasa, T.; Tsuchihashi, T.; Hirata, Y.
2008-03-01
We plan to develop a new improved cooling system for the Superconducting Kaon Spectrometer (SKS) magnet and transfer the magnet to the K1.8 beamline of the Hadron Hall of the Japan Proton Accelerator Research Complex (J-PARC) for further use in nuclear physics experiments. To replace the present 300 W cryogenic system, we will adopt a new cooling method that uses 4 K Gifford-McMahon/Joule-Thomson (GM/JT) cryocoolers. In order to decide a practical design for the new liquid helium reservoir of the magnet, which will be equipped with GM/JT cryocoolers, cooling tests on a GM/JT cryocooler were performed from February to March 2007. We constructed a new cooling test stand with a GM/JT cryocooler and measured the cooling capacities under several thermal shield temperatures with or without a baffle, which helped prevent convection. Based on the test results, we have finally decided to adopt three GM/JT cryocoolers for the new SKS along with a baffle and an additional dedicated GM cooler to cool the thermal shield of the GM/JT ports.
Dynamic Multi-Coil Shimming of the Human Brain at 7 Tesla
Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Boer, Vincent O.; Rothman, Douglas L.; de Graaf, Robin A.
2011-01-01
High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity. A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 Tesla and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite. PMID:21824794
NASA Astrophysics Data System (ADS)
Duffy, L. B.; Frisk, A.; Burn, D. M.; Steinke, N.-J.; Herrero-Martin, J.; Ernst, A.; van der Laan, G.; Hesjedal, T.
2018-05-01
The combination of topological properties and magnetic order can lead to new quantum states and exotic physical phenomena, such as the quantum anomalous Hall (QAH) effect. The size of the magnetic gap in the topological surface states, key for the robust observation of the QAH state, scales with the magnetic moment of the doped three-dimensional topological insulator (TI). The pioneering transition-metal doped (Sb,Bi ) 2(Se,Te ) 3 thin films only allow for the observation of the QAH effect up to some 100 mK, despite the much higher magnetic ordering temperatures. On the other hand, high magnetic moment materials, such as rare-earth-doped (Sb,Bi ) 2(Se,Te ) 3 thin films, show large moments but no long-range magnetic order. Proximity coupling and interfacial effects, multiplied in artificial heterostructures, allow for the engineering of the electronic and magnetic properties. Here, we show the successful growth of high-quality Dy:Bi2Te3 /Cr:Sb2Te3 thin film heterostructures. Using x-ray magnetic spectroscopy we demonstrate that high transition temperature Cr:Sb2Te3 can introduce long-range magnetic order in high-moment Dy:Bi2Te3 —up to a temperature of 17 K—in excellent agreement with first-principles calculations, which reveal the origin of the long-range magnetic order in a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. Engineered magnetic TI heterostructures may be an ideal materials platform for observing the QAH effect at liquid He temperatures and above.
Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets
NASA Astrophysics Data System (ADS)
Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke
2018-02-01
Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.
Constrained-transport Magnetohydrodynamics with Adaptive Mesh Refinement in CHARM
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Martin, Daniel F.
2011-07-01
We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dang Van; NeuroSpin, Bat145, Point Courrier 156, CEA Saclay Center, 91191 Gif-sur-Yvette Cedex; Li, Jing-Rebecca, E-mail: jingrebecca.li@inria.fr
2014-04-15
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch–Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution atmore » the cell interfaces by using double nodes. Using a transformation of the Bloch–Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge–Kutta–Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.« less
Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias
2015-08-26
The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majetich, Sara
In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magneticmore » order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500 MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.« less
Electronic and magnetic properties of Fe-, Co-, and Ni-decorated BC3: A first-principles study
NASA Astrophysics Data System (ADS)
Zhu, Jingzhong; Zhao, Yinchang; Zulfiqar, Muhammad; Zeng, Shuming; Ni, Jun
2018-05-01
The electronic and magnetic properties of Fe-, Co-, and Ni-decorated two dimensional (2D) BC3 are systematically investigated by first-principles calculations. We find that the Fe, Co, and Ni atoms can be strongly adsorbed on the hollow sites of 2D BC3. Fe and Co adatoms are more stable when adsorbed on the hollow sites of the carbon rings in the 2D BC3, while the hollow sites of boron-carbon rings in the 2D BC3 are the most stable sites for the adsorption of Ni adatoms. These proposed metal-BC3 complexes exhibit interesting electronic and magnetic behaviors. In particular, the Fe-BC3 and Co-BC3 complexes are metals with magnetic ground states , while the Ni-BC3 complex behaves as a nonmagnetic semiconductor with a direct bandgap. Furthermore, our magnetic analysis reveals that induced magnetism in the Fe-BC3 and Co-BC3 complexes arises from their local magnetic moments. Functionalization of 2D BC3 through these metal-adatom adsorption appears to be a promising way to extend its applications.
The influence of magnetic order on the magnetoresistance anisotropy of Fe1 + δ-x Cu x Te
NASA Astrophysics Data System (ADS)
Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; Analytis, J. G.; Birgeneau, R. J.
2017-07-01
We performed resistance measurements on \\text{F}{{\\text{e}}1+δ -x} Cu x Te with {{x}\\text{EDX}}≤slant 0.06 in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For {{x}\\text{EDX}}=0.06 the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.
The influence of magnetic order on the magnetoresistance anisotropy of Fe 1+δ–xCu xTe
Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...
2017-06-08
We performed resistance measurements on [Formula: see text]Cu x Te with [Formula: see text] in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cumore » content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For [Formula: see text] the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less
Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide
NASA Astrophysics Data System (ADS)
Tarne, Michael
Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.
Monoclinic distortion and magnetic coupling in the double perovskite Sr{sub 2−x}Ca{sub x}YRuO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, P.L.; Ghivelder, L.; Eslava, G.G.
2014-12-15
Abstracts: This work investigates in the insulating double perovskites Sr{sub 2−x}Ca{sub x}YRuO{sub 6}. We address the angular dependence of the strength of the magnetic coupling due to the deviation from planarity of the basal layers of the monoclinic structure, characterized by the in-plane angle α<180°, in order to probe the impact of the structural distortions in the magnetic properties of the compounds. High resolution x-ray powder diffraction, susceptibility, and specific heat measurements were performed. The deviation from planarity significantly increases (α=144° for x=1) while the bond distances vary in a complex way as a consequence of the strong monoclinic distortion.more » We found that the magnetic transition temperature, T{sub M}, shows a linear dependence on cos [(π−α)/2]. This result is discussed in terms of t{sub 2g}(π)–e{sub g}(σ) mixing of the magnetic orbitals of the Ru{sup 5+} ions and unbalanced competitive super-exchange interactions. The deleterious effect of Ca doping for the magnetic coupling is confirmed by the reduction in the short-range antiferromagnetic correlations characteristic of the parent compound at T>>T{sub M} and the enhancement of magnetic frustration for T« less
2016-04-01
SUBJECT TERMS carbon nanotubes, composite, electromagnetic shielding , extreme environments, magnetism , fibers, woven composite, boron nitride...AFRL-AFOSR-VA-TR-2016-0158 Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments Konstantin...From - To) 15 Sep 2012 to 14 Nov 2017 4. TITLE AND SUBTITLE Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for
Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.
Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R
2011-05-22
Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demir, Selvan; Gonzalez, Miguel I.; Darago, Lucy E.
Increasing the operating temperatures of single-molecule magnets—molecules that can retain magnetic polarization in the absence of an applied field—has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Here in this paper, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (Cp Me4H) capping ligands with strong magnetic exchange coupling provided by an N 2 3- radical bridging ligand results in amore » series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(Cp Me4H 2Tb) 2(μ-N∙ 2« less
Demir, Selvan; Gonzalez, Miguel I.; Darago, Lucy E.; ...
2017-12-15
Increasing the operating temperatures of single-molecule magnets—molecules that can retain magnetic polarization in the absence of an applied field—has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Here in this paper, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (Cp Me4H) capping ligands with strong magnetic exchange coupling provided by an N 2 3- radical bridging ligand results in amore » series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(Cp Me4H 2Tb) 2(μ-N∙ 2« less
Field-induced spin-density wave beyond hidden order in URu2Si2
NASA Astrophysics Data System (ADS)
Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.
2016-10-01
URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.
NASA Astrophysics Data System (ADS)
Singh, Bibhesh K.; Jetley, Umesh K.; Sharma, Rakesh K.; Garg, Bhagwan S.
2007-09-01
A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML 2 composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.
Singh, Bibhesh K; Jetley, Umesh K; Sharma, Rakesh K; Garg, Bhagwan S
2007-09-01
A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML(2) composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.
NASA Astrophysics Data System (ADS)
Ryzhov, V. A.; Lashkul, A. V.; Matveev, V. V.; Molkanov, P. L.; Kurbakov, A. I.; Kiselev, I. A.; Lisunov, K. G.; Galimov, D.; Lähderanta, E.
2018-01-01
Two porous glassy carbon-based samples doped with Au and Co were investigated. The magnetization study as well as measurements of the nonlinear longitudinal response to a weak ac field (NLR) and electron magnetic resonance give evidences for a presence of magnetic nanoparticles (MNPs) embedded in paramagnetic/ferromagnetic matrix respectively, both samples being in magnetically phase-separated state at temperatures above 300 K. Matrix, forming by paramagnetic centers located in matrix outside the MNPs, reveals exchange interactions providing its ferromagnetic (FM) ordering below TC ≈ 210 K in Au-doped sample and well above 350 K in Co-doped one. For the former, NLR data suggest a percolation character of the matrix long-range FM order, which is mainly caused by a porous amorphous sample structure. Temperature dependence of the magnetization in the Au-doped sample evidences presence of antiferromagnetic (AF) interactions of MNPs with surrounding matrix centers. At magnetic ordering below TC these interactions promote origination of "domains" involving matrix fragment and surrounding MNPs with near opposite orientation of their moments that decreases the magnetostatic energy. On further cooling, the domains exhibit AF ordering below Tcr ∼ 140 K < TC, resulting in formation of a peculiar "ferrimagnet". The porous amorphous structure leads to absence of translational and other symmetry features through the samples that allows canted ordering of magnetic moments in domains and in whole sample providing "canted ferrimagnetism". At low temperatures Ttr ∼ 3 K, "order-oder" transition, evidencing the non-Heisenberg character of this magnetic material, occurs from ordering like "canted ferrimagnet" to FM alignment, which is stimulated by external magnetic field. The data for Co-doped sample imply the similar evolution of magnetic state but at higher temperatures above 350 K. This state exhibits more homogeneous arrangement of the FM nanoparticles and the FM matrix. Order-order transition occurs in it at higher Ttr ∼ 10-15 K as well and followed by formation of long-range FM ordering found earlier by neutron diffraction. Doping of carbon-based nanomaterials by magnetic metals provides advantages for their possible practical applications as Co-doped sample with higher TC (>350 K) and larger remanent magnetization evidences.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-452 and 731-TA-1129-1130 (Review)] Raw... Countervailing Duty Order on Raw Flexible Magnets From China and the Antidumping Duty Orders on Raw Flexible... the countervailing duty order on raw flexible magnets from China and the antidumping duty orders on...
Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.
2013-12-01
Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).
Shorter Life Span of Microorganisms and Plants as a Consequence of Shielded Magnetic Environment
NASA Astrophysics Data System (ADS)
Dobrota, C.; Piso, I. M.; Bathory, D.
The geomagnetic field is an essential environmental factor for life and health on this planet. In order to survey how magnetic fields affect the life span and the nitrogenase (an iron-sulphur enzyme) activity of Azotobacter chroococcum as well as the life span, the main organic synthesis and the water balance of plants (22 species), the biological tests were incubated under shielded magnetic field and also in normal geo-magnetic environment. The shielding level was about 10-6 of the terrestrial magnetic field.Life cycles of all organisms require the co-ordinated control of a complex set of interlocked physiological processes and metabolic pathways. Such processes are likely to be regulated by a large number of genes. Our researches suggest that the main point in biological structures, which seems to be affected by the low magnetic environment, is the water molecule. Magnetic field induces a molecular alignment. Under shielded conditions, unstructured water molecules with fewer hydrogen bonds, which are producing a more reactive environment, are occurring. As compared to control, the life span of both microorganisms and plants was shorter in shielded environment. A higher nitrogenase affinity for the substrate was recorded in normal geo-magnetic field compared to low magnetic field. The synthesis of carbohydrates, lipids, proteins and enzymes was modified under experimental conditions. The stomatal conductance was higher between 158 and 300% in shielded environment indicating an important water loss from the plant cells.Our results support the idea that the shielded magnetic environment induces different reactions depending on the time of exposure and on the main metabolic pathways of the cells.
Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Gorodetsky, G.
2010-09-01
Magnetic properties of electron-doped La1/3Ca2/3MnO3 manganite nanoparticles with average particle size ranging from 12 to 42 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. Reduction in the particle size suppresses antiferromagnetism and decreases the Néel temperature. In contrast to bulk crystals, the charge ordering does not occur in all studied nanoparticles, while a weak ferromagnetism appears above 200 K. Low temperature magnetic hysteresis loops indicate upon exchange bias effect displayed by horizontal and vertical shifts in field cooled processes. The spontaneous and remanent magnetization at low temperature shows a relatively complex variation with particle size. The size-induced structural/magnetic disorder drives the La1/3Ca2/3MnO3 nanoparticles to a pronounced glassy behavior for the smallest 12 nm particles, as evidenced by large difference between zero field cooled and field cooled magnetization, frequency dependent ac-susceptibility, as well as characteristic slowing down in the spin dynamics. Time evolution of magnetization recorded in magnetic fields after field cooling to low temperatures exhibits pronounced relaxation and a very noisy behavior that may be caused by formation of some collective states. Magnetic properties of the nanoparticle samples are compared with those of La0.2Ca0.8MnO3 nanoparticles. These results shed some light on the coupling between charges and spin degrees of freedom in antiferromagnetic manganite nanoparticles.
3D Graphics For Interactive Surgical Simulation And Implant Design
NASA Astrophysics Data System (ADS)
Dev, P.; Fellingham, L. L.; Vassiliadis, A.; Woolson, S. T.; White, D. N.; Young, S. L.
1984-10-01
The combination of user-friendly, highly interactive software, 3D graphics, and the high-resolution detailed views of anatomy afforded by X-ray computer tomography and magnetic resonance imaging can provide surgeons with the ability to plan and practice complex surgeries. In addition to providing a realistic and manipulable 3D graphics display, this system can drive a milling machine in order to produce physical models of the anatomy or prosthetic devices and implants which have been designed using its interactive graphics editing facilities.
Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac
NASA Astrophysics Data System (ADS)
Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.
2017-07-01
We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.
Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less
Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.
2016-12-02
Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less
Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity
NASA Astrophysics Data System (ADS)
Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai
2017-12-01
Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.
Molecular nanomagnets as contrast agents for Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Rodríguez, Elisenda; Roig, Anna; Molins, Elies; Arús, Carles; Cabañas, Miquel; Quintero, María Rosa; Cerdán, Sebastián; Sanfeliu, Coral
2003-03-01
Magnetic resonance imaging (MRI) is a non-invasive technique used in medicine to produce high quality images of human body slices. In order to enhance the contrast between different organs or to reveal altered portions of them such necrosis or tumors, the administration of a contrast agent is highly convenient. Currently Gd-DTPA, a paramagnetic complex, is the most widely administered compound. In this context, we have assayed molecular nanomagnets as MRI contrast agents. The complex [(tacn)_6Fe_8(μ_3-O)_2(μ_2-OH)_12]Br_8·9H_2O^1(Fe8 in brief) has been evaluated and shorter relaxation times, T1 and T_2, have been obtained for Fe8 than those obtained for the commercial Gd-DTPA. No toxic effects have been observed at concentrations up to 1 mM of Fe8 in cultured cells. Phantom studies with T_1-weighted MRI at 9.4 Tesla suggest that Fe8 can have potentiality as T_1-contrast agent. ^1Wieghardt K Angew Chem Intl Ed Engl 23 1 (1984) 77
High-resolution neutron powder diffractometer SPODI at research reactor FRM II
NASA Astrophysics Data System (ADS)
Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H.
2012-03-01
SPODI is a high-resolution thermal neutron diffractometer at the research reactor Heinz Maier-Leibnitz (FRM II) especially dedicated to structural studies of complex systems. Unique features like a very large monochromator take-off angle of 155° and a 5 m monochromator-sample distance in its standard configuration achieve both high-resolution and a good profile shape for a broad scattering angle range. Two dimensional data are collected by an array of 80 vertical position sensitive 3He detectors. SPODI is well suited for studies of complex structural and magnetic order and disorder phenomena at non-ambient conditions. In addition to standard sample environment facilities (cryostats, furnaces, magnet) specific devices (rotatable load frame, cell for electric fields, multichannel potentiostat) were developed. Thus the characterisation of functional materials at in-operando conditions can be achieved. In this contribution the details of the design and present performance of the instrument are reported along with its specifications. A new concept for data reduction using a 2 θ dependent variable height for the intensity integration along the Debye-Scherrer lines is introduced.
Regueiro-Figueroa, Martín; Platas-Iglesias, Carlos
2015-06-18
We present a theoretical investigation of Gd-Owater bonds in different complexes relevant as contrast agents in magnetic resonance imaging (MRI). The analysis of the Ln-Owater distances, electron density (ρBCP), and electron localization function (ELF) at the bond critical points of [Ln(DOTA)(H2O)](-) and [Ln(DTPA-BMA)(H2O)] indicates that the strength of the Ln-Owater bonds follows the order DTPA-BMA > DOTA (M isomer) > DOTA (m isomer). The ELF values decrease along the 4f period as the Ln-Owater bonds get shorter, in line with the labile capping bond phenomenon. Extension of these calculations to other Gd(3+) complexes allowed us to correlate the experimentally observed water exchange rates and the calculated ρBCP and ELF values. The water exchange reaction becomes faster as the Gd-Owater bonds are weakened, which is reflected in longer bond distances and lower values of ρBCP and ELF. DKH2 calculations show that the two coordinated water molecules may also have significantly different (17)O hyperfine coupling constants (HFCCs).
Peng, Dungeng; Ogura, Hiroshi; Zhu, Wenfeng; Ma, Li-Hua; Evans, John P.; Ortiz de Montellano, Paul R.; La Mar, Gerd N.
2010-01-01
Mammalian heme oxygenase, HO, possesses catalytically implicated distal ordered water molecules within an extended H-bond network, with one of the ordered water molecules (#1) providing a bridge between the iron-coordinated ligand and the catalytically critical Asp140, that, in turn, serves as an acceptor for the Tyr58 OH H-bond. The degree of H-bonding by the ligated water molecule and the coupling of this water molecule to the H-bond network are of current interest and are herein investigated by 1H NMR. 2D NMR allowed sufficient assignments to provide both the H-bond strength and hyperfine shifts, the latter of which were used to quantify the magnetic anisotropy in both the ferric high-spin aquo and low-spin hydroxo complexes. The anisotropy in the aquo complex indicates that the H-bond donation to water #1 is marginally stronger than in a bacterial HO, while the anisotropy for the hydroxo complex reveals a conventional (dxz, dyz)1 ground state indicative of only moderate to weak H-bond acceptance by the ligated hydroxide. Mapping out the changes of the H-bond strengths in the network during the ligated water → hydroxide conversion by correcting for the effects of magnetic anisotropy, reveals a very substantial change in H-bond strength for Tyr58 OH, and lesser effects on nearby H-bonds. The effect of pH on the H-bonding network in human HO is much larger and transmitted much further from the iron than in a pathogenic bacterial HO. The implications for the HO mechanism of the H-bond of Tyr58 to Asp140 are discussed. PMID:19842713
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Cadogan, J M; Stewart, G A; Muñoz Pérez, S; Cobas, R; Hansen, B R; Avdeev, M; Hutchison, W D
2014-03-19
We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and (169)Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The (169)Tm hyperfine magnetic field at 5 K is 631(1) T.
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...
2014-04-03
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Continuum kinetic modeling of the tokamak plasma edge
Dorf, M. A.; Dorr, M.; Rognlien, T.; ...
2016-03-10
In this study, the first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasmatransport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalousmore » radial transport.« less
McKay, B E; Persinger, M A
2003-04-18
Acute post-training exposures to weak intensity theta-burst stimulation (TBS) patterned complex magnetic fields attenuated the magnitude of conditioned fear learning for contextual stimuli. A similar learning impairment was evoked in a linear and dose-dependent manner by pre-conditioning injections of the polyamine agmatine. The present study examined the hypothesis that whole-body applications of the TBS complex magnetic field pattern when co-administered with systemic agmatine treatment may combine to evoke impairments in contextual fear learning. Within minutes of 4 mg/kg agmatine injections, male Wistar rats were fear conditioned to contextual stimuli and immediately exposed for 30 min to the TBS patterned complex magnetic field or to sham conditions. TBS patterned complex magnetic field treatment was found to linearly summate with the contextual fear learning impairment evoked by agmatine treatment alone. Furthermore, we report for sham-treated rats, but not rats exposed to the synthetic magnetic field pattern, that the magnitude of learned fear decreased and the amount of variability in learning increased, as the K-index (a measure of change in intensity of the time-varying ambient geomagnetic field) increased during the 3-hr intervals over which conditioning and testing sessions were conducted.
Vignesh, Kuduva R; Langley, Stuart K; Gartshore, Christopher J; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan
2017-02-20
Twelve heterovalent, tetranuclear manganese(II/III) planar diamond or "butterfly" complexes, 1-12, have been synthesized and structurally characterized, and their magnetic properties have been probed using experimental and theoretical techniques. The 12 structures are divided into two distinct "classes". Compounds 1-8 place the Mn(III), S = 2, ions in the body positions of the butterfly metallic core, while the Mn(II), S = 5/2, ions occupy the outer wing sites and are described as "Class 1". Compounds 9-12 display the reverse arrangement of ions and are described as "Class 2". Direct current susceptibility measurements for 1-12 reveal ground spin states ranging from S = 1 to S = 9, with each complex displaying unique magnetic exchange parameters (J). Alternating current susceptibility measurements found that that slow magnetic relaxation is observed for all complexes, except for 10 and 12, and display differing anisotropy barriers to magnetization reversal. First, we determined the magnitude of the magnetic exchange parameters for all complexes. Three exchange coupling constants (J bb , J wb , and J ww ) were determined by DFT methods which are found to be in good agreement with the experimental fits. It was found that the orientation of the Jahn-Teller axes and the Mn-Mn distances play a pivotal role in determining the sign and strength of the J bb parameter. Extensive magneto-structural correlations have been developed for the two classes of {Mn II 2 Mn III 2 } butterfly complexes by varying the Mn b -O distance, Mn w -O distance, Mn b -O-Mn b angle (α), Mn b -O-Mn b -O dihedral angle (γ), and out-of-plane shift of the Mn w atoms (β). For the magnetic anisotropy the DFT calculations yielded larger negative D value for complexes 2, 3, 4, and 6 compared to the other complexes. This is found to be correlated to the electron-donating/withdrawing substituents attached to the ligand moiety and suggests a possible way to fine tune the magnetic anisotropy in polynuclear Mn ion complexes.
Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F
2016-12-05
The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of Ni II -Ln III -W V trimetallics, [(CN) 7 W(CN)Ni(H 2 O)(valpn)Ln(H 2 O) 4 ]·H 2 O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic Dy III and Tb III metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [W V Ni II Ln III ] core structure, [(CN) 7 W(CN)Ni(dmf)(valdmpn)Ln(dmf) 4 ]·H 2 O (Ln = Gd III 7, Tb III 8a, Dy III 9, Ho III 10), [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Tb(dmf) 2.5 (H 2 O) 1.5 ]·H 2 O·0.5dmf 8b, and [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Er(dmf) 3 (H 2 O) 1 ]·H 2 O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel site, precluding magnetization blocking in complexes with fewer axial Ln ions. Further analysis has shown that, in the absence of ZFS on Ni ion, all compounds in the two series (except those containing Y and Gd) would be SMMs. The same situation arises for perfectly axial ZFS on Ni(II) with the main anisotropy axis parallel to the main magnetic axis of Ln(III) ions. In all other cases the ZFS on Ni(II) will worsen the SMM properties. The general conclusion is that the design of efficient SMMs on the basis of such complexes should involve isotropic or weekly anisotropic metal ions, such as Mn(II), Fe(III), etc., along with strongly axial lanthanides.
Weyl magnons in pyrochlore antiferromagnets with an all-in-all-out order
NASA Astrophysics Data System (ADS)
Jian, Shao-Kai; Nie, Wenxing
2018-03-01
We investigate topological magnon band crossings of pyrochlore antiferromagnets with all-in-all-out (AIAO) magnetic order. By general symmetry analysis and spin-wave theory, we show that pyrochlore materials with AIAO orders can host Weyl magnons under external magnetic fields or uniaxial strains. Under a small magnetic field, the magnon bands of the pyrochlore with AIAO background can feature two opposite-charged Weyl points, which is the minimal number of Weyl points realizable in quantum materials, and has not been experimentally observed so far. We further show that breathing pyrochlores with AIAO orders can exhibit Weyl magnons upon uniaxial strains. These findings apply to any pyrochlore material supporting AIAO orders, irrespective of the forms of interactions. Specifically, we show that the Weyl magnons are robust against direct (positive) Dzyaloshinskii-Moriya interactions. Because of the ubiquitous AIAO orders in pyrochlore magnets including R2Ir2O7 , and experimentally achievable external strain and magnetic field, our predictions provide a promising arena to witness the Weyl magnons in quantum magnets.
NASA Astrophysics Data System (ADS)
Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan
2004-05-01
The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.
Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
NASA Astrophysics Data System (ADS)
Vavagiakis, E. M.; Henderson, S. W.; Zheng, K.; Cho, H.-M.; Cothard, N. F.; Dober, B.; Duff, S. M.; Gallardo, P. A.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Koopman, B. J.; Li, D.; Nati, F.; Niemack, M. D.; Reintsema, C. D.; Simon, S.; Stevens, J. R.; Suzuki, A.; Westbrook, B.
2018-05-01
In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (μ MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.
Microfluidic magnetic bead conveyor belt.
van Pelt, Stijn; Frijns, Arjan; den Toonder, Jaap
2017-11-07
Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil systems that offer low field strengths and little versatility. We demonstrate a novel system based on an external rotating magnetic field and on-chip soft-magnetic structures to focus the field locally. These structures were designed and optimized using finite element simulations in order to create a number of local flux density maxima. These maxima, to which the magnetic beads are attracted, move over the chip surface in a continuous way together with the rotation of the external field, resulting in a mechanism similar to that of a conveyor belt. A prototype was fabricated using PDMS molding techniques mixed with iron powder for the magnetic structures. In the subsequent experiments, a quadrupole electromagnet was used to create the rotating external field. We observed that beads formed agglomerates that rolled over the chip surface, just above the magnetic structures. Field rotation frequencies between 0.1-50 Hz were tested resulting in magnetic bead speeds of over 1 mm s -1 for the highest frequency. With this, we have shown that our novel concept works, combining a simple design and simple operation with a powerful and versatile method for bead actuation. This makes it a promising method for further research and utilization in lab-on-chip systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-922] Raw Flexible Magnets From... review of the antidumping duty order on raw flexible magnets (``magnets'') from the People's Republic of... September 17, 2008. See Antidumping Duty Order: Raw Flexible Magnets from the People's Republic of China, 73...
Description of CBETA magnet tuning wire holders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, S.
2017-07-19
A non-magnetic insert will be placed directly inside the permanent magnet blocks in every CBETA Halbach magnet in order to hold a set of iron “tuning wires”. These wires have various lengths around the perimeter of the aperture in order to cancel multipole field errors from the permanent magnet blocks.
Numerical modeling of magnetic moments for UXO applications
Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.
2006-01-01
The surface magnetic anomaly observed in UXO clearance is mainly dipolar and, consequently, the dipole is the only magnetic moment regularly recovered in UXO applications. The dipole moment contains information about intensity of magnetization but lacks information about shape. In contrast, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present a 3D numerical modeling study for highly susceptible metallic objects. The basis for the modeling is the solution of a nonlinear integral equation describing magnetization within isolated objects. A solution for magnetization distribution then allows us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at depths typical of UXO burial, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination.
In situ magnetic separation of antibody fragments from Escherichia coli in complex media
2013-01-01
Background In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies (“D1.3”) produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. Results Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. Conclusions We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps. PMID:23688064
Magnetic second-order topological insulators and semimetals
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2018-04-01
We propose magnetic second-order topological insulators (SOTIs). First, we study a three-dimensional model. It is pointed out that the previously proposed topological hinge insulator has actually surface states along the [001] direction in addition to hinge states. We gap out these surface states by introducing magnetization, obtaining a SOTI only with hinge states. The bulk topological number is the Z2 index protected by the combined symmetry of the fourfold rotation and the inversion symmetry. We next study two-dimensional magnetic SOTIs, where the corner states are robust also in the presence of the magnetization. Finally, we construct a magnetic second-order topological semimetal by layering the two-dimensional magnetic SOTIs, where hinge-arc states are robust also in the presence of the magnetization.
Magnetostructural Phase Diagram of Multiferroic (ND 4) 2FeCl 5.H 2O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clune, A.; Hughey, K.; Musfeldt, J. L.
2017-02-13
Spin and polarization flop transitions are fascinating, especially when controlled by external stimuli like magnetic and electric field and accompanied by large material responses involving multiple degrees of freedom. Multiferroics like MnWO 4, TbMnO 3, and Ni 3TeO 6 are flagship examples and owe their remarkable properties, for instance field control of polarization and polarization flops combined with spin helix reorientation, to the anisotropy and heavy centers that bring in spin-orbit coupling. The family of A 2FeX 5.H 2O erythrosiderites (A = K, Rb, NH 4; B = Fe, Mn, Co; X = Cl, Br, H 2O) drew our attentionmore » due to the rich chemical tuning possibilities, complex phase diagrams, and topological similarities to oxide multiferroics.1 (NH 4) 2FeCl 5.H 2O is the flagship example (Fig. 1(a)). It displays a high temperature order-disorder transition involving long-range hydrogen bonding of the NH 4 + group and two successive low temperature magnetic transitions below which non-collinear magnetic order and ferroelectricity are established.1 In addition to the magnetically-induced electric polarization that arises below 6.9 K (P = 3 μC/m 2 along a and a smaller component along b), applied field reveals a peculiar hysteretic spin flop transition near 4.5 T above which polarization flops from the a- to the c-axis. There are elastic components as well. Taken together, these findings raise questions about the interactions that induce this behavior and whether additional non-equilibrium phases might be accessed under even higher magnetic fields.« less
Radović, Magdalena; Calatayud, María Pilar; Goya, Gerardo Fabián; Ibarra, Manuel Ricardo; Antić, Bratislav; Spasojević, Vojislav; Nikolić, Nadežda; Janković, Drina; Mirković, Marija; Vranješ-Đurić, Sanja
2015-01-01
Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe₃O₄-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe₃O₄(Fe₃O₄-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe₃O₄-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe₃O₄-Naked MNPs and 19.61%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe₃O₄-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe₃O₄-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy. © 2014 Wiley Periodicals, Inc.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
Vacuum Polarization by a Magnetic Flux Tube at Finite Temperature in the Cosmic String Space-Time
NASA Astrophysics Data System (ADS)
Spinelly, J.; Bezerra de Mello, E. R.
In this paper, we analyze the effect produced by the temperature in the vacuum polarization associated with a charged massless scalar field in the presence of a magnetic flux tube in the cosmic string space-time. Three different configurations of magnetic fields are taken into account: (i) a homogeneous field inside the tube, (ii) a field proportional to 1/r, and (iii) a cylindrical shell with δ-function. In these three cases, the axis of the infinitely long tube of radius R coincides with the cosmic string. Because of the complexity of this analysis in the region inside the tube, we consider the thermal effect in the region outside. In order to develop this analysis, we construct the thermal Green function associated with this system for the three above-mentioned situations considering points in the region outside the tube. We explicitly calculate, in the high-temperature limit, the thermal average of the field square and the energy-momentum tensor.
Magnetic Pd nanocatalyst Fe3O4@Pd for C-C bond formation and hydrogenation reactions
NASA Astrophysics Data System (ADS)
Biglione, Catalina; Cappelletti, Ariel L.; Strumia, Miriam C.; Martín, Sandra E.; Uberman, Paula M.
2018-05-01
Small core-shell Fe3O4@Pd superparamagnetic nanoparticles (MNPs) were obtained with good control in size and shape distribution by metal-complex thermal decomposition in organic media. The role of the stabilizer in the synthesis of MNPs was studied, employing oleylamine (OA), triphenylphosphine (TPP) and triphenylamine (TPA). The results revealed that, among the stabilizer investigated, the presence of oleylamine in the reaction media is crucial in order to obtain an uniform shell of Pd(0) in Fe3O4@Pd MNPs of 7 ± 1 nm. The synthesized core-shell MNPs were tested in Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions and p-chloronitrobenzene hydrogenation. High conversion, good reaction yields, and good TOF values were achieved in the three reaction systems with this nanocatalyst. The core-shell nanoparticle was easily recovered by a simple magnetic separation using a neodymium commercial magnet, which allowed performing up to four cycles of reuse. [Figure not available: see fulltext.
Newman, Roger H; Hill, Stefan J; Harris, Philip J
2013-12-01
A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.
Evolution of the magnetic and structural properties of Fe 1 - x Co x V 2 O 4
Sinclair, R.; Ma, Jie; Cao, H. B.; ...
2015-10-12
The magnetic and structural properties of single-crystal Fe 1-xCo xV 2O 4 samples have been investigated by performing specific heat, susceptibility, neutron diffraction, and x-ray diffraction measurements. As the orbital-active Fe 2+ ions with larger ionic size are gradually substituted by the orbital-inactive Co 2+ ions with smaller ionic size, the system approaches the itinerant electron limit with decreasing V-V distance. Then, various factors such as the Jahn-Teller distortion and the spin-orbital coupling of the Fe 2+ ions on the A sites and the orbital ordering and electronic itinerancy of the V 3+ ions on the B sites compete withmore » each other to produce a complex magnetic and structural phase diagram. Finally, this phase diagram is compared to those of Fe 1-xMn xV 2O 4 and Mn 1-xCo xV 2O 4 to emphasize several distinct features.« less
NASA Astrophysics Data System (ADS)
Arima, Taka-Hisa
2014-03-01
Pyrochlore-type 5d transition-metal oxide compounds Cd2Os2O7 and R2Ir2O7 (R =rare earth) undergo a metal-insulator transition accompanied by a magnetic transition. Recently, the magnetic structures of Cd2Os2O7 and Eu2Ir2O7 were investigated by means of resonant x-ray magnetic scattering. The x-ray data indicated the all-in/all-out type magnetic order. The all-in/all-out order breaks the time-reversal symmetry, while the spontaneous magnetization is essentially absent. The magnetic order can be viewed as ferroic magnetic octupolar order. The magnetic order is expected to provide several unique physical properties like quadratic magnetization. linear magneto-capacitance, linear magneto-resistance, linear magneto-mechanical coupling and so on. The symmetry breaking results in two non-equivalent domains, ``all-in/all-out'' and ``all-out/all-in.'' Interestingly, some theoretical works predict that a peculiar metallic state would appear on the domain wall. The observation and control of the domain distribution are essential for studying verious exotic physical responses. We have developed an x-ray technique for domain imaging and started studying the effects of external stimuli on the domain distribution. This work was performed in collaboration with S. Tardif, S. Takeshita, H. Ohsumi, D. Uematsu, H. Sagayama, J. J. Ishikawa, S. Nakatsuji, J. Yamaura, and Z. Hiroi.
The influence of magnetic order on the magnetoresistance anisotropy of Fe 1 + δ–xCu xTe
Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...
2017-05-17
In this study, e performed resistance measurements onmore » $$\\text{F}{{\\text{e}}_{1+\\delta -x}}$$ Cu x Te with $${{x}_{\\text{EDX}}}\\leqslant 0.06$$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $${{x}_{\\text{EDX}}}=0.06$$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Finally, we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng
2015-12-15
Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less
NASA Astrophysics Data System (ADS)
Agrò, Alessandro; Zanella, Elena; Le Pennec, Jean-Luc; Temel, Abidin
2017-04-01
Pyroclastic flow deposits, known as ash-flow tuffs or ignimbrites, are invaluable materials for paleomagnetic studies, with many applications for geological and tectonic purposes. However, little attention has been paid to evaluating the consistency and reliability of the paleomagnetic data when results are obtained on a single volcanic unit with uneven magnetic mineralogy. In this work we investigate this issue by concentrating on the Kızılkaya ignimbrite, the youngest large-volume unit of the Neogene ignimbrite sequence of the Central Anatolian Volcanic Province in Turkey, bringing evidence of significant magnetic heterogeneities in ignimbrite deposits (magnetic mineralogy, susceptibility, magnetic remanence, coercivity, etc.) and emphasizing the importance of a stratigraphic sampling strategy for this type of volcanic rocks in order to obtain reliable paleomagnetic data. Six sections were sampled at different stratigraphic heights within the devitrified portion of the ignimbrite. Isothermal remanence measurements point to low-Ti titanomagnetite as the main magnetic carrier at all sites; at some sites, the occurrence of oxidized Ti-magnetite and hematite is disclosed. The bulk susceptibility (km) decreases vertically at two out of six sections: its value for the topmost samples is commonly one order of magnitude lower than that of the samples at the base. In most cases, low km values relate to high coercivity of remanence (BCR) values, which range from 25 to > 400 mT, and to low S-ratios (measured at 0.3 T) between 0.28 and 0.99. These data point to the occurrence of oxidized magnetic phases. We therefore consider the km parameter as a reliable proxy to check the ignimbrite oxidation stage and to detect the presence of oxidized Ti-magnetite and hematite within the deposit. The characteristic remanent magnetization is determined after stepwise thermal and AF demagnetization and clearly isolated by principal component analysis at most sites. For these sites, the site-mean paleomagnetic direction is consistent with data from the literature. At a few other sites, the remanence is more complex: the direction moves along a great circle during demagnetization and no stable end-point is reached. The occurrence of oxidized Ti-magnetite or hematite as well as two remanence components with overlapping coercivity and blocking temperature spectra suggest that the Kızılkaya ignimbrite acquired first a thermal remanent magnetization and then, during the final cooling or a short time later, a secondary remanent magnetization component which is interpreted as a CRM acquired during post-emplacement devitrification processes. Notwithstanding the Kızılkaya ignimbrite is a single cooling unit, its magnetic properties suffered substantial variations laterally and vertically within the deposit. The Kızılkaya case shows that thick pyroclastic deposits should be sampled using a stratigraphic approach, at different sites and different stratigraphic heights at each individual sampling location, otherwise, under-sampling may significantly affect the paleomagnetic results. When sampling is performed on a short duration or on very poorly preserved deposits we recommend drilling the lower-central portion in the most strongly welded and devitrified facies. Such sampling strategy avoids complications arising from the potential presence of a pervasive secondary CRM masking the original ChRM.
Le Roy, Jennifer J; Korobkov, Ilia; Kim, Jee Eon; Schelter, Eric J; Murugesu, Muralee
2014-02-21
Magnet-like behaviour, in the form of slow relaxation of the magnetization, was observed for a monometallic cerium(III) sandwich complex. The use of trimethylsilyl substituted COT ligands (COT'') led to the formation of a staggered COT'' arrangement in the cerocene-type sandwich complex with a well-defined oxidation state of +3 for the Ce ion.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
NASA Astrophysics Data System (ADS)
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays important roles. This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). Figure 1: (a) AEM system over a 3D earth model; (b) magnetic field Bz; (c) magnetic induction dBz/dt.
Thermomagnetic, dielectric and EPR studies on four new multiferroics
NASA Astrophysics Data System (ADS)
Ramachandran, Vasanth
Multiferroics are materials which exhibit at least two or all three of the ferroic (ferroelectric, ferromagnetic and ferroelastic) orders co-existing in them, and are of high current interest in both the fundamental research and in the discovery of new multifunctional materials. This dissertation presents thermomagnetic, dielectric and electron paramagnetic resonance (EPR) studies on some new multiferroics. The primary focus of this work is on these four compounds: [(CH3)2NH2]Mn(HCOO)3, K3Fe5F15, Pb(Fe1/2Nb1/2)O 3, and MnV2O4. Chapter 3 discusses our discovery of multiferroic behavior of the metal-organic framework (MOF) compound dimethylammonium manganese formate, [(CH3)2NH2]Mn(HCOO) 3, with the aid of single crystal heat capacity and EPR measurements on the compound. Simultaneous occurrence of ferroelectric and antiferromagnetic long-range orders in this compound established its multiferroic nature. Chapter 4 describes the multiferroic nature of the 'tetragonal tungsten bronze'-type ferroelectric potassium iron fluoride, K3Fe5 F15, studied by magnetic susceptibility, magnetization, dielectric and EPR characterization of single crystal and polycrystalline samples. A weak ferromagnetic (FM) ordering due to spin canting caused by the antisymmetric exchange interaction between the Fe ions, and its influence on the dielectric constant evident by the observation of an anomaly around the FM ordering temperature, together indicate an intrinsic magnetoelectric coupling present in this compound. Chapter 5 describes multiferroic behavior of the complex oxide perovskite lead iron niobate, Pb(Fe1/2Nb1/2)O3 abbreviated as PFN. Systematic (9.4, 34, 381, 683 GHz) EPR and magnetic susceptibility measurements on polycrystalline PFN samples show an antiferromagnetic (AFM) ordering, the presence of a small finite internal field well above the AFM ordering temperature, and the first observation of an anomaly in the susceptibility near the ferroelectric Curie point, together implying the presence of magnetoelectric effect. Chapter 6 presents ac and dc magnetic susceptibility experiments on the magnetoelastic spinel compound manganese vanadate, MnV2O4. The compound is shown to exhibit a re-entrant spin glass behavior. The results and perspectives presented here should contribute to the advancement and fundamental understanding of multiferroic materials.
76 FR 18244 - Public Land Order No. 7760; Extension of Public Land Order No. 6839; Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... Barrow Magnetic Observatory (formerly known as the Barrow Geomagnetic Observatory). This order also... Barrow Base Line Observatory and the Barrow Magnetic Observatory, respectively. The land continues to be... facility encumbers 45 acres for the Barrow Magnetic Observatory. The withdrawal for both facilities is...
Magnetic Fluctuations, Precursor Phenomena, and Phase Transition in MnSi under a Magnetic Field
NASA Astrophysics Data System (ADS)
Pappas, C.; Bannenberg, L. J.; Lelièvre-Berna, E.; Qian, F.; Dewhurst, C. D.; Dalgliesh, R. M.; Schlagel, D. L.; Lograsso, T. A.; Falus, P.
2017-07-01
The reference chiral helimagnet MnSi is the first system where Skyrmion lattice correlations have been reported. At a zero magnetic field the transition at TC to the helimagnetic state is of first order. Above TC, in a region dominated by precursor phenomena, neutron scattering shows the buildup of strong chiral fluctuating correlations over the surface of a sphere with radius 2 π /ℓ, where ℓ is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above TC, both of general relevance to chiral magnetism, remain an open question.
Disentangling superconducting and magnetic orders in NaFe1 -xNixAs using muon spin rotation
NASA Astrophysics Data System (ADS)
Cheung, Sky C.; Guguchia, Zurab; Frandsen, Benjamin A.; Gong, Zizhou; Yamakawa, Kohtaro; Almeida, Dalson E.; Onuorah, Ifeanyi J.; Bonfá, Pietro; Miranda, Eduardo; Wang, Weiyi; Tam, David W.; Song, Yu; Cao, Chongde; Cai, Yipeng; Hallas, Alannah M.; Wilson, Murray N.; Munsie, Timothy J. S.; Luke, Graeme; Chen, Bijuan; Dai, Guangyang; Jin, Changqing; Guo, Shengli; Ning, Fanlong; Fernandes, Rafael M.; De Renzi, Roberto; Dai, Pengcheng; Uemura, Yasutomo J.
2018-06-01
Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors, NaFe1 -xNixAs , using single crystalline samples with Ni concentrations x =0 , 0.4, 0.6, 1.0, 1.3, and 1.5%. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x =0 and 0.4%, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for x ≳0.4 % magnetic order becomes more disordered and is completely suppressed for x =1.5 % . The magnetic volume fraction continuously decreases with increasing x . Development of superconductivity in the full volume is inferred from Meissner shielding results for x ≳0.4 % . The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T -x phase diagram for NaFe1 -xNixAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting TC for x =0.6 , 1.0, and 1.3%, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant nonmagnetic state below TC for x =1.3 % . The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s± superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering. In studies of superconducting properties, we find that the T =0 limit of superfluid density follows the linear trend observed in underdoped cuprates when plotted against TC. This paper also includes a detailed theoretical prediction of the muon stopping sites and provides comparisons with experimental results.
Zhang, Guanghua; Flint, Rebecca
2017-12-27
Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guanghua; Flint, Rebecca
Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less
Research on magnetic separation for complex nickel deep removal and magnetic seed recycling.
Qiu, Yiqin; Xiao, Xiao; Ye, Ziwei; Guan, Zhijie; Sun, Shuiyu; Ren, Jie; Yan, Pingfan
2017-04-01
This study investigated the deep removal of complex nickel from simulated wastewater using magnetic separation and magnetic seed recycling. Nano-magnetite (Fe 3 O 4 ) was used as the magnetic seed. The flocculant applied was N,N-bis-(dithiocarboxy) ethanediamine (EDTC), a highly efficient heavy metal chelating agent included in dithiocarbamate (DTC). Important investigated parameters included hydraulic retention time, magnetic seed dosage, and magnetic field strength. The study also explored the magnetic flocculation mechanism involved in the reaction. The result indicated that the residual Ni concentration was reduced to less than 0.1 mg/L from the initial concentration of 50 mg/L under optimal conditions. Magnetic seed recovery reached 76.42% after a 3-h stirring period; recycled magnetic seeds were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The zeta potential results illustrated that magnetic seeds firmly combined with flocs when the pH ranged from 6.5 to 7.5 due to the electrostatic attraction. When the pH was less than 7, magnetic seeds and EDTC were also combined due to electrostatic attraction. Particle size did affect microfloc size; it decreased microfloc size and increased floc volume through magnetic seed loading. The effective binding sites between flocs and magnetic seeds increased when adding the magnetic seeds. This led the majority of magnetic flocs to be integrated with the magnetic seeds, which served as a nucleus to enhance the flocculation property and ultimately improve the nickel complex removal rate.
Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.
2013-01-01
Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; ...
2017-09-11
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality
NASA Astrophysics Data System (ADS)
Plumb, K. W.; Morey, J. R.; Rodriguez-Rivera, J. A.; Wu, Hui; Podlesnyak, A. A.; McQueen, T. M.; Broholm, C. L.
2016-10-01
We present neutron scattering measurements on powder samples of the spinel FeSc2S4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2) K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition that distorts Fe coordinating sulfur tetrahedra and lifts the orbital degeneracy. The orbital ordering is not truly long ranged, but occurs over finite-sized domains that limit magnetic correlation lengths. The application of 1 GPa hydrostatic pressure appears to destabilize this Néel state, reducing the transition temperature to 8.6(8) K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered ⟨m ⟩2=3.1 (2 ) μB2 and fluctuating moments ⟨δ m ⟩=13 (1 ) μB2 show that the magnetically ordered state of FeSc2 S4 is drastically renormalized and close to criticality.
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality
Plumb, K. W.; Morey, J. R.; Rodriguez-Rivera, J. A.; ...
2016-12-01
Here, we present neutron scattering measurements on powder samples of the spinel FeSc 2 S 4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2) K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition that distorts Fe coordinating sulfur tetrahedra and lifts the orbital degeneracy. Furthermore, the orbital ordering is not truly long ranged, but occurs over finite-sized domains that limit magnetic correlation lengths. During the application of 1 GPa hydrostatic pressure appears to destabilize this Néel state, reducing the transition temperature to 8.6(8) K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered 2= 3.1(2) μmore » $$2\\atop{B}$$ and fluctuating moments < δm >= 13(1) μ$$2\\atop{B}$$ show that the magnetically ordered state of FeSc 2 S 4 is drastically renormalized and close to criticality.« less
Measurement of the magnetic interaction between two bound electrons of two separate ions.
Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee
2014-06-19
Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.
NASA Astrophysics Data System (ADS)
Zuo, Peng; Klein, Holger; Darie, Céline; Colin, Claire V.
2018-07-01
The focus of this study is on the magnetic properties of the very recently synthesized doubly ordered perovskite family NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb). Magnetic characterizations were performed by magnetic susceptibility vs. temperature, isothermal magnetization and heat capacity measurements. All these compounds have been determined as antiferromagnets with Néel temperatures from 4 K to 13.1 K. When the lanthanide is magnetic, additional transitions were observed below the Néel temperature which are attributed to the polarization of the magnetic Ln3+ sublattice by the ordered Co2+ one. Taking into account the magnetic ordering found in this study and the polar structure in the nine compounds NaLnCoWO6 (Ln = Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) reported before, these compounds can be classified as new Type I multiferroics.
NASA Astrophysics Data System (ADS)
Du, J.; Chen, C.; Lesur, V.; Wang, L.
2015-07-01
General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees/orders are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic potential field in the local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (GFZ Reference Internal Magnetic Model, version 0.0) with spherical harmonic degrees 16-90. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the magnetic potential field.
The Origin, Early Evolution and Predictability of Solar Eruptions
NASA Astrophysics Data System (ADS)
Green, Lucie M.; Török, Tibor; Vršnak, Bojan; Manchester, Ward; Veronig, Astrid
2018-02-01
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.
Direct measurement of the low temperature spin state transitions in La1-xSrxCoO3 (0.05 < x < 0.3)
NASA Astrophysics Data System (ADS)
Gulec, A.; Klie, R. F.
2014-12-01
Sr-doped LaCoO3 has a complex magnetic phase diagram, which is believed to be directly correlated to changes in the crystal structure and ordering of the Co3+ spin states. In this work, we study the low temperature Co3+-ion spin state transitions in Sr-doped LaCoO3 around the critical doping concentration where a metal to insulator transition has been observed using electron energy-loss spectroscopy of the O K-edge combined with the Co L-edge fine structure. We measure the local spin state of the Co3+-ions and we demonstrate that the Co3+ spin-state transition only occurs in La0.95Sr0.05CoO3 single-crystal materials in the temperature range accessible by LN2 in-situ cooling, while no structural symmetry change is observed. The presence of this low-temperature spin-state transition in La1-xSrxCoO3 (x < 0.17) has been proposed as the origin of the percolative magnetic ordering in doped LaCoO3.
Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces.
Li, Bao-Wen; Osada, Minoru; Ebina, Yasuo; Ueda, Shigenori; Sasaki, Takayoshi
2016-06-22
Multiferroic materials, in which the electronic polarization can be switched by a magnetic field and vice versa, are of fundamental importance for new electronic technologies. However, there exist very few single-phase materials that exhibit such cross-coupling properties at room temperature, and heterostructures with a strong magnetoelectric coupling have only been made with complex techniques. Here, we present a rational design for multiferroic materials by use of a layer-by-layer engineering of 2D nanosheets. Our approach to new multiferroic materials is the artificial construction of high-quality superlattices by interleaving ferromagnetic Ti0.8Co0.2O2 nanosheets with dielectric perovskite-structured Ca2Nb3O10 nanosheets. Such an artificial structuring allows us to engineer the interlayer coupling, and the (Ti0.8Co0.2O2/Ca2Nb3O10/Ti0.8Co0.2O2) superlattices induce room-temperature ferroelectricity in the presence of the ferromagnetic order. Our technique provides a new route for tailoring artificial multiferroic materials in a highly controllable manner.
Helical order and multiferroicity in the S =1/2 quasi-kagome system KCu3As2O7(OD)3
NASA Astrophysics Data System (ADS)
Nilsen, G. J.; Okamoto, Y.; Ishikawa, H.; Simonet, V.; Colin, C. V.; Cano, A.; Chapon, L. C.; Hansen, T.; Mutka, H.; Hiroi, Z.
2014-04-01
Several Cu2+ hydroxide minerals have been recently identified as candidate realizations of the S=1/2 kagome Heisenberg model. In this context, we have studied the distorted system KCu3As2O7(OD)3 using neutron scattering and bulk measurements. Although the distortion favors magnetic order over a spin liquid ground state, refinement of the magnetic diffraction pattern below TN1=7.05(5) K yields a complex helical structure with k =(0.77,0,0.11). This structure, as well as the spin excitation spectrum, are well described by a classical Heisenberg model with ferromagnetic nearest neighbor couplings. Multiferroicity is observed below TN1, with an unusual crossover between improper and pseudoproper behavior occurring at TN2=5.5 K. The polarization at T =2 K is P =1.5μCm-2. The properties of KCu3As2O7(OD)3 highlight the variety of physics which arise from the interplay of spin and orbital degrees of freedom in Cu2+ kagome systems.
Wireless majorana fermions: from magnetic tunability to braiding (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fatin, Geoffrey L.; Matos-Abiague, Alex; Scharf, Benedikt; Zutic, Igor
2016-10-01
In condensed-matter systems Majorana bound states (MBSs) are emergent quasiparticles with non-Abelian statistics and particle-antiparticle symmetry. While realizing the non-Abelian braiding statistics under exchange would provide both an ultimate proof for MBS existence and the key element for fault-tolerant topological quantum computing, even theoretical schemes imply a significant complexity to implement such braiding. Frequently examined 1D superconductor/semiconductor wires provide a prototypical example of how to produce MBSs, however braiding statistics are ill-defined in 1D and complex wire networks must be used. By placing an array of magnetic tunnel junctions (MTJs) above a 2D electron gas formed in a semiconductor quantum well grown on the surface of an s-wave superconductor, we have predicted the existence of highly tunable zero-energy MBSs and have proposed a novel scheme by which MBSs could be exchanged [1]. This scheme may then be used to demonstrate the states' non-Abelian statistics through braiding. The underlying magnetic textures produced by MTJ array provides a pseudo-helical texture which allows for highly-controllable topological phase transitions. By defining a local condition for topological nontriviality which takes into account the local rotation of magnetic texture, effective wire geometries support MBS formation and permit their controlled movement in 2D by altering the shape and orientation of such wires. This scheme then overcomes the requirement for a network of physical wires in order to exchange MBSs, allowing easier manipulation of such states. [1] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Zutic, arXiv:1510.08182, preprint.
Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan
2014-07-28
Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP < BHandHLYP < TPSSH < PW91 < PBE < BP86 < OLYP < BLYP < PBE0 < X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pazhanisamy, S.; Pratt, R.F.
The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-(((phenylacetyl)glycyl)oxy)benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presencemore » of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.« less
NASA Astrophysics Data System (ADS)
Devi, Jai; Batra, Nisha; Malhotra, Rajesh
2012-11-01
New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.
Synthesis of amplitude-versus-offset variations in ground-penetrating radar data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, X.; McMechan, G.A.; Xu, T.
2000-02-01
To evaluate the importance of amplitude-versus-offset information in the interpretation of ground-penetrating radar (GPR) data, GPR reflections are synthesized as a function of antenna separation using a 2.5-D Finite-difference solution of Maxwell's equations. The conductivity, the complex dielectric permittivity,and the complex magnetic permeability are varied systematically in nine suites of horizontally layered models. The source used is a horizontal transverse-electric dipole situated at the air-earth interface. Cole-Cole relaxation mechanisms define the frequency dependence of the media. Reflection magnitudes and their variations with antenna separation differ substantially, depending on the contrast in electromagnetic properties that caused the reflection. The spectral charactermore » of the dielectric and magnetic relaxations produces only second-order variations in reflection coefficients compared with those associated with contrasts in permittivity, conductivity, and permeability, so they may not be separable even when they are detected. In typical earth materials, attenuation of propagating GPR waves is influenced most strongly by conductivity, followed by dielectric relaxation, followed by magnetic relaxation. A pervasive feature of the simulated responses is locally high amplitude associated with the critical incident angle at the air-earth interface in the antenna radiation pattern. Full wavefield simulations of two field data sets from a fluvial/eolian environment are able to reproduce the main amplitude behaviors observed in the data.« less
Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A
2017-01-21
Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer's Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients.
NASA Astrophysics Data System (ADS)
Yuan, J. R.; Yan, X. H.; Xiao, Y.; Guo, Y. D.; Dai, C. J.
2016-11-01
Motivated by recent measurement of the magnetism and conductance of the oxygen-assisted Pt nanojunctions, we performed first principle calculations of the magnetic order and electronic transport by explicitly including fully relativistic effects. Our results show that the spin alignment is a cycloidal spiral feature attributed to the Dzyaloshinskii-Moriya interaction, which indicates that the observed magnetism in experiments is of noncollinear nature. The oxygen concentration is the responsible for the switching of the rotational sense of the spiral magnetic order found in oxygen-assisted Pt nanojunctions. Furthermore, the magnetic moments and magnetoresistances vary with oxygen concentration in the chain, which can be used to tune the magnetism and magnetotransport. The oxygen-assisted Pt nanojunctions offer a possibility for spintronic applications in magnetic memory and quantum devices.
Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery
NASA Astrophysics Data System (ADS)
Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy
2015-04-01
A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.
Weak hybridization and isolated localized magnetic moments in the compounds CeT 2Cd 20 (T = Ni, Pd)
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, B. D.; Yazici, D.; Ho, P. -C.
2015-07-20
Here, we report the physical properties of single crystals of the compounds CeT 2Cd 20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ~6.7- 6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya- Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence ofmore » magnetic order; however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.« less
Developments in Understanding Stability as Applied to Magnetic Levitated Launch Assist
NASA Technical Reports Server (NTRS)
Gering, James A.
2002-01-01
Magnetic levitation is a promising technology, with the potential of constituting the first stage of a third generation space transportation system. Today, the Space Shuttle burns on the order of one million pounds of solid rocket propellant to bring the orbiter and external tank to nearly Mach 1 (1,000 kph). Imagine the reductions in launch vehicle weight, complexity and risk if an aerospace vehicle could be accelerated to the same speed utilizing about $1,000 of off-board electrical energy stored in flywheels. After over two decades of development, maglev trains travel on full-scale demonstration tracks in Germany and Japan reaching speeds approaching 500 kph. Encouraging as this may appear, the energy and power required to accelerate a 1 million pound launch vehicle to 1,000 kph would radically redefine the state-of-the-art in electrical energy storage and delivery. Reaching such a goal will require levitation with sufficient stability to withstand an operating environment fundamentally different from that of a high-speed train. Recently NASA let contracts for the construction of three maglev demonstration tracks. This construction and several associated trade studies represent a first-order investigation into the feasibility of maglev launch assist. This report provides a review of these efforts, other government sponsored maglev projects and additional technical literature pertinent to maglev stability. This review brings to light details and dimensions of the maglev stability problem which are not found in previous NASA-sponsored trade studies and which must be addressed in order to realize magnetic levitation as a launch assist technology.
Emergent properties of magnetic materials
NASA Astrophysics Data System (ADS)
Ratcliff, William Davis, II
In Tolstoy's War and Peace, history is presented as a tapestry spun from the daily interactions of large numbers of individuals. Even if one understands individuals, it is very difficult to predict history. Similarly, the interactions of large numbers of electrons give rise to properties that one would not initially guess from their microscopic interactions. During the course of my dissertation, I have explored emergent phenomena in a number of contexts. In ZnCr2O4, geometric frustration gives rise to a plethora of equivalent ground states. From these, a lower dimensional set of collinear spins on hexagons are selected to form the building blocks of the lattice. In MgTi2O4, quantum spins dimerize and form a unique chiral ordering pattern on the spinel lattice. Descending into two dimensions, differences in size and charge give rise to an ordering between triangular layers of magnetic and nonmagnetic ions. This triangular lattice allows for the possibility of observing the RVB spin liquid state, or perhaps a valence bond crystal and initial measurements are promising. Also, on the spinel lattice, ionic ordering gives rise to one dimensional chains with their own interesting physics. Finally, in the SrCoxTi1-x O3, system we find that upon reduction, tiny clusters of Co metal precipitate out and chemical inhomogeneity on the microscale may determine much of the physics. This has relevance to a number of recent claims of room temperature ferromagnism in dilute magnetic systems. In all of these systems, complex behavior emerges from well understood microscopic behavior. For me, this is the fascination of strongly correlated electronic systems.
Influence of Pt substitution on magnetic properties of multipolar ordering compounds Ce(Pd,Pt)3S4
NASA Astrophysics Data System (ADS)
Michimura, S.; Nishikawa, Ushio; Shimizu, Akihide; Kosaka, Masashi; Numakura, Ryosuke; Iizuka, Ryosuke; Katano, Susumu
2018-05-01
We have studied the magnetic properties of the multipolar ordering compounds Ce(Pd1-xPtx) 3S4 with 0.00 ≤ x ≤ 0.53 by means of magnetic susceptibility and magnetization measurements. In CePd3S4 , a simultaneous phase transition of the antiferro quadrupolar (AFQ) ordering and ferro magnetic (FM) ordering has been observed at 6.3 K. It has been suggested that the primary order parameter of CePd3S4 is the quadrupole moments, and it has not been understood why the FM ordering occurs at very high temperature which is almost the same magnetic transition temperature of GdPd3S4 . GdPd3S4 shows an antiferromagnetic (AFM) transition at 5.8 K. With increasing Pt substitution in CePd3S4 , the FM transition temperature TC (x) is rapidly suppressed to 2.4 K for x ≃ 0.3 and approaches asymptotically to 1.9 K (x = 0.53) . The results of magnetization curve suggest that the ordered state below TC (x) remains FM and AFQ ordered state for the whole range of x. For x ≥ 0.29 , TC (x) reaches at around 2 K, a new AFM transition was observed at TN (x) ≃ 7 K . We determined the T - x phase diagram, and discuss the phase transitions at TC (x) and TN (x) . The results suggest the possibility of the presence of the correlation between the magnetic interaction and the quadrupole interaction, and the correlation is not understood based on the previous multipolar model.
Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃
Gannon, W. J.; Halperin, W. P.; Rastovski, C.; ...
2015-02-01
Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less
Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gannon, W. J.; Halperin, W. P.; Rastovski, C.
Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less
Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy.
Becker, Walter; Bhattiprolu, Krishna Chaitanya; Gubensäk, Nina; Zangger, Klaus
2018-04-17
Protein-ligand interactions are of fundamental importance in almost all processes in living organisms. The ligands comprise small molecules, drugs or biological macromolecules and their interaction strength varies over several orders of magnitude. Solution NMR spectroscopy offers a large repertoire of techniques to study such complexes. Here, we give an overview of the different NMR approaches available. The information they provide ranges from the simple information about the presence of binding or epitope mapping to the complete 3 D structure of the complex. NMR spectroscopy is particularly useful for the study of weak interactions and for the screening of binding ligands with atomic resolution. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Cordes, A.; Pollig, D.; Leonhardt, S.
2010-04-01
For monitoring the health status of individuals, proper monitoring of ventilation is desirable. Therefore, a continuous measurement technique is an advantage for many patients since it allows personal home care scenarios. As an example, monitoring of elderly people at home could enable them to live in their familiar environment on their own with the safety of a continuous monitoring. Therefore, a measurement technique without the restriction of mobility is required. Since it is possible to monitor ventilation with magnetic impedance measurements without conductive contact, this technique is well suited for the mentioned scenario. Integrated in a chair, a person's health state could be monitored in many situations, e.g. during meals, while watching TV or reading a book. In this paper, we compare different positions of coil arrays for a magnetic impedance measurement system integrated in a chair in order to monitor ventilation continuously. For limiting the costs and technical complexity of the magnetic impedance measurement system, we have a focus on coil configurations with one RF channel. To limit the needed space and thickness of the array in the backrest, planar gradiometer coil setups are investigated. All measurements will be performed with a new developed portable magnetic impedance measurement system and a standard office chair.
Tricritical point from high-field magnetoelastic and metamagnetic effects in UN.
Shrestha, K; Antonio, D; Jaime, M; Harrison, N; Mast, D S; Safarik, D; Durakiewicz, T; Griveau, J-C; Gofryk, K
2017-07-26
Uranium nitride (UN) is one of the most studied actinide materials as it is a promising fuel for the next generation of nuclear reactors. Despite large experimental and theoretical efforts, some of the fundamental questions such as degree of 5 f-electron localization/delocalization and its relationship to magneto-vibrational properties are not resolved yet. Here we show that the magnetostriction of UN measured in pulsed magnetic fields up to 65 T and below the Néel temperature is large and exhibits complex behavior with two transitions. While the high field anomaly is a field-induced metamagnetic-like transition and affects both magnetisation and magnetostriction, the low field anomaly does not contribute to the magnetic susceptibility. Our data suggest a change in the nature of the metamagnetic transition from first to second order-like at a tricritical point at T tri ∼ 24 K and H tri ∼ 52 T. The induced magnetic moment at 60 T might suggest that only one subset of magnetic moments has aligned along the field direction. Using the results obtained here we have constructed a magnetic phase diagram of UN. These studies demonstrate that dilatometry in high fields is an effective method to investigate the magneto-structural coupling in actinide materials.
Tricritical point from high-field magnetoelastic and metamagnetic effects in UN
Shrestha, K.; Antonio, D.; Jaime, M.; ...
2017-07-26
Uranium nitride (UN) is one of the most studied actinide materials as it is a promising fuel for the next generation of nuclear reactors. Despite large experimental and theoretical efforts, some of the fundamental questions such as degree of 5 f–electron localization/delocalization and its relationship to magneto-vibrational properties are not resolved yet. We show that the magnetostriction of UN measured in pulsed magnetic fields up to 65 T and below the Néel temperature is large and exhibits complex behavior with two transitions. While the high field anomaly is a field-induced metamagnetic-like transition and affects both magnetisation and magnetostriction, the lowmore » field anomaly does not contribute to the magnetic susceptibility. Our data suggest a change in the nature of the metamagnetic transition from first to second order-like at a tricritical point at T tri ~24 K and H tri ~52 T. The induced magnetic moment at 60 T might suggest that only one subset of magnetic moments has aligned along the field direction. Using the results obtained here we have constructed a magnetic phase diagram of UN. Our studies demonstrate that dilatometry in high fields is an effective method to investigate the magneto-structural coupling in actinide materials.« less
Simultaneous capture and sequential detection of two malarial biomarkers on magnetic microparticles.
Markwalter, Christine F; Ricks, Keersten M; Bitting, Anna L; Mudenda, Lwiindi; Wright, David W
2016-12-01
We have developed a rapid magnetic microparticle-based detection strategy for malarial biomarkers Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein II (PfHRPII). In this assay, magnetic particles functionalized with antibodies specific for pLDH and PfHRPII as well as detection antibodies with distinct enzymes for each biomarker are added to parasitized lysed blood samples. Sandwich complexes for pLDH and PfHRPII form on the surface of the magnetic beads, which are washed and sequentially re-suspended in detection enzyme substrate for each antigen. The developed simultaneous capture and sequential detection (SCSD) assay detects both biomarkers in samples as low as 2.0parasites/µl, an order of magnitude below commercially available ELISA kits, has a total incubation time of 35min, and was found to be reproducible between users over time. This assay provides a simple and efficient alternative to traditional 96-well plate ELISAs, which take 5-8h to complete and are limited to one analyte. Further, the modularity of the magnetic bead-based SCSD ELISA format could serve as a platform for application to other diseases for which multi-biomarker detection is advantageous. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Silva, Jesús G; Cárdenas, Rey A; Quiróz, Alan R; Sánchez, Virginia; Lozano, Lucila M; Pérez, Nadia M; López, Jaime; Villanueva, Cleva; González, César A
2014-06-01
Breast cancer (BC) is the leading cause of cancer death in women worldwide, with a higher mortality reported in undeveloped countries. Ideal adjuvant therapeutic strategies require the continuous monitoring of patients by regular blood tests to detect circulating cancer cells, in order to determine whether additional treatment is necessary to prevent cancer dissemination. This circumstance requires a non-complex design of tumor cell biosensor in whole blood with feasibility for use in poor regions. In this work we have evaluated an inexpensive and simple technique of relative bioimpedance measurement, assisted by magnetic nanoparticles, as a potential biosensor of BC cells in suspension. Measurements represent the relative impedance changes caused by the magnetic holding of an interphase of tumor cells versus a homogenous condition in the frequency range of 10-100 kHz. The results indicate that use of a magnet to separate tumor cells in suspension, coupled to magnetic nanoparticles, is a feasible technique to fix an interphase of tumor cells in close proximity to gold electrodes. Relative impedance changes were shown to have potential value as a biosensor method for BC cells in whole blood, at frequencies around 20 kHz. Additional studies are warranted with respect to electrode design and sensitivity at micro-scale levels, according to the proposed technique.
NASA Astrophysics Data System (ADS)
Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.
2018-01-01
Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.