Sample records for complex magnetic structure

  1. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  2. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak

    2018-06-01

    A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.

  3. Magnetic behavior control in niccolite structural metal formate frameworks [NH2(CH3)2][Fe(III)M(II)(HCOO)6] (M = Fe, Mn, and Co) by varying the divalent metal ions.

    PubMed

    Zhao, Jiong-Peng; Hu, Bo-Wen; Lloret, Francesc; Tao, Jun; Yang, Qian; Zhang, Xiao-Feng; Bu, Xian-He

    2010-11-15

    By changing template cation but introducing trivalent iron ions in the known niccolite structural metal formate frameworks, three complexes formulated [NH(2)(CH(3))(2)][Fe(III)M(II)(HCOO)(6)] (M = Fe for 1, Mn for 2, and Co for 3) were synthesized and magnetically characterized. The variation in the compositions of the complexes leads to three different complexes: mixed-valent complex 1, heterometallic but with the same spin state complex 2, and heterometallic heterospin complex 3. The magnetic behaviors are closely related to the divalent metal ions used. Complex 1 exhibits negative magnetization assigned as Néel N-Type ferrimagnet, with an asymmetric magnetization reversal in the hysteresis loop, and complex 2 is an antiferromagnet with small spin canting (α(canting) ≈ 0.06° and T(canting) = 35 K), while complex 3 is a ferrimagnet with T(N) = 32 K.

  4. Influence of the Ligand Field on the Slow Relaxation of Magnetization of Unsymmetrical Monomeric Lanthanide Complexes: Synthesis and Theoretical Studies.

    PubMed

    Upadhyay, Apoorva; Vignesh, Kuduva R; Das, Chinmoy; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2017-11-20

    A series of monomeric lanthanide Schiff base complexes with the molecular formulas [Ce(HL) 3 (NO 3 ) 3 ] (1) and [Ln(HL) 2 (NO 3 ) 3 ], where Ln III = Tb (2), Ho (3), Er (4), and Lu (5), were isolated and characterized by single-crystal X-ray diffraction (XRD). Single-crystal XRD reveals that, except for 1, all complexes possess two crystallographically distinct molecules within the unit cell. Both of these crystallographically distinct molecules possess the same molecular formula, but the orientation of the coordinating ligand distinctly differs from those in complexes 2-5. Alternating-current magnetic susceptibility measurement reveals that complexes 1-3 exhibit slow relaxation of magnetization in the presence of an optimum external magnetic field. In contrast to 1-3, complex 4 shows a blockade of magnetization in the absence of an external magnetic field, a signature characteristic of a single-ion magnet (SIM). The distinct magnetic behavior observed in 4 compared to other complexes is correlated to the suitable ligand field around a prolate Er III ion. Although the ligand field stabilizes an easy axis of anisotropy, quantum tunnelling of magnetization (QTM) is still predominant in 4 because of the low symmetry of the complex. The combination of low symmetry and an unsuitable ligand-field environment in complexes 1-3 triggers faster magnetization relaxation; hence, these complexes exhibit field-induced SIM behavior. In order to understand the electronic structures of complexes 1-4 and the distinct magnetic behavior observed, ab initio calculations were performed. Using the crystal structure of the complexes, magnetic susceptibility data were computed for all of the complexes. The computed susceptibility and magnetization are in good agreement with the experimental magnetic data [χ M T(T) and M(H)] and this offers confidence on the reliability of the extracted parameters. A tentative mechanism of magnetization relaxation observed in these complexes is also discussed in detail.

  5. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.

    PubMed

    Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro

    2013-01-01

    Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.

  6. Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes.

    PubMed

    Adhikary, Amit; Sheikh, Javeed Ahmad; Biswas, Soumava; Konar, Sanjit

    2014-06-28

    The synthesis, crystal structure and magnetic properties of four polynuclear lanthanide coordination complexes having molecular formulae, [Gd3(2)(1)L(H2O)8(Cl)](Cl)4·10H2O (1), [Dy3L(2)(1)(H2O)9](Cl)5·6H2O (2) [Gd6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (3) and [Dy6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (4) (where H2L(1) = bis[(2-pyridyl)methylene]pyridine-2,6-dicarbohydrazide and H4L(2) = bis[2-hydroxy-benzylidene]pyridine-2,6-dicarbohydrazide) are reported. Structural investigation by X-ray crystallography reveals similar structural features for complexes 1 and 2 and they exhibit butterfly like shapes of the molecules. Non-covalent interactions between the molecules create double helical arrangements for both molecules. Complexes 3 and 4 are isostructural and the core structures feature four distorted hemi-cubanes connected by vertex sharing. Magnetic studies unveil significant magnetic entropy changes for complexes 1, 3 and slow relaxation of magnetization for both dysprosium analogues 2 and 4.

  7. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    PubMed

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  8. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  9. Surface Modification and Nanojunction Fabrication with Molecular Metal Wires

    DTIC Science & Technology

    2014-02-17

    Title: Transition Metal Complexes of a Super Rigid Anthyridine Ligand: Structural, Magnetic and DFT Studies. Transition metal complexes of iron ( II ...Compounds with Masked Diazonium Capping Groups (J. Organomet. Chem. 2013, 745, 93). (3) New Diruthenium( II ,III) Compounds Bearing Terminal Olefin Groups...2012, 36, 2340). (2) Synthesis , Structure, Magnetism, and Single Molecular Conductance of Linear Trinickel String Complexes with Sulfur-Containing

  10. Waves associated to COMPLEX EVENTS observed by STEREO

    NASA Astrophysics Data System (ADS)

    Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2012-12-01

    Complex Events are formed by two or more large-scale solar wind structures which interact in space. Typical cases are interactions of: (i) a Magnetic Cloud/Interplanetary Coronal Mass Ejection (MC/ICME) with another MC/ICME transient; and (ii) an ICME followed by a Stream Interaction Region (SIR). Complex Events are of importance for space weather studies and studying them can enhance our understanding of collisionless plasma physics. Some of these structures can produce or enhance southward magnetic fields, a key factor in geomagnetic storm generation. Using data from the STEREO mission during the years 2006-2011, we found 17 Complex Events preceded by a shock wave. We use magnetic field and plasma data to study the micro-scale structure of the shocks, and the waves associated to these shocks and within Complex Events structures. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also use PLASTIC WAP protons data to study foreshock extensions and the relationship between Complex Regions and particle acceleration to suprathermal energies.

  11. Guided and magnetic self-assembly of tunable magnetoceptive gels

    NASA Astrophysics Data System (ADS)

    Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  12. Guided and magnetic self-assembly of tunable magnetoceptive gels

    PubMed Central

    Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.

    2014-01-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148

  13. Multiscale tomography of buried magnetic structures: its use in the localization and characterization of archaeological structures

    NASA Astrophysics Data System (ADS)

    Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie

    2007-10-01

    We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.

  14. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-07-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  15. Syntheses, crystal structures and magnetic properties of complexes based on [Ni(L-L)3]2+ complex cations with dimethylderivatives of 2,2‧-bipyridine and TCNQ

    NASA Astrophysics Data System (ADS)

    Černák, Juraj; Hegedüs, Michal; Váhovská, Lucia; Kuchár, Juraj; Šoltésová, Daniela; Čižmár, Erik; Feher, Alexander; Falvello, L. R.

    2018-03-01

    From the aqueous-methanolic systems Ni(NO3)2 - LiTCNQ - 5,5‧-dmbpy and Ni(NO3)2 - LiTCNQ - 4,4‧-dmbpy three novel complexes [Ni(5,5‧-dmbpy)3](TCNQ)2 (1), [Ni(4,4‧-dmbpy)3](TCNQ)2 (2) and [Ni(4,4‧-dmbpy)3]2(TCNQ-TCNQ)(TCNQ)2•0.60H2O (3), were isolated in single crystal form. The new compounds were identified using chemical analyses and IR spectroscopy. Single crystal studies of all samples corroborated their compositions and have shown that their ionic structures contain the complex cations [Ni(5,5‧-dmbpy)]2+ (1) or [Ni(4,4‧-dmbpy)]2+ (2 and 3). The anionic parts of the respective crystal structures 1-3 are formed by TCNQṡ- anion-radicals and in 3 also by a σ-dimerized dianion (TCNQ-TCNQ)2- with a C-C distance of 1.663(5) Å. The supramolecular structures are governed by weak hydrogen bonding interactions. The variable-temperature (2-300 K) magnetic studies of 1 and 3 confirmed the presence of magnetically active Ni(II) atoms with S = 1 and TCNQṡ- anion-radicals with S = 1/2 while the (TCNQ-TCNQ)2- dianion is magnetically silent. The magnetic behavior was described by a complex magnetic model assuming strong antiferromagnetic interactions between some TCNQṡ- anion-radicals.

  16. The complex magnetic field topology of the cool Ap star 49 Cam

    NASA Astrophysics Data System (ADS)

    Silvester, J.; Kochukhov, O.; Rusomarov, N.; Wade, G. A.

    2017-10-01

    49 Cam is a cool magnetic chemically peculiar star that has been noted for showing strong, complex Zeeman linear polarization signatures. This paper describes magnetic and chemical surface maps obtained for 49 Cam using the Invers10 magnetic Doppler imaging code and high-resolution spectropolarimetric data in all four Stokes parameters collected with the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and Pic du Midi Observatory. The reconstructed magnetic field maps of 49 Cam show a relatively complex structure. Describing the magnetic field topology in terms of spherical harmonics, we find significant contributions of modes up to ℓ = 3, including toroidal components. Observations cannot be reproduced using a simple low-order multipolar magnetic field structure. 49 Cam exhibits a level of field complexity that has not been seen in magnetic maps of other cool Ap stars. Hence, we concluded that relatively complex magnetic fields are observed in Ap stars at both low and high effective temperatures. In addition to mapping the magnetic field, we also derive surface abundance distributions of nine chemical elements, including Ca, Sc, Ti, Cr, Fe, Ce, Pr, Nd and Eu. Comparing these abundance maps with the reconstructed magnetic field geometry, we find no clear relationship of the abundance distributions with the magnetic field for some elements. However, for other elements some distinct patterns are found. We discuss these results in the context of other recent magnetic mapping studies and theoretical predictions of radiative diffusion.

  17. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  18. Complex magnetic structure of clusters and chains of Ni and Fe on Pt(111)

    PubMed Central

    Bezerra-Neto, Manoel M.; Ribeiro, Marcelo S.; Sanyal, Biplab; Bergman, Anders; Muniz, Roberto B.; Eriksson, Olle; Klautau, Angela B.

    2013-01-01

    We present an approach to control the magnetic structure of adatoms adsorbed on a substrate having a high magnetic susceptibility. Using finite Ni-Pt and Fe-Pt nanowires and nanostructures on Pt(111) surfaces, our ab initio results show that it is possible to tune the exchange interaction and magnetic configuration of magnetic adatoms (Fe or Ni) by introducing different numbers of Pt atoms to link them, or by including edge effects. The exchange interaction between Ni (or Fe) adatoms on Pt(111) can be considerably increased by introducing Pt chains to link them. The magnetic ordering can be regulated allowing for ferromagnetic or antiferromagnetic configurations. Noncollinear magnetic alignments can also be stabilized by changing the number of Pt-mediated atoms. An Fe-Pt triangularly-shaped nanostructure adsorbed on Pt(111) shows the most complex magnetic structure of the systems considered here: a spin-spiral type of magnetic order that changes its propagation direction at the triangle vertices. PMID:24165828

  19. Surprises in low dimensional spin 1/2 magnets - from crystal chemistry to microscopic magnetic models of complex oxides

    NASA Astrophysics Data System (ADS)

    Rosner, Helge

    2011-03-01

    A microscopic understanding of the structure-properties relation in crystalline materials is a main goal of modern solid state chemistry and physics. Due to their peculiar magnetism, low dimensional spin 1/2 systems are often highly sensitive to structural details. Seemingly unimportant structural details can be crucial for the magnetic ground state of a compound, especially in the case of competing interactions, frustration and near-degeneracy. Here, we present for selected, complex Cu 2+ systems that a first principles based approach can reliably provide the correct magnetic model, especially in cases where the interpretation of experimental data meets serious difficulties or fails. We demonstrate that the magnetism of low dimensional insulators crucially depends on the magnetically active orbitals which are determined by details of the ligand field of the magnetic cation. Our theoretical results are in very good agreement with thermodynamic and spectroscopic data and provide deep microscopic insight into topical low dimensional magnets.

  20. Rational design of azide-bridged bimetallic complexes. Crystal structure and magnetic properties of Fe(III)MFe(III) (M = Ni(II) and Cu(II)) trinuclear species.

    PubMed

    Colacio, Enrique; Costes, Jean-Pierre; Domínguez-Vera, José M; Maimoun, Ikram Ben; Suárez-Varela, José

    2005-01-28

    The first examples of azide-bridged bimetallic trinuclear complexes ([M(cyclam)][FeL(N3)(mu1,5-N3)]2) (H2L = 4,5-dichloro-1,2-bis(pyridine-2-carboxamido) benzene) have been structurally and magnetically characterized.

  1. Iron chalcogenide superconductors at high magnetic fields

    PubMed Central

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  2. Two binuclear cyanide-bridged Cr(III)-Mn(III) complexes based-on [Cr(2,2'-bipy)(CN)4]- building block: synthesis, crystal structures and magnetic properties.

    PubMed

    Zhanga, Daopeng; Kong, Lingqian; Zhang, Hongyan

    2015-01-01

    Tetracyanide building block [Cr(2,2'-bipy)(CN)(4)]- and two bicompartimental Schiff-base based manganese(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in two cyanide-bridged CrIII-MnIII complexes: [Mn(L(1))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·2.5H(2)O (1) and [Mn(L(2))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·(3)H(2)O (2) (L1 = N,N'-(1,3-propylene)-bis(3-methoxysalicylideneiminate), L2 = N,N'-ethylene-bis(3-ethoxysalicylideneiminate)). Single X-ray diffraction analysis shows their similar cyanide-bridged binuclear structures, in which the cyanide precursor acting as monodentate ligand connects the manganese(III) ion. The binuclear complexes are self-complementary through coordinated aqua ligand and the free O4 compartment from the neighboring complex, giving H-bond linking dimer structure. Investigation over magnetic properties reveals the antiferromagnetic magnetic coupling between the cyanide-bridged Cr(III) and Mn(III) ions. A best-fit to the magnetic susceptibilities of these two complexes leads to the magnetic coupling constants J = -5.95 cm(-1), j = -0.61 cm(-1) (1) and J = -4.15 cm(-1), j = -0.57 cm(-1) (2), respectively.

  3. Structural and Magnetic Properties of M(mnt)(2) Salts (M = Ni, Pt, Cu) with a Ferrocene-Based Cation, [FcCH(2)N(CH(3))(3)](+). Interplay between M.M and M.S Intermolecular Interactions.

    PubMed

    Pullen, Anthony E.; Faulmann, Christophe; Pokhodnya, Konstantin I.; Cassoux, Patrick; Tokumoto, Madoka

    1998-12-28

    A series of metal bis-mnt complexes (mnt = 1,2-dithiolatomaleonitrile) with the trimethylammonium methylferrocene cation have been synthesized and characterized using X-ray diffraction, magnetic susceptibility, and differential scanning calorimetry measurements. The complexes have the formulas (FcCH(2)NMe(3))[Ni(mnt)(2)] (2), (FcCH(2)NMe(3))[Pt(mnt)(2)] (3), and (FcCH(2)NMe(3))(2)[Cu(mnt)(2)] (4) (where Fc = ferrocene). At 300 K, the crystal structures of 1:1 complexes 2 and 3 are very similar. They consist of pairs of [M(mnt)(2)](-) in a slipped configuration packed in stacks. Each [M(mnt)(2)](-) stack is separated from adjacent stacks by two columns of cations. Within the pairs, the [M(mnt)(2)](-) anions interact via short M.S contacts, while there are no short contacts between the pairs. Complex 4, which has a 2:1 stoichiometry, exhibits a markedly different packing arrangement of the anionic units. Due to the special position of the Cu atom in the asymmetric unit cell, [Cu(mnt)(2)](2)(-) dianions are completely isolated from each other. The magnetic susceptibility behavior of the nickel complex is consistent with the presence of magnetically isolated, antiferromagnetically (AF) coupled [Ni(mnt)(2)](-) pairs with the AF exchange parameter, J = -840 cm(-)(1). The platinum complex undergoes an endothermic structural phase transition (T(p)) at 247 K. Below T(p) its structure is characterized by the formation of magnetically isolated [Pt(mnt)(2)](2)(2)(-) dimers in an eclipsed configuration with short Pt.Pt and S.S contacts between monomers. In the magnetic properties, the structural changes reveal themselves as an abrupt susceptibility drop implying a substantial increase of the AF exchange parameter. A mechanism of the phase transition in the platinum compound is proposed. For compound 4, paramagnetic behavior is observed.

  4. What Controls the Magnetic Exchange and Anisotropy in a Family of Tetranuclear {Mn2IIMn2III} Single-Molecule Magnets?

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Gartshore, Christopher J; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan

    2017-02-20

    Twelve heterovalent, tetranuclear manganese(II/III) planar diamond or "butterfly" complexes, 1-12, have been synthesized and structurally characterized, and their magnetic properties have been probed using experimental and theoretical techniques. The 12 structures are divided into two distinct "classes". Compounds 1-8 place the Mn(III), S = 2, ions in the body positions of the butterfly metallic core, while the Mn(II), S = 5/2, ions occupy the outer wing sites and are described as "Class 1". Compounds 9-12 display the reverse arrangement of ions and are described as "Class 2". Direct current susceptibility measurements for 1-12 reveal ground spin states ranging from S = 1 to S = 9, with each complex displaying unique magnetic exchange parameters (J). Alternating current susceptibility measurements found that that slow magnetic relaxation is observed for all complexes, except for 10 and 12, and display differing anisotropy barriers to magnetization reversal. First, we determined the magnitude of the magnetic exchange parameters for all complexes. Three exchange coupling constants (J bb , J wb , and J ww ) were determined by DFT methods which are found to be in good agreement with the experimental fits. It was found that the orientation of the Jahn-Teller axes and the Mn-Mn distances play a pivotal role in determining the sign and strength of the J bb parameter. Extensive magneto-structural correlations have been developed for the two classes of {Mn II 2 Mn III 2 } butterfly complexes by varying the Mn b -O distance, Mn w -O distance, Mn b -O-Mn b angle (α), Mn b -O-Mn b -O dihedral angle (γ), and out-of-plane shift of the Mn w atoms (β). For the magnetic anisotropy the DFT calculations yielded larger negative D value for complexes 2, 3, 4, and 6 compared to the other complexes. This is found to be correlated to the electron-donating/withdrawing substituents attached to the ligand moiety and suggests a possible way to fine tune the magnetic anisotropy in polynuclear Mn ion complexes.

  5. Magnetic Microhelix Coil Structures

    NASA Astrophysics Data System (ADS)

    Smith, Elliot J.; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M.; Schmidt, Oliver G.

    2011-08-01

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials.

  6. Knotty structures of the evolving heliospheric magnetic fields.

    NASA Astrophysics Data System (ADS)

    Roth, Ilan

    2013-04-01

    The analogy between MHD and knot theory is utilized in an analysis of structure, stability and evolution of complex magnetic heliospheric flux tubes. Planar projection of a three-dimensional magnetic configuration depicts the structure as a two-dimensional diagram with crossings, to which one may assign mathematical operations leading to robust topological invariants. These invariants enrich the topological information of magnetic configurations beyond helicity. It is conjectured that the field which emerges from the solar photosphere is structured as one of simplest knot invariants - unknot or prime knot, and these flux ropes are then stretched while carried by the solar wind into the interplanetary medium. Preservation of invariants for small diffusivity and large cross section of the emerging magnetic flux makes them impervious to large scale reconnection, allowing us to predict the observed structures at 1AU as elongated prime knots. Similar structures may be observed in magnetic clouds which got disconnected from their foot-points and in ion drop-out configurations from a compact flare source in solar impulsive solar events. Observation of small scale magnetic features consistent with prime knot may indicate spatial intermittency and non-Gaussian statistics in the turbulent cascade process. For flux tubes with higher resistivity, magnetic energy decay rate should decrease with increased knot complexity as the invariants are then harder to be violated. Future measurements are suggested for distinctly oriented magnetic fields with directionally varying suprathermal particle fluxes.

  7. The X-ray corona and the photospheric magnetic field.

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; Vaiana, G. S.; Van Speybroeck, L. P.

    1971-01-01

    Soft X-ray photographs of the solar corona have been obtained on four flights of a rocket-borne grazing incidence telescope having a resolution of a few arc sec. The configuration of the X-ray emitting structures in the corona has been compared to the magnetic field distribution measured by photospheric longitudinal magnetograms. The X-ray structures trace the three-dimensional configuration of the magnetic field through the lower corona. Active regions in the corona take the form of tubular structures connecting regions of opposite magnetic polarity within the same or adjacent chromospheric active regions. Higher, larger structures link widely separated active regions into complexes of activity covering substantial fractions of the disk. The complexes are separated by areas of low average field in the photosphere. Interconnections across the solar equator appear to originate over areas of preceding polarity.

  8. Structural and magnetic conformation of a cerocene [Ce(COT'')2]- exhibiting a uniconfigurational f1 ground state and slow-magnetic relaxation.

    PubMed

    Le Roy, Jennifer J; Korobkov, Ilia; Kim, Jee Eon; Schelter, Eric J; Murugesu, Muralee

    2014-02-21

    Magnet-like behaviour, in the form of slow relaxation of the magnetization, was observed for a monometallic cerium(III) sandwich complex. The use of trimethylsilyl substituted COT ligands (COT'') led to the formation of a staggered COT'' arrangement in the cerocene-type sandwich complex with a well-defined oxidation state of +3 for the Ce ion.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadav, Mudra; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in, E-mail: rpat7@yahoo.co

    Here we present a technique using magnetic nanofluid to induce bidispersed suspension of nonmagnetic particles to assemble into colloidal chain, triangle, rectangle, ring-flower configurations. By changing the amplitude and direction of the magnetic field, we could tune the structure of nonmagnetic particles in magnetic nanofluid. The structures are assembled using magneto static interactions between effectively nonmagnetic particles dispersed in magnetizable magnetic nanofluid. The assembly of complex structures out of simple colloidal building blocks is of practical interest in photonic crystals and DNA biosensors.

  10. A general way for quantitative magnetic measurement by transmitted electrons

    NASA Astrophysics Data System (ADS)

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons.

  11. Modulating the single-molecule magnet behaviour in phenoxo-O bridged Dy2 systems via subtle structural variations

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Min; Zhao, Xiao-Yu; Qiao, Hui; Bai, Li; Han, Hong-Fei; Fang, Ming; Wu, Zhi-Lei; Zou, Ji-Yong

    2017-09-01

    In search of simple approaches to rationally modulate the single-molecule magnet behaviour in polynuclear lanthanide compound, a new system containing two structurally closely related dinuclear dysprosium complexes, namely [Dy2(hfac)4L2] (1) and [Dy2(hfac)4L‧2] (2) (hfac = hexafluoroacetylacetonate, HL = 2-[4-methylaniline-imino]methyl]-8-hydroxyquinoline and HL' = 2-[(3,4-dimethylaniline)-imino]methyl]-8-hydroxyquinoline), are successfully synthesized and the structure-dependent magnetic properties are investigated. The two Dy2 compounds display only slight variations in the coordination geometries of the center Dy(III) ion but display remarkably different single-molecule magnet behaviors with the anisotropic barriers (ΔE/kB) of 9.91 K for 1 and 20.57 K for 2. The different magnetic relaxation behaviors of the two Dy2 complexes mainly originate from the different chemical environments of the central DyIII ions.

  12. Field-controlled structures in ferromagnetic cholesteric liquid crystals.

    PubMed

    Medle Rupnik, Peter; Lisjak, Darja; Čopič, Martin; Čopar, Simon; Mertelj, Alenka

    2017-10-01

    One of the advantages of anisotropic soft materials is that their structures and, consequently, their properties can be controlled by moderate external fields. Whereas the control of materials with uniform orientational order is straightforward, manipulation of systems with complex orientational order is challenging. We show that a variety of structures of an interesting liquid material, which combine chiral orientational order with ferromagnetic one, can be controlled by a combination of small magnetic and electric fields. In the suspensions of magnetic nanoplatelets in chiral nematic liquid crystals, the platelet's magnetic moments orient along the orientation of the liquid crystal and, consequently, the material exhibits linear response to small magnetic fields. In the absence of external fields, orientations of the liquid crystal and magnetization have wound structure, which can be either homogeneously helical, disordered, or ordered in complex patterns, depending on the boundary condition at the surfaces and the history of the sample. We demonstrate that by using different combinations of small magnetic and electric fields, it is possible to control reversibly the formation of the structures in a layer of the material. In such a way, different periodic structures can be explored and some of them may be suitable for photonic applications. The material is also a convenient model system to study chiral magnetic structures, because it is a unique liquid analog of a solid helimagnet.

  13. Structure, magnetic behavior, and anisotropy of homoleptic trinuclear lanthanoid 8-quinolinolate complexes.

    PubMed

    Chilton, Nicholas F; Deacon, Glen B; Gazukin, Olga; Junk, Peter C; Kersting, Berthold; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Schleife, Frederik; Shome, Mahasish; Turner, David R; Walker, Julia A

    2014-03-03

    Three complexes of the form [Ln(III)3(OQ)9] (Ln = Gd, Tb, Dy; OQ = 8-quinolinolate) have been synthesized and their magnetic properties studied. The trinuclear complexes adopt V-shaped geometries with three bridging 8-quinolinolate oxygen atoms between the central and peripheral eight-coordinate metal atoms. The magnetic properties of these three complexes differ greatly. Variable-temperature direct-current (dc) magnetic susceptibility measurements reveal that the gadolinium and terbium complexes display weak antiferromagnetic nearest-neighbor magnetic exchange interactions. This was quantified in the isotropic gadolinium case with an exchangecoupling parameter of J = -0.068(2) cm(-1). The dysprosium compound displays weak ferromagnetic exchange. Variable-frequency and -temperature alternating-current magnetic susceptibility measurements on the anisotropic cases reveal that the dysprosium complex displays single-molecule-magnet behavior, in zero dc field, with two distinct relaxation modes of differing time scales within the same molecule. Analysis of the data revealed anisotropy barriers of Ueff = 92 and 48 K for the two processes. The terbium complex, on the other hand, displays no such behavior in zero dc field, but upon application of a static dc field, slow magnetic relaxation can be observed. Ab initio and electrostatic calculations were used in an attempt to explain the origin of the experimentally observed slow relaxation of the magnetization for the dysprosium complex.

  14. Encoding complexity within supramolecular analogues of frustrated magnets

    NASA Astrophysics Data System (ADS)

    Cairns, Andrew B.; Cliffe, Matthew J.; Paddison, Joseph A. M.; Daisenberger, Dominik; Tucker, Matthew G.; Coudert, François-Xavier; Goodwin, Andrew L.

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

  15. The emergence of complex behaviours in molecular magnetic materials.

    PubMed

    Goss, Karin; Gatteschi, Dante; Bogani, Lapo

    2014-09-14

    Molecular magnetism is considered an area where magnetic phenomena that are usually difficult to demonstrate can emerge with particular clarity. Over the years, however, less understandable systems have appeared in the literature of molecular magnetic materials, in some cases showing features that hint at the spontaneous emergence of global structures out of local interactions. This ingredient is typical of a wider class of problems, called complex behaviours, where the theory of complexity is currently being developed. In this perspective we wish to focus our attention on these systems and the underlying problematic that they highlight. We particularly highlight the emergence of the signatures of complexity in several molecular magnetic systems, which may provide unexplored opportunities for physical and chemical investigations.

  16. Interactions of Twisted Ω-loops in a Model Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Jouve, L.; Brun, A. S.; Aulanier, G.

    2018-04-01

    This study aims at investigating the ability of strong interactions between magnetic field concentrations during their rise through the convection zone to produce complex active regions at the solar surface. To do so, we perform numerical simulations of buoyant magnetic structures evolving and interacting in a model solar convection zone. We first produce a 3D model of rotating convection and then introduce idealized magnetic structures close to the bottom of the computational domain. These structures possess a certain degree of field line twist and they are made buoyant on a particular extension in longitude. The resulting twisted Ω-loops will thus evolve inside a spherical convective shell possessing large-scale mean flows. We present results on the interaction between two such loops with various initial parameters (mainly buoyancy and twist) and on the complexity of the emerging magnetic field. In agreement with analytical predictions, we find that if the loops are introduced with opposite handedness and same axial field direction or the same handedness but opposite axial field, they bounce against each other. The emerging region is then constituted of two separated bipolar structures. On the contrary, if the loops are introduced with the same direction of axial and peripheral magnetic fields and are sufficiently close, they merge while rising. This more interesting case produces complex magnetic structures with a high degree of non-neutralized currents, especially when the convective motions act significantly on the magnetic field. This indicates that those interactions could be good candidates to produce eruptive events like flares or CMEs.

  17. The Ultramafic Complex of Reinfjord: from the Magnetic Petrology to the Interpretation of the Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.

    2017-04-01

    A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local effects of serpentinization.

  18. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2- Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations.

    PubMed

    Suturina, Elizaveta A; Nehrkorn, Joscha; Zadrozny, Joseph M; Liu, Junjie; Atanasov, Mihail; Weyhermüller, Thomas; Maganas, Dimitrios; Hill, Stephen; Schnegg, Alexander; Bill, Eckhard; Long, Jeffrey R; Neese, Frank

    2017-03-06

    The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh 4 ) 2 [Co(SPh) 4 ] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh) 4 ] 2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh) 4 ] 2- : (PPh 4 ) 2 [Co(SPh) 4 ] (1) and (NEt 4 ) 2 [Co(SPh) 4 ] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh) 4 ] 2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm -1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm -1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

  19. Model for dynamic self-assembled magnetic surface structures

    NASA Astrophysics Data System (ADS)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.

    2010-07-01

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  20. Colloidal assembly directed by virtual magnetic moulds

    NASA Astrophysics Data System (ADS)

    Demirörs, Ahmet F.; Pillai, Pramod P.; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A.

    2013-11-01

    Interest in assemblies of colloidal particles has long been motivated by their applications in photonics, electronics, sensors and microlenses. Existing assembly schemes can position colloids of one type relatively flexibly into a range of desired structures, but it remains challenging to produce multicomponent lattices, clusters with precisely controlled symmetries and three-dimensional assemblies. A few schemes can efficiently produce complex colloidal structures, but they require system-specific procedures. Here we show that magnetic field microgradients established in a paramagnetic fluid can serve as `virtual moulds' to act as templates for the assembly of large numbers (~108) of both non-magnetic and magnetic colloidal particles with micrometre precision and typical yields of 80 to 90 per cent. We illustrate the versatility of this approach by producing single-component and multicomponent colloidal arrays, complex three-dimensional structures and a variety of colloidal molecules from polymeric particles, silica particles and live bacteria and by showing that all of these structures can be made permanent. In addition, although our magnetic moulds currently resemble optical traps in that they are limited to the manipulation of micrometre-sized objects, they are massively parallel and can manipulate non-magnetic and magnetic objects simultaneously in two and three dimensions.

  1. Direct-write 3D printing of NdFeB bonded magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compton, Brett Gibson; Kemp, James William; Novikov, Timofei V.

    We report a method to fabricate Nd-Fe-B bonded magnets of complex shape via extrusion-based additive manufacturing (AM), also known as 3D-printing. We have successfully formulated a 3D-printable epoxy-based ink for direct-write AM with anisotropic MQA NdFeB magnet particles that can be deposited at room temperature. The new feedstocks contain up to 40 vol.% MQA anisotropic Nd-Fe-B magnet particles, and they are shown to remain uniformly dispersed in the thermoset matrix throughout the deposition process. Ring, bar, and horseshoe-type 3D magnet structures were printed and cured in air at 100°C without degrading the magnetic properties. Lastly, this study provides a newmore » pathway for fabricating Nd-Fe-B bonded magnets with complex geometry at low temperature, and presents new opportunities for fabricating multifunctional hybrid structures and devices.« less

  2. Direct-write 3D printing of NdFeB bonded magnets

    DOE PAGES

    Compton, Brett Gibson; Kemp, James William; Novikov, Timofei V.; ...

    2016-08-17

    We report a method to fabricate Nd-Fe-B bonded magnets of complex shape via extrusion-based additive manufacturing (AM), also known as 3D-printing. We have successfully formulated a 3D-printable epoxy-based ink for direct-write AM with anisotropic MQA NdFeB magnet particles that can be deposited at room temperature. The new feedstocks contain up to 40 vol.% MQA anisotropic Nd-Fe-B magnet particles, and they are shown to remain uniformly dispersed in the thermoset matrix throughout the deposition process. Ring, bar, and horseshoe-type 3D magnet structures were printed and cured in air at 100°C without degrading the magnetic properties. Lastly, this study provides a newmore » pathway for fabricating Nd-Fe-B bonded magnets with complex geometry at low temperature, and presents new opportunities for fabricating multifunctional hybrid structures and devices.« less

  3. Magnetic order and phase transition in the iron oxysulfide La2O2Fe2OS2

    NASA Astrophysics Data System (ADS)

    Oogarah, Reeya K.; Suard, Emmanuelle; McCabe, Emma E.

    2018-01-01

    The Mott-insulating iron oxychalcogenides exhibit complex magnetic behaviour and we report here a neutron diffraction investigation into the magnetic ordering in La2O2Fe2OS2. This quaternary oxysulfide adopts the anti-Sr2MnO2Mn2Sb2-type structure (described by space group I4/mmm) and orders antiferromagnetically below TN = 105 K. We consider both its long-range magnetic structure and its magnetic microstructure, and the onset of magnetic order. It adopts the multi-k vector "2k" magnetic structure (k = (1/2 0 1/2) and k = (0 1/2 1/2) and has similarities with related iron oxychalcogenides, illustrating the robust nature of the "2k" magnetic structure.

  4. MAGNETIC BRAIDING AND PARALLEL ELECTRIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmot-Smith, A. L.; Hornig, G.; Pontin, D. I.

    2009-05-10

    The braiding of the solar coronal magnetic field via photospheric motions-with subsequent relaxation and magnetic reconnection-is one of the most widely debated ideas of solar physics. We readdress the theory in light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field towardmore » an ideal force-free equilibrium; the field is found to remain smooth throughout the relaxation, with only large-scale current structures. However, a highly filamentary integrated parallel current structure with extremely short length-scales is found in the field, with the associated gradients intensifying during the relaxation process. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of the coronal field. Thus the inevitable consequence of the magnetic braiding process is a loss of equilibrium of the magnetic field, probably via magnetic reconnection events.« less

  5. Structural and magnetic characterization of three tetranuclear Cu(II) complexes with face-sharing-dicubane/double-open-cubane like core framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Aparup; Bertolasi, Valerio; Figuerola, Albert

    Three novel tetranuclear copper(II) complexes namely [Cu{sub 4}(L{sup 1}){sub 4}]∙2(dmf) (1), [Cu{sub 4}(L{sup 1}){sub 4}] (2) and [Cu{sub 4}(L{sup 2}){sub 2}(HL{sup 2}){sub 2}(H{sub 2}O){sub 2}]∙2(ClO{sub 4})·6(H{sub 2}O) (3) (H{sub 2}L{sup 1}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)phenol; H{sub 2}L{sup 2}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)−6-methoxyphenol)) were synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligands. The structural determination reveals that crystallizes in the monoclinic system with space group C2/c, whereas both the and crystallize in the triclinic system with space group P-1. and possess face-sharing dicubane core, on the other hand complex 3 has double open cubane core structure. The copper(II) ions in the cubanemore » core are in distorted square planar geometries, and weak π…π and C–H…π interactions lead to formation of a 2D supramolecular architecture for and . At room temperature and , exhibit fluorescence with a quantum yield (Φ{sub s}) of 0.47, 0.49 and 0.38, respectively. Variable temperature magnetic susceptibility measurements in the range 2–300 K indicate an overall weak antiferromagnetic exchange coupling in all complexes. The PHI program was used to study their magnetic behaviour. In agreement with their face-sharing dicubane structure, a Hamiltonian of the type H =– J{sub 1}(S{sub 1}S{sub 2}+S{sub 1}S{sub 2’}+S{sub 1'}S{sub 2}+S{sub 1'}S{sub 2’}) – J{sub 2}S{sub 1}S{sub 1’}, where S{sub 1} = S{sub 1’} = S{sub 2} = S{sub 2’} = S{sub Cu} =1/2, was used for studying and . Simulations performed suggest magnetic exchange constants with values close to J{sub 1} =−20 cm{sup −1} and J{sub 2} =0 cm{sup -1} for these complexes. On the other hand, the spin Hamiltonian H =– J{sub 1}(S{sub 1}S{sub 4}+S{sub 2}S{sub 3}) – J{sub 2}(S{sub 1}S{sub 3}+S{sub 2}S{sub 4}) – J{sub 3}S{sub 1}S{sub 2}, where S{sub 1} = S{sub 2} = S{sub 3} = S{sub 4} = S{sub Cu} =1/2, was used to study the magnetic behaviour of the double open cubane core of and a good agreement between the experimental and simulated results was found by using the parameters g{sub 1} = g{sub 2} =2.20, g{sub 3} = g{sub 4} =2.18, J{sub 1} =−36 cm{sup -1}, J{sub 2} =−44 cm{sup -1} and J{sub 3} =0 cm{sup -1}. - Graphical abstract: Tetranuclear Cu(II) complexes with face-sharing-dicubane / double-open-cubane like core frameworks were synthesized and characterized by crystal structure and magnetic analysis. Variable temperature magnetic properties corroborate with their structural arrangement. - Highlights: • Novel tetranuclear copper(II) complexes have been structurally characterized. • Complexes possess face-sharing dicubane/double open cubane core structures. • Variable temperature magnetic measurements reveal antiferromagnetic coupling. • PHI program was used to explain the observed magnetic properties.« less

  6. Magnetic Ordering in Sr 3YCo 4O 10+x

    DOE PAGES

    Kishida, Takayoshi; Kapetanakis, Myron D.; Yan, Jiaqiang; ...

    2016-01-28

    Transition-metal oxides often exhibit complex magnetic behavior due to the strong interplay between atomic-structure, electronic and magnetic degrees of freedom. Cobaltates, especially, exhibit complex behavior because of cobalt’s ability to adopt various valence and spin state configurations. The case of the oxygen-deficient perovskite Sr 3YCo 4O 10+x (SYCO) has gained considerable attention because of persisting uncertainties about its structure and the origin of the observed room temperature ferromagnetism. Here we report a combined investigation of SYCO using aberration-corrected scanning transmission electron microscopy and density functional theory calculations.

  7. Theoretical study of the magnetic exchange coupling behavior substituting Cr(III) with Mo(III) in cyano-bridged transition metal complexes

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Quan; Luo, Cheng-Lin

    Molecular magnetism in a series of cyano-bridged first and second transition metal complexes has been investigated using density functional theory (DFT) combined with the broken-symmetry (BS) approach. Several exchange-correlation (XC) functionals in the ADF package were used to investigate complexes I [-(Me3tacn)2(cyclam)NiMo2(CN)6]2+, II [-(Me3tacn)2(cyclam)Ni-Cr2(CN)6]2+, III [(Me3tacn)6MnMo6(CN)18]2+, and IV [(Me3tacn)6MnCr6(CN)18]2+ (Me3tacn = N,N?,N‴-trimethyl-1,4,7-triazacyclononane). For models A (the molded structure of complex I) and B (the modeled structure of complex II), all the XCs given qualitatively reasonable results and predict ferromagnetic coupling character between M (M = MoIII for A or CrIII for B) and NiII in coincidence with the experimental results (see Tables and ). The calculated using Operdew, OPBE, O3LYP, and B3LYP functionals and experimental J values show that substituting CrIII with MoIII will enhance the ferromagnetic exchange coupling interactions. But VWN, PW91, PBE, VSXC, and tau-HCTH functionals have no way to differentiate the relative strength of the intramolecular magnetic exchange coupling interactions of A and B correctly. For models C (the modeled structure of complex III) and D (the modeled structure of complex IV), all the XCs in ADF and B3LYP in Gaussian 03 with several basis sets show that substituting CrIII with MoIII will enhance the antiferromagnetic exchange coupling interactions. From the above calculations, the substitution of CrIII by MoIII will enhance the magnetic coupling interactions, whether the magnetic coupling interactions are ferro- or antiferromagnetic. Moreover, Kahn's model was applied to investigate the above facts.

  8. Magnetic field structure and evolution features of selected stars. III.

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2016-01-01

    We present the results of modeling for about a hundred magnetic stars. It is shown that the dipole representation of magnetic field structures describes the distribution of the magnetic field over stellar surfaces fairly well. We analyze some patterns which support the relic hypothesis of magnetic field formation.Arguments are given in favor of the assumption that themain properties ofmagnetic stars—slow rotation, predominant orientation of magnetic field lines along the plane of the rotation equator, complex internal structures of magnetic fields—are acquired in the process of gravitational collapse. There are no conditions for that in the non-stationary Hayashi phase and in the stage of a radiative young star.

  9. Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegalski, Michael D; Takamura, Y; Mehta, A

    Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.

  10. Application of Nuclear Magnetic Resonance and Hybrid Methods to Structure Determination of Complex Systems.

    PubMed

    Prischi, Filippo; Pastore, Annalisa

    2016-01-01

    The current main challenge of Structural Biology is to undertake the structure determination of increasingly complex systems in the attempt to better understand their biological function. As systems become more challenging, however, there is an increasing demand for the parallel use of more than one independent technique to allow pushing the frontiers of structure determination and, at the same time, obtaining independent structural validation. The combination of different Structural Biology methods has been named hybrid approaches. The aim of this review is to critically discuss the most recent examples and new developments that have allowed structure determination or experimentally-based modelling of various molecular complexes selecting them among those that combine the use of nuclear magnetic resonance and small angle scattering techniques. We provide a selective but focused account of some of the most exciting recent approaches and discuss their possible further developments.

  11. Inorganic anion-dependent assembly of zero-, one-, two- and three-dimensional Cu(II)/Ag(I) complexes under the guidance of the HSAB theory: Synthesis, structure, and magnetic property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaru; Xing, Zhiyan; Zhang, Xiao

    To systematically explore the influence of inorganic anions on building coordination complexes, five novel complexes based on 1-(benzotriazole-1-methyl)−2-propylimidazole (bpmi), [Cu(bpmi){sub 2}(Ac){sub 2}]·H{sub 2}O (1), [Cu(bpmi){sub 2}(H{sub 2}O){sub 2}]·2NO{sub 3}·2H{sub 2}O (2), [Cu(bpmi)(N{sub 3}){sub 2}] (3), [Ag(bpmi)(NO{sub 3})] (4) and [Cu{sub 3}(bpmi){sub 2}(SCN){sub 4}(DMF)] (5) (Ac{sup −}=CH{sub 3}COO{sup −}, DMF=N,N-Dimethylformamide) are synthesized through rationally introducing Cu(II) salts and Ag(I) salt with different inorganic anions. X-ray single-crystal analyses reveal that these complexes show interesting structural features from mononuclear (1), one-dimensional (2 and 3), two-dimensional (4) to three-dimensional (5) under the influence of inorganic anions with different basicities. The structural variation can bemore » explained by the hard-soft-acid-base (HSAB) theory. Magnetic susceptibility measurement indicates that complex 3 exhibits an antiferromagnetic coupling between adjacent Cu(II) ions. - Graphical abstract: Five new Cu(II)/Ag(I) complexes show interesting structural features from mononuclear, one-dimension, two-dimension to three-dimension under the influence of inorganic anions. The structural variation can be explained by the HSAB theory. - Highlights: • Five inorganic anion-dependent complexes are synthesized. • Structural variation can be explained by the hard-soft-acid-base (HSAB) theory. • The magnetic property of complex has been studied.« less

  12. [Fe(bpb)(CN)2]- as a versatile building block for the design of novel low-dimensional heterobimetallic systems: synthesis, crystal structures, and magnetic properties of cyano-bridged Fe(III)-Ni(II) complexes [(bpb)(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate].

    PubMed

    Ni, Zhong-Hai; Kou, Hui-Zhong; Zhao, Yi-Hua; Zheng, Lei; Wang, Ru-Ji; Cui, Ai-Li; Sato, Osamu

    2005-03-21

    A dicyano-containing [Fe(bpb)(CN)2]- building block has been employed for the synthesis of cyano-bridged heterometallic Ni(II)-Fe(III) complexes. The presence of steric bpb(2-) ligand around the iron ion results in the formation of low-dimensional species: five are neutral NiFe2 trimers and three are one-dimensional (1D). The structure of the 1D complexes consists of alternating [NiL]2+ and [Fe(bpb)(CN)2]- generating a cyano-bridged cationic polymeric chain and the perchlorate as the counteranion. In all complexes, the coordination geometry of the nickel ions is approximately octahedral with the cyano nitrogen atoms at the trans positions. Magnetic studies of seven complexes show the presence of ferromagnetic interaction between the metal ions through the cyano bridges. Variable temperature magnetic susceptibility investigations of the trimeric complexes yield the following J(NiFe) values (based on the spin exchange Hamiltonian H = -2J(NiFe) S(Ni) (S(Fe(1)) + S(Fe(2))): J(NiFe) = 6.40(5), 7.8(1), 8.9(2), and 6.03(4) cm(-1), respectively. The study of the magneto-structural correlation reveals that the cyanide-bridging bond angle is related to the strength of magnetic exchange coupling: the larger the Ni-N[triple bond]C bond angle, the stronger the Ni- - -Fe magnetic interaction. One 1D complex exhibits long-range antiferromagnetic ordering with T(N) = 3.5 K. Below T(N) (1.82 K), a metamagnetic behavior was observed with the critical field of approximately 6 kOe. The present research shows that the [Fe(bpb)(CN)2]- building block is a good candidate for the construction of low-dimensional magnetic materials.

  13. D2+ Molecular complex in non-uniform height quantum ribbon under crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Suaza, Y. A.; Laroze, D.; Fulla, M. R.; Marín, J. H.

    2018-05-01

    The D2+ molecular complex fundamental properties in a uniform and multi-hilled semiconductor quantum ribbon under orthogonal electric and magnetic fields are theoretically studied. The energy structure is calculated by using adiabatic approximation combined with diagonalization procedure. The D2+ energy structure is more strongly controlled by the geometrical structural hills than the Coulomb interaction. The formation of vibrational and rotational states is discussed. Aharanov-Bohm oscillation patterns linked to rotational states as well as the D2+ molecular complex stability are highly sensitive to the number of hills while electric field breaks the electron rotational symmetry and removes the energy degeneration between low-lying states.

  14. Mapping magnetoelastic response of terfenol-D ring structure

    NASA Astrophysics Data System (ADS)

    Youssef, George; Newacheck, Scott; Lopez, Mario

    2017-05-01

    The magneto-elastic response of a Terfenol-D (Tb.3Dy.7Fe1.92) ring has been experimentally investigated and analyzed. Ring structures give rise to complex behavior based on the interaction of the magnetic field with the material, which is further compounded with anisotropies associated with mechanical and magnetic properties. Discrete strain measurements were used to construct magnetostriction maps, which are used to elucidate the non-uniformity of the strain distribution due to geometrical factors and magnetic field interactions, namely, magnetic shielding and stable onion state in the ring structure.

  15. Structure and Function of Iron-Loaded Synthetic Melanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiwen; Xie, Yijun; Wang, Zhao

    We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure- property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding ofmore » this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins.« less

  16. Neutron reflectometry as a tool to study magnetism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felcher, G. P.

    1999-09-21

    Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane ofmore » the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales.« less

  17. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less

  18. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    DOE PAGES

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; ...

    2016-02-04

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less

  19. Multiscale Dynamics of Solar Magnetic Structures

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries.We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  20. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  1. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  2. Spin Polarized Transport in Multilayer Structures with Complex Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Sahakyan, Avag; Poghosyan, Anahit; Movsesyan, Ruzan; Kocharian, Armen

    The spin transport and spin polarization in a new class of multilayer structures are investigated for non-collinear and noncoplanar magnetic configurations containing repetitive magnetic layers. The magnetic configuration of the structure dictates the existence of certain degrees of freedom that determines magnetic transport and polarization properties. We consider magnetic structures in magnetic multilayers with canted spin configurations separated by non-magnetic quantum well so that the exchange interaction between the neighbor barriers can be ignored. Configurations of magnetizations in barriers include some structures consisting of two ''ferromagnetic'' or ''antiferromagnetic'' domains twisted relative to each other by a certain angle (angle noncollinearity). The similar system, formed from two noncollinear domains separated by canted ''magnetic defect'' is also considered. The above mentioned properties of these systems depend strongly on the type of magnetic configuration and variation of certain degrees of freedom. Simple theoretical approach with the transfer matrix method is carried out to understand and predict the magnetic properties of the multilayer systems. The work at California University Los Angeles was supported by the National Science Foundation-Partnerships for Research and Education in Materials under Grant DMR-1523588.

  3. Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices

    PubMed Central

    Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-01-01

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule–electrode interface. PMID:27929089

  4. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification

    NASA Astrophysics Data System (ADS)

    Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.

    2017-11-01

    In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.

  5. Evolution of heliospheric magnetized configurations via topological invariants

    NASA Astrophysics Data System (ADS)

    Roth, Ilan

    2013-07-01

    The analogy between magnetohydrodynamics (MHD) and knot theory is utilized in presenting a new method for an analysis of stability and evolution of complex magnetic heliospheric flux tubes. Planar projection of a three-dimensional magnetic configuration depicts the structure as a two-dimensional diagram with crossings, to which one may assign mathematical operations leading to robust topological invariants. These invariants enrich the topological information of magnetic configurations beyond helicity. It is conjectured that the field which emerges from the solar photosphere is structured as one of the simplest knots-unknot or prime knot-and these flux ropes are then stretched while carried by the solar wind into the interplanetary medium. Preservation of invariants for small diffusivity and large cross section of the emerging magnetic flux makes them impervious to large scale reconnection, allowing us to predict the observed structures at 1 AU as elongated prime knots. Similar structures may be observed in magnetic clouds which got disconnected from their footpoints and in ion drop-out configurations from a compact flare source in solar impulsive solar events. Observation of small scale magnetic features consistent with prime knots may indicate spatial intermittency and non-Gaussian statistics in the turbulent cascade process. For flux tubes with higher resistivity, magnetic energy decay rate should decrease with increased knot complexity as the invariants are then harder to be violated. These observations could be confirmed if adjacent satellites happen to measure distinctly oriented magnetic fields with directionally varying suprathermal particle fluxes.

  6. Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity

    ERIC Educational Resources Information Center

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-01-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…

  7. Co(II) and Ni(II) complexes based on anthraquinone-1,4,5,8-tetracarboxylic acid (H4AQTC): canted antiferromagnetism and slow magnetization relaxation in {[Co2(AQTC)(H2O)6]·6H2O}.

    PubMed

    Yan, Wei-Hong; Bao, Song-Song; Huang, Jian; Ren, Min; Sheng, Xiao-Li; Cai, Zhong-Sheng; Lu, Chang-Sheng; Meng, Qing-Jin; Zheng, Li-Min

    2013-06-21

    Three coordination polymers {[Co2(AQTC)(H2O)6]·6H2O}n (1), {[M2(AQTC)(bpym)(H2O)6]·6H2O}n (M = Co(2), Ni(3)) have been synthesized and structurally characterized, where H4AQTC is anthraquinone-1,4,5,8-tetracarboxylic acid and bpym is 2,2'-bipyrimidine. Complex 1 features a 3-D structure, where layers of Co2(AQTC) are cross-linked by Co-H2O chains. Complexes 2 and 3 are isostructural and display 1-D chain structures. The chains are connected through hydrogen-bonding interactions to form 3-D supramolecular structures. Magnetic properties of these complexes are investigated. Compound 1 shows canted antiferromagnetism and slow relaxation below 4.0 K. For complexes 2 and 3, dominant antiferromagnetic interactions are observed. The luminescent properties of the three complexes are investigated as well.

  8. Field-induced reentrant magnetoelectric phase in LiNiPO 4

    DOE PAGES

    Toft-Petersen, Rasmus; Fogh, Ellen; Kihara, Takumi; ...

    2017-02-21

    Using pulsed magnetic fields up to 30 T we have measured the bulk magnetization and electrical polarization of LiNiPO 4 and have studied its magnetic structure by time-of-flight neutron Laue diffraction. Our data establish the existence of a reentrant magnetoelectric phase between 19 T and 21 T. We show that a magnetized version of the zero field commensurate structure explains the magnetoelectric response quantitatively. The stability of this structure suggests a field-dependent spin anisotropy. Above 21 T , a magnetoelectrically inactive, short-wavelength incommensurate structure is identified. Lastly, our results demonstrate the combination of pulsed fields with epithermal neutron Laue diffractionmore » as a powerful method to probe even complex phase diagrams in strong magnetic fields.« less

  9. Magnetic imaging of the feeding system of oceanic volcanic islands: El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Blanco-Montenegro, Isabel; Nicolosi, Iacopo; Pignatelli, Alessandro; Chiappini, Massimo

    2008-04-01

    El Hierro is the youngest of the Canary Islands, a volcanic archipelago in the central Atlantic, near the African coast. The subaerial part of the island shows the characteristic shape of three convergent ridges that has been interpreted as a triple-arm rift system. At least four giant landslides formed wide, horseshoe embayments that separate these ridges. Recent studies based on high-resolution bathymetry, however, showed that the submarine rift structure is much more complex. We analysed an aeromagnetic anomaly data set acquired in 1993 by the Spanish National Geographic Institute in order to obtain a structural model of the island from a magnetic point of view. A digital elevation model of the volcanic edifice was divided into a mesh of prismatic cells, each of them with a top corresponding to the topographic height (or bathymetric depth in the marine area) and a bottom at a constant depth of 4000 m below sea level. A three-dimensional (3-D) inversion algorithm and forward modelling along representative profiles provided us with a magnetization distribution containing valuable information about the inner structure of the island. The magnetic model cast new light on the rift structure of El Hierro. In particular, high magnetization values have been mainly interpreted as intrusive complexes on which rift zones are rooted. Their location confirms the hypothesis of a complex rift structure in the marine area. The inverse magnetization that characterizes the NE submarine rift area implies that this part of the volcanic edifice formed during the Matuyama and, therefore, predates the NW submarine rift zone, which is normally magnetized. The N-S rift zone extending southwards from the island seems to be shifted to the west with respect to the bathymetric high in this area. This result suggests that the original rift zone was located in the area where the highest magnetizations presently occur so that the present morphology may reflect the westward collapse of the original ridge. In addition, very low magnetizations characterize the areas affected by giant landslides, indicating that magnetic anomalies can provide important constraints on the distribution of these catastrophic events.

  10. Rational Design of a Lanthanide-Based Complex Featuring Different Single-Molecule Magnets.

    PubMed

    Pointillart, F; Guizouarn, T; Lefeuvre, B; Golhen, S; Cador, O; Ouahab, L

    2015-11-16

    The rational synthesis of the 2-{1-methylpyridine-N-oxide-4,5-[4,5-bis(propylthio)tetrathiafulvalenyl]-1H-benzimidazol-2-yl}pyridine ligand (L) is described. It led to the tetranuclear complex [Dy4(tta)12(L)2] (Dy-Dy2-Dy) after coordination reaction with the precursor Dy(tta)3⋅2 H2O (tta(-) = 2-thenoyltrifluoroacetonate). The X-ray structure of Dy-Dy2-Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out-of-phase signal of the magnetic susceptibility with two distinct sets of data. The high- and low-frequency components were attributed to the two terminal mononuclear single-molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy-Dy2-Dy is a self-assembly of two known mononuclear SMMs bridged by a known dinuclear SMM. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures

    NASA Astrophysics Data System (ADS)

    Napoli, Rosalba; Currenti, Gilda

    2016-06-01

    High-resolution ground and marine magnetic data are exploited for a detailed definition of a 3D model of the Vulcano Island volcanic complex. The resulting 3D magnetic imaging, obtained by 3-D inverse modeling technique, has delivered useful constraints both to reconstruct the Vulcano Island evolution and to be used as input data for volcanic hazard assessment models. Our results constrained the depth and geometry of the main geo-structural features revealing more subsurface volcanic structures than exposed ones and allowing to elucidate the relationships between them. The recognition of two different magnetization sectors, approximatively coincident with the structural depressions of Piano caldera, in the southern half of the island, and La Fossa caldera at the north, suggests a complex structural and volcanic evolution. Magnetic highs identified across the southern half of the island reflect the main crystallized feeding systems, intrusions and buried vents, whose NNW-SSE preferential alignment highlights the role of the NNW-SSE Tindari-Letojanni regional system from the initial activity of the submarine edifice, to the more recent activity of the Vulcano complex. The low magnetization area, in the middle part of the island may result from hydrothermally altered rocks. Their presence not only in the central part of the volcano edifice but also in other peripheral areas, is a sign of a more diffuse historical hydrothermal activity than in present days. Moreover, the high magnetization heterogeneity within the upper flanks of La Fossa cone edifice is an imprint of a composite distribution of unaltered and altered rocks with different mechanical properties, which poses in this area a high risk level for failure processes especially during volcanic or hydrothermal crisis.

  12. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  13. Delicate crystal structure changes govern the magnetic properties of 1D coordination polymers based on 3d metal carboxylates.

    PubMed

    Gavrilenko, Konstantin S; Cador, Olivier; Bernot, Kevin; Rosa, Patrick; Sessoli, Roberta; Golhen, Stéphane; Pavlishchuk, Vitaly V; Ouahab, Lahcène

    2008-01-01

    Homo- and heterometallic 1D coordination polymers of transition metals (Co II, Mn II, Zn II) have been synthesized by an in-situ ligand generation route. Carboxylato-based complexes [Co(PhCOO)2]n (1 a, 1 b), [Co(p-MePhCOO)2]n (2), [ZnMn(PhCOO)4]n (3), and [CoZn(PhCOO)4]n (4) (PhCOOH=benzoic acid, p-MePhCOOH=p-methylbenzoic acid) have been characterized by chemical analysis, single-crystal X-ray diffraction, and magnetization measurements. The new complexes 2 and 3 crystallize in orthorhombic space groups Pnab and Pcab respectively. Their crystal structures consist of zigzag chains, with alternating M(II) centers in octahedral and tetrahedral positions, which are similar to those of 1 a and 1 b. Compound 4 crystallizes in monoclinic space group P2 1/c and comprises zigzag chains of M II ions in a tetrahedral coordination environment. Magnetic investigations reveal the existence of antiferromagnetic interactions between magnetic centers in the heterometallic complexes 3 and 4, while ferromagnetic interactions operate in homometallic compounds (1 a, 1 b, and 2). Compound 1 b orders ferromagnetically at TC=3.7 K whereas 1 a does not show any magnetic ordering down to 330 mK and displays typical single-chain magnet (SCM) behavior with slowing down of magnetization relaxation below 0.6 K. Single-crystal measurements reveal that the system is easily magnetized in the chain direction for 1 a whereas the chain direction coincides with the hard magnetic axis in 1 b. Despite important similarities, small differences in the molecular and crystal structures of these two compounds lead to this dramatic change in properties.

  14. Current systems of coronal loops in 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.

    2017-11-01

    Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-β conditions.

  15. A binuclear Mn(III) complex of a scorpiand-like ligand displaying a single unsupported Mn(III)-O-Mn(III) bridge.

    PubMed

    Blasco, Salvador; Cano, Joan; Clares, M Paz; García-Granda, Santiago; Doménech, Antonio; Jiménez, Hermas R; Verdejo, Begoña; Lloret, Francesc; García-España, Enrique

    2012-11-05

    The crystal structure of a binuclear Mn(III) complex of a scorpiand-like ligand (L) displays an unsupported single oxo bridging ligand with a Mn(III)-O-Mn(III) angle of 174.7°. Magnetic susceptibility measurements indicate strong antiferromagnetic coupling between the two metal centers. DFT calculations have been carried out to understand the magnetic behavior and to analyze the nature of the observed Jahn-Teller distortion. Paramagnetic (1)H NMR has been applied to rationalize the formation and magnetic features of the complexes formed in solution.

  16. Effect of a magnetic field on the track structure of low-energy electrons: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Bug, M. U.; Gargioni, E.; Guatelli, S.; Incerti, S.; Rabus, H.; Schulte, R.; Rosenfeld, A. B.

    2010-10-01

    The increasing use of MRI-guided radiation therapy evokes the necessity to investigate the potential impact of a magnetic field on the biological effectiveness of therapeutic radiation beams. While it is known that a magnetic field, applied during irradiation, can improve the macroscopic absorbed dose distribution of electrons in the tumor region, effects on the microscopic distribution of energy depositions and ionizations have not yet been investigated. An effect on the number of ionizations in a DNA segment, which is related to initial DNA damage in form of complex strand breaks, could be beneficial in radiation therapy. In this work we studied the effects of a magnetic field on the pattern of ionizations at nanometric level by means of Monte Carlo simulations using the Geant4-DNA toolkit. The track structure of low-energy electrons in the presence of a uniform static magnetic field of strength up to 14 T was calculated for a simplified DNA segment model in form of a water cylinder. In the case that no magnetic field is applied, nanodosimetric results obtained with Geant4-DNA were compared with those from the PTB track structure code. The obtained results suggest that any potential enhancement of complexity of DNA strand breaks induced by irradiation in a magnetic field is not related to modifications of the low-energy secondary electrons track structure.

  17. THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN’S OPEN–CLOSED FLUX BOUNDARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Wyper, P. F., E-mail: dpontin@maths.dundee.ac.uk, E-mail: peter.f.wyper@nasa.gov

    2015-05-20

    Global magnetic field extrapolations are now revealing the huge complexity of the Sun's corona, and in particular the structure of the boundary between open and closed magnetic flux. Moreover, recent developments indicate that magnetic reconnection in the corona likely occurs in highly fragmented current layers, and that this typically leads to a dramatic increase in the topological complexity beyond that of the equilibrium field. In this paper we use static models to investigate the consequences of reconnection at the open–closed flux boundary (“interchange reconnection”) in a fragmented current layer. We demonstrate that it leads to efficient mixing of magnetic fluxmore » (and therefore plasma) from open and closed field regions. This corresponds to an increase in the length and complexity of the open–closed boundary. Thus, whenever reconnection occurs at a null point or separator of this open–closed boundary, the associated separatrix arc of the so-called S-web in the high corona becomes not a single line but a band of finite thickness within which the open–closed boundary is highly structured. This has significant implications for the acceleration of the slow solar wind, for which the interaction of open and closed field is thought to be important, and may also explain the coronal origins of certain solar energetic particles. The topological structures examined contain magnetic null points, separatrices and separators, and include a model for a pseudo-streamer. The potential for understanding both the large scale morphology and fine structure observed in flare ribbons associated with coronal nulls is also discussed.« less

  18. Multi-wavelength Observations and Modeling of Solar Flares: Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Su, Y.

    2017-12-01

    We present a review of our recent investigations on multi-wavelength observations and magnetic field modeling of solar flares. High-resolution observations taken by NVST and BBSO/NST reveal unprecedented fine structures of the flaring regions. Observations by SDO, IRIS, and GOES provide the complementary information. The magnetic field models are constructed using either non-linear force free field extrapolations or flux rope insertion method. Our studies have shown that the flaring regions often consist of double or multiple flux ropes, which often exist at different heights. The fine flare ribbon structures may be due to the magnetic reconnection in the complex quasi separatrix layers. The magnetic field modeling of several large flares suggests that the so called hot-channel structure is corresponding to the erupting flux rope above the X-point in a magnetic configuration with Hyperbolic Flux Tube.

  19. Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    NASA Astrophysics Data System (ADS)

    Pikul, A. P.; Kaczorowski, D.; Gajek, Z.; Stȩpień-Damm, J.; Ślebarski, A.; Werwiński, M.; Szajek, A.

    2010-05-01

    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific-heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab initio band-structure calculations performed within the density-functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma No.74, Pearson symbol: oI24 ) with the lattice parameters a=7.1330(14)Å , b=9.7340(19)Å , and c=5.6040(11)Å . Analysis of the magnetic and XPS data revealed the presence of well-localized magnetic moments of trivalent cerium ions. All the physical properties were found to be highly anisotropic over the whole temperature range studied and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN=4.70(1)K and their subsequent spin rearrangement at Tt=4.48(1)K manifest themselves as distinct anomalies in the temperature characteristic of all the physical properties investigated and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2 , similar to that recently reported for an isostructural compound CeIr3Si2 . The electronic band-structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well-reproduced the experimental XPS valence-band spectrum.

  20. Dinuclear lanthanide complexes based on amino alcoholate ligands: Structure, magnetic and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Fang; Zhang, Cong-Ming; Guo, Jian-Ni; Yang, Meng; Li, Li-Cun

    2017-05-01

    Two binuclear lanthanide complexes [Ln2(hfac)6(HL)2] (LnIII = Dy(1), Tb(2); hfac = hexafluoroacetylacetonate, HL = (R)-2-amino-2-phenylethanol) have been successfully obtained by using amino alcoholate ligand. In two complexes, the Ln(III) ions are bridged by two alkoxido groups from HL ligands, resulting in binuclear complexes. The variable-temperature magnetic susceptibility studies indicate that there exists ferromagnetic interaction between two Ln(III) ions. Frequency dependent out-of-phase signals are observed for complex 1, suggesting SMM type behavior. Complexes 1 and 2 display intensely characteristic luminescent properties.

  1. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    PubMed

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  2. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  3. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe 83 B 17 During Solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirinale, D. G.; Messina, D.; Rustan, G. E.

    In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperaturemore » metastable structures.« less

  4. SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing, E-mail: ruishengzheng@sdu.edu.cn

    2016-06-01

    With the observations of the Solar Dynamics Observatory , we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection betweenmore » the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.« less

  5. Dzyaloshinskii-Moriya interaction and magnetic anisotropies in Uranium compounds

    NASA Astrophysics Data System (ADS)

    Sandratskii, L. M.

    2018-05-01

    We report on the first-principles study of complex noncollinear magnetic structures in Uranium compounds. We contrast two cases. The first is the periodic magnetic structure of U2Pd2In with exactly orthogonal atomic moments, the second is an incommensurate plane spiral structure of UPtGe where the angle between atomic moments of nearest neighbors is also close to 90°. We demonstrate that the hierarchy of magnetic interactions leading to the formation of the magnetic structure is opposite in the two cases. In U2Pd2In, the magnetic anisotropy plays the leading role, followed by the Dzyaloshinskii-Moriya interaction (DMI) interaction specifying the chirality of the structure. Here, the interatomic exchange interaction does not play important role. In UPtGe the hierarchy of the interactions is opposite. The leading interaction is the interatomic exchange interaction responsible for the formation of the incommensurate spiral structure followed by the DMI responsible for the selected chirality of the helix. The magnetic anisotropy is very weak that is a prerequisite for keeping the distortion of the helical structure weak.

  6. A serials of sandwich-like trinuclear and one-dimensional chain cyanide-bridged iron(III)-copper(II) complexes: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Shi, Jingwen; Lan, Wenlong; Ren, Yanjie; Liu, Qingyun; Liu, Hui; Dong, Yunhui; Zhang, Daopeng

    2018-04-01

    Four pyridinecarboxamide trans-dicyanideiron(III) building blocks and one macrocyclic copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a serials of cyanide-bridged FeIII-CuII complexes with different structure types. The series of complexes can be formulated as: {[Cu(Cyclam)][Fe(bpb)(CN)2]2}·4H2O (1), {{[Cu(Cyclam)][Fe(bpb)(CN)2]}ClO4}n·nH2O (2), and {[Cu(Cyclam)][Fe(bpmb)(CN)2]2}·4H2O (3), {[Cu(Cyclam)][Fe(bpClb)(CN)2]2}·4H2O (4) and {{[Cu(Cyclam)][Fe(bpdmb)(CN)2]}ClO4}n·2nCH3OH (5) (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2- = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate, bpdmb2- = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, Cyclam = 1,4,8,11-tetraazacyclotetradecane). All the complexes have been characterized by elemental analysis, IR spectra and structural determination. Single X-ray diffraction analysis shows the similar neutral sandwich-like structures for complexes 1, 3 and 4, in which the two cyano precursors acting as monodentate ligand through one of their two cyanide groups were coordinated face to face to central Cu(II) ion. The complexes 2 and 5 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(Cyclam)]2+ and [Fe(bpb/bpdmb)(CN)2]- with free ClO4- as balanced anion. Investigation over magnetic properties of the whole serials of complexes reveals the antiferromagnetic magnetic coupling between the neighboring cyanide-bridged Fe(III) and Cu(II) ions in complexes 3 and 4 and the ferromagnetic interaction in complexes 1, 2 and 5, respectively.

  7. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    DOE PAGES

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less

  8. Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective.

    PubMed

    Pardo, Emilio; Ruiz-García, Rafael; Cano, Joan; Ottenwaelder, Xavier; Lescouëzec, Rodrigue; Journaux, Yves; Lloret, Francesc; Julve, Miguel

    2008-06-07

    The aim and scope of this review is to show the general validity of the 'complex-as-ligand' approach for the rational design of metallosupramolecular assemblies of increasing structural and magnetic complexity. This is illustrated herein on the basis of our recent studies on oxamato complexes with transition metal ions looking for the limits of the research avenue opened by Kahn's pioneering research twenty years ago. The use as building blocks of mono-, di- and trinuclear metal complexes with a novel family of aromatic polyoxamato ligands allowed us to move further in the coordination chemistry-based approach to high-nuclearity coordination compounds and high-dimensionality coordination polymers. In order to do so, we have taken advantage of the new developments of metallosupramolecular chemistry and in particular, of the molecular-programmed self-assembly methods that exploit the coordination preferences of metal ions and specifically tailored ligands. The judicious choice of the oxamato metal building block (substitution pattern and steric requirements of the bridging ligand, as well as the electronic configuration and magnetic anisotropy of the metal ion) allowed us to control the overall structure and magnetic properties of the final multidimensional nD products (n = 0-3). These species exhibit interesting magnetic properties which are brand-new targets in the field of molecular magnetism, such as single-molecule or single-chain magnets, and the well-known class of molecule-based magnets. This unique family of molecule-based magnetic materials expands on the reported examples of nD species with cyanide and related oxalato and dithiooxalato analogues. Moreover, the development of new oxamato metal building blocks with potential photo or redox activity at the aromatic ligand counterpart will provide us with addressable, multifunctional molecular materials for future applications in molecular electronics and nanotechnology.

  9. Externally driven magnetic granular layers at a liquid/air interface: self-organization, flows and magnetic order

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2007-03-01

    Collective dynamics and pattern formation in ensembles of magnetic microparticles suspended at the liquid/air interface and subjected to an alternating magnetic field are studied. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (``snakes'') emerging in such systems in a certain range of field magnitudes and frequencies. These remarkable structures are directly related to surface waves in the liquid generated by the collective response of magnetic microparticles to the alternating magnetic field. In addition, a large-scale vortex flows are induced in the vicinity of the dynamic structures. Some features of the self-localized snake structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density. Self-assembled snakes have a complex magnetic order: the segments of the snake exhibit long-range antiferromagnetic ordering mediated by the surface wave, while each segment is composed of ferromagnetically aligned chains of microparticles. A phenomenological model describing magnetic behavior of the magnetic snakes in external magnetic fields is proposed.

  10. Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins.

    PubMed

    Lin, Guo; Gao, Chaohong; Zheng, Qiong; Lei, Zhixian; Geng, Huijuan; Lin, Zian; Yang, Huanghao; Cai, Zongwei

    2017-03-28

    Core-shell structured magnetic covalent organic frameworks (Fe 3 O 4 @COFs) were synthesized via a facile approach at room temperature. Combining the advantages of high porosity, magnetic responsiveness, chemical stability and selectivity, Fe 3 O 4 @COFs can serve as an ideal absorbent for the highly efficient enrichment of peptides and the simultaneous exclusion of proteins from complex biological samples.

  11. Sub-arcsecond observations of the solar X-ray corona

    NASA Technical Reports Server (NTRS)

    Golub, L.; Nystrom, G.; Herant, M.; Kalata, K.; Lovas, I.

    1990-01-01

    Results from a high-resolution multi-layer-coated X-ray imaging telescope, part of the Normal Incidence X-ray Telescope sounding rocket payload are presented. Images of the peak of a two-ribbon flare showed detailed structure within each ribbon, as well as the expected bright arches of emission connecting the ribbons. The number of X-ray bright points is small, consistent with predictions based on the previous solar cycle. Topology of the magnetic structure is complex and highly tangled, implying that the magnetic complexity of the photosphere is paralleled in the corona.

  12. Electronic Structure and Magnetic Interactions in the Radical Salt [BEDT-TTF]2[CuCl4].

    PubMed

    Calzado, Carmen J; Rodríguez-García, Bárbara; Galán Mascarós, José Ramón; Hernández, Norge Cruz

    2018-06-07

    The magnetic behavior and electric properties of the hybrid radical salt [BEDT-TTF] 2 [CuCl 4 ] have been revisited through extended experimental analyses and DDCI and periodic DFT plane waves calculations. Single crystal X-ray diffraction data have been collected at different temperatures, discovering a phase transition occurring in the 250-300 K range. The calculations indicate the presence of intradimer, interdimer, and organic-inorganic π-d interactions in the crystal, a magnetic pattern much more complex than the Bleaney-Bowers model initially assigned to this material. Although this simple model was good enough to reproduce the magnetic susceptibility data, our calculations demonstrate that the actual magnetic structure is significantly more intricate, with alternating antiferromagnetic 1D chains of the organic BEDT-TTF + radical, connected through weak antiferromagnetic interactions with the CuCl 4 2- ions. Combination of experiment and theory allowed us to unambiguously determine and quantify the leading magnetic interactions in the system. The density-of-states curves confirm the semiconductor nature of the system and the dominant organic contribution of the valence and conduction band edges. This general and combined approach appears to be fundamental in order to properly understand the magnetic structure of these complex materials, where experimental data can actually be fitted from a variety of models and parameters.

  13. Structural and catalytic characterization of a heterovalent Mn(II)Mn(III) complex that mimics purple acid phosphatases.

    PubMed

    Smith, Sarah J; Riley, Mark J; Noble, Christopher J; Hanson, Graeme R; Stranger, Robert; Jayaratne, Vidura; Cavigliasso, Germán; Schenk, Gerhard; Gahan, Lawrence R

    2009-11-02

    The binuclear heterovalent manganese model complex [Mn(II)Mn(III)(L1)(OAc)(2)] ClO(4) x H(2)O (H(2)L1 = 2-(((3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)-methyl)phenol) has been prepared and studied structurally, spectroscopically, and computationally. The magnetic and electronic properties of the complex have been related to its structure. The complex is weakly antiferromagnetically coupled (J approximately -5 cm(-1), H = -2J S(1) x S(2)) and the electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra identify the Jahn-Teller distortion of the Mn(III) center as predominantly a tetragonal compression, with a significant rhombic component. Electronic structure calculations using density functional theory have confirmed the conclusions derived from the experimental investigations. In contrast to isostructural M(II)Fe(III) complexes (M = Fe, Mn, Zn, Ni), the Mn(II)Mn(III) system is bifunctional possessing both catalase and hydrolase activities, and only one catalytically relevant pK(a) (= 8.2) is detected. Mechanistic implications are discussed.

  14. New concepts for molecular magnets

    NASA Astrophysics Data System (ADS)

    Pilawa, Bernd

    1999-03-01

    Miller and Epstein (1994) define molecular magnets as magnetic materials which are prepared by the low-temperature methods of the preparative chemistry. This definition includes molecular crystals of neutral radicals, radical salts and charge transfer complexes as well as metal complexes and polymers with unpaired spins (Dormann 1995). The challenge of molecular magnets consists in tailoring magnetic properties by specific modifications of the molecular units. The combination of magnetism with mechanical or electrical properties of molecular compounds promise materials of high technical interest (Gatteschi 1994a and 1994b, Möhwald 1996) and both the chemical synthesis of new molecular materials with magnetic properties as well as the physical investigation and explanation of these properties is important, in order to achieve any progress. This work deals with the physical characterization of the magnetic properties of molecular materials. It is organized as follows. In the first part molecular crystals of neutral radicals are studied. After briefly discussing the general magnetic properties of these materials and after an overview over the physical principles of exchange interaction between organic radicals I focus on the interplay between the crystallographic structure and the magnetic properties of various derivatives of the verdazyl and nitronyl nitroxide radicals. The magnetic properties of metal complexes are the subject of the second part. After an overview over the experimental and theoretical tools which are used for the investigation of the magnetic properties I shortly discuss the exchange coupling of transition metal ions and the magnetic properties of complexes of two and three metal ions. Special emphasis is given to spin cluster compounds. Spin cluster denote complexes of many magnetic ions. They are attractive as building blocks of molecular magnets as well as magnetic model compounds for the study of spin frustration, molecular super-paramagnetism and quasi one-dimensional magnets.

  15. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.

  16. Changes in magnetic domain structure during twin boundary motion in single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Kopecký, V.; Fekete, L.; Perevertov, O.; Heczko, O.

    2016-05-01

    The complexity of Ni-Mn-Ga single crystal originates from the interplay between ferromagnetic domain structure and ferroelastic twinned microstructure. Magnetic domain structure in the vicinity of single twin boundary was studied using magneto-optical indicator film and magnetic force microscopy technique. The single twin boundary of Type I was formed mechanically and an initial magnetization state in both variants were restored by local application of magnetic field (≈40 kA/m). The differently oriented variants exhibited either stripe or labyrinth magnetic domain pattern in agreement with the uniaxial magnetocrystalline anisotropy of the martensite. The twin boundary was then moved by compressive or tensile stress. The passage of the boundary resulted in the formation of granular or rake domains, respectively. Additionally, the specific magnetic domains pattern projected by twin boundary gradually vanished during twin boundary motion.

  17. Magnetic structure of rare-earth dodecaborides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemensmeyer, K.; Flachbart, K.; Gabani, S.

    2006-09-15

    We have investigated the magnetic structure of HoB{sub 12}, ErB{sub 12} and TmB{sub 12} by neutron diffraction on isotopically enriched single-crystalline samples. Results in zero field as well as in magnetic field up to 5T reveal modulated incommensurate magnetic structures in these compounds. The basic reflections can be indexed with q=(1/2+/-{delta}, 1/2+/-{delta}, 1/2+/-{delta}), where {delta}=0.035 both for HoB{sub 12} and TmB{sub 12} and with q=(3/2+/-{delta}, 1/2+/-{delta}, 1/2+/-{delta}), where {delta}=0.035, for ErB{sub 12}. In an applied magnetic field, new phases are observed. The complex magnetic structure of these materials seems to result from the interplay between the RKKY and dipole-dipole interaction.more » The role of frustration due to the fcc symmetry of dodecaborides and the crystalline electric field effect is also considered.« less

  18. Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Dumesnil, K.; Mangin, Ph

    2006-07-01

    Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.

  19. Magnetic Characterization of Direct-Write Free-Form Building Blocks for Artificial Magnetic 3D Lattices

    PubMed Central

    Al Mamoori, Mohanad K. I.; Keller, Lukas; Pieper, Jonathan; Winkler, Robert; Plank, Harald; Müller, Jens

    2018-01-01

    Three-dimensional (3D) nanomagnetism, where spin configurations extend into the vertical direction of a substrate plane allow for more complex, hierarchical systems and the design of novel magnetic effects. As an important step towards this goal, we have recently demonstrated the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures of ferromagnetic CoFe in shapes of nano-tree and nano-cube structures by means of focused electron beam induced deposition. Here, we present a comprehensive characterization of the magnetic properties of these structures by local stray-field measurements using a high-resolution micro-Hall magnetometer. Measurements in a wide range of temperatures and different angles of the externally applied magnetic field with respect to the surface plane of the sensor are supported by corresponding micromagnetic simulations, which explain the overall switching behavior of in part rather complex magnetization configurations remarkably well. In particular, the simulations yield coercive and switching fields that are in good quantitative correspondence with the measured coercive and switching fields assuming a bulk metal content of 100 at % consisting of bcc Co3Fe. We show that thermally-unstable magnetization states can be repetitively prepared and their lifetime controlled at will, a prerequisite to realizing dynamic and thermally-active magnetic configurations if the building blocks are to be used in lattice structures. PMID:29439553

  20. SPECTRO-POLARIMETRIC IMAGING REVEALS HELICAL MAGNETIC FIELDS IN SOLAR PROMINENCE FEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, M. J. Martínez; Sainz, R. Manso; Ramos, A. Asensio

    2015-03-20

    Solar prominences are clouds of cool plasma levitating above the solar surface and insulated from the million-degree corona by magnetic fields. They form in regions of complex magnetic topology, characterized by non-potential fields, which can evolve abruptly, disintegrating the prominence and ejecting magnetized material into the heliosphere. However, their physics is not yet fully understood because mapping such complex magnetic configurations and their evolution is extremely challenging, and must often be guessed by proxy from photometric observations. Using state-of-the-art spectro-polarimetric data, we reconstruct the structure of the magnetic field in a prominence. We find that prominence feet harbor helical magneticmore » fields connecting the prominence to the solar surface below.« less

  1. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGES

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  2. Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays.

    PubMed

    Liu, Yaohua; Ke, Xianglin

    2015-09-23

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  3. The structure of rotational discontinuities. [in solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle theta between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When theta is large, angular 'overshoots' are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (when theta is small), many different types of structure are seen, ranging from straight lines, to S-shaped curves, to complex, disorganized shapes.

  4. Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear {TMIII4 DyIII4 } (TM=Co and Cr) Single-Molecule Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan

    2017-01-31

    We report the synthesis, structural characterisation, magnetic properties and provide an ab initio analysis of the magnetic behaviour of two new heterometallic octanuclear coordination complexes containing Co III and Dy III ions. Single-crystal X-ray diffraction studies revealed molecular formulae of [Co III 4 Dy III 4 (μ-OH) 4 (μ 3 -OMe) 4 {O 2 CC(CH 3 ) 3 } 4 (tea) 4 (H 2 O) 4 ]⋅4 H 2 O (1) and [Co III 4 Dy III 4 (μ-F) 4 (μ 3 -OH) 4 (o-tol) 8 (mdea) 4 ]⋅ 3 H 2 O⋅EtOH⋅MeOH (2; tea 3- =triply deprotonated triethanolamine; mdea 2- =doubly deprotonated N-methyldiethanolamine; o-tol=o-toluate), and both complexes display an identical metallic core topology. Furthermore, the theoretical, magnetic and SMM properties of the isostructural complex, [Cr III 4 Dy III 4 (μ-F 4 )(μ 3 -OMe) 1.25 (μ 3 -OH) 2.75 (O 2 CPh) 8 (mdea) 4 ] (3), are discussed and compared with a structurally similar complex, [Cr III 4 Dy III 4 (μ 3 -OH) 4 (μ-N 3 ) 4 (mdea) 4 (O 2 CC(CH 3 ) 3 ) 4 ] (4). DC and AC magnetic susceptibility data revealed single-molecule magnet (SMM) behaviour for 1-4. Each complex displays dynamic behaviour, highlighting the effect of ligand and transition metal ion replacement on SMM properties. Complexes 2, 3 and 4 exhibited slow magnetic relaxation with barrier heights (U eff ) of 39.0, 55.0 and 10.4 cm -1 respectively. Complex 1, conversely, did not exhibit slow relaxation of magnetisation above 2 K. To probe the variance in the observed U eff  values, calculations by using CASSCF, RASSI-SO and POLY_ANISO routine were performed on these complexes to estimate the nature of the magnetic coupling and elucidate the mechanism of magnetic relaxation. Calculations gave values of J Dy-Dy as -1.6, 1.6 and 2.8 cm -1 for complexes 1, 2 and 3, respectively, whereas the J Dy-Cr interaction was estimated to be -1.8 cm -1 for complex 3. The developed mechanism for magnetic relaxation revealed that replacement of the hydroxide ion by fluoride quenched the quantum tunnelling of magnetisation (QTM) significantly, and led to improved SMM properties for complex 2 compared with 1. However, the tunnelling of magnetisation at low-lying excited states was still operational for 2, which led to low-temperature QTM relaxation. Replacement of the diamagnetic Co III ions with paramagnetic Cr III led to Cr III ⋅⋅⋅Dy III coupling, which resulted in quenching of QTM at low temperatures for complexes 3 and 4. The best example was found if both Cr III and fluoride were present, as seen for complex 3, for which both factors additively quenched QTM and led to the observation of highly coercive magnetic hysteresis loops above 2 K. Herein, we propose a synthetic strategy to quench the QTM effects in lanthanide-based SMMs. Our strategy differs from existing methods, in which parameters such as magnetic coupling are difficult to control, and it is likely to have implications beyond the Dy III SMMs studied herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structural comparative studies on new Mn(II), Cr(III) and Ru(III) complexes derived from 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ).

    PubMed

    Al-Assy, Waleed H; El-Askalany, Abdel Moneum H; Mostafa, Mohsen M

    2013-12-01

    The structure of a new Mn(II) complex, [Mn(TPTZ)Cl2(H2O)]⋅H2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c,a = 8.7202 (3)Å, b = 11.5712 (4)Å, c = 20.8675 (9)Å, β=11 (18) × 1010, V = 2029.27 (13)Å(3), Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (Mn(II), Cr(III) and Ru(III)). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Structural comparative studies on new MnII, CrIII and RuIII complexes derived from 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ)

    NASA Astrophysics Data System (ADS)

    Al-Assy, Waleed H.; El-Askalany, Abdel Moneum H.; Mostafa, Mohsen M.

    2013-12-01

    The structure of a new MnII complex, [Mn(TPTZ)Cl2(H2O)]ṡH2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c, a = 8.7202 (3) Å, b = 11.5712 (4) Å, c = 20.8675 (9) Å, β = 11 (18) × 1010, V = 2029.27 (13) Å3, Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (MnII, CrIII and RuIII). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment.

  7. A Low Spin Manganese(IV) Nitride Single Molecule Magnet

    PubMed Central

    Ding, Mei; Cutsail, George E.; Aravena, Daniel; Amoza, Martín; Rouzières, Mathieu; Dechambenoit, Pierre; Losovyj, Yaroslav; Pink, Maren

    2016-01-01

    Structural, spectroscopic and magnetic methods have been used to characterize the tris(carbene)borate compound PhB(MesIm)3Mn≡N as a four-coordinate manganese(IV) complex with a low spin (S = 1/2) configuration. The slow relaxation of the magnetization in this complex, i.e. its single-molecule magnet (SMM) properties, is revealed under an applied dc field. Multireference quantum mechanical calculations indicate that this SMM behavior originates from an anisotropic ground doublet stabilized by spin-orbit coupling. Consistent theoretical and experiment data show that the resulting magnetization dynamics in this system is dominated by ground state quantum tunneling, while its temperature dependence is influenced by Raman relaxation. PMID:27746891

  8. Controlling magnetism of a complex metallic system using atomic individualism.

    PubMed

    Mudryk, Y; Paudyal, D; Pecharsky, V K; Gschneidner, K A; Misra, S; Miller, G J

    2010-08-06

    When the complexity of a metallic compound reaches a certain level, a specific location in the structure may be critically responsible for a given fundamental property of a material while other locations may not play as much of a role in determining such a property. The first-principles theory has pinpointed a critical location in the framework of a complex intermetallic compound--Gd(5)Ge(4)--that resulted in a controlled alteration of the magnetism of this compound using precise chemical tools.

  9. Controlling Magnetism of a Complex Metallic System Using Atomic Individualism

    NASA Astrophysics Data System (ADS)

    Mudryk, Y.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Misra, S.; Miller, G. J.

    2010-08-01

    When the complexity of a metallic compound reaches a certain level, a specific location in the structure may be critically responsible for a given fundamental property of a material while other locations may not play as much of a role in determining such a property. The first-principles theory has pinpointed a critical location in the framework of a complex intermetallic compound—Gd5Ge4—that resulted in a controlled alteration of the magnetism of this compound using precise chemical tools.

  10. Charge Transfer Salts of BO with Paramagnetic Isothiocyanato Complex Anions: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III or Fe III, isoq=isoquinoline and BO=Bis(ethylenedioxo)tetrathiafulvalene

    NASA Astrophysics Data System (ADS)

    Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi

    2002-11-01

    The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.

  11. Solvothermal syntheses, structures, and magnetic properties of three cobalt coordination polymers constructed from naphthalene-1,4-dicarboxylic acid and bis(imidazole) linkers

    NASA Astrophysics Data System (ADS)

    Dong, Jun-Liang; He, Kun-Huan; Wang, Duo-Zhi; Zhang, Ying-Hui; Wang, Dan-Hong

    2018-07-01

    Three new Co(II) coordination polymers with formulas of {[Co2(L1)(1,4-NDC)2]·3H2O}n (1), [Co3(L2)2(HCOO)2(1,4-NDC)2]n (2) and [Co2(L2)(μ3-OH)(1,4-NDC)1.5]n (3) (1,4-H2NDC = Naphthalene-1,4-dicarboxylic acid, L1 = di(1H-imidazol-1-yl)methane, L2 = 1,4-di(1H-imidazol-1-yl)benzene) were solvothermal synthesized from 1,4-H2NDC with the aid of three different length-controllable auxiliary ligands and fully characterized. Their structures are determined by single-crystal X-ray diffraction, IR spectra, elemental analysis, powder X-ray diffraction and thermogravimetric analysis. Complexes 1 and 3 display 3D framework structures, corresponding to a 6-connected (412·63) net, a 8-connected (424·5·63) net, respectively. However, it is noteworthy that the complex 1 displays a 2-fold interpenetrating framework structure, complex 3 possesses a self-interpenetrating framework structure. Complex 2 displays 2D 4-connected undulating plane net structure. Moreover, magnetic studies indicate antiferromagnetic interactions between the Co(II) ions in the four complexes.

  12. Synthesis, structural characterization, photo-physical and magnetic properties of cobalt salphen pseudo halide complexes showing meta-magnetic ordering

    NASA Astrophysics Data System (ADS)

    Nassief, A. R.; Abdel-Hafiez, M.; Hassen, A.; Khalil, A. S. G.; Saber, M. R.

    2018-04-01

    The solvo-thermal syntheses of [(CoSalphen)2Co (SCN)2]n (1), CoSalphen(NH3)(N3)(2), Na[CoIIIsalphen(N3)2](3), Na[CoIIIsalen(N3)2](4) and CoIIIsalen(NH3)(N3) (5) {salphen = N,N'-o-phenylene-bis(salicylideneimine)} are reported. The structural studies using X-ray diffraction measurements revealed that 1 crystalizes in a monoclinic C2/c space group. Two cobalt (II) metal centers in penta-coordinated and octahedral local coordination environments are bridged via alternating O and μ1,3 SCN bridges resulting in a novel 2D layered coordination polymer. Compound 2 is a trivalent mononuclear cobalt azido complex with an octahedral coordination environment. The magnetic investigations of 1 revealed ferromagnetic coupling (J = +49.1 cm-1) and meta-magnetic ordering. Time resolved photoluminescence studies of the complexes showed excited state lifetimes of (τ1 = 0.4675 ns, τ2 = 5.23 ns) for 1 and (τ1 = 0.5078 ns, τ2 = 6.79 ns) for 2.

  13. Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature

    DOE PAGES

    Dong, Bo -Wen; Cramer, Joel; Ganzhorn, Kathrin; ...

    2017-12-14

    We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usualmore » $${\\rm si}{{{\\rm n}}^{2}}\\theta $$ relation well established in the collinear magnet yttrium iron garnet, with $$\\theta $$ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.« less

  14. Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bo -Wen; Cramer, Joel; Ganzhorn, Kathrin

    We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usualmore » $${\\rm si}{{{\\rm n}}^{2}}\\theta $$ relation well established in the collinear magnet yttrium iron garnet, with $$\\theta $$ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.« less

  15. Magnetic Doppler imaging of 53 Camelopardalis in all four Stokes parameters

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Bagnulo, S.; Wade, G. A.; Sangalli, L.; Piskunov, N.; Landstreet, J. D.; Petit, P.; Sigut, T. A. A.

    2004-02-01

    We present the first investigation of the structure of the stellar surface magnetic field using line profiles in all four Stokes parameters. We extract the information about the magnetic field geometry and abundance distributions of the chemically peculiar star 53 Cam by modelling time-series of high-resolution spectropolarimetric observations with the help of a new magnetic Doppler imaging code. This combination of the unique four Stokes parameter data and state-of-the-art magnetic imaging technique makes it possible to infer the stellar magnetic field topology directly from the rotational variability of the Stokes spectra. In the magnetic imaging of 53 Cam we discard the traditional multipolar assumptions about the structure of magnetic fields in Ap stars and explore the stellar magnetic topology without introducing any global a priori constraints on the field structure. The complex magnetic model of 53 Cam derived with our magnetic Doppler imaging method achieves a good fit to the observed intensity, circular and linear polarization profiles of strong magnetically sensitive Fe II spectral lines. Such an agreement between observations and model predictions was not possible with any earlier multipolar magnetic models, based on modelling Stokes I spectra and fitting surface averaged magnetic observables (e.g., longitudinal field, magnetic field modulus, etc.). Furthermore, we demonstrate that even the direct inversion of the four Stokes parameters of 53 Cam assuming a low-order multipolar magnetic geometry is incapable of achieving an adequate fit to our spectropolarimetric observations. Thus, as a main result of our investigation, we discover that the magnetic field topology of 53 Cam is considerably more complex than any low-order multipolar expansion, raising a general question about the validity of the multipolar assumption in the studies of magnetic field structures of Ap stars. In addition to the analysis of the magnetic field of 53 Cam, we reconstruct surface abundance distributions of Si, Ca, Ti, Fe and Nd. These abundance maps confirm results of the previous studies of 53 Cam, in particular dramatic antiphase variation of Ca and Ti abundances. Based on observations obtained with the Bernard Lyot telescope of the Pic du Midi Observatory and Isaac Newton Telescope of the La Palma Observatory.

  16. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  17. Structure and magnetic properties of an unprecedented syn-anti μ-nitrito-1κO:2κO' bridged Mn(III)-salen complex and its isoelectronic and isostructural formate analogue.

    PubMed

    Kar, Paramita; Biswas, Rituparna; Drew, Michael G B; Ida, Yumi; Ishida, Takayuki; Ghosh, Ashutosh

    2011-04-07

    The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate- and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO(2))](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-antiμ-1κO:2κO' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of χ(ac)' and a concomitant increase of χ(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The μ-nitrito-1κO:2κO' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the χ(ac)' and χ(ac)'' show frequency dependence. © The Royal Society of Chemistry 2011

  18. Previously unrecognized regional structure of the Coastal Belt of the Franciscan Complex, northern California, revealed by magnetic data

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Wentworth, Carl M.; McLaughlin, Robert J.

    2013-01-01

    Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confi ned mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies defi ne simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.

  19. Previously unrecognized regional structure of the Coastal Belt of the Franciscan Complex, northern California, revealed by magnetic data

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Wentworth, C.M.; McLaughlin, R.J.

    2013-01-01

    Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confined mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies define simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.

  20. Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol

    NASA Astrophysics Data System (ADS)

    Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.

    2009-03-01

    A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.

  1. Intralayer magnetic ordering in Ge/Mn digital alloys

    NASA Astrophysics Data System (ADS)

    Otrokov, M. M.; Ernst, A.; Ostanin, S.; Fischer, G.; Buczek, P.; Sandratskii, L. M.; Hergert, W.; Mertig, I.; Kuznetsov, V. M.; Chulkov, E. V.

    2011-04-01

    We present a first-principles investigation of the electronic properties of Ge/Mn digital alloys obtained by the insertion of Mn monolayers in the Ge host. The main attention is devoted to the study of the magnetic properties of the Mn layers for various types of ordering of the Mn atoms. Depending on the type of Mn position three different structures are considered: substitutional, interstitial, and combined substitutional-interstitial. In all three cases numerical structural relaxation of the atomic positions has been performed. We find that the intralayer exchange parameters depend strongly on the crystal structure. For the substitutional and interstitial types of structure the stable magnetic order was found to be ferromagnetic. For the mixed substitutional-interstitial structure the ferromagnetic configuration appears unstable and a complex ferrimagnetic structure forms. The spin-wave excitations are calculated within the Heisenberg model. The critical temperatures of the magnetic phase transitions are determined using Monte Carlo simulations with interatomic exchange parameters obtained for two different magnetic reference states: a ferromagnetic and a disordered local moment state.

  2. Structural and magnetic characterization of three tetranuclear Cu(II) complexes with face-sharing-dicubane/double-open-cubane like core framework

    NASA Astrophysics Data System (ADS)

    Paul, Aparup; Bertolasi, Valerio; Figuerola, Albert; Manna, Subal Chandra

    2017-05-01

    Three novel tetranuclear copper(II) complexes namely [Cu4(L1)4]•2(dmf) (1), [Cu4(L1)4] (2) and [Cu4(L2)2(HL2)2(H2O)2]•2(ClO4)·6(H2O) (3) (H2L1, (E)-2-((1-hydroxybutan-2-ylimino)methyl)phenol; H2L2, (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol)) were synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligands. The structural determination reveals that complex 1 crystallizes in the monoclinic system with space group C2/c, whereas both the complexes 2 and 3 crystallize in the triclinic system with space group P-1. Complexes 1 and 2 possess face-sharing dicubane core, on the other hand complex 3 has double open cubane core structure. The copper(II) ions in the cubane core are in distorted square planar geometries, and weak π…π and C-H…π interactions lead to formation of a 2D supramolecular architecture for complexes 1 and 2. At room temperature complexes 1, 2 and 3, exhibit fluorescence with a quantum yield (Φs) of 0.47, 0.49 and 0.38, respectively. Variable temperature magnetic susceptibility measurements in the range 2-300 K indicate an overall weak antiferromagnetic exchange coupling in all complexes. The PHI program was used to study their magnetic behaviour. In agreement with their face-sharing dicubane structure, a Hamiltonian of the type H =- J1(S1S2+S1S2'+S1'S2+S1'S2') - J2S1S1', where S1 = S1' = S2 = S2' = SCu =1/2, was used for studying complexes 1 and 2. Simulations performed suggest magnetic exchange constants with values close to J1 =-20 cm-1 and J2 =0 cm-1 for these complexes. On the other hand, the spin Hamiltonian H =- J1(S1S4+S2S3) - J2(S1S3+S2S4) - J3S1S2, where S1 = S2 = S3 = S4 = SCu =1/2, was used to study the magnetic behaviour of the double open cubane core of complex 3 and a good agreement between the experimental and simulated results was found by using the parameters g1 = g2 =2.20, g3 = g4 =2.18, J1 =-36 cm-1, J2 =-44 cm-1 and J3 =0 cm-1.

  3. Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Chen, Linfeng; Tan, C. Y.; Liu, H. J.; Ong, C. K.

    2005-06-01

    A brief review of the methods used for broadband complex permeability measurement of magnetic thin films up to microwave frequencies is given. In particular, the working principles of the transmission-line perturbation methods for the characterization of magnetic thin films are discussed, with emphasis on short-circuited planar transmission-line perturbation methods. The algorithms for calculating the complex permeability of magnetic thin films for short-circuited planar transmission-line perturbation methods are analyzed. A shorted microstrip line is designed and fabricated as a prototype measurement fixture. The structure of the microstrip fixture and the corresponding measurement procedure are discussed in detail. A piece of 340 nm thick FeTaN thin film deposited on Si substrate using sputtering method is characterized using the microstrip fixture. An improved technique for obtaining permeability by using a saturation magnetization field is demonstrated here, and the results fit well with the Landau-Lifchitz-Gilbert theory. Approaches to extending this method to other aspects in the investigation of magnetic thin film are also discussed.

  4. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN) 4] 2-: Synthesis, crystal structure, magnetic properties and ESR studies

    NASA Astrophysics Data System (ADS)

    Jian, Fang-Fang; Xiao, Hai-Lian; Liu, Fa Qian

    2006-12-01

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4Ni(Im) 3] ∞1, [Hg(SCN) 4Mn(Im) 2] ∞2, and [Hg(SCN) 4Cu(Me-Im) 2 Hg(SCN) 4Cu(Me-Im) 4] ∞3, (Im=imidazole, Me-Im= N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg⋯M⋯Hg chain ( M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4] 2- anion connects three [Ni(Im) 3] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4] 2- and [Mn(Im) 2] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment.

  5. Spin-ice behavior of three-dimensional inverse opal-like magnetic structures: Micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Dubitskiy, I. S.; Syromyatnikov, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Grigoriev, S. V.

    2017-11-01

    We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice. The problem is discussed of optimal geometrical properties and material characteristics of IOLS for the spin-ice rule fulfillment.

  6. Synthesis, characterization and antibacterial activity of new sulfonyl hydrazone derivatives and their nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Özmen, Ümmühan Özdemir; Olgun, Gülçin

    2008-08-01

    Prophane sulfonic acid hydrazide (psh: CH 3CH 2CH 2SO 2NHNH 2) derivatives as salicylaldehydeprophanesulfonylhydrazone (salpsh), 5-methylsalicylaldehydeprophanesulfonylhydrazone (5-msalpsh), 2-hydroxyacetophenoneprophanesulfonylhydrazone (afpsh), 5-methyl-2-hydroxyacetophenoneprophanesulfonylhydrazone (5-mafpsh) and their Ni(II) complexes have been synthesized. The structure of these compounds has been investigated by using elemental analysis, FTIR, 1H NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility and conductivity measurements. The complexes were found to have general compositions [NiL2]. Square-planer structures are proposed for the Ni(II) complexes on the basis of magnetic evidence, electronic spectra and TGA data. Bacterial activities of sulfonyl hydrazone compounds were studied against gram-positive bacteria: Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and gram-negative bacteria: Salmonella enteritidis, Escherichia coli by using minimum inhibitory concentrations (MICs) method.

  7. Anisotropy of magnetic susceptibility (AMS) in the Siilinjärvi carbonatite complex, eastern Finland

    NASA Astrophysics Data System (ADS)

    Almqvist, Bjarne; Karell, Fredrik; Högdahl, Karin; Malehmir, Alireza; Heino, Pasi; Salo, Aleksi

    2017-04-01

    We present a set of AMS measurements on samples from the Siilinjärvi alkaline-carbonatite complex in eastern Finland. The complex has a tabular shape (ca. 16 km long, 1.5 km wide) that strikes north-south and is constrained within a steeply dipping N-S oriented deformation zone. It consists of a mixture of lithologies, including carbonatite, fenite and glimmerite (mica-rich rocks), which is hosted within a Precambrian granite and gneiss. After emplacement of the carbonatite, the complex was subsequently intruded by diabase dykes. Deformation has occurred in several episodes after dyke intrusions, and strain is heterogeneously distributed among the different lithologies. Strain localizes mainly within glimmerite and carbonatite, and at the contacts between dykes and glimmerite/carbonatite where shear zones develop locally. Structures provide indications for both simple (strike-slip) and pure shear components in the deformation history of the complex, although the former may dominate. Thirty-six localities were sampled, providing 272 specimens for AMS measurements, within the southern and eastern parts of the Siilinjärvi open-pit mine (within the complex), mainly from diabase dykes, glimmerite and carbonatites; a smaller number of samples were collected from fenite. Sampling was carried out in order to investigate magnetic fabrics in relation to the emplacement of the dykes and their structural relationship to the glimmerite/carbonatite. Structural measurements were made to accompany the magnetic fabric study. The magnetic fabric shows a magnetic foliation plane that is oriented north-south, with sub-horizontal k3-axes oriented nearly east-west. Magnetic lineation (k1) clusters sub-vertically, but does show a tendency to spread along the north-south magnetic foliation great circle. The dataset can be further divided into two sub-sets based on the bulk susceptibility (km) and degree of anisotropy (P). The bulk of the data set ( 70 %), belonging to samples of diabase, is characterized by bulk susceptibility ranging from 1.26e-4 to 1.29e-3 [SI], and P <1.15 (i.e., <15 %). Glimmerites (and carbonatites) show considerably higher bulk susceptibility (4.27e-4 to 2.09e-1 [SI]) and P (up to 1.61), indicative of 1) a much higher magnetite content and 2) larger strain. The glimmerite/carbonatite shows a well-defined N-S magnetic lineation, with k1 and k2 dispersed along the foliation great circle. The diabase AMS shows greater scattering when considering the complete data set, which is likely tied to the individual orientations of dykes in the complex. Ongoing analysis focuses on the details of structural and AMS relationships, between dykes and glimmerite/carbonatite, in order to unravel their emplacement and subsequent deformation. This study was carried out within the ERA-MIN 1 StartGeoDelineation project sponsored by Vinnova (project number 2014-06238), SGU, Tekes, Nordic Iron Ore, and Yara.

  8. Bit patterned media with composite structure for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Eibagi, Nasim

    Patterned magnetic nano-structures are under extensive research due to their interesting emergent physics and promising applications in high-density magnetic data storage, through magnetic logic to bio-magnetic functionality. Bit-patterned media is an example of such structures which is a leading candidate to reach magnetic densities which cannot be achieved by conventional magnetic media. Patterned arrays of complex heterostructures such as exchange-coupled composites are studied in this thesis as a potential for next generation of magnetic recording media. Exchange-coupled composites have shown new functionality and performance advantages in magnetic recording and bit patterned media provide unique capability to implement such architectures. Due to unique resonant properties of such structures, their possible application in spin transfer torque memory and microwave assisted switching is also studied. This dissertation is divided into seven chapters. The first chapter covers the history of magnetic recording, the need to increase magnetic storage density, and the challenges in the field. The second chapter introduces basic concepts of magnetism. The third chapter explains the fabrication methods for thin films and various lithographic techniques that were used to pattern the devices under study for this thesis. The fourth chapter introduces the exchanged coupled system with the structure of [Co/Pd] / Fe / [Co/Pd], where the thickness of Fe is varied, and presents the magnetic properties of such structures using conventional magnetometers. The fifth chapter goes beyond what is learned in the fourth chapter and utilizes polarized neutron reflectometry to study the vertical exchange coupling and reversal mechanism in patterned structures with such structure. The sixth chapter explores the dynamic properties of the patterned samples, and their reversal mechanism under microwave field. The final chapter summarizes the results and describes the prospects for future applications of these structures.

  9. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties.

    PubMed

    Burn, D M; Hase, T P A; Atkinson, D

    2014-06-11

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe.

  10. Central Arctic Crustal Modeling Constrained by Potential Field data and recent ECS Seismic Data

    NASA Astrophysics Data System (ADS)

    Evangelatos, John; Oakey, Gordon; Saltus, Rick

    2017-04-01

    2-D gravity and magnetic models have been generated for several transects across the Alpha-Mendeleev ridge complex to study the regional variability of the crustal structure and identify large scale lateral changes. The geometry and density parameters for the models have been constrained using recently acquired seismic reflection and refraction data collected jointly by Canada and the United States as part of their collaborative Arctic ECS programs. A total of fifteen models have been generated perpendicular to the ridge complex, typically 50 to 150 km apart. A minimalist approach to modeling involved maintaining a simple, laterally continuous density structure for the crust while varying the model geometry to fit the observed gravity field. This approach is justified because low amplitude residual Bouguer anomalies suggest a relatively homogenous density structure within the ridge complex. These models have provided a new measure of the regional variability in crustal thickness. Typically, models with thinner crust correspond with deeper bathymetric depths of the ridge which is consistent with regional isostatic equilibrium. Complex "chaotic" magnetic anomalies are associated with the Alpha-Mendeleev ridge complex, which extends beneath the surrounding sedimentary basins. Pseudogravity inversion (magnetic potential) of the magnetic field provides a quantifiable areal extent of ˜1.3 x106 km2. Forward modeling confirms that the magnetic anomalies are not solely the result of magnetized bathymetric highs, but are caused to a great extent by mid- and lower crustal sources. The magnetization of the crust inferred from modeling is significantly higher than available lab measurements of onshore volcanic rocks. Although the 2-D models cannot uniquely identify whether the crustal protolith was continental or oceanic, there is a necessity for a significant content of high density and highly magnetic (ultramafic) material. Based on the crustal thickness estimates from our regional 2-D gravity models and the two possible protoliths, we determine volumetric estimates of the volcanic composition to ˜ 6 × 106 km3 for the mid- and upper-crust and between 10 × 106 and 14 × 106 km3 within the lower crust — for a total of at least ˜16 × 106 km3. This exceeds any estimates for the onshore circum-Arctic HALIP by more than an order of magnitude.

  11. Ferromagnetic coupled mu-phenoxo-mu-carboxylato heterodinuclear complexes based on the Cr(salen) moiety: structural and magnetic characterization.

    PubMed

    Alborés, Pablo; Seeman, Johanna; Rentschler, Eva

    2009-10-07

    The synthesis, crystal structure, and magneto-chemical characterization of two new unprecedented -phenoxo--carboxylato heterodinuclear complexes based on the Cr(salen) moiety (salen = N,N-bis(salicylidene)ethylenediamine), [MII(O2C(CH3)3)(OH2)2(mu-O2C(CH3)3)(-salen)CrIII(O2C(CH3)3)], M = Ni (2), Co(3) are reported. The dinuclear complexes were obtained starting from the mononuclear trans-[Cr(salen)(CN)2]PPh4 (1), whose crystal structure is also reported. They show a trans arrangement of the Cr(salen) unit, bridging through the phenolate O atoms to a second metal center. An additional 2-O2-carboxylato bridge and a further monodentating carboxylate ligand complete the roughly octahedral Cr(III) coordination sphere. The highly distorted octahedral M(II) coordination environment is completed by two coordinated water molecules and an additional monodentating carboxylate. Variable-temperature solid-state DC magnetization studies were carried out in the 2.0-300 K range. Ferromagnetic isotropic pairwise exchange parameters were found with values of J = 4.1 cm-1 (2) and J = 2.1 cm-1 (3). Additionally, for complex 3, a ZFS parameter, D, was employed to properly fit the experimental data. Magnetization (M) vs. field (H) and temperature (T) data further support the presence of this anisotropic component and confirm ground states S = 5/2 and S = 3 for 2 and 3, respectively. Broken symmetry DFT calculations properly reproduce the experimental J values supporting the ferromagnetic exchange interaction experimentally observed. No out of phase susceptibility signal was observed in 0 DC magnetic field for both complexes. However, in the case of complex 3 a non-zero is observed when a small external field is applied below 3 K, suggesting slow relaxation of the magnetization which at 0 DC field is suppressed, probably due to efficient tunnelling relaxation pathways. The low symmetry of the Co(II) site in complex 3 may lead to the presence of transversal anisotropic components which could be responsible for the enhanced tunnelling pathway.

  12. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    NASA Astrophysics Data System (ADS)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.

  13. Spacetime algebra as a powerful tool for electromagnetism

    NASA Astrophysics Data System (ADS)

    Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  14. Reading the Magnetic Patterns in Earth complex impact craters to detect similarities and cues from some Nectarian craters of the Moon

    NASA Astrophysics Data System (ADS)

    Isac, Anca; Mandea, Mioara; Purucker, Michael

    2013-04-01

    Most of the terrestrial impact craters have been obliterated by other terrestrial geological processes. Some examples however remain. Among them, complex craters such as Chicxculub, Vredefort, or the outsider Bangui structure (proposed but still unconfirmed as a result of an early Precambrian large impact) exert in the total magnetic field anomaly global map (WDMAM-B) circular shapes with positive anomalies which may suggest the circularity of a multiring structure. A similar pattern is observed from the newest available data (global spherical model of the internal magnetic field by Purucker and Nicolas, 2010) for some Nectarian basins as Moscovienese, Mendel-Rydberg or Crissium. As in the case of Earth's impacts, the positive anomalies appear near the basin center and inside the first ring, this distribution being strongly connected with crater-forming event. Detailed analysis of largest impact craters from Earth and Moon --using a forward modeling approach by means of the Equivalent Source Dipole method--evaluates the shock impact demagnetization effects--a magnetic low--by reducing the thickness of the pre-magnetized lithosphere due to the excavation process (the impact crater being shaped as a paraboloid of revolution). The magnetic signature of representative early Nectarian craters, Crissium, as well as Earth's complex craters, defined by stronger magnetic fields near the basin center and/or inside the first ring, might be a consequence of the shock remanent magnetization of the central uplift plus a thermoremanent magnetization of the impact melt in a steady magnetizing field generated by a former active dynamo. In this case, ESD method is not able to obtain a close fit of the forward model to the observation altitude map or model.

  15. Investigation of the Dynamics of Coherent Structure, BBF, and Intermittent Turbulence in Earth's Magnetotail: A Study of Complexity in Nonlinear Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom

    2005-01-01

    We have achieved all the goals stated in our grant proposal. Specifically, these include: 1. The understanding of the complexity induced nonlinear spatiotemporal coherent structures and the coexisting propagating modes. 2. The understanding of the intermittent turbulence and energization process of the observed Bursty Bulk Flows (BBF's) in the Earth s magnetotail. 3. The development of "anisotropic three-dimensional complexity" in the plasma sheet due to localized merging and interactions of the magnetic coherent structures. 4. The study of fluctuation-induced nonlinear instabilities and their role in the reconfiguration of magnetic topologies in the magnetotail based on the concepts of the dynamic renormalization group. 5. The acceleration of ions due to the intermittent turbulence of propagating and nonpropagating fluctuations. In the following, we include lists of our published papers, invited talks, and professional activities. A detailed description of our accomplished research results is given..

  16. Femtosecond-laser-induced periodic surface structures on magnetic layer targets: The roles of femtosecond-laser interaction and of magnetization

    NASA Astrophysics Data System (ADS)

    Czajkowski, Klaus; Ratzke, Markus; Varlamova, Olga; Reif, Juergen

    2017-09-01

    We investigate femtosecond laser induced periodic surface structures (LIPSS) on a complex multilayer target, namely a 20-GB computer hard disk (HD), consisting of a metallic substrate, a magnetic layer, and a thin polymeric protective layer. Depending on the dose (fluence × number of pulses) first the polymeric cover layer is completely removed, revealing a periodic surface modulation of the magnetic layer which seems not to be induced by the laser action. At higher dose, the magnetic layer morphology is strongly modified by laser-induced periodic structures (LIPS) and, finally, kind of an etch stop is reached at the bottom of the magnetic layer. The LIPS shows very high modulation depth below and above the original surface level. In the present work, the role of magnetization and magneto-mechanic forces in the structure formation process is studied by monitoring the bit-wise magnetization of the HD with a magnetic force microscope. It is shown that the structures at low laser dose are reflecting the magnetic bits. At higher dose the magnetic influence appears to be extinguished on the account of LIPS. This suggests a transient overcoming the Curie temperature and an associated loss of magnetic order. The results compare well with our model of LIPS/LIPSS formation by self-organized relaxation from a laser-induced thermodynamic instability.

  17. A Comparative Analysis of the Magnetic Field Signals over Impact Structures on the Earth, Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Isac, Anca; Mandea, Mioara; Purucker, Michael; Langlais, Benoit

    2015-01-01

    An improved description of magnetic fields of terrestrial bodies has been obtained from recent space missions, leading to a better characterization of the internal fields including those of crustal origin. One of the striking differences in their crustal magnetic field is the signature of large impact craters. A comparative analysis of the magnetic characteristics of these structures can shed light on the history of their respective planetary-scale magnetic dynamos. This has motivated us to identify impact craters and basins, first by their quasi-circular features from the most recent and detailed topographic maps and then from available global magnetic field maps. We have examined the magnetic field observed above 27 complex craters on the Earth, 34 impact basins on Mars and 37 impact basins on the Moon. For the first time, systematic trends in the amplitude and frequency of the magnetic patterns, inside and outside of these structures are observed for all three bodies. The demagnetization effects due to the impact shock wave and excavation processes have been evaluated applying the Equivalent Source Dipole forward modeling approach. The main characteristics of the selected impact craters are shown. The trends in their magnetic signatures are indicated, which are related to the presence or absence of a planetary-scale dynamo at the time of their formation and to impact processes. The low magnetic field intensity at center can be accepted as the prime characteristic of a hypervelocity impact and strongly associated with the mechanics of impact crater formation. In the presence of an active internal field, the process of demagnetization due to the shock impact is associated with post-impact remagnetization processes, generating a more complex magnetic signature.

  18. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    PubMed

    Snezhko, Alexey

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  19. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    PubMed

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  20. Magnetic Protostars

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2015-09-01

    A possible variant of the evolution of magnetic protostars "before the Hayashi phase" is discussed. Arguments are given in support of the following major properties of magnetic stars: (1) global magnetic dipole fields with predominant orientation of the magnetic lines of force in the plane of the equator of revolution; (2) slow rotation; (3) complex, two and three dipole structures of the magnetic field in a large part of the stars; (4) partition of stars into magnetic and normal in a proportion of 1:10 occurs during the period when the protostellar clouds undergo gravitational collapse "before the Hayashi phase."

  1. Influence of clamping plate permeability and metal screen structures on three-dimensional magnetic field and eddy current loss in end region of a turbo-generator by numerical analysis

    NASA Astrophysics Data System (ADS)

    Likun, Wang; Weili, Li; Yi, Xue; Chunwei, Guan

    2013-11-01

    A significant problem of turbogenerators on complex end structures is overheating of local parts caused by end losses in the end region. Therefore, it is important to investigate the 3-D magnetic field and eddy current loss in the end. In end region of operating large turbogenerator at thermal power plants, magnetic leakage field distribution is complex. In this paper, a 3-D mathematical model used for the calculation of the electromagnetic field in the end region of large turbo-generators is given. The influence of spatial locations of end structures, the actual shape and material of end windings, clamping plate, and copper screen are considered. Adopting the time-step finite element (FE) method and taking the nonlinear characteristics of the core into consideration, a 3-D transient magnetic field is calculated. The objective of this paper is to investigate the influence of clamping plate permeability and metal screen structures on 3-D electromagnetic field distribution and eddy current loss in end region of a turbo-generator. To reduce the temperature of copper screen, a hollow metal screen is proposed. The eddy current loss, which is gained from the 3D transient magnetic field, is used as heat source for the thermal field of end region. The calculated temperatures are compared with test data.

  2. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  3. Preparation and properties of a calcium(II)-based molecular chain decorated with manganese(II) butterfly-like complexes.

    PubMed

    Benniston, A C; Melnic, S; Turta, C; Arauzo, A B; Bartolomé, J; Bartolomé, E; Harrington, R W; Probert, M R

    2014-09-21

    The room temperature reaction of [Mn2O2(bipy)4](ClO4)3 (bipy = 2,2'-bipyridine) with Ca(CHCl2COO)2 in methanol produced a yellow crystalline material. The X-ray determined structure comprises of a multiple calcium(II) carboxylate bridged chain-like structure which is decorated with [Mn(bipy)2(OH2)](2+) subunits. The redox behaviour for the complex in H2O and MeCN is reported. In the latter solvent the oxidation of the manganese ions appears to be facilitated by the presence of the calcium ions. Magnetic susceptibility and low temperature magnetization measurements show that the Mn moment is isotropic, with g = 1.99(1) and S = 5/2, confirming it is in the 2+ oxidation state. A very weak antiferromagnetic interaction is also detected. Frequency-dependent ac measurements evidence slow magnetic relaxation of the Mn(bipy)2 units. Two relaxation mechanisms are identified: a very slow direct process and a faster one caused by the Resonant Phonon Trapping mechanism. This is the first example of field-induced single ion magnet (SIM) behavior in a mononuclear Mn(II) complex.

  4. Exchange coupling in the complex magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Uzdin, V. M.; Adamowicz, L.; Kocinski, P.

    1996-06-01

    Exchange coupling in the complex magnetic sandwich structures containing nonmagnetic (NM) and ferromagnetic (FM) layers composed of two different ferromagnetic metals has been studied within the framework of the quantum wells model. The strength of the exchange coupling in the multilayer structure with thin layers of a second ferromagnetic material inserted at the interface of FM/NM/FM sandwich was calculated at various physical situations. In one case the exponential dependence of the exchange coupling on the thickness of the interface ferromagnetic layer has been obtained in striking resemblance to the Parkin experimental results for magnetoresistance (S. S. P. Parkin, Phys. Rev. Lett., 71 (1993) 1641).

  5. Effect of lanthanum substitution on structural and magnetic properties of nickel zinc ferrites

    NASA Astrophysics Data System (ADS)

    Šoka, Martin; Ušáková, Mariana; Dosoudil, Rastislav; Ušák, Elemír; Lokaj, Ján

    2018-04-01

    The purpose of the presented research is to investigate the effect of La3+ ions substitution for Fe3+ ions in Ni0.42Zn0.58LaxFe2-xO4 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) ferrite compositions prepared by the innovated glycine-nitrate process based on auto-combustion method. Structural and magnetic properties of examined samples were estimated by the analysis of X-ray spectra, EDAX spectrum, SEM micrographs, thermomagnetic characteristics, magnetic hysteresis loops and complex permeability spectra.

  6. Three-dimensional nanomagnetism

    DOE PAGES

    Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...

    2017-06-09

    Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.

  7. Magnetic losses versus sintering treatment in Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Beatrice, Cinzia; Tsakaloudi, Vasiliki; Dobák, Samuel; Zaspalis, Vassilios; Fiorillo, Fausto

    2017-05-01

    Mn-Zn ferrites prepared by different sintering schedules at 1325 °C, 1340 °C, and 1360 °C, have been characterized from the structural, electrical, and magnetic viewpoint. Magnetic losses and complex permeability have been, in particular, measured and analyzed from quasi-static excitation up to 1 GHz. It is observed that lower sintering temperatures and shorter treatment times lead to more homogeneous grain structure and better soft magnetic response at all frequencies. It is shown, however, that, once the contribution by eddy currents is singled out, the energy losses tend to coincide beyond a few MHz in the differently treated samples. The interpretative approach consists in separating the contributions by the domain wall displacements and the magnetization rotations to complex permeability and losses as a function of frequency. This can be accomplished in a relatively simple way in the low induction region described by the Rayleigh law, where these quantities can be quantitatively related and the linear Landau-Lifshitz-Gilbert equation applies, account being taken of the distribution in amplitude and orientation of the local anisotropy fields.

  8. System-Level Shared Governance Structures and Processes in Healthcare Systems With Magnet®-Designated Hospitals: A Descriptive Study.

    PubMed

    Underwood, Carlisa M; Hayne, Arlene N

    The purpose was to identify and describe structures and processes of best practices for system-level shared governance in healthcare systems. Currently, more than 64.6% of US community hospitals are part of a system. System chief nurse executives (SCNEs) are challenged to establish leadership structures and processes that effectively and efficiently disseminate best practices for patients and staff across complex organizations, geographically dispersed locations, and populations. Eleven US healthcare SCNEs from the American Nurses Credentialing Center's repository of Magnet®-designated facilities participated in a 35-multiquestion interview based on Kanter's Theory of Organizational Empowerment. Most SCNEs reported the presence of more than 50% of the empowerment structures and processes in system-level shared governance. Despite the difficulties and complexities of growing health systems, SCNEs have replicated empowerment characteristics of hospital shared governance structures and processes at the system level.

  9. Magnetic blocking at 10 K and a dipolar-mediated avalanche in salts of the bis(η8-cyclooctatetraenide) complex [Er(COT)2]-.

    PubMed

    Meihaus, Katie R; Long, Jeffrey R

    2013-11-27

    The structures and magnetic properties of [K(18-crown-6)](+) (1) and [K(18-crown-6)(THF)2](+) (2) salts of the η(8)-cyclooctatetraenide sandwich complex [Er(COT)2](-) (COT(2-) = cyclooctatetraene dianion) are reported. Despite slight differences in symmetry, both compounds exhibit slow magnetic relaxation under zero applied dc field with relaxation barriers of ∼150 cm(-1) and waist-restricted magnetic hysteresis. Dc relaxation and dilution studies suggest that the drop in the magnetic hysteresis near zero field is influenced by a bulk magnetic avalanche effect coupled with tunneling of the magnetization. Through dilution with [K(18-crown-6)(THF)2][Y(COT)2] (3), these phenomena are substantially quenched, resulting in an open hysteresis loop to 10 K. Importantly, this represents the highest blocking temperature yet observed for a mononuclear complex and the second highest for any single-molecule magnet. A comprehensive comparative analysis of the magnetism of [K(18-crown-6)][Ln(COT)2] (Ln = Sm, Tb, Dy, Ho, Yb) reveals slow relaxation only for [K(18-crown-6)][Dy(COT)2] (4) with weak temperature dependence. Collectively, these results highlight the utility of an equatorial ligand field for facilitating slow magnetic relaxation in the prolate Er(III) ion.

  10. Single molecule magnet behavior of a pentanuclear Mn-based metallacrown complex: solid state and solution magnetic studies.

    PubMed

    Zaleski, Curtis M; Tricard, Simon; Depperman, Ezra C; Wernsdorfer, Wolfgang; Mallah, Talal; Kirk, Martin L; Pecoraro, Vincent L

    2011-11-21

    The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.

  11. Exploring the prominence-corona connection and its expansion into the outer corona using total solar eclipse observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habbal, Shadia Rifai; Morgan, Huw; Druckmüller, Miloslav, E-mail: shadia@ifa.hawaii.edu

    Prominences constitute the most complex magnetic structures in the solar corona. The ubiquitous presence of their seemingly confined dense and cool plasma in an otherwise million-degree environment remains a puzzle. Using a decade of white light total solar eclipse observations, we show how these images reveal an intricate relationship between prominences and coronal structures both in their immediate vicinity, known as coronal cavities, and in the extended corona out to several solar radii. Observations of suspended prominences and twisted helical structures spanning several solar radii are central to these findings. The different manifestations of the prominence-corona interface that emerge frommore » this study underscore the fundamental role played by prominences in defining and controlling the complex expansion and dynamic behavior of the solar magnetic field in the neighborhood of magnetic polarity reversal regions. This study suggests that the unraveling of prominences and the outward expansion of the helical twisted field lines linked to them could be the solar origin of twisted magnetic flux ropes detected in interplanetary space, and of the mechanism by which the Sun sheds its magnetic helicity. This work also underscores the likely role of the prominence-corona interface as a source of the slow solar wind.« less

  12. Pentacoordinate and Hexacoordinate Mn(III) Complexes of Tetradentate Schiff-Base Ligands Containing Tetracyanidoplatinate(II) Bridges and Revealing Uniaxial Magnetic Anisotropy.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Trávníček, Zdeněk

    2016-12-08

    Crystal structures and magnetic properties of polymeric and trinuclear heterobimetallic Mn III ···Pt II ···Mn III coordination compounds, prepared from the Ba[Pt(CN)₄] and [Mn(L4A/B)(Cl)] ( 1a / b ) precursor complexes, are reported. The polymeric complex [{Mn(L4A)}₂{μ⁴-Pt(CN)₄}] n ( 2a ), where H₂L4A = N , N '-ethylene-bis(salicylideneiminate), comprises the {Mn(L4A)} moieties covalently connected through the [Pt(CN)₄] 2- bridges, thus forming a square-grid polymeric structure with the hexacoordinate Mn III atoms. The trinuclear complex [{Mn(L4B)}₂{μ-Pt(CN)₄}] ( 2b ), where H₂L4B = N , N '-benzene-bis(4-aminodiethylene-salicylideneiminate), consists of two [{Mn(L4B)} moieties, involving pentacoordinate Mn III atoms, bridged through the tetracyanidoplatinate (II) bridges to which they are coordinated in a trans fashion. Both complexes possess uniaxial type of magnetic anisotropy, with D (the axial parameter of zero-field splitting) = -3.7(1) in 2a and -2.2(1) cm -1 in 2b . Furthermore, the parameters of magnetic anisotropy 2a and 2b were also thoroughly studied by theoretical complete active space self-consistent field (CASSCF) methods, which revealed that the former is much more sensitive to the ligand field strength of the axial ligands.

  13. Structural variation from heterometallic cluster-based 1D chain to heterometallic tetranuclear cluster: Syntheses, structures and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shu-Hua, E-mail: zsh720108@163.com; Zhao, Ru-Xia; Li, He-Ping

    Using the solvothermal method, we present the comparative preparation of ([Co{sub 3}Na(dmaep){sub 3}(ehbd)(N{sub 3}){sub 3}]·DMF){sub n} (1) and [Co{sub 2}Na{sub 2}(hmbd){sub 4}(N{sub 3}){sub 2}(DMF){sub 2}] (2), where Hehbd is 3-ethoxy-2-hydroxy-benzaldehyde, Hhmbd is 3-methoxy-2-hydroxy-benzaldehyde, and Hdmaep is 2-dimethylaminomethyl-6-ethoxy-phenol, which was synthesized by an in-situ reaction. Complexes 1 and 2 were characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Complex 1 is a novel heterometallic cluster-based 1-D chain and 2 is a heterometallic tetranuclear cluster. The (Co{sub 3}{sup II}Na) and (Co{sub 2}{sup II}Na{sub 2}) cores display dominant ferromagnetic interaction from the nature of the binding modes through μ{sub 1,1,1}-N{sub 3}{supmore » –} (end-on, EO). - Graphical abstract: Two novel cobalt complexes have been prepared. Compound 1 consists of tetranuclear (Co{sub 3}{sup II}Na) units, which further formed a 1-D chain. Compound 2 is heterometallic tetranuclear cluster. Two complexes display dominant ferromagnetic interaction. - Highlights: • Two new heterometallic complexes have been synthesized by solvothermal method. • The stereospecific blockade of the ligands in the synthesis system seems to be the most important synthetic parameter. • The magnetism studies show that 1 and 2 exhibit ferromagnetic interactions. • Complex 1 shows slowing down of magnetization and not blocking of magnetization.« less

  14. Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet.

    PubMed

    Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina

    2017-12-12

    Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.

  15. Magnetic topology of Co-based inverse opal-like structures

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.

    2011-08-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.

  16. A new supramolecular chromium(III) complex: Synthesis, structural determination, optical study, magnetic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dridi, Rihab; Dhieb, Cyrine; Cherni, Saoussen Namouchi; Boudjada, Nassira Chniba; Sadfi Zouaoui, Najla; Zid, Mohamed Faouzi

    2018-01-01

    A new chromium (III) complex 1,5-Naphthyridine Trans-diaquadioxalatochromate (III) dihydrate, had been synthesized by self-assembly of chromium (III) nitrate with oxalic acid and 1,5-Naphthyridine. The complex was characterized by X-ray diffraction, Fourier Transform Infrared spectroscopy, thermogravimetric analysis and UV-Visible spectroscopy. The crystal morphology was carried out using Bravais-Friedel-Donnay-Harker (BFDH) model. Single crystal X-Ray structure determination revealed that the complex posses two crystallographically independent Cr(III) centers. Each Cr(III) has a distorted octahedron geometry involving two axial O atoms from two water molecules and four equatorial O atoms from two oxalate dianions forming trans-[Cr(C2O4)2(H2O)2]- complex anions. The charge compensation is accomplished by the incorporation of 1,5-Naphthyridine cations. Connection between these entities is ensured by means of strong hydrogen bonds giving rise to 3D supramolecular architecture. Hirshfeld surface analysis and the related 2D fingerprint plots were used for decoding plausible intermolecular interactions in the crystal packing. The magnetic properties of the complex had been investigated and discussed in the context of its structure. The antimicrobial activity was evaluated by disc diffusion method highlighting an antagonistic effect of the synthesized complex against Gram-positive and Gram-negative species.

  17. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    PubMed

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. New mixed valence defect dicubane cobalt(II)/cobalt(III) complex: Synthesis, crystal structure, photoluminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin

    2018-02-01

    A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.

  19. What lies beneath: geophysical mapping of a concealed Precambrian intrusive complex along the Iowa–Minnesota border

    USGS Publications Warehouse

    Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.

    2015-01-01

    Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.

  20. Magnetism mediated by a majority of [Fe³⁺ + VO²⁻] complexes in Fe-doped CeO₂ nanoparticles.

    PubMed

    Paidi, V K; Ferreira, N S; Goltz, D; van Lierop, J

    2015-08-26

    We examine the role of Fe(3+) and vacancies (V(O)) on the magnetism of Fe-doped CeO2 nanoparticles. Magnetic nanoparticles of Ce(100-x)Fe(x)O2 (x  =  0, 0.26, 1.82, 2.64, 5.26, 6.91, and 7.22) were prepared by a co-precipitation method, and their structural, compositional and magnetic properties were investigated. The CeO2 nanoparticles had a mixed valance of Ce(4+) and Ce(3+) ions, and doping introduced Fe(3+) ions. The decrease in Ce(3+) and increase in Fe(3+) concentrations indicated the presence of more [Fe(3+) + V(O)(2-)] complexes with Fe loading in the particles. Charge neutralization, Fe(3+) + V(O)(2-) + 2Ce(4+) ↔ 2Ce(3+) + Fe(3+), identified the impact of V(O) on the magnetism, where our results suggest that the Fe-doped CeO2 nanoparticle magnetism is mediated by a majority of [Fe(3+) + V(O)(2-)]-Ce(3+) -[Fe(3+) + V(O)(2-)] complexes.

  1. Galactic neutral hydrogen and the magnetic ISM foreground

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  2. Systems chemistry: All in a spin

    NASA Astrophysics Data System (ADS)

    Clark, Lucy; Lightfoot, Philip

    2016-05-01

    A fundamental challenge in systems chemistry is to engineer the emergence of complex behaviour. The collective structures of metal cyanide chains have now been interpreted in the same manner as the myriad of magnetic phases displayed by frustrated spin systems, highlighting a symbiotic approach between systems chemistry and magnetism.

  3. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T < 10 K. For this complex, the structure is identified and the distance between the copper ions is determined. It is shown that the nitrate counterion plays the role of a bridge between the hexaaqua copper(II) complex and the dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  4. Synthesis, structure, and magnetic characterization of Cr{sub 4}US{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Matthew D.; Chan, Ian Y.; Malliakas, Christos D.

    The compound Cr{sub 4}US{sub 8} has been synthesized at 1073 K and its crystal structure has been determined at 100 K. The structure is modulated with a two-fold commensurate supercell. The subcell may be indexed in an orthorhombic cell but weak supercell reflections lead to the monoclinic superspace group P2{sub 1}/c(α0γ)0s with two Cr sites, one U site, and four S sites. The structure comprises a three-dimensional framework of CrS{sub 6} octahedra with channels that are partially occupied by U atoms. Each U atom in these channels is coordinated by eight S atoms in a bicapped trigonal-prismatic arrangement. The magneticmore » behavior of Cr{sub 4}US{sub 8} is complex. At temperatures above ~120 K at all measured fields, there is little difference between field-cooled and zero field-cooled data and χ(T) decreases monotonously with temperature, which is reminiscent of the Curie–Weiss law. At lower temperatures, the temperature dependence of χ(T) is complex and strongly dependent on the magnetic field strength. - Graphical abstract: Structure of Cr{sub 4}US{sub 8} viewed down the a axis. - Highlights: • At 1073 K Cr{sub 4}US{sub 8} was synthesized and at 100 K its crystal structure was determined. • The 3D structure comprises CrS{sub 6} octahedra with channels partially occupied by U. • The magnetic behavior of Cr{sub 4}US{sub 8} is complex.« less

  5. Effect of magnetic field on the phase transition in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Hall, T.; LeBlanc, S.; Mukherjee, R.; Thomas, E.

    2017-11-01

    The formation of a self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments, the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of the externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with the increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At a higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe to lead to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.

  6. Structural distortions upon oxidation in heteroleptic [Cp(2)W(dmit)] tungsten dithiolene complex: combined structural, spectroscopic, and magnetic studies.

    PubMed

    Reinheimer, Eric W; Olejniczak, Iwona; Łapiński, Andrzej; Swietlik, Roman; Jeannin, Olivier; Fourmigué, Marc

    2010-11-01

    Four different cation radical salts are obtained upon electrocrystallization of [Cp(2)W(dmit)] (dmit = 1,3-dithiole-2-thione-4,5-dithiolato) in the presence of the BF(4)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions. In these formally d(1) cations, the WS(2)C(2) metallacycle is folded along the S···S hinge to different extents in the four salts, an illustration of the noninnocent character of the dithiolate ligand. Structural characteristics and the charge distribution on atoms, for neutral and ionized complexes with various folding angles, were calculated using DFT methods, together with the normal vibrational modes and theoretical Raman spectra. Raman spectra of neutral complex [Cp(2)W(dmit)] and its salts formed with BF(4)(-), AsF(6)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions were measured using the red excitation (λ = 632.8 nm). A correlation between the folding angle of the metallacycle and the Raman spectroscopic properties is analyzed. The bands attributed to the C═C and C-S stretching modes shift toward higher and lower frequencies by about 0.3-0.4 cm(-1) deg(-1), respectively. The solid state structural and magnetic properties of the three salts are analyzed and compared with those of the corresponding molybdenum complexes. Temperature dependence of the magnetic susceptibility shows the presence of one-dimensional antiferromagnetic interactions in the BF(4)(-), PF(6)(-), and [Au(CN)(2)](-) salts, while an antiferromagnetic ground state is identified in the Br(-) salt below T(Néel) = 7 K. Interactions are systematically weaker in the tungsten salts than in the isostructural molybdenum analogs, a consequence of the decreased spin density on the dithiolene ligand in the tungsten complexes.

  7. Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.

  8. Filling the holes in the CaFe4As3 structure: Synthesis and magnetism of CaCo5As3

    NASA Astrophysics Data System (ADS)

    Rosa, P. F. S.; Scott, B. L.; Ronning, F.; Bauer, E. D.; Thompson, J. D.

    2017-07-01

    Here, we investigate single crystals of CaCo5As3 by means of single-crystal x-ray diffraction, microprobe, magnetic susceptibility, heat capacity, and pressure-dependent transport measurements. CaCo5As3 shares the same structure of CaFe4As3 with an additional Co atom filling a lattice vacancy and undergoes a magnetic transition at TM=16 K associated with a frustrated magnetic order. CaCo5As3 displays metallic behavior and its Sommerfeld coefficient (γ =70 mJ/mol K2) indicates a moderate enhancement of electron-electron correlations. Transport data under pressures to 2.5 GPa reveal a suppression of TM at a rate of -0.008 K/GPa. First-principles electronic structure calculations show a complex three-dimensional band structure and magnetic moments that depend on the local environment at each Co site. Our results are compared with previous data on CaFe4As3 and provide a scenario for a magnetically frustrated ground state in this family of compounds.

  9. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    USGS Publications Warehouse

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.

    2014-01-01

    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  10. Nanoscale imaging of magnetization reversal driven by spin-orbit torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.

    We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less

  11. Nanoscale imaging of magnetization reversal driven by spin-orbit torque

    DOE PAGES

    Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.; ...

    2016-09-23

    We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less

  12. Complex magnetic order in the kagome ferromagnet Pr3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Henriques, M. S.; Gorbunov, D. I.; Andreev, A. V.; Fabrèges, X.; Gukasov, A.; Uhlarz, M.; Petříček, V.; Ouladdiaf, B.; Wosnitza, J.

    2018-01-01

    In the hexagonal crystal structure of Pr3Ru4Al12 , the Pr atoms form a distorted kagome lattice, and their magnetic moments, are subject to competing exchange and anisotropy interactions. We performed magnetization, magnetic-susceptibility, specific-heat, electrical-resistivity, and neutron-scattering measurements. Pr3Ru4Al12 is a uniaxial ferromagnet with TC=39 K that displays a collinear magnetic structure (in the high-temperature range of the magnetically ordered state) for which the only crystallographic position of Pr is split into two sites carrying different magnetic moments. A spin-reorientation phase transition is found at 7 K. Below this temperature, part of the Pr moments rotate towards the basal plane, resulting in a noncollinear magnetic state with a lower magnetic symmetry. We argue that unequal RKKY exchange interactions competing with the crystal electric field lead to a moment instability and qualitatively explain the observed magnetic phases in Pr3Ru4Al12 .

  13. A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Dhakal, Suman K.; Chintzoglou, Georgios; Zhang, Jie

    2018-06-01

    We report a study of a compound solar eruption that was associated with two consecutively erupting magnetic structures and correspondingly two distinct peaks, during impulsive phase, of an M-class flare (M8.5). Simultaneous multi-viewpoint observations from SDO, GOES and STEREO-A show that this compound eruption originated from two pre-existing sigmoidal magnetic structures lying along the same polarity inversion line. Observations of the associated pre-existing filaments further show that these magnetic structures are lying one on top of the other, separated by 12 Mm in height, in a so-called “double-decker” configuration. The high-lying magnetic structure became unstable and erupted first, appearing as an expanding hot channel seen at extreme ultraviolet wavelengths. About 12 minutes later, the low-lying structure also started to erupt and moved at an even faster speed compared to the high-lying one. As a result, the two erupting structures interacted and merged with each other, appearing as a single coronal mass ejection in the outer corona. We find that the double-decker configuration is likely caused by the persistent shearing motion and flux cancellation along the source active region’s strong-gradient polarity inversion line. The successive destabilization of these two separate but closely spaced magnetic structures, possibly in the form of magnetic flux ropes, led to a compound solar eruption. The study of the compound eruption provides a unique opportunity to reveal the formation process, initiation, and evolution of complex eruptive structures in solar active regions.

  14. Low-spin manganese(II) and high-spin manganese(III) complexes derived from disalicylaldehyde oxaloyldihydrazone: Synthesis, spectral characterization and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.

    2018-01-01

    Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.

  15. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  16. Synthesis, structure, and magnetic properties of two 1-D helical coordination polymeric Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng

    2008-01-01

    Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.

  17. Search for the elusive magnetic state of hexagonal iron: The antiferromagnetic Fe71Ru29 hcp alloy

    NASA Astrophysics Data System (ADS)

    Petrillo, C.; Postorino, P.; Orecchini, A.; Sacchetti, F.

    2018-03-01

    The magnetic states of iron and their dependence on crystal structure represent an important case study for the physics of magnetism and its role in fundamental and applied science, including geophysical sciences. hcp iron is the most elusive structure as it exists only at high pressure but, at the same time, it is expected to be stable up to very high temperature. Exploring the magnetic state of pure Fe at high pressure is difficult and no conclusive results have been obtained. Simple binary alloys where the hexagonal phase of Fe is stabilized, offer a more controllable alternative to investigate iron magnetism. We carried out a neutron diffraction experiment on hcp Fe71Ru29 disordered alloy as a function of temperature. Fe in the hexagonal lattice of this specific alloy results to be antiferromagnetically aligned with a rather complex structure and a small magnetic moment. The temperature dependence suggests a Néel temperature TN = 124 ± 10 K, a value consistent with the low magnetic moment of 1.04 ± 0.10 μB obtained from the diffraction data that also suggest a non-commensurate magnetic structure with magnetic moments probably aligned along the c axis. The present data provide evidence for magnetic ordering in hcp Fe and support the theoretical description of magnetism of pure Fe at high pressure.

  18. Current induced incoherent magnetization dynamics in ferromagnetic/non-magnetic metallic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Al-Rashid, Md Mamun; Maqableh, Mazin; Stadler, Bethanie; Atulasimha, Jayasimha

    High density arrays of electrodeposited nanowires consisting of ferromagnetic/non-magnetic (Co/Cu) multilayers are promising as magnetic memory devices. For individual nanowires containing multiple (Co/Cu) bilayers, the stable magnetization orientations of the Co layers (with respect to each other and the nanowire axis) are dependent on the Cu layer thickness, even when the Co layer dimensions are fixed. This dependence is a result of the competition between shape anisotropy, magneto-crystalline anisotropy and intra-wire dipole coupling. However, when the nanowires are closely packed in arrays, inter-wire dipole coupling can result in complex and tunable domain structures comprising segments of multiple nanowires. This work explores the dependence of these domain structures and their switching on the non-magnetic layer thickness and intra-wire spacing both experimentally and via rigorous micromagnetic simulation. These domain structures play a crucial role in determining the current and time required for STT switching. NSF CAREER Grant CCF-1253370.

  19. Tailoring Spin Textures in Complex Oxide Micromagnets

    DOE PAGES

    Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...

    2016-09-12

    Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less

  20. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation.

    PubMed

    Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang

    2014-08-15

    The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. Copyright © 2014, American Association for the Advancement of Science.

  1. Dynamics of plasma−dust structures formed in a trap created in the narrowing of a current channel in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzlieva, E. S., E-mail: plasmadust@yandex.ru; Karasev, V. Yu., E-mail: v.karasev@spbu.ru; Pavlov, S. I.

    The geometry and dynamics of plasma−dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for themore » existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s{sup –1}, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.« less

  2. Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kłos, J. W., E-mail: klos@amu.edu.pl; Krawczyk, M.; Dadoenkova, Yu. S.

    2014-05-07

    We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceivedmore » by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.« less

  3. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, {sup 57}Fe Moessbauer spectroscopy and thermal studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travnicek, Zdenek, E-mail: zdenek.travnicek@upol.c; Herchel, Radovan; Mikulik, Jiri

    2010-05-15

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN){sub 5}NO].H{sub 2}O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN){sub 5}NO].2H{sub 2}O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]octadecane and [Cu(nme){sub 2}Fe(CN){sub 5}NO].H{sub 2}O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, {sup 57}Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, {sup 57}Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe{sub 2}O{sub 4} and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN){sub 5}NO].xH{sub 2}O, wheremore » L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and {sup 57}Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.« less

  4. First iron and cobalt(II) hexabromoclathrochelates: structural, magnetic, redox, and electrocatalytic behavior.

    PubMed

    Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Romanenko, Galina V; Budnikova, Yulia G; Zelinskii, Genrikh E; Buzin, Michail I; Voloshin, Yan Z

    2015-02-07

    Template condensation of dibromoglyoxime with n-butylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded iron and cobalt(ii) hexabromoclathrochelates. The paramagnetic cobalt clathrochelate was found to be a low-spin complex at temperatures below 100 K, with a gradual increase in the effective magnetic moment at higher temperatures due to the temperature 1/2↔3/2 spin crossover and a gap caused by the structure phase transition. The multitemperature X-ray and DSC studies of this complex and its iron(ii)-containing analog also showed temperature structural transitions. The variation of an encapsulated metal ion's radius, electronic structure and spin state caused substantial differences in the geometry of its coordination polyhedron; these differences increase with the decrease in temperature due to Jahn-Teller distortion of the encapsulated cobalt(ii) ion with an electronic configuration d(7). As follows from CV and GC data, these cage iron and cobalt complexes undergo both oxidation and reduction quasireversibly, and showed an electrocatalytic activity for hydrogen production in different producing systems.

  5. Magnetic structure of the crust

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1985-01-01

    The bibuniqueness aspect of geophysical interpretation must be constrained by geological insight to limit the range of theoretically possible models. An additional step in depth understanding of the relationship between rock magnetization and geological circumstances on a grand scale is required. Views about crustal structure and the distribution of lithologies suggests a complex situation with lateral and vertical variability at all levels in the crust. Volcanic, plutonic, and metamorphic processes together with each of the observed anomalies. Important questions are addressed: (1) the location of the magnetic bottom; (2) whether the source is a discrete one or are certain parts of the crust cumulatively contributing to the overall magnetization; (3) if the anomaly to some recognizable surface expression is localized, how to arrive at a geologically realistic model incorporating magnetization contrasts which are realistic; (3) in the way the primary mineralogies are altered by metamorphism and the resulting magnetic contracts; (4) the effects of temperature and pressure on magnetization.

  6. The Role of Magnetic Reconnection in Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; DeVore, C. R.

    2008-01-01

    The central challenge in solar/heliospheric physics is to understand how the emergence and transport of magnetic flux at the photosphere drives the structure and dynamics that we observe in the corona and heliosphere. This presentation focuses on the role of magnetic reconnection in determining solar/heliospheric activity. We demonstrate that two generic properties of the photospheric magnetic and velocity fields are responsible for the ubiquitous reconnection in the corona. First, the photospheric velocities are complex, which leads to the injection of energy and helicity into the coronal magnetic fields and to the efficient, formation of small-scale structure. Second, the flux distribution at the photosphere is multi-polar, which implies that topological discontinuities and, consequently, current sheets, must be present in the coronal magnetic field. We: present numerical simulations showing that photospherically-driven reconnection is responsible for the heating and dynamics of coronal plasma, and for the topology of the coronal/heliospheric magnetic field.

  7. Double interpenetration in a chiral three-dimensional magnet with a (10,3)-a structure.

    PubMed

    Grancha, Thais; Mon, Marta; Lloret, Francesc; Ferrando-Soria, Jesús; Journaux, Yves; Pasán, Jorge; Pardo, Emilio

    2015-09-21

    A unique chiral three-dimensional magnet with an overall racemic double-interpenetrated (10,3)-a structure of the formula [(S)-(1-PhEt)Me3N]4[Mn4Cu6(Et2pma)12](DMSO)3]·3DMSO·5H2O (1; Et2pma = N-2,6-diethylphenyloxamate) has been synthesized by the self-assembly of a mononuclear copper(II) complex acting as a metalloligand toward Mn(II) ions in the presence of a chiral cationic auxiliary, constituting the first oxamato-based chiral coordination polymer exhibiting long-range magnetic ordering.

  8. Cyanide-bridged Fe(III)-Mn(III) bimetallic complexes with dimeric and chain structures constructed from a newly made mer-Fe tricyanide: structures and magnetic properties.

    PubMed

    Kim, Jae Il; Kwak, Hyun Young; Yoon, Jung Hee; Ryu, Dae Won; Yoo, In Young; Yang, Namgeun; Cho, Beong Ki; Park, Je-Geun; Lee, Hyosug; Hong, Chang Seop

    2009-04-06

    Four cyanide-linked Fe(III)-Mn(III) complexes were prepared by reacting Mn Schiff bases with a new molecular precursor (PPh(4))[Fe(qcq)(CN)(3)] [1; qcq = 8-(2-quinolinecarboxamido)quinoline anion]. They include a dimeric molecule, [Fe(qcq)(CN)(3)][Mn(3-MeOsalen)(H(2)O)] x 2 H(2)O [2 x 2 H(2)O; 3-MeOsalen = N,N'-ethylenebis(3-methoxysalicylideneiminato) dianion], and three 1D zigzag chains, [Fe(qcq)(CN)(3)][Mn(5-Clsalen)] x 3 H(2)O [3 x 2 MeOH; 5-Clsalen = N,N'-ethylenebis(5-chlorosalicylideneiminato) dianion], [Fe(qcq)(CN)(3)][Mn(5-Brsalen)] x 2 MeOH [4 x 2 MeOH; 5-Brsalen = N,N'-ethylenebis(5-bromosalicylideneiminato) dianion], and Fe(qcq)(CN)(3)][Mn(salen)].MeCN x H(2)O [5 x MeCN; salen = N,N'-ethylenebis(salicylideneiminato) dianion]. The complexes consist of extensive hydrogen bonding and pi-pi stacking interactions, generating multidimensional structures. Magnetic studies demonstrate that antiferromagnetic couplings are operative between Fe(III) and Mn(III) centers bridged by cyanide ligands. On the basis of an infinite chain model, magnetic coupling parameters of 2-5 range from -9.3 to -14.1 cm(-1). A long-range order is observed at 2.3 K for 3 and 2.2 K for 4, while compound 5 shows spin glass behavior possibly coupled with magnetic ordering.

  9. Synthesis, spectral characterization and catalytic activity of Co(II) complexes of drugs: crystal structure of Co(II)-trimethoprim complex.

    PubMed

    Madhupriya, Selvaraj; Elango, Kuppanagounder P

    2014-01-24

    New Co(II) complexes with drugs such as trimethoprim (TMP), cimetidine (CTD), niacinamide (NAM) and ofloxacin (OFL) as ligands were synthesized. The complexes were characterized by analytical analysis, various spectral techniques such as FT-IR, UV-Vis, magnetic measurements and molar conductivity. The magnetic susceptibility results coupled with the electronic spectra suggested a tetrahedral geometry for the complexes. The coordination mode of trimethoprim ligand and geometry of the complex were confirmed by single crystal X-ray studies. In this complex the metal ion possesses a tetrahedral geometry with two nitrogen atom from two TMP ligands and two chloride ions coordinated to it. The catalytic activity of the complexes in aryl-aryl coupling reaction was screened and the results indicated that among the four complexes [Co(OFL)Cl(H2O)] exhibited excellent catalytic activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Magnetic structure of the swedenborgite CaBa (Co3Fe ) O7 derived by unpolarized neutron diffraction and spherical neutron polarimetry

    NASA Astrophysics Data System (ADS)

    Qureshi, N.; Díaz, M. T. Fernández; Chapon, L. C.; Senyshyn, A.; Schweika, W.; Valldor, M.

    2018-02-01

    We present a study that combines polarized and unpolarized neutrons to derive the magnetic structure of the swedenborgite compound CaBa (Co3Fe ) O7. Integrated intensities from a standard neutron diffraction experiment and polarization matrices from spherical neutron polarimetry have been simultaneously analyzed revealing a complex order, which differs from the usual spin configurations on a kagome lattice. We find that the magnetic structure is well described by a combination of two one-dimensional representations corresponding to the magnetic superspace symmetry P 21' , and it consists of spins rotating around an axis close to the [110] direction. Due to the propagation vector q =(1/3 00 ) , this modulation has cycloidal and helicoidal character rendering this system a potential multiferroic. The resulting spin configuration can be mapped onto the classical √{3 }×√{3 } structure of a kagome lattice, and it indicates an important interplay between the kagome and the triangular layers of the crystal structure.

  11. Topological Evolution of a Fast Magnetic Breakout CME in 3-Dimensions

    NASA Technical Reports Server (NTRS)

    Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Luhmann, J. G.; Zurbuchen, T. H.

    2008-01-01

    W present the extension of the magnetic breakout model for CME initiation to a fully 3-dimensional, spherical geometry. Given the increased complexity of the dynamic magnetic field interactions in 3-dimensions, we first present a summary of the well known axisymmetric breakout scenario in terms of the topological evolution associated with the various phases of the eruptive process. In this context, we discuss the completely analogous topological evolution during the magnetic breakout CME initiation process in the simplest 3-dimensional multipolar system. We show that an extended bipolar active region embedded in an oppositely directed background dipole field has all the necessary topological features required for magnetic breakout, i.e. a fan separatrix surface between the two distinct flux systems, a pair of spine fieldlines, and a true 3-dimensional coronal null point at their intersection. We then present the results of a numerical MHD simulation of this 3-dimensional system where boundary shearing flows introduce free magnetic energy, eventually leading to a fast magnetic breakout CME. The eruptive flare reconnection facilitates the rapid conversion of this stored free magnetic energy into kinetic energy and the associated acceleration causes the erupting field and plasma structure to reach an asymptotic eruption velocity of greater than or approx. equal to 1100 km/s over an approx.15 minute time period. The simulation results are discussed using the topological insight developed to interpret the various phases of the eruption and the complex, dynamic, and interacting magnetic field structures.

  12. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer

    NASA Astrophysics Data System (ADS)

    Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.

    2016-10-01

    3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.

  13. Late Cretaceous sub-volcanic structure in the continental shelf off Portugal and its implications on tectonics and seismicity

    NASA Astrophysics Data System (ADS)

    Neres, Marta; Terrinha, Pedro; Custódio, Susana; Noiva, João; Brito, Pedro; Santos, Joana; Carrilho, Fernando

    2017-04-01

    Long-lasting and widespread alkaline magmatism is recognized in the west Portuguese margin. Offshore, several volcanic seamounts punctuate the Tore-Madeira Rise and the Estremadura Spur, with known ages between 80 and 100 Ma. Onshore, the major events are the Monchique (69-73 Ma), Sines (75-77 Ma) and Sintra (75-82 Ma) plutons - whose location (aligned along 200 km) and age discrepancy inspired some geodynamic models for Iberia during the Cretaceous - and the Lisbon Volcanic Complex (90-100 Ma). Structural links between them have been proposed but no direct evidence was yet found for it. In this work we present new magnetic data from recent marine magnetic surveys (ROCHEL and MINEPLAT project) conducted off the west Portuguese coast on the continental shelf and slope. A total area of about 3000 km2 between Sintra and Sines was surveyed with line spacing of 1 mile. Very high-resolution multi-channel seismic profiles were simultaneously acquired with the magnetics covering an area of 400 km2 off Sines. Two main primary outcomes arise from these data. On one hand, higher-resolution mapping in regions where magnetic anomalies were already known allows a better understanding of the buried sub-volcanic system. On the other hand, previously unknown NNW-SSE aligned magnetic anomalies were identified along the coast off Sines, possibly corresponding to buried Late Cretaceous alkaline magmatic intrusives. The presence of magmatic bodies was up to now unknown in this region, and these findings reignite the discussion about a structural link connecting the three main on land intrusive complexes, Sintra, Sines and Monchique. In addition to the structural control of the magmatic complexes, seismicity is also an issue as a cluster of seismicity coincident with the Monchique complex has long been known. Smaller clusters coincide with the magnetic anomalies mapped during the ROCHEL and MINEPLAT surveys, as well. We interpret these results in the light of the tectono-magmatism of West Iberia during the Late Cretaceous and at Present, specifically: What was the tectonic control for the emplacement of these magmatic bodies emplaced on the rifted margin? Is the rheological contrast between magmatic bodies and host-rocks controlling the seismicity localization? Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.

  14. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    NASA Astrophysics Data System (ADS)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  15. Development of solar flares and features of the fine structure of solar radio emission

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.

    2017-11-01

    The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.

  16. Role of 4 f electrons in crystallographic and magnetic complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Arjun K.; Paudyal, Durga; Mudryk, Yaroslav

    2017-08-09

    Here, the functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4f-electron energy landscapes of Dy (4f 9) and Er (4f 11) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in Er 1–xDy xCo 2, and likely many other mixed lanthanide systems. Unlike the parentmore » binaries—DyCo 2 and ErCo 2—Er 1–xDy xCo 2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4f electrons in controlling the magnetism and structure of lanthanide intermetallics.« less

  17. XAS and XMCD investigation of Mn12 monolayers on gold.

    PubMed

    Mannini, Matteo; Sainctavit, Philippe; Sessoli, Roberta; Cartier dit Moulin, Christophe; Pineider, Francesco; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante

    2008-01-01

    The deposition of Mn(12) single molecule magnets on gold surfaces was studied for the first time using combined X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) methods at low temperature. The ability of the proposed approach to probe the electronic structure and magnetism of Mn(12) complexes without significant sample damage was successfully checked on bulk samples. Detailed information on the oxidation state and magnetic polarization of manganese ions in the adsorbates was obtained from XAS and XMCD spectra, respectively. Partial reduction of metal ions to Mn(II) was clearly observed upon deposition on Au(111) of two different Mn(12) derivatives bearing 16-acetylthio-hexadecanoate and 4-(methylthio)benzoate ligands. The average oxidation state, as well as the relative proportions of Mn(II), Mn(III) and Mn(IV) species, are strongly influenced by the deposition protocol. Furthermore, the local magnetic polarizations are significantly decreased as compared with bulk Mn(12) samples. The results highlight an utmost redox instability of Mn(12) complexes at gold surfaces, presumably accompanied by structural rearrangements, which cannot be easily revealed by standard surface analysis based on X-ray photoelectron spectroscopy and scanning tunnelling microscopy.

  18. Synthesis, characterisation and computational studies on a novel one-dimensional arrangement of Schiff-base Mn3 single-molecule magnet.

    PubMed

    Lin, Po-Heng; Gorelsky, Serge; Savard, Didier; Burchell, Tara J; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2010-09-07

    The syntheses, structures and magnetic properties are reported for three new manganese complexes containing the Schiff-base ((2-hydroxy-3-methoxyphenyl)methylene)isonicotinohydrazine (H(2)hmi) ligand. Complex [Mn(II)(H(2)hmi)(2)(MeOH)(2)Cl(2)] (1) was obtained from the reaction of H(2)hmi with MnCl(2) in a MeOH-MeCN mixture. Addition of triethylamine to the previous reaction mixture followed by diethyl ether diffusion yielded a dinuclear manganese [Mn(III)(2)(hmi)(2)(OMe)(2)](infinity).2MeCN.2OEt(2) (2) compound. Upon increasing the MnCl(2)/H(2)hmi ratio, the mixed valence complex [Mn(III)(2)Mn(II)(hmi)(2)(OMe)(2)Cl(2)](infinity).MeOH (3) was obtained. Dc and ac magnetic measurements were carried out on all three samples. The ac susceptibility and field dependence of the magnetisation measurements confirmed that complex 3 exhibits a single-molecule magnet behaviour with an effective energy barrier of 8.1 K and an Arrhenius pre-exponential factor of 3 x 10(-9) s.

  19. Magnetic Properties of Three Impact Structures in Canada

    NASA Astrophysics Data System (ADS)

    Scott, R. G.; Pilkington, M.; Tanczyk, E. I.; Grieve, R. A. F.

    1995-09-01

    Magnetic anomaly lows associated with the West Hawk Lake (Manitoba), Deep Bay (Saskatchewan) and Clearwater Lakes (Quebec) impact structures, are variable in lateral extent and intensity, a characteristic shared with most impact structures [1]. Drill core from the centres of these structures provides a unique opportunity to ground truth the causes of the reduction in magnetic field intensity in impact structures. Magnetic susceptibility and remanent magnetization levels have been found to be well below regional levels in melt rocks, impact breccias, fractured/shocked basement rocks in the central uplifts, and post-impact sediments. Deep Bay, formed in Pre-Cambrian paragneisses, is a complex crater with a submerged central uplift. It has been extensively infilled with non-magnetic black shales of Cretaceous age [2]. An airborne magnetic low of about 100 nT is associated with the Deep Bay structure. Below the shales and along the rim of the structure are highly brecciated country rocks with variable amounts of very fine rock flour. Susceptibility and remanent magnetization are both weak due to extensive alteration in the brecciated rocks. Alteration of the brecciated rocks, and the effect of several hundred meters of non-magnetic sedimentary infill, both contribute to the magnetic low. West Hawk Lake, a simple crater, was excavated in metavolcanic and metasedimentary rocks of the Superior Province [3], and has a ground magnetic low of about 250 nT. As with Deep Bay, West Hawk Lake has been infilled with dominantly non-magnetic sediments. Brecciation and alteration are extensive, with breccia derived from greenschist-facies meta-andesite displaying slightly higher susceptibilities and remanent magnetizations than breccia derived from the more felsic metasediments. Brecciation has effectively randomized magnetization vectors, and subsequent alteration resulted in the destruction of magnetic phases. These two factors contribute to the magnetic low over this structure. The Clearwater Lakes impact structures are two complex craters formed in Archean retrograde granulite facies rocks [4]. Clearwater West, at 36 km diameter, has an annular ring of islands and a shallowly submerged central uplift. Clearwater East, at 26 km diameter, has a more deeply submerged central uplift. The structures are characterised by highly oxidized melt rock and melt- breccia lenses exposed at the surface. Shocked crystalline basement rocks and minor amounts of breccia and melt rock occur in the central uplifts [5]. Despite relatively little alteration at depth, these rocks exhibit both susceptibilities and remanent magnetizations well below the regionally high values. The Clearwater rocks also contain a thermoremanent reversed magnetization, acquired at the time of impact, and characteristic of the Permo-Carboniferous Reversed Polarity Superchron. The magnetization is carried by titanomagnetite in Clearwater West, and both magnetite and pyrrhotite in Clearwater East. This reversed magnetization contributes to the magnetic low, but cannot account for all of it. The intense airborne magnetic low (> 500 nT) requires a significant contribution from the shocked basement at depth, produced by either alteration of magnetic phases along fractures, or reduction in magnetic properties by lower shock levels away from the point of impact [6]. References: [1] Pilkington M. and Grieve R. A. F. (1992) Rev. Geophys., 30, 161-181. [2] Innes M. J. S. et al. (1964) Publ. Dom. Obs. Ottawa, 31, 19-52. [3] Halliday I. and Griffin A. A. (1967) J. Roy. Astron. Soc. Can., 61, 1-8. [4] Simonds C. H. et al. (1978) LPS IX, 2633-2658. [5] Hische R. (1994) Unpublished Ph.D. thesis, Munster. [6] Pohl J. (1994) 3rd Intl. Wkshp., ESF Network Impact Cratering and Evol. of Planet Earth, Shockwave Behavior in Nature and Expt., Progr. Abstr., 51.

  20. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird

    PubMed Central

    Heyers, Dominik; Zapka, Manuela; Hoffmeister, Mara; Wild, John Martin; Mouritsen, Henrik

    2010-01-01

    The upper beak of birds, which contains putative magnetosensory ferro-magnetic structures, is innervated by the ophthalmic branch of the trigeminal nerve (V1). However, because of the absence of replicable neurobiological evidence, a general acceptance of the involvement of the trigeminal nerve in magnetoreception is lacking in birds. Using an antibody to ZENK protein to indicate neuronal activation, we here document reliable magnetic activation of neurons in and near the principal (PrV) and spinal tract (SpV) nuclei of the trigeminal brainstem complex, which represent the two brain regions known to receive primary input from the trigeminal nerve. Significantly more neurons were activated in PrV and in medial SpV when European robins (Erithacus rubecula) experienced a magnetic field changing every 30 seconds for a period of 3 h (CMF) than when robins experienced a compensated, zero magnetic field condition (ZMF). No such differences in numbers of activated neurons were found in comparison structures. Under CMF conditions, sectioning of V1 significantly reduced the number of activated neurons in and near PrV and medial SpV, but not in lateral SpV or in the optic tectum. Tract tracing of V1 showed spatial proximity and regional overlap of V1 nerve endings and ZENK-positive (activated) neurons in SpV, and partly in PrV, under CMF conditions. Together, these results suggest that magnetic field changes activate neurons in and near the trigeminal brainstem complex and that V1 is necessary for this activation. We therefore suggest that V1 transmits magnetic information to the brain in this migratory passerine bird. PMID:20439705

  1. Correlations Between Micromagnetic, Microstructural and Microchemical Properties in Ultrathin Epitaxial Magnetic Structures

    DTIC Science & Technology

    1993-12-31

    substrates. 2-17,19- 24-17-34 These films possess corn- temperature. It is the complexity of both the structural and plec two-dimensional magnetic...free energy differences, diffusion lengths,were taken to ensure that these measurements represent su~ rt tepraue and deposition rates. At room tern...Arnion, G. Jennings, and Rt F. Willis, Surface taneous multilayered growth made due to the lack of Science 192, LS43 (1987). breaks in the normalized MWV

  2. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  3. Far-from-equilibrium magnetic granular layers: dynamic patterns, magnetic order and self-assembled swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2010-03-01

    Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.

  4. Modélisation macroscopique des milieux stratifiés conducteurs

    NASA Astrophysics Data System (ADS)

    Matagne, E.; Conard, J. Ph.

    1997-11-01

    Many laminated structures are recognised in Electrotechnics : magnetic cores, flat conductors windings, slotted surfaces... These structures exhibit macroscopic properties, as magnetic than electric ones. This paper shows how these characteristics can be obtained by homogenisation. It deals with linear materials but taking into account the effect of eddy currents, as well on the macroscopic magnetic permeability as on the macroscopic electric conductivity, which become then complex numbers. An example of use of the macroscopic properties is provided. On peut identifier en électrotechnique de nombreuses structures stratifiées: noyaux magnétiques, bobinages formés de conducteurs plats, surfaces encochées... Ces structures présentent des propriétés macroscopiques tant magnétiques qu'électriques. Cet article montre comment ces caractéristiques peuvent être obtenues par homogénéisation. Il se limite au cas de matériaux linéaires mais en prenant en compte l'effet des courants de Foucault aussi bien sur la perméabilité magnétique macroscopique que sur la conductivité électrique macroscopique, grandeurs qui deviennent alors des nombres complexes. Un exemple d'utilisation des caractéristiques macroscopiques est fourni.

  5. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    PubMed

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  6. Iron(II) cage complexes of N-heterocyclic amide and bis(trimethylsilyl)amide ligands: synthesis, structure, and magnetic properties.

    PubMed

    Sulway, Scott A; Collison, David; McDouall, Joseph J W; Tuna, Floriana; Layfield, Richard A

    2011-03-21

    Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.

  7. Structural elucidation, EPR and magnetic property of a Co(III) complex salt incorporating 4,4‧-bipyridine and 5-sulfoisophthalate

    NASA Astrophysics Data System (ADS)

    Das, Kuheli; Datta, Amitabha; Pevec, Andrej; Mane, Sandeep B.; Rameez, Mohammad; Garribba, Eugenio; Akitsu, Takashiro; Tanka, Shinnosuke

    2018-01-01

    The cobalt(III) derivative [Co3(sip)4(bipy)2(H2O)10][Co(bipy)2(H2O)4]3(sip)2·20H2O (1) has been hydro(solvo) thermally synthesized by combining sodium 5-sulfoisophthalate (sipH2Na) as organic linker, divalent cobalt nitrate hexahydrate as metal salt and the flexible N-donor ancillary ligand bipy (4,4‧-bipyridine). Compound 1 is an ionic solid consisting of both cobalt containing cations and anions and also in addition 5-sulfoisophthalate anions. Cobalt containing cations in the crystal structure are mononuclear complex while cobalt containing anion is a discrete trinuclear species. The π-π interaction present in 1 results in chain supramolecular structure. The encapsulation of the cobalt compound displays a moderate luminescent property. On temperature dependent magnetic study, it is revealed that the corresponding effective magnetic moment is 5.27 B.M. at 300 K, which suggests isolated Co(III) species with S = 2 (theoretical value is 4.90 B M.) and thus 1 shows a rare paramagnetic behavior.

  8. RESEARCH ACTIVITIES IN THE FIELD OF MATERIALS SCIENCE.

    DTIC Science & Technology

    MAGNETIC RESONANCE, COMPLEX COMPOUNDS, CRYSTAL STRUCTURE, ELECTROCHEMISTRY, CHEMILUMINESCENCE, PHOTOCHEMICAL REACTIONS, PHOSPHORUS HETEROCYCLIC COMPOUNDS...RADIATION CHEMISTRY, POLYMERS, ROCK, SUPERCONDUCTORS, POSITRONS , DAMAGE, RADIATION EFFECTS, HALIDES

  9. Three series of heterometallic NiII-LnIII Schiff base complexes: synthesis, crystal structures and magnetic characterization.

    PubMed

    Jiang, Lin; Liu, Yue; Liu, Xin; Tian, Jinlei; Yan, Shiping

    2017-09-26

    Three series of Ni II -Ln III complexes were synthesized with the general formulae [(μ 3 -CO 3 ) 2 {Ni(HL)(CH 3 -CH 2 OH)Ln(CH 3 COO)} 2 ]·2CH 3 CH 2 OH (1-6) (Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6); H 3 L = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2-prop-anol), [Ni(HL)Ln(dbm) 3 ]·CH 3 OH 2 ·2CH 2 Cl 2 (7-10) (Ln = Tb (7), Eu (8), Gd (9), Ho (10); Hdbm = 1,3-diphenyl-1,3-propanedione) and [Ni(HL)(H 2 O)(tfa)Ln(hfac) 2 ] (11-15) (Ln = Tb (11), Dy (12), Eu (13), Gd (14), Ho (15); Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione, tfa - = trifluoroacetate) using compartmental Schiff base ligands in conjunction with auxiliary ligands. For the NiLn series, the tetranuclear structure could be considered as two Ni II -Ln III dinuclear subunits bridged by two carbonates derived from atmospheric carbon dioxide. The Ln III ions of complexes 1-6 were octa-coordinated with distorted triangular dodecahedral geometry, while the Ln III ions of the dinuclear complexes 7-15 were nona-coordinated with distorted muffin geometry. The magnetic properties of the three series complexes were studied using dc and ac magnetic measurements. For the Ni II -Gd III complexes, the dc magnetic susceptibility measurements suggested the existence of the anticipated ferromagnetic interaction between Ni II and Gd III ions. The fitting of the χ M T vs. T data processed by PHI software provided the parameters g = 2.08 (J = +0.87 cm -1 ) for 9 and g = 2.02 (J = +1.83 cm -1 ) for 14. The interaction exchange was magneto-structurally correlated to the Ni-O-Gd angle (α) and Ni(μ-O)Gd dihedral angle (β). With an applied dc field, complexes 1 (Tb), 2 (Dy), 7 (Tb) and 12 (Dy) exhibited single magnetic relaxation with SMM parameters of U eff /k = 13.60 K, 11.52 K, 7.69 K and 5.14 K, respectively. Analysis of the Cole-Cole plots for complexes 2 and 7 suggested that a single relaxation process was mainly involved in the relaxation process, with α values in the range of 0.37-0.17 and 0.14-0.11, respectively.

  10. Slow magnetic relaxation and luminescence properties in lanthanide(iii)/anil complexes.

    PubMed

    Maniaki, Diamantoula; Mylonas-Margaritis, Ioannis; Mayans, Julia; Savvidou, Aikaterini; Raptopoulou, Catherine P; Bekiari, Vlasoula; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P

    2018-05-22

    The initial use of anils, i.e. bidentate Schiff bases derived from the condensation of anilines with salicylaldehyde or its derivatives, in 4f-metal chemistry is described. The 1 : 1 reactions between Ln(NO3)3·xH2O (Ln = lanthanide) or Y(NO3)3·6H2O and N-(5-bromosalicylidene)aniline (5BrsalanH) in MeCN has provided access to complexes [Ln(NO3)3(5BrsalanH)2(H2O)]·MeCN (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) and [Y(NO3)3(5BrsalanH)2(H2O)]·MeCN, respectively, in good yields. The structures of the isomorphous complexes with Ln = Pr(1·MeCN), Sm(3·MeCN), Gd(5·MeCN), Dy(7·MeCN) and Er(9·MeCN) have been determined by single-crystal X-ray crystallography. The other complexes were proven to be isostructural with the fully structurally characterized compounds based on elemental analyses, IR spectra, unit cell determinations and powder X-ray patterns. The 9-coordinate LnIII centre in the [Ln(NO3)3(5BrsalanH)2(H2O)] molecules is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms that belong to the organic ligands and one oxygen atom from the aquo ligand. The 5BrsalanH molecules behave as monodentate O-donors; the acidic H atom is clearly located on the imino N atom and thus the formally neutral ligands adopt an extremely rare coordination mode participating in the zwitterionic form. The coordination polyhedra defined by the nine donor atoms around the LnIII centres are best described as spherical capped square antiprisms. Various intermolecular interactions build the crystal structures and Hirshfeld surface analysis was applied to evaluate the magnitude of interactions between the molecules. Solid-state IR and UV/VIS data are discussed in terms of structural features. 1H NMR data prove that the diamagnetic [Y(NO3)3(5BrsalanH)2(H2O)] complex decomposes in DMSO. Combined dc and ac magnetic susceptibility, as well as magnetization data for 7 suggest that this complex shows field-induced slow magnetic relaxation. Two magnetization relaxation processes are evident. The fit to the Arrhenius law has been performed using the 6.5-8.5 K ac data, affording an effective barrier for the magnetization reversal of 27 cm-1. Cole-Cole plot analysis in the temperature range in which the Orbach relaxation process is assumed, reveals a narrow distribution of relaxation times. The solid Dy(iii) complex 7 emits green light at 338 nm, the emission being ligand-centered. The perspectives of the present, first results in the lanthanide(iii)-anil chemistry are critically discussed.

  11. Magnetism mediated by a majority of [Fe3+ + \\mathbf{V}_{\\mathbf{O}}^{\\mathbf{2-}} ] complexes in Fe-doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Paidi, V. K.; Ferreira, N. S.; Goltz, D.; van Lierop, J.

    2015-08-01

    We examine the role of Fe3+ and vacancies ({{V}\\text{O}} ) on the magnetism of Fe-doped CeO2 nanoparticles. Magnetic nanoparticles of Ce100-xFexO2 (x  =  0, 0.26, 1.82, 2.64, 5.26, 6.91, and 7.22) were prepared by a co-precipitation method, and their structural, compositional and magnetic properties were investigated. The CeO2 nanoparticles had a mixed valance of Ce4+ and Ce3+ ions, and doping introduced Fe3+ ions. The decrease in Ce3+ and increase in Fe3+ concentrations indicated the presence of more [Fe3+ +V\\text{O}2- ] complexes with Fe loading in the particles. Charge neutralization, Fe3+ + V\\text{O}2- + 2Ce4+ ≤ftrightarrow 2Ce3+ + Fe3+, identified the impact of {{V}\\text{O}} on the magnetism, where our results suggest that the Fe-doped CeO2 nanoparticle magnetism is mediated by a majority of [Fe3+ +V\\text{O}2- ]—Ce3+ —[Fe3+ +V\\text{O}2- ] complexes.

  12. Syntheses, crystal structures and properties of novel copper(II) complexes obtained by reactions of copper(II) sulfate pentahydrate with tripodal ligands.

    PubMed

    Zhao, Wei; Fan, Jian; Song, You; Kawaguchi, Hiroyuki; Okamura, Taka-aki; Sun, Wei-Yin; Ueyama, Norikazu

    2005-04-21

    Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.

  13. Synthesis, structural characterization, DFT studies and in-vitro antidiabetic activity of new mixed ligand oxovanadium(IV) complex with tridentate Schiff base

    NASA Astrophysics Data System (ADS)

    Patel, R. N.; Singh, Yogendra Pratap

    2018-02-01

    The mixed ligand oxovanadium(IV) complex [VO(L1)(L2)] [L1 = N'-[(Z)-phenyl(pyridin-2-yl)methylidene]benzohydrazide and L2 = Benzohydrazide] has been synthesized in aerobic condition. The complex was characterized by elemental analysis spectroscopic (UV-vis, IR, epr) and electrochemical methods. X-ray diffraction pattern was also used to characterize this complex, which has a distorted octahedral structure. Single crystal diffraction analysis reveals that Csbnd H⋯π (aryl/metal chelate rings) interactions contribute to the stabilization of the crystal structure in given dimension. The room temperature magnetic susceptibility data shows paramagnetic nature of the complex. The complex was also tested for in-vitro antidiabetic activity. Moderate α-glucosidase inhibition is shown by this complex, which may be considered as α-glucosidase inhibitors.

  14. Assembly and property research on seven 0D–3D complexes derived from imidazole dicarboxylate and 1,2-bi(pyridin-4-yl)ethene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Bao; Li, Qian; Lv, Lei

    2015-03-15

    The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H{sub 3}ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H{sub 2}O)] (1), [M(H{sub 2}ImDC){sub 2}(H{sub 2}O){sub 2}]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn{sub 3}(ImDC){sub 2}(bpe)(H{sub 2}O)]·3H{sub 2}O (5) and [Cd(H{sub 2}ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O–H∙∙∙O and O–H∙∙∙N). Complexes 2–4 and 6 are isomorphous, andmore » they display the mononuclear structures. In these complexes, the O–H∙∙∙O and O–H∙∙∙N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (10{sup 3}) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1–7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K. - Graphical abstract: Seven new complexes based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated. - Highlights: • The semi-rigid ligand with C=C bonds and imidazole dicarboxylates with some advantages have been used. • A series of new complexes with different structural characteristics have been discussed in detail. • The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated.« less

  15. [Mo2(CN)11]:5- A detailed description of ligand-field spectra and magnetic properties by first-principles calculations.

    PubMed

    Hendrickx, Marc F A; Clima, S; Chibotaru, L F; Ceulemans, A

    2005-10-06

    An ab initio multiconfigurational approach has been used to calculate the ligand-field spectrum and magnetic properties of the title cyano-bridged dinuclear molybdenum complex. The rather large magnetic coupling parameter J for a single cyano bridge, as derived experimentally for this complex by susceptibility measurements, is confirmed to a high degree of accuracy by our CASPT2 calculations. Its electronic structure is rationalized in terms of spin-spin coupling between the two constituent hexacyano-monomolybdate complexes. An in-depth analysis on the basis of Anderson's kinetic exchange theory provides a qualitative picture of the calculated CASSCF antiferromagnetic ground-state eigenvector in the Mo dimer. Dynamic electron correlations as incorporated into our first-principles calculations by means of the CASPT2 method are essential to obtain quantitative agreement between theory and experiment.

  16. New Insights into Structure and Luminescence of Eu III and Sm III Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    DOE PAGES

    Daumann, Lena J.; Tatum, David S.; Snyder, Benjamin E. R.; ...

    2015-01-21

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M IIIL] - (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu III and Sm III complexes of this ligand undergo a transformation after in situ preparation to yield complexes withmore » higher quantum yield (QY) over time. We propose that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements.« less

  17. Synthesis and reaction of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3): the complex containing three-coordinate manganese(I) with a Mn-Mn bond exhibiting unusual magnetic properties and electronic structure.

    PubMed

    Chai, Jianfang; Zhu, Hongping; Stückl, A Claudia; Roesky, Herbert W; Magull, Jörg; Bencini, Alessandro; Caneschi, Andrea; Gatteschi, Dante

    2005-06-29

    This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.

  18. Modeling Magnetic Flux-Ropes Structures

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.; Savani, N.; Szabo, A.; Farrugia, C. J.; Yu, W.

    2015-12-01

    Flux-ropes are usually associated with magnetic structures embedded in the interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature (called Magnetic Clouds, MCs). However, small-scale flux-ropes in the solar wind are also identified with different formation, evolution, and dynamic involved. We present an analytical model to describe magnetic flux-rope topologies. The model is generalized to different grades of complexity. It extends the circular-cylindrical concept of Hidalgo et al. (2002) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of flux-rope geometrical information and orientation. The generalized model provides flexibility for implementation in 3-D MHD simulations.

  19. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    NASA Astrophysics Data System (ADS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-02-01

    Ternary rare-earth osmates Ln3OsO7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr3OsO7 exhibits magnetic transitions at 8 and 73 K, and Tb3OsO7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice.

  20. [Fe(III)(dmbpy)(CN)4]-: a new building block for designing single-chain magnets.

    PubMed

    Toma, Luminita Marilena; Pasán, Jorge; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel

    2012-11-28

    We herein present the synthesis and magneto-structural study of a new family of heterobimetallic chains of general formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n)·pnH(2)O [dmbpy = 4,4'-dimethyl-2,2'-bipyridine; M = Mn (2), Cu (3), Ni (4) and Co (5) with p = 4 (2), 3 (3), 9 (4) and 3.5 (5)] which were prepared by using the mononuclear PPh(4)[Fe(III)(dmbpy)(CN)(4)]·3H(2)O (1) building block (PPh(4)(+) = tetraphenylphosphonium) as a ligand toward fully solvated M(II) ions. The structure of 1 consists of discrete [Fe(III)(dmbpy)(CN)(4)](-) anions, tetraphenylphosphonium cations and noncoordinated water molecules. Complexes 2-5 are isostructural compounds whose structure consists of neutral 4,2-wave like heterobimetallic chains of formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n) where the [Fe(III)(dmbpy)(CN)(4)](-) entity adopts a bis-monodentate coordination mode toward trans-[M(II)(H(2)O)(2)] units through two of its four cyanide groups in cis positions. 1 exhibits the magnetic behaviour of magnetically isolated six-coordinate low-spin Fe(III) complexes with an important orbital contribution. 2 behaves as ferrimagnetic Fe(III)(2)Mn(II) chains, whereas 3-5 exhibit intrachain ferromagnetic couplings between the low-spin Fe(III) and either Cu(II) (3), Ni (4) or Co(II) (5) as well as frequency-dependence of the out-of-phase ac susceptibility signals below 3.0 (3), 5.5 (4) and 5.0 K (5). The relaxation time and the energy to reverse the magnetization of 3-5 are related to the anisotropy of the M(II) center and to the intra- and interchain magnetic interactions. Unprecedentedly in the world of cyanide-bearing complexes, 5 exhibits a double slow relaxation of the magnetization.

  1. Delta-configurations - Flare activity and magnetic-field structure

    NASA Technical Reports Server (NTRS)

    Patty, S. R.; Hagyard, M. J.

    1986-01-01

    Complex sunspots in four active regions of April and May 1980, all exhibiting regions of magnetic classification delta, were studied using data from the NASA Marshall Space Flight Center vector magnetograph. The vector magnetic field structure in the vicinity of each delta was determined, and the location of the deltas in each active region was correlated with the locations and types of flare activity for the regions. Two types of delta-configuration were found to exist, active and inactive, as defined by the relationships between magnetic field structure and activity. The active delta exhibited high flare activity, strong horizontal gradients of the longitudinal (line-of-sight) magnetic field component, a strong transverse (perpendicular to line-of-sight) component, and a highly nonpotential orientation of the photospheric magnetic field, all indications of a highly sheared magnetic field. The inactive delta, on the other hand, exhibited little or no flare production, weaker horizontal gradients of the longitudinal component, weaker transverse components, and a nearly potential, nonsheared orientation of the magnetic field. It is concluded that the presence of such sheared fields is the primary signature by which the active delta may be distinguished, and that it is this shear which produces the flare activity of the active delta.

  2. Effect of magnetic field on the phase transition in dusty plasma

    NASA Astrophysics Data System (ADS)

    Jaiswal, Surabhi; Thomas, Edward; Mukherjee, Rupak

    2017-10-01

    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameter in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure formed within the confining ring, but ramping the magnetic field up to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field. This work was supported by the US Dept. of Energy, DE - SC0010485.

  3. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){submore » 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology. • Complex 2 is a 1D “cage+cage”-like chain. • Complex 3 is a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology. • The fluorescent, electrochemical and magnetic properties of 1–3 were reported.« less

  4. The Origins of Magnetic Structure in the Corona and Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at two special locations: photospheric polarity inversions lines. (non-potentiality observed as a filament channel) and coronal hole boundaries, (observed as the slow solar wind). This characteristic feature of the closed-field corona is highly unexpected given that its magnetic field is continuously tangled by photospheric motions. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. I propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries inversion lines and coronal holes, creating both filament channels and the slow wind. We describe how the helicity is injected and transported and calculate the relevant rates. I argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field. This work has been supported by the NASA HTP, SR&T, and LWS programs.

  5. Spin Transfer torques in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration

    2013-03-01

    Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.

  6. Field-induced magnetic phase transitions and metastable states in Tb3Ni

    NASA Astrophysics Data System (ADS)

    Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.; Suslov, A. V.; Podlesnyak, A.; Prokhnenko, O.; Prokeš, K.; Yokaichiya, F.; Keller, L.; Baranov, N. V.

    2018-04-01

    In this paper we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compound Tb3Ni . The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group P 1121/a 1'(a b 0 ) 0 s s and propagation vector kIC=[" close="]1/2 ,1/2 ,0 ]">0.506 ,0.299 ,0 was found to emerge just below Néel temperature TN=61 K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of k1=[1/2 ,0 ,0 ] below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. The forced ferromagnetic state induced after application of an external magnetic field along the b and c crystallographic axes was found to be irreversible below 3 and 8 K, respectively.

  7. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  8. Synthesis, magnetic and electrical properties of R3AlCx (R = Ce, Pr and Nd)

    NASA Astrophysics Data System (ADS)

    Ghule, S. S.; Garde, C. S.; Ramakrishnan, S.; Singh, S.; Rajarajan, A. K.; Laad, Meena; Karmakar, Koushik

    2017-09-01

    R3AlCx (R = Ce, Pr and Nd; x = 0-1) series has been synthesized by arc melting. Rietveld analysis of x-ray powder diffraction reveals cubic (Pm-3m) structure. A Kondo temperature TK 1 K is estimated for Ce3AlC0.65 from the susceptibility and resistivity data. Magnetic susceptibility measurements indicate antiferromagnetic (AFM) order for R = Pr (x = 0.8 and 1) and Nd (x = 0.6, 0.8 and 1) and ferromagnetic (FM) for Nd3Al. Metamagnetic behaviour in the magnetization curve indicates complex magnetic structure. Band structure calculations indicate growth of a pseudo-gap in the density of states (DOS) from Ce3AlC to Pr3AlC to Nd3AlC. The DOS calculations predict a metallic behaviour which is consistent with the resistivity measurements.

  9. Large scale magmatic event, magnetic anomalies and ore exploration in northern Norway

    NASA Astrophysics Data System (ADS)

    Pastore, Z.; Church, N. S.; ter Maat, G. W.; Michels, A.; McEnroe, S. A.; Fichler, C.; Larsen, R. B.

    2016-12-01

    More than 17000 km3of igneous melts intruded into the deep crust at ca. 560-580 Ma and formed the Seiland Igneous Province (SIP), the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The original emplacement of the SIP is matter of current discussion. The SIP is now located within the Kalak Nappe Complex (KNC), a part of the Middle Allochthon of the North Norwegian Caledonides. The province is believed to represent a cross section of the deep plumbing system of a large igneous province and it is known for its layered intrusions sharing geological features with large ore-forming exploration provinces. In this study we investigate one of the four major ultramafic complexes of the province, the Reinfjord Complex. This was emplaced during three magmatic events in a time span of 4 Ma, and consists in a cylindrically zoned complex with a slightly younger dunite core (Central Series) surrounded by wehrlite and lherzolite dominated series (Upper and Lower Layered Series). Sulphides are present throughout the complex, and an electromagnetic survey identified a Ni-Cu-and a PGE reef deposit within the dunite, 100 meters below the surface. This discovery increased the ore potential of the complex and subsequently 4 deep drill cores were made. High-resolution magnetic helicopter survey was later followed up with ground magnetic and gravity surveys. Extensive sampling of surface rocks and drill cores were made to measure the rock-magnetic and physical properties of the samples and to explore the subsurface structure of the complex. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data from both oriented surface samples and from the deep drill cores, with the new ground magnetic, and helicopter data (SkyTEM survey). A 3D model of the geometry of the ultramafic intrusion is presented and a refinement of the geological interpretation of the Reinfjord ultramafic intrusion.

  10. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  11. Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.

    2011-04-01

    Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.

  12. Stereo Science Results at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Christian, Eric R.; Kaiser, Michael L.; Kucera Therese A.; St. Cyr, O. C.; van Driel-Gesztelyi, Lidia; Mandrini, Cristina H.

    2009-01-01

    The magnetic fields that drive solar activity are complex and inherently three-dimensional structures. Twisted flux ropes, magnetic reconnection and the initiation of solar storms, as well as space weather propagation through the heliosphere, are just a few of the topics that cannot properly be observed or modeled in only two dimensions. Examination of this three-dimensional complex has been hampered by the fact that solar remote sensing observations have occurred only from the Earth-Sun line, and in situ observations, while available from a greater variety of locations, have been sparse throughout the heliosphere.

  13. Heating of the corona by magnetic singularities

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    1990-01-01

    Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.

  14. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB 4

    DOE PAGES

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; ...

    2016-05-11

    We study TmB 4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.

  15. STUDY OF BIFERROIC PROPERTIES IN THE La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 COMPLEX PEROVSKITE

    NASA Astrophysics Data System (ADS)

    Cardona-Vásquez, J. A.; Gómez, M. E.; Landínez-Téllez, D. A.; Roa-Rojas, J.

    2013-10-01

    In this paper, details of synthesis and structural, morphological, electrical, and magnetic characterization of the new La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 multiferroic complex perovskite are reported. Mixtures with 50% mass of ferromagnetic lanthanum calcium manganite La0.67Ca0.33MnO3 and ferroelectric barium-lanthanum zirconate titanate Ba0.9La0.067Ti0.91Zr0.09 O3 were prepared by the solid state reaction technique. Patterns of X-ray diffraction showed that the materials have reacted resulting in a new perovskite-like structure with tetragonal symmetry, space group P4mm(#99). The structure of the material was refined using the Rietveld method through the GSAS code. ZFC and FC magnetization curves show the occurrence of two phase transitions at 42.25 K and 203.9 K which have been associated with two different magnetic regimes. Hysteresis curves measured confirm that the relationship between the applied field and the magnetization does not evidence a linear behavior. These curves also show that in the low temperature regime the magnetic memory of the material is greater than in the high temperature region. AC impedance as a function of temperature measurements show the same two regions observed in the magnetization curves. The ferroelectric behavior with relative permittivity of 153.12 is observed by polarization curves performed at room temperature in the synthesized materials.

  16. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  17. A model of magnetic and relaxation properties of the mononuclear [Pc2Tb](-)TBA+ complex.

    PubMed

    Reu, O S; Palii, A V; Ostrovsky, S M; Tregenna-Piggott, P L W; Klokishner, S I

    2012-10-15

    The present work is aimed at the elaboration of the model of magnetic properties and magnetic relaxation in the mononuclear [Pc(2)Tb](-)TBA(+) complex that displays single-molecule magnet properties. We calculate the Stark structure of the ground (7)F(6) term of the Tb(3+) ion in the exchange charge model of the crystal field, taking account for covalence effects. The ground Stark level of the complex possesses the maximum value of the total angular momentum projection, while the energies of the excited Stark levels increase with decreasing |M(J)| values, thus giving rise to a barrier for the reversal of magnetization. The one-phonon transitions between the Stark levels of the Tb(3+) ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the [Pc(2)Tb](-)TBA(+) complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature range 14 K

  18. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less

  19. Nanoscale magneto-structural coupling in as-deposited and freestanding single-crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films

    PubMed Central

    Landgraf, Anja; Jakob, Alexander M; Ma, Yanhong; Mayr, Stefan G

    2013-01-01

    Ferromagnetic shape memory alloys are characterized by strong magneto-mechanical coupling occurring at the atomic scale causing large magnetically inducible strains at the macroscopic level. Employing combined atomic and magnetic force microscopy studies at variable temperature, we systematically explore the relation between the magnetic domain pattern and the underlying structure for as-deposited and freestanding single-crystalline Fe7Pd3 thin films across the martensite–austenite transition. We find experimental evidence that magnetic domain appearance is strongly affected by the presence and absence of nanotwinning. While the martensite–austenite transition upon temperature variation of as-deposited films is clearly reflected in topography by the presence and absence of a characteristic surface corrugation pattern, the magnetic domain pattern is hardly affected. These findings are discussed considering the impact of significant thermal stresses arising in the austenite phase. Freestanding martensitic films reveal a hierarchical structure of micro- and nanotwinning. The associated domain organization appears more complex, since the dominance of magnetic energy contributors alters within this length scale regime. PMID:27877596

  20. Are Complex Magnetic Field Structures Responsible for the Confined X-class Flares in Super Active Region 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Li, Ting; Chen, Huadong, E-mail: zjun@nao.cas.cn, E-mail: hdchen@nao.cas.cn

    From 2014 October 19 to 27, six X-class flares occurred in super active region (AR) 12192. They were all confined flares and were not followed by coronal mass ejections. To examine the structures of the four flares close to the solar disk center from October 22 to 26, we firstly employ composite triple-time images in each flare process to display the stratified structure of these flare loops. The loop structures of each flare in both the lower (171 Å) and higher (131 Å) temperature channels are complex, e.g., the flare loops rooting at flare ribbons are sheared or twisted (enwound)more » together, and the complex structures were not destroyed during the flares. For the first flare, although the flare loop system appears as a spindle shape, we can estimate its structures from observations, with lengths ranging from 130 to 300 Mm, heights from 65 to 150 Mm, widths at the middle part of the spindle from 40 to 100 Mm, and shear angles from 16° to 90°. Moreover, the flare ribbons display irregular movements, such as the left ribbon fragments of the flare on October 22 sweeping a small region repeatedly, and both ribbons of the flare on October 26 moved along the same direction instead of separating from each other. These irregular movements also imply that the corresponding flare loops are complex, e.g., several sets of flare loops are twisted together. Although previous studies have suggested that the background magnetic fields prevent confined flares from erupting,based on these observations, we suggest that complex flare loop structures may be responsible for these confined flares.« less

  1. Geophysical studies of the Syncline Ridge area, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Hoover, D.B.; Hanna, W.F.; Anderson, L.A.; Flanigan, V.J.; Pankratz, L.W.

    1982-01-01

    A wide variety of geophysical methods were employed to study a proposed nuclear waste site at Syncline Ridge on the Nevada Test Site, Nev. The proposed site was believed to be a relatively undisturbed synclinal structure containing a thick argillite unit of Misslsslppian age, the Eleana Formation unit J, which would be the emplacement medium. Data acquisition for the geophysical studies was constrained because of rugged topography in a block of Tipplpah Limestone overlying the central part of the proposed site. This study employed gravity, magnetic, seismic refraction and reflection, and four distinct electrical methods to try and define the structural integrity and shape of the proposed repository medium. Detailed and regional gravity work revealed complex structure at the site. Magnetics helped only in identifying small areas of Tertiary volcanic rocks because of low magnetization of the rocks. Seismic refraction assisted in identifying near surface faulting and bedrock structure. Difficulty was experienced in obtaining good quality reflection data. This implied significant structural complexity but also revealed the principal features that were supported by other data. Electrical methods were used for fault identification and for mapping of a thick argillaceous unit of the Eleana Formation in which nuclear waste was to be emplaced. The geophysical studies indicate that major faults along the axis of Syncline Ridge and on both margins have large vertical offsets displacing units so as not only to make mining difficult, but also providing potential paths for waste migration to underlying carbonate aquifers. The Eleana Formation appeared heterogeneous, which was inferred to be due to structural complexity. Only a small region in the northwest part of the study area was found to contain a thick and relatively undisturbed volume of host rock.

  2. A novel Ni(4) complex exhibiting microsecond quantum tunneling of the magnetization.

    PubMed

    Aromí, Guillem; Bouwman, Elisabeth; Burzurí, Enrique; Carbonera, Chiara; Krzystek, J; Luis, Fernando; Schlegel, Christoph; van Slageren, Joris; Tanase, Stefania; Teat, Simon J

    2008-01-01

    A highly asymmetric Ni(II) cluster [Ni(4)(OH)(OMe)(3)(Hphpz)(4)(MeOH)(3)](MeOH) (1) (H(2)phpz=3-methyl-5-(2-hydroxyphenyl)pyrazole) has been prepared and its structure determined by means of single-crystal X-ray diffraction by using synchrotron radiation. Variable-temperature bulk-magnetization measurements show that the complex exhibits intramolecular-ferromagnetic interactions leading to a spin ground state S=4 with close-lying excited states. Magnetization and high-frequency EPR measurements suggest the presence of sizable Ising-type magnetic anisotropy, with zero-field splitting parameters D=-0.263 cm(-1) and E=0.04 cm(-1) for the spin ground state, and an isotropic g value of 2.25. The presence of both axial and transverse anisotropy was confirmed through low-temperature specific heat determinations down to 300 mK, but no slow relaxation of the magnetization was observed by AC measurements down to 1.8 K. Interestingly, AC susceptibility measurements down to temperatures as low as 23 mK showed no indication of slow relaxation of the magnetization in 1. Thus, despite the presence of an anisotropy barrier (U approximately 4.21 cm(-1) for the purely axial limit), the magnetization relaxation remains extremely fast down to the lowest temperatures. The estimated quantum tunneling rate, Gamma>0.667 MHz, makes this complex a prime candidate for observation of coherent tunneling of the magnetization.

  3. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim

    2016-10-01

    In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.

  4. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    ERIC Educational Resources Information Center

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  5. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.

  6. Organizing and addressing magnetic molecules.

    PubMed

    Gatteschi, Dante; Cornia, Andrea; Mannini, Matteo; Sessoli, Roberta

    2009-04-20

    Magnetic molecules ranging from simple organic radicals to single-molecule magnets (SMMs) are intensively investigated for their potential applications in molecule-based information storage and processing. The goal of this Article is to review recent achievements in the organization of magnetic molecules on surfaces and in their individual probing and manipulation. We stress that the inherent fragility and redox sensitivity of most SMM complexes, combined with the noninnocent role played by the substrate, ask for a careful evaluation of the structural and electronic properties of deposited molecules going beyond routine methods for surface analysis. Detailed magnetic information can be directly obtained using X-ray magnetic circular dichroism or newly emerging scanning probe techniques with magnetic detection capabilities.

  7. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  8. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity

    PubMed Central

    Evans, Benjamin A.; Fiser, Briana L.; Prins, Willem J.; Rapp, Daniel J.; Shields, Adam R.; Glass, Daniel R.; Superfine, R.

    2011-01-01

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe203) nanoparticles 7–10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 – 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings. PMID:22184482

  9. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity.

    PubMed

    Evans, Benjamin A; Fiser, Briana L; Prins, Willem J; Rapp, Daniel J; Shields, Adam R; Glass, Daniel R; Superfine, R

    2012-02-01

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe(2)0(3)) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 - 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.

  10. High-aspect ratio magnetic nanocomposite polymer cilium

    NASA Astrophysics Data System (ADS)

    Rahbar, M.; Tseng, H. Y.; Gray, B. L.

    2014-03-01

    This paper presents a new fabrication technique to achieve ultra high-aspect ratio artificial cilia micro-patterned from flexible highly magnetic rare earth nanoparticle-doped polymers. We have developed a simple, inexpensive and scalable fabrication method to create cilia structures that can be actuated by miniature electromagnets, that are suitable to be used for lab-on-a chip (LOC) and micro-total-analysis-system (μ-TAS) applications such as mixers and flow-control elements. The magnetic cilia are fabricated and magnetically polarized directly in microfluidic channels or reaction chambers, allowing for easy integration with complex microfluidic systems. These cilia structures can be combined on a single chip with other microfluidic components employing the same permanently magnetic nano-composite polymer (MNCP), such as valves or pumps. Rare earth permanent magnetic powder, (Nd0.7Ce0.3)10.5Fe83.9B5.6, is used to dope polydimethylsiloxane (PDMS), resulting in a highly flexible M-NCP of much higher magnetization and remanence [1] than ferromagnetic polymers typically employed in magnetic microfluidics. Sacrificial poly(ethylene-glycol) (PEG) is used to mold the highly magnetic polymer into ultra high-aspect ratio artificial cilia. Cilia structures with aspect ratio exceeding 8:0.13 can be easily fabricated using this technique and are actuated using miniature electromagnets to achieve a high range of motion/vibration.

  11. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films

    NASA Astrophysics Data System (ADS)

    Silva, E. F.; Corrêa, M. A.; Della Pace, R. D.; Plá Cid, C. C.; Kern, P. R.; Carara, M.; Chesman, C.; Alves Santos, O.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.; Bohn, F.

    2017-05-01

    We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges.

  12. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as themore » original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.« less

  13. The complex magnetic field configuration of the Martian magnetotail as observed by MAVEN

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.; Luhmann, Janet; Curry, Shannon; Espley, Jared R.; Gruesbeck, Jacob; Xu, Shaosui; Mitchell, David; Soobiah, Yasir; Connerney, John E. P.; Dong, Chuanfei; Harada, Yuki; Ruhunusiri, Suranga; Halekas, Jasper; Hara, Takuya; Ma, Yingjuan; Brain, David; Jakosky, Bruce

    2017-10-01

    The Martian magnetosphere forms as the solar wind directly interacts with the planet’s upper atmosphere. During this interaction, the Sun’s interplanetary magnetic field (IMF) drapes around the planet and local crustal magnetic fields, creating a magnetosphere configuration that has attributes of both an induced magnetosphere like that of Venus, and a complex, small-scale magnetosphere like the Moon. In addition to the closed crustal fields and draped IMF at Mars, open magnetic fields are created when magnetic reconnection occurs between the planetary fields and the IMF. These various field topologies present a complex magnetotail structure that we are now able to explore using a combination of MAVEN observations and magnetohydrodynamic (MHD) simulations. Preliminary MHD results have suggested that the Martian magnetotail includes a dual-lobe component, composed of open crustal fields, enveloped by an induced comet-like tail. These simulated open-field lobes are twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane. This rotation depends on the east-west component of the IMF. We utilize MAVEN Magnetometer and Solar Wind Ion Analyzer (SWIA) measurements collected over two Earth years to analyze the tail magnetic field configuration as a function of IMF direction. Cross-tail views of the average measured magnetic field components directed toward and away from the planet are compared for a variety of solar wind parameters. We find that, in agreement with simulation results, the east-west IMF component strongly affects the magnetotail structure, twisting its sunward-antisunward polarity patterns in response to changing IMF orientation. Through a data-model comparison we are able to infer that regions of open magnetic fields in the tail are likely reconnected crustal fields. Futhermore, these open fields in the tail may contribute to atmospheric escape to space. From this investigation we are able to confirm that the Martian magnetotail is a hybrid configuration between intrinsic and induced magnetospheres, shifting the paradigm of Mars’ magnetosphere as we have understood it thus far.

  14. Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance

    PubMed Central

    Dongsheng, Liu; Xu, Rong; Cowburn, David

    2009-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474

  15. Copper(II) hexaaza macrocyclic binuclear complexes obtained from the reaction of their copper(I) derivates and molecular dioxygen.

    PubMed

    Costas, Miquel; Ribas, Xavi; Poater, Albert; López Valbuena, Josep Maria; Xifra, Raül; Company, Anna; Duran, Miquel; Solà, Miquel; Llobet, Antoni; Corbella, Montserrat; Usón, Miguel Angel; Mahía, José; Solans, Xavier; Shan, Xiaopeng; Benet-Buchholz, Jordi

    2006-05-01

    Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.

  16. Comprehensive studies of structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs; Novaković, Nikola; Matović, Branko

    2016-02-15

    Highlights: • Zn{sub 0.95}Co{sub 0.05}O nanopowders are characterized by high structural order. • Co atoms show no tendency for Co–Co clustering and Co–Ov complexes formation. • Co–O–Co clustering along the c-axis has not lead to ferromagnetic order. • XMCD provides no evidence of magnetic polarization of O 2p and Co 3d states. - Abstract: X-ray absorption (XANES, EXAFS, XMCD) and photoelectron (XPS) spectroscopic techniques were employed to study local structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders. The substitutional Co{sup 2+} ions are incorporated in ZnO lattice at regular Zn sites and the sample is characterized by highmore » structural order. There was no sign of ferromagnetic ordering of Co magnetic moments and the sample is in paramagnetic state at all temperatures down to 5 K. The possible connection of the structural defects with the absence of ferromagnetism is discussed on the basis of theoretical calculations of the O K-edge absorption spectra.« less

  17. Interlayer exchange coupling in complex magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Xiang-dong, Zhang; Lie-ming, Li; Bo-zang, Li; Fu-cho, Pu

    1998-07-01

    We extend the hole confinement model of Edwards et al. to the problem of two kinds of complex magnetic sandwich structures. One is the magnetic sandwich covered on both sides by nonmagnetic films (case 1) and the other is that covered by magnetic films (case 2). The interlayer exchange coupling and the angular dependence of coupling energy in the two cases are investigated systematically. For case 1, our results show that the magnetic and outer nonmagnetic films influence significantly the oscillation behavior of exchange coupling and the appearance of noncollinear exchange coupling is very sensitive to the thickness of magnetic and outer nonmagnetic layers. Our results also show that the nonoscillatory component of the coupling generally varies with the thickness of magnetic (outer nonmagnetic) films and the results in the case where the thickness of both magnetic (outer nonmagnetic) films vary simultaneously are significantly different from that in the case where the thickness of one of the two magnetic (outer nonmagnetic) films is fixed while the other is varied, which is qualitatively in agreement with the experimental measurements. For case 2, the exponential dependence of exchange coupling on the thickness of the intermagnetic layer has been obtained, similar to the Parkin's experimental results for giant magnetoresistance.

  18. Bunker probe: A plasma potential probe almost insensitive to its orientation with the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costea, S., E-mail: stefan.costea@uibk.ac.at; Schneider, B. S.; Schrittwieser, R.

    Due to their ability to suppress a large part of the electron current and thus measuring directly the plasma potential, ion sensitive probes have begun to be widely tested and used in fusion devices. For these probes to work, almost perfect alignment with the total magnetic field is necessary. This condition cannot always be fulfilled due to the curvature of magnetic fields, complex magnetic structure, or magnetic field reconnection. In this perspective, we have developed a plasma potential probe (named Bunker probe) based on the principle of the ion sensitive probe but almost insensitive to its orientation with the totalmore » magnetic field. Therefore it can be used to measure the plasma potential inside fusion devices, especially in regions with complex magnetic field topology. Experimental results are presented and compared with Ball-Pen probe measurements taken under identical conditions. We have observed that the floating potential of the Bunker probe is indeed little affected by its orientation with the magnetic field for angles ranging from 90° to 30°, in contrast to the Ball-Pen probe whose floating potential decreases towards that of a Langmuir probe if not properly aligned with the magnetic field.« less

  19. A spin-frustrated trinuclear copper complex based on triaminoguanidine with an energetically well-separated degenerate ground state.

    PubMed

    Spielberg, Eike T; Gilb, Aksana; Plaul, Daniel; Geibig, Daniel; Hornig, David; Schuch, Dirk; Buchholz, Axel; Ardavan, Arzhang; Plass, Winfried

    2015-04-06

    We present the synthesis and crystal structure of the trinuclear copper complex [Cu3(saltag)(bpy)3]ClO4·3DMF [H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine; bpy = 2,2'-bipyridine]. The complex crystallizes in the trigonal space group R3̅, with all copper ions being crystallographically equivalent. Analysis of the temperature dependence of the magnetic susceptibility shows that the triaminoguanidine ligand mediates very strong antiferromagnetic interactions (JCuCu = -324 cm(-1)). Detailed analysis of the magnetic susceptibility and magnetization data as well as X-band electron spin resonance spectra, all recorded on both powdered samples and single crystals, show indications of neither antisymmetric exchange nor symmetry lowering, thus indicating only a very small splitting of the degenerate S = (1)/2 ground state. These findings are corroborated by density functional theory calculations, which explain both the strong isotropic and negligible antisymmetric exchange interactions.

  20. Pure electronic metal-insulator transition at the interface of complex oxides

    DOE PAGES

    Meyers, D.; Liu, Jian; Freeland, J. W.; ...

    2016-06-21

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less

  1. Structure and magnetism of a Mn(III)-Mn(II)-Mn(II)-Mn(III) chain complex.

    PubMed

    Uhrecký, Róbert; Moncoľ, Ján; Koman, Marian; Titiš, Ján; Boča, Roman

    2013-07-14

    A novel tetranuclear manganese(II/III) complex with anions of pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been synthesised and magneto-structurally characterised. The crystal structure of [Mn(II)2Mn(III)2(dipic)6(H2O)4]·2CH3OH·4H2O has been determined by single-crystal X-ray diffraction. The tetranuclear complex molecule [Mn(II)2Mn(III)2(dipic)6(H2O)4] is centrosymmetric and two manganese(II) and two manganese(III) atoms are bridged by four dipicolinate ligands. The complex molecules and uncoordinated water and methanol molecules are connected through hydrogen bonds and they form a 3D supramolecular hydrogen-bonding network.

  2. Depth-resolved magnetic and structural analysis of relaxing epitaxial Sr 2 CrReO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucy, J. M.; Hauser, A. J.; Liu, Y.

    2015-03-01

    Structural relaxation in a Sr2CrReO6 epitaxial film, which exhibits strong spin-orbit coupling, leads to depth-dependent magnetism. We combine two depth-resolved synchrotron x-ray techniques, two-dimensional reciprocal space mapping and x-ray magnetic circular dichroism, to quantitatively determine this effect. An 800 nm thick film of Sr2CrReO6, grown with tensile epitaxial strain on SrCr0:5Nb0:5O3(225 nm)/LSAT, relaxes away from the Sr2CrReO6/SrCr0:5Nb0:5O3 interface to its bulk lattice parameters, with much of the film being fully relaxed. Grazing incidence xray diffraction measurements of the film elucidate the in-plane strain relaxation near the film- substrate interface while depth-resolved x-ray magnetic circular dichroism at the Re L edgemore » reveals the magnetic contributions of the Re site. The smooth relaxation of the film near the interface correlates with changes in the magnetic anisotropy. This provides a systematic and powerful way to probe the depth-varying structural and magnetic properties of a complex oxide with synchrotronsource x-ray techniques.« less

  3. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography.

    PubMed

    Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori

    2014-05-01

    Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.

  4. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    DOE PAGES

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; ...

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A) 2[Co(NO 3) 4] with different countercations, Ph 4P + (1), MePh 3P + (2), and Ph 4As + (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to themore » zero-field splitting (2(D 2 + 3E 2) 1/2) from 22.5(2) cm –1 in 1 to 26.6(3) cm –1 in 2 and 11.1(5) cm –1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm –1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.« less

  5. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    PubMed

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  6. Tectonic Uplift of the Danba Area in the Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chang, C. P.; Ho, H. P.; Horng, C. S.; Hsu, Y. C.; Tan, X. B.

    2017-12-01

    The Danba anticline in the eastern Tibetan Plateau is located between the Longmenshan orogen to the east and the Xianshuihe sinistral fault zone to the west. This anticline has been recognized as an area with extreme exhumation by previous studies. The Tibetan plateau was built by the convergence between Indo-Australian plate and Eurasian plate since early Cenozoic. The eastward lower crustal flow under the plateau obstructed by the Yangtze craton soon after this convergence generated a very complex structural situation in the southeastern side of the Tibetan plateau. In this study, in order to understand the processes and mechanisms of the structural complexity of the Danba area, we apply two methods: stress analysis and magnetic measurement. By measuring the brittle deformation recorded in the strata, we carry out a series of stress analysis to demonstrate the stress field of this area. In addition, due to comprehend the magnetic characteristics of low-grade metamorphic rocks and volcanic rocks in this area, we process the rock magnetic measurement of hysteresis loop and X-ray diffraction analysis. The occurrence of pyrrhotite can be taken as an important isograd in low-grade metamorphic rocks, which is helpful for stratigraphic and structural studies. Based on our results, we try to explain the mechanism of this rapid uplift, which involves material, structural, and kinematic interaction.

  7. In-situ and real-time growth observation of high-quality protein crystals under quasi-microgravity on earth.

    PubMed

    Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru

    2016-02-26

    Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.

  8. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  9. Synthesis, Structure, and Complex Magnetism of MIr 2In 8 (M = Eu, Sr)

    DOE PAGES

    Calta, Nicholas P.; L. Bud’ko, Sergey; Rodriguez, Alexandra P.; ...

    2016-03-07

    In this paper, we report the synthesis, crystal structure, and physical properties of two new polar intermetallic compounds, EuIr 2In 8 and SrIr 2In 8. Both were synthesized in good yield using In metal as a reactive flux medium, enabling the growth of large crystals for physical property measurements. They crystallize in the orthorhombic space group Pbam with the CeFe 2Al 8 structure type, which is sometimes also referred to as the CaCo 2Al 8 structure type. The two analogues have unit cell parameters of a = 13.847(3) Å, b = 16.118(3) Å, and c = 4.3885(9) Å for Mmore » = Eu and a = 13.847(3) Å, b = 16.113(3) Å, and c = 4.3962(9) Å for M = Sr at room temperature. SrIr 2In 8 is a diamagnetic metal with no local magnetic moments on either the Sr or Ir sites, and the diamagnetic contribution from core electrons overwhelms the expected Pauli paramagnetism normally seen in intermetallic compounds. Magnetism in EuIr 2In 8 is dominated by the local Eu moments, which order antiferromagnetically at 5 K in low applied fields. Increasing the field strength depresses the magnetic ordering temperature and also induces a spin reorientation at lower temperature, indicating complex competing magnetic interactions. Finally, low-temperature heat capacity measurements show a significant enhancement of the Sommerfeld coefficient in EuIr 2In 8 relative to that in SrIr 2In 8, with estimated values of γ = 118(3) and 18.0(2) mJ mol –1 K –2, respectively.« less

  10. Integrating aeromagnetic and Landsat™ 8 data into subsurface structural mapping of Precambrian basement complex

    NASA Astrophysics Data System (ADS)

    Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.

    2017-01-01

    The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.

  11. Differential numbers of foci of lymphocytes within the brains of Lewis rats exposed to weak complex nocturnal magnetic fields during development of experimental allergic encephalomyelitis.

    PubMed

    Persinger, Michael A

    2009-01-01

    To discern if specific structures of the rat brain contained more foci of lymphocytes following induction of experimental allergic encephalomyelitis and exposures to weak, amplitude-modulated magnetic fields for 6 min once per hour during the scotophase, the residuals between the observed and predicted values for the numbers of foci for 320 structures were obtained. Compared to the brains of sham-field exposed rats, the brains of rats exposed to 7-Hz 50 nT (0.5 mG) amplitude-modulated fields showed more foci within hippocampal structures and the dorsal central grey of the midbrain while those exposed to 7-Hz 500 nT (5 mG) fields showed greater densities within the hypothalamus and optic chiasm. The brains of rats exposed to either the 50 nT or 500 nT amplitude-modulated 40-Hz fields displayed greater densities of foci within the midbrain structures related to rapid eye movement. Most of the enhancements of infiltrations within the magnetic field-exposed rats occurred in structures within periventricular or periaqueductal regions and were both frequency- and intensity-dependent. The specificity and complexity of the configurations of the residuals of the numbers of infiltrated foci following exposures to the different fields suggest that the brain itself may be a "sensory organ" for the detection of these stimuli.

  12. Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field

    NASA Astrophysics Data System (ADS)

    Mohebi, M.; Jamasbi, N.; Liu, Jing

    1996-11-01

    We developed a computer model to understand the nonequilibrium structures induced in a magnetorheological (MR) fluid by rapidly applying an external magnetic field. MR fluids consist of particles suspended in a liquid where particles interact through dipole moments induced by the external magnetic field. We have simulated these induced structures in both directions, parallel and perpendicular to the field, in the limit of fastest response, by neglecting thermal motion and applying the field instantaneously. Our results show that the process of structure formation starts with particles forming chains aligned with the external field. The chains then coalesce to form columns and wall-like structures (``worms'' as viewed from the top). The complexity of this pattern is found to depend on the concentration of particles and the confinement of the cell in the direction of the external field. These results are consistent with experimental observations [G.A. Flores et al., in Proceedings of the Fifth International Conference on ER Fluids, MR Suspensions, and Associate Technology, University of Sheffield, Sheffield, 1995, edited by W. Bullough (World Scientific, Singapore, 1996), p. 140]. We have also used this model to study the interaction of two chains. The results of this study help in the understanding of the connection between the thickness of the sample and the increased complexity of the observed lateral pattern.

  13. Understanding the Mechanism of Magnetic Relaxation in Pentanuclear {MnIVMnIII2LnIII2} Single-Molecule Magnets.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan

    2018-02-05

    A new family of heterometallic pentanuclear complexes of formulas [Mn IV Mn III 2 Ln III 2 O 2 (benz) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Dy (1-Dy), Tb (2-Tb), Gd (3-Gd), Eu (4-Eu), Sm (5-Sm), Nd (6-Nd), Pr (7-Pr); benz(H) = benzoic acid; mdeaH 2 = N-methyldiethanolamine) and [Mn IV Mn III 2 Ln III 2 O 2 (o-tol) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Gd (8-Gd), Eu (9-Eu); o-tol(H) = o-toluic acid) have been isolated and structurally, magnetically, and theoretically characterized. dc magnetic susceptibility measurements reveal dominant antiferromagnetic magnetic interactions for each complex, except for 2-Tb and 3-Gd, which reveal an upturn in the χ M T product at low temperatures. The magnetic interactions between the spin centers in the Gd derivatives, 3-Gd and 8-Gd, which display markedly different χ M T vs T profiles, were found to be due to the interactions of the Gd III -Gd III ions which change from ferromagnetic (3-Gd) to antiferromagnetic (8-Gd) due to structural differences. ac magnetic susceptibility measurements reveal a nonzero out-of-phase component for 1-Dy and 7-Pr, but no maxima were observed above 2 K (H dc = 0 Oe), which suggests single-molecule magnet (SMM) behavior. Out-of-phase signals were observed for complexes 2-Tb, 4-Eu, 8-Gd, and 9-Eu, in the presence of a static dc field (H dc = 2000, 3000 Oe). The anisotropic nature of the lanthanide ions in the benzoate series (1-Dy, 2-Tb, 5-Sm, 6-Nd, and 7-Pr) were thoroughly investigated using ab initio methods. CASSCF calculations predict that the origin of SMM behavior in 1-Dy and 7-Pr and the applied field SMM behavior in 2-Tb does not solely originate from the single-ion anisotropy of the lanthanide ions. To fully understand the relaxation mechanism, we have employed the Lines model to fit the susceptibility data using the POLY_ANISO program, which suggests that the zero-field SMM behavior observed in complexes 1-Dy and 7-Pr is due to weak Mn III/IV -Ln III and Ln III -Ln III couplings and an unfavorable Ln III /Mn III /Mn IV anisotropy. In complexes 4-Eu, 8-Gd, and 9-Eu ab initio calculations indicate that the anisotropy of the Mn III ions solely gives rise to the possibility of SMM behavior. Complex 7-Pr is a Pr(III)-containing complex that displays zero-field SMM behavior, which is rare, and our study suggests the possibility of coupling weak SOC lanthanide metal ions to anisotropic transition-metal ions to derive SMM characteristics; however, enhancing the exchange coupling in {3d-4f} complexes is still a stubborn hurdle in harnessing new generation {3d-4f} SMMs.

  14. Predictive Modeling in Actinide Chemistry and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  15. 1,2,3-triazolate-bridged tetradecametallic transition metal clusters [M14(L)6O6(OMe)18X6] (M=FeIII, CrIII and VIII/IV) and related compounds: ground-state spins ranging from S=0 to S=25 and spin-enhanced magnetocaloric effect.

    PubMed

    Shaw, Rachel; Laye, Rebecca H; Jones, Leigh F; Low, David M; Talbot-Eeckelaers, Caytie; Wei, Qiang; Milios, Constantinos J; Teat, Simon; Helliwell, Madeleine; Raftery, James; Evangelisti, Marco; Affronte, Marco; Collison, David; Brechin, Euan K; McInnes, Eric J L

    2007-06-11

    We report the synthesis, by solvothermal methods, of the tetradecametallic cluster complexes [M14(L)6O6(OMe)18Cl6] (M=FeIII, CrIII) and [V14(L)6O6(OMe)18Cl6-xOx] (L=anion of 1,2,3-triazole or derivative). Crystal structure data are reported for the {M14} complexes [Fe14(C2H2N3)6O6(OMe)18Cl6], [Cr14(bta)6O6(OMe)18Cl6] (btaH=benzotriazole), [V14O6(Me2bta)6(OMe)18Cl6-xOx] [Me2btaH=5,6-Me2-benzotriazole; eight metal sites are VIII, the remainder are disordered between {VIII-Cl}2+ and {VIV=O}2+] and for the distorted [FeIII14O9(OH)(OMe)8(bta)7(MeOH)5(H2O)Cl8] structure that results from non-solvothermal synthetic methods, highlighting the importance of temperature regime in cluster synthesis. Magnetic studies reveal the {Fe14} complexes to have ground state electronic spins of S

  16. Synthesis and structural studies of two pyridine-armed reinforced cyclen chelators and their transition metal complexes.

    PubMed

    Wilson, Kevin R; Cannon-Smith, Desiray J; Burke, Benjamin P; Birdsong, Orry C; Archibald, Stephen J; Hubin, Timothy J

    2016-08-16

    Two novel pyridine pendant-armed macrocycles structurally reinforced by an ethyl bridge, either between adjacent nitrogens (for side-bridged) or non-adjacent nitrogens (for cross-bridged), have been synthesized and complexed with a range of transition metal ions (Co 2+ , Ni 2+ , Cu 2+ and Zn 2+ ). X-ray crystal structures of selected cross-bridged complexes were obtained which showed the characteristic cis-V configuration with potential labile cis binding sites. The complexes have been characterized by their electronic spectra and magnetic moments, which show the expected high spin divalent metal complex in most cases. Exceptions are the nickel side-bridged complex, which shows a mixture of high-spin and low spin, and the cobalt cross-bridged complex which has oxidized to cobalt(III). Cyclic voltammetry in acetonitrile was carried out to assess the potential future use of these complexes in oxidation catalysis. Selected complexes offer significant catalytic potential enhanced by the addition of the pyridyl arm to a reinforced cyclen backbone.

  17. Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex.

    PubMed

    Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Iron-dextran complex: geometrical structure and magneto-optical features.

    PubMed

    Graczykowski, Bartłomiej; Dobek, Andrzej

    2011-11-15

    Molecular mass of the iron-dextran complex (M(w)=1133 kDa), diameter of its particles (∼8.3 nm) and the content of iron ions in the complex core (N(Fe)=6360) were determined by static light scattering, measurements of refractive index increment and the Cotton-Mouton effect in solution. The known number of iron ions permitted the calculation of the permanent magnetic dipole moment value to be μ(Fe)=3.17×10(-18) erg Oe(-1) and the determination of anisotropy of linear magneto-optical polarizabilities components as Δχ=9.2×10(-21) cm(3). Knowing both values and the value of the mean linear optical polarizability α=7.3×10(-20) cm(3), it was possible to show that the total measured CM effect was due to the reorientation of the permanent and the induced magnetic dipole moments of the complex. Analysis of the measured magneto-optical birefringence indicated very small optical anisotropy of linear optical polarizability components, κ(α), which suggested a homogeneous structure of particles of spherical symmetry. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    PubMed Central

    Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-01-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion. PMID:27273157

  20. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states.

    PubMed

    Heo, Changhoon; Kiselev, Nikolai S; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-06-08

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.

  1. Strain distribution across a partially molten middle crust: Insights from the AMS mapping of the Carlos Chagas Anatexite, Araçuaí belt (East Brazil)

    NASA Astrophysics Data System (ADS)

    Cavalcante, Geane C. G.; Egydio-Silva, Marcos; Vauchez, Alain; Camps, Pierre; Oliveira, Eurídice

    2013-10-01

    The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E-W and NE-SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.

  2. Element specific determination of the magnetic properties of two macrocyclic tetranuclear 3d-4f complexes with a Cu3Tb core by means of X-ray magnetic circular dichroism (XMCD).

    PubMed

    Balinski, K; Schneider, L; Wöllermann, J; Buling, A; Joly, L; Piamonteze, C; Feltham, H L C; Brooker, S; Powell, A K; Delley, B; Kuepper, K

    2018-06-20

    We apply X-ray magnetic circular dichroism to study the internal magnetic structure of two very promising star shaped macrocyclic complexes with a CuII3TbIII core. These complexes are rare examples prepared with a macrocyclic ligand that show indications of SMM (Single Molecule Magnet) behavior, and they differ only in ring size: one has a propylene linked macrocycle, [CuII3TbIII(LPr)(NO3)2(MeOH)(H2O)2](NO3)·3H2O (nickname: Cu3Tb(LPr)), and the other has the butylene linked analogue, [CuII3TbIII(LBu)(NO3)2(MeOH)(H2O)](NO3)·3H2O (nickname: Cu3Tb(LBu)). We analyze the orbital and spin contributions to the Cu and Tb ions quantitatively by applying the spin and orbital sum rules concerning the L2 (M4)/L3 (M5) edges. In combination with appropriate ligand field simulations, we demonstrate that the Tb(iii) ions contribute with high orbital magnetic moments to the magnetic anisotropy, whereas the ligand field determines the easy axis of magnetization. Furthermore, we confirm that the Cu(ii) ions in both molecules are in a divalent valence state, the magnetic moments of the three Cu ions appear to be canted due to 3d-3d intramolecular magnetic interactions. For Cu3Tb(LPr), the corresponding element specific magnetization loops reflect that the Cu(ii) contribution to the overall magnetic picture becomes more important as the temperature is lowered. This implies a low value for the 3d-4f coupling.

  3. Magnetic chalcogenides in 3 and lower dimensions

    NASA Astrophysics Data System (ADS)

    Furdyna, J. K.; Dong, S.-N.; Lee, S.; Liu, X.; Dobrowolska, M.

    2018-06-01

    In this article we review magnetic phenomena that occur in the chalcogenide family involving transition metals. Magnetic properties displayed by bulk 3D chalcogenides compounds and alloys produced by equilibrium growth methods are discussed. 2D magnetic chalcogenide systems such as epitaxial films and more complex multilayers, whose formation is made possible by epitaxial methods and/or by van der Waals epitaxy, are presented in detail. We present a brief overview of magnetic effects emerging as the dimensionality of chalcogenide materialss is reduced to 1D (nanowires and related structures) and to zero-D (quantum dots formed by both top-down and bottom-up methods).

  4. A Study of Magnetic CP Stars in Open Clusters and Associations with the 6-m Telescope

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.; Semenko, E. A.; Yakunin, I. A.; Kudryavtsev, D. O.

    2017-06-01

    The study of magnetic CP stars in groups of different ages allows us to obtain data on the origin and evolution of large-scale magnetic fields. We selected 17 groups for observation with the 6-m telescope. Here we draw first conclusions from the study of the Orion OB1 association. Six new magnetic stars in it are added to those seventeen that had been known earlier, ten more CP stars were suspected to have fields. A complex structure of the magnetic field in the star HD 34736 has been found, which is indicative of its fossil origin.

  5. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  6. Possible Itinerant Moment Contributions to the Magnetic Excitations in Gd, Studied by Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Aczel, A. A.; Fernandez-Baca, J. A.; Nagler, S. E.

    2013-03-01

    Many experimental features in magnetic superconductors are also present when these complex materials are in the normal state. Therefore studies of simpler itinerant magnets may help provide understanding of these phenomena. We chose to study Gd as it is has an ~ 0 . 6μB itinerant moment in addition to a ~ 7 . 0μB localized moment. The SEQUOIA spectrometer, at the Spallation Neutron Source at Oak Ridge National Laboratory, was used in fine resolution mode with Ei=50 meV neutrons, to measure the magnetic excitations in a 12 gm 160Gd single crystal. The crystal was mounted with the h 0 l plane horizontal and rotated around the vertical axis to map out the excitations. The measured magnetic structure factor for the acoustic modes in the hh 0 direction has an intensity step at h ~ 0 . 3 . Electronic band structure calculations (W. M. Temmerman and P. A. Sterne, J. Phys: Condes. Matter,2, 5529 (1990)) show this Q position to be near several band crossings of the Fermi surface. A detailed analysis, including instrumental resolution, is presented to clarify any relationship between the magnetic structure factor and the electronic band structure. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  7. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those of Zn(II)2Dy(III)2 were not detected. The fine structure assignable to the (5)D4 → (7)F6 transition of ZnTb1 and ZnTb2 is in good accord with the energy pattern from the magnetic analysis. The Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) showed an out-of-phase signal with frequency-dependence in alternating current susceptibility, indicative of single molecule magnet. Under a dc bias field of 1000 Oe, the signals become significantly more intense and the energy barrier, Δ/kB, for the magnetic relaxation was estimated from the Arrhenius plot to be 39(1) and 42(8) K for ZnTb1 and ZnTb2, and 52(2) and 67(2) K for ZnDy1 and ZnDy2, respectively.

  8. Synthesis, dielectric, conductivity and magnetic studies of LiNi1/3Co1/3Mn(1/3)-xAlxO2 (x = 0.0, 0.02, 0.04 and 0.06) for cathode materials of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Murali, N.; Margarette, S. J.; Veeraiah, V.

    Layered structure cathode materials LiNi1/3Co1/3Mn(1/3)-xAlxO2 (x = 0.0, 0.02, 0.04 and 0.06) are prepared by the sol-gel method by adding citric acid as chelating agent. The physical, electrical and magnetic properties of the synthesized materials are systematically discussed using the structural (XRD, FESEM with EDS and FT-IR), impedance (LCR) and electron spin resonance (ESR) measurements. The X-ray diffraction pattern of the synthesized samples possessed the α-NaFeO2 structure of the space group, R 3 bar m , with no evidence of any impurities. The peak intensity ratio I(104)/I(003) increased with Al concentration, which indicated the cation mixing between transition metal layer and lithium layer. The field effect scanning electron microscopy showed the particle size distribution in the range of 230-250 nm and EDS has been analysed for elemental mapping. The local structure is investigated by vibrational spectroscopy in FT-IR study. The impedance studies are characterized by complex impedance spectroscopy (CIS) in the frequency range from 42 Hz to 1 MHz at room temperature (30 °C). The dielectric properties are analyzed in the framework of complex dielectric permittivity and formalism of the complex electric modulus. For these samples, the ESR analysis of magnetic measurements, the degree of cation mixing, is estimated to be Ni2+(3b) = 2.75%.

  9. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    DOE PAGES

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; ...

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μ B along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAEmore » is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.« less

  10. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  11. Effect on magnetic properties of germanium encapsulated C60 fullerene

    NASA Astrophysics Data System (ADS)

    Umran, Nibras Mossa; Kumar, Ranjan

    2013-02-01

    Structural and electronic properties of Gen(n = 1-4) doped C60 fullerene are investigated with ab initio density functional theory calculations by using an efficient computer code, known as SIESTA. The pseudopotentials are constructed using a Trouiller-Martins scheme, to describe the interaction of valence electrons with the atomic cores. In endohedral doped embedding of more germanium atoms complexes we have seen that complexes are stable and thereafter cage break down. We have also investigated that binding energy, electronic affinity increases and magnetic moment oscillating behavior as the number of semiconductor atoms in C60 fullerene goes on increasing.

  12. Two molecular wheels 12-MC-6 complexes: Synthesis, structure and magnetic property of [Co(μ{sub 2}-SEt){sub 2}]{sub 6} and [Fe(μ{sub 2}-SEt){sub 2}]{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Jian, Fangfang, E-mail: ffj2003@163169.net; Huang, Baoxin

    2013-08-15

    The syntheses and structures of two ethyl mercaptan molecular wheels complexes, [M(μ{sub 2}-SCH{sub 2}CH{sub 3}){sub 2}]{sub 6} (M=Fe, Co), have been reported. Each metal atom is surrounded by four S atoms of the μ{sub 2}-SCH{sub 2}CH{sub 3} ligands in a distorted square plane fashion. The edge-sharing S{sub 4} square planes connect with each other to form a ring. Six metal atoms are located at the vertices of an almost hexagon, with M···M separations in the range of 2.903(1)∼2.936(2) Å for Fe and 2.889(2)∼2.962(2) Å for Co. The diameter of the ring, defined as the average distance between two opposing metalmore » atoms, is 5.850(1) Å for Fe and 5.780(1) Å for Co, respectively. The magnetic property behaves of cobalt(II) cluster complex is studied. Highlights: • Two new ethyl mercaptan cyclic hexanuclear complexes were reported. • The crystal structures shown center formation of M{sub 6}S{sub 12} molecular wheels. • The Co{sub 6} ring cluster complex represents as weak ferromagnet.« less

  13. Effects of 3d-4f magnetic exchange interactions on the dynamics of the magnetization of Dy(III)-M(II)-Dy(III) trinuclear clusters.

    PubMed

    Pointillart, Fabrice; Bernot, Kevin; Sessoli, Roberta; Gatteschi, Dante

    2007-01-01

    [{Dy(hfac)(3)}(2){Fe(bpca)(2)}] x CHCl(3) ([Dy(2)Fe]) and [{Dy(hfac)(3)}(2){Ni(bpca)(2)}]CHCl(3) ([Dy(2)Ni]) (in which hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate and bpca(-)=bis(2-pyridylcarbonyl)amine anion) were synthesized and characterized. Single-crystal X-ray diffraction shows that [Dy(2)Fe] and [Dy(2)Ni] are linear trinuclear complexes. Static magnetic susceptibility measurements reveal a weak ferromagnetic exchange interaction between Ni(II) and Dy(III) ions in [Dy(2)Ni], whereas the use of the diamagnetic Fe(II) ion leads to the absence of magnetic exchange interaction in [Dy(2)Fe]. Dynamic susceptibility measurements show a thermally activated behavior with the energy barrier of 9.7 and 4.9 K for the [Dy(2)Fe] and [Dy(2)Ni] complexes, respectively. A surprising negative effect of the ferromagnetic exchange interaction has been found and has been attributed to the structural conformation of these trinuclear complexes.

  14. Manifolds of magnetic ordered states and excitations in the almost Heisenberg pyrochlore antiferromagnet MgCr2O4

    NASA Astrophysics Data System (ADS)

    Gao, S.; Guratinder, K.; Stuhr, U.; White, J. S.; Mansson, M.; Roessli, B.; Fennell, T.; Tsurkan, V.; Loidl, A.; Ciomaga Hatnean, M.; Balakrishnan, G.; Raymond, S.; Chapon, L.; Garlea, V. O.; Savici, A. T.; Cervellino, A.; Bombardi, A.; Chernyshov, D.; Rüegg, Ch.; Haraldsen, J. T.; Zaharko, O.

    2018-04-01

    In spinels A Cr2O4(A =Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002), 10.1154/1.1479738], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(1/2 1/2 0 ) ,k2=(1 0 1/2 ) appear. The ordered moment reaches 1.94(3) μB/Cr3 + for k1 and 2.08(3) μB/Cr3 + for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1 -10 ] diagonals and a smaller c component. We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.

  15. Physical characteristics of lanthanide complexes that act as magnetization transfer (MT) contrast agents

    NASA Astrophysics Data System (ADS)

    Zhang, Shanrong; Sherry, A. Dean

    2003-02-01

    Rapid water exchange is normally considered a prerequisite for efficient Gd3+-based MRI contrast agents. Yet recent measures of exchange rates in some Gd3+ complexes have shown that water exchange can become limiting when such complexes are attached to larger macromolecular structures. A new class of lanthanide complexes that display unusually slow water exchange (bound water lifetimes (τM298) > 10 μs) has recently been reported. This apparent disadvantage may be taken advantage of by switching the metal ion from gadolinium(III) to a lanthanide that shifts the bound water resonance substantially away from bulk water. Given appropriate water exchange kinetics, one can then alter the intensity of the bulk water signal by selective presaturation of this highly shifted, Ln3+-bound water resonance. This provides the basis of a new method to alter MR image contrast in tissue. We have synthesized a variety of DOTA-tetra(amide) ligands to evaluate as potential magnetization transfer (MT) contrast agents and found that the bound water lifetimes in these complexes are sensitive to both ligand structure (a series of Eu3+ complexes have τM298 values that range from 1 to 1300 μs) and the identity of the paramagnetic Ln3+ cation (from 3 to 800 μs for a single ligand). This demonstrates that it may be possible either to fine-tune the ligand structure or to select proper lanthanide cation to create an optimal MT agent for any clinical imaging field.

  16. Correlation effect and magnetic moments in Cr2Te3

    NASA Astrophysics Data System (ADS)

    Youn, S. J.; Kwon, S. K.; Min, B. I.

    2007-05-01

    The electronic and magnetic structures of Cr2Te3 have been studied theoretically using the linearized muffin-tin orbitals band method. Experimental photoemission spectra and magnetic moments can be described better when the on-site Coulomb correlation U of Cr 3d electrons is considered using the local spin-density approximation+U method. The proper size of U is found to be U ˜1.7eV. The complex magnetic behaviors of Cr2Te3 come from the degeneracy of parallel and antiparallel alignments of CrI spin to CrII and CrIII spins.

  17. Equatorially connected diruthenium(II,III) units toward paramagnetic supramolecular structures with singular magnetic properties.

    PubMed

    Barral, M Carmen; Gallo, Teresa; Herrero, Santiago; Jiménez-Aparicio, Reyes; Torres, M Rosario; Urbanos, Francisco A

    2006-05-01

    The reaction of Ru2Cl(O2CMe)(DPhF)3 (DPhF = N,N'-diphenylformamidinate) with mono- and polycarboxylic acids gives a clean substitution of the acetate ligand, leading to the formation of complexes Ru2Cl(O2CC6H5)(DPhF)3 (1), Ru2Cl(O2CC6H4-p-CN)(DPhF)3 (2), [Ru2Cl(DPhF)3(H2O)]2(O2C)2 (3), [Ru2Cl(DPhF)3]2[C6H4-p-(CO2)2] (4), and [Ru2Cl(DPhF)3]3[C6H3-1,3,5-(CO2)3] (5). The preparation of [Ru2(NCS)(DPhF)3]3[C6H3-1,3,5-(CO2)3] (6) and {[Ru2(DPhF)3(H2O)]3[C6H3-1,3,5-(CO2)3]}(SO3CF3)3 (7) from 5 is also described. All complexes are characterized by elemental analysis, IR and electronic spectroscopy, mass spectrometry, cyclic voltammetry, and variable-temperature magnetic measurements. The crystal structure determinations of complexes 2.0.5THF and 3.THF.4H2O (THF = tetrahydrofuran) are reported. The reactions carried out demonstrate the high chemical stability of the fragment [Ru2(DPhF)3]2+, which is preserved in all tested experimental conditions. The stability of this fragment is also corroborated by the mass spectra. Electrochemical measurements reveal in all complexes one redox process due to the equilibrium Ru2(5+) <--> Ru2(6+). In the polynuclear complex 7, some additional oxidation processes are also observed that have been ascribed to the presence of two types of dimetallic units rather than two consecutive reversible oxidations. The magnetic behavior toward temperature for complexes 1-7 from 300 to 2 K is analyzed. Complexes 1-7 show low values of antiferromagnetic coupling in accordance with the molecular nature in 1 and 2 and the absence of important antiferromagnetic interaction through the carboxylate bridging ligands in 3-7, respectively. In addition, the magnetic properties of complex 7 do not correspond to any magnetic behavior described for diruthenium(II,III) complexes. The experimental data of compound 7 are simulated considering a physical mixture of S = 1/2 and 3/2 spin states. This magnetic study demonstrates the high sensitivity of the electronic configuration of the unit [Ru2(DPhF)3]2+ to small changes in the nature of the axial ligands. Finally, the energy gap between the pi and delta orbitals in these types of compounds allows the tentative assignment of the transition pi --> delta.

  18. XAFS Study of the Ferro- and Antiferromagnetic Binuclear Copper(II) Complexes of Azomethine Based Tridentate Ligands

    NASA Astrophysics Data System (ADS)

    Vlasenko, Valery G.; Vasilchenko, Igor S.; Pirog, Irina V.; Shestakova, Tatiana E.; Uraev, Ali I.; Burlov, Anatolii S.; Garnovskii, Alexander D.

    2007-02-01

    Binuclear copper complexes are known to be models for metalloenzymes containing copper active sites, and some of them are of considerable interest due to their magnetic and charge transfer properties. The reactions of the complex formation of bibasic tridentate heterocyclic imines with copper acetate leads to two types of chelates with mono deprotonated ligands and with totally deprotonated ligands. Cu K-edge EXAFS has been applied to determine the local structure around the metal center in copper(II) azomethine complexes with five tridentate ligands: 1-(salycilideneimino)- or 1-(2-tosylaminobenzilideneimino)-2-amino(oxo, thio)benzimidazoles. It has been found that some of the chelates studied are bridged binuclear copper complexes, and others are mononuclear complexes. The copper-copper interatomic distances in the bridged binuclear copper complexes were found to be 2.85-3.01 Å. Variable temperature magnetic susceptibility data indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former is dominating at low temperatures and the latter at high temperatures.

  19. A 3D complex containing novel 2D Cu{sup II}-azido layers: Structure, magnetic properties and effects of 'Non-innocent' reagent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xue-Miao; Guo, Qian; Zhao, Jiong-Peng, E-mail: horryzhao@yahoo.com

    A novel copper-azido coordination polymer, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with 'Non-innocent' reagent in the aqueous solution. In the reaction system, Cu{sup II} ions are avoided to reduce to Cu{sup I} ions due to the existence of Nd{sup III}. It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu{sup II} ions, in which the azide ligands take on EO and {mu}{sub 1,1,3} mode to form Cu{sup II}-azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D frameworkmore » with the Schlaefli symbol of {l_brace}4;6{sup 2}{r_brace}4{l_brace}4{sup 2};6{sup 12};8{sup 10};10{sup 4}{r_brace}{l_brace}4{sup 2};6{sup 4}{r_brace}. Magnetic studies revealed that the interactions between the Cu{sup II} ions in the trimmer are ferromagnetic for the Cu-N-Cu angle nearly 98 Degree-Sign , while the interactions between the trimmer and octahedron Cu{sup II} ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu{sup II}-azido layers, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: Black-Right-Pointing-Pointer 'Non-innocent' reagents plays a key role in the process of formation of this complex. Black-Right-Pointing-Pointer 2D layer is formed only by Cu{sup II} ions and azido ligands. Black-Right-Pointing-Pointer Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. Black-Right-Pointing-Pointer Magnetic study indicates that alternating FM-AF coupling exists in the complex.« less

  20. Extending the Cutoff Wavelength of Thermophotovoltaic Devices via Band Structure Engineering

    NASA Astrophysics Data System (ADS)

    Lee, Michael Steven

    Complex oxides, solid-state compounds comprised of oxygen and at least two metal cations, are an intriguing class of materials for implementation into future microelectronic devices. They possess a wide range of functional properties, such as magnetism, ferroelectricity, and superconductivity, that can all be readily modified by their sensitivity to lattice strain, electronic and magnetic fields, chemical doping, and other external stimuli. This sensitivity makes complex oxides highly capable materials, but also introduces many technical challenges. The work of this dissertation has focused on extending our current knowledge of the magnetic materials properties and interfacial effects present in epitaxial films into micro- and nanoscale features. Ferromagnetic (FM) spin textures are arrangements of magnetic moments within such patterned features. Their switching behaviors are essential components of current data storage applications, and complex oxides are ideal candidates for future designs. In any materials system, the deviation from bulk or thin film properties when scaling down to nanostructures can be difficult to predict due to either size induced effects or consequences of the fabrication process itself. Therefore, these magnetic films and multilayers must be studied in the modified state to understand the challenges and opportunities associated with designing practical structures. Soft x-ray photoemission electron microscopy (X-PEEM) was used to observe and characterize the evolution of magnetic domain structure as a function of temperature in micromagnets patterned into epitaxial films of La0.7 Sr0.3MnO3 (LSMO). These images reveal the formation of novel spin textures that are a hybridization of well-described configurations, vortex and Landau, and emerge from the balance between fundamental materials parameters, micromagnet geometries, and epitaxial strain. Furthermore, slight perturbations to the lattice near the lithographically defined microstructure edges are shown to induce long range suppression of the magnetocrystalline anisotropy while other magnetic parameters, such as the saturation magnetization, remain unchanged. The results demonstrate how the magnetic domain state can be tailored through careful incorporation of these factors. Additional complexity is added to the system by interfacing LSMO with antiferromagnetic (AFM) LaFeO3 (LFO) or La0.7Sr 0.3FeO3 (LSFO). In unpatterned bilayers and superlattices, exchange coupling across the FM/AFM interface promotes a perpendicular alignment of the FM and AFM spin axes. Within patterned bilayers the alignment can be driven into a parallel configuration through changes in the micromagnet width, crystallographic orientation, and temperature. The importance of FM/AFM spin alignment is emphasized by magnetic reversal experiments of individual magnetic bits that demonstrate the coercivity can be adjusted over a wide range relative to LSMO single-layer micromagnets. In a superlattice of FM/AFM interfaces, the relative influence of the LSMO is reduced as the TC drops from 360 K to 80 K due to the ultra-thin sublayer thickness. Like the initial study on LSMO, the magnetocrystalline anisotropy of the LSFO layer is fully suppressed near microstructure edges, and the AFM domain configuration is entirely dictated by a magnetostatic-type effect in that region. This behavior persists both above and below the TC (with spin-flop coupling preserved) suggesting a new method to control AFM spin textures which are typically pinned to stochastic structural domains and defects and require large fields to manipulate.

  1. Interfacial Symmetry Control of Emergent Ferromagnetism

    NASA Astrophysics Data System (ADS)

    Grutter, Alexander; Borchers, Julie; Kirby, Brian; He, Chunyong; Arenholz, Elke; Vailionis, Arturas; Flint, Charles; Suzuki, Yuri

    Atomically precise complex oxide heterostructures provide model systems for the discovery of new emergent phenomena since their magnetism, structure and electronic properties are strongly coupled. Octahedral tilts and rotations have been shown to alter the magnetic properties of complex oxide heterostructures, but typically induce small, gradual magnetic changes. Here, we demonstrate sharp switching between ferromagnetic and antiferromagnetic order at the emergent ferromagnetic interfaces of CaRuO3/CaMnO3 superlattices. Through synchrotron X-ray diffraction and neutron reflectometry, we show that octahedral distortions in superlattices with an odd number of CaMnO3 unit cells in each layer are symmetry mismatched across the interface. In this case, the rotation symmetry switches across the interface, reducing orbital overlap, suppressing charge transfer from Ru to Mn, and disrupting the interfacial double exchange. This disruption switches half of the interfaces from ferromagnetic to antiferromagnetic and lowers the saturation magnetic of the superlattice from 1.0 to 0.5 μB/interfacial Mn. By targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state with extremely small changes in layer thickness.

  2. Emergence of reconfigurable wires and spinners via dynamic self-assembly

    DOE PAGES

    Kokot, Gasper; Piet, David; Whitesides, George M.; ...

    2015-03-26

    Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregationmore » of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.« less

  3. Oscillatory noncollinear magnetism induced by interfacial charge transfer in superlattices composed of metallic oxides

    DOE PAGES

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...

    2016-11-22

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less

  4. A 3D gravity and magnetic model for the Entenschnabel area (German North Sea)

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Barckhausen, Udo; Heyde, Ingo

    2018-01-01

    In this study, we focus on structural configuration of the Entenschnabel area, a part of the German exclusive economic zone within the North Sea, by means of gravity and magnetic modelling. The starting point of the 3D modelling approach is published information on subseafloor structures for shallow depths, acquired by wells and seismic surveys. Subsequent gravity and magnetic modelling of the structures of the deeper subsurface builds on this geophysical and geological information and on gravity and magnetic data acquired during a research cruise to the Entenschnabel area. On the one hand, our 3D model shows the density and susceptibility distribution of the sediments and the crust. In addition, the potential field modelling provides evidence for a differentiation between lower and upper crust. The thickness distribution of the crust is also discussed with respect to the tectonic framework. Furthermore, gravity as well as magnetic modelling points to an intrusive complex beneath the Central Graben within the Entenschnabel area. On the other hand, this work provides a geological-geophysical consistent 3D gravity and magnetic model that can be used as a starting point for further investigation of this part of the German North Sea.

  5. Microfluidic magnetic bead conveyor belt.

    PubMed

    van Pelt, Stijn; Frijns, Arjan; den Toonder, Jaap

    2017-11-07

    Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil systems that offer low field strengths and little versatility. We demonstrate a novel system based on an external rotating magnetic field and on-chip soft-magnetic structures to focus the field locally. These structures were designed and optimized using finite element simulations in order to create a number of local flux density maxima. These maxima, to which the magnetic beads are attracted, move over the chip surface in a continuous way together with the rotation of the external field, resulting in a mechanism similar to that of a conveyor belt. A prototype was fabricated using PDMS molding techniques mixed with iron powder for the magnetic structures. In the subsequent experiments, a quadrupole electromagnet was used to create the rotating external field. We observed that beads formed agglomerates that rolled over the chip surface, just above the magnetic structures. Field rotation frequencies between 0.1-50 Hz were tested resulting in magnetic bead speeds of over 1 mm s -1 for the highest frequency. With this, we have shown that our novel concept works, combining a simple design and simple operation with a powerful and versatile method for bead actuation. This makes it a promising method for further research and utilization in lab-on-chip systems.

  6. Soft ferromagnetism in mixed valence Sr(1-x)La(x)Ti(0.5)Mn(0.5)O₃ perovskites.

    PubMed

    Qasim, Ilyas; Blanchard, Peter E R; Kennedy, Brendan J; Ling, Chris D; Jang, Ling-Yun; Kamiyama, Takashi; Miao, Ping; Torii, Shuki

    2014-05-14

    The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.

  7. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets

    PubMed Central

    Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro

    2014-01-01

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062

  8. Ab initio single and multideterminant methods used in the determination of reduction potentials and magnetic properties of Rieske ferredoxins

    NASA Astrophysics Data System (ADS)

    Powers, Nathan Lee

    2008-10-01

    The [Fe2S2]2+/[Fe2S 2]+ electronic structure of seven Rieske protein active sites (bovine mitochondrial cytochrome bc1 complex, spinach chloroplast cytochrome b6f complex, Rieske-type ferredoxin associated with biphenyl dioxygenase from Burkholderia cepacia, yeast cytochrome bcl complex from Saccharomyces cerevisiae, Rieske subunit of arsenite oxidase from Alcaligenes faecalis, respiratory-type Rieske protein from Thermus thermophilus, and Rieske protein II (soxF) from Sulfolobus acidocaldarius), which lie in a reduction potential range from -150 mV to 375 mV, have been studied by both single and multi-determinant quantum mechanical methods. Calculated reduction potentials and magnetic properties are found comparable to experimental values.

  9. Two novel macroacyclic schiff bases containing bis-N 2O 2 donor set and their binuclear complexes: synthesis, spectroscopic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Karaoglu, Kaan; Baran, Talat; Serbest, Kerim; Er, Mustafa; Degirmencioglu, Ismail

    2009-03-01

    Herein, we report two novel macroacyclic Schiff bases derived from tetranaphthaldehyde derivative compound and their binuclear Mn(II), Ni(II), Cu(II) and Zn(II) complexes. The structures of the compounds have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-Vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The stoichiometries of the complexes derived from mass and elemental analysis correspond to the general formula [M 2L(ClO 4) n](ClO 4) 4-n, (where M is Mn(II), Ni(II), Cu(II), Zn(II) and L represents the Schiff base ligands).

  10. Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.

    2018-05-01

    Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.

  11. Integrating Reflection Seismic, Gravity and Magnetic Data to Reveal the Structure of Crystalline Basement: Implications for Understanding Rift Development

    NASA Astrophysics Data System (ADS)

    Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.

    2016-04-01

    Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.

  12. CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes.

    PubMed

    Calvello, Simone; Piccardo, Matteo; Rao, Shashank Vittal; Soncini, Alessandro

    2018-03-05

    We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Synthesis, characterization and reactivity of trinuclear Cu(II) complexes derived from disalicylaldehyde malonoyldihydrazone

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Kumar, Arvind; De, Arjun K.; Phukan, Arnab; Lal, Ram A.

    2014-08-01

    Three new homotrinuclear copper(II) complexes [Cu3(slmh)(μ-Cl)2(CH3OH)3]ṡ0.5CH3OH (1), [Cu3(slmh)(NO3)2(CH3OH)5]ṡ1.5CH3OH (2) and [Cu3(slmh)(μ-ClO4)2(CH3OH)3]ṡ2CH3OH (3) from disalicylaldehyde malonoyldihydrazone have been synthesized and characterized. The composition of the complexes has been established on the basis of data obtained from analytical and thermoanalytical data. The structure of the complexes has been discussed in the light of molar conductance, electronic, FT-IR and far-IR spectral data, magnetic moment and EPR spectral studies. The molar conductance values for the complexes in DMSO solution indicate that all of them are non-electrolyte. The magnetic moment values for the complexes suggest considerable metal-metal intramolecular interaction between metal ions in the structural unit of the complexes. The EPR spectral features reveal that at RT, the ground state for the complexes is a mixture of the quartet state (S = 3/2) and doublet state (S = ½). At lower temperature, the ground state for the complexes is dx2-y2 with considerable contribution from dz2 orbital. Dihydrazone ligand is present in enol form in all of the complexes. The complexes have distorted square pyramidal stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Hydrogen peroxide mediated oxidation of benzyl alcohol catalyzed by complex 1 has been studied.

  14. Helicity transformation under the collision and merging of two magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    DeHaas, Timothy; Gekelman, Walter

    2017-07-01

    Magnetic helicity has become a useful tool in the analysis of astrophysical plasmas. Its conservation in the magnetohydrodynamic limit (and other fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a tube-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed in the near-earth environment and solar atmosphere. In this well-diagnosed experiment (three-dimensional measurements of ne, Te, Vp, B, J, E, and uflow), two magnetic flux ropes are generated in the Large Plasma Device at UCLA. These ropes are driven kink-unstable to trigger complex motion. As they interact, helicity conservation is examined in regions of reconnection. We examine (1) the transport of helicity and (2) the dissipation of the helicity. As the ropes move and the topology of the field lines diverge, a quasi-separatrix layer (QSL) is formed. As the QSL forms, magnetic helicity is dissipated within this region. At the same time, there is an influx of canonical helicity into the region such that the temporal derivative of magnetic helicity is zero.

  15. Research Update: Focused ion beam direct writing of magnetic patterns with controlled structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Urbánek, Michal; Flajšman, Lukáš; Křižáková, Viola; Gloss, Jonáš; Horký, Michal; Schmid, Michael; Varga, Peter

    2018-06-01

    Focused ion beam irradiation of metastable Fe78Ni22 thin films grown on Cu(100) substrates is used to create ferromagnetic, body-centered cubic patterns embedded into paramagnetic, face-centered-cubic surrounding. The structural and magnetic phase transformation can be controlled by varying parameters of the transforming gallium ion beam. The focused ion beam parameters such as the ion dose, number of scans, and scanning direction can be used not only to control a degree of transformation but also to change the otherwise four-fold in-plane magnetic anisotropy into the uniaxial anisotropy along a specific crystallographic direction. This change is associated with a preferred growth of specific crystallographic domains. The possibility to create magnetic patterns with continuous magnetization transitions and at the same time to create patterns with periodical changes in magnetic anisotropy makes this system an ideal candidate for rapid prototyping of a large variety of nanostructured samples. Namely, spin-wave waveguides and magnonic crystals can be easily combined into complex devices in a single fabrication step.

  16. Site specific physics in RT5 (R = rare earths and T = transition metals) materials

    NASA Astrophysics Data System (ADS)

    Paudyal, Durga

    Most of RT5 compounds form in hexagonal CaCu5-type structure with three non-equivalent sites: R (1a), T (2c), and T (3g). R atoms sit in the middle of the T (2c) hexagonal layers. Advanced density functional theory calculations including on-site electron correlation and spin orbit coupling show crystal field split localized R 4f states, which are responsible for the large part of the magnetic anisotropy exhibited by these systems. In addition, the hexagonal T (2c) layers help enhancing the magnetic anisotropy. Partially quenched R 4f orbital moment is the origin of magnetic anisotropy which also helps enhancing magnetic moment. The interchange of T sites by other transition metals and the partial substitution of R atoms by transition metals could optimize needed magnetic moment and magnetic anisotropy by forming a complex geometry structure favoring permanent magnetic properties. This research is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing office.

  17. Syntheses, crystal structures, and magnetic properties of four new cyano-bridged bimetallic complexes based on the mer-[Fe(III)(qcq)(CN)3]- building block.

    PubMed

    Shen, Xiaoping; Zhou, Hongbo; Yan, Jiahao; Li, Yanfeng; Zhou, Hu

    2014-01-06

    Four new cyano-bridged bimetallic complexes, [{Mn(III)(salen)}2{Fe(III)(qcq)(CN)3}2]n·3nCH3CN·nH2O (1) [salen = N,N'-ethylenebis(salicylideneiminato) dianion; qcq(-) = 8-(2-quinoline-2-carboxamido)quinoline anion], [{Mn(III)(salpn)}2{Fe(III)(qcq)(CN)3}2]n·4nH2O (2) [salpn = N,N'-1,2-propylenebis(salicylideneiminato)dianion], [{Mn(II)(bipy)(CH3OH)}{Fe(III)(qcq)(CN)3}2]2·2H2O·2CH3OH (3) (bipy = 2,2'-bipyridine), and [{Mn(II)(phen)2}{Fe(III)(qcq)(CN)3}2]·CH3CN·2H2O (4) (phen = 1,10-phenanthroline) have been synthesized and characterized both structurally and magnetically. The structures of 1 and 2 are both unique 1-D linear branch chains with additional structural units of {Mn(III)(salen/salpn)}{Fe(III)(qcq)(CN)3} dangling on the sides. In contrast, 3 and 4 are cyano-bridged bimetallic hexanuclear and trinuclear clusters, respectively. The intermolecular short contacts such as π-π interactions and hydrogen bonds extend 1-4 into high dimensional supermolecular networks. Magnetic investigation reveals the dominant intramolecular antiferromagnetic interactions in 1, 3, and 4, while ferromagnetic and antiferromagnetic interactions coexist in 2. Alternating current measurement at low temperature indicates the existence of slow magnetic relaxation in 1 and 2, which should be due to the single ion anisotropy of Mn(III).

  18. Unsymmetrical Bimetallic Complexes with MII–(μ-OH)–MII Cores (MIIMIII = FeIIFeIII, MnIIFeIII, MnIIMnIII): Structural, Magnetic, and Redox Properties

    PubMed Central

    Sano, Yohei; Weitz, Andrew C.; Ziller, Joseph W.; Hendrich, Michael P.; Borovik, A.S.

    2013-01-01

    Heterobimetallic cores are important unit within the active sites of metalloproteins, but are often difficult to duplicate in synthetic systems. We have developed a synthetic approach for the preparation of a complex with a MnII–(μ-OH)–FeIII core, in which the metal centers have different coordination environments. Structural and physical data support the assignment of this complex as a heterobimetallic system. Comparison with the analogous homobimetallic complexes, those containing MnII–(μ-OH)–MnIII and FeII–(μ-OH)–FeIII cores, further supports this assignment. PMID:23992041

  19. Geoarchaeological results from geophysical prospections at the Roman city of Urbs Salvia, central Italy

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Perna, Roberto; Pierantoni, Pietro Paolo; Ghezzi, Annalisa; Tassi, Luca; Cingolani, Sofia

    2017-04-01

    We report on a combined magnetic-GPR survey performed in 2015 and 2016 at the ancient Roman city of Urbs Salvia, located in central Italy. The main objective of this survey was to reconstruct the urban organization of the city forum and determine possible sites of future excavations. We found a complex pattern of buried structures, possibly resulting from the coexistence of republican and imperial artifacts and burned structures. A test excavation at the location where we detected a long linear structure characterized by strong magnetic signal revealed the presence of thermal baths. GPR data were acquired in areas characterized by high magnetic noise induced by metallic infrastructures (e.g., fences), which prevented a correct acquisition of archaeological anomalies. These data not only allowed to overcome the magnetic noise, but provided interesting 3D reconstructions of the buried structures. A detailed GPR survey in the theatre area was also performed, with the aim to investigate the plan of the porticus post scaenam. This survey allowed to identify some interesting structures related to different chronological phases and confirms the epigraphic data related to the development of the monument.

  20. Complex magnetic susceptibility setup for spectroscopy in the extremely low-frequency range.

    PubMed

    Kuipers, B W M; Bakelaar, I A; Klokkenburg, M; Erné, B H

    2008-01-01

    A sensitive balanced differential transformer was built to measure complex initial parallel magnetic susceptibility spectra in the 0.01-1000 Hz range. The alternating magnetic field can be chosen sufficiently weak that the magnetic structure of the samples is only slightly perturbed and the low frequencies make it possible to study the rotational dynamics of large magnetic colloidal particles or aggregates dispersed in a liquid. The distinguishing features of the setup are the novel multilayered cylindrical coils with a large sample volume and a large number of secondary turns (55 000) to measure induced voltages with a good signal-to-noise ratio, the use of a dual channel function generator to provide an ac current to the primary coils and an amplitude- and phase-adjusted compensation voltage to the dual phase differential lock-in amplifier, and the measurement of several vector quantities at each frequency. We present the electrical impedance characteristics of the coils, and we demonstrate the performance of the setup by measurement on magnetic colloidal dispersions covering a wide range of characteristic relaxation frequencies and magnetic susceptibilities, from chi approximately -10(-5) for pure water to chi>1 for concentrated ferrofluids.

  1. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}: Structures, optical and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua

    Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site.more » Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The optical properties were investigated. • Magnetic susceptibility data were collected.« less

  2. Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.

    PubMed

    Bharti, Bhuvnesh; Velev, Orlin D

    2015-07-28

    Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.

  3. Copper and manganese complexes based on 1,4-naphthalene dicarboxylic acid ligand and its derivative: Syntheses, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xing, Yubo; Liu, Yuqi; Xue, Xiaofei; Wang, Xinying; Li, Wei

    2018-02-01

    Three new metal-organic coordination polymers, {[Mn2(1,4-NDC)2 (C2H5OH) (DMF) (H2O)]·CH3OH}n(1), {[Mn(III)(1,4-NDC)(C2H5O)][Mn(II)(1,4-NDC)(DMF)(H2O)]}n(2) and {[Cu2(C13H9O4)4(H2O)2]}n(3) based on1,4-H2NDC and its derivative were hydrothermally synthesized (1,4-H2NDC = 1,4-naphthalene-dicarboxylic acid, C13H10O4 = 4-methyl formate-1-naphthalenecarboxylic acid), and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), elemental analysis, powder X-ray diffraction(PXRD) and variable-temperature magnetic susceptibility measurements. X-ray crystal structure analyses reveal that complexes 1 and 2 show a same 3,5-connected fsc 3D topology network with the Schlȁfli symbol of {4·6·8}{4·66·83}. But, the valence of some Mn atom in complex 2 take place transition from the +II oxidation state to the +III oxidation state, which may be the effect of the different solvent ratio. In complex 3, the Cu⋯Cu distance of 2.620(13) Å is significantly shorter than the sum of the van der Waals radii of Cu (1.40 Å), resulting in a strong ferromagnetic interaction between the Cu(II) centers. Furthermore, the temperature-dependent magnetic susceptibility measurements exhibit overall antiferromagnetic interactions between manganese ions for complexes 1 and 2, and a strong ferromagnetic interaction between the Cu(II) centers for complex 3.

  4. Formation of core-shell structured complex microparticles during fabrication of magnetorheological elastomers and their magnetorheological behavior

    NASA Astrophysics Data System (ADS)

    Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin

    2016-11-01

    To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.

  5. Self-Organized Criticality, Multifractals, and Intermittent Turbulence in Earth's Magnetotail

    NASA Technical Reports Server (NTRS)

    Chang, Tom

    2004-01-01

    We have achieved all the goals stated in our grant proposal in collaboration with Dr. C.C. Wu of the University of California at Los Angeles. Specifically, these include: The understanding of the complexity induced nonlinear spatiotemporal structures and the coexisting propagating modes. The development of plasma resonances and coherent structures in space plasmas. The study of fluctuation-induced nonlinear instabilities and their role in the reconfiguration of magnetic topologies in the magnetotail. The development of "anisotropic three-dimensional complexity" in the plasma sheet due to localized merging and interactions of the magnetic coherent structures and associated topological phase transitions. The understanding of the intermittent turbulence and energization process of the observed Bursty Bulk Flows (BBF's) in the Earth s magnetotail. The acceleration of ions due to the intermittent turbulence of propagating arid nonpropagating fluctuations In the following, we include lists of our published papers, invited talks, and professional activities. A detailed description of our accomplished research results is given in Section IV.

  6. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN){sub 4}]{sup 2-}: Synthesis, crystal structure, magnetic properties and ESR studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Fangfang; Xiao Hailian; Liu Faqian

    2006-12-15

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN){sub 4}]{sup 2-} anion connects three [Ni(Im){sub 3}]{sup 2+} using three SCN ligands giving risemore » to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN){sub 4}]{sup 2-} and [Mn(Im){sub 2}]{sup 2+} to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu{sup 2+} ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN{sup -1} anions. Their structural difference is maicaused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure.« less

  7. Binary colloidal structures assembled through Ising interactions

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Sagastegui, Amanda; Li, Yu; Tahir, Mukarram A.; Socolar, Joshua E. S.; Wiley, Benjamin J.; Yellen, Benjamin B.

    2012-04-01

    New methods for inducing microscopic particles to assemble into useful macroscopic structures could open pathways for fabricating complex materials that cannot be produced by lithographic methods. Here we demonstrate a colloidal assembly technique that uses two parameters to tune the assembly of over 20 different pre-programmed structures, including kagome, honeycomb and square lattices, as well as various chain and ring configurations. We programme the assembled structures by controlling the relative concentrations and interaction strengths between spherical magnetic and non-magnetic beads, which behave as paramagnetic or diamagnetic dipoles when immersed in a ferrofluid. A comparison of our experimental observations with potential energy calculations suggests that the lowest energy configuration within binary mixtures is determined entirely by the relative dipole strengths and their relative concentrations.

  8. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    PubMed Central

    Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina

    2015-01-01

    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384

  9. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphyhaline

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-01

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, 1H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ).

  10. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Adem, Şevki

    2014-10-01

    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.

  11. Indirect estimation of the tectonic evolution of magnetic structures along the Indiavaí-Lucialva Shear Zone, Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Louro, V. H.; Ribeiro, V. B.; Mantovani, M. S.; Geolit Team

    2013-05-01

    The Indiavaí-Lucialva Shear Zone (ILSZ) has a notorious cinematic standard, moving from SW to NE, juxtaposing the Santa Helena Granitic Batholith to the metavolcanosedimentary sets and orthogneisses from the Jauru Domain basement. Along the ILSZ, a sequence of magnetic anomalies of high interference, with each other, and varied polarities occurs, what suggests the presence of different lithologies or times of (re)crystallization of the ferromagnetic minerals from these magnetic structures. In its southernmost portion, the sequence of magnetic anomalies splits in two directions, SW and SE, with the first invading the limits of the Santa Helena batholith and, the latest, accompanying the ILSZ. This study aimed for the comprehension of complex tectonic setting of this region. It analyzed the set of anomalies estimating their lateral limits, depths and directions of total magnetization, with the Enhanced Horizontal Derivatives (EHD), its extrapolation for depth estimative (EHD-Depth), and through an iterative reduction to the magnetic pole, respectively. This procedure allowed the composition of initial models for further inversions of magnetic data which, results, indicate contrasts of magnetic susceptibility in sub-surface. Once known the approximated 3-D shape of the magnetic structures along the ILSZ, the total magnetization intensity of each anomaly was recovered, what consequently allowed, by vector subtraction, to estimate their individual remnant magnetization. The remnant magnetization's inclinations and declinations of the anomalies sources and their latitudes and longitudes permitted the calculus of their respective virtual magnetic paleopoles. When confronted with the South American paleopole wander path and the datings linked to this path, available in the literature, it was possible to have an indirect approximation of the age of (re)crystallization of each magnetic structure near the ILSZ. This procedure indicated an increasing of the ages of the structures from SE (1298 Ma) to NW (1439 Ma). The southwestern anomalies invading the Santa Helena batholith showed ages of approximately 1419 Ma, what allows to infer their allocation with the rest of the intrusion of the batholith.; Total magnetic field map of the region of the ILSZ, locating the studied anomalies, mineral occurences and tectonic limits.

  12. Pt(II) and Pd(II) complexes with ibuprofen hydrazide: Characterization, theoretical calculations, antibacterial and antitumor assays and studies of interaction with CT-DNA

    NASA Astrophysics Data System (ADS)

    Manzano, Carlos M.; Bergamini, Fernando R. G.; Lustri, Wilton R.; Ruiz, Ana Lúcia T. G.; de Oliveira, Ellen C. S.; Ribeiro, Marcos A.; Formiga, André L. B.; Corbi, Pedro P.

    2018-02-01

    Palladium(II) and platinum(II) complexes with a hydrazide derivative of ibuprofen (named HIB) were synthesized and characterized by chemical and spectroscopic methods. Elemental and thermogravimetric analyses, as well as ESI-QTOF-MS studies for both complexes, confirmed a 1:2:2 metal/HIB/Cl- molar ratio. The crystal structure of the palladium(II) complex was solved by single crystal X-ray diffractometric analysis, which permitted identifying the coordination formula [PdCl2(HIB)2]. Crystallographic studies also indicate coordination of HIB to the metal by the NH2 group. Nuclear magnetic resonance and infrared spectroscopies reinforced the coordination observed in the crystal structure and suggested that the platinum(II) complex presents similar coordination modes and structure when compared with the Pd(II) complex. The complexes had their structures optimized with the aid of DFT methods. In vitro antiproliferative assays showed that the [PdCl2(HIB)2] complex is active over ovarian cancer cell line OVCAR-03, while biophysical studies indicated its capacity to interact with CT-DNA. The complexes were inactive over Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains.

  13. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2) O. Russo et al., Phys. Rev. Lett., 99, 154102 (2007), J. Maggs, G.Morales, 55, 085015 (2013)

  14. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    PubMed

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface.

  15. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    PubMed

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  16. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    PubMed

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  18. Structure and other properties of Jupiter's distant magnetotail

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Desch, M. D.; Klein, L. W.; Sittler, E. C., Jr.; Sullivan, J. D.; Kurth, W. S.; Behannon, K. W.

    1983-01-01

    Analyses of data from Voyager 2 experiments provide evidence for, and characteristics of, a Jovian magnetotail extending at least to 9,000 Jovian radii from the planet. During approximately (25 day) periodic sightings of the tail, the magnetic field tended to point radially towards or away from Jupiter, indicating preservation to large distances of the bipolar, lobe like structure observed near the planet. This periodicity, along with various properties of the solar wind at this time, indicates that the tail is apparently influenced by recurrent solar wind features. Anomalous magnetic fields, not aligned with the nominal tail axis, also exist within the tail, especially in the low density, central (core) region, indicating some complexity of internal structure.

  19. Magnetically induced ferroelectricity in Bi2CuO4

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Guo, H.; Schmidt, W.; Nemkovski, K.; Mostovoy, M.; Komarek, A. C.

    2017-08-01

    The tetragonal copper oxide Bi2CuO4 has an unusual crystal structure with a three-dimensional network of well separated CuO4 plaquettes. The spin structure of Bi2CuO4 in the magnetically ordered state below TN˜43 K remains controversial. Here we present the results of detailed studies of specific heat, magnetic, and dielectric properties of Bi2CuO4 single crystals grown by the floating zone technique, combined with the polarized neutron scattering and high-resolution x-ray measurements. Down to 3.5 K our polarized neutron scattering measurements reveal ordered magnetic Cu moments which are aligned within the a b plane. Below the onset of the long range antiferromagnetic ordering we observe an electric polarization induced by an applied magnetic field, which indicates inversion symmetry breaking by the ordered state of Cu spins. For the magnetic field applied perpendicular to the tetragonal axis, the spin-induced ferroelectricity is explained in terms of the linear magnetoelectric effect that occurs in a metastable magnetic state. A relatively small electric polarization induced by the field parallel to the tetragonal axis may indicate a more complex magnetic ordering in Bi2CuO4 .

  20. Magnetic tape user guide

    NASA Technical Reports Server (NTRS)

    Evans, A. B.; Lee, L. L.

    1985-01-01

    This User Guide provides a general introduction to the structure, use, and handling of magnetic tapes at Langley Research Center (LaRC). The topics covered are tape terminology, physical characteristics, error prevention and detection, and creating, using, and maintaining tapes. Supplementary documentation is referenced where it might be helpful. The documentation is included for the tape utility programs, BLOCK, UNBLOCK, and TAPEDMP, which are available at the Central Scientific Computing Complex at LaRC.

  1. Coexistence of multiphase superconductivity and ferromagnetism in lithiated iron selenide hydroxide [(L i1 -xF ex) OH ]FeSe

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.

    2018-01-01

    We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.

  2. Photoelectron spectroscopic study of the anionic transition metalorganic complexes [Fe(1,2)(COT)](-) and [Co(COT)](-).

    PubMed

    Li, Xiang; Eustis, Soren N; Bowen, Kit H; Kandalam, Anil

    2008-09-28

    The gas-phase, iron and cobalt cyclooctatetraene cluster anions, [Fe(1,2)(COT)](-) and [Co(COT)](-), were generated using a laser vaporization source and studied using mass spectrometry and anion photoelectron spectroscopy. Density functional theory was employed to compute the structures and spin multiplicities of these cluster anions as well as those of their corresponding neutrals. Both experimental and theoretically predicted electron affinities and photodetachment transition energies are in good agreement, authenticating the structures and spin multiplicities predicted by theory. The implied spin magnetic moments of these systems suggest that [Fe(COT)], [Fe(2)(COT)], and [Co(COT)] retain the magnetic moments of the Fe atom, the Fe(2) dimer, and the Co atom, respectively. Thus, the interaction of these transition metal, atomic and dimeric moieties with a COT molecule does not quench their magnetic moments, leading to the possibility that these combinations may be useful in forming novel magnetic materials.

  3. Unconventional magnetisation texture in graphene/cobalt hybrids

    DOE PAGES

    Vu, A. D.; Coraux, J.; Chen, G.; ...

    2016-04-26

    Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent alreadymore » a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism.« less

  4. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less

  5. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    DOE PAGES

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; ...

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less

  6. Interplay of structure and magnetism in ruthenocuprates: a Raman scattering and dilatometry study

    NASA Astrophysics Data System (ADS)

    Fainstein, A.; Ramos, C. A.; Pregliasco, R. G.; Butera, A.; Trodahl, H. J.; Williams, G. V. M.; Tallon, J. L.

    2002-07-01

    We present a Raman scattering and dilatometry study of polycrystalline samples of the magnetic superconducting ruthenocuprates RuSr 2Gd 2- xCe xCu 2O 10+ δ (RuGd 1222) and RuSr 2GdCu 2O 8 (RuGd 1212). In the Raman spectra a high-temperature diffusive-like laser-tail develops below the magnetic ordering temperature ( TM) into an underdamped peak which shifts up to ˜130 cm-1. A line assigned to O(Ru) phonons hardens, narrows and strengthens strongly below TM. Finally, a phonon peak appears below TM at ˜590 cm-1. These three magnetic-order-dependent features are observed for RuGd 1212 and for RuGd 1222 with x=1.0, but do not appear for x=0.5. Dilatometry measurements, on the other hand, evidence a change of the expansion coefficient at TM. These results point to a structural effect accompanying the magnetic order, and suggest a complex interplay of spin and lattice degrees of freedom in these ruthenocuprates.

  7. Time domain structures in a colliding magnetic flux rope experiment

    NASA Astrophysics Data System (ADS)

    Tang, Shawn Wenjie; Gekelman, Walter; Dehaas, Timothy; Vincena, Steve; Pribyl, Patrick

    2017-10-01

    Electron phase-space holes, regions of positive potential on the scale of the Debye length, have been observed in auroras as well as in laboratory experiments. These potential structures, also known as Time Domain Structures (TDS), are packets of intense electric field spikes that have significant components parallel to the local magnetic field. In an ongoing investigation at UCLA, TDS were observed on the surface of two magnetized flux ropes produced within the Large Plasma Device (LAPD). A barium oxide (BaO) cathode was used to produce an 18 m long magnetized plasma column and a lanthanum hexaboride (LaB6) source was used to create 11 m long kink unstable flux ropes. Using two probes capable of measuring the local electric and magnetic fields, correlation analysis was performed on tens of thousands of these structures and their propagation velocities, probability distribution function and spatial distribution were determined. The TDS became abundant as the flux ropes collided and appear to emanate from the reconnection region in between them. In addition, a preliminary analysis of the permutation entropy and statistical complexity of the data suggests that the TDS signals may be chaotic in nature. Work done at the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by DOE and NSF.

  8. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    NASA Astrophysics Data System (ADS)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  9. Structure and Magnetic Properties of a Mixed-Valence Heptanuclear Manganese Cluster.

    PubMed

    Abbati, Gian Luca; Cornia, Andrea; Fabretti, Antonio C.; Caneschi, Andrea; Gatteschi, Dante

    1998-07-27

    Two novel polynuclear manganese(II,III) complexes have been synthesized by exploiting controlled methanolysis. A one-pot reaction of MnCl(2), NaOMe, dibenzoylmethane (Hdbm), and O(2) in anhydrous methanol, followed by recrystallization from MeOH/CHCl(3) mixtures, afforded the alkoxomanganese complexes [Mn(7)(OMe)(12)(dbm)(6)].CHCl(3).14MeOH (2) and [Mn(2)(OMe)(2)(dbm)(4)] (3). Complex 2 crystallizes in trigonal space group R&thremacr; with a = 14.439(2) Å, alpha = 86.34(1) degrees, and Z = 1. Complex 3 crystallizes in triclinic space group P&onemacr; with a = 9.612(1) Å, b = 10.740(1) Å, c = 13.168(1) Å, alpha = 80.39(1) degrees, beta = 87.66(1) degrees, gamma = 83.57(1) degrees, and Z = 1. The solid-state structure of 2 comprises a [Mn(6)(OMe)(12)(dbm)(6)] "crown" with crystallographically imposed 6-fold symmetry plus a central manganese ion. The layered Mn/O core mimics a fragment of the manganese oxide mineral lithiophorite. Conductivity measurements confirmed the nonionic character of 2 and suggested a mixed-valence Mn(II)(3)Mn(III)(4) formulation. The metrical parameters of the core were analyzed with the aid of bond-valence sum calculations. The central ion is essentially a valence-trapped Mn(II) ion, whereas the average Mn-O distances for the manganese ions of the "crown" are consistent with the presence of two Mn(II) and four Mn(III) ions. However, (1)H NMR spectra in solution strongly support valence localization and suggest that the observed solid-state structure may be a result of static disorder effects. Magnetic susceptibility vs T and magnetization vs field data at low temperature are consistent with an S = (17)/(2) ground state. Complex 3 is a symmetric alkoxo-bridged dimer. The two high-spin Mn(III) ions are antiferromagnetically coupled with J = 0.28(4) cm(-)(1), g = 1.983(2), and D = -2.5(4) cm(-)(1).

  10. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) with Th7Fe3-type structure

    NASA Astrophysics Data System (ADS)

    Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.

    2012-08-01

    Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.

  11. Evolution of the Busbar Structure in Large-Scale Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Liang, Jinding; Li, Jie; Sun, Kena; Xiao, Jin

    2017-02-01

    Studies of magnetic field and magneto-hydro-dynamics are regarded as the foundation for the development of large-scale aluminum reduction cells, while due to the direct relationship between the busbar configuration and magnetic compensation, the actual key content is the configuration of the busbar. As the line current has been increased from 160 kA to 600 kA, the configuration of the busbar was becoming more complex. To summarize and explore the evolution of busbar configuration in aluminum reduction cells, this paper has reviewed various representative large-scale pre-baked aluminum reduction cell busbar structures, such as end-to-end potlines, side-by-side potlines and external compensation current. The advantages and disadvantages in the magnetic distribution or technical specifications have also been introduced separately, especially for the configurations of the mainstream 400-kA potlines. In the end, the development trends of the bus structure configuration were prospected, based on the recent successful applications of super-scale cell busbar structures in China (500-600 kA).

  12. Electronic structure and x-ray magnetic circular dichroism in Mn-doped topological insulators Bi2Se3 and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Uba, S.; Ernst, A.

    2017-12-01

    We studied the structural, electronic, and magnetic properties of Mn-doped topological insulators Bi2Se3 and Bi2Te3 within the density-functional theory (DFT) using the generalized gradient approximation (GGA) in the framework of the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. The x-ray absorption spectra (XAS) and x-ray magnetic circular dichroism at the Mn K and L2 ,3 edges were investigated theoretically from first principles. The calculated results are in good agreement with experimental data. The complex fine structure of the Mn L2 ,3 XAS in Mn-doped Bi2Se3 and Bi2Te3 was found to be not compatible with a pure Mn3 + valency state. Its interpretation demands mixed valent states. The theoretically calculated x-ray emission spectra at the Mn K and L2 ,3 edges are also presented and analyzed.

  13. Spin structure, magnetism, and cation distributions of NiFe2-xAlxO4 solid solutions

    NASA Astrophysics Data System (ADS)

    Kamali, Saeed

    2017-07-01

    Low temperature Mössbauer spectroscopy together with isothermal magnetization and zero-field-cooled and field-cooled measurements have been used to perform a systematic investigation of the cation distributions and magnetic properties of solid solutions of NiFe2-xAlxO4 with x = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0. Mössbauer spectroscopy for the starting member of the series, NiFe2O4, shows that nickel atoms occupy the octahedral sites and are in 2+ oxidation state, while iron atoms, all in 3+ oxidation state, occupy equally the tetrahedral and the octahedral sites. When low concentration of aluminum, x = 0.4, is incorporated into the system, they substitute preferentially iron atoms in the octahedral sites. As the concentration of aluminum is increased, there are distributions of them in both the tetrahedral and octahedral sites leading to complex cation distributions. The magnetic characters of iron and nickel atoms and the diamagnetic nature of aluminum atoms and the complex cation distributions result in interesting magnetic properties for this class of materials. As the concentration of aluminum increases, the saturation magnetization decreases drastically and then gradually increases. In the end member of the series, NiAl2O4, the absent of any super-exchange interaction between the A-sites and the B-sites due to presence of Ni ions as the only magnetic atoms in the B-sites results in a paramagnetic structure and a magnetization close to zero although the nickel atoms have a spin moment of 2μB . This paramagnetic feature makes this compound to be considered as a magnetic resonant imaging agent. Another very interesting feature is the back and forth switching of the dominance of the magnetic moments in the tetrahedral sites and the octahedral sites as aluminum concentration increases.

  14. Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties

    NASA Astrophysics Data System (ADS)

    Becker, T. I.; Zimmermann, K.; Borin, D. Yu.; Stepanov, G. V.; Storozhenko, P. A.

    2018-03-01

    Smart materials like magnetic hybrid elastomers (MHEs) are based on an elastic composite with a complex hybrid filler of magnetically hard and soft particles. Due to their unique magnetic field depending characteristics, these elastomers offer great potential for designing sensor systems with a complex adaptive behaviour and operating sensitivity. The present paper deals with investigations of the material properties and motion behaviour displayed by synthesised MHE beams in the presence of a uniform magnetic field. The distribution and structure formation of the magnetic components inside the elastic matrix depending on the manufacturing conditions are examined. The specific magnetic features of the MHE material during the magnetising process are revealed. Experimental investigations of the in-plane free vibrational behaviour displayed by the MHE beams with the fixed-free end conditions are performed for various magnitudes of an imposed uniform magnetic field. For the samples pre-magnetised along the length axis, it is demonstrated that the deflection of the beam can be identified unambiguously by magnetic field distortion measurements. It is shown that the material properties of the vibrating MHE element can be specifically adjusted by means of an external magnetic field control. The dependence of the first eigenfrequency of free bending vibrations of the MHE beams on the strength of an imposed uniform magnetic field is obtained. The results are aimed to assess the potential of MHEs to design acceleration sensor systems with an adaptive magnetically controllable sensitivity range.

  15. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less

  16. Direct Observation of Very Large Zero-Field Splitting in a Tetrahedral Ni(II)Se4 Coordination Complex.

    PubMed

    Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis

    2015-10-14

    The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

  17. Complex magnetism of lanthanide intermetallics and the role of their valence electrons: Ab Initio theory and experiment

    DOE PAGES

    Petit, L.; Paudyal, D.; Mudryk, Y.; ...

    2015-11-09

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar –1 for GdCd confirmed by our experimental measurements of +1.6 K kbar –1. Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. As a result, replacing 35% of the Mg atoms withmore » Zn removes this transition, in excellent agreement with long-standing experimental data.« less

  18. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.

  19. Synthesis, characterization, structure and properties of heterobimetallic complexes [CuNi(μ-OAc) (μ-OH) (μ-OH2) (bpy)2] (BF4)2 and [CuNi(bz)3(bpy)2] ClO4 from 2,2‧ bipyridine

    NASA Astrophysics Data System (ADS)

    Kurbah, Sunshine D.; Kumar, A.; Syiemlieh, I.; Dey, A. K.; Lal, R. A.

    2018-02-01

    Heterobimetallic complexes of the composition [CuNi(bpy)2 (μ-OAc) (μ-OH) (μ-OH2)](BF4)2 (1) and [CuNi(bz)3 (bpy)2]ClO4 (2) were synthesized in moderate yield through solid state reaction and have been characterized by elemental analyses, molar conductance, mass spectra, magnetic moment, EPR, UV-Vis, IR spectroscopies and cyclic voltammetry. The ground state in complex (1) is doublet while that in complex (2), the ground state is a mixture of doublet and quartet, respectively. The structure of the complexes has been established by X-ray crystallography. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry.

  20. The Application of COMSOL Multiphysics Package on the Modelling of Complex 3-D Lithospheric Electrical Resistivity Structures - A Case Study from the Proterozoic Orogenic belt within the North China Craton

    NASA Astrophysics Data System (ADS)

    Guo, L.; Yin, Y.; Deng, M.; Guo, L.; Yan, J.

    2017-12-01

    At present, most magnetotelluric (MT) forward modelling and inversion codes are based on finite difference method. But its structured mesh gridding cannot be well adapted for the conditions with arbitrary topography or complex tectonic structures. By contrast, the finite element method is more accurate in calculating complex and irregular 3-D region and has lower requirement of function smoothness. However, the complexity of mesh gridding and limitation of computer capacity has been affecting its application. COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics full-coupling simulation software. It achieves highly accurate numerical simulations with high computational performance and outstanding multi-field bi-directional coupling analysis capability. In addition, its AC/DC and RF module can be used to easily calculate the electromagnetic responses of complex geological structures. Using the adaptive unstructured grid, the calculation is much faster. In order to improve the discretization technique of computing area, we use the combination of Matlab and COMSOL Multiphysics to establish a general procedure for calculating the MT responses for arbitrary resistivity models. The calculated responses include the surface electric and magnetic field components, impedance components, magnetic transfer functions and phase tensors. Then, the reliability of this procedure is certificated by 1-D, 2-D and 3-D and anisotropic forward modeling tests. Finally, we establish the 3-D lithospheric resistivity model for the Proterozoic Wutai-Hengshan Mts. within the North China Craton by fitting the real MT data collected there. The reliability of the model is also verified by induced vectors and phase tensors. Our model shows more details and better resolution, compared with the previously published 3-D model based on the finite difference method. In conclusion, COMSOL Multiphysics package is suitable for modeling the 3-D lithospheric resistivity structures under complex tectonic deformation backgrounds, which could be a good complement to the existing finite-difference inversion algorithms.

  1. Nonlinear magnetoelectric effects in a composite ferromagnetic-piezoelectric structure under harmonic and noise magnetic pumping

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A.

    2018-03-01

    Low-frequency nonlinear magnetoelectric effects in a composite structure comprised of a piezoelectric langatate slab sandwiched between two Metglas amorphous alloy magnetostrictive layers under simultaneous harmonic and noise magnetic pumping have been investigated. It is shown that the frequency fp of harmonic pumping is linearly reproduced in the piezoelectric voltage spectrum accompanied by its higher harmonics. Similarly, narrow-band magnetic noise with a central frequency fN is present in the output piezoelectric voltage along with two noise peaks in the vicinity of a double 2fN and zero frequency. Simultaneous application of harmonic and noise magnetic fields produces a noticeably more complex output voltage spectrum containing additional noise satellite lines at frequencies fp ±fN , 2fp ±fN etc. as well as a noise "pedestal". Amplitudes of voltage spectral components depend on the applied constant bias magnetic field, scaling as magnetostriction derivatives with respect to this field. The effects observed are well described by the theory of magnetic field mixing in magnetoelectric composites with nonlinear dependence of magnetostriction on applied fields.

  2. Magnetization pinning in modulated nanowires: from topological protection to the "corkscrew" mechanism.

    PubMed

    Fernandez-Roldan, Jose Angel; Perez Del Real, Rafael; Bran, Cristina; Vazquez, Manuel; Chubykalo-Fesenko, Oksana

    2018-03-29

    Diameter-modulated nanowires offer an important paradigm to design the magnetization response of 3D magnetic nanostructures by engineering the domain wall pinning. With the aim to understand its nature and to control the process, we analyze the magnetization response in FeCo periodically modulated polycrystalline nanowires varying the minor segment diameter. Our modelling indicates a very complex behavior with a strong dependence on the disorder distribution and an important role of topologically non-trivial magnetization structures. We demonstrate that modulated nanowires with a small diameter difference are characterized by an increased coercive field in comparison to the straight ones, which is explained by a formation of topologically protected walls formed by two 3D skyrmions with opposite chiralities. For a large diameter difference we report the occurrence of a novel pinning type called here the "corkscrew": the magnetization of the large diameter segment forms a skyrmion tube with a core position in a helical modulation along the nanowire. This structure is pinned at the constriction and in order to penetrate the narrow segments the vortex/skyrmion core size should be reduced.

  3. Controlling Magnetism via Transition Metal Exchange in the Series of Intermetallics Eu( T1, T2)5In ( T = Cu, Ag, Au)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudring, Anja -Verena; Smetana, Volodymyr; Pecharsky, Vitalij K.

    Three series of intermetallic compounds Eu( T1, T2) 5In (T = Cu, Ag, Au) have been investigated in full compositional ranges. Single crystals of all compounds have been obtained by self-flux and were analyzed by single X-ray diffraction revealing the representatives to fall into two structure types: CeCu 6 ( oP28, Pnma, a = 8.832(3)–9.121(2) Å, b = 5.306(2)–5.645(1) Å, c = 11.059(4)–11.437(3) Å, V = 518.3(3)–588.9(2) Å 3) and YbMo2Al4 ( t I14, I4/ mmm, a = 5.417(3)–5.508(1) Å, c = 7.139(2)– 7.199(2) Å, V = 276.1(2)–285.8(1) Å 3). The structural preference was found to depend on the cation/anionmore » size ratio, while the positional preference within the CeCu 6 type structure shows an apparent correlation with the anion size. Chemical compression, hence, a change in cell volume, which occurs upon anion substitution appears to be the main driving force for the change of magnetic ordering. While EuAg 5In shows antiferromagnetic behavior at low temperatures, mixing Cu and Au within the same type of structure results in considerable changes in the magnetism. The Eu(Cu,Au) 5In alloys with CeCu 6 structure show complex magnetic behaviors and strong magnetic field-induced spin-reorientation transition with the critical field of the transition being dependent on Cu/Au ratio. The alloys adopting the YbMo 2Al 4 type structure are ferromagnets exhibiting unusually high magnetic moments. The heat capacity of EuAu 2.66Cu 2.34In reveals a double-peak structure evolving with the magnetic field. Furthermore, low-temperature X-ray powder diffraction does not show a structural transition.« less

  4. Controlling Magnetism via Transition Metal Exchange in the Series of Intermetallics Eu( T1, T2)5In ( T = Cu, Ag, Au)

    DOE PAGES

    Mudring, Anja -Verena; Smetana, Volodymyr; Pecharsky, Vitalij K.; ...

    2017-11-24

    Three series of intermetallic compounds Eu( T1, T2) 5In (T = Cu, Ag, Au) have been investigated in full compositional ranges. Single crystals of all compounds have been obtained by self-flux and were analyzed by single X-ray diffraction revealing the representatives to fall into two structure types: CeCu 6 ( oP28, Pnma, a = 8.832(3)–9.121(2) Å, b = 5.306(2)–5.645(1) Å, c = 11.059(4)–11.437(3) Å, V = 518.3(3)–588.9(2) Å 3) and YbMo2Al4 ( t I14, I4/ mmm, a = 5.417(3)–5.508(1) Å, c = 7.139(2)– 7.199(2) Å, V = 276.1(2)–285.8(1) Å 3). The structural preference was found to depend on the cation/anionmore » size ratio, while the positional preference within the CeCu 6 type structure shows an apparent correlation with the anion size. Chemical compression, hence, a change in cell volume, which occurs upon anion substitution appears to be the main driving force for the change of magnetic ordering. While EuAg 5In shows antiferromagnetic behavior at low temperatures, mixing Cu and Au within the same type of structure results in considerable changes in the magnetism. The Eu(Cu,Au) 5In alloys with CeCu 6 structure show complex magnetic behaviors and strong magnetic field-induced spin-reorientation transition with the critical field of the transition being dependent on Cu/Au ratio. The alloys adopting the YbMo 2Al 4 type structure are ferromagnets exhibiting unusually high magnetic moments. The heat capacity of EuAu 2.66Cu 2.34In reveals a double-peak structure evolving with the magnetic field. Furthermore, low-temperature X-ray powder diffraction does not show a structural transition.« less

  5. Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures

    NASA Astrophysics Data System (ADS)

    Gaikwad, Vishwajit M.; Goyal, Saveena; Yanda, Premakumar; Sundaresan, A.; Chakraverty, Suvankar; Ganguli, Ashok K.

    2018-04-01

    Nanostructures of complex oxides [BiFexMn2-xO5 (x = 0, 1, 2)] have been designed to study their structural, optical and magnetic behaviour. X-ray diffraction data (XRD) revealed orthorhombic phase with Pbam space group. Noticeable expansion in unit cell parameters has been found from BiMn2O5 (x = 0) to BiFe2O4.5 (x = 2). The observed structural changes via tuning of B-site (x = 0-2) played an important role in overall magnetic properties. Transmission electron microscopic images confirm that the average particle size of all the materials are in nano domain range with different morphologies. From optical studies, it has been found that the observed energy band gap values are strongly related to 3d electron numbers. These values appear to be larger than that reported for bulk. Isothermal magnetization plots (at 5 K) show increase in coercivity (Hc) from x = 0 to x = 2. Temperature dependent magnetization studies implied anti-ferromagnetic interactions for BiMn2O5, frustrated magnet for BiFeMnO5 and ferromagnetic behaviour for BiFe2O4.5. Ferromagnetic state of nanostructured BiFe2O4.5 is in contrast with its bulk counterparts.

  6. A preliminary study of extended magnetic field structures in the ionosphere

    NASA Technical Reports Server (NTRS)

    Sullivan, James D.; Lane, Barton G.; Post, Richard S.

    1987-01-01

    Several plasma phenomena which are to be expected around a magnet in LEO were identified and analyzed qualitatively. The ASTROMAG cusp magnet will create an extended field whose strength drops to the ambient level over a scale length of approx. 15 m; the combined field has a complex topology with ring nulls and open and closed field lines. The entire configuration is moving through the partially ionized F-layer of the ionosphere at a speed slow compared to the local Alfven speed but fast compared to the ion sound speed. The ambient plasma crosses the extended field structure in a time short compared to the ion Larmor period yet long relative to the electron Larmor period. Thus, electrons behave as a magnetized fluid while ions move ballistically until reflected from higher fields near the cusp. Since the Debye length is short compared to the field scale length, an electrostatic shock-like structure forms to equilibrate the flows and achieve quasi-neutrality. The ambient plasma will be excluded from a cavity near the magnet. The size and nature of the strong interaction region in which the magnet significantly perturbs the ambient flow were determined by studying ion orbits numerically. Lecture viewgraphs summarizing these results are presented.

  7. Aspect-ratio dependence of magnetization reversal in cylindrical ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Sultan, Musaab S.; Atkinson, Del

    2016-05-01

    The magnetization reversal behavior in isolated cylindrical and square cross-section Ni81Fe19 nanowires was systematically studied as a function of nanowire cross-section dimensions from 10 up to 200 nm using micromagnetic simulations. This approach provides access to the switching field, remanence ratio and most significantly the magnetization structures during reversal, which allows the evolution of magnetization processes to be studied with scaling of the cross-sectional dimensions. The dimensional trends in reversal behavior for both square and circular cross-section were comparable throughout the range of dimensions studied. The thinnest nanowires showed simple square switching and 100% remanence. With increasing diameter the switching field reduces and above 40 nm the reversal behavior shows an increasing rotational component prior to sharp switching of the magnetization. The magnitude of the reversible component increases with increasing dimensions up to 150 nm, above which the magnetization reversal process is more complicated and the hysteresis loops are no longer bistable. The micromagnetic structures evolve from simple uniform parallel single domain states in the thinnest wires through the formation of vortex-like end states in thicker wires to complex multidomain structures during the reversal of the thickest wires. In the later cases the reversal is not simple curling-like behavior, although the angular switching field dependence was comparable with curling.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less

  9. Europium-based iron pnictides: a unique laboratory for magnetism, superconductivity and structural effects

    NASA Astrophysics Data System (ADS)

    Zapf, Sina; Dressel, Martin

    2017-01-01

    Despite decades of intense research, the origin of high-temperature superconductivity in cuprates and iron-based compounds is still a mystery. Magnetism and superconductivity are traditionally antagonistic phenomena; nevertheless, there is basically no doubt left that unconventional superconductivity is closely linked to magnetism. But this is not the whole story; recently, also structural effects related to the so-called nematic phase gained considerable attention. In order to obtain more information about this peculiar interplay, systematic material research is one of the most important attempts, revealing from time to time unexpected effects. Europium-based iron pnictides are the latest example of such a completely paradigmatic material, as they display not only spin-density-wave and superconducting ground states, but also local Eu2+ magnetism at a similar temperature scale. Here we review recent experimental progress in determining the complex phase diagrams of europium-based iron pnictides. The conclusions drawn from the observations reach far beyond these model systems. Thus, although europium-based iron pnictides are very peculiar, they provide a unique platform to study the common interplay of structural-nematic, magnetic and electronic effects in high-temperature superconductors.

  10. The mechanisms of the effects of magnetic fields on cells

    NASA Astrophysics Data System (ADS)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins presented in the cells. 5) Electronic interactions. Static magnetic fields can alter energy levels and spin orientation of electrons. Similar interactions can also occur with nuclear spins, but these are very weak compared to electron interactions. 6) Free radicals. Magnetic fields alter the spin states of the radicals, which, in turn, changes the relative probabilities of recombination and other interactions, possibly with biological consequences. 7) Non-linear effects. A number of non-linear mechanisms of magnetic effects on cells were recently proposed to explain how the cell could extract a weak magnetic signal from noise (e.g. stochastic non-linear resonance, self-tuned Hopf bifurcations). These new models need further experimental testing.

  11. Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization.

    PubMed

    Roy, Subhadip; Oyarzabal, Itziar; Vallejo, Julia; Cano, Joan; Colacio, Enrique; Bauza, Antonio; Frontera, Antonio; Kirillov, Alexander M; Drew, Michael G B; Das, Subrata

    2016-09-06

    A mononuclear cobalt(II) complex [Co(3,5-dnb)2(py)2(H2O)2] {3,5-Hdnb = 3,5-dinitrobenzoic acid; py = pyridine} was isolated in two polymorphs, in space groups C2/c (1) and P21/c (2). Single-crystal X-ray diffraction analyses reveal that 1 and 2 are not isostructural in spite of having equal formulas and ligand connectivity. In both structures, the Co(II) centers adopt octahedral {CoN2O4} geometries filled by pairs of mutually trans terminal 3,5-dnb, py, and water ligands. However, the structures of 1 and 2 disclose distinct packing patterns driven by strong intermolecular O-H···O hydrogen bonds, leading to their 0D→2D (1) or 0D→1D (2) extension. The resulting two-dimensional layers and one-dimensional chains were topologically classified as the sql and 2C1 underlying nets, respectively. By means of DFT theoretical calculations, the energy variations between the polymorphs were estimated, and the binding energies associated with the noncovalent interactions observed in the crystal structures were also evaluated. The study of the direct-current magnetic properties, as well as ab initio calculations, reveal that both 1 and 2 present a strong easy-plane magnetic anisotropy (D > 0), which is larger for the latter polymorph (D is found to exhibit values between +58 and 117 cm(-1) depending on the method). Alternating current dynamic susceptibility measurements show that these polymorphs exhibit field-induced slow relaxation of the magnetization with Ueff values of 19.5 and 21.1 cm(-1) for 1 and 2, respectively. The analysis of the whole magnetic data allows the conclusion that the magnetization relaxation in these polymorphs mainly takes place through a virtual excited state (Raman process). It is worth noting that despite the notable difference between the supramolecular networks of 1 and 2, they exhibit almost identical magnetization dynamics. This fact suggests that the relaxation process is intramolecular in nature and that the virtual state involved in the two-phonon Raman process lies at a similar energy in polymorphs 1 and 2 (∼20 cm(-1)). Interestingly, this value is recurrent in Co(II) single-ion magnets, even for those displaying different coordination number and geometry.

  12. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases.

    PubMed

    Kavitha, P; Saritha, M; Laxma Reddy, K

    2013-02-01

    Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL(1)), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL(2)), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL(3)) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL(4)). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert.

    PubMed

    Trainer, C; Yim, C M; McLaren, M; Wahl, P

    2017-09-01

    Spin-polarized scanning tunneling microscopy (SP-STM) performed in vector magnetic fields promises atomic scale imaging of magnetic structure, providing complete information on the local spin texture of a sample in three dimensions. Here, we have designed and constructed a turntable system for a low temperature STM which in combination with a 2D vector magnet provides magnetic fields of up to 5 T in any direction relative to the tip-sample geometry. This enables STM imaging and spectroscopy to be performed at the same atomic-scale location and field-of-view on the sample, and most importantly, without experiencing any change on the tip apex before and after field switching. Combined with a ferromagnetic tip, this enables us to study the magnetization of complex magnetic orders in all three spatial directions.

  14. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of NiII-LnIII-WV Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes.

    PubMed

    Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F

    2016-12-05

    The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of Ni II -Ln III -W V trimetallics, [(CN) 7 W(CN)Ni(H 2 O)(valpn)Ln(H 2 O) 4 ]·H 2 O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic Dy III and Tb III metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [W V Ni II Ln III ] core structure, [(CN) 7 W(CN)Ni(dmf)(valdmpn)Ln(dmf) 4 ]·H 2 O (Ln = Gd III 7, Tb III 8a, Dy III 9, Ho III 10), [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Tb(dmf) 2.5 (H 2 O) 1.5 ]·H 2 O·0.5dmf 8b, and [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Er(dmf) 3 (H 2 O) 1 ]·H 2 O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel site, precluding magnetization blocking in complexes with fewer axial Ln ions. Further analysis has shown that, in the absence of ZFS on Ni ion, all compounds in the two series (except those containing Y and Gd) would be SMMs. The same situation arises for perfectly axial ZFS on Ni(II) with the main anisotropy axis parallel to the main magnetic axis of Ln(III) ions. In all other cases the ZFS on Ni(II) will worsen the SMM properties. The general conclusion is that the design of efficient SMMs on the basis of such complexes should involve isotropic or weekly anisotropic metal ions, such as Mn(II), Fe(III), etc., along with strongly axial lanthanides.

  15. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    PubMed

    Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1984-01-01

    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.

  17. Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.

    PubMed

    Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H

    2015-08-17

    While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions.

  18. Planck intermediate results: XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-02-09

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less

  19. Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.

  20. Planck intermediate results: XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less

  1. Assessing the exchange coupling in binuclear lanthanide(iii) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative† †Electronic supplementary information (ESI) available: Additional magnetic data, additional figures and computational details. CCDC 1020818–1020822. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01029b

    PubMed Central

    Chow, Chun Y.; Bolvin, Hélène; Campbell, Victoria E.; Guillot, Régis; Kampf, Jeff W.; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen

    2015-01-01

    We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga4Ln2(shi3–)4(Hshi2–)2(H2shi–)2(C5H5N)4(CH3OH)x(H2O)x]·xC5H5N·xCH3OH·xH2O (where H3shi = salicylhydroxamic acid and Ln = GdIII1; TbIII2; DyIII3; ErIII4; YIII5; YIII0.9DyIII0.16). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled DyIII ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy2 than for the Er2 complex. PMID:29218180

  2. Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.

    PubMed

    Un, Sun

    2013-04-01

    A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).

  3. Three novel coordination polymers based on tris(p-carboxyphenyl)phosphane oxide: Syntheses, structural characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Huo, Liangqin; Fan, Liming; Zhang, Jie; Gao, Lingling; Zhai, Lijun; Wang, Xiaoqing; Hu, Tuoping

    2018-05-01

    Three coordination polymers (CPs), namely, {[Co3(HL)2(bib)3 (H2O)7]·12H2O}n (1), {[Co(HL)(bib)]·H2O}n (2), and {[Co1.5(L)(bibp)1.5 (H2O)]·1.5DMF·2EtOH·3H2O}n (3), have been synthesized from the tripodal ligand of tris(p-carboxyphenyl)phosphane oxide (H3L) with the help of 1,4-bis(imidazol-1-yl)benzene (bib) or 4,4‧-bis(imidazol-1-yl)biphenyl (bibp). Structural analyses reveal that complex 1 features a 3D 4-connected {650.8}-cds net. 2 displays a 2D 6-connected {360.460.53}-hxl sheet based on the binuclear {Co2(COO)2} SBUs. Complex 3 shows a 3D (3,4,4)-connected net with {6·82}2{6·840.10}2{620.820.102} point symbol. Furthermore, the results of the variable-temperature magnetic susceptibilities indicate that complexes 1-3 have antiferromagnetic behavior between Co(II) ions.

  4. Forced- and Self-Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum.

    PubMed

    Mazuel, François; Mathieu, Samuel; Di Corato, Riccardo; Bacri, Jean-Claude; Meylheuc, Thierry; Pellegrino, Teresa; Reffay, Myriam; Wilhelm, Claire

    2017-08-01

    In order to provide insight into how anisotropic nano-objects interact with living cell membranes, and possibly self-assemble, magnetic nanorods with an average size of around 100 nm × 1 µm are designed by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. The nano-bio interface at the cell membrane under the influence of a rotating magnetic field is then explored. A complex structuration of the nanorods intertwined with the membranes is observed. Unexpectedly, after a magnetic rotating stimulation, the resulting macrorods are able to rotate freely for multiple rotations, revealing the creation of a biomagnetic torsion pendulum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity

    NASA Astrophysics Data System (ADS)

    Drozdov, Andrey S.; Vinogradov, Vasiliy V.; Dudanov, Ivan P.; Vinogradov, Vladimir V.

    2016-06-01

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

  6. Bonding coordination requirements induce antiferromagnetic coupling between m-phenylene bridged o-iminosemiquinonato diradicals.

    PubMed

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo; Vaz, Maria G F

    2003-03-10

    Triply bridged bis-iminodioxolene dinuclear metal complexes of general formula M(2)(diox-diox)(3), with M = Co, Fe, have been synthesized using the bis-bidentate ligand N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine. These complexes were characterized by means of X-ray, HF-EPR, and magnetic measurements. X-ray structures clearly show that both complexes can be described as containing three bis-iminosemiquinonato ligands acting in a bis-bidentate manner toward tripositive metal ions. The magnetic data show that both of these complexes have singlet ground states. The observed experimental behavior indicates the existence of intraligand antiferromagnetic interactions between the three pairs of m-phenylene units linked iminosemiquinonato radicals (J = 21 cm(-)(1) for the cobalt complex and J = 11 cm(-)(1) for the iron one). It is here suggested that the conditions for the ferromagnetic coupling that is expected to characterize the free diradical ligand are no longer satisfied because of the severe torsional distortion induced by the metal coordination.

  7. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights From Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling

    NASA Astrophysics Data System (ADS)

    Xue, Zhenhua; Martelet, Guillaume; Lin, Wei; Faure, Michel; Chen, Yan; Wei, Wei; Li, Shuangjian; Wang, Qingchen

    2017-12-01

    This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS) measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular gravity models not only support the imbricated shape of the Pengguan complex but also reveal an imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally, this suggests a basement-slice-imbricated structure that developed along the margin of the Yangtze Block, as shown by the regional gravity anomaly map, together with the published nearby seismic profile and the distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.

  8. Molecular nanomagnets: Syntheses and characterization of high nuclearity transition metal complexes

    NASA Astrophysics Data System (ADS)

    Foguet-Albiol, Maria D.

    2006-12-01

    High nuclearity transition metal complexes have attracted a lot of attention because of their aesthetically pleasant structures and/or their potential applications. The fusion of the world of magnetism with the exciting research in physics and chemistry led to the realization of interesting types of materials that can function as nanoscale magnetic particles. The study of the magnetism of inorganic complexes and especially the study of these molecular nanomagnets (or single-molecule magnets, SMMs) is a field that has generated intense interest in the scientific community. Interest in these molecular nanomagnets arises as part of a broader investigation of nanomagnetism (and nanotechnology), as these represent the ultimate step in device miniaturization. The primary purpose of this dissertation is the development of new synthetic methods intended for the preparation of novel single-molecule magnets (SMMs). The definition of the "bottom-up approach" is to increase the size of molecules by adding new magnetic centers; this is attractive but does not actually reflect how the chemistry takes place. Various strategies have been employed in developing the aforementioned synthetic methods which include the use of mononuclear as well as preformed clusters as starting materials; and the introduction of new alcohol based ligands as N-methyldiethanolamine (mdaH2) and triethanolamine (teaH3), since currently only a few alcohol based ligands have been used by different research groups. Many of these efforts have led to the isolation of new polynuclear Mn clusters with nuclearities ranging all the way from four to thirty-one. Additionally, a family of related Fe7 complexes has been synthesized. The transition metal cluster chemistry has also been extended to nickel-containing species. Many of these polynulear transition metal complexes function as single-molecule magnets. An additional research direction discussed herein is the study of the exchange-coupled dimer of single-molecule magnets (SMMs) by previously unemployed techniques (i.e., inelastic neutron scattering (INS)). This latter study resulted in a better understanding of the effects of chemical and physical variations on the magnetic parameters S, D and J. These studies provide insight into approaches necessary to gain access to clusters that behave as single-molecule magnets at more technologically relevant temperatures, an issue of growing concern as the research area further matures.

  9. Nuclear Magnetic Resonance Shift Reagents: Abnormal 13C Shifts Produced by Complexation of Lanthanide Chelates with Saturated Amines and n-Butyl Isocyanide

    PubMed Central

    Marzin, Claude; Leibfritz, Dieter; Hawkes, Geoffrey E.; Roberts, John D.

    1973-01-01

    Lanthanide-induced shfits of 13C nuclear magnetic resonances are reported for several amines and n-butyl isocyanide. Contact contributions to such shifts, especially of β carbons, are clearly important for the chelates of Eu+3 and Pr+3. The importance of contact terms is shown to change in a rather predictable manner with the structure of the amine. PMID:16592062

  10. Assessing the exchange coupling in binuclear lanthanide(iii) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative.

    PubMed

    Chow, Chun Y; Bolvin, Hélène; Campbell, Victoria E; Guillot, Régis; Kampf, Jeff W; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen; Pecoraro, Vincent L; Mallah, Talal

    2015-07-01

    We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga 4 Ln 2 (shi 3- ) 4 (Hshi 2- ) 2 (H 2 shi - ) 2 (C 5 H 5 N) 4 (CH 3 OH) x (H 2 O) x ]· x C 5 H 5 N· x CH 3 OH· x H 2 O (where H 3 shi = salicylhydroxamic acid and Ln = Gd III 1 ; Tb III 2 ; Dy III 3 ; Er III 4 ; Y III 5 ; Y III 0.9 Dy III 0.1 6 ). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled Dy III ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy 2 than for the Er 2 complex.

  11. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  12. Automated tandem mass spectrometry by orthogonal acceleration TOF data acquisition and simultaneous magnet scanning for the characterization of petroleum mixtures.

    PubMed

    Roussis, S G

    2001-08-01

    The automated acquisition of the product ion spectra of all precursor ions in a selected mass range by using a magnetic sector/orthogonal acceleration time-of-flight (oa-TOF) tandem mass spectrometer for the characterization of complex petroleum mixtures is reported. Product ion spectra are obtained by rapid oa-TOF data acquisition and simultaneous scanning of the magnet. An analog signal generator is used for the scanning of the magnet. Slow magnet scanning rates permit the accurate profiling of precursor ion peaks and the acquisition of product ion spectra for all isobaric ion species. The ability of the instrument to perform both high- and low-energy collisional activation experiments provides access to a large number of dissociation pathways useful for the characterization of precursor ions. Examples are given that illustrate the capability of the method for the characterization of representative petroleum mixtures. The structural information obtained by the automated MS/MS experiment is used in combination with high-resolution accurate mass measurement results to characterize unknown components in a polar extract of a refinery product. The exhaustive mapping of all precursor ions in representative naphtha and middle-distillate fractions is presented. Sets of isobaric ion species are separated and their structures are identified by interpretation from first principles or by comparison with standard 70-eV EI libraries of spectra. The utility of the method increases with the complexity of the samples.

  13. Ultrahigh field NMR and MRI: Science at a crossroads. Report on a jointly-funded NSF, NIH and DOE workshop, held on November 12-13, 2015 in Bethesda, Maryland, USA

    NASA Astrophysics Data System (ADS)

    Polenova, Tatyana; Budinger, Thomas F.

    2016-05-01

    Magnetic resonance plays a central role in academic, industrial and medical research. NMR is widely used for characterizing the structure, chemistry and dynamic properties of new materials, chemicals and pharmaceuticals, in both the liquid and solid phases. NMR also provides detailed functional information on biological macromolecules and their assemblies, in vitro, in membranes and even in whole cells. In vivo, MRI/S are used for clinical diagnosis and prognosis of disease, for non-invasive studies of human physiology and metabolism in general, and for evaluating brain function, in particular. MRI/S is also a key technology for imaging small organisms at the cellular level, monitoring catalysis in chemical reactors and other scientific areas where non-destructive characterizations of structure and dynamics in complex systems are needed. At the heart of all the MR methods are strong, stable and homogeneous magnets built from low-temperature superconductors (LTS), which are essential to these experiments. Further developments in NMR/MRI are hampered because the ultimate limit of the attainable field strengths of persistent LTS magnets has now been reached. Fortunately, recent breakthroughs in new high-temperature superconductors (HTS) and hybrid LTS/HTS magnet technologies promise to greatly increase the achievable field strength of NMR magnets and to decrease the operational complexity of high field human MRI infrastructures, thereby enabling new applications at the forefront of modern multidisciplinary research.

  14. Cholesterol-diethylenetriaminepentaacetate complexed with thulium ions integrated into bicelles to increase their magnetic alignability.

    PubMed

    Liebi, Marianne; Kuster, Simon; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-11-27

    Lanthanides have been used for several decades to increase the magnetic alignability of bicelles. DMPE-DTPA (1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylenetriaminepentaacetate) is commonly applied to anchor the lanthanides into the bicelles. However, because DMPE-DTPA has the tendency to accumulate at the highly curved edge region of the bicelles and if located there does not contribute to the magnetic orientation energy, we have tested cholesterol-DTPA complexed with thulium ions (Tm(3+)) as an alternative chelator to increase the magnetic alignability. Differential scanning calorimetric (DSC) measurements indicate the successful integration of cholesterol-DTPA into a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Cryo transmission electron microscopy and small-angle neutron scattering (SANS) measurements show that the disklike structure, that is, bicelles, is maintained if cholesterol-DTPA·Tm(3+) is integrated into a mixture of DMPC, cholesterol, and DMPE-DTPA·Tm(3+). The size of the bicelles is increased compared to the size of the bicelles obtained from mixtures without cholesterol-DTPA·Tm(3+). Magnetic-field-induced birefringence and SANS measurements in a magnetic field show that with addition of cholesterol-DTPA·Tm(3+) the magnetic alignability of these bicelles is significantly increased compared to bicelles composed of DMPC, cholesterol, and DMPE-DTPA·Tm(3+) only.

  15. Magnetic Behavior of a Dy8 Molecular Nanomagnet

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Stamatatos, Theocharis

    2015-03-01

    As part of a study of quantum tunneling in a newly synthesized family of dysprosium-based molecular magnets that exhibit a chiral spin structure, we report initial investigations of the magnetic response of a Dy8 cluster with the formula (Et4N)4[Dy8O(nd)8(NO3)10(H2O)2] .2MeCN. The molecular complex contains triangular arrangements of exchange coupled Dy(III) ions. The compound forms an approximate snub-square Archimedean lattice unit. The measured magnetization of this network of four triangles suggests the presence of multiple spin chiral vortexes. Single crystal susceptibility and magnetization measurements indicate the presence of a hard-axis direction and an easy plane. These principal orientations have been investigated in magnetic fields up to 5 Tesla for temperatures between 1.8 and 100 K using a SQUID-based Quantum Design MPMS magnetometer. Complex easy plane magnetic hysteresis loops emerge at lower temperatures measured using Hall probe magnetometry at sub 1 K temperatures. The analysis of these measurements will be discussed and compared with results of theoretical calculations. Work supported by ARO W911NF-13-1-1025 (CCNY), NSF-DMR-1309202 (NYU); the synthesis of the Dy8 cluster was supported by NSERC (Discovery grant to Th.C.S.).

  16. The mysteries of the diffusion region in asymmetric systems

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Aunai, N.; Zenitani, S.; Kuznetsova, M. M.; Birn, J.

    2013-12-01

    Unlike in symmetric systems, where symmetry dictates a comparatively simple structure of the reconnection region, asymmetric systems offer a surprising, much more complex, structure of the diffusion region. Beyond the well-known lack of colocation of flow stagnation and magnetic null, the physical mechanism underpinning the reconnection electric field also appears to be considerably more complex. In this presentation, we will perform a detailed analysis of the reconnection diffusion region in an asymmetric system. We will show that, unlike in symmetric systems, the immediate reconnection electric field is not given by electron pressure tensor nongyrotropies, but by electron inertial contributions. We will further discuss the role of pressure nongyrotropies, and we will study the origin of the complex structures of electron distributions in the central part of the diffusion region.

  17. Preliminary AMS Study in Cretaceous Igneous Rocks of Valle Chico Complex, Uruguay: Statistical Determination of Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Mena, M.; Sanchez-Bettucci, L.

    2009-05-01

    The Valle Chico Complex, at southeast Uruguay, is related Paraná-Etendeka Province. The study involved basaltic lavas, quarz-syenites, and rhyolitic and trachytic dikes. Samples were taken from 18 sites and the AMS of 250 specimens was analyzed. The AMS is modeled by a second order tensor K and it graphical representation is a symmetric ellipsoid. The axes relations determine parameters which describe different properties like shape, lineation, and foliation, degree of anisotropy and bulk magnetic susceptibility. Under this perspective, one lava, dike, or igneous body can be considered a mosaic of magnetic susceptibility domains (MSD). The DSM is an area with specific degree of homogeneity in the distribution of parameters values and cinematic conditions. An average tensor would weigh only one MSD, but if the site is a mosaic, subsets of specimens with similar parameters can be created. Hypothesis tests can be used to establish parameter similarities. It would be suitable considered as a MSD the subsets with statistically significant differences in at least one of its means parameters, and therefore, be treated independently. Once defined the MSDs the tensor analysis continues. The basalt-andesitic lavas present MSD with an NNW magnetic foliation, dipping 10. The K1 are sub-horizontal, oriented E-W and reprsent the magmatic flow direction. The quartz-syenites show a variable magnetic fabric or prolate ellipsoids mayor axes dispose parallel to the flow direction (10 to the SSE). Deformed syenites show N300/11 magnetic foliation, consistent with the trend of fractures. The K1 is subvertical. The MSD defined in rhyolitic dikes have magnetic foliations consistent with the structural trend. The trachytic dikes show an important indetermination in the magnetic response. However, a 62/N90 magnetic lineation was defined. The MSDs obtained are consistent with the geological structures and contribute to the knowledge of the tectonic, magmatic and kinematic events.

  18. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline.

    PubMed

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-25

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, (1)H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  20. Magnetic basement and crustal structure in the Arabia-Eurasia collision zone from a combined gravity and magnetic model

    NASA Astrophysics Data System (ADS)

    Mousavi, Naeim; Ebbing, Jörg

    2017-04-01

    In this study, we investigate the magnetic basement and crustal structure in the region of Iran by inverse and forward modeling of aeromagnetic data and gravity data. The main focus is on the definition of the magnetic top basement. The combination of multiple shallow magnetic sources and an assumed shallow Curie isotherm depth beneath the Iranian Plateau creates a complex magnetic architecture over the area. Qualitative analysis, including pseudo gravity, wavelength filtering and upward continuation allowed a first separation of probable deep and shallow features, like the Sanandaj Sirjan zone, Urumieh Dokhtar Magmatic Assemblage, Kopet Dagh structural unit and Central Iran domain. In the second step, we apply inverse modeling to generate an estimate of the top basement geometry. The initial model was established from top basement to (a) constant depth of 25 km and (b) Moho depth. The inversion result was used as starting model for more detailed modelling in 3D to evaluate the effect of susceptibility heterogeneities in the crust. Subsequently, the model was modified with respect to tectonic and geological characterization of the region. Further modification of model in regards more details of susceptibility distribution was led to separating upper crust to different magnetic domains. In addition, we refined the top basement geometry by using terrestrial gravity observation as well. The best fitting model is consistent with the Curie isotherm depth as the base of magnetization. The Curie isotherm was derived from independent geophysical-petrological model.

  1. Pyrazolate-based copper(II) and nickel(II) [2 x 2] grid complexes: protonation-dependent self-assembly, structures and properties.

    PubMed

    Klingele, Julia; Prikhod'ko, Alexander I; Leibeling, Guido; Demeshko, Serhiy; Dechert, Sebastian; Meyer, Franc

    2007-05-28

    The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x

  2. Structural insights into the histone H1-nucleosome complex

    PubMed Central

    Zhou, Bing-Rui; Feng, Hanqiao; Kato, Hidenori; Dai, Liang; Yang, Yuedong; Zhou, Yaoqi; Bai, Yawen

    2013-01-01

    Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1–nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo. PMID:24218562

  3. Investigating Jupiter's Deep Flow Structure using the Juno Magnetic and Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Duer, K.; Galanti, E.; Cao, H.; Kaspi, Y.

    2017-12-01

    Jupiter's flow below its cloud-level is still largely unknown. The gravity measurements from Juno provide now an initial insight into the depth of the flow via the relation between the gravity field and the flow field. Furthermore, additional constraints could be put on the flow if the expected Juno magnetic measurements are also used. Specifically, the gravity and magnetic measurements can be combined to allow a more robust estimate of the deep flow structure. However, a complexity comes from the fact that both the radial profile of the flow, and it's connection to the induced magnetic field, might vary with latitude. In this study we propose a method for using the expected Juno's high-precision measurements of both the magnetic and gravity fields, together with latitude dependent models that relate the measurements to the structure of the internal flow. We simulate possible measurements by setting-up specific deep wind profiles and forward calculate the resulting anomalies in both the magnetic and gravity fields. We allow these profiles to include also latitude dependency. The relation of the flow field to the gravity field is based on thermal wind balance, and it's relation to the magnetic field is via a mean-field electrodynamics balance. The latter includes an alpha-effect, describing the mean magnetic effect of turbulent rotating convection, which might also vary with latitude. Using an adjoint based optimization process, we examine the ability of the combined magnetic-gravity model to decipher the flow structure under the different potential Juno measurements. We investigate the effect of different latitude dependencies on the derived solutions and their associated uncertainties. The novelty of this study is the combination of two independent Juno measurements for the calculation of a latitudinal dependent interior flow profile. This method might lead to a better constraint of Jupiter's flow structure.

  4. Synthesis, spectroscopic, thermal and structural properties of [M(3-aminopyridine)2Ni(μ-CN)2(CN)2]n (M(II) = Co and Cu) heteropolynuclear cyano-bridged complexes

    NASA Astrophysics Data System (ADS)

    Kartal, Zeki

    2016-01-01

    Two novel cyano-bridged heteropolynuclear complexes, [Co(3-aminopyridine)2Ni(μ-CN)2(CN)2]n and [Cu(3-aminopyridine)2Ni(μ-CN)2(CN)2]n have been synthesized and characterized by elemental, thermal, FT-IR and FT-Raman spectroscopies. The structures of complexes have been determined by X-ray powder diffraction. The FT-IR and FT-Raman spectra of complexes have been recorded in the region of 3500-400 cm-1 and 3500-100 cm-1, respectively. General information was acquired about structural properties of these complexes from FT-IR and FT-Raman spectra by considering changes at characteristic peaks of the cyano group and 3AP. The splitting of the ν(Ctbnd N) stretching bands in the FT-IR spectra for complexes indicates the presence of terminal and bridging cyanides. The thermal behaviors of these complexes have been also investigated in the range of 25-950 °C using TG and DTG methods. Magnetic susceptibility measurements were made at room temperature using Gouy-balance.

  5. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe

    2013-03-04

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.

  6. Synthesis, structure, and magnetic characterization of a C3-symmetric Mn(III)3Cr(III) assembly: molecular recognition between a trinuclear Mn(III) triplesalen complex and a fac-triscyano Cr(III) complex.

    PubMed

    Freiherr von Richthofen, Carl-Georg; Stammler, Anja; Bögge, Hartmut; DeGroot, Marty W; Long, Jeffrey R; Glaser, Thorsten

    2009-11-02

    The reaction of the tris(tetradentate) triplesalen ligand H(6)talen(t-Bu(2)), which provides three salen-like coordination environments bridged in a meta-phenylene arrangement by a phloroglucinol backbone, with Mn(II) salts under aerobic conditions, affords, in situ, the trinuclear Mn(III) triplesalen complex [(talen(t-Bu(2))){Mn(III)(solv)(n)}(3)](3+). This species then reacts with [(Me(3)tacn)Cr(CN)(3)] to form the tetranuclear complex [{(talen(t-Bu(2)))Mn(III)(3)}{(Me(3)tacn)Cr(CN)(3)}](3+) ([Mn(III)(3)Cr(III)](3+)). The regular ligand folding observed in the trinuclear triplesalen complex preorganizes the three metal ions for the reaction with three facially coordinated nitrogen atoms of [(Me(3)tacn)Cr(CN)(3)]. [{(talen(t-Bu(2)))(Mn(III)(MeOH))(3)}{(Me(3)tacn)Cr(CN)(3)}](ClO(4))(3) (1) was characterized by infrared spectroscopy, elemental analysis, mass spectrometry, electron absorption spectroscopy, and magnetic measurements. The molecular structure was established for the acetate-substituted derivative [{(talen(t-Bu(2)))(Mn(III)(MeOH))(2)(Mn(III)(OAc))}{(Me(3)tacn)Cr(CN)(3)}](ClO(4))(2) (2) by single-crystal X-ray diffraction. Variable-temperature-variable-field and mu(eff) versus T magnetic data have been analyzed in detail by full-matrix diagonalization of the appropriate spin-Hamiltonian, consisting of isotropic exchange, zero-field splitting, and Zeeman interaction components. Satisfactory reproduction of the experimental data has been obtained for the parameters J(Mn-Cr) = -0.12 +/- 0.04 cm(-1), J(Mn-Mn) = -0.70 +/- 0.03 cm(-1), and D(Mn) = -3.0 +/- 0.4 cm(-1). These generate a triply degenerate pseudo S(t) = 7/2 spin manifold, which cannot be appropriately described by a giant spin model and which exhibits a weak easy-axis magnetic anisotropy. This is corroborated by the onset of a frequency-dependent chi'' signal at low temperatures, demonstrating a slow relaxation of the magnetization indicative of 1 being a single-molecule magnet. Comparing the properties to those of the heptanuclear analogue [{(talen(t-Bu(2)))Mn(III)(3)}(2){Cr(III)(CN)(6)}](3+) ([Mn(III)(6)Cr(III)](3+)) formed by the reaction of 2 equiv of [(talen(t-Bu(2))){Mn(III)(solv)(n)}(3)](3+) with 1 equiv of [Cr(CN)(6)](3-) [Glaser, T.; Heidemeier, M.; Weyhermüller, T.; Hoffmann, R.-D.; Rupp, H.; Müller, P. Angew. Chem. Int. Ed., 2006, 45, 6033-6037] demonstrates a lower driving force for formation, a strongly reduced J(Mn-Cr) exchange, a slightly reduced J(Mn-Mn) exchange, and a significantly longer Mn-N(N[triple bond]C) bond length in [Mn(III)(3)Cr(III)](3+). Taking into account magneto-structural correlations establishes a supramolecular interaction between the two [(talen(t-Bu(2)))Mn(III)(3)](3+) subunits in [Mn(III)(6)Cr(III)](3+) responsible for the structural distortion and the short Mn-N(N[triple bond]C) distance which results in a strong J(Mn-Cr) exchange and thus [Mn(III)(6)Cr(III)](3+) being a single-molecule magnet with a relatively high effective anisotropy barrier of 25.4 K.

  7. Nonperturbative quark-gluon thermodynamics at finite density

    NASA Astrophysics Data System (ADS)

    Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.

    2018-03-01

    Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 < μ < 400 MeV and 150 < T < 1000 MeV. For the first time, the explicit integral form is found in this region, demonstrating analytic structure in the complex μ plane. The resulting multiple complex branch points are found at the Roberge-Weiss values of Imμ, with Reμ defined by the values of Polyakov lines and color magnetic confinement.

  8. Magnetic- and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug.

    PubMed

    Mahdavinia, Gholam Reza; Mosallanezhad, Amirabbas; Soleymani, Moslem; Sabzi, Mohammad

    2017-04-01

    The aim of the present work was to develop green carriers for methotrexate using κ-carrageenan/chitosan complexes. Magnetic Fe 3 O 4 nanoparticles were first synthesized in the presence of κ-carrageenan through in situ method. Then, the obtained magnetic κ-carrageenan was crosslinked using the polycation chitosan biopolymer. The physical and structural properties of hydrogels were investigated by FTIR, XRD, SEM, TEM, TGA, and VSM techniques. The pH-dependent swelling behavior of hydrogels was examined in various buffer solutions. All of the prepared hydrogels showed a high swelling capacity in basic solutions. The introduction of magnetite nanoparticles into κ-carrageenan/chitosan complexes had a significant effect on the swelling capacity of magnetic hydrogels, as the water absorbency of hydrogels decreased with increasing magnetite content. Methotrexate as an anticancer and model drug was loaded on hydrogels and the release profiles were investigated at pH=7.4 and 5.3. The methotrexate encapsulation efficiency was increased by increasing magnetite and chitosan contents. The results demonstrated that the release of methotrexate from magnetic hydrogels is pH-dependent with a high release content at pH=7.4. The release profiles were analyzed by Peppas's empirical model and the release of drug from hydrogels followed Fickian type of diffusion mechanism at both pHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Coronal partings

    NASA Astrophysics Data System (ADS)

    Nikulin, Igor F.; Dumin, Yurii V.

    2016-02-01

    The basic observational properties of "coronal partings"-the special type of quasi-one-dimensional magnetic structures, identified by a comparison of the coronal X-ray and EUV images with solar magnetograms-are investigated. They represent the channels of opposite polarity inside the unipolar large-scale magnetic fields, formed by the rows of magnetic arcs directed to the neighboring sources of the background polarity. The most important characteristics of the partings are discussed. It can be naturally assumed that-from the evolutionary and spatial points of view-the partings can transform into the coronal holes and visa versa. The classes of global, intersecting, and complex partings are identified.

  10. N-benzoylated 1,4,8,11-tetraazacyclotetradecane and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Nirmala, G.; Rahiman, A. Kalilur; Sreedaran, S.; Jegadeesh, R.; Raaman, N.; Narayanan, V.

    2010-09-01

    A series of N-benzoylated cyclam ligands incorporating three different benzoyl groups 1,4,8,11-tetra-(benzoyl)-1,4,8,11-tetraazacyclotetradecane (L 1), 1,4,8,11-tetra-(2-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 2) and 1,4,8,11-tetra-(4-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 3) and their nickel(II) and copper(II) complexes are described. Crystal structure of L 1 is also reported. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-benzoylation causes red shift in the λmax values of the complexes. The cyclic voltammogram of the complexes of ligand L 1 show one-electron, quasi-reversible reduction wave in the region -1.00 to -1.04 V, whereas that of L 2 and L 3 show two quasi-reversible reduction peaks. Nickel complexes show one-electron quasi-reversible oxidation wave at a positive potential in the range +1.05 to +1.15 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment values μeff 1.70-1.73 BM which is close to the spin-only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. All the ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.

  11. Magnetization Ratchet in Cylindrical Nanowires.

    PubMed

    Bran, Cristina; Berganza, Eider; Fernandez-Roldan, Jose A; Palmero, Ester M; Meier, Jessica; Calle, Esther; Jaafar, Miriam; Foerster, Michael; Aballe, Lucia; Fraile Rodriguez, Arantxa; P Del Real, Rafael; Asenjo, Agustina; Chubykalo-Fesenko, Oksana; Vazquez, Manuel

    2018-05-31

    The unidirectional motion of information carriers such as domain walls in magnetic nanostrips is a key feature for many future spintronic applications based on shift registers. This magnetic ratchet effect has so far been achieved in a limited number of complex nanomagnetic structures, for example, by lithographically engineered pinning sites. Here we report on a simple remagnetization ratchet originated in the asymmetric potential from the designed increasing lengths of magnetostatically coupled ferromagnetic segments in FeCo/Cu cylindrical nanowires. The magnetization reversal in neighboring segments propagates sequentially in steps starting from the shorter segments, irrespective of the applied field direction. This natural and efficient ratchet offers alternatives for the design of three-dimensional advanced storage and logic devices.

  12. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology

    PubMed Central

    Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang

    2013-01-01

    The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313

  13. Transition metal complexes of 2-amino-3,5-dihalopyridines: Syntheses, structures and magnetic properties of (3,5-diCAPH)2CuX4 and (3,5-diBAPH)2CuX4.

    PubMed

    Tremelling, Grant W; Foxman, Bruce M; Landee, Christopher P; Turnbull, Mark M; Willett, Roger D

    2009-12-21

    A family of bis(2-amino-3,5-dihalopyridinium)tetrahalocuprate(II) compounds has been synthesized, including (3,5-diCAPH)2CuCl4 (1), (3,5-diCAPH)2CuBr4 (2), (3,5-diBAPH)2CuCl4 (3), and (3,5-diBAPH)2CuBr4 (4) [3,5-diCAPH = 2-amino-3,5-dichloropyridinium; 3,5-diBAPH = 2-amino-3,5-dibromopyridinium]. These complexes have been analyzed through single crystal X-ray diffraction and temperature dependent magnetic susceptibility. Compound 1 crystallizes in the P-1 space group and the tetrachlorocuprate ion is best described as possessing a distorted square planar geometry. Compounds 2-4 are structurally similar and crystallized in the P2(1)/n, P2(1)/c, and P2(1)/n space groups respectively. The tetrahalocuprate ions are best described as distorted tetrahedra. All four compounds show antiferromagnetic interactions and were fit to the uniform chain Heisenberg model with resulting 2J/kB values of -11.71(2) K, -2.21(1) K, -12.43 (2) K, and -1.36(1) K, respectively. The exchange values correlate well with the two-halide exchange pathway parameters. The unusual observation that the chloride complexes show stronger magnetic exchange than the bromide complexes provides strong support that the exchange can be strongly dependent upon the Cu-X...X angles and Cu-X...X-Cu torsion angles.

  14. Understanding the role played by Fe on the tuning of magnetocaloric effect in Tb5Si2Ge2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Andre; Moreira Dos Santos, Antonio F; Magen Dominguez, Cesar

    2011-01-01

    In this work, it is shown that when replacing Ge by Fe in Tb5Si2Ge2 the structural transition still occurs and enhances the Magnetocaloric effect (up to 66%) with maximum of MCE at a critical Fe amount where the magnetic and structural transitions become fully coupled. It is observed that Fe concentration is able to mimic the e?ect of external pressure as it induces a complex microstructure, that tunes long range strain ?elds. This knowledge is crucial for the development of strategies towards materials with improved performance for e?cient magnetic refrigeration applications.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, Madeleine; Stanley, Ann Marie; Wang, Guangshun

    Paralogous enzymes arise from gene duplication events that confer a novel function, although it is unclear how cross-reaction between the original and duplicate protein interaction network is minimized. We investigated HPr:EIsugar and NPr:EINtr, the initial complexes of paralogous phosphorylation cascades involved in sugar import and nitrogen regulation in bacteria, respectively. Although the HPr:EIsugar interaction has been well characterized, involving multiple complexes and transient interactions, the exact nature of the NPr:EINtr complex was unknown. We set out to identify the key features of the interaction by performing binding assays and elucidating the structure of NPr in complex with the phosphorylation domainmore » of EINtr (EINNtr), using a hybrid approach involving X-ray, homology, and sparse nuclear magnetic resonance. We found that the overall fold and active-site structure of the two complexes are conserved in order to maintain productive phosphorylation, however, the interface surface potential differs between the two complexes, which prevents cross-reaction.« less

  16. Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika

    2005-11-01

    The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.

  17. Magnetic structure of an activated filament in a flaring active region

    NASA Astrophysics Data System (ADS)

    Sasso, C.; Lagg, A.; Solanki, S. K.

    2014-01-01

    Aims: While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We report observational results on the magnetic field structure of an activated filament in a flaring active region. In particular, we studied its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displayed signs of rotation. Methods: We inverted the Stokes profiles of the chromospheric He i 10 830 Å triplet and the photospheric Si i 10 827 Å line observed in this filament by the Vacuum Tower Telescope on Tenerife. Using these inversion results, we present and interpret the first maps of the velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Results: Up to five different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of the filament, while the downflows are concentrated along its periphery. Moreover, the upflowing gas is associated with an opposite-polarity magnetic configuration with respect to the photosphere, while the downflowing gas is associated with a same-polarity configuration. Conclusions: The activated filament has a very complex structure. Nonetheless, it is compatible with a flux rope, albeit a distorted one, in the normal configuration. The observations are best explained by a rising flux rope in which part of the filament material is still stably stored (upflowing material, rising with the field), while the rest is no longer stably stored and flows down along the field lines. The movie is available in electronic form at http://www.aanda.org

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, D.; Liu, Jian; Freeland, J. W.

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less

  19. Magnetocapacitance and the physics of solid state interfaces

    NASA Astrophysics Data System (ADS)

    Hebard, Arthur

    2008-10-01

    When Herbert Kroemer stated in his Nobel address [1] that ``the interface is the device,'' he was implicitly acknowledging the importance of understanding the physics of interfaces. If interfaces are to have character traits, then ``impedance'' (or complex capacitance) would be a commonly used descriptor. In this talk I will discuss the use of magnetic fields to probe the ``character'' of a variety of interfaces including planar capacitor structures with magnetic electrodes, simple metal/semiconductor contacts (Schottky barriers) and the interface-dominated competition on microscopic length scales between ferromagnetic metallic and charge-ordered insulating phases in complex oxides. I will show that seeking experimental answers to surprisingly simple questions often leads to striking results that seriously challenge theoretical understanding. Perhaps Herbert Kroemer should have said, ``the interface is the device with a magnetic personality that continually surprises.'' [3pt] [1] Herbert Kroemer, ``Quasielectric fields and band offsets: teaching electron s new tricks,'' Nobel Lecture, December 8, 2000:

  20. High-Resolution and Frequency, Printed Miniature Magnetic Probes

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian

    2013-10-01

    Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.

  1. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels

    PubMed Central

    Hinton, Thomas J.; Jallerat, Quentin; Palchesko, Rachelle N.; Park, Joon Hyung; Grodzicki, Martin S.; Shue, Hao-Jan; Ramadan, Mohamed H.; Hudson, Andrew R.; Feinberg, Adam W.

    2015-01-01

    We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin. Computer-aided design models of 3D optical, computed tomography, and magnetic resonance imaging data were 3D printed at a resolution of ~200 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312

  2. Magnetic exchange in {Gd(III)-radical} complexes: method assessment, mechanism of coupling and magneto-structural correlations.

    PubMed

    Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan

    2014-07-28

    Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP < BHandHLYP < TPSSH < PW91 < PBE < BP86 < OLYP < BLYP < PBE0 < X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.

  3. An intramolecular antiferromagnetically coupled pentanuclear Mn(II) cluster containing acetate and tetracarboxylate linkers: Synthesis, structure and magnetism

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Wei-Cong; Wu, Xi-Ren; Liu, Jian-Qiang; Sakiyama, Hiroshi; Yadav, Reena; Kumar, Abhinav

    2016-06-01

    A new Mn(II) complex {[Mn5(CH3COO)2(L)2(DMF)8](DMF)}n (1), (H4L = 3,5-bis(3‧,5‧-dicarboxylphenyl)-1H-1,2,3-triazole), has been synthesized and structurally characterized. The complex 1 have pentanuclear Mn(II) core, where the two sides of metal centers (Mn2 and Mn3) have trigonal bipyramidal arrangement and the middle metal center (Mn1) have octahedral environment utilizing two O atoms from adjacent bridging bidentate carboxylate groups and four O atoms from four coordinated DMF molecules. The planar arrangement of pentanuclear Mn(II) atoms are linked by L linkage to generate two dimensional sheet. The magnetic property of the compound indicates χMT value for the five Mn(II) unit to be 21.3 cm3 K mol-1 at 300 K, which is close to the spin-only value (21.9 cm3 K mol-1) for the pentamer having S = 5/2. Also, the Hirshfeld surface analyses have been performed which indicated the absence of weak Mn···Mn interaction thereby corroborating the results of observed magnetic properties.

  4. High pressure effects on a trimetallic Mn(II/III) SMM.

    PubMed

    Prescimone, Alessandro; Sanchez-Benitez, Javier; Kamenev, Konstantin V; Moggach, Stephen A; Lennie, Alistair R; Warren, John E; Murrie, Mark; Parsons, Simon; Brechin, Euan K

    2009-09-28

    A combined study of the high pressure crystallography and high pressure magnetism of the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.Et2O.2MeCN) (H3cht is cis,cis-1,3,5-cyclohexanetriol) is presented in an attempt to observe and correlate pressure induced changes in its structural and physical properties. At 0.16 GPa the complex 1.Et2O.2MeCN loses all associated solvent in the crystal lattice, becoming 1. At higher pressures structural distortions occur changing the distances between the metal centres and the bridging oxygen atoms making the magnetic exchange between the manganese ions weaker. No significant variations are observed in the Jahn-Teller axis of the only Mn(III) present in the structure. High pressure dc chiMT plots display a gradual decrease in both the low temperature value and slope. Simulations show a decrease in J with increasing pressure although the ground state is preserved. Magnetisation data do not show any change in |D|.

  5. Magnetic stripes and skyrmions with helicity reversals.

    PubMed

    Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori

    2012-06-05

    It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.

  6. Rhombus-shaped tetranuclear [Ln4] complexes [Ln = Dy(III) and Ho(III)]: synthesis, structure, and SMM behavior.

    PubMed

    Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal

    2013-06-03

    The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.

  7. Non-rigid precession of magnetic stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.; Jones, D. I.

    2017-06-01

    Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.

  8. Field-induced magnetic phase transitions and memory effect in bilayer ruthenate Ca 3Ru 2O 7 with Fe substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, M.; Hong, Tao; Peng, J.

    Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less

  9. Field-induced magnetic phase transitions and memory effect in bilayer ruthenate Ca 3Ru 2O 7 with Fe substitution

    DOE PAGES

    Zhu, M.; Hong, Tao; Peng, J.; ...

    2018-01-09

    Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less

  10. Synthesis and characterization of new complexes of nickel (II), palladium (II) and platinum(II) with derived sulfonamide ligand: Structure, DFT study, antibacterial and cytotoxicity activities

    NASA Astrophysics Data System (ADS)

    Bouchoucha, Afaf; Zaater, Sihem; Bouacida, Sofiane; Merazig, Hocine; Djabbar, Safia

    2018-06-01

    The synthesis, characterization and biological study of new nickel (II), palladium (II), and platinum (II) complexes with sulfamethoxazole ligand used in pharmaceutical field, were reported. [MLCl2].nH2O is the general formula obtained for Pd(II) and Pt(II) complexes. These complexes have been prepared and characterized by elemental analysis, FTIR, 1HNMR spectral, magnetic measurements, UV-Visible spectra, and conductivity. The DFT calculation was applied to optimize the geometric structure of the Pd(II) and Pt(II) complexes. A new single-crystal X-ray structure of the Ni(II) complex has been determined. It crystallized in monoclinic system with P 21/c space group and Z = 8. The invitro antibacterial activity of ligand and complexes against Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilis species has been carried out and compared using agar-diffusion method. The Pd(II) and Pt(II) complexes showed a remarkable inhibition against bacteria tested. The invitro cytotoxicity assay of the complexes against three cell lines chronic myelogenous leukaemia (K562), human colon adenocarcinoma (HT-29) and breast cancer (MCF-7) was also reported.

  11. Enhancement of TbIII–CuII Single‐Molecule Magnet Performance through Structural Modification

    PubMed Central

    Heras Ojea, María José; Milway, Victoria A.; Velmurugan, Gunasekaran; Thomas, Lynne H.; Coles, Simon J.; Wilson, Claire; Wernsdorfer, Wolfgang

    2016-01-01

    Abstract We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc−, Ln=Gd, Tb or X=NO3 −, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′‐(propane‐1,3‐diyldiimino)bis[2‐(hydroxylmethyl)propane‐1,3‐diol] (H6L) pro‐ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc− for NO3 −). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu‐based single‐molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C 4v versus Cs). PMID:27484259

  12. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios

    2016-04-01

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging magnetic flux tubes while forming ARs on the surface. Using advanced 3D visualization tools and applying this technique on a complex flare and CME productive AR, we found that the magnetic flux tubes involved in forming the complex AR may originate from a single progenitor flux tube in the SCZ. The complexity can be explained as a result of vertical and horizontal bifurcations that occurred on the progenitor flux tube. Third, this dissertation proposes a new scenario on the origin of major solar activity. When more than one flux tubes are in close proximity to each other while they break through the photospheric surface, collision and shearing may occur as they emerge. Once this collisional shearing occurs between nonconjugated sunspots (opposite polarities not belonging to the same bipole), major solar activity is triggered. The collision and the shearing occur due to the natural separation of polarities in emerging bipoles. This is forcing changes in the connectivity close to the photosphere (up to a few local pressure scale heights above the surface) by means of photospheric reconnection and subsequent submergence of small bipoles at the collision interface (polarity inversion line; PIL). In this continuous collision, more poloidal flux is added to the system effectively creating an expanding MFR into the corona, explaining the observation of filament formation above the PIL together with flare activity and CMEs. Our results reject two popular scenarios on the possible cause of solar eruptions (1) eruption occurs due to shearing motion between conjugate polarities, and, (2) bodily emergence of an MFR.

  13. Spectral, thermal, kinetic, molecular modeling and eukaryotic DNA degradation studies for a new series of albendazole (HABZ) complexes

    NASA Astrophysics Data System (ADS)

    El-Metwaly, Nashwa M.; Refat, Moamen S.

    2011-01-01

    This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.

  14. Switchable molecular magnets

    PubMed Central

    SATO, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438

  15. Modeling the structural, dynamical, and magnetic properties of liquid Al1-xMnx ( x=0.14 , 0.2, and 0.4): A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2007-07-01

    We report the results of first-principles molecular dynamics simulations of liquid Al1-xMnx alloys at three different compositions. The local structure as defined by the Bhatia-Thornton partial structure factors is found to display significant changes at x=0.4 . In addition, a structural analysis using three-dimensional pair-analysis techniques evidences a fivefold symmetry around x=0.14 , in agreement with the experimental quasicrystal-forming range, and an increasing complexity of the Frank-Kasper polytetrahedral symmetry around Mn atoms at x=0.4 . We also examine the time evolution of the configurations at the three compositions in terms of the mean-square displacements and self-diffusion coefficients. Finally, we show a strong interplay between the structural changes and the evolution of the magnetic properties of the Mn atoms as a function of composition.

  16. Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy.

    PubMed

    Gogolashvili, Ann; Tatunashvili, Elene; Chankvetadze, Lali; Sohajda, Tamas; Szeman, Julianna; Salgado, Antonio; Chankvetadze, Bezhan

    2017-08-01

    In the present study, the enantiomer migration order (EMO) of enilconazole in the presence of various cyclodextrins (CDs) was investigated by capillary electrophoresis (CE). Opposite EMO of enilconazole were observed when β-CD or the sulfated heptakis(2-O-methyl-3,6-di-O-sulfo)-β-CD (HMDS-β-CD) was used as the chiral selectors. Nuclear magnetic resonance (NMR) spectroscopy was used to study the mechanism of chiral recognition between enilconazole enantiomers and those two cyclodextrins. On the basis of rotating frame nuclear Overhauser (ROESY) experiments, the structure of an inclusion complex between enilconazole and β-CD was derived, in which (+)-enilconazole seemed to form a tighter complex than the (-)-enantiomer. This correlates well with the migration order of enilconazole enantiomers observed in CE. No evidence of complexation between enilconazole and HMDS-β-CD could be gathered due to lack of intermolecular nuclear Overhauser effect (NOE). Most likely the interaction between enilconazole and HMDS-β-CD leads to formation of a shallow external complex that is sufficient for separation of enantiomers in CE but cannot be evidenced based on ROESY experiment. Thus, in this particular case CE documents the presence of intermolecular interactions which are at least very difficult to be evidenced by other instrumental techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  18. Analysis of Students' Conceptions of Basic Magnetism from a Complex Systems Perspective

    NASA Astrophysics Data System (ADS)

    Lemmer, Miriam; Kriek, Jeanne; Erasmus, Benita

    2018-03-01

    This study established whether 12 South African secondary school physics students had incorrect conceptions of basic magnetism and if they had, to what extent they consistently applied such conceptions. Different scenarios in the form of thought experiments were presented in a clinical interview approach. A complex systems perspective underpinned the study and was firstly used to analyze 12 students' conceptions in terms of intuitive fragments of knowledge elements, structured misconceptions, and theory-like system of knowledge elements. Secondly, coherence in each student's ideas expressed across ten themes using thought experiments was analyzed in an effort to determine variations or coherence in responses. Examples of student explanations and sketches are discussed in the paper to illustrate the conceptual structures they applied. Most of the students in this study used a variety of knowledge elements in accord with a complex systems perspective, but three students seemed to prefer a specific perspective. One student's ideas tended to be mainly fragmented, a second exposed a number of structured misconceptions, while another student's reasoning can be described as a theory-like system of knowledge elements. Accordingly, the emphasis of physics education research should no longer be on the compilation of a list of misconceptions that have to be remedied or replaced, but on the conceptual connections, students make and their associative reasoning patterns (i.e., knowledge systems revealed). It remains for the teacher to use the complex systems perspective as a framework to facilitate students' conceptual development and understanding, proceeding on their existing knowledge systems.

  19. Revisiting Ionosphere-Thermosphere Responses to Solar Wind Driving in Superstorms of November 2003 and 2004

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Komjathy, A.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Paxton, L. J.

    2017-10-01

    We revisit three complex superstorms of 19-20 November 2003, 7-8 November 2004, and 9-11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures associated with complex interplanetary coronal mass ejections (ICMEs) and their upstream sheaths. The efficiency of the solar wind-magnetosphere connection throughout the storms is estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining and collocating (where possible) measurements of several physical parameters (total electron content or TEC, thermospheric infrared nitric oxide emission, and composition ratio) from multiple satellite platforms and ground-based measurements. A variety of metrics are utilized to examine global IT phenomena at 1 h timescales. The role of direct driving of IT dynamics by solar wind structures and the role of IT preconditioning in these storms, which feature complex unusual TEC responses, are examined and contrasted. Furthermore, IT responses to ICME magnetic clouds and upstream sheaths are separately characterized. We identify IT feedback effects that can be important for long-lasting strong storms. The role of the interplanetary magnetic field By component on ionospheric convection may not be well captured by existing coupling functions. Mechanisms of thermospheric overdamping and consequential ionospheric feedback need to be further studied.

  20. Complex magnetic phase diagram with multistep spin-flop transitions in L a0.25P r0.75C o2P2

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoyan; Garlea, V. Ovidiu; Kovnir, Kirill; Thompson, Corey M.; Xu, Tongshuai; Cao, Huibo; Chai, Ping; Tener, Zachary P.; Yan, Shishen; Xiong, Peng; Shatruk, Michael

    2017-01-01

    L a0.25P r0.75C o2P2 crystallizes in the tetragonal ThC r2S i2 structure type and shows multiple magnetic phase transitions driven by changes in temperature and magnetic field. The nature of these transitions was investigated by a combination of magnetic and magnetoresistance measurements and both single crystal and powder neutron diffraction. The Co magnetic moments order ferromagnetically (FM) parallel to the c axis at 282 K, followed by antiferromagnetic (AFM) ordering at 225 K. In the AFM structure, the Co magnetic moments align along the c axis with FM [C o2P2] layers arranged in an alternating sequence, ↑↑↓↓ , which leads to the doubling of the c axis in the magnetic unit cell. Another AFM transition is observed at 27 K, due to the ordering of a half of Pr moments in the a b plane. The other half of Pr moments undergoes AFM ordering along the c axis at 11 K, causing simultaneous reorientation of the previously ordered Pr moments into an AFM structure with the moments being canted with respect to the c axis. This AFM transition causes an abrupt decrease in electrical resistivity at 11 K. Under applied magnetic field, two metamagnetic transitions are observed in the Pr sublattice at 0.8 and 5.4 T. They correlate with two anomalies in magnetoresistance measurements at the same critical fields. A comparison of the temperature- and field-dependent magnetic properties of L a0.25P r0.75C o2P2 to the magnetic behavior of PrC o2P2 is provided.

  1. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications

    PubMed Central

    Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  2. Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.

    PubMed

    Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.

  3. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  4. Defect control of conventional and anomalous electron transport at complex oxide interfaces

    DOE PAGES

    Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...

    2016-08-30

    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less

  5. Geophysical-geological studies of possible extensions of the New Madrid Fault Zone. Annual report for 1983. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, W.J.; Braile, L.W.; Keller, G.R.

    1985-04-01

    Recent geophysical investigations have shown that the seismicity of the New Madrid, Missouri seismogenic region is correlative with an ancient rift complex suggesting that the anomalous seismicity is the result of the localization of the regional compressive stress pattern by basement structures. Preliminary evidence indicates that this inferred basement rift complex extends beyond the immediate realm of the intense New Madrid region microseismicity. An integrated geophysical/geological research program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid area and its extensions, to refine our knowledge of the structure andmore » physical properties of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault zone, especially the possible northeastern connection to the Anna, Ohio seismic region. Investigation of the northeast extension of the New Madrid Rift Complex into eastern Indiana, north of 39/sup 0/N latitude, has focused upon the acquisition and preparation of arrays of gravity and magnetic anomaly data sets. Another possible arm of the New Madrid Rift Complex, the St. Louis Arm, which extends northwesterly from southern Illinois along the Mississippi River to St. Louis, Missouri, is being studied by an integrated geophysical, seismicity and geological investigation. However, during 1983, special emphasis was placed upon integration of gravity and magnetic anomaly data from the Anna, Ohio seismogenic region with basement lithologic and seismicity information to investigate the possible relationship of basement geology to the seismicity of the Anna area. Interpretation of these data indicate the occurrence of several major lithologic/structural features in the crust of the Anna area. Current seismicity in this region appears to be related to an ancient rift structure and possibly its contact with a low density pluton. 18 refs., 37 figs.« less

  6. Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause

    NASA Astrophysics Data System (ADS)

    Kacem, I.; Jacquey, C.; Génot, V.; Lavraud, B.; Vernisse, Y.; Marchaudon, A.; Le Contel, O.; Breuillard, H.; Phan, T. D.; Hasegawa, H.; Oka, M.; Trattner, K. J.; Farrugia, C. J.; Paulson, K.; Eastwood, J. P.; Fuselier, S. A.; Turner, D.; Eriksson, S.; Wilder, F.; Russell, C. T.; Øieroset, M.; Burch, J.; Graham, D. B.; Sauvaud, J.-A.; Avanov, L.; Chandler, M.; Coffey, V.; Dorelli, J.; Gershman, D. J.; Giles, B. L.; Moore, T. E.; Saito, Y.; Chen, L.-J.; Penou, E.

    2018-03-01

    The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.

  7. Geophysical setting of the Wabash Valley fault system

    USGS Publications Warehouse

    Hildenbrand, T.G.; Ravat, D.

    1997-01-01

    Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.

  8. Evidence that a formyl-substituted iron porphyrin is the prosthetic group of myeloperoxidase: magnetic circular dichroism similarity of the peroxidase to Spirographis heme-reconstituted myoglobin.

    PubMed Central

    Sono, M; Bracete, A M; Huff, A M; Ikeda-Saito, M; Dawson, J H

    1991-01-01

    To probe the identity of the active site heme-type prosthetic group of myeloperoxidase, whose structure has not been established unambiguously [proposed structures are (i) a chlorin (dihydroporphyrin) or (ii) a formyl-substituted porphyrin such as present in heme a], Spirographis heme (2-formyl-4-vinyldeuteroheme IX) has been incorporated into apo-myoglobin as a possible iron porphyrin model. Comparison of parallel derivatives of these two green proteins with magnetic circular dichroism spectroscopy reveals considerable similarities between several derivatives of these proteins, including the pyridine hemochromogen, the native ferric, ferrous-oxy, and ferrous-CO forms. In contrast, the magnetic circular dichroism spectra of available iron chlorin (octaethylchlorin) model complexes in analogous ligation and oxidation states do not show any significant spectral similarities to myeloperoxidase. This finding provides important evidence in favor of a formyl-substituted porphyrin as the structure of the prosthetic group macrocycle of myeloperoxidase. PMID:1662385

  9. Evolution of the magnetic and structural properties of Fe 1 - x Co x V 2 O 4

    DOE PAGES

    Sinclair, R.; Ma, Jie; Cao, H. B.; ...

    2015-10-12

    The magnetic and structural properties of single-crystal Fe 1-xCo xV 2O 4 samples have been investigated by performing specific heat, susceptibility, neutron diffraction, and x-ray diffraction measurements. As the orbital-active Fe 2+ ions with larger ionic size are gradually substituted by the orbital-inactive Co 2+ ions with smaller ionic size, the system approaches the itinerant electron limit with decreasing V-V distance. Then, various factors such as the Jahn-Teller distortion and the spin-orbital coupling of the Fe 2+ ions on the A sites and the orbital ordering and electronic itinerancy of the V 3+ ions on the B sites compete withmore » each other to produce a complex magnetic and structural phase diagram. Finally, this phase diagram is compared to those of Fe 1-xMn xV 2O 4 and Mn 1-xCo xV 2O 4 to emphasize several distinct features.« less

  10. Four unprecedented 2D trinuclear Mn(II)-complexes with adenine nucleobase controlled by solvent or co-ligand: Hydrothermal synthesis, crystal structure and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Zhao, Hongkun; He, Hongming; Wang, Xiuguang; Liu, Zhongyi; Ding, Bo; Yang, Hanwen

    2018-03-01

    Four unique infinite 2D Mn(II) aggregates, [Mn3(μ3-ade)2(OAc)4X]n (X = DMF for 1, DMA for 2 and C2H5O- for 3), [Mn3(μ3-ade)2(ap)2DMF]n (4) (Hade = adenine; DMF = N,N-dimethylformamide; DMA = N,N-dimethylacetamide, OAc- = acetate ion, H2ap = adipic acid) with trinuclear Mn(II) as secondary building units (SBUs), have been successfully synthesized by the assembly of Hade nucleobase and manganese acetate under solvothermal conditions. The resultant complexes can be applied to explore the influence of solvent or co-ligands on the self-assembly and properties of metal complexes based on adenine. The Hade represent tridentate μ3-N3, N7, N9 bridging coordination modes. The acetate anions exhibit μ2-η1:η1 bidentate, μ2-η1:η2 tridentate mode, and μ2-η0:η2 bidentate mode. The adipate anions in complex 4 adopt two coordination modes: one is μ4-η2:η1:η1:η1 pentadentate mode, the other one is μ3-η1:η2:η2:η1 hexadentate mode. Their magnetic behaviors exhibit interesting variations, in which the local net magnetization at low temperature increases from 1 to 3. The MnII3 SBUs in 1-3 are symmetric with an inversion center, whereas that in 4 has three crystallographically independent MnII atoms. Thus, the magnetic behaviors of 4 are different from complex 1-3.

  11. Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides

    NASA Astrophysics Data System (ADS)

    Patz, Aaron; Li, Tianqi; Ran, Sheng; Fernandes, Rafael M.; Schmalian, Joerg; Bud'Ko, Sergey L.; Canfield, Paul C.; Perakis, Ilias E.; Wang, Jigang

    2014-02-01

    Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behaviour these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven nematicity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe1-xCox)2As2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.

  12. Characterization of Imposed Ordered Structures in MDPX

    NASA Astrophysics Data System (ADS)

    Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  13. Nuclear and magnetic supercells in the multiferroic candidate: Pb 3TeMn 3P 2O 14

    DOE PAGES

    Silverstein, Harlyn J.; Huq, Ashfia; Lee, Minseong; ...

    2014-10-18

    Here we report that the dugganites, Te 6+-containing members of the langasite series, have attracted recent interest due to their complex low-temperature magnetic unit cells, magnetodielectric, and potentially multiferroic properties. For Pb 2+-containing dugganites, a large monoclinic supercell was reported and was found to have a profound effect on the low temperature magnetism and spin excitation spectra. Pb 3TeMn 3P 2O 14 is another dugganite previously shown to distort away from the canonical P321 langasite unit cell, although this supercell was never fully solved. We report the full crystal and magnetic structure solution of Pb 3TeMn 3P 2O 14 usingmore » synchrotron x-ray and neutron diffraction data: a large trigonal supercell is observed in this material, which is believed to be the first supercell of its kind in the langasite family. Here, the magnetic structure, high-magnetic field behavior, and dielectric properties of Pb 3TeMn 3P 2O 14 are presented. In addition to showing weak magnetoelectric behavior similar to other langasites, it was found that a phase transition occurs at 3 T near the antiferromagnetic transition temperature.« less

  14. Framework of collagen type I - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field.

    PubMed

    Díaz, Jairo A; Murillo, Mauricio F; Jaramillo, Natalia A

    2009-01-01

    In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC) in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated into nanomaterial, biomedical devices, and engineered tissues, new therapeutic strategies could be developed for cancer treatment.

  15. On the nature of the phase transition in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Mast, D.; Antonio, D.; Shrestha, K.; Andersson, D.; Stanek, C.; Jaime, M.

    Uranium dioxide (UO2) is by far the most studied actinide material as it is a primary fuel used in light water nuclear reactors. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. UO2 crystalizes in the face-centered-cubic fluorite structure and is a Mott-Hubbard insulator with well-localized uranium 5 f-electrons. In addition, below 30 K, a long range antiferromagnetic ordering of the electric-quadrupole of the uranium moments is observed, forming complex non-collinear 3-k magnetic structure. This transition is accompanied by Jahn-Teller distortion of oxygen atoms. It is believed that the first order nature of the transition results from the competition between the exchange interaction and the Jahn-Teller distortion. Here we present results of our extensive thermodynamic investigations on well-characterized and oriented single crystals of UO2+x (x = 0, 0.033, 0.04, and 0.11). By focusing on the transition region under applied magnetic field we are able to study the interplay between different competing interactions (structural, magnetic, and electrical), its dynamics, and relationship to the oxygen content. We will discuss implications of these results. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  16. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  17. Galerkin finite element scheme for magnetostrictive structures and composites

    NASA Astrophysics Data System (ADS)

    Kannan, Kidambi Srinivasan

    The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin, on the response of magnetostrictive structures to complex mechanical and magnetic loading conditions, is carefully examined. While monolithic magnetostrictive materials have been commercially-available since the late eighties, attention in the smart structures research community has recently focussed upon building and using magnetostrictive particulate composite structures for conventional actuation applications and novel sensing methodologies in structural health monitoring. A particulate magnetostrictive composite element has been developed in the present work to model such structures. This composite element incorporates interactions between magnetostrictive particles by combining a numerical micromechanical analysis based on magneto-mechanical Green's functions, with a homogenization scheme based upon the Mori-Tanaka approach. This element has been applied to the simulation of particulate actuators and sensors reported in the literature. Simulation results are compared to experimental data for validation purposes. The computational schemes developed, for bulk materials and for composites, are expected to be of great value to researchers and designers of novel applications based on magnetostrictives.

  18. Heterobimetallic Lantern Complexes and Their Novel Structural and Magnetic Properties.

    PubMed

    Beach, Stephanie A; Doerrer, Linda H

    2018-05-15

    As the scale of microelectronic circuit devices approaches the atomic limit, the study of molecular-based wires and magnets has become more prevalent. Compounds with quasi-1D geometries have been investigated for their electronic conductivity and magnetic properties with potential use as nanoscale circuit components and information storage devices. To increase the number of compositionally tailored molecular systems available to study, we have taken a building-block, bottom-up approach to the development of improved electronic structure and magnetic properties of quasi-1D arrays. Over the past decade, a large family of asymmetric complexes that can assemble into extended arrays has resulted. Lantern (or paddle-wheel) complexes with conventional {O, O} donor carboxylates are legion, but by the use of monothiocarboxylate ligands and hard-soft Lewis acid-base principles, dozens of new lantern complexes of the form [PtM(SOCR) 4 (L)] (M = Mg, Ca, Cr, Mn, Fe, Co, Ni, Zn; R = Ph (tba = thiobenzoate), CH 3 (SAc = thioacetate); L = neutral or anionic ligand) have been prepared. Depending on M and L, new intermolecular arrangements have resulted, and the magnetic properties have proven particularly interesting. In the solid state, the [PtM(SOCR) 4 (L)] building blocks are sometimes isolated, sometimes form dimers, and can be induced to form infinite chains. The versatility of the lantern motif was demonstrated with a range of axial ligands to form both terminal and bridged complexes with various 3d metals and two different substituted thiocarboxylate backbone ligands. Within the dozens of crystallographically characterized compounds that make up this family of lanterns, several different structural motifs of solid-state dimerization were observed and divided into four distinct categories on the basis of their Pt···Pt and Pt···S distances and relative monomer orientations. Among all of these compounds, three novel magnetic phenomena were observed. Initially, long-range antiferromagnetic coupling between two metals more than 8 Å apart was observed in solid-state dimers formed via metallophilic Pt···Pt interactions and could induced by choice of the terminal L group. An infinite chain was prepared in [PtCr(tba) 4 (NCS)] ∞ that displays ferromagnetic coupling between Cr centers with J/ k B = 1.7(4) K. Homobimetallic quasi-1D chains of the form [Ni 2 (SOCR) 4 (L)] ∞ (R = Ph, CH 3 ; L = DABCO, pyz) were also prepared with S = 1 {Ni 2 } building blocks in which the Ni centers have two different spin states with weak antiferromagnetic coupling along the chain, such that -0.18 > J/ k B > -0.24 K. In the [Ni 2 (tba) 4 (quin)] derivative, a solid-state dimer forms with a bridging square conformation by interlantern Ni 2 S 2 interactions and displays unusual S = 1 configurations on both Ni centers and weak antiferromagnetic coupling between them.

  19. Room temperature syntheses, crystal structures and properties of two new heterometallic polymers based on 3-ethoxy-2-hydroxybenzaldehyde ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shu-Hua, E-mail: zsh720108@163.com; Zhao, Ru-Xiao; Li, Gui

    Two new heterometallic coordination polymers [ZnNa(ehbd){sub 2}(N{sub 3})]{sub n} (1) and [Cu{sub 3}Na{sub 2}(ehbd){sub 2}(N{sub 3}){sub 6}]{sub n} (2) (Hehbd is 3-ethoxy-2-hydroxybenzaldehyde) have been synthesized under room temperature and structurally characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. Complex 1 crystallizes in the orthorhombic space group Pbca, showing a one-dimensional (1-D) chain. Complex 2 crystallizes in the triclinic space group Pī, constructing a heterometallic 2D layer structure. Luminescent properties and magnetic properties have been studied for 1 and 2, respectively and the fluorescence quantum yield of 1 is 0.077. - Highlights: • Two novel complexes 1more » and 2 have been synthesized. • Complex 1 represents a novel qualitative change of luminescence property. • Complex 2 displays ferromagnetic interaction through symmetric μ{sub 1,1}–N{sub 3} bridges. • Complex 2 displays anti-ferromagnetic interaction through asymmetric μ{sub 1,1}–N{sub 3} bridges.« less

  20. Highly anisotropic exchange interactions in a trigonal bipyramidal cyanide-bridged Ni(II)3Os(III)2 cluster.

    PubMed

    Palii, Andrei V; Reu, Oleg S; Ostrovsky, Sergei M; Klokishner, Sophia I; Tsukerblat, Boris S; Hilfiger, Matthew; Shatruk, Michael; Prosvirin, Andrey; Dunbar, Kim R

    2009-06-25

    This article is a part of our efforts to control the magnetic anisotropy in cyanide-based exchange-coupled systems with the eventual goal to obtain single-molecule magnets with higher blocking temperatures. We give the theoretical interpretation of the magnetic properties of the new pentanuclear complex {[Ni(II)(tmphen)(2)](3)[Os(III)(CN)(6)](2)} x 6 CH(3)CN (Ni(II)(3)Os(III)(2) cluster). Because the system contains the heavy Os(III) ions, spin-orbit coupling considerably exceeds the contributions from the low-symmetry crystal field and exchange coupling. The magnetic properties of the Ni(II)(3)Os(III)(2) cluster are described in the framework of a highly anisotropic pseudo-spin Hamiltonian that corresponds to the limit of strong spin-orbital coupling and takes into account the complex molecular structure. The model provides a good fit to the experimental data and allows the conclusion that the trigonal axis of the bipyramidal Ni(II)(3)Os(III)(2) cluster is a hard axis of magnetization. This explains the fact that in contrast with the isostructural trigonal bipyramidal Mn(III)(2)Mn(II)(3) cluster, the Ni(II)(3)Os(III)(2) system does not exhibit the single-molecule magnetic behavior.

  1. Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Liang; Wu, Jie-Yi; Huang, Guo-Zhang; Chen, Yan-Cong; Jia, Jian-Hua; Ungur, Liviu; Chibotaru, Liviu F.; Chen, Xiao-Ming; Tong, Ming-Liang

    2015-11-01

    Single-molecule magnets (SMMs) are regarded as a class of promising materials for spintronic and ultrahigh-density storage devices. Tuning the magnetic dynamics of single-molecule magnets is a crucial challenge for chemists. Lanthanide ions are not only highly magnetically anisotropic but also highly sensitive to the changes in the coordination environments. We developed a feasible approach to understand parts of the magneto-structure correlations and propose to regulate the relaxation behaviors via rational design. A series of Co(II)-Dy(III)-Co(II) complexes were obtained using in situ synthesis; in this system of complexes, the relaxation dynamics can be greatly improved, accompanied with desolvation, via single-crystal to single-crystal transformation. The effective energy barrier can be increased from 293 cm-1 (422 K) to 416 cm-1 (600 K), and the tunneling relaxation time can be grown from 8.5 × 10-4 s to 7.4 × 10-2 s. These remarkable improvements are due to the change in the coordination environments of Dy(III) and Co(II). Ab initio calculations were performed to better understand the magnetic dynamics.

  2. Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; El-Reash, G. M. Abu; El-Tabai, M. N.

    2018-05-01

    Synthesis of complexes derived from hydrazones derived from both P-vanillin (H2L1) and its isomer O-vanillin (H2L2) of 2-hydrazinyl-2-oxo-N-phenylacetamide that coordinated with high magnetic metal ions of both Mn(II) and Co(II) were performed and characterized by different physicochemical methods, elemental analysis, (1H NMR, IR, and UV-visible spectra), also thermal analysis (TG and DTG) techniques and magnetic measurements. The molecular structures of the ligands and their Mn(II) and Co(II) complexes were optimized theoretically and the quantum chemical parameters were calculated. IR spectra suggest that the H2L1 behaved in a mononegative bidentate manner with both but H2L2 coordinated as mononegative tridentate with both Mn(II) and Co(II). The electronic spectra of the complexes as well as their magnetic moments suggested octahedral geometries for all the isolated complexes. The calculated values of binding energies indicated the stability of complexes is higher than that of ligand. The kinetic and thermodynamic parameters for the different decomposition steps in complexes were calculated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the prepared ligands and their Mn(II) and Co(II) complexes were individually tested against a panel of gram positive Bacillus Subtilis and negative Escherichia coli microscopic organisms. Additionally cytotoxicity assay of two human tumor cell lines namely; hepatocellular carcinoma (liver) HePG-2, and mammary gland (breast) MCF-7 were tested.

  3. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility.

    PubMed

    Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon

    2017-08-09

    Lanthanide ion (Ln 3+ ) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln 3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln 3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln 3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy 3+ and parallel alignment of those containing Tm 3+ . Moreover, samples with chelated Yb 3+ were more alignable than the Tm 3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln 3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln 3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.

  4. Structure, magnetic properties, polarized neutron diffraction, and theoretical study of a copper(II) cubane.

    PubMed

    Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo

    2008-01-01

    The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

  5. Synthesis and characterization of monomeric Mn (IV) and pseudo-tetrameric Mn (III) complexes: magnetic properties of Mn (III) complex.

    PubMed

    Yahsi, Yasemin; Kara, Hulya

    2014-06-05

    Two novel monomer Mn (IV) [Mn(3,5-ClL1)2]⋅(CH3OH), (1), [3,5-ClL1H2=N-(2-hydroxyethyl)-3,5-dichlorosalicylaldimine] (1) and hydrogen-bonded pseudo-tetramer Mn (III) [Mn(5-BrL2)(H2O)2]2⋅[Mn(5-BrL2)(H2O)]2⋅2⋅(ClO4), (2), [5-BrL2H2=N,N'-bis(5-bromosalicylidenato)-1,2-diamino-2-methylpropane)] (2) Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. A variable temperature magnetic susceptibility measurement study has been performed for complex (2) and the result indicates there is a very weak antiferromagnetic interaction (J=-0.40±0.016cm(-1)) between the two manganese (III) centers. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  7. Synthesis and Characterization of Ferromagnetic/Antiferromagnetic Perovskite Oxide Superlattices

    NASA Astrophysics Data System (ADS)

    Jia, Yue

    Perovskite oxides span a diverse range of functional properties such as ferromagnetism, superconductivity, and ferroelectricity, which makes them promising candidate materials for applications such as sensors, energy conversion and data storage devices. With recent advances in thin film deposition techniques, the precise manipulation of atomic layers on the unit cell level make it possible to synthesize epitaxial thin film heterostructures consisting of layers with different properties. The structural compatibility of perovskite oxides allows them to be epitaxially grown in complex heterostructures such as superlattices with a large density of interfaces where the interplay between spin, charge, orbital, and lattice degrees of freedom gives rise to new behaviors. The ferromagnetic (FM)/antiferromagnetic (AF) interface is particularly interesting due to exchange coupling which is not only of interest for fundamental research but also is of great significance for industrial applications. Unlike metallic systems that have been studied for decades with wide ranges of applications in devices such as hard disk drives, thin films of complex metal oxides is a relatively new field. Perovskite oxides show much more diverse functional properties than metals and open new pathways for tailoring propertiestowards specific device applications. Epitaxial La0.7Sr0.3MnO3 (LSMO)/La 0.7Sr0.3FeO3 (LSFO) superlattices serve as model systems to explore the magnetic structure and exchange coupling at perovskite oxide interfaces. Earlier work suggested that (001)-oriented LSMO/LSFO superlattices with compensated AF spins at the interface display spin-flop coupling characterized by perpendicular alignment between the AF spin axes and the FM moments at a sublayer thickness of 6 unit cells (u.c.). Changing the crystallographic orientation of the interface from (001) to (111) introduces changes to factors such as the charge density of each stacking layer, the magnetic iiistructure of the AF layer at the interface, the symmetry of the lattice, and the orbital degeneracy. Therefore, different properties and exchange coupling mechanisms are expected. (111)-oriented LSMO/LSFO superlattices with sublayer thicknesses ranging from 3 to 60 u.c. were synthesized and characterized. Detailed analysis of their structural, electronic, and magnetic properties were performed using synchrotron radiation based resonant x-ray reflectivity, soft x-ray magnetic spectroscopy, and photoemission electron microscopy to explore the effect of sublayer thickness on the magnetic structure and exchange coupling at (111)-oriented perovskite oxide interfaces. Interfacial effects and ultrathin superlattice sublayers can stabilize orientations of the LSFO AF spin axis which differ from that of LSFO films and LSMO/LSFO bilayers. In the ultrathin limit (3 to 6 u.c.), it was found that the AF properties of the LSFO sublayers are preserved with an out-of-plane canting of the AF spin axis, while the FM properties of the LSMO sublayers are significantly depressed. For thicker LSFO layers (> 9 u.c.), the out-of-plane canting of the AF spin axis is only present in superlattices with thick LSMO sublayers. As a result, exchange coupling in the form of spin-flop coupling exists only in superlattices which display both robust ferromagnetism and out-of-plane canting of the AF spin axis. A portion of the AF moments can be reoriented by a moderate external magnetic field through spin-flop coupling with the FM LSMO sublayers that have low magnetocrystalline anisotropy in the (111) plane. The AF order in the spin-flop coupled superlattices was studied using angle-dependent x-ray magnetic linear dichroism. The AF order can be categorized into two types: majority of the AF moments cant out-of-the-plane of the film along the or directions depending on the LSFO layer thickness, while a minority portion lies within the (111) plane in different AF domains. The energy difference between domains with their spin axes along the in-plane or out-of-plane directions is small, and the magnetic order of AF thin films is far ivmore complex than in bulk LSFO. The complex AF structure in these (111)-oriented LSMO/LSFO superlattices illustrates that complex metal oxide heterostructures can serve as fertile ground for discovery of new magnetic phases, which have potential applications in next generation information technology devices.

  8. Observation of Slow Relaxation and Single-Molecule Toroidal Behavior in a Family of Butterfly-Shaped Ln4 Complexes.

    PubMed

    Biswas, Sourav; Das, Sourav; Gupta, Tulika; Singh, Saurabh Kumar; Pissas, Michael; Rajaraman, Gopalan; Chandrasekhar, Vadapalli

    2016-12-19

    A family of five isostructural butterfly complexes with a tetranuclear [Ln 4 ] core of the general formula [Ln 4 (LH) 2 (μ 2 -η 1 η 1 Piv)(η 2 -Piv)(μ 3 -OH) 2 ]⋅x H 2 O⋅y MeOH⋅z CHCl 3 (1: Ln=Dy III , x=2, y=2, z=0; 2: Ln=Tb III , x=0, y=0, z=6; 3: Ln=Er III , x=2, y=2, z=0; 4: Ln=Ho III , x=2, y=2, z=0; 5: Ln=Yb III , x=2, y=2, z=0; LH 4 =6-{[bis(2-hydroxyethyl)amino]methyl}-N'-(2-hydroxy-3-methoxybenzylidene)picolinohydrazide; PivH=pivalic acid) was isolated and characterized both structurally and magnetically. Complexes 1-5 were probed by direct and alternating current (dc and ac) magnetic susceptibility measurements and, except for 1, they did not display single-molecule magnetism (SMM) behavior. The ac magnetic susceptibility measurements show frequency-dependent out-of-phase signals with one relaxation process for complex 1 and the estimated effective energy barrier for the relaxation process was found to be 49 K. We have carried out extensive ab initio (CASSCF+RASSI-SO+SINGLE_ANISO+POLY_ANISO) calculations on all the five complexes to gain deeper insights into the nature of magnetic anisotropy and the presence and absence of slow relaxation in these complexes. Our calculations yield three different exchange coupling for these Ln 4 complexes and all the extracted J values are found to be weakly ferro/antiferromagentic in nature (J 1 =+2.35, J 2 =-0.58, and J 3 =-0.29 cm -1 for 1; J 1 =+0.45, J 2 =-0.68, and J 3 =-0.29 cm -1 for 2; J 1 =+0.03, J 2 =-0.98, and J 3 =-0.19 cm -1 for 3; J 1 =+4.15, J 2 =-0.23, and J 3 =-0.54 cm -1 for 4 and J 1 =+0.15, J 2 =-0.28, and J 3 =-1.18 cm -1 for 5). Our calculations reveal the presence of very large mixed toroidal moment in complex 1 and this is essentially due to the specific exchange topology present in this cluster. Our calculations also suggest presence of single-molecule toroics (SMTs) in complex 2. For complexes 3-5 on the other hand, the transverse anisotropy was computed to be large, leading to the absence of slow relaxation of magnetization. As the magnetic field produced by SMTs decays faster than the normal spin moments, the concept of SMTs can be exploited to build qubits in which less interference and dense packing are possible. Our systematic study on these series of Ln 4 complexes suggest how the ligand design can help to bring forth such SMT characteristics in lanthanide complexes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Density functional studies on the exchange interaction of a dinuclear Gd(iii)-Cu(ii) complex: method assessment, magnetic coupling mechanism and magneto-structural correlations.

    PubMed

    Rajaraman, Gopalan; Totti, Federico; Bencini, Alessandro; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante

    2009-05-07

    Density functional calculations have been performed on a [Gd(iii)Cu(ii)] complex [L(1)CuGd(O(2)CCF(3))(3)(C(2)H(5)OH)(2)] () (where L(1) is N,N'-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato) with an aim of assessing a suitable functional within the DFT formalism to understand the mechanism of magnetic coupling and also to develop magneto-structural correlations. Encouraging results have been obtained in our studies where the application of B3LYP on the crystal structure of yields a ferromagnetic J value of -5.8 cm(-1) which is in excellent agreement with the experimental value of -4.42 cm(-1) (H = JS(Gd).S(Cu)). After testing varieties of functional for the method assessment we recommend the use of B3LYP with a combination of an effective core potential basis set. For all electron basis sets the relativistic effects should be incorporated either via the Douglas-Kroll-Hess (DKH) or zeroth-order regular approximation (ZORA) methods. A breakdown approach has been adopted where the calculations on several model complexes of have been performed. Their wave functions have been analysed thereafter (MO and NBO analysis) in order to gain some insight into the coupling mechanism. The results suggest, unambiguously, that the empty Gd(iii) 5d orbitals have a prominent role on the magnetic coupling. These 5d orbitals gain partial occupancy via Cu(ii) charge transfer as well as from the Gd(iii) 4f orbitals. A competing 4f-3d interaction associated with the symmetry of the complex has also been observed. The general mechanism hence incorporates both contributions and sets forth rather a prevailing mechanism for the 3d-4f coupling. The magneto-structural correlations reveal that there is no unique parameter which the J values are strongly correlated with, but an exponential relation to the J value found for the O-Cu-O-Gd dihedral angle parameter is the most credible correlation.

  10. EPR, UV-vis, magnetic, spectral studies and electrochemical behaviour of mononuclear transition metal complexes derived from novel hexa-aza-macrotricyclic ligand

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Nidhi; Gupta, Rachna; Bawa, Sukhwant Singh

    2005-11-01

    Aza-macrocyclic complexes have gained importance because of their pharmacological properties [N.K. Singh, Srivastava, Trans. Met. Chem. 25 (2000) 133]. Hexa-aza-macrocyles containing glutarimide efficiently coordinate as hexa-dentate ligand, to give complexes of Cu(II) possessing tetragonal structure and Mn(II), Co(II) and Ni(II) metal ions that are essentially octahedral. Spectroscopic, and chemical characterizations of these systems are presented in this article. For Ni(II) complexes results on electron transfer processes measured by cyclic voltammetry and colourimetry have been studied.

  11. A challenge for probing the statistics of interstellar magnetic fields: beyond the Planck resolution with Herschel

    NASA Astrophysics Data System (ADS)

    Bracco, Andrea; André, Philippe; Boulanger, Francois

    2015-08-01

    The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.

  12. CAN WE PREDICT THE GLOBAL MAGNETIC TOPOLOGY OF A PRE-MAIN-SEQUENCE STAR FROM ITS POSITION IN THE HERTZSPRUNG-RUSSELL DIAGRAM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, S. G.; Hillenbrand, L. A.; Donati, J.-F.

    2012-08-20

    Zeeman-Doppler imaging studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (H-R) diagrams for the stars in the sample. Intriguingly, the large-scale field topology of a given pre-main-sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we arguemore » that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the H-R diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the H-R diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of {approx}40% of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars above {approx}> 0.5 M{sub Sun} appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main-sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars ({approx}< 0.5 M{sub Sun} at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the H-R diagram are confirmed, they may provide a new method of constraining PMS stellar evolution models.« less

  13. First-principles analysis of X-ray magnetic circular dichroism for transition metal complex oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeno, Hidekazu, E-mail: h-ikeno@21c.osakafu-u.ac.jp

    2016-10-14

    X-ray magnetic circular dichroism (XMCD) is widely used for the characterization of magnetism of materials. However, information from XMCD related to the atomic, electronic, and magnetic structures is not fully utilized due to the lack of reliable theoretical tools for spectral analysis. In this work, the first-principles configuration interaction (CI) calculations for X-ray absorption spectra developed by the author were extended for the calculation of XMCD, where the Zeeman energy was taken into the Hamiltonian of the CI to mimic magnetic polarization in the solid state. This technique was applied to interpret the L{sub 2,3} XMCD from 3d transition metalmore » complex oxides, such as NiFe{sub 2}O{sub 4} and FeTiO{sub 3}. The experimental XMCD spectra were quantitatively reproduced using this method. The oxidation states as well as the magnetic ordering between transition metal ions on crystallographically different sites in NiFe{sub 2}O{sub 4} can be unambiguously determined. A first-principles analysis of XMCD in FeTiO{sub 3} revealed the presence of Fe{sup 3+} and Ti{sup 3+} ions, which indicates that the charge transfer from Fe to Ti ions occurs. The origin of magnetic polarization of Ti ions in FeTiO{sub 3} was also discussed.« less

  14. Gravimetric and magnetic fabric study of the Sintra Igneous complex: laccolith-plug emplacement in the Western Iberian passive margin

    NASA Astrophysics Data System (ADS)

    Terrinha, Pedro; Pueyo, Emilio L.; Aranguren, Aitor; Kullberg, José Carlos; Kullberg, Maria Carla; Casas-Sainz, Antonio; Azevedo, Maria do Rosário

    2017-12-01

    The geometry and emplacement of the 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive margin is presented, based on structural data, gravimetric modeling, and magnetic fabrics. A granite laccolith ( 76 km2, < 1 km thick, according to gravimetric modeling) surrounds a suite of gabbro-diorite-syenite plugs ( 20 km2, 4 km deep) and is encircled by cone sheets and radial dykes. Anisotropy of Magnetic Susceptibility was interpreted from 54 sites showing fabrics of para- and ferro-magnetic origin. Most fabrics can be interpreted to have a magmatic origin, according to the scarcity of solid-state deformation in most part of the massif. Magnetic foliations are shallowly dipping in the granite laccolith and contain a sub-horizontal ENE-WSW lineation. The gabbro-syenite body displays concentric magnetic foliations having variable dips and steeply-plunging lineations. The SIC can be interpreted to be intruded along an NNW-SSE, 200 km-long fault, perpendicular to the magnetic lineation within the laccolith, and was preceded by the intrusion of basic sills and plugs. The SIC intruded the Mesozoic series of the Lusitanian Basin during the post-rift, passive margin stage, and its geometry was only slightly modified during the Paleogene inversion that resulted in thrusting of the northern border of the intrusion over the country rocks.

  15. Multiferroic behavior in CdCr2X4(X=S,Se)

    NASA Astrophysics Data System (ADS)

    Hemberger, J.; Lunkenheimer, P.; Fichtl, R.; Weber, S.; Tsurkan, V.; Loidl, A.

    2006-05-01

    The recently discovered multiferroic material CdCr2S4 shows a coexistence of ferromagnetism and relaxor ferroelectricity together with a colossal magnetocapacitive effect. The complex dielectric permittivity of this compound and of the structurally related CdCr2Se4 was studied by means of broadband dielectric spectroscopy using different electrode materials. The observed magnetocapacitive coupling at the magnetic transition is driven by enormous changes of the relaxation dynamics induced by the development of magnetic order.

  16. Segregating the core computational faculty of human language from working memory.

    PubMed

    Makuuchi, Michiru; Bahlmann, Jörg; Anwander, Alfred; Friederici, Angela D

    2009-05-19

    In contrast to simple structures in animal vocal behavior, hierarchical structures such as center-embedded sentences manifest the core computational faculty of human language. Previous artificial grammar learning studies found that the left pars opercularis (LPO) subserves the processing of hierarchical structures. However, it is not clear whether this area is activated by the structural complexity per se or by the increased memory load entailed in processing hierarchical structures. To dissociate the effect of structural complexity from the effect of memory cost, we conducted a functional magnetic resonance imaging study of German sentence processing with a 2-way factorial design tapping structural complexity (with/without hierarchical structure, i.e., center-embedding of clauses) and working memory load (long/short distance between syntactically dependent elements; i.e., subject nouns and their respective verbs). Functional imaging data revealed that the processes for structure and memory operate separately but co-operatively in the left inferior frontal gyrus; activities in the LPO increased as a function of structural complexity, whereas activities in the left inferior frontal sulcus (LIFS) were modulated by the distance over which the syntactic information had to be transferred. Diffusion tensor imaging showed that these 2 regions were interconnected through white matter fibers. Moreover, functional coupling between the 2 regions was found to increase during the processing of complex, hierarchically structured sentences. These results suggest a neuroanatomical segregation of syntax-related aspects represented in the LPO from memory-related aspects reflected in the LIFS, which are, however, highly interconnected functionally and anatomically.

  17. Dinuclear Cu(II) complexes of isomeric bis-(3-acetylacetonate)benzene ligands: synthesis, structure, and magnetic properties.

    PubMed

    Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Sorace, Lorenzo; Gatteschi, Dante; Armelao, Lidia

    2012-05-07

    Highly versatile coordinating ligands are designed and synthesized with two β-diketonate groups linked at the carbon 3 through a phenyl ring. The rigid aromatic spacer is introduced in the molecules to orient the two acetylacetone units along different angles and coordination vectors. The resulting para, meta, and ortho bis-(3-acetylacetonate)benzene ligands show efficient chelating properties toward Cu(II) ions. In the presence of 2,2'-bipyridine, they promptly react and yield three dimers, 1, 2, and 3, with the bis-acetylacetonate unit in bridging position between two metal centers. X-ray single crystal diffraction shows that the compounds form supramolecular chains in the solid state because of intermolecular interactions. Each of the dinuclear complexes shows a magnetic behavior which is determined by the combination of structural parameters and spin polarization effects. Notably, the para derivative (1) displays a moderate antiferromagnetic coupling (J = -3.3 cm(-1)) along a remarkably long Cu···Cu distance (12.30 Å).

  18. Magneto-structural correlations in dirhenium(iv) complexes possessing magnetic pathways with even or odd numbers of atoms.

    PubMed

    Pedersen, Anders H; Julve, Miguel; Martínez-Lillo, José; Cano, Joan; Brechin, Euan K

    2017-09-12

    The employment of pyrazine (pyz), pyrimidine (pym) and s-triazine (triz) ligands in Re IV chemistry leads to the isolation of a family of complexes of general formula (NBu 4 ) 2 [(ReX 5 ) 2 (μ-L)] (L = pyz, X = Cl (1) or Br (2); L = pym, X = Br (3); L = triz, X = Br (4)). 1-4 are dinuclear compounds where two pentahalorhenium(iv) fragments are connected by bidentate pyz, pym and triz ligands. Variable-temperature magnetic measurements, in combination with detailed theoretical studies, uncover the underlying magneto-structural correlation whereby the nature of the exchange between the metal ions is dictated by the number of intervening atoms. That is, the spin-polarization mechanism present dictates that odd and even numbers of atoms favour ferromagnetic (F) and antiferromagnetic (AF) exchange interactions, respectively. Hence, while the pyz ligand in 1 and 2 mediates AF coupling, the pym and triz ligands in 3 and 4 promote F interactions.

  19. Correlation of ash-flow tuffs.

    USGS Publications Warehouse

    Hildreth, W.; Mahood, G.

    1985-01-01

    Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors

  20. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand

    NASA Astrophysics Data System (ADS)

    Sadeek, S. A.; El-Hamid, S. M. Abd

    2016-10-01

    [Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.

  1. A geophysical potential field study to image the Makran subduction zone in SE of Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Bahroudi, Abbas

    2016-10-01

    The Makran subduction wedge as one of the largest subduction complexes has been forming due to the Arabian oceanic lithosphere subducting beneath the Lut and the Afghan rigid block microplates. To better visualize the subducting oceanic crust in this region, a geophysical model of magnetic susceptibility from an airborne magnetic survey (line spacing about 7.5 km) over the Makran zone located at southeast of Iran is created to image various structural units in Iran plate. The constructed geophysical model from the 3D inverse modeling of the airborne magnetic data indicates a thin subducting slab to the north of the Makran structural zone. It is demonstrated that the thickness of sedimentary units varies approximately at an interval of 7.5-11 km from north to south of this zone in the Iranian plate, meanwhile the curie depth is also estimated approximately < 26 km. It is also shown the Jazmurian depression zone adjacent to the north of the Makran indicates high intensity magnetic anomalies due to being underlain by an ophiolite oceanic basement, while such intensity reduces over the Makran. The directional derivatives of the magnetic field data have subtle changes in the Makran, but strongly increase in the Jazmurian by enhancing and separating different structural boundaries in this region. In addition, the density variations of the subsurface geological layers were determined by 3D inversion of the ground-based gravity data over the whole study area, where the constructed density model was in good agreement with the magnetic one. According to the outputs of the magnetic susceptibility and the density contrast, the Arabian plate subducts to the north under the Eurasia with a very low dip angle in the Makran structural zone.

  2. Evolution of fractality in space plasmas of interest to geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Muñoz, Víctor; Domínguez, Macarena; Alejandro Valdivia, Juan; Good, Simon; Nigro, Giuseppina; Carbone, Vincenzo

    2018-03-01

    We studied the temporal evolution of fractality for geomagnetic activity, by calculating fractal dimensions from the Dst data and from a magnetohydrodynamic shell model for turbulent magnetized plasma, which may be a useful model to study geomagnetic activity under solar wind forcing. We show that the shell model is able to reproduce the relationship between the fractal dimension and the occurrence of dissipative events, but only in a certain region of viscosity and resistivity values. We also present preliminary results of the application of these ideas to the study of the magnetic field time series in the solar wind during magnetic clouds, which suggest that it is possible, by means of the fractal dimension, to characterize the complexity of the magnetic cloud structure.

  3. Competing magnetostructural phases in a semiclassical system

    NASA Astrophysics Data System (ADS)

    O'Neal, Kenneth R.; Lee, Jun Hee; Kim, Maeng-Suk; Manson, Jamie L.; Liu, Zhenxian; Fishman, Randy S.; Musfeldt, Janice L.

    2017-11-01

    The interplay between charge, structure, and magnetism gives rise to rich phase diagrams in complex materials with exotic properties emerging when phases compete. Molecule-based materials are particularly advantageous in this regard due to their low energy scales, flexible lattices, and chemical tunability. Here, we bring together high pressure Raman scattering, modeling, and first principles calculations to reveal the pressure-temperature-magnetic field phase diagram of Mn[N(CN)2]2. We uncover how hidden soft modes involving octahedral rotations drive two pressure-induced transitions triggering the low → high magnetic anisotropy crossover and a unique reorientation of exchange planes. These magnetostructural transitions and their mechanisms highlight the importance of spin-lattice interactions in establishing phases with novel magnetic properties in Mn(II)-containing systems.

  4. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Li, Q.; Zu, X. T.; Xiang, X.; Liu, W.; Li, S.

    2016-12-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M2+ ion active sites were coordinated by -OH of the water molecules except for EDTA anions. The MFe2O4 magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe2O4 of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly.

  5. High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.

    NASA Astrophysics Data System (ADS)

    Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof

    Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  6. Preparation and Structural Properties of InIII–H Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  7. FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosén, L.; Kochukhov, O.; Wade, G. A.

    Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters ofmore » the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.« less

  8. Magnetic field topology of τ Scorpii. The uniqueness problem of Stokes V ZDI inversions

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Wade, G. A.

    2016-02-01

    Context. The early B-type star τ Sco exhibits an unusually complex, relatively weak surface magnetic field. Its topology was previously studied with the Zeeman Doppler imaging (ZDI) modelling of high-resolution circular polarisation (Stokes V) observations. Aims: Here we assess the robustness of the Stokes V ZDI reconstruction of the magnetic field geometry of τ Sco and explore the consequences of using different parameterisations of the surface magnetic maps. Methods: This analysis is based on the archival ESPaDOnS high-resolution Stokes V observations and employs an independent ZDI magnetic inversion code. Results: We succeeded in reproducing previously published magnetic field maps of τ Sco using both general harmonic expansion and a direct, pixel-based representation of the magnetic field. These maps suggest that the field topology of τ Sco is comprised of comparable contributions of the poloidal and toroidal magnetic components. At the same time, we also found that available Stokes V observations can be successfully fitted with restricted harmonic expansions, by either neglecting the toroidal field altogether, or linking the radial and horizontal components of the poloidal field as required by the widely used potential field extrapolation technique. These alternative modelling approaches lead to a stronger and topologically more complex surface field structure. The field distributions, which were recovered with different ZDI options, differ significantly and yield indistinguishable Stokes V profiles but different linear polarisation (Stokes Q and U) signatures. Conclusions: Our investigation underscores the well-known problem of non-uniqueness of the Stokes V ZDI inversions. For the magnetic stars with properties similar to τ Sco (relatively complex field, slow rotation) the outcome of magnetic reconstruction strongly depends on the adopted field parameterisation, rendering photospheric magnetic mapping and determination of the extended magnetospheric field topology ambiguous. Stokes Q and U spectropolarimetric observations represent the only way of breaking the degeneracy of surface magnetic field models. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  9. Review: Magnetic Fields of O-Type Stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; MiMeS Collaboration

    2015-04-01

    Since 2002, strong, organized magnetic fields have been firmly detected at the surfaces of about 10 Galactic O-type stars. In this paper I will review the characteristics of the inferred fields of individual stars as well as the overall population. I will discuss the extension of the “magnetic desert,” first inferred among the A-type stars, to O stars up to 60 M⊙. I will discuss the interaction of the winds of the magnetic stars with the fields above their surfaces, generating complex “dynamical magnetosphere” structures detected in optical and UV lines, and in X-ray lines and continuum. Finally, I will discuss the detection of a small number of variable O stars in the LMC and SMC that exhibit spectral characteristics analogous to the known Galactic magnetic stars, and that almost certainly represent the first known examples of extragalactic magnetic stars.

  10. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    NASA Astrophysics Data System (ADS)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  11. Synthesis, spectroscopic, magnetic and thermal properties of bimetallic salts, [Ni(L)][MCl4] [where M=Co(II), Zn(II), Hg(II) and L=3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane]. X-ray structure of [Ni(L)][CoCl4].

    PubMed

    Nami, Shahab A A; Husain, Ahmad; Siddiqi, K S; Westcott, Barry L; Kopp-Vaughn, Kristin

    2010-01-01

    New bimetallic complex salts corresponding to the formulation [Ni(L)][MCl(4)] have been synthesized by the facile reaction between [Ni(L)](ClO(4))(2) and [MCl(2)(PPh(3))(2)] in high yields [where M=Co(II), Zn(II), Hg(II) and L=3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane]. The complexes were characterized by IR, electronic spectra, TGA/DSC, magnetic moment and conductivity measurements. The X-ray crystal structure for [Ni(L)][CoCl(4)] clearly establishes the cationic-anionic interaction. It crystallizes in the space group P1 with unit cell dimensions a=7.1740(15)A, b=8.1583(16)A and c=8.3102(16)A. A square-planar geometry is evident for the [Ni(L)](2+) cation while the anion is found to be tetrahedral. A two-step thermolytic pattern is observed in the pyrolysis of the bimetallic complex salts. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California

    USGS Publications Warehouse

    Ponce, David A.; Denton, Kevin M.; Watt, Janet T.

    2016-09-12

    IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.

  13. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses.

    PubMed

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-02-17

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

  14. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  15. The growth of radiative filamentation modes in sheared magnetic fields

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1986-01-01

    Observations of prominences show them to require well-developed magnetic shear and to have complex small-scale structure. Researchers show here that these features are reflected in the results of the theory of radiative condensation. Researchers studied, in particular, the influence of the nominally negligible contributions of perpendicular (to B) thermal conduction. They find a large number of unstable modes, with closely spaced growth rates. Their scale widths across B show a wide range of longitudinal and transverse sizes, ranging from much larger than to much smaller than the magnetic shear scale, the latter characterization applying particularly in the direction of shear variation.

  16. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    PubMed

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  17. Wide-field Infrared Polarimetry of the ρ Ophiuchi Cloud Core

    NASA Astrophysics Data System (ADS)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.; Nakajima, Yasushi; Nishiyama, Shogo; Kusakabe, Nobuhiko; Nagata, Tetsuya; Kandori, Ryo

    2015-09-01

    We conducted wide and deep simultaneous JHKs-band imaging polarimetry of the ρ Ophiuchi cloud complex. Aperture polarimetry in the JHKs band was conducted for 2136 sources in all three bands, of which 322 sources have significant polarizations in all the JHKs bands and have been used for a discussion of the core magnetic fields. There is a positive correlation between degrees of polarization and H - Ks color up to H - Ks ≈ 3.5. The magnetic field structures in the core region are revealed up to at least AV ≈ 47 mag and are unambiguously defined in each sub-region (core) of Oph-A, Oph-B, Oph-C, Oph-E, Oph-F, and Oph-AC. Their directions, degrees of polarization, and polarization efficiencies differ but their changes are gradual; thus, the magnetic fields appear to be connected from core to core, rather than as a simple overlap of the different cloud core components. Comparing our results with the large-scale field structures obtained from previous optical polarimetric studies, we suggest that the magnetic field structures in the core were distorted by the cluster formation in this region, which may have been induced by shock compression due to wind/radiation from the Scorpius-Centaurus association.

  18. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  19. Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13

    NASA Astrophysics Data System (ADS)

    Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.

    1995-11-01

    The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.

  20. Investigating the pharmacodynamic and magnetic properties of pyrophosphate-bridged coordination complexes

    NASA Astrophysics Data System (ADS)

    Ikotun, Oluwatayo (Tayo) F.

    The multidentate nature of pyrophosphate makes it an attractive ligand for complexation of metal cations. The participation of pyrophosphate in a variety of biological pathways and its metal catalyzed hydrolysis has driven our investigation into its coordination chemistry. We have successfully synthesized a library of binuclear pyrophosphate bridge coordination complexes. The problem of pyrophosphate hydrolysis to phosphate in the presence of divalent metal ions was overcome by incorporating capping ligands such as 1,10-phenanthroline and 2,2'-bipyridine prior to the addition of the pyrophosphate. The magnetic properties of these complexes was investigated and magneto-structural analysis was conducted. The biological abundance of pyrophosphate and the success of metal based drugs such as cisplatin, prompted our investigation of the cytotoxic properties of M(II) pyrophosphate dimeric complexes (where M(II) is CoII, CuII, and NiII) in adriamycin resistant human ovarian cancer cells. Thess compounds were found to exhibit toxicity in the nanomolar to picomolar range. We conducted in vitro stability studies and the mechanism of cytoxicity was elucidated by performing DNA mobility and binding assays, enzyme inhibition assays, and in vitro oxidative stress studies.

Top