Diversity and Phylogenetic Structure of Two Complex Marine Microbial Communities
2004-09-01
Science 190 and Engineering DOCTORAL DISSERTATION Diversity and Phylogenetic Structure of Two Complex Marine Microbial Communities by Vanja Klepac-Ceraj...Two Complex Marine Microbial Communities by Vanja Klepac-Ceraj Massachusetts Institute of Technology Cambridge, Massachusetts 02139 and Woods Hole...Phylogenetic Structure of Two Complex Marine Microbial Communities. Ph.D. Thesis. MIT/WHOI, 2004-11. Approved for publication; distribution unlimited
Hong, Pei-Ying; Wheeler, Emily; Cann, Isaac K O; Mackie, Roderick I
2011-09-01
Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species--the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E-9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E-14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356-896 OTUs) was >2-fold higher than in the MI (112-567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides.
Microbial diversity and stratification of South Pacific abyssal marine sediments.
Durbin, Alan M; Teske, Andreas
2011-12-01
Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Schrenk, M. O.; Sabuda, M.; Brazelton, W. J.; Twing, K. I.
2017-12-01
The study of serpentinization-influenced microbial ecosystems at and below the seafloor has accelerated in recent years with multidisciplinary drilling expeditions to the Atlantis Massif (X357), Southwest Indian Ridge (X360) and Mariana Forearc (X366). In parallel, a number of studies have surveyed serpentinizing systems in ophiolite complexes which host a range of geologic histories, geochemical characteristics, fluid pathways, and consequently microbiology. As ophiolite complexes originate as seafloor materials, it is likely that a microbiological record of seafloor serpentinization processes is maintained through the emplacement and weathering of continental serpentinites. This hypothesis was evaluated through a global comparison of continental serpentinite springs and groundwater, ranging from highly brackish (saline) to freshwater. One of the most saline sites, known as the Coast Range Ophiolite Microbial Observatory (CROMO), was used as a point-of-comparison to marine serpentinizing systems, such as the Lost City Hydrothermal Field. Although there was little taxonomic overlap between microbial populations in marine and terrestrial systems, both communities harbored an abundance of genes involved in sulfur metabolism, including sulfide oxidation, thiosulfate disproportionation, and sulfate reduction. The phylogeny of key genes involved in these metabolic processes was evaluated relative to published studies and compared between sites. Together, these data provide insights into both the functioning of microbial communities in modern-day serpentinizing systems, and the transport processes that disperse microorganisms between marine and terrestrial serpentinites.
Cravo-Laureau, Cristiana; Duran, Robert
2014-01-01
Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition, we present the main conclusions of our studies in this field. PMID:24575083
Hong, Pei-Ying; Wheeler, Emily; Cann, Isaac K O; Mackie, Roderick I
2011-01-01
Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species—the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E−9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E−14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356–896 OTUs) was >2-fold higher than in the MI (112–567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides. PMID:21451584
Microbial bebop: creating music from complex dynamics in microbial ecology.
Larsen, Peter; Gilbert, Jack
2013-01-01
In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W
2007-05-01
Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.
Microbially mediated transformations of phosphorus in the sea: new views of an old cycle.
Karl, David M
2014-01-01
Phosphorus (P) is a required element for life. Its various chemical forms are found throughout the lithosphere and hydrosphere, where they are acted on by numerous abiotic and biotic processes collectively referred to as the P cycle. In the sea, microorganisms are primarily responsible for P assimilation and remineralization, including recently discovered P reduction-oxidation bioenergetic processes that add new complexity to the marine microbial P cycle. Human-induced enhancement of the global P cycle via mining of phosphate-bearing rock will likely influence the pace of P-cycle dynamics, especially in coastal marine habitats. The inextricable link between the P cycle and cycles of other bioelements predicts future impacts on, for example, nitrogen fixation and carbon dioxide sequestration. Additional laboratory and field research is required to build a comprehensive understanding of the marine microbial P cycle.
Microbial ecological associations in the surface sediments of Bohai strait
NASA Astrophysics Data System (ADS)
Wang, Bin; Liu, Hongmei; Tang, Haitian; Hu, Xiaoke
2017-09-01
Microbial communities play key roles in the marine ecosystem. Despite a few studies on marine microbial communities in deep straits, ecological associations among microbial communities in the sediments of shallow straits have not been fully investigated. The Bohai Strait in northern China (average depth less than 20 m) separates the Bohai Sea from the Yellow Sea and has organic-rich sediments. In this study, in the summer of 2014, six stations across the strait were selected to explore the taxonomic composition of microbial communities and their ecological associations. The four most abundant classes were Gammaproteobacteria, Deltaproteobacteria, Bacilli and Flavobacteriia. Temperature, total carbon, depth, nitrate, fishery breeding and cold water masses influenced the microbial communities, as suggested by representational difference and composition analyses. Network analysis of microbial associations revealed that key families included Flavobacteriaceae, Pirellulaceae and Piscirickettsiaceae. Our findings suggest that the families with high phylogenetic diversity are key populations in the microbial association network that ensure the stability of microbial ecosystems. Our study contributes to a better understanding of microbial ecology in complex hydrological environments.
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA
NASA Astrophysics Data System (ADS)
Casey, John R.
Marine microbial communities influence global biogeochemical cycles by coupling the transduction of free energy to the transformation of Earth's essential bio-elements: H, C, N, O, P, and S. The web of interactions between these processes is extraordinarily complex, though fundamental physical and thermodynamic principles should describe its dynamics. In this collection of 5 studies, aspects of the complexity of marine microbial metabolism and physiology were investigated as they interact with biogeochemical cycles and direct the flow of energy within the Station ALOHA surface layer microbial community. In Chapter 1, and at the broadest level of complexity discussed, a method to relate cell size to metabolic activity was developed to evaluate allometric power laws at fine scales within picoplankton populations. Although size was predictive of metabolic rates, within-population power laws deviated from the broader size spectrum, suggesting metabolic diversity as a key determinant of microbial activity. In Chapter 2, a set of guidelines was proposed by which organic substrates are selected and utilized by the heterotrophic community based on their nitrogen content, carbon content, and energy content. A hierarchical experimental design suggested that the heterotrophic microbial community prefers high nitrogen content but low energy density substrates, while carbon content was not important. In Chapter 3, a closer look at the light-dependent dynamics of growth on a single organic substrate, glycolate, suggested that growth yields were improved by photoheterotrophy. The remaining chapters were based on the development of a genome-scale metabolic network reconstruction of the cyanobacterium Prochlorococcus to probe its metabolic capabilities and quantify metabolic fluxes. Findings described in Chapter 4 pointed to evolution of the Prochlorococcus metabolic network to optimize growth at low phosphate concentrations. Finally, in Chapter 5 and at the finest scale of complexity, a method was developed to predict hourly changes in both physiology and metabolic fluxes in Prochlorococcus by incorporating gene expression time-series data within the metabolic network model. Growth rates predicted by this method more closely matched experimental data, and diel changes in elemental composition and the energy content of biomass were predicted. Collectively, these studies identify and quantify the potential impact of variations in metabolic and physiological traits on the melee of microbial community interactions.
The diversity and origins of toxins in ciguatera fish poisoning.
Tosteson, T R
1995-06-01
The source of the diversity of phytotoxins found in the marine food web is not well understood. It is not clear what roles these secondary metabolites might have in the phytoplankton that produce them. The phytotoxins do not appear to be deterrents of predation, although the production of antibiotics by marine macroalgae might be considered in this light (86). It is equally doubtful that the production and/or presence of these toxins confers a selective advantage on the phytoplankton producers, when in fact the diversity of naturally occurring phytoplankton species may well be maintained by lytic viral infections (22,64). On the other hand, these multiple, diverse toxins may be the products of the different adaptations and interactions that take place between microalgal vectors and the highly variable spectrum of their microbial symbionts. We do not know what selective signals these toxic products may be providing in the maintenance of the symbiont-host consortia in which they are produced, however, their diversity most likely reflects the diversity of symbiotic interactions that exist in these consortia. Woven into the very fabric of the traditional marine food web is an invisible empire of marine micro-organisms, that by its very existence may determine the intense diversity of toxins found in marine biota. Marine bacteria are very likely the most abundant organisms in the sea and to a large degree maintain a food web of their own, often referred to as the microbial loop (64). This microbial web sustains the biogeochemical cycles in the sea. Much of the food produced by phytoplankton and cyanobacteria is consumed by bacteria in the microbial loop and may never enter the food web of larger invertebrates and fishes. Traditionally, the marine food web has been viewed, so to speak, from the top, however, it is now clear that there is an enormous marine microbial food web from which the food web of larger invertebrates and fishes emanates (Figure 13). In many respects the phytotoxins are biomarkers of the interactions between these two food webs. In their very diversity these toxins reflect an amalgam of interacting collaborating forms of life, a complex of phytoplankton hosts and their microbial symbionts producing multiple toxins and their derivatives that ultimately result in the complex medical symptoms they produce in human consumers of poisoned seafood. The term ciguatera has been employed to describe the syndrome of the illness contracted by persons who have eaten tropical and semitropical finfish poisoned by ciguatoxin.(ABSTRACT TRUNCATED AT 400 WORDS)
Polysaccharide Utilization Loci: Fueling Microbial Communities
Grondin, Julie M.; Tamura, Kazune; Déjean, Guillaume
2017-01-01
ABSTRACT The complex carbohydrates of terrestrial and marine biomass represent a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic saccharification of these diverse substrates is of critical importance for fueling a variety of complex microbial communities, including marine, soil, ruminant, and monogastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recognition proteins, and transporters are enriched in the genomes of certain species and are of critical importance in competitive environments. In Bacteroidetes bacteria, these systems are organized as polysaccharide utilization loci (PULs), which are strictly regulated, colocalized gene clusters that encode enzyme and protein ensembles required for the saccharification of complex carbohydrates. This review provides historical perspectives and summarizes key findings in the study of these systems, highlighting a critical shift from sequence-based PUL discovery to systems-based analyses combining reverse genetics, biochemistry, enzymology, and structural biology to precisely illuminate the molecular mechanisms underpinning PUL function. The ecological implications of dynamic PUL deployment by key species in the human gastrointestinal tract are explored, as well as the wider distribution of these systems in other gut, terrestrial, and marine environments. PMID:28138099
NASA Astrophysics Data System (ADS)
Shilova, I. N.; Robidart, J.; DeLong, E.; Zehr, J. P.
2016-02-01
Marine microbial communities are complex, and even closely related marine microbial populations are genetically and physiologically diverse. Despite such great diversity, conserved and highly synchronized rhythmic transcriptional patterns have been observed in microbial communities worldwide. The current widely used approaches analyzing high-throughput sequence data from microbiomes are not designed to differentiate transcription at strain or ecotype level. We used a novel MicroArray-inspired Gene-Centric (MAGC) bioinformatics approach to discern daily transcription by individual strains in previously analyzed metatranscriptomes from two oceanic regions, California Current System and central North Pacific. The results demonstrated that marine microbial taxa (within cyanobacteria Prochlorococcus and Synechococcus, Alphaproteobacterium Pelagibacter and picoeukaryote Ostreococcus) have unique transcription patterns and respond differentially to variability in space and time in the ocean. For example, the timing of maximum transcription for the photosynthesis and pigments genes varied among Synechococcus strains in the California Current study, likely for optimizing light utilization based on their differences in genetics and physiology. While several Prochlorococcus genotypes were present in the North Pacific study, transcription of the phosphate transporter gene, pstS, in specific genotypes was negatively correlated with phosphate concentrations. These individual transcriptional patterns underlie whole microbial community responses and may be sensitive indicators of environmental conditions, including those associated with long-term environmental change. The MAGC applied here to ocean ecosystems is a promising complementary approach that can enhance the ability to analyze metatranscriptomic data from a variety of environmental microbiomes.
Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities.
Patin, Nastassia V; Schorn, Michelle; Aguinaldo, Kristen; Lincecum, Tommie; Moore, Bradley S; Jensen, Paul R
2017-02-15
Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S. arenicola extracts. The results reveal that certain predatory bacteria were consistently less abundant following exposure to extracts, suggesting that microbial metabolites mediate competitive interactions. Other taxa increased in relative abundance, suggesting a benefit from the extracts themselves or the resulting changes in the community. This study takes a first step toward assessing the impacts of bacterial metabolites on sediment microbial communities. The results provide insight into how low-abundance organisms may help structure microbial communities in ocean sediments. Copyright © 2017 American Society for Microbiology.
Alex, Anoop; Silva, Vitor; Vasconcelos, Vitor; Antunes, Agostinho
2013-01-01
The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (∼81%), Spirochaetes (∼7%) and Chloroflexi (∼3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges. PMID:24265835
[New natural products from the marine-derived Aspergillus fungi-A review].
Zhao, Chengying; Liu, Haishan; Zhu, Weiming
2016-03-04
Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.
Environmental Microbial Community Proteomics: Status, Challenges and Perspectives.
Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian
2016-08-05
Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment.
Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul
2016-01-01
Modern microbial mats are potential analogues of some of Earth's earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats. PMID:26023869
MetaSort untangles metagenome assembly by reducing microbial community complexity
Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing
2017-01-01
Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173
Meroterpenes from Marine Invertebrates: Structures, Occurrence, and Ecological Implications
Menna, Marialuisa; Imperatore, Concetta; D’Aniello, Filomena; Aiello, Anna
2013-01-01
Meroterpenes are widely distributed among marine organisms; they are particularly abundant within brown algae, but other important sources include microorganisms and invertebrates. In the present review the structures and bioactivities of meroterpenes from marine invertebrates, mainly sponges and tunicates, are summarized. More than 300 molecules, often complex and with unique skeletons originating from intra- and inter-molecular cyclizations, and/or rearrangements, are illustrated. The reported syntheses are mentioned. The issue of a potential microbial link to their biosynthesis is also shortly outlined. PMID:23685889
Won, Nam-Il; Kim, Ki-Hwan; Kang, Ji Hyoun; Park, Sang Rul; Lee, Hyuk Je
2017-01-01
The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA). However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene), we analyzed and compared seawater and sediment communities between sand mining and control (natural) sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium) are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA. PMID:28134828
Won, Nam-Il; Kim, Ki-Hwan; Kang, Ji Hyoun; Park, Sang Rul; Lee, Hyuk Je
2017-01-27
The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA). However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene), we analyzed and compared seawater and sediment communities between sand mining and control (natural) sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium) are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.
The nature and function of microbial enzymes in subsurface marine sediments
NASA Astrophysics Data System (ADS)
Steen, A. D.; Schmidt, J.
2016-02-01
Isotopic and genomic evidence indicates that marine sediments contain populations of active heterotrophic microorganisms which appear to metabolize old, detrital, apparently recalcitrant organic matter. In surface communities, heterotrophs use extracellular enzymes to access complex organic matter. In subsurface sediments, in which microbial doubling times can be on the order of hundreds or thousands of years, it is not clear whether extracellular enzymes could remain stable and active long enough to constitute a 'profitable' stragtegy for accessing complex organic carbon. Here we present evidence that a wide range of extracellular enzyme are active in subsurface sediments from two different environments: the White Oak River, NC, and deep (up to 80 m) sediments of the Baltic Sea Basin recovered from IODP Expedition 347. In the White Oak River, enzymes from deeper sediments appear to be better-adapted to highly-degraded organic matter than enzymes from surface sediments. In the Baltic Sea, preliminary data suggest that enzymes related to nitrogen acquisition are preferentially expressed. By characterizing the extracellular enzymes present in marine sediments, we hope to achieve a better understanding of the mechanisms that control sedimentary organic matter remineralization and preservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Brandon R; Graw, Michael; Brodie, Eoin L
2013-11-01
The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfate–methane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining themore » results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.« less
A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades.
Brown, Mark V; Ostrowski, Martin; Grzymski, Joseph J; Lauro, Federico M
2014-06-01
Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa. Copyright © 2014. Published by Elsevier B.V.
Microbial oceanography: paradigms, processes and promise.
Karl, David M
2007-10-01
Life on Earth most likely originated as microorganisms in the sea. Over the past approximately 3.5 billion years, microorganisms have shaped and defined Earth's biosphere and have created conditions that have allowed the evolution of macroorganisms and complex biological communities, including human societies. Recent advances in technology have highlighted the vast and previously unknown genetic information that is contained in extant marine microorganisms, from new protein families to novel metabolic processes. Now there is a unique opportunity, using recent advances in molecular ecology, metagenomics, remote sensing of microorganisms and ecological modelling, to achieve a comprehensive understanding of marine microorganisms and their susceptibility to environmental variability and climate change. Contemporary microbial oceanography is truly a sea of opportunity and excitement.
Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M
2016-09-01
There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.
Cryptic carbon and sulfur cycling between surface ocean plankton.
Durham, Bryndan P; Sharma, Shalabh; Luo, Haiwei; Smith, Christa B; Amin, Shady A; Bender, Sara J; Dearth, Stephen P; Van Mooy, Benjamin A S; Campagna, Shawn R; Kujawinski, Elizabeth B; Armbrust, E Virginia; Moran, Mary Ann
2015-01-13
About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.
Do microbial processes regulate the stability of a coral atoll's enclosed pelagic ecosystem?
Complex marine ecosystems contain multiple feedback cycles that can cause unexpected responses to perturbations. To better predict these responses, complicated models are increasingly being developed to enable the study of feedback cycles. However, the sparseness of ecological da...
2008-09-01
community representation. 12 survey a complex microbial community. Community DNA or rRNA extracted from a sample may require amplification before...restricted to cultivated clades, since not only do many clades have sufficient database representation due to 16S environmental surveys , but such...well developed for standard and comprehensive surveys . Depending on the population being targeted and the identification method, FCM can be a
Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications.
Martin, Marjolaine; Portetelle, Daniel; Michel, Gurvan; Vandenbol, Micheline
2014-04-01
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.
Marine microorganisms and global nutrient cycles
NASA Astrophysics Data System (ADS)
Arrigo, Kevin R.
2005-09-01
The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community.
Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A; Hajdu, Eduardo; Trefault, Nicole
2015-01-01
Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.
NASA Astrophysics Data System (ADS)
Mahmoudi, N.; Beaupre, S. R.; Pearson, A.
2016-02-01
Marine sediments harbor complex microbial communities that play a key role in the cycling of carbon and nutrients. Reactions initiated by microbial enzymes at the molecular scale drive the rate and extent of organic matter degradation to CO2 and CH4. Organic matter is comprised of multiple carbon pools with different intrinsic turnover times. It is hypothesized that microbes will degrade younger pools with more labile compounds, while older pools with refractory compounds will remain unutilized. However, many studies have shown that microbes are capable of respiring older, refractory pools of organic matter in a number of environments. In order to better understand microbial carbon cycling and the fate of recalcitrant organic matter, we constructed a novel bioreactor system to measure carbon isotopes during microbial degradation of complex organic matter. This system enables us to measure the natural isotopic signature (δ13C and Δ14C ) of microbially-respired CO2, thereby allowing us to determine the age of the organic matter that is being respired. We investigated microbial carbon utilization in sediments from Falmouth, MA and observed a pattern of successive microbial respiration such that several peaks appear over the course of a 7-day incubation. Δ14C signatures of CO2 fractions collected during incubation ranged from -185 to +70‰ with the majority of CO2 appearing to be modern. This indicates that the microbial community is primarily are respiring labile organic matter from fast cycling pools. Interestingly, the observation of multiple peaks with similar Δ14C signatures suggests that organic matter is degraded in a step-wise manner by a succession of microbial taxa. Illumina sequencing of 16S rRNA genes will identify these successions of bacteria (and archaea), while enzymatic analyses may help determine the metabolic pathways that correspond to each peak. Our study will provide a molecular-level framework for organic matter degradation and provide insight into patterns of microbial carbon utilization, linking these observations to genomic and metabolomics information.
Research and Application of Marine Microbial Enzymes: Status and Prospects
Zhang, Chen; Kim, Se-Kwon
2010-01-01
Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes. PMID:20631875
Microbial mercury methylation in Antarctic sea ice.
Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W
2016-08-01
Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.
Weitz, Joshua S; Stock, Charles A; Wilhelm, Steven W; Bourouiba, Lydia; Coleman, Maureen L; Buchan, Alison; Follows, Michael J; Fuhrman, Jed A; Jover, Luis F; Lennon, Jay T; Middelboe, Mathias; Sonderegger, Derek L; Suttle, Curtis A; Taylor, Bradford P; Frede Thingstad, T; Wilson, William H; Eric Wommack, K
2015-01-01
Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles. PMID:25635642
Weitz, Joshua S; Stock, Charles A; Wilhelm, Steven W; Bourouiba, Lydia; Coleman, Maureen L; Buchan, Alison; Follows, Michael J; Fuhrman, Jed A; Jover, Luis F; Lennon, Jay T; Middelboe, Mathias; Sonderegger, Derek L; Suttle, Curtis A; Taylor, Bradford P; Frede Thingstad, T; Wilson, William H; Eric Wommack, K
2015-06-01
Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.
Gilbert, Jack A; Field, Dawn; Huang, Ying; Edwards, Rob; Li, Weizhong; Gilna, Paul; Joint, Ian
2008-08-22
Sequencing the expressed genetic information of an ecosystem (metatranscriptome) can provide information about the response of organisms to varying environmental conditions. Until recently, metatranscriptomics has been limited to microarray technology and random cloning methodologies. The application of high-throughput sequencing technology is now enabling access to both known and previously unknown transcripts in natural communities. We present a study of a complex marine metatranscriptome obtained from random whole-community mRNA using the GS-FLX Pyrosequencing technology. Eight samples, four DNA and four mRNA, were processed from two time points in a controlled coastal ocean mesocosm study (Bergen, Norway) involving an induced phytoplankton bloom producing a total of 323,161,989 base pairs. Our study confirms the finding of the first published metatranscriptomic studies of marine and soil environments that metatranscriptomics targets highly expressed sequences which are frequently novel. Our alternative methodology increases the range of experimental options available for conducting such studies and is characterized by an exceptional enrichment of mRNA (99.92%) versus ribosomal RNA. Analysis of corresponding metagenomes confirms much higher levels of assembly in the metatranscriptomic samples and a far higher yield of large gene families with >100 members, approximately 91% of which were novel. This study provides further evidence that metatranscriptomic studies of natural microbial communities are not only feasible, but when paired with metagenomic data sets, offer an unprecedented opportunity to explore both structure and function of microbial communities--if we can overcome the challenges of elucidating the functions of so many never-seen-before gene families.
Seasonality in ocean microbial communities.
Giovannoni, Stephen J; Vergin, Kevin L
2012-02-10
Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony
Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marinemore » mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.« less
Doyle, Shawn M; Whitaker, Emily A; De Pascuale, Veronica; Wade, Terry L; Knap, Anthony H; Santschi, Peter H; Quigg, Antonietta; Sylvan, Jason B
2018-01-01
During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.
Doyle, Shawn M.; Whitaker, Emily A.; De Pascuale, Veronica; Wade, Terry L.; Knap, Anthony H.; Santschi, Peter H.; Quigg, Antonietta; Sylvan, Jason B.
2018-01-01
During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure. PMID:29696005
Cury, Juliano C.; Araujo, Fabio V.; Coelho-Souza, Sergio A.; Peixoto, Raquel S.; Oliveira, Joana A. L.; Santos, Henrique F.; Dávila, Alberto M. R.; Rosado, Alexandre S.
2011-01-01
Background Upwelling systems are characterised by an intense primary biomass production in the surface (warmest) water after the outcrop of the bottom (coldest) water, which is rich in nutrients. Although it is known that the microbial assemblage plays an important role in the food chain of marine systems and that the upwelling systems that occur in southwest Brazil drive the complex dynamics of the food chain, little is known about the microbial composition present in this region. Methodology/Principal Findings We carried out a molecular survey based on SSU rRNA gene from the three domains of the phylogenetic tree of life present in a tropical upwelling region (Arraial do Cabo, Rio de Janeiro, Brazil). The aim was to analyse the horizontal and vertical variations of the microbial composition in two geographically close areas influenced by anthropogenic activity (sewage disposal/port activity) and upwelling phenomena, respectively. A lower estimated diversity of microorganisms of the three domains of the phylogenetic tree of life was found in the water of the area influenced by anthropogenic activity compared to the area influenced by upwelling phenomena. We observed a heterogenic distribution of the relative abundance of taxonomic groups, especially in the Archaea and Eukarya domains. The bacterial community was dominated by Proteobacteria, Cyanobacteria and Bacteroidetes phyla, whereas the microeukaryotic community was dominated by Metazoa, Fungi, Alveolata and Stramenopile. The estimated archaeal diversity was the lowest of the three domains and was dominated by uncharacterised marine Crenarchaeota that were most closely related to Marine Group I. Conclusions/Significance The variety of conditions and the presence of different microbial assemblages indicated that the area of Arraial do Cabo can be used as a model for detailed studies that contemplate the correlation between pollution-indicating parameters and the depletion of microbial diversity in areas close to anthropogenic activity; functional roles and geochemical processes; phylogeny of the uncharacterised diversity; and seasonal variations of the microbial assemblages. PMID:21304582
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan DW
2008-01-01
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments. PMID:18717988
Development of novel drugs from marine surface associated microorganisms.
Penesyan, Anahit; Kjelleberg, Staffan; Egan, Suhelen
2010-03-01
While the oceans cover more than 70% of the Earth's surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds ("bioactives") to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds ("antimicrobials"), may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta-) genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.
Sassoubre, Lauren M.; Yamahara, Kevan M.
2015-01-01
Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619
Meyerhof, Matthew S; Wilson, Jesse M; Dawson, Michael N; Michael Beman, J
2016-12-01
Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes. Microbial richness and evenness was typically highest in the anoxic monimolimnion of meromictic lakes, with common marine bacteria present in mixolimnion communities replaced by anoxygenic phototrophs, sulfate-reducing bacteria and SAR406 in the monimolimnion. These sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis = 68%-76%) - particularly oxygen and pH. However, in those lakes with the steepest oxygen gradients, salinity and dissolved nutrients were important secondary constraining variables, indicating that subtle but substantive differences in microbial communities occur within similar low-oxygen habitats. Deterministic processes were a dominant influence on whole community assembly (all nearest taxon index values >4), demonstrating that the strong environmental gradients present in meromictic marine lakes drive microbial community assembly. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Loyd, S. J.; Lu, L.; Caesar, K. H.; Kyle, R.
2015-12-01
Salt domes occur throughout the Gulf Coast Region USA and are often associated with trapped hydrocarbons. These salt domes can be capped by sulfate and carbonate minerals that result from complex digenetic interactions in the subsurface. The specific natures of these interactions are poorly understood, in particular the role of microbes in facilitating mineralization and element cycling. Carbon isotope compositions of cap rock calcites (δ13Ccarb) are highly variable and range from near neutral to less than -40‰ (VPDB) indicative of methane-sourced carbon. These low values and the common coexistence of elemental sulfur and metal sulfides have spurred hypotheses invoking microbial sulfate reduction as driving carbonate mineral authigenesis. Here, we present new organic carbon isotope (δ13Corg) data that, similar to δ13Ccarb, exhibit depletions below -30 to -25‰. These δ13Corg values are lower than local liquid hydrocarbons and "normal" marine organic matter reflecting either microbial fixation of methane-sourced carbon or microbial fractionation from liquid hydrocarbon sources. The combined carbon isotope data (δ13Ccarb and δ13Corg) indicate that methane likely plays an important role in microbial cycling in salt domes. The δ13Corg values are similar to those of anaerobic oxidation of methane (AOM) related communities from methane-sulfate controlled marine sediments. Ultimately, salt dome environments may share some important characteristics with AOM systems.
The ocean sampling day consortium.
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z; Sonnenschein, Eva C; Cariou, Thierry; O'Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R; Kremp, Anke; DeLorenzo, Marie E; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion Mf; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C; Kandil, Mahrous M; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; Ten Hoopen, Petra; Cochrane, Guy; L'Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M; Martin, Patrick; Jensen, Rachelle M; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; Dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N; Gasol, Josep M; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M; Collins, R Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J; Amaral-Zettler, Linda A; Gilbert, Jack A; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver
2015-01-01
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
Organic nutrient chemistry and the marine microbiome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repeta, Daniel J.; Boiteau, Rene M.
Vast expanses of the ocean are characterized by extraordinarily low concentrations of nutrients but nevertheless support vibrant communities of marine microbes. In aggregate, these communities drive many of the important elemental cycles that sustain life on Earth. Microbial communities are organized to maximize nutrient and energy transfer between cells, and efficiently recycle organic carbon, nitrogen, phosphorus and trace metals. Energy and nutrient transfer occurs across a broad range of spatial scales. Large-sized marine algae and bacteria support epibiont communities that are physically in contact, exchanging nutrients and energy across cell membranes, while other communities that are physically far apart, relymore » on the horizontal mixing of ocean currents or the vertical pull of gravity to transfer nutrient and energy containing organic matter. Marine organic geochemists are making rapid progress in understanding the chemistry of the marine microbiome. These advances have benefited from parallel developments in analytical chemistry, microbial isolation and culture techniques, and advances in microbial genomics, transcriptomics, and proteomics. The combination of all three approaches has proven to be quite powerful. Here we highlight two aspects of the chemistry of organic phosphorus and trace metal cycling and the marine microbiome. In each study, advances in chemical analyses, microbial culture, and microbial genomics played key roles in understanding how microbial communities interact to facilitate nutrient cycling in the open ocean.« less
Assembling the Marine Metagenome, One Cell at a Time
Woyke, Tanja; Xie, Gary; Copeland, Alex; González, José M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi; Chatterji, Sourav; Cheng, Jan-Fang; Eisen, Jonathan A.; Sieracki, Michael E.; Stepanauskas, Ramunas
2009-01-01
The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa. PMID:19390573
[Characterization of microbial activities in marine mudflat sediment using FDA hydrolase analysis].
Liu, Ye; Zou, Li; Liu, Lu; Gao, Dong-Mei
2013-10-01
A method based on fluorescence spectrometry was developed to detect the microbial activities in marine mudflat sediment, where is characterized by high salinity, complex organic compounds and low microbial biomass. This paper optimized the sample extracts, the detection equipment for reaction products, the pretreatment methods, and the experimental conditions. The optimal procedure is described as following. Fresh sediment was first extracted with sterilized and aged seawater, followed by the addition of Tween-80 solution, then uniformly dispersed by thorough oscillating, and kept steady for precipitation. After filtration through a sterilized membrane (1. 2 microm, sterilized in boiling water repeatedly) , the supernatant was supplemented with an appropriate amount of FDA solution and allowed to react in dark for 180 min at temperature ranged 25-30 degrees C . The reaction was terminated by the addition of acetone, and the fluorescence intensity of the reaction mixture was measured within 25 min using a molecular fluorescence photometer at an excitation wavelength of 488 nm and an emission wavelength of 530 nm, and the detection range of this method (dry weight) was 3.0 x10(3)-1. 1 x 10(5) ind.g-1. The microbial activity was reported as fluorescence content in per unit sediment mass (microg.g-1, dry weight).
NASA Astrophysics Data System (ADS)
Ianiri, H. L.; Timko, S.; Gonsior, M.
2016-02-01
Marine dissolved organic matter (DOM) is one of the largest reduced carbon reservoirs on Earth, yet we only have a limited understanding of its production, cycling, degradation, and overall structure. It was previously believed that a significant portion of refractory dissolved organic carbon (RDOC) in the ocean was derived from terrestrial sources, however recent studies indicated that the majority of marine DOM might be produced in situ by marine biota. Previous research has found that terrestrial and microbial DOM fluorescent signatures are similar, complicating the identification of the origins of marine fluorescent DOM (FDOM). However, photodegradation kinetics of terrestrial and microbial-derived DOM are expected to be different due to their assumed different chemical compositions. In this study we analyzed for the first time the photodegradation kinetics of microbial-derived DOM originating from different cyanobacteria strains. Cyanobacterial-derived DOM were exposed to simulated sunlight for a total of 20 hours while recording excitation emission matrix (EEM) fluorescence every twenty minutes to observe the photodegradation of this specific FDOM. Parallel Factor Analysis (PARAFAC) was applied to deconvolute the EEM matrices into six separate components. The photodegradation kinetics was then calculated for each component and compared with previously obtained photodegradation data of marine and terrestrial FDOM. This six component PARAFAC model was similar to those generated from open ocean data and global DOM data sets. The "humic-like" FDOM was also found in cyanobacteria FDOM and showed similar fluorescence intensities and percent fluorescence loss when compared to marine DOM. The degradation kinetics of the "humic-like" component of microbial-derived DOM was faster than that of terrestrial-derived DOM, and marine FDOM samples showed degradation kinetics more similar to microbial-derived FDOM. This indicates marine FDOM is more similar in chemical composition to microbial-derived FDOM than terrestrial-derived FDOM, supporting the hypothesis that the majority of marine FDOM is produced in situ.
Troussellier, Marc; Escalas, Arthur; Bouvier, Thierry; Mouillot, David
2017-01-01
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism-microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares , which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.
Construction and screening of marine metagenomic libraries.
Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth
2010-01-01
Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.
The Ocean Sampling Day Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo
In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less
The Ocean Sampling Day Consortium
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; ...
2015-06-19
In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less
Edgcomb, V P
2016-06-01
Marine protists are integral to marine food webs and exhibit complex relationships with other microbial taxa. Phagotrophic protists contribute significantly to carbon turnover in the sunlit ocean and evidence suggests grazing in the dark ocean can be significant as well. New in situ sampling technologies hold great promise for more accurately accessing these impacts. The molecular signatures of parasitic protists comprise significant fractions of many high-throughput sequencing datasets, suggesting a major role in controlling populations of their host(s). The prokaryotic symbionts of free-living protists can be numerous, and, particularly in low-oxygen to anoxic marine habitats, their collective metabolisms may contribute significantly to biogeochemical cycling. This short review addresses principally planktonic communities in the mesopelagic and bathypelagic dark ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark
2014-11-01
Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Horizontal gene transfer and mobile genetic elements in marine systems.
Sobecky, Patricia A; Hazen, Tracy H
2009-01-01
The pool of mobile genetic elements (MGE) in microbial communities consists of viruses, plasmids, and associated elements (insertion sequences, transposons, and integrons) that are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination. This mobilome facilitates the horizontal transfer of genes that promote the evolution and adaptation of microbial communities. Efforts to characterize MGEs from microbial populations resident in a variety of ecological habitats have revealed a surprisingly novel and seemingly untapped biodiversity. To better understand the impact of horizontal gene transfer (HGT), as well as the agents that promote HGT in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of the mobilome in marine microbial communities, information on the distribution, diversity, and ecological traits of the marine mobilome is presented. In this chapter we discuss recent insights gained from different methodological approaches used to characterize the biodiversity and ecology of MGE in marine environments and their contributions to HGT. In addition, we present case studies that highlight specific HGT examples in coastal, open-ocean, and deep-sea marine ecosystems.
Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments
NASA Astrophysics Data System (ADS)
Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.
2017-12-01
Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species. Moreover, molecular analysis of subsamples collected from each incubation will link carbon utilization with the underlying gene expression. Our study sheds light on the degree to which the metabolic capacities of microorganisms affect carbon transformation in sedimentary environments.
NASA Astrophysics Data System (ADS)
Beaupre, S. R.; Mahmoudi, N.; Pearson, A.
2016-02-01
The rate at which non-living organic matter is respired in the ocean is an unconstrained and important property of the marine carbon cycle. Studies of inherent mineralization rates are complicated by the fact that marine organic matter is a mixture of compounds that vary in reactivity and concentration. While natural radiocarbon ages (14C, half-life = 5730 yr) have served as proxies for lability, they have not been used extensively to characterize that fraction of marine organic matter that is biologically accessible. To address this problem, we developed a novel batch culture system to monitor the time-dependent production rates and isotopic signatures of CO2 released during microbial degradation of natural organic matter. The system simulated a nepheloid layer by maintaining a slurry of decarbonated sediment and minimal media (M9) in a custom 2-liter culture vessel. The natural microbial community was allowed to develop within the sediment, and respired CO2 was continuously sparged from the medium with helium and oxygen, quantified in real time with an infrared gas analyzer, and isolated as a series of contiguous fractions for subsequent isotopic (∆14C, d13C) characterization. Control experiments indicated the accumulation of just 4.5 mg of background carbon per hour of continuous gas flow, which constituted ≤ 10 % of the respired carbon mass in each fraction. Since ∆14C values are conserved during molecular transformations, this low-blank system enables the detection of subtle shifts in the "age" of organic matter respired during the course of a culture experiment. Analyses of sediments from Falmouth, MA revealed both a variable CO2 production rate and an increase in post-bomb ∆14C values during a 10-day incubation. This suggests that the microbial lability of organic matter at this site decreased non-linearly with apparent 14C age, and that the least labile fraction observed was not more than 50 years old. These results underscore the complex relationship between microbial communities, organic matter composition, and its 14C age distribution.
Duran, Robert; Cravo-Laureau, Cristiana
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms. PMID:28201512
NASA Technical Reports Server (NTRS)
Colwell, R. R.; Zachary, A.
1979-01-01
The surface of the reusable solid rocket boosters (SRB), which are jettisoned from the Shuttle Orbiter to parachute in the sea, are studied for colonization by marine life. Techniques for monitoring the marine microbial fouling of SRB materials are presented. An assessment of the nature and degree of the biofouling expected on the SRB materials in the recovery zone is reported. A determination of the degree and the effects of seasonal variation occurring on microbial fouling in the retrieval zone waters is made. The susceptibility of the SRB parachute recovery system to microbial fouling and biodeterioration is investigated. The development of scanning electron microscopy and epifluorescence microscopic observation techniques for rapid assessment of microbial fouling is discussed.
Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-10-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-01-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666
The life sulfuric: microbial ecology of sulfur cycling in marine sediments
Wasmund, Kenneth; Mußmann, Marc
2017-01-01
Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. PMID:28419734
Life in the "plastisphere": microbial communities on plastic marine debris.
Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A
2013-07-02
Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.
Re-examination of the relationship between marine virus and microbial cell abundances.
Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S
2016-01-25
Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.
Hydrographic controls on marine organic matter fate and microbial diversity in the western Irish Sea
NASA Astrophysics Data System (ADS)
O'Reilly, Shane; Szpak, Michal; Monteys, Xavier; Flanagan, Paul; Allen, Christopher; Kelleher, Brian
2014-05-01
Cycling of organic matter (OM) is the key biological process in the marine environment1 and knowledge of the sources and the reactivity of OM, in addition to factors controlling its distribution in estuarine, coastal and shelf sediments are of key importance for understanding global biogeochemical cycles2. With recent advances in cultivation-independent molecular approaches to microbial ecology, the key role of prokaryotes in global biogeochemical cycling in marine ecosystems has been emphasised3,4. However, spatial studies combining the distribution and fate of OM with microbial community abundance and diversity remain rare. Here, a combined spatial lipid biomarker and 16S rRNA tagged pyrosequencing study was conducted in surface sediments and particulate matter across hydrographically distinct zones associated with the seasonal western Irish Sea gyre. The aim was to assess the spatial variation of, and factors controlling, marine organic cycling and sedimentary microbial communities across these distinct zones. The distribution of phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids indicate that diatoms, dinoflagellates and green algae were the major contributors of marine organic matter, while the distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids have highlighted the importance of copepod grazing for mineralizing organic matter in the water column5. This marine OM production and mineralisation was greatest in well-mixed waters compared to offshore stratified waters. Lipid analysis and 16S rRNA PCR-DGGE profiling also suggests that sedimentary bacterial abundance increases while community diversity decreases in offshore stratified waters. The major bacterial classes are the Deltaproteobacteria, Clostridia, Flavobacteriia, Gammaproteobactera and Bacteroiidia. At the family/genus level most groups appear to be associated with organoheterotrophic processing of sedimentary OM, ranging from degradation of complex organic matter (e.g. Tepidibacter sp.) to sulfur-dependent utilisation of simple organic molecules (e.g. Desulfobulbaceae and Desulfuromonadaceae. 1. Hedges and Keil (1995) Mar Chem 49, 81-115. 2. Baldock et al., (2004) Mar Chem 92, 39-64. 3. Deming and Baross, (1993) Plenum Press, NY. 4. 4. Gooday, (2002) J Oceanogr 58, 305-332. 5. O'Reilly et al., (2013) Estuar, Coast & Shelf Sci. http://dx.doi.org/10.1016/j.ecss.2013.11.002
Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.
Shulse, Christine N; Allen, Eric E
2011-01-01
Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.
Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms
Marmann, Andreas; Aly, Amal H.; Lin, Wenhan; Wang, Bingui; Proksch, Peter
2014-01-01
Marine-derived bacteria and fungi are promising sources of novel bioactive compounds that are important for drug discovery programs. However, as encountered in terrestrial microorganisms there is a high rate of redundancy that results in the frequent re-discovery of known compounds. Apparently only a part of the biosynthetic genes that are harbored by fungi and bacteria are transcribed under routine laboratory conditions which involve cultivation of axenic microbial strains. Many biosynthetic genes remain silent and are not expressed in vitro thereby seriously limiting the chemical diversity of microbial compounds that can be obtained through fermentation. In contrast to this, co-cultivation (also called mixed fermentation) of two or more different microorganisms tries to mimic the ecological situation where microorganisms always co-exist within complex microbial communities. The competition or antagonism experienced during co-cultivation is shown to lead to a significantly enhanced production of constitutively present compounds and/or to an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain. This review highlights the power of co-cultivation for increasing the chemical diversity of bacteria and fungi drawing on published studies from the marine and from the terrestrial habitat alike. PMID:24549204
Breitbart, Mya; Hoare, Ana; Nitti, Anthony; Siefert, Janet; Haynes, Matthew; Dinsdale, Elizabeth; Edwards, Robert; Souza, Valeria; Rohwer, Forest; Hollander, David
2009-01-01
Ancient biologically mediated sedimentary carbonate deposits, including stromatolites and other microbialites, provide insight into environmental conditions on early Earth. The primary limitation to interpreting these records is our lack of understanding regarding microbial processes and the preservation of geochemical signatures in contemporary microbialite systems. Using a combination of metagenomic sequencing and isotopic analyses, this study describes the identity, metabolic potential and chemical processes of microbial communities from living microbialites from Cuatro Ciénegas, Mexico. Metagenomic sequencing revealed a diverse, redox-dependent microbial community associated with the microbialites. The microbialite community is distinct from other marine and freshwater microbial communities, and demonstrates extensive environmental adaptation. The microbialite metagenomes contain a large number of genes involved in the production of exopolymeric substances and the formation of biofilms, creating a complex, spatially structured environment. In addition to the spatial complexity of the biofilm, microbial activity is tightly controlled by sensory and regulatory systems, which allow for coordination of autotrophic and heterotrophic processes. Isotopic measurements of the intracrystalline organic matter demonstrate the importance of heterotrophic respiration of photoautotrophic biomass in the precipitation of calcium carbonate. The genomic and stable isotopic data presented here significantly enhance our evolving knowledge of contemporary biomineralization processes, and are directly applicable to studies of ancient microbialites.
Radax, Regina; Rattei, Thomas; Lanzen, Anders; Bayer, Christoph; Rapp, Hans Tore; Urich, Tim; Schleper, Christa
2012-05-01
Geodia barretti is a marine cold-water sponge harbouring high numbers of microorganisms. Significant rates of nitrification have been observed in this sponge, indicating a substantial contribution to nitrogen turnover in marine environments with high sponge cover. In order to get closer insights into the phylogeny and function of the active microbial community and the interaction with its host G. barretti, a metatranscriptomic approach was employed, using the simultaneous analysis of rRNA and mRNA. Of the 262 298 RNA-tags obtained by pyrosequencing, 92% were assigned to ribosomal RNA (ribo-tags). A total of 109 325 SSU rRNA ribo-tags revealed a detailed picture of the community, dominated by group SAR202 of Chloroflexi, candidate phylum Poribacteria and Acidobacteria, which was different in its composition from that obtained in clone libraries prepared form the same samples. Optimized assembly strategies allowed the reconstruction of full-length rRNA sequences from the short ribo-tags for more detailed phylogenetic studies of the dominant taxa. Cells of several phyla were visualized by FISH analyses for confirmation. Of the remaining 21 325 RNA-tags, 10 023 were assigned to mRNA-tags, based on similarities to genes in the databases. A wide range of putative functional gene transcripts from over 10 different phyla were identified among the bacterial mRNA-tags. The most abundant mRNAs were those encoding key metabolic enzymes of nitrification from ammonia-oxidizing archaea as well as candidate genes involved in related processes. Our analysis demonstrates the potential and limits of using a combined rRNA and mRNA approach to explore the microbial community profile, phylogenetic assignments and metabolic activities of a complex, but little explored microbial community. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Microbial Surface Colonization and Biofilm Development in Marine Environments
2015-01-01
SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Dang, Hongyue; Lovell, Charles R
2016-03-01
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Troussellier, Marc; Escalas, Arthur; Bouvier, Thierry; Mouillot, David
2017-01-01
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members. PMID:28611749
NASA Astrophysics Data System (ADS)
Prajapati, A. S.; Panchal, K.; Subramanian, R. B.; Patel, D. H.; Sudhir, A. P.; Dave, B. R.
2015-12-01
Global demand for energy has grown with the development of new industries, requiring constant improvement and search for new sources of energy. One of the challenges today is releasing the energy of glucose that nature has cleverly locked into lignocellulosic biomass. Potent and efficient enzyme preparations need to be developed for the enzymatic saccharification process to be more economical. Approaches like enzyme engineering, reconstitution of enzyme mixtures and bioprospecting for superior enzymes are gaining importance. The ocean is considered to be a great reservoir of biodiversity. Because enzymes have unequalled advantages, many industries are keenly interested in adapting enzymatic methods for their processes. Microbial communities in marine environments are ecologically relevant as intermediaries of energy and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. The exploitation of marine bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology. Several industrial enzymes are derived from terrestrial sources, whereas, marine environment which encompasses about 71 percent of the earth's surface and a vast resources for useful enzymes, remain unexplored. Marine microorganisms take active part in the mineralization of complex organic matter through degradative pathways of their metabolism. Bacteria from marine environments secrete different enzymes based on their habitat and their ecological functions. Therefore marine microbial enzymes have become the focal point of interest. Even though many of these enzymes are being isolated, the efficiency of hydrolysis is very poor. This could be overcome by altering the substrate specificity of lignocellulases. Protein engineering could prove to be useful to improve the catalytic function these enzymes.
Gajigan, Andrian P; Yñiguez, Aletta T; Villanoy, Cesar L; San Diego-McGlone, Maria Lourdes; Jacinto, Gil S; Conaco, Cecilia
2018-01-01
Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region.
Gajigan, Andrian P.; Yñiguez, Aletta T.; Villanoy, Cesar L.; San Diego-McGlone, Maria Lourdes; Jacinto, Gil S.
2018-01-01
Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region. PMID:29785352
Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G
2011-03-21
Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.
Danovaro, Roberto; Fonda Umani, Serena; Pusceddu, Antonio
2009-01-01
Background Marine snow (small amorphous aggregates with colloidal properties) is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions. Methodology/Principal Findings We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies. Conclusions/Significance We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria. PMID:19759910
Torralba, Manolito G; Franks, James S; Gomez, Andres; Yooseph, Shibu; Nelson, Karen E; Grimes, D Jay
2017-01-01
The environmental impact of major oil spills on marine microorganisms has yet to be thoroughly investigated using molecular biology techniques. The Deepwater Horizon (DWH) drilling rig explosion of 2010 affected an approximately 176,000 km 2 surface area of the Gulf of Mexico (GOM) when an estimated 210 million gallons of oil from the Macondo Prospect spilled into the environment. Pelagic Sargassum, a complex of two surface drifting species (Sargassum natans and Sargassum fluitans) of marine brown macroalgae and a critically important habitat in the GOM ecosystem, was suffused by Macondo Prospect 252 oil released during the DWH event. Using 16S rRNA PCR and Roche 454 pyrosequencing, the effect of the oil on the bacterial population associated with pelagic Sargassum and contiguous waters was examined by comparing sequence data generated from samples collected from oiled and non-oiled locations in the northern GOM. Sequence data showed similar microbial composition in Sargassum regardless of exposure to oil primarily dominated by five phyla; Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, and unclassified bacteria. The microbial composition in water samples was significantly less diverse than for Sargassum and consisted primarily of Proteobacteria, Firmicutes, and Bacteroidetes. Due to the evenly distributed abundance of microbial species on oiled and non-oiled pelagic Sargassum, study findings indicate that DWH spilled oil had minimal effect on the composition and diversity of the microbial community associated with Sargassum and contiguous waters. However, higher abundances of Sulfitobacter and one species of Psychrobacter were found in oiled water samples when compared to non-oiled water samples indicating some effect of DHW oil in the microbial composition of seawater. Though there are a number of marine studies using molecular biology approaches, this is the first molecular examination of the impact of the DWH oil spill on bacterial communities associated with pelagic Sargassum and contiguous waters from the GOM.
Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf
2014-01-01
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538
Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle
NASA Astrophysics Data System (ADS)
Casciotti, Karen L.
2016-01-01
The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.
Microbes of deep marine sediments as viewed by metagenomics
NASA Astrophysics Data System (ADS)
Biddle, J.
2015-12-01
Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.
Antimicrobial properties of natural substances in irradiated fresh poultry
NASA Astrophysics Data System (ADS)
Mahrour, A.; Lacroix, M.; Nketsa-Tabiri, J.; Calderon, N.; Gagnon, M.
1998-06-01
This study was undertaken to determine if a combined treatment (marinating in natural plant extracts or vacuum) with irradiation could have a synergetic effect, in order to reduce the dose required for complete elimination of Salmonella on fresh poultry. The effect of these combined treatments on the shelf-life extension was also evaluated. The fresh chicken legs were irradiated at 0, 3 and 5 kGy. The poultry underwent microbial analysis(mesophilic and Salmonella detection). For each treatment, the total microbial count decreased with increase of irradiation dose. The marinating treatment have a synergistic effect with irradiation treatment to reduce the total microbial count and controlling the proliferation during storage at 4°C. Irradiation of fresh chicken pieces with a dose of 3 kGy appears to be able to extend the microbial shelf-life by a factor of 2. When the chicken is marinating and irradiated at 3 kGy or when irradiated at 5 kGy without marinating, the microbial shelf-life is extended by a factor of 7 to 8. No Salmonella was found during all the experiment in the chicken in air and marinated. However, a presence of Salmonella was found in samples irradiated at 5 kGy under vacuum, in unirradiated samples and samples irradiated at 3kGy in air and under vacuum.
The life sulfuric: microbial ecology of sulfur cycling in marine sediments.
Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander
2017-08-01
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Ecology, Diversity and Comparative Genomics of Oceanic Cyanobacterial Viruses
2004-06-01
microbial trophodynamics. Applied and Environmental Microbiology 56, 1400-1405. Bratbak, G. (1993). Viral mortality of the marine alga Emiliania huxleyi...inspecting regions of microbial chro- Emiliania huxleyi is a marine coccolithophorid, mosomes for the following characteristics: (1) with a world-wide...genomes are easier to under- Immun. 67, 5898-5905. Bratbatk G.. 1993. Viral mortality of the marine alga Emiliania stand-their small size makes it
Saito, Mak A; Dorsk, Alexander; Post, Anton F; McIlvin, Matthew R; Rappé, Michael S; DiTullio, Giacomo R; Moran, Dawn M
2015-10-01
Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial diversity in many locales presents us with unique challenges. We addressed this challenge with a targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared (redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8 ± 1.9% of their tryptic peptides, while shared intraspecies peptides were higher, 13 ± 15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ∼4 × 10(7) , 1000-fold larger than an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-01-01
Contextual data collected concurrently with molecular samples are critical to the use of metagenomics in the fields of marine biodiversity, bioinformatics and biotechnology. We present here Marine Microbial Biodiversity, Bioinformatics and Biotechnology (M2B3) standards for “Reporting” and “Serving” data. The M2B3 Reporting Standard (1) describes minimal mandatory and recommended contextual information for a marine microbial sample obtained in the epipelagic zone, (2) includes meaningful information for researchers in the oceanographic, biodiversity and molecular disciplines, and (3) can easily be adopted by any marine laboratory with minimum sampling resources. The M2B3 Service Standard defines a software interface through which these data can be discovered and explored in data repositories. The M2B3 Standards were developed by the European project Micro B3, funded under 7th Framework Programme “Ocean of Tomorrow”, and were first used with the Ocean Sampling Day initiative. We believe that these standards have value in broader marine science. PMID:26203332
Immense essence of excellence: marine microbial bioactive compounds.
Bhatnagar, Ira; Kim, Se-Kwon
2010-10-15
Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.
Immense Essence of Excellence: Marine Microbial Bioactive Compounds
Bhatnagar, Ira; Kim, Se-Kwon
2010-01-01
Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414
Mukherjee, Joydeep; Llewellyn, Lyndon E; Evans-Illidge, Elizabeth A
2008-01-01
Microbial marine biodiscovery is a recent scientific endeavour developing at a time when information and other technologies are also undergoing great technical strides. Global visualisation of datasets is now becoming available to the world through powerful and readily available software such as Worldwind™, ArcGIS Explorer™ and Google Earth™. Overlaying custom information upon these tools is within the hands of every scientist and more and more scientific organisations are making data available that can also be integrated into these global visualisation tools. The integrated global view that these tools enable provides a powerful desktop exploration tool. Here we demonstrate the value of this approach to marine microbial biodiscovery by developing a geobibliography that incorporates citations on tropical and near-tropical marine microbial natural products research with Google Earth™ and additional ancillary global data sets. The tools and software used are all readily available and the reader is able to use and install the material described in this article. PMID:19172194
Nguyen, T H; Nguyen, V D
Marine microorganisms have been recognized as potential sources of novel enzymes because they are relatively more stable than the corresponding enzymes derived from plants and animals. Enzymes from marine microorganisms also differ from homologous enzymes in terrestrial microorganisms based on salinity, pressure, temperature, and lighting conditions. Marine microbial enzymes can be used in diverse industrial applications. This chapter will focus on the biotechnological applications of marine enzymes and also their use as a tool of marine probiotics to improve host digestion (food digestion, food absorption, and mucus utilization) and cleave molecular signals involved in quorum sensing in pathogens to control disease in aquaculture. © 2017 Elsevier Inc. All rights reserved.
Efficacy of uv irradiation in the microbial disinfection of marine mammal water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spotte, S.; Buck, J.D.
A study was made on the efficacy of a commercial ultraviolet (UV) sterilizer in reducing the number of bacteria and yeasts in a saline, closed-system marine mammal complex. UV irradiation was effective in lowering bacterial counts in the effluent of the unit (greater than 75% reduction), but bacteria in more remote parts of the water system reached levels equal to or greater than pre-UV counts. Yeast reduction was considerably less, and a trend similar to that of the bacteria was observed in remote sections of the water system. It is concluded that UV irradiation is of limited value in themore » disinfection of marine mammal water. Factors contributing to the poor performance of the sterilizer were the long recycle time of the water and lack of a residual effect.« less
Niederdorfer, Robert; Peter, Hannes; Battin, Tom J
2016-10-03
Small-scale hydraulics affects microbial behaviour at the cell level 1 , trophic interactions in marine aggregates 2 and the physical structure and function of stream biofilms 3,4 . However, it remains unclear how hydraulics, predictably changing from small streams to large rivers, impacts the structure and biodiversity of complex microbial communities in these ecosystems. Here, we present experimental evidence unveiling hydraulics as a hitherto poorly recognized control of microbial lifestyle differentiation in fluvial ecosystems. Exposing planktonic source communities from stream and floodplain ecosystems to different hydraulic environments revealed strong selective hydraulic pressures but only minor founder effects on the differentiation of attached biofilms and suspended aggregates and their biodiversity dynamics. Key taxa with a coherent phylogenetic underpinning drove this differentiation. Only a few resident and phylogenetically related taxa formed the backbone of biofilm communities, whereas numerous resident taxa characterized aggregate communities. Our findings unveil fundamental differences between biofilms and aggregates and build the basis for a mechanistic understanding of how hydraulics drives the distribution of microbial diversity along the fluvial continuum 5-7 .
Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton
Labonté, Jessica M.; Swan, Brandon K.; Poulos, Bonnie; ...
2015-04-07
Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. Furthermore, a combination of comparative genomics, metagenomic fragmentmore » recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. This study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities.« less
The sponge microbiome project.
Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P; Feng, Guofang; Bell, James J; Vicente, Jan; Björk, Johannes R; Montoya, Jose M; Olson, Julie B; Reveillaud, Julie; Steindler, Laura; Pineda, Mari-Carmen; Marra, Maria V; Ilan, Micha; Taylor, Michael W; Polymenakou, Paraskevi; Erwin, Patrick M; Schupp, Peter J; Simister, Rachel L; Knight, Rob; Thacker, Robert W; Costa, Rodrigo; Hill, Russell T; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S; Thomas, Torsten
2017-10-01
Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere. © The Authors 2017. Published by Oxford University Press.
Succession of free-living and particle associated prokaryotes in the northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Steiner, P. A.; Ivančić, I.; Paliaga, P.; Matošović, K.; Haberleitner, E.; Sintes, E.; Najdek, M.; Herndl, G. J.
2016-02-01
Marine snow is composed of a complex pool of organic and inorganic matter. Microbial communities thrive in it, using a large number of compounds as a source of energy and nutrients. Microbial abundance and activity have been reported to be orders of magnitude higher in marine snow than in the ambient water. However, it is still unclear whether the microbial community colonizing marine snow comprises mainly generalists or specialists. In this study, we monitored the prokaryotic community inhabiting marine snow (MS) and ambient water (AW) in the northern Adriatic Sea. MS was collected with syringes during SCUBA diving and AW was sampled with Niskin bottles. In the AW, inorganic N:P ratios averaged 30.5 ± 24.8 indicating P-limitation while in MS inorganic N:P ratios were 11 ± 11.9. Prokaryotic abundance in MS was similar to AW, with an enrichment factor (EF, i.e. ratio between MS/AW) of 1.4 ± 1.8. However, the microbial activity was generally higher in MS, extracellular enzymatic activity exhibited EFs ranging from 2.6 ± 1.4 to 8.3 ± 7.7, and the EF of heterotrophic leucine incorporation, a proxy for heterotrophic biomass production, was 7.8 ± 4.9. The relative abundance of different phylogenetic groups in MS changed over the course of the summer, e.g. Sphingobacteriales (from 10.6% to 0.9%), Verrucomicrobia (0.3% to 3.5%) and Actinobacteria (1.2% to 5.5%), indicating successional changes linked to changes in the environmental conditions in MS. The bacterial community inhabiting MS was characterized by a larger relative abundance of Cyanobacteria as compared to AW (27.5% in MS vs. 13.5% in AW) and Planctomycetes (4.8% in MS vs. 1.1% in AW) and a lower abundance of Alphaproteobacteria (20% in MS vs. 38.5% in AW). Taken together, our results indicate the presence of a core bacterial community in MS and AW. The highly active MS community is characterized by the presence of specialized groups that can reach high abundances, and a dynamic generalist community thriving in this nutrient-enriched microenvironment.
Reference independent species level profiling of the largest marine microbial ecosystem.
NASA Astrophysics Data System (ADS)
Mende, D. R.; DeLong, E.; Aylward, F.
2016-02-01
Marine microbes are of immense importance for the flux of matter and energy within the global oceans. Yet, the temporal variability of microbial communities in response to seasonal and environmental changes remains understudied. In addition, there is only a very limited understanding of the effects that changes within microbial communities at a certain depth have on the other microbes within the water column. Further, existing studies have mostly been limited by the lack of good reference databases. Here we present an reference independent analysis of a year long time series at 5 different water depth of the microbial communities at Station ALOHA, a sampling location representative of the largest contiguous ecosystem on earth, the North Pacific Subtropical Gyre (NPSG). Due to the lack the lack of closely related reference genomes most recent meta-genomic studies of marine microbial ecosystems have been limited to a coarse grained view at higher taxonomic levels. In order to gain a fine grained picture of the microbial communities and their dynamics within the NPSG, we extended the mOTU approach that has been successfully applied to the human microbiome to this marine ecosystem using more than 60 deeply sequenced metagenomic samples. This method allows for species level community profiling and diversity estimates, revealing seasonal shifts within the microbial communities. Additionally, we detected a number of microbes that respond to changes of different changing environmental conditions. We further surveyed the depth specificity of microbes at station ALOHA, showing species specific patterns of presence at different depths.
NASA Astrophysics Data System (ADS)
Stoddart, Michael
2010-08-01
The International Polar Year 2007-2008 (IPY) has provided an opportunity for biology to show itself as an important part of Antarctic science in a manner in which it was not seen during earlier Polar Years. Of the 15 endorsed biological projects in Antarctica, 7 included more than 20 scientists and could be deemed truly international. Four were conducted in the marine environment, and one each in the fields of biological invasions, microbial ecology, and terrestrial ecology, and one was SCAR’s over-arching ‘Evolution and Biodiversity in the Antarctic’. The marine projects have left a robust legacy of data for future research into the consequences of environmental change, and into future decisions about marine protected areas. Studies on introductions of exotic organisms reveal an ever-present threat to the warmer parts of the high-latitude Southern Ocean, or parts which might become warmer with climate change. Studies on microbial ecology reveal great complexity of ecosystems with high numbers of unknown species. Terrestrial research has shown how vulnerable the Antarctic is to accidental introductions, and how productive the soils can be under changed climate conditions. Antarctic biology has come-of-age during IPY 2007-2008 and the campaign has set the scene for future research.
Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D
2015-10-01
Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Microbial Metagenomics: Beyond the Genome
NASA Astrophysics Data System (ADS)
Gilbert, Jack A.; Dupont, Christopher L.
2011-01-01
Metagenomics literally means “beyond the genome.” Marine microbial metagenomic databases presently comprise ˜400 billion base pairs of DNA, only ˜3% of that found in 1 ml of seawater. Very soon a trillion-base-pair sequence run will be feasible, so it is time to reflect on what we have learned from metagenomics. We review the impact of metagenomics on our understanding of marine microbial communities. We consider the studies facilitated by data generated through the Global Ocean Sampling expedition, as well as the revolution wrought at the individual laboratory level through next generation sequencing technologies. We review recent studies and discoveries since 2008, provide a discussion of bioinformatic analyses, including conceptual pipelines and sequence annotation and predict the future of metagenomics, with suggestions of collaborative community studies tailored toward answering some of the fundamental questions in marine microbial ecology.
Lytou, Anastasia E; Panagou, Efstathios Z; Nychas, George-John E
2017-09-01
Five different marinades were prepared containing lemon juice, apple cider vinegar, pomegranate juice and combinations of them. Three different temperatures (4, 10, and 20 °C) and five marinating time intervals (1, 3, 6, and 9 h) were tested. Microbial, physicochemical as well as sensory analyses were performed to assess marination. Noticeable microbial reductions and satisfactory sensory results were observed only in samples treated for short time (1 and 3 h). The marinade in which pomegranate and lemon juices were combined caused a decrease in microbial counts and led to desirable sensory attributes. Each of the marinades was characterized by a distinguishable organic acid profile, while the discrimination of the samples, based on organic acid concentration, between low (1 and 3) and high (6 and 9) marinating time was feasible. It can be concluded that marinating time affected the indigenous microbiota and the sensory characteristics of chicken meat while pomegranate could be a promising marinating ingredient from a microbiological and physicochemical perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tropical Archaea: Diversity associated with the surface microlayer of corals
Kellogg, C.A.
2004-01-01
Recent 16S rDNA studies have focused on detecting uncultivated bacteria associated with Caribbean reef corals in an effort to address the ecological roles of coral-associated microbes. Reports of Archaea associated with fishes and marine invertebrates raised the question of whether Archaea might also be part of the coral-associated microbial community. DNA analysis of mucus from 3 reef-building species of Caribbean corals, Montastraea annularis complex, Diploria strigosa and D. labyrinthiformis in the US Virgin Islands yielded 34 groups of archaeal 16S ribotypes (defined at the level of 97% similarity). The majority (75%) was most closely matched by BLAST searches to sequences derived from marine water column samples, whereas the remaining ribotypes were most similar to sequences isolated from anoxic environments (15%) and hydrothermal vents (9%). Unlike previous 16S studies of coral-associated Bacteria, the results do not suggest specific associations between particular archaeal sequences and individual coral species. Marine Archaea (Groups I, II and III) in addition to Thermoplasma-like, methanogen, and marine benthic crenarchaeote phylotypes, were detected in the mucus of tropical corals. The finding of sequences from coral-associated Archaea that are closely related to strict and facultative anaerobes, as well as to uncultivated Archaea from other types of anoxic environments, suggests that anaerobic micro-niches may exist in coral mucus layers. Archaea, with their unique biogeochemical capabilities, broaden the scope of possible interactions between corals and their associated microbial communities.
Microbial Biogeography on the Legacies of Historical Events in the Arctic Subsurface Sediments
NASA Astrophysics Data System (ADS)
Han, Dukki; Nam, Seung-Il; Hur, Hor-Gil
2017-04-01
The Arctic marine environment consists of various microbial habitats. The niche preference of microbial assemblages in the Arctic Ocean has been surveyed with the modern environmental change by oceanographic traits such as sea-ice dynamics, current circulation, and sedimentation. The North Pacific inflow from the shallow and narrow Bering Strait is highly susceptible to sea-level fluctuations, and thus the water mass exchange mediated by the history of sea-ice between the North Pacific and the Chukchi Sea in the Arctic Ocean. Over geological timescale, the climate change may provide putative evidences for ecological niche for the Arctic microbial assemblages as well as geological records in response to the paleoclimate change. In the present study, the multidisciplinary approach, based on microbiology, geology, and geochemistry, was applied to survey the microbial assemblages in the Arctic subsurface sediments and help further integrate the microbial biogeography and biogeochemical patterns in the Arctic subsurface biosphere. Our results describe microbial assemblages with high-resolution paleoceanographic records in the Chukchi Sea sediment core (ARA02B/01A-GC; 5.4 mbsf) to show the processes that drive microbial biogeographic patterns in the Arctic subsurface sediments. We found microbial habitat preferences closely linked to Holocene paleoclimate records as well as geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. Especially, the vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota in the ARA02B/01A-GC consistent with the patterns of the known global SMTZs and Holocene sedimentary records, suggesting that in-depth microbiological profiles integrated with geological records may be indirectly useful for reconstructing Arctic paleoclimate changes. In the earliest phase of Mid Holocene in the ARA02B/01A-GC with concentrated crenarchaeol (a unique biomarker for Marine Group I Thaumarchaea), the most abundant archaeal population was Marine Group II Euryarchaeota rather than Marine Group I Thaumarchaea, suggesting that the interpretation of archaeal tetraether lipids in subsurface sediments needs careful consideration for paleoceanography. In conclusion, our findings have important implications for the availability of microbial biogeography in the sedimentary record. The present study offers a deeper understanding of the legacies of historical events during the Holocene and implies that the survey of microbial biogeography may be an appropriate tool to monitor potential effects from the climate change in the Arctic Ocean.
Microbial functional diversity alters the structure and sensitivity of oxygen deficient zones
NASA Astrophysics Data System (ADS)
Penn, Justin; Weber, Thomas; Deutsch, Curtis
2016-09-01
Oxygen deficient zones (ODZs) below the ocean surface regulate marine productivity by removing bioavailable nitrogen (N). A complex microbial community mediates N loss, but the interplay of its diverse metabolisms is poorly understood. We present an ecosystem model of the North Pacific ODZ that reproduces observed chemical distributions yet predicts different ODZ structure, rates, and climatic sensitivity compared to traditional geochemical models. An emergent lower O2 limit for aerobic nitrification lies below the upper O2 threshold for anaerobic denitrification, creating a zone of microbial coexistence that causes a larger ODZ but slower total rates of N loss. The O2-dependent competition for the intermediate nitrite produces gradients in its oxidation versus reduction, anammox versus heterotrophic denitrification, and the net ecological stoichiometry of N loss. The latter effect implies that an externally driven ODZ expansion should favor communities that more efficiently remove N, increasing the sensitivity of the N cycle to climate change.
The role of coastal fog in increased viability of marine microbial aerosols
NASA Astrophysics Data System (ADS)
Dueker, M.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.
2011-12-01
Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. Despite the ubiquity of these bacteria (concentration estimates range from 1 x 10^4 to 6 x 10^5 cells m-3), much is still being learned about their source, viability, and interactions with climatic controls. They can be attached to ambient aerosol particles or exist singly in the air. They affect climate by serving as ice, cloud, and fog nucleators, and have the metabolic potential to alter atmospheric chemistry. Fog presence in particular has been shown to greatly increase the deposition of viable microbial aerosols in both urban and coastal environments, but the mechanisms behind this are not fully understood. To address this gap, we examined the diversity of culturable microbial aerosols from a relatively pristine coastal environment in Maine (USA) and determined the effect of fog presence on viability and community composition of microbial aerosols. 16S rRNA sequencing of culturable ocean surface bacteria and depositing microbial aerosols (under clear and foggy conditions) resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. The fog and ocean surface sequence libraries were significantly more similar in microbial community composition than clear (non-foggy) and ocean surface libraries. These findings support a dual role for fog in enhancing the fallout of viable marine microbial aerosols via increased gravitational settling rates and decreased aerosolization stress on the organisms. The dominant presence of marine bacteria in coastal microbial aerosols provides a strong case for an ecologically-relevant ocean to terrestrial transport of microbes, creating a potential connection between water and air quality in the coastal environment.
Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B
2016-01-01
Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface.
Osborn, A. Mark
2016-01-01
Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface. PMID:27487037
Construction and Screening of Marine Metagenomic Large Insert Libraries.
Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A
2017-01-01
The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.
Preparation of BAC libraries from marine microbial populations.
Sabehi, Gazalah; Béjà, Oded
2013-01-01
A protocol is presented here for the construction of BAC (bacterial artificial chromosome) libraries from planktonic microbial communities collected in marine environments. The protocol describes the collection and preparation of the planktonic microbial cells, high molecular weight DNA purification from those cells, the preparation of the BAC vector, and the special ligation and electrotransformation procedures required for successful library preparation. With small modifications, this protocol can be applied to microbes collected from other environments. © 2013 Elsevier Inc. All rights reserved.
Molecular characterization of dissolved organic matter (DOM): a critical review.
Nebbioso, Antonio; Piccolo, Alessandro
2013-01-01
Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support of the hypothesis that part of marine DOM is of terrestrial origin, being the result of a long-term carbon sedimentation, has been obtained from several studies discussed herein.
Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.
Sathiyanarayanan, Ganesan; Saibaba, Ganesan; Kiran, George Seghal; Yang, Yung-Hun; Selvin, Joseph
2017-05-01
Marine sponges are filter feeding porous animals and usually harbor a remarkable array of microorganisms in their mesohyl tissues as transient and resident endosymbionts. The marine sponge-microbial interactions are highly complex and, in some cases, the relationships are thought to be truly symbiotic or mutualistic rather than temporary associations resulting from sponge filter-feeding activity. The marine sponge-associated bacteria are fascinating source for various biomolecules that are of potential interest to several biotechnological industries. In recent times, a particular attention has been devoted to bacterial biopolymer (polyesters) such as intracellular polyhydroxyalkanoates (PHAs) produced by sponge-associated bacteria. Bacterial PHAs act as an internal reserve for carbon and energy and also are a tremendous alternative for fossil fuel-based polymers mainly due to their eco-friendliness. In addition, PHAs are produced when the microorganisms are under stressful conditions and this biopolymer synthesis might be exhibited as one of the survival mechanisms of sponge-associated or endosymbiotic bacteria which exist in a highly competitive and stressful sponge-mesohyl microenvironment. In this review, we have emphasized the industrial prospects of marine bacteria for the commercial production of PHAs and special importance has been given to marine sponge-associated bacteria as a potential resource for PHAs.
Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiang; Techtmann, Stephen M.; Woo, Hannah L.
Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor themore » microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potentia« less
Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.
2017-12-01
Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.
Soliman, Taha; Reimer, James D; Yang, Sung-Yin; Villar-Briones, Alejandro; Roy, Michael C; Jenke-Kodama, Holger
2017-01-01
Microbial community diversity and chemodiversity were investigated in marine sediments adjacent to the Okinawan "Kaichu-Doro" Causeway, which was constructed 46 years ago to connect a group of four islands (Henza-jima, Miyagi-jima, Ikei-jima, Hamahiga-jima) to the Okinawan main island. This causeway was not built on pilings, but by land reclamation; hence, it now acts as a long, thin peninsula. The construction of this causeway was previously shown to have influenced the surrounding marine ecosystem, causing ecosystem fragmentation and loss of water circulation. In this study, we collected sediment cores ( n = 10) from five paired sites in 1 m water depths. Each pair of sites consisted of one site each on the immediate north and south sides of the causeway. Originally the members of each pair were much closer to each other (<150 m) than to other pairs, but now the members of each pair are isolated by the causeway. Each core was 60-80 cm long and was divided into 15-cm layers. We examined the vertical diversity of microbial communities and chemical compounds to determine the correlation between chemodiversity and microbial communities among marine sediment cores and layers. Principal coordinate analyses (PCoA) of detected compounds and of bacterial and archaeal operational taxonomic units (OTUs) revealed that the north and south sides of the causeway are relatively isolated, with each side having unique microbial OTUs. Additionally, some bacterial families (e.g., Acidaminobacteraceae, Rhizobiaceae, and Xanthomonadaceae) were found only on the south side of Kaichu-Doro. Interestingly, we found that the relative abundance of OTUs for some microbial families increased from top to bottom, but this was reversed in some other families. We conclude that the causeway has altered microbial community composition and metabolite profiles in marine sediments.
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.
Bryant, Jessica A; Clemente, Tara M; Viviani, Donn A; Fong, Allison A; Thomas, Kimberley A; Kemp, Paul; Karl, David M; White, Angelicque E; DeLong, Edward F
2016-01-01
Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m -3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa , Cyanobacteria , Alphaproteobacteria , and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video : An author video summary of this article is available.
Interactive effects of global climate change and pollution on marine microbes: the way ahead.
Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M
2013-06-01
Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.
Interactive effects of global climate change and pollution on marine microbes: the way ahead
Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M
2013-01-01
Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087
Evaluating the core microbiota in complex communities: A systematic investigation.
Astudillo-García, Carmen; Bell, James J; Webster, Nicole S; Glasl, Bettina; Jompa, Jamaluddin; Montoya, Jose M; Taylor, Michael W
2017-04-01
The study of complex microbial communities poses unique conceptual and analytical challenges, with microbial species potentially numbering in the thousands. With transient or allochthonous microorganisms often adding to this complexity, a 'core' microbiota approach, focusing only on the stable and permanent members of the community, is becoming increasingly popular. Given the various ways of defining a core microbiota, it is prudent to examine whether the definition of the core impacts upon the results obtained. Here we used complex marine sponge microbiotas and undertook a systematic evaluation of the degree to which different factors used to define the core influenced the conclusions. Significant differences in alpha- and beta-diversity were detected using some but not all core definitions. However, findings related to host specificity and environmental quality were largely insensitive to major changes in the core microbiota definition. Furthermore, none of the applied definitions altered our perception of the ecological networks summarising interactions among bacteria within the sponges. These results suggest that, while care should still be taken in interpretation, the core microbiota approach is surprisingly robust, at least for comparing microbiotas of closely related samples. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms.
Quinn, Gerry A; Maloy, Aaron P; McClean, Stephen; Carney, Brian; Slater, John W
2012-01-01
Although biofilms are recognised as important in microbial colonisation, solutions to their inhibition are predominantly based on planktonic assays. These solutions have limited efficacy against biofilms. Here, a series of biofilm-orientated tests were used to identify anti-biofilm compounds from marine micro-flora. This led to the isolation of a complex of anti-biofilm compounds from an extract of Paenibacillus polymyxa (PPE). A combination of rpHPLC and mass spectrometry identified the principle components of PPE as fusaricidin B (LI-FO4b) and polymyxin D1, with minor contributions from surfactins. This complex (PPE) reduced the biofilm biomass of Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus bovis. In contrast, ampicillin was only effective against S. aureus. PPE also inhibited a self-assembling marine biofilm (SAMB) in co-incubation assays by 99.3% ± 1.9 and disrupted established SAMB by 72.4% ± 4.4, while ampicillin showed no significant reduction. The effectiveness of this complex of lipopeptides against single and multispecies biofilms suggests a future role in biofilm prevention strategies.
Molecular Interactions at Marine Interfaces
1994-09-20
Microbial Attachment and Biofilm Formation 9:00 Michael Sinnott Structure of Extracellular Polysaccharides of Pseudomonas atlantica 9:30 Herb Waite...sit/ i u~ . Direct Measurements of the Intermolecular F~rccs Between Polysaccharide Exopolymers from marine Bacter"a and Solid Substrates Georges...aqueous medium of high ionic strength. Effect of Polysaccharide Surface Structurt on Microbial Attachment and Biofilm Formation David C. White and A
Currie, Ashleigh R; Tait, Karen; Parry, Helen; de Francisco-Mora, Beatriz; Hicks, Natalie; Osborn, A Mark; Widdicombe, Steve; Stahl, Henrik
2017-01-01
Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO 2 ) and elevated temperature (ambient +4°C) on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase ( amoA ) and bacterial nitrite reductase ( nirS ) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO 2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes ( amoA and nirS ) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.
Våge, Selina; Thingstad, T Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales.
Våge, Selina; Thingstad, T. Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales. PMID:26648929
Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.
Yun, Juanli; Deng, Yongcui; Zhang, Hongxun
2017-08-01
Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.
Sauterey, Boris; Ward, Ben A.; Follows, Michael J.; Bowler, Chris; Claessen, David
2015-01-01
The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that “Everything is everywhere, but the environment selects”, we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean. PMID:25852217
Sauterey, Boris; Ward, Ben A; Follows, Michael J; Bowler, Chris; Claessen, David
2015-01-01
The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that "Everything is everywhere, but the environment selects", we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean.
Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus
Biller, Steven J.; Berube, Paul M.; Berta-Thompson, Jessie W.; Kelly, Libusha; Roggensack, Sara E.; Awad, Lana; Roache-Johnson, Kathryn H.; Ding, Huiming; Giovannoni, Stephen J.; Rocap, Gabrielle; Moore, Lisa R.; Chisholm, Sallie W.
2014-01-01
The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography. PMID:25977791
Angly, Florent E; Heath, Candice; Morgan, Thomas C; Tonin, Hemerson; Rich, Virginia; Schaffelke, Britta; Bourne, David G; Tyson, Gene W
2016-01-01
The role of microorganisms in maintaining coral reef health is increasingly recognized. Riverine floodwater containing herbicides and excess nutrients from fertilizers compromises water quality in the inshore Great Barrier Reef (GBR), with unknown consequences for planktonic marine microbial communities and thus coral reefs. In this baseline study, inshore GBR microbial communities were monitored along a 124 km long transect between 2011 and 2013 using 16S rRNA gene amplicon sequencing. Members of the bacterial orders Rickettsiales (e.g., Pelagibacteraceae) and Synechococcales (e.g., Prochlorococcus), and of the archaeal class Marine Group II were prevalent in all samples, exhibiting a clear seasonal dynamics. Microbial communities near the Tully river mouth included a mixture of taxa from offshore marine sites and from the river system. The environmental parameters collected could be summarized into four groups, represented by salinity, rainfall, temperature and water quality, that drove the composition of microbial communities. During the wet season, lower salinity and a lower water quality index resulting from higher river discharge corresponded to increases in riverine taxa at sites near the river mouth. Particularly large, transient changes in microbial community structure were seen during the extreme wet season 2010-11, and may be partially attributed to the effects of wind and waves, which resuspend sediments and homogenize the water column in shallow near-shore regions. This work shows that anthropogenic floodwaters and other environmental parameters work in conjunction to drive the spatial distribution of microorganisms in the GBR lagoon, as well as their seasonal and daily dynamics.
Heath, Candice; Morgan, Thomas C.; Tonin, Hemerson; Rich, Virginia; Schaffelke, Britta; Bourne, David G.; Tyson, Gene W.
2016-01-01
The role of microorganisms in maintaining coral reef health is increasingly recognized. Riverine floodwater containing herbicides and excess nutrients from fertilizers compromises water quality in the inshore Great Barrier Reef (GBR), with unknown consequences for planktonic marine microbial communities and thus coral reefs. In this baseline study, inshore GBR microbial communities were monitored along a 124 km long transect between 2011 and 2013 using 16S rRNA gene amplicon sequencing. Members of the bacterial orders Rickettsiales (e.g., Pelagibacteraceae) and Synechococcales (e.g., Prochlorococcus), and of the archaeal class Marine Group II were prevalent in all samples, exhibiting a clear seasonal dynamics. Microbial communities near the Tully river mouth included a mixture of taxa from offshore marine sites and from the river system. The environmental parameters collected could be summarized into four groups, represented by salinity, rainfall, temperature and water quality, that drove the composition of microbial communities. During the wet season, lower salinity and a lower water quality index resulting from higher river discharge corresponded to increases in riverine taxa at sites near the river mouth. Particularly large, transient changes in microbial community structure were seen during the extreme wet season 2010–11, and may be partially attributed to the effects of wind and waves, which resuspend sediments and homogenize the water column in shallow near-shore regions. This work shows that anthropogenic floodwaters and other environmental parameters work in conjunction to drive the spatial distribution of microorganisms in the GBR lagoon, as well as their seasonal and daily dynamics. PMID:26839738
Schneider, Dominik; Wemheuer, Franziska; Pfeiffer, Birgit; Wemheuer, Bernd
2017-01-01
Microbial communities play an important role in marine ecosystem processes. Although the number of studies targeting marker genes such as the 16S rRNA gene has been increased in the last few years, the vast majority of marine diversity is rather unexplored. Moreover, most studies focused on the entire bacterial community and thus disregarded active microbial community players. Here, we describe a detailed protocol for the simultaneous extraction of DNA and RNA from marine water samples and for the generation of cDNA from the isolated RNA which can be used as a universal template in various marker gene studies.
Marine Protists Are Not Just Big Bacteria.
Keeling, Patrick J; Campo, Javier Del
2017-06-05
The study of marine microbial ecology has been completely transformed by molecular and genomic data: after centuries of relative neglect, genomics has revealed the surprising extent of microbial diversity and how microbial processes transform ocean and global ecosystems. But the revolution is not complete: major gaps in our understanding remain, and one obvious example is that microbial eukaryotes, or protists, are still largely neglected. Here we examine various ways in which protists might be better integrated into models of marine microbial ecology, what challenges this will present, and why understanding the limitations of our tools is a significant concern. In part this is a technical challenge - eukaryotic genomes are more difficult to characterize - but eukaryotic adaptations are also more dependent on morphology and behaviour than they are on the metabolic diversity that typifies bacteria, and these cannot be inferred from genomic data as readily as metabolism can be. We therefore cannot simply follow in the methodological footsteps of bacterial ecology and hope for similar success. Understanding microbial eukaryotes will require different approaches, including greater emphasis on taxonomically and trophically diverse model systems. Molecular sequencing will continue to play a role, and advances in environmental sequence tag studies and single-cell methods for genomic and transcriptomics offer particular promise. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R
2014-10-01
Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gertler, Christoph; Näther, Daniela J; Cappello, Simone; Gerdts, Gunnar; Quilliam, Richard S; Yakimov, Michail M; Golyshin, Peter N
2012-09-01
Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A. borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A
2016-01-19
The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents.
Expanding the World of Marine Bacterial and Archaeal Clades
Yilmaz, Pelin; Yarza, Pablo; Rapp, Josephine Z.; Glöckner, Frank O.
2016-01-01
Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 “clades,” at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as our CTU approach breaks down these randomly lumped clades into smaller objectively calculated subgroups. Finally, all taxa were classified and named following standards compatible with the Bacteriological Code rules, enhancing their digitization, and comparability with future microbial ecological and taxonomy studies. PMID:26779174
NASA Astrophysics Data System (ADS)
Beman, J. M.
2016-02-01
Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.
Microbial activity in the marine deep biosphere: progress and prospects.
Orcutt, Beth N; Larowe, Douglas E; Biddle, Jennifer F; Colwell, Frederick S; Glazer, Brian T; Reese, Brandi Kiel; Kirkpatrick, John B; Lapham, Laura L; Mills, Heath J; Sylvan, Jason B; Wankel, Scott D; Wheat, C Geoff
2013-01-01
The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists-all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) "theme team" on microbial activity (www.darkenergybiosphere.org).
Microbial activity in the marine deep biosphere: progress and prospects
Orcutt, Beth N.; LaRowe, Douglas E.; Biddle, Jennifer F.; Colwell, Frederick S.; Glazer, Brian T.; Reese, Brandi Kiel; Kirkpatrick, John B.; Lapham, Laura L.; Mills, Heath J.; Sylvan, Jason B.; Wankel, Scott D.; Wheat, C. Geoff
2013-01-01
The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org). PMID:23874326
NASA Astrophysics Data System (ADS)
Oliver, A. A.; Tank, S. E.; Kellogg, C.
2015-12-01
The export of riverine dissolved organic matter (DOM) to the coastal ocean provides an important link between terrestrial and aquatic ecosystems. The coastal temperate rainforests of British Columbia contain extensive freshwater networks that export significant amounts of water and DOM to the ocean, representing significant cross-system hydrologic and biogeochemical linkages. To better understand the importance of these linkages and implications for ecosystem structure and function, we used an experimental approach to investigate the role of microbial and photodegradation transformations of DOM exported from small coastal catchments to the marine environment. At two time periods (August 2014, March 2015), stream water from the outlets of two coastal watersheds was filtered (<0.2 μm), and treated with microbial inoculums from across a salinity gradient (i.e., freshwater, estuarine, and marine). Treatments were incubated in the ocean under light and dark conditions for 8 days. At 0, 3 and 8 days, samples were analyzed for DOC, TDN, DIN, and DON. Changes in DOM composition were determined with optical characterization techniques such as absorbance (SUVA, S, Sr) and fluorescence (EEM). Microbial community response was measured using cell counts and DNA/RNA amplicon sequencing to determine changes in bacterial abundance and community composition. General patterns indicated that microbial communities from the high salinity treatment (i.e. most marine) were the most effective at utilizing freshwater DOM, especially under light conditions. In some treatments, DOM appeared as a potential source of inorganic nitrogen with corresponding shifts in microbial community composition. Incubations using inoculum from low and mid salinity levels demonstrated smaller changes, indicating that DOM exported from these streams may not be extensively utilized until exposed to higher salinity environments further from stream outlets. These results suggest a role for terrestrial sourced-DOM as a subsidy for microbial communities within the near shore marine environment, and emphasize that changes in DOM exports due to land development or climate change may have implications for coastal food web processes and biogeochemical cycling.
Microbial communities and bioactive compounds in marine sponges of the family irciniidae-a review.
Hardoim, Cristiane C P; Costa, Rodrigo
2014-09-30
Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species-the vast majority of which are difficult to cultivate-and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.
Temperature-driven decoupling of key phases of organic matter degradation in marine sediments.
Weston, Nathaniel B; Joye, Samantha B
2005-11-22
The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize organic compounds mediates anaerobic organic matter mineralization in anoxic sediments. Variable temperature regulation of the sequential processes, leading from the breakdown of complex particulate organic carbon to the production and subsequent consumption of labile, low-molecular weight, dissolved intermediates, could play a key role in controlling rates of overall organic carbon mineralization. We examined sediment organic carbon cycling in a sediment slurry and in flow through bioreactor experiments. The data show a variable temperature response of the microbial functional groups mediating organic matter mineralization in anoxic marine sediments, resulting in the temperature-driven decoupling of the production and consumption of organic intermediates. This temperature-driven decoupling leads to the accumulation of labile, low-molecular weight, dissolved organic carbon at low temperatures and low-molecular weight dissolved organic carbon limitation of terminal metabolism at higher temperatures.
Bacteria interface interactions in Ecology-on-a-Chip by holographic microscopy and interferometry
NASA Astrophysics Data System (ADS)
Sheng, Jian; White, Andrew; Jalali, Maryam
2017-11-01
To improve our remediation of oil spills into marine system, one must understand the fate of oil under complex physical, chemical and biological environments. It is found that various processes such as wind, wave, turbulence and currents break oil into suspensions of droplets, in which states consumption by microbial further degrade the oil. Our prior studies show that marine bacteria do not adopt biofilm life style at oil-water interface in comparison to those near a solid substrate. On the contrary, Extracellular Polymer Substance of oily microbial aggregates is easily formed around an oil droplet. This highlights complexities of cell oil interactions at a liquid-liquid interface. To investigate these mechanisms at oil water interface quantitative, we have developed a micro-bioassay consisting of continuous microfluidics with a substrate printed with oil droplet array, namely Ecology-on-a-Chip, and an integrated digital holographic microscopy (DHM) and interferometer (DHI). The oil-water interface can be maintained over days (>10 days), suitable for conducting long-term observations. 3D movements of bacteria are tracked by DHM, while the interface morphology are measured by DHI at 10nm. The system is applied to Pseudomonas sp. (PS62) near crude-water interface and Escherichia coli (AW405) at hexadecane-water interface subject to low surface tension. The 3D motility, attachment, detachment and dispersion of cells as well as motility induced interface change are discussed. Funded by Gulf of Mexico Research Initiative (GoMRI).
NASA Astrophysics Data System (ADS)
McDonald, Karlie; Turk, Valentina; Mozetič, Patricija; Tinta, Tinkara; Malfatti, Francesca; Hannah, David; Krause, Stefan
2016-04-01
Accumulation of particulate organic carbon (POC) has the potential to change the structure and function of marine ecosystems. High abidance of POC can develop into aggregates, known as marine snow or mucus aggregates that can impair essential marine ecosystem functioning and services. Currently marine POC formation, accumulation and sedimentation processes are being explored as potential pathways to remove CO2 from the atmosphere by CO2 sequestration via fixation into biomass by phytoplankton. However, the current ability of scientists, environmental managers and regulators to analyse and predict high POC concentrations is restricted by the limited understanding of the dynamic nature of the microbial mechanisms regulating POC accumulation events in marine environments. We present a proof of concept study that applies a novel Bayesian Networks (BN) approach to integrate relevant biological and physical-chemical variables across spatial and temporal scales in order to identify the interactions of the main contributing microbial mechanisms regulating POC accumulation in the northern Adriatic Sea. Where previous models have characterised only the POC formed, the BN approach provides a probabilistic framework for predicting the occurrence of POC accumulation by linking biotic factors with prevailing environmental conditions. In this paper the BN was used to test three scenarios (diatom, nanoflagellate, and dinoflagellate blooms). The scenarios predicted diatom blooms to produce high chlorophyll a at the water surface while nanoflagellate blooms were predicted to occur at lower depths (> 6m) in the water column and produce lower chlorophyll a concentrations. A sensitivity analysis identified the variables with the greatest influence on POC accumulation being the enzymes protease and alkaline phosphatase, which highlights the importance of microbial community interactions. The developed proof of concept BN model allows for the first time to quantify the impacts of biological, chemical and physical parameters influencing microbial community interactions mechanisms that regulate POC accumulation in marine environments. The dynamic modular nature of the developed BN will allow successive updating and improvement of the model structure as new data are emerging, thus, providing a powerful interactive framework for the investigation, prediction and mitigation of future POC accumulation events.
NASA Astrophysics Data System (ADS)
Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud
2018-01-01
The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.
Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.
Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick
2016-03-10
The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.
Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean.
Boiteau, Rene M; Mende, Daniel R; Hawco, Nicholas J; McIlvin, Matthew R; Fitzsimmons, Jessica N; Saito, Mak A; Sedwick, Peter N; DeLong, Edward F; Repeta, Daniel J
2016-12-13
Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle.
Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean
Mende, Daniel R.; Hawco, Nicholas J.; McIlvin, Matthew R.; Fitzsimmons, Jessica N.; Saito, Mak A.; Sedwick, Peter N.; DeLong, Edward F.; Repeta, Daniel J.
2016-01-01
Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1–2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle. PMID:27911777
Zoccali, Mariosimone; Cappello, Simone; Mondello, Luigi
2018-04-27
The present research is focused on the use of a triple quadrupole mass spectrometer (QqQ MS) coupled with flow modulated comprehensive two-dimensional gas chromatography (FM GC × GC) for a multilevel elucidation of biodegradation potentiality of natural marine microbial populations during a bioremediation (biostimulation) treatment. The crude oil used for the evaluation of the bioremediation process, namely Dansk Blend Pier E1, represents a very complex sample. Hence, in order to understand the metabolic activity of microbial populations during the bioremediation process, a GC × GC system was used. The high separation power has allowed a detailed characterization of the different chemical families; moreover, thanks to the high acquisition frequency of the QqQ MS spectrometer, both full scan and multiple reaction monitoring (MRM) data were acquired in the same run. By using this system, both qualitative analysis of untargeted hydrocarbons mixture (crude oil) and qualitative analysis of biomarker compounds, present in low amount and often hindered under the bulk of the sample (i.e. adamantanes, diamantanes, steranes and hopanes), were performed simultaneously. The bioremediation capability of biostimulated bacteria was evaluated at four (T 4 ), eight (T 8 ) and fourteen (T 14 ) days. Progressive degradation of linear, branched, and aromatic hydrocarbons, adamantanes, and diamantanes has been showed, whereas, results underline the lack of any kind of activity against steranes, and hopanes. Copyright © 2018 Elsevier B.V. All rights reserved.
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre
Bryant, Jessica A.; Clemente, Tara M.; Viviani, Donn A.; Fong, Allison A.; Thomas, Kimberley A.; Kemp, Paul; Karl, David M.; White, Angelicque E.
2016-01-01
ABSTRACT Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the “great Pacific garbage patch.” The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m−3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production − community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public’s attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available. PMID:27822538
Bendia, Amanda G; Signori, Camila N; Franco, Diego C; Duarte, Rubens T D; Bohannan, Brendan J M; Pellizari, Vivian H
2018-01-01
Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.
NASA Astrophysics Data System (ADS)
Edgcomb, V. P.; Taylor, C.; Pachiadaki, M. G.; Honjo, S.; Engstrom, I.; Yakimov, M.
2016-07-01
Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic activities of microorganisms in their habitat and which can be informative for determining responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of microbial processes occurring in the deep sea, however, sample handling, pressure, and other changes during sample recovery can subject microorganisms to physiological changes that alter the expression profile of labile messenger RNA. Here we report a comparison of gene expression profiles for whole microbial communities in a bathypelagic water column sample collected in the Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column sampler for studies of marine microbial ecology, the Microbial Sampler - In Situ Incubation Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved in situ were significantly different from potentially more stressful Niskin sampling and preservation on deck. Some categories of transcribed genes also appear to be affected by sample handling more than others. This suggests that for future studies of marine microbial ecology, particularly targeting deep sea samples, an in situ sample collection and preservation approach should be considered.
Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan
2015-01-01
Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment. PMID:26102286
Eiler, Alexander; Zaremba-Niedzwiedzka, Katarzyna; Martínez-García, Manuel; McMahon, Katherine D; Stepanauskas, Ramunas; Andersson, Siv G E; Bertilsson, Stefan
2014-01-01
Little is known about the diversity and structuring of freshwater microbial communities beyond the patterns revealed by tracing their distribution in the landscape with common taxonomic markers such as the ribosomal RNA. To address this gap in knowledge, metagenomes from temperate lakes were compared to selected marine metagenomes. Taxonomic analyses of rRNA genes in these freshwater metagenomes confirm the previously reported dominance of a limited subset of uncultured lineages of freshwater bacteria, whereas Archaea were rare. Diversification into marine and freshwater microbial lineages was also reflected in phylogenies of functional genes, and there were also significant differences in functional beta-diversity. The pathways and functions that accounted for these differences are involved in osmoregulation, active transport, carbohydrate and amino acid metabolism. Moreover, predicted genes orthologous to active transporters and recalcitrant organic matter degradation were more common in microbial genomes from oligotrophic versus eutrophic lakes. This comparative metagenomic analysis allowed us to formulate a general hypothesis that oceanic- compared with freshwater-dwelling microorganisms, invest more in metabolism of amino acids and that strategies of carbohydrate metabolism differ significantly between marine and freshwater microbial communities. PMID:24118837
The Comparison of Different Heterotrophic Bacteria on the Decomposition of DOC molecule
NASA Astrophysics Data System (ADS)
Xie, R.; Zheng, Q.; Jiao, N.
2016-02-01
Marine dissolved organic carbon (DOC) pool is one of the largest reservoirs of organic carbon on Earth. Heterotrophic bacteria are the primary biotic force regulating the fate of marine DOC. Comparison of genomic data, microbes belonging to different clades have diverse DOC molecule utilization genes. That's give us a hint that different microbial groups may have their own pattern to decompose DOC, biosynthesize diverse DOC molecule and contribute to the in situ DOC reservoirs in the ocean. The interaction between marine microbes and DOC molecule is hotspots in current research. We will choose some important microbial groups (e.g., Roseobacter, Altermonas, Halomonas, SAR11 and CFB) to identify their contribution to environmental DOC pool and their specific recalcitrant DOC component using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Combined with the composition of hydrolases, lyases and ligases in their genomes, we try to establish a linkage between the specific DOC composition and microbial genetic information. Future more the environmental metagenomic data would help us understand the relationship between the endemic DOC composition and microbial communities in the environment.
Lazar, Cassandre Sara; L'haridon, Stéphane; Pignet, Patricia; Toffin, Laurent
2011-05-01
Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.
Alvarez, Luis H; Meza-Escalante, Edna R; Gortáres-Moroyoqui, Pablo; Morales, Luz; Rosas, Krystal; García-Reyes, Bernardo; García-González, Alicone
2016-12-01
The rate-limiting step of azo dye decolorization was elucidated by exploring the microbial reduction of a model quinone and the chemical decolorization by previously reduced quinone at different salinity conditions (2-8%). Microbial experiments were performed in batch with a marine consortium. The decolorization of Direct Blue 71 (DB71) by the marine consortium at 2% salinity, mediated with anthraquinone-2,6-disulfonate (AQDS), showed the highest rate of decolorization as compared with those obtained with riboflavin, and two samples of humic acids. Moreover, the incubations at different salinity conditions (0-8%) performed with AQDS showed that the highest rate of decolorization of DB71 by the marine consortium occurred at 2% and 4% salinity. In addition, the highest microbial reduction rate of AQDS occurred in incubations at 0%, 2%, and 4% of salinity. The chemical reduction of DB71 by reduced AQDS occurred in two stages and proceeded faster at 4% and 6% salinity. The results indicate that the rate-limiting step during azo decolorization was the microbial reduction of AQDS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou; ...
2016-04-29
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer
Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less
Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; ...
2016-04-26
Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less
Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun
2016-10-01
Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.
Documenting a modern day transgressive surface in a carbonate ramp setting
NASA Astrophysics Data System (ADS)
Lokier, Stephen; Paul, Andreas
2017-04-01
The low-angle carbonate ramp geometry of the Abu Dhabi coastline provides an ideal site for studying the effects of marine transgression in a setting analogous to Mesozoic epeiric seas. Supratidal sabkha evaporite precipitation passes offshore, through a broad and complex carbonate-evaporite intertidal environment, into a subtidal carbonate depositional setting. The coast of the mainland is locally isolated from open-marine conditions by a number of peninsulas and islands associated with the east-west trending Great Pearl Bank. This study combined 12 years of fieldwork observations with historical satellite imagery in order to establish multiple lines of evidence for active retrogradation over a 15 km length of coastline in the Abu Dhabi sabkha. Surveyed transects of the sabkha yield an average slope angle of 0.02°. Employing a current estimate of global sea level rise of 3.3 mm/yr, we calculate an expected present-day marine transgression of 7.9 m/yr. The landward and seaward boundaries of the microbial mat facies belt are strongly controlled by the location of the intertidal zone. The seaward limit of the Recent microbial mat belt in the Abu Dhabi Sabkha is currently being buried beneath retrograding lower-intertidal sediments whilst the landward side is simultaneously backstepping over previously-supratidal gypsum-dominated facies. The landward migration of spits and beach ridges was monitored at several locations with rates of retrogradation of up to 28 m per year being recorded locally. The study also identified numerous erosive features that are consistent with an increase in energy regimes. There has been a significant increase in denudation of the microbial mat, causing underlying sediment to be increasingly susceptible to erosion. In the lowermost intertidal zone, erosion of the hardground and other facies is observed. Clasts from the hardground are transported landward onto the surface of the sabkha where they are incorporated within other facies. This study provides definitive evidence that the current sedimentary regime of the Abu Dhabi coastline has entered a retrogradational phase associated with marine transgression. From a sequence stratigraphic perspective, the current system would be identified as a flooding (transgressive) surface.
Microbial Diversity Analysis of the Bacterial and Archaeal Population in Present Day Stromatolites
NASA Technical Reports Server (NTRS)
Ortega, Maya C.
2011-01-01
Stromatolites are layered sedimentary structures resulting from microbial mat communities that remove carbon dioxide from their environment and biomineralize it as calcium carbonate. Although prevalent in the fossil record, stromatolites are rare in the modem world and are only found in a few locations including Highbome Cay in the Bahamas. The stromatolites found at this shallow marine site are analogs to ancient microbial mat ecosystems abundant in the Precambrian period on ancient Earth. To understand how stromatolites form and develop, it is important to identify what microorganisms are present in these mats, and how these microbes contribute to geological structure. These results will provide insight into the molecular and geochemical processes of microbial communities that prevailed on ancient Earth. Since stromatolites are formed by lithifying microbial mats that are able to mineralize calcium carbonate, understanding the biological mechanisms involved may lead to the development of carbon sequestration technologies that will be applicable in human spaceflight, as well as improve our understanding of global climate and its sustainability. The objective of my project was to analyze the archaeal and bacterial dIversity in stromatolites from Highborn Cay in the Bahamas. The first step in studying the molecular processes that the microorganisms carry out is to ascertain the microbial complexity within the mats, which includes identifying and estimating the numbers of different microbes that comprise these mats.
Toulza, Eve; Tagliabue, Alessandro; Blain, Stéphane; Piganeau, Gwenael
2012-01-01
Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.
Edwards, Jennifer L.; Smith, Darren L.; Connolly, John; McDonald, James E.; Cox, Michael J.; Joint, Ian; Edwards, Clive; McCarthy, Alan J.
2010-01-01
Polysaccharides are an important source of organic carbon in the marine environment, degradation of the insoluble, globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes, degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers, functional genes,, showed that the community was dominated by members of the Gammaproteobacteria, Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize, degrade cellulose in the marine environment, to evaluate the glycoside hydrolase (cellulase, chitinase) gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques. PMID:24710093
NASA Astrophysics Data System (ADS)
Arning, Esther T.; Häußler, Steffen; van Berk, Wolfgang; Schulz, Hans-Martin
2016-07-01
The modelling of early diagenetic processes in marine sediments is of interest in marine science, and in the oil and gas industry, here, especially with respect to methane occurrence and gas hydrate formation as resources. Early diagenesis in marine sediments evolves from a complex web of intertwining (bio)geochemical reactions. It comprises microbially catalysed reactions and inorganic mineral-water-gas interactions. A model that will describe and consider all of these reactions has to be complex. However, it should be user-friendly, as well as to be applicable for a broad community and not only for experts in the field of marine chemistry. The presented modelling platform PeaCH4 v.2.0 combines both aspects, and is Microsoft Excel©-based. The modelling tool is PHREEQC (version 2), a computer programme for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. The conceptual PEaCH4 model is based on the conversion of sediment-bound degradable organic matter. PEaCH4 v.2.0 was developed to quantify and predict early diagenetic processes in marine sediments with the focus on biogenic methane formation and its phase behaviour, and allows carbon mass balancing. In regard to the irreversible degradation of organic matter, it comprises a "reaction model" and a "kinetic model" to predict methane formation. Both approaches differ in their calculations and outputs as the "kinetic model" considers the modelling time to integrate temperature dependent biogenic methane formation in its calculations, whereas the "reaction model" simply relies on default organic matter degradation. With regard to the inorganic mineral-water-gas interactions, which are triggered by irreversible degradation of organic matter, PEaCH4 v.2.0 is based on chemical equilibrium thermodynamics, appropriate mass-action laws, and their temperature dependent equilibrium constants. The programme is exemplarily presented with the example of upwelling sediments off Namibia, ODP Leg 175, Site 1082. The application demonstrates that the modelling platform PEaCH4 v.2.0 provides a user-friendly, but complex scientific tool that delivers retraceable information about early diagenetic processes and products in marine sediments.
Analysis of Particulate and Dissolved Metabolite Pools at Station ALOHA
NASA Astrophysics Data System (ADS)
Boysen, A.; Carlson, L.; Hmelo, L.; Ingalls, A. E.
2016-02-01
Metabolomic studies focus on identifying and quantifying the small organic molecules that are the currency by which an organism lives and dies. Metabolite profiles of microorganisms have the potential to elucidate mechanisms of chemically mediated interactions that influence the success of microbial groups living in a complex environment. However, the chemical diversity of metabolites makes resolving a wide range of compounds analytically challenging. As such, metabolomics has lagged behind other genomic analyses. Here we conduct targeted analysis of over 200 primary and secondary metabolites present in the intracellular and extracellular metabolite pools at Station ALOHA using both reverse phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. We selected the metabolites in our method due to their known importance in primary metabolism, secondary metabolism, and interactions between marine microorganisms such as nutrient exchange, growth promotion, and cell signaling. Through these analyses we obtain a snapshot of microbial community status that, blended with other forms of genomic data, can further our understanding of microbial dynamics. We hypothesize that monitoring a large suite of important metabolites across environmental gradients and diurnal cycles can elucidate factors controlling the distribution and activity of important microbial groups.
Microbial dehalogenation of organohalides in marine and estuarine environments.
Zanaroli, Giulio; Negroni, Andrea; Häggblom, Max M; Fava, Fabio
2015-06-01
Marine sediments are the ultimate sink and a major entry way into the food chain for many highly halogenated and strongly hydrophobic organic pollutants, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenylethers (PBDEs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Microbial reductive dehalogenation in anaerobic sediments can transform these contaminants into less toxic and more easily biodegradable products. Although little is still known about the diversity of respiratory dehalogenating bacteria and their catabolic genes in marine habitats, the occurrence of dehalogenation under actual site conditions has been reported. This suggests that the activity of dehalogenating microbes may contribute, if properly stimulated, to the in situ bioremediation of marine and estuarine contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.
El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A
2008-07-01
In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.
Recent Advances in the Discovery and Development of Marine Microbial Natural Products
Xiong, Zhi-Qiang; Wang, Jian-Feng; Hao, Yu-You; Wang, Yong
2013-01-01
Marine microbial natural products (MMNPs) have attracted increasing attention from microbiologists, taxonomists, ecologists, agronomists, chemists and evolutionary biologists during the last few decades. Numerous studies have indicated that diverse marine microbes appear to have the capacity to produce an impressive array of MMNPs exhibiting a wide variety of biological activities such as antimicrobial, anti-tumor, anti-inflammatory and anti-cardiovascular agents. Marine microorganisms represent an underexplored reservoir for the discovery of MMNPs with unique scaffolds and for exploitation in the pharmaceutical and agricultural industries. This review focuses on MMNPs discovery and development over the past decades, including innovative isolation and culture methods, strategies for discovering novel MMNPs via routine screenings, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology. The potential problems and future directions for exploring MMNPs are also discussed. PMID:23528949
Recent advances in the discovery and development of marine microbial natural products.
Xiong, Zhi-Qiang; Wang, Jian-Feng; Hao, Yu-You; Wang, Yong
2013-03-08
Marine microbial natural products (MMNPs) have attracted increasing attention from microbiologists, taxonomists, ecologists, agronomists, chemists and evolutionary biologists during the last few decades. Numerous studies have indicated that diverse marine microbes appear to have the capacity to produce an impressive array of MMNPs exhibiting a wide variety of biological activities such as antimicrobial, anti-tumor, anti-inflammatory and anti-cardiovascular agents. Marine microorganisms represent an underexplored reservoir for the discovery of MMNPs with unique scaffolds and for exploitation in the pharmaceutical and agricultural industries. This review focuses on MMNPs discovery and development over the past decades, including innovative isolation and culture methods, strategies for discovering novel MMNPs via routine screenings, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology. The potential problems and future directions for exploring MMNPs are also discussed.
Xu, Shiqing; Hu, Yongfei; Yuan, Aihua; Zhu, Baoli
2010-07-01
To clone, express and characterize a novel esterase from marine sediment microbial metagenomic library. Using esterase segregation agar containing tributyrin, we obtained esterase positive fosmid clone FL10 from marine sediment microbial metagenomic library. This fosmid was partially digested with Sau3A I to construct the sublibrary, from which the esterase positive subclone pFLS10 was obtained. The full length of the esterase gene was amplified and cloned into the expressing vector pET28a, and the recombinant plasmid was transformed into E. coli BL21 cells. We analyse the enzyme activity and study the characterization of the esterase after its expression and purification. An ORF (Open Reading Frame) of 924 bp was identified from the subclone pFLS10. Sequence analysis indicated that it showed 71% amino acid identity to esterase (ADA70030) from a marine sediment metagenomic library. The esterase is a novel low-temperature-active esterase and had highest lipolytic activity to the substrate of 4-nitrophenyl butyrate (C4). The optimum temperature of the esterase was 20 degrees C, the optimum pH was 7.5. The esterase in this study had good thermostability at 20 degrees C and good pH stability at pH8 -10. Significant increase in lipolytic activity was observed with addition of K+ and Mg2+, while decrease with Mn2+ etc. We obtained the novel esterase gene fls10 from the marine sediment microbial metagenomic library. The esterase had good thermostability and high lipolytic activity at low temperature and under basic conditions, which laid a basis for industrial application.
Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.
2018-01-01
The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012
Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments
Heidelberg, John F.
2016-01-01
ABSTRACT The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration, and primary productivity in the global oceans. As a direct result, deep-sea sediments are thin and contain small amounts of labile organic carbon. It was recently shown that the entire SPG sediment column is oxygenated and may be representative of up to a third of the global marine environment. To understand the microbial processes that contribute to the removal of the labile organic matter at the water-sediment interface, a sediment sample was collected and subjected to metagenomic sequencing and analyses. Analysis of nine partially reconstructed environmental genomes, which represent approximately one-third of the microbial community, revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper-ocean organisms. These genomes represent a wide distribution of novel organisms, including deep-branching Alphaproteobacteria, two novel organisms within the Proteobacteria, and new members of the Nitrospirae, Nitrospinae, and candidate phylum NC10. These genomes contain evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to nitrification. Additionally, despite hypothesized energy limitation, members of the SPG microbial community had motility and chemotaxis genes and possessed mechanisms for the degradation of high-molecular-weight organic matter. This study contributes to our understanding of the metabolic potential of microorganisms in deep-sea oligotrophic sediments and their impact on local carbon geochemistry. IMPORTANCE This research provides insight into the microbial metabolic potential of organisms inhabiting oxygenated deep-sea marine sediments. Current estimates suggest that these environments account for up to a third of the global marine sediment habitat. Nine novel deep-sea microbial genomes were reconstructed from a metagenomic data set and expand the limited number of environmental genomes from deep-sea sediment environments. This research provides phylogeny-linked insight into critical metabolisms, including carbon fixation associated with nitrification, which is assignable to members of the marine group 1 Thaumarchaeota, Nitrospinae, and Nitrospirae and neutrophilic metal (iron/manganese) oxidation assignable to a novel proteobacterium. PMID:27208118
Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments.
Tully, Benjamin J; Heidelberg, John F
2016-07-15
The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration, and primary productivity in the global oceans. As a direct result, deep-sea sediments are thin and contain small amounts of labile organic carbon. It was recently shown that the entire SPG sediment column is oxygenated and may be representative of up to a third of the global marine environment. To understand the microbial processes that contribute to the removal of the labile organic matter at the water-sediment interface, a sediment sample was collected and subjected to metagenomic sequencing and analyses. Analysis of nine partially reconstructed environmental genomes, which represent approximately one-third of the microbial community, revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper-ocean organisms. These genomes represent a wide distribution of novel organisms, including deep-branching Alphaproteobacteria, two novel organisms within the Proteobacteria, and new members of the Nitrospirae, Nitrospinae, and candidate phylum NC10. These genomes contain evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to nitrification. Additionally, despite hypothesized energy limitation, members of the SPG microbial community had motility and chemotaxis genes and possessed mechanisms for the degradation of high-molecular-weight organic matter. This study contributes to our understanding of the metabolic potential of microorganisms in deep-sea oligotrophic sediments and their impact on local carbon geochemistry. This research provides insight into the microbial metabolic potential of organisms inhabiting oxygenated deep-sea marine sediments. Current estimates suggest that these environments account for up to a third of the global marine sediment habitat. Nine novel deep-sea microbial genomes were reconstructed from a metagenomic data set and expand the limited number of environmental genomes from deep-sea sediment environments. This research provides phylogeny-linked insight into critical metabolisms, including carbon fixation associated with nitrification, which is assignable to members of the marine group 1 Thaumarchaeota, Nitrospinae, and Nitrospirae and neutrophilic metal (iron/manganese) oxidation assignable to a novel proteobacterium. Copyright © 2016 Tully and Heidelberg.
NASA Astrophysics Data System (ADS)
Miyazaki, Y.; Sawano, M.; Kawamura, K.
2014-04-01
Lactic acid (LA) and glycolic acid (GA), which are low-molecular-weight hydroxyacids, were identified in the particle and gas phases within the marine atmospheric boundary layer over the western subarctic North Pacific. Major portion of LA (81%) and GA (57%) were present in the particulate phase, which is consistent with the presence of a hydroxyl group in these molecules leading to the low volatility of the compounds. The average concentration of LA in more biologically influenced marine aerosols (average 33 ± 58 ng m-3) was substantially higher than that in less biologically influenced aerosols (average 11 ± 12 ng m-3). Over the oceacnic region of phytoplankton blooms, the concentration of aerosol LA was comparable to that of oxalic acid, which was the most abundant diacid during the study period. A positive correlation was found between the LA concentrations in more biologically influenced aerosols and chlorophyll a in seawater (r2 = 0.56), suggesting an important production of aerosol LA possibly associated with microbial (e.g., lactobacillus) activity in seawater and/or aerosols. Our finding provides a new insight into the poorly quantified microbial sources of marine organic aerosols (OA) because such low-molecular-weight hydroxyacids are key intermediates for OA formation.
NASA Astrophysics Data System (ADS)
Miyazaki, Y.; Sawano, M.; Kawamura, K.
2014-08-01
Lactic acid (LA) and glycolic acid (GA), which are low-molecular-weight hydroxyacids, were identified in the particle and gas phases within the marine atmospheric boundary layer over the western subarctic North Pacific. A major portion of LA (81%) and GA (57%) was present in the particulate phase, which is consistent with the presence of a hydroxyl group in these molecules leading to the low volatility of the compounds. The average concentration (±SD) of LA in more biologically influenced marine aerosols (33 ± 58 ng m-3) was substantially higher than that in less biologically influenced aerosols (11 ± 12 ng m-3). Over the oceanic region of phytoplankton blooms, the concentration of aerosol LA was comparable to that of oxalic acid, which was the most abundant diacid during the study period. A positive correlation was found between the LA concentrations in more biologically influenced aerosols and chlorophyll a in seawater (r2 = 0.56), suggesting an important production of aerosol LA possibly associated with microbial (e.g., lactobacillus) activity in seawater and/or aerosols. Our finding provides a new insight into the poorly quantified microbial sources of marine organic aerosols (OAs) because such low-molecular-weight hydroxyacids are key intermediates for OA formation.
Bio-mining the microbial treasures of the ocean: new natural products.
Imhoff, Johannes F; Labes, Antje; Wiese, Jutta
2011-01-01
The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as well as companies. In Europe, recent activities have initiated a dynamic development in marine biotechnology, though concentrated efforts on marine natural product research are rare. One of these activities is represented by the Kieler Wirkstoff-Zentrum KiWiZ, which was founded in 2005 in Kiel (Germany). Copyright © 2011 Elsevier Inc. All rights reserved.
Lim, Yan Wei; Cuevas, Daniel A.; Silva, Genivaldo Gueiros Z.; Aguinaldo, Kristen; Dinsdale, Elizabeth A.; Haas, Andreas F.; Hatay, Mark; Sanchez, Savannah E.; Wegley-Kelly, Linda; Dutilh, Bas E.; Harkins, Timothy T.; Lee, Clarence C.; Tom, Warren; Sandin, Stuart A.; Smith, Jennifer E.; Zgliczynski, Brian; Vermeij, Mark J.A.; Rohwer, Forest
2014-01-01
Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines. PMID:25177534
Lim, Yan Wei; Cuevas, Daniel A; Silva, Genivaldo Gueiros Z; Aguinaldo, Kristen; Dinsdale, Elizabeth A; Haas, Andreas F; Hatay, Mark; Sanchez, Savannah E; Wegley-Kelly, Linda; Dutilh, Bas E; Harkins, Timothy T; Lee, Clarence C; Tom, Warren; Sandin, Stuart A; Smith, Jennifer E; Zgliczynski, Brian; Vermeij, Mark J A; Rohwer, Forest; Edwards, Robert A
2014-01-01
Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.
Monitoring Marine Microbial Fouling
NASA Technical Reports Server (NTRS)
Colwell, R.
1985-01-01
Two techniques developed for studying marine fouling. Methods originally developed to study fouling of materials used in Space Shuttle solid fuel booster rockets. Methods used to determine both relative fouling rates and efficacy of cleaning methods to remove fouling on various surfaces including paints, metals, and sealants intended for marine use.
NASA Astrophysics Data System (ADS)
Lloyd, K. G.; Bird, J.; Schreiber, L.; Petersen, D.; Kjeldsen, K.; Schramm, A.; Stepanauskas, R.; Jørgensen, B. B.
2013-12-01
Since most of the microbes in marine sediments remain uncultured, little is known about the mechanisms by which these natural communities degrade organic matter (OM). Likewise, little is known about the make-up of labile OM in marine sediments beyond general functional classes such as proteins, carbohydrates, and lipids, measured as monomers. However, microbes have complex interactions with specific polymers within these functional classes, which can be indicated by a microbe's enzymatic toolkit. We found that four single cell genomes of archaea have very different peptidase compositions than four single cells of bacteria, suggesting that archaea and bacteria may play different roles in OM degradation. We also found that predicted extracellular cysteine peptidases, which require chemically reducing conditions, were common in IMG database metagenomes from marine sediments, and absent in those from seawater. This suggests that the pathways, and not just the rates, of OM degradation may differ between seawater and sediments. By comparing enzyme classes in different organisms, or in different types of marine environments, we present an emerging view of the microbial potential for specific carbon remineralization pathways in marine sediments. In addition, the methods we present hold promise for characterizing OM degradation in any environment where genomic information is available.
Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan
2015-01-01
The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.
White, James R.; Patel, Jignasa; Ottesen, Andrea; Arce, Gabriela; Blackwelder, Patricia; Lopez, Jose V.
2012-01-01
Background Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge “holobiont” system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. Methodology/Principal Findings We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs). Approximately 65,550 rRNA sequences (24%) could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa), and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. Conclusions/Significance Slight shifts in several bacterial taxa were observed between communities sampled during spring and fall seasons. New 16 S rDNA sequences and concomitant identifications greatly expand the microbial community profile for this model reef sponge, and will likely be useful as a baseline for any future comparisons regarding sponge microbial community dynamics. PMID:22701613
Specificity of marine microbial surface interactions.
Imam, S H; Bard, R F; Tosteson, T R
1984-01-01
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293
Park, Soo-Je; Park, Byoung-Joon; Jung, Man-Young; Kim, So-Jeong; Chae, Jong-Chan; Roh, Yul; Forwick, Matthias; Yoon, Ho-Il; Rhee, Sung-Keun
2011-10-01
Increases in global temperatures have been shown to enhance glacier melting in the Arctic region. Here, we have evaluated the effects of meltwater runoff on the microbial communities of coastal marine sediment located along a transect of Temelfjorden, in Svalbard. As close to the glacier front, the sediment properties were clearly influenced by deglaciation. Denaturing gradient gel electrophoresis profiles showed that the sediment microbial communities of the stations of glacier front (stations 188-178) were distinguishable from that of outer fjord region (station 176). Canonical correspondence analysis indicated that total carbon and calcium carbonate in sediment and chlorophyll a in bottom water were key factors driving the change of microbial communities. Analysis of 16S rRNA gene clone libraries suggested that microbial diversity was higher within the glacier-proximal zone (station 188) directly affected by the runoffs than in the outer fjord region. While the crenarchaeotal group I.1a dominated at station 176 (62%), Marine Benthic Group-B and other Crenarchaeota groups were proportionally abundant. With regard to the bacterial community, alpha-Proteobacteria and Flavobacteria lineages prevailed (60%) at station 188, whereas delta-Proteobacteria (largely sulfate-reducers) predominated (32%) at station 176. Considering no clone sequences related to sulfate-reducers, station 188 may be more oxic compared to station 176. The distance-wise compositional variation in the microbial communities is attributable to their adaptations to the sediment environments which are differentially affected by melting glaciers.
Bendia, Amanda G.; Signori, Camila N.; Franco, Diego C.; Duarte, Rubens T. D.; Bohannan, Brendan J. M.; Pellizari, Vivian H.
2018-01-01
Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions. PMID:29867810
Schuelke, Taruna; Pereira, Tiago José; Hardy, Sarah M; Bik, Holly M
2018-04-01
Studies of host-associated microbes are critical for advancing our understanding of ecology and evolution across diverse taxa and ecosystems. Nematode worms are ubiquitous across most habitats on earth, yet little is known about host-associated microbial assemblages within the phylum. Free-living nematodes are globally abundant and diverse in marine sediments, with species exhibiting distinct buccal cavity (mouth) morphologies that are thought to play an important role in feeding ecology and life history strategies. Here, we investigated patterns in marine nematode microbiomes, by characterizing host-associated microbial taxa in 281 worms isolated from a range of habitat types (deep-sea, shallow water, methane seeps, Lophelia coral mounds, kelp holdfasts) across three distinct geographic regions (Arctic, Southern California and Gulf of Mexico). Microbiome profiles were generated from single worms spanning 33 distinct morphological genera, using a two-gene metabarcoding approach to amplify the V4 region of the 16S ribosomal RNA (rRNA) gene targeting bacteria/archaea and the V1-V2 region of the 18S rRNA gene targeting microbial eukaryotes. Contrary to our expectations, nematode microbiome profiles demonstrated no distinct patterns either globally (across depths and ocean basins) or locally (within site); prokaryotic and eukaryotic microbial assemblages did not correlate with nematode feeding morphology, host phylogeny or morphological identity, ocean region or marine habitat type. However, fine-scale analysis of nematode microbiomes revealed a variety of novel ecological interactions, including putative parasites and symbionts, and potential associations with bacterial/archaeal taxa involved in nitrogen and methane cycling. Our results suggest that in marine habitats, free-living nematodes may utilize diverse and generalist foraging strategies that are not correlated with host genotype or feeding morphology. Furthermore, some abiotic factors such as geographic region and habitat type do not appear to play an obvious role in structuring host-microbe associations or feeding preferences. © 2018 John Wiley & Sons Ltd.
Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.
Neave, Matthew J; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R
2016-10-01
Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
Echavarri-Bravo, Virginia; Paterson, Lynn; Aspray, Thomas J; Porter, Joanne S; Winson, Michael K; Hartl, Mark G J
2017-09-01
Scarce information is available regarding the fate and toxicology of engineered silver nanoparticles (AgNPs) in the marine environment, especially when compared to other environmental compartments. Hence, the antibacterial activity of the NM-300 AgNPs (OECD programme) and a household product containing colloidal AgNPs (Mesosilver) was investigated using marine bacteria, pure cultures and natural mixed populations (microcosm approach). Bacterial susceptibility to AgNPs was species-specific, with Gram negative bacteria being more resistant than the Gram positive species (NM-300 concentration used ranged between 0.062 and 1.5 mg L -1 ), and the Mesosilver product was more toxic than the NM-300. Bacterial viability and the physiological status (O 2 uptake measured by respirometry) of the microbial community in the microcosm was negatively affected at an initial concentration of 1 mg L -1 NM-300. The high chloride concentrations in the media/seawater led to the formation of silver-chloro complexes thus enhancing AgNP toxicity. We recommend the use of natural marine bacteria as models when assessing the environmental relevant antibacterial properties of products containing nanosilver. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chemical defense of early life stages of benthic marine invertebrates.
Lindquist, Niels
2002-10-01
Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.
NASA Astrophysics Data System (ADS)
Capriulo, Gerard M.; Flanzenbaum, Jeffrey; Wurster, Charles F.; Rowland, R. George
1983-11-01
The hypothesis, that at least certain marine microbial organisms respond to toxic stress by the development of resistance, was tested using the hypotric marine ciliate Euplotes vannus Muller as the test organism. Resistance to polychlorinated biphenyls (PCB, Aroclor 1254) was developed in E. vannus by exposing the animals to progressively higher PCB concentrations during a period of several months. The resistance to PCB persisted for at least 80 days (greater than 40 generations) after final exposure. This suggests either that genetic selection or persistent (lasting over many cell division cycles) phenotypic trait modification, possibly in the form of Dauermodification, had occurred. If resistance were widespread among marine microbial organisms in polluted environments it would be an important consideration in evaluating the long-term biological impact of both natural and man-induced chemical stress.
Leal, Miguel Costa; Sheridan, Christopher; Osinga, Ronald; Dionísio, Gisela; Rocha, Rui Jorge Miranda; Silva, Bruna; Rosa, Rui; Calado, Ricardo
2014-01-01
The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the “blue gold” in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts. PMID:24983638
Dietary requirements of seaweed flies ( Coelopa frigida)
NASA Astrophysics Data System (ADS)
Cullen, Sally J.; Young, Alison M.; Day, Thomas H.
1987-05-01
The seaweed fly, Coelopa frigida (Fabricius), is mostly found in piles of decomposing seaweed deposited on the seashore which form its only breeding sites. It is shown that C. frigida can complete its life cycle in a wide variety of marine algae, and that the larvae are unable to survive without some, as yet unidentified, consituent of seaweed. The larvae also have a requirement for a microbial gut flora which probably derives from the bacterial flora naturally associated with algae growing in the sea. After deposition of the seaweed on the shore, the bacterial population increases enormously, and is ingested by the feeding Coelopa larvae. The dietary requirement for bacteria can be satisfied by a variety of pure bacterial cultures of marine origin, and also by pure cultures of Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae. It is suggested that the microbial cells are being used by the larvae as their principal source of energy. The bacterial populations naturally found on stranded seaweed are grazed by the feeding larvae. It is the combined activities of microbial and insect populations that result in rapid decomposition of the seaweed. The ecological relationships between marine algae, the microbial flora, and dipteran larvae are discussed.
Lazar, Cassandre Sara; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent
2011-01-01
Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the “active” archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano. PMID:21335391
NASA Astrophysics Data System (ADS)
Couradeau, Estelle; Roush, Daniel; Guida, Brandon Scott; Garcia-Pichel, Ferran
2017-01-01
Endolithic microbial communities are prominent features of intertidal marine habitats, where they colonize a variety of substrates, contributing to their erosion. Almost 2 centuries worth of naturalistic studies focused on a few true-boring (euendolithic) phototrophs, but substrate preference has received little attention. The Isla de Mona (Puerto Rico) intertidal zone offers a unique setting to investigate substrate specificity of endolithic communities since various phosphate rock, limestone and dolostone outcrops occur there. High-throughput 16S rDNA genetic sampling, enhanced by targeted cultivation, revealed that, while euendolithic cyanobacteria were dominant operational taxonomic units (OTUs), the communities were invariably of high diversity, well beyond that reported in traditional studies and implying an unexpected metabolic complexity potentially contributed by secondary colonizers. While the overall community composition did not show differences traceable to the nature of the mineral substrate, we detected specialization among particular euendolithic cyanobacterial clades towards the type of substrate they excavate but only at the OTU phylogenetic level, implying that close relatives have specialized recurrently into particular substrates. The cationic mineral component was determinant in this preference, suggesting the existence in nature of alternatives to the boring mechanism described in culture that is based exclusively on transcellular calcium transport.
Standard filtration practices may significantly distort planktonic microbial diversity estimates.
Padilla, Cory C; Ganesh, Sangita; Gantt, Shelby; Huhman, Alex; Parris, Darren J; Sarode, Neha; Stewart, Frank J
2015-01-01
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05-0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review
Hardoim, Cristiane C. P.; Costa, Rodrigo
2014-01-01
Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed. PMID:25272328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labonté, Jessica M.; Swan, Brandon K.; Poulos, Bonnie
Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. Furthermore, a combination of comparative genomics, metagenomic fragmentmore » recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. This study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities.« less
Following Carbon Isotopes from Methane to Molecules
NASA Astrophysics Data System (ADS)
Freeman, K. H.
2017-12-01
Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.
Necromass as a source of energy to microorganisms in marine sediments.
NASA Astrophysics Data System (ADS)
Bradley, J.; Amend, J.; LaRowe, D.
2017-12-01
Marine sediments constitute one of the largest, most energy-limited biospheres on Earth. Despite increasing exploration and interest characterizing microbial communities in marine sediments, the production and role of microbial dead-matter (necromass) has largely been overlooked. Necromass is produced on a global scale, yet its significance as a power source to heterotrophic microorganisms remains unknown. We developed a physical, bio-energetic and geochemical model to quantify the total power supply from necromass oxidation and the total power demand of living microorganisms in marine sediments. This model is first applied to sediments from the oligotrophic South Pacific Gyre (SPG), where organic carbon and biomass concentrations are extremely low, yet microorganisms persist for millions of years in some of the lowest energy states on Earth. We show that necromass does not supply sufficient power to support the total demands of the living community (<39%) at SPG. Application of our model on a global scale, however, shows that necromass produced and subsequently oxidized can provide sufficient power to satisfy the maintenance demands of microorganisms in marine sediments for up to 60,000 years following burial. Our model assumes that all counted cells are viable. Yet, if only a fraction of counted cells are alive, the role of necromass as an electron donor in fueling microbial metabolisms is even greater. This new insight requires a reassessment of carbon fluxes in the deep biosphere. By extension, we also demonstrate a mechanism for microbial communities to persist by oxidizing necromass over geological timescales, and thereby endure unfavorable, low-energy settings that might be analogous to conditions on early Earth and on other planetary bodies.
NASA Astrophysics Data System (ADS)
Stern, Rowena F.; Picard, Kathryn T.; Hamilton, Kristina M.; Walne, Antony; Tarran, Glen A.; Mills, David; McQuatters-Gollop, Abigail; Edwards, Martin
2015-09-01
There is a paucity of data on long-term, spatially resolved changes in microbial diversity and biogeography in marine systems, and yet these organisms underpin fundamental ecological processes in the oceans affecting socio-economic values of the marine environment. We report results from a new autonomous Water and Microplankton Sampler (WaMS) that is carried within the Continuous Plankton Recorder (CPR). Whilst the CPR with its larger mesh size (270 μm), is designed to capture larger plankton, the WaMS was designed as an additional device to capture plankton below 50 μm and delicate larger species, often destroyed by net sampling methods. A 454 pyrosequencing and flow cytometric investigation of eukaryotic microbes using the partial 18S rDNA from thirteen WaMS samples collected over three months in the English Channel revealed a wide diversity of organisms. Alveolates, Fungi, and picoplanktonic Chlorophytes were the most common lineages captured despite the small sample volumes (200-250 ml). The survey also identified Cercozoa and MAST heterotrophic Stramenopiles, normally missed in microscopic-based plankton surveys. The most common was the likely parasitic LKM11 Rozellomycota lineage which comprised 43.2% of all reads and are rarely observed in marine pelagic surveys. An additional 9.5% of reads belonged to other parasitic lineages including marine Syndiniales and Ichthyosporea. Sample variation was considerable, indicating that microbial diversity is spatially or temporally patchy. Our study has shown that the WaMS sampling system is autonomous, versatile and robust, and due to its deployment on the established CPR network, is a cost-effective monitoring tool for microbial diversity for the detection of smaller and delicate taxa.
Lipids as paleomarkers to constrain the marine nitrogen cycle
Rush, Darci
2017-01-01
Summary Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction‐oxidation transformations of bio‐available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio‐available nitrogen species. As most microorganisms are soft‐bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically‐important cycle, and provides examples of biomarker applications in the geological past. PMID:28142226
Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products
Corinaldesi, Cinzia; Barone, Giulio; Marcellini, Francesca; Dell’Anno, Antonio; Danovaro, Roberto
2017-01-01
The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields. PMID:28417932
Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products.
Corinaldesi, Cinzia; Barone, Giulio; Marcellini, Francesca; Dell'Anno, Antonio; Danovaro, Roberto
2017-04-12
The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields.
NASA Technical Reports Server (NTRS)
Morris, Penny A.; Wentworth, Susan J.; Nelman, Mayra; Byrne, Monica; Longazo, Teresa; Galindo, Charles; McKay, David S.; Sams, Clarence
2003-01-01
Terrestrial biotas from microbially dominated hypersaline environments will help us understand microbial fossilization processes. Hypersaline tolerant biota from Storr's Lake, San Salvador Island (Bahamas), Mono Lake (California), and the Dead Sea (Israel) represent marine and nonmarine sites for comparative studies of potential analogs for interpreting some Mars meteorites and Mars sample return rocks [1,2,3,4,5,6]. The purpose of this study is to compare microbial fossilization processes, the dominant associated minerals, and potential diagenic implications.
Tebben, Jan; Tapiolas, Dianne M.; Motti, Cherie A.; Abrego, David; Negri, Andrew P.; Blackall, Linda L.; Steinberg, Peter D.; Harder, Tilmann
2011-01-01
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae. PMID:21559509
SEAGRASS RHIZOSPHERE MICROBIAL COMMUNITIES
Devereux, Richard. 2005. Seagrass Rhizosphere Microbial Communities. In: Interactions Between Macro- and Microorganisms in Marine Sediments. E. Kristense, J.E. Kostka and R.H. Haese, Editors. American Geophysical Union, Washington, DC. p199-216. (ERL,GB 1213).
Seagrasses ...
Hawley, Alyse K; Kheirandish, Sam; Mueller, Andreas; Leung, Hilary T C; Norbeck, Angela D; Brewer, Heather M; Pasa-Tolic, Ljiljana; Hallam, Steven J
2013-01-01
Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics. © 2013 Elsevier Inc. All rights reserved.
Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.; Deng, Y.; Nostrand, J.D. Van
2011-06-15
The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfurmore » and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.« less
Inskeep, William P.; Jay, Zackary J.; Tringe, Susannah G.; Herrgård, Markus J.; Rusch, Douglas B.
2013-01-01
The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) “filamentous streamer” communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments. PMID:23653623
Key Concepts in Microbial Oceanography
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A
2008-12-01
The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence (Santa Cruz Boardwalk); R Foster, S Mansergh and P Moisander (UC Santa Cruz); A Culley, K Doggett, J Edmonds, A Eiler, A Fong, D Hayakawa, D Karl, P Kemp, B Li, N Puniwai, B Wai, and S Wilson (U Hawaii); J Becker and M Nieto-Cid (WHOI); M McCaffrey (CIRES).
Biomedical Applications of Enzymes From Marine Actinobacteria.
Kamala, K; Sivaperumal, P
Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.
Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation.
Marques, Catarina R
2016-09-15
The recent awareness of the huge relevance of marine resources and ecological services is driving regulatory demands for their protection from overwhelming contaminants, such as metals/metalloids. These contaminants enter and accumulate in different marine niches, hence deeply compromising their quality and integrity. Bioremediation has been flourishing to counteract metal/metalloid impacts, since it provides cost-effective and sustainable options by relying on ecology-based technologies. The potential of marine microbes for metal/metalloid bioremediation is the core of many studies, due to their high plasticity to overcome successive environmental hurdles. However, any thorough review on the advances of metal/metalloid bioremediation in marine environments was so far unveiled. This review is designed to (i) outline the characteristics and potential of marine microbes for metal/metalloid bioremediation, (ii) describe the underlying pathways of resistance and detoxification, as well as useful methodologies for their characterization, (iii) identify major bottlenecks on metal/metalloid bioremediation with marine microbes, (iv) present alternative strategies based on microbial consortia and engineered microbes for enhanced bioremediation, and (v) propose key research avenues to keep pace with a changing society, science and economy in a sustainable manner. Copyright © 2016 Elsevier B.V. All rights reserved.
New Ediacara fossils preserved in marine limestone and their ecological implications
Chen, Zhe; Zhou, Chuanming; Xiao, Shuhai; Wang, Wei; Guan, Chengguo; Hua, Hong; Yuan, Xunlai
2014-01-01
Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551–541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. PMID:24566959
New Ediacara fossils preserved in marine limestone and their ecological implications.
Chen, Zhe; Zhou, Chuanming; Xiao, Shuhai; Wang, Wei; Guan, Chengguo; Hua, Hong; Yuan, Xunlai
2014-02-25
Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551-541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation.
Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean.
Romera-Castillo, Cristina; Pinto, Maria; Langer, Teresa M; Álvarez-Salgado, Xosé Antón; Herndl, Gerhard J
2018-04-12
Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of heterotrophic microbes. Our estimates indicate that globally up to 23,600 metric tons of DOC are leaching from marine plastics annually. About 60% of it is available to microbial utilization in less than 5 days. If exposed to solar radiation, however, this DOC becomes less labile. Thus, plastic pollution of marine surface waters likely alters the composition and activity of the base of the marine food webs. It is predicted that plastic waste entering the ocean will increase by a factor of ten within the next decade, resulting in an increase in plastic-derived DOC that might have unaccounted consequences for marine microbes and for the ocean system.
Biogeography of serpentinite-hosted microbial ecosystems
NASA Astrophysics Data System (ADS)
Brazelton, W.; Cardace, D.; Fruh-Green, G.; Lang, S. Q.; Lilley, M. D.; Morrill, P. L.; Szponar, N.; Twing, K. I.; Schrenk, M. O.
2012-12-01
Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). To date, however, the "serpentinite microbiome" is poorly constrained- almost nothing is known about the microbial diversity endemic to rocks actively undergoing serpentinization. Through the Census of Deep Life, we have obtained 16S rRNA gene pyrotag sequences from fluids and rocks from serpentinizing ophiolites in California, Canada, and Italy. The samples include high pH serpentinite springs, presumably representative of deeper environments within the ophiolite complex, wells which directly access subsurface aquifers, and rocks obtained from drill cores into serpentinites. These data represent a unique opportunity to examine biogeographic patterns among a restricted set of microbial taxa that are adapted to similar environmental conditions and are inhabiting sites with related geological histories. In general, our results point to potentially H2-utilizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These general taxonomic and biogeochemical trends were also observed in seafloor Lost City hydrothermal chimneys, indicating that we are beginning to identify a core serpentinite microbial community that spans marine and continental settings.
Microbial seascapes revisited.
DeLong, E F
2001-06-01
A remarkable array of new discoveries is emerging from studies of naturally occurring marine microbes. These discoveries originate from novel applications of evolving technologies, ranging from molecular phylogenetics to stable isotope analyses, to advanced microscopic techniques, to genomics. As a consequence, new perspectives on the natural history of marine microbes, the inseparable nature of the geological and biological worlds, and a plethora of unexpected new genotypes, phenotypes and physiologies are now being revealed. As our observations of naturally occurring microbes become increasingly more sophisticated, so will theory, technical applications and predictive capabilities in microbial ecology.
Gertler, Christoph; Bargiela, Rafael; Mapelli, Francesca; Han, Xifang; Chen, Jianwei; Hai, Tran; Amer, Ranya A; Mahjoubi, Mouna; Malkawi, Hanan; Magagnini, Mirko; Cherif, Ameur; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Daffonchio, Daniele; Ferrer, Manuel; Golyshin, Peter N
2015-10-01
Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria.
Gallego, Sara; Vila, Joaquim; Tauler, Margalida; Nieto, José María; Breugelmans, Philip; Springael, Dirk; Grifoll, Magdalena
2014-07-01
Marine microbial consortium UBF, enriched from a beach polluted by the Prestige oil spill and highly efficient in degrading this heavy fuel, was subcultured in pyrene minimal medium. The pyrene-degrading subpopulation (UBF-Py) mineralized 31 % of pyrene without accumulation of partially oxidized intermediates indicating the cooperation of different microbial components in substrate mineralization. The microbial community composition was characterized by culture dependent and PCR based methods (PCR-DGGE and clone libraries). Molecular analyses showed a highly stable community composed by Alphaproteobacteria (84 %, Breoghania, Thalassospira, Paracoccus, and Martelella) and Actinobacteria (16 %, Gordonia). The members of Thalasosspira and Gordonia were not recovered as pure cultures, but five additional strains, not detected in the molecular analysis, that classified within the genera Novosphingobium, Sphingopyxis, Aurantimonas (Alphaproteobacteria), Alcanivorax (Gammaproteobacteria) and Micrococcus (Actinobacteria), were isolated. None of the isolates degraded pyrene or other PAHs in pure culture. PCR amplification of Gram-positive and Gram-negative dioxygenase genes did not produce results with any of the cultured strains. However, sequences related to the NidA3 pyrene dioxygenase present in mycobacterial strains were detected in UBF-Py consortium, suggesting the representative of Gordonia as the key pyrene degrader, which is consistent with a preeminent role of actinobacteria in pyrene removal in coastal environments affected by marine oil spills.
2016-01-01
Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736
Satellite remote sensing data can be used to model marine microbial metabolite turnover
Larsen, Peter E; Scott, Nicole; Post, Anton F; Field, Dawn; Knight, Rob; Hamada, Yuki; Gilbert, Jack A
2015-01-01
Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes' predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value <10−6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ∼3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology. PMID:25072414
Marine sources influence fog bioaerosol composition in Namibia and Maine
NASA Astrophysics Data System (ADS)
Evans, S. E.; Dueker, E.; Logan, J. R. V.; Weathers, K. C.
2017-12-01
Organic aerosol particles act as condensation nuclei for fogs and clouds (CCN) and are main determinants of fog evolution, chemical processing, and overall aerosol-fog-cloud interactions. Recent work has confirmed the presence of marine bioaerosols, but little is known about their sources, transport, taxonomic diversity or viability. The few studies that have characterized bioaerosols in fog have been limited to culture-based approaches that capture only a fraction of microbial diversity. We characterized fungal and bacterial communities in the fog in two iconic fog systems, the Coast of Maine (USA) and the Namib Desert (Namibia). The biology of fog in both systems was diverse and distinct, by geography, from dry aerosols, and from local sources. The local environment had a dominant influence on fog in both the Namib and Maine; in particular, the biology of fog in Maine, which was collected near the coast, was more similar to microbial communities from the ocean surface. In both systems, differences between pre- and post-fog aerosol communities suggest that fog events can significantly alter microbial aerosol diversity and composition. This insight into the microbial composition of fog indicates that its origin and frequency has the potential to influence the number and diversity of microorganisms that settle in a given environment, and the composition of microbial aerosol communities in ambient or clear conditions. Here we suggest that fog microbes can possess specific traits that enhance nucleation, altering the transport and deposition of marine- and soil-derived organic matter in terrestrial systems.
Satellite remote sensing data can be used to model marine microbial metabolite turnover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter E.; Scott, Nicole; Post, Anton F.
Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes’ predicted relativemore » abundance was highly correlated (Pearson Correlation 0.72, P-value <10-6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ~3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology.« less
Marine Metagenome as A Resource for Novel Enzymes.
Alma'abadi, Amani D; Gojobori, Takashi; Mineta, Katsuhiko
2015-10-01
More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Genomic perspectives in microbial oceanography.
DeLong, Edward F; Karl, David M
2005-09-15
The global ocean is an integrated living system where energy and matter transformations are governed by interdependent physical, chemical and biotic processes. Although the fundamentals of ocean physics and chemistry are well established, comprehensive approaches to describing and interpreting oceanic microbial diversity and processes are only now emerging. In particular, the application of genomics to problems in microbial oceanography is significantly expanding our understanding of marine microbial evolution, metabolism and ecology. Integration of these new genome-enabled insights into the broader framework of ocean science represents one of the great contemporary challenges for microbial oceanographers.
Microbial communities in the reef water at Kham Island, lower Gulf of Thailand.
Somboonna, Naraporn; Wilantho, Alisa; Monanunsap, Somchai; Chavanich, Suchana; Tangphatsornruang, Sithichoke; Tongsima, Sissades
2017-01-01
Coral reefs are among the most biodiverse habitats on Earth, but knowledge of their associated marinemicrobiome remains limited. To increase the understanding of the coral reef ecosystem in the lower Gulf of Thailand, this study utilized 16S and 18S rRNA gene-based pyrosequencing to identify the prokaryotic and eukaryotic microbiota present in the reef water at Kham Island, Trat province, Thailand (N6.97 E100.86). The obtained result was then compared with the published microbiota from different coral reef water and marine sites. The coral reefs at Kham Island are of the fringe type. The reefs remain preserved and abundant. The community similarity indices (i.e., Lennon similarity index, Yue & Clayton similarity index) indicated that the prokaryotic composition of Kham was closely related to that of Kra, another fringing reef site in the lower Gulf of Thailand, followed by coral reef water microbiota at GS048b (Cooks Bay, Fr. Polynesia), Palmyra (Northern Line Islands, United States) and GS108b (Coccos Keeling, Australia), respectively. Additionally, the microbial eukaryotic populations at Kham was analyzed and compared with the available database at Kra. Both eukaryotic microbiota, in summer and winter seasons, were correlated. An abundance of Dinophysis acuminata was noted in the summer season, in accordance with its reported cause of diarrhoeatic shellfish outbreak in the summer season elsewhere. The slightly lower biodiversity in Kham than at Kra might reflect the partly habitat difference due to coastal anthropogenic activities and minor water circulation, as Kham locates close to the mainland and is surrounded by islands (e.g., Chang and Kut islands). The global marine microbiota comparison suggested relatively similar microbial structures among coral sites irrespective of geographical location, supporting the importance of coral-associated marine microbiomes, and Spearman's correlation analysis between community membership and factors of shore distance and seawater temperature indicated potential correlation of these factors ( p -values < 0.05) with Kham, Kra, and some other coral and coastal sites. Together, this study provided the second marine microbial database for the coral reef of the lower Gulf of Thailand, and a comparison of the coral-associated marine microbial diversity among global ocean sites.
Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis
Trindade-Silva, Amaro E.; Rua, Cintia; Silva, Genivaldo G. Z.; Dutilh, Bas E.; Moreira, Ana Paula B.; Edwards, Robert A.; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Vasconcelos, Ana Tereza; Berlinck, Roberto G. S.; Thompson, Fabiano L.
2012-01-01
The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome. PMID:22768320
NASA Astrophysics Data System (ADS)
Harrison, B. K.; Bailey, J. V.
2013-12-01
Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.
ERIC Educational Resources Information Center
Roland, Sarah; Bahr, Michele; Olendzenski, Lorraine; Patterson, David J.
2005-01-01
Scientists at the Marine Biological Laboratory in Woods Hole, Massachusetts, have created micro*scope, a free, searchable knowledge environment for exploring the microbial world. Microbiology can easily be incorporated into the curriculum, because microbial communities are easy to access. Organisms grow quickly, making certain arrays of…
Wang, Ya-Fen; Tam, Nora Fung-Yee
2012-04-15
Changes of microbial community structure and its relationship with various environmental variables in surface marine sediments were examined for a one-year period after the removal of an old floating dock in Hong Kong SAR, South China. Temporal variations in the microbial community structure were clearly revealed by principal component analysis (PCA) of the microbial ester-linked fatty acid methyl ester (EL-FAME) profiles. The most obvious shift in microbial community structure was detected 6 months after the removal of the dock, although no significant decline in the levels of pollutants could be detected. As determined by EL-FAME profiles, the microbial diversity recovered and the predominance of gram-negative bacteria was gradually replaced by gram-positive bacteria and fungi in the impacted stations. With redundancy analysis (RDA), the concentration of total polycyclic aromatic hydrocarbons (PAHs) was found to be the second important determinant of microbial community structure, next to Time. The relative abundance of 18:1ω9c and hydroxyl fatty acids enriched in the PAH hot spots, whereas 16:1ω9 and 18:1ω9t were negatively correlated to total PAH concentration. The significant relationships observed between microbial EL-FAME profiles and pollutants, exampled by PAHs in the present study, suggested the potential of microbial community analysis in the assessment of the natural attenuation process in contaminated environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria
NASA Astrophysics Data System (ADS)
Amin, S. A.; Hmelo, L. R.; van Tol, H. M.; Durham, B. P.; Carlson, L. T.; Heal, K. R.; Morales, R. L.; Berthiaume, C. T.; Parker, M. S.; Djunaedi, B.; Ingalls, A. E.; Parsek, M. R.; Moran, M. A.; Armbrust, E. V.
2015-06-01
Interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape ecosystem diversity. In marine ecosystems, these interactions are difficult to study partly because the major photosynthetic organisms are microscopic, unicellular phytoplankton. Coastal phytoplankton communities are dominated by diatoms, which generate approximately 40% of marine primary production and form the base of many marine food webs. Diatoms co-occur with specific bacterial taxa, but the mechanisms of potential interactions are mostly unknown. Here we tease apart a bacterial consortium associated with a globally distributed diatom and find that a Sulfitobacter species promotes diatom cell division via secretion of the hormone indole-3-acetic acid, synthesized by the bacterium using both diatom-secreted and endogenous tryptophan. Indole-3-acetic acid and tryptophan serve as signalling molecules that are part of a complex exchange of nutrients, including diatom-excreted organosulfur molecules and bacterial-excreted ammonia. The potential prevalence of this mode of signalling in the oceans is corroborated by metabolite and metatranscriptome analyses that show widespread indole-3-acetic acid production by Sulfitobacter-related bacteria, particularly in coastal environments. Our study expands on the emerging recognition that marine microbial communities are part of tightly connected networks by providing evidence that these interactions are mediated through production and exchange of infochemicals.
Investigating the chemical preferences of marine microbes in situ at organismal scales
NASA Astrophysics Data System (ADS)
Lambert, B.; Raina, J. B.; Seymour, J.; Rinke, C.; Tyson, G. W.; Hugenholtz, P.; Stocker, R.
2016-02-01
The chemical preferences of marine microbes underpin many fundamental microbial functions, from the quest for nutrients to the attraction of pathogens to hosts. Our understanding of these processes is currently based solely on experiments with laboratory isolates, due to the difficulty of assaying chemical preferences in situ. The ISCA (In Situ Chemotaxis Assay) is a custom-built chip designed to assess the ability of marine microbes to respond to chemical cues in their natural environment. It consists of 25 wells, each connected to the outside seawater by one inlet port. Upon deployment, each well produces a controlled microplume of a desired chemical, to which microbes can respond by swimming into the well. Flow-cytometric, molecular analysis, and high-speed video microscopy allow determination of the number and identity of the responding microbes, providing unique links between microbial identity and chemical preferences. Here we present highly resolved spatiotemporal accumulation profiles with a model bacterium and chemoattractants as well as initial data from field deployments. These initial results indicate that the ISCA will be a valuable new tool for understanding microbial interactions in the natural environment.
Lipids as paleomarkers to constrain the marine nitrogen cycle.
Rush, Darci; Sinninghe Damsté, Jaap S
2017-06-01
Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio-available nitrogen species. As most microorganisms are soft-bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically-important cycle, and provides examples of biomarker applications in the geological past. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S
2017-11-01
The original publication of this Article included analysis of virus and microbial cell abundances and virus-to-microbial cell ratios. Data in the Article came from 25 studies intended to be exclusively from marine sites. However, 3 of the studies included in the original unified dataset were erroneously classified as marine sites during compilation. The records with mis-recorded longitude and latitude values were, in fact, taken from inland, freshwater sources. The three inland, freshwater datasets are ELA, TROUT and SWAT. The data from these three studies represent 163 of the 5,671 records in the original publication. In the updated version of the Article, all analyses have been recalculated using the same statistical analysis pipeline released via GitHub as part of the original publication. Removal of the three studies reduces the unified dataset to 5,508 records. Analyses involving all grouped datasets have been updated with changes noted in each figure. All key results remain qualitatively unchanged. All data and scripts used in this correction have been made available as a new, updated GitHub release to reflect the updated dataset and figures.
Active fungi amidst a marine subsurface RNA paleome
NASA Astrophysics Data System (ADS)
Orsi, W.; Biddle, J.; Edgcomb, V.
2012-12-01
The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Since extracellular DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA signatures by amplicon pyrosequencing, metazoan, plant, and diatom rRNA signatures were recovered from marine sediments up to 2.7 million years old, suggesting that rRNA may be much more stable than previously considered in the marine subsurface. This finding confirms the concept of a paleome, extending it to include rRNA. Within the same dataset, unique profiles of fungi were found across a range of marine subsurface provinces exhibiting statistically significant correlations with total organic carbon (TOC), sulfide, and dissolved inorganic carbon (DIC). Sequences from metazoans, plants and diatoms showed different correlation patterns, consistent with a depth-controlled paleome. The fungal correlations with geochemistry allow the inference that some fungi are active and adapted for survival in the marine subsurface. A metatranscriptomic analysis of fungal derived mRNA confirms that fungi are metabolically active and utilize a range of organic and inorganic substrates in the marine subsurface.
Microbial Studies of Biofouling of Treated and Untreated Wood Pilings in the Marine Environment.
1986-02-28
into tropical marine waters. After that, little or no slowing of biofouling can be detected. The wood boring invertebrate , Limnoria, appears to develop a...Malins. 1977. Toxicity and metabolism of naph- thalene: a study with marine larval invertebrates . Proc. Soc. Exptl. Biol. Med. 154: 151. de Serres...of Biofouling of Treated FINAL REPORT ".- L and Untreated Wood Pilings in the ORG.RPORT.UMBEco Marine Environment . PoRMG O...: * I. AUTMOR(6) G
TEMPORAL VARIABILITY OF MICROBIAL INDICATORS OF FECAL CONTAMINATION OF MARINE AND FRESHWATER BEACHES
Monitoring methods for microbial indicators of fecal contamination are an integral component for protecting the health of swimmers exposed to potentially contaminated bathing beach waters. The design of monitoring systems which will accurately characterize the quality of water is...
Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute
2013-01-01
Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems. PMID:23842652
Dang, Hongyue; Chen, Chen-Tung A.
2017-01-01
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field. PMID:28769878
Shedding light on the Global Ocean microbiome with algorithms and data collection
NASA Astrophysics Data System (ADS)
Lauro, F.; Ostrowski, M.; Chénard, C.; Acerbi, E.; Paulsen, I.; Jensen, R.
2016-02-01
In the Global Oceans, the marine microbiome plays a critical role in biogeochemical cycling of nutrients, but surveying marine microbial communities requires ship time for sample collection, economically constraining the number of samples collected. An integrative understanding of the microbiome's activity and performance requires the collection of high-density data, both temporally and spatially in a cost-effective way. We have overcome this bottleneck by crowdsourcing the data collection to vessels of opportunity, including bluewater sailing yachts. Sailors know the oceans, and experience first-hand the declines in ocean productivity and the effects of pollution and climate change. Moreover, simply the ability to sample a microbial community during anomalous or inclement weather conditions is a major advance in sampling strategy. Our approach inherently incorporates the benefit of outreach and participation of people in scientific research, gaining positive media attention for sailors, scientists and concerned citizens alike. We have tested the basic methods during a 2013 Indian Ocean Concept Cruise, from Cape Town to Singapore, performing experimental work and reaching sampling locations inaccessible to traditional Oceanographic Vessels. At the same time we developed a small, yacht-adapted automated sampling device that takes a variety of biological and chemical measurements. In 2015 our first beta-cruisers sampled the Pacific Ocean in the first ever citizen-oceanography transect at high and low latitudes in both hemispheres. The collected samples were characterized with next-gen sequencing technology and analysed with a combination of novel algorithmic approaches. With big data management, machine learning algorithms and agent-based models we show that it is possible to deconvolute the complexity of the Ocean Microbiome for the scientific management of fisheries, marine protected areas and preservation of the oceans and seas for generations to come.
Archean Microbial Mat Communities
NASA Astrophysics Data System (ADS)
Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian
2011-05-01
Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.
Meng, Yao; Fu, Yu-bin; Liang, Sheng-kang; Chen, Wei; Liu, Zhao-hui
2015-08-01
Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.
Gobet, Angélique; Mest, Laëtitia; Perennou, Morgan; Dittami, Simon M; Caralp, Claire; Coulombet, Céline; Huchette, Sylvain; Roussel, Sabine; Michel, Gurvan; Leblanc, Catherine
2018-03-27
Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to products assimilable by the host or (ii) may have acquired these functions through gene transfer from the aerobic algal microbiota.
Rua, Cintia P J; de Oliveira, Louisi S; Froes, Adriana; Tschoeke, Diogo A; Soares, Ana Carolina; Leomil, Luciana; Gregoracci, Gustavo B; Coutinho, Ricardo; Hajdu, Eduardo; Thompson, Cristiane C; Berlinck, Roberto G S; Thompson, Fabiano L
2018-03-15
Marine sponge holobionts harbor complex microbial communities whose members may be the true producers of secondary metabolites accumulated by sponges. Bromopyrrole alkaloids constitute a typical class of secondary metabolites isolated from sponges that very often display biological activities. Bromine incorporation into secondary metabolites can be catalyzed by either halogenases or haloperoxidases. The diversity of the metagenomes of sponge holobiont species containing bromopyrrole alkaloids (Agelas spp. and Tedania brasiliensis) as well as holobionts devoid of bromopyrrole alkaloids spanning in a vast biogeographic region (approx. Seven thousand km) was studied. The origin and specificity of the detected halogenases was also investigated. The holobionts Agelas spp. and T. brasiliensis did not share microbial halogenases, suggesting a species-specific pattern. Bacteria of diverse phylogenetic origins encoding halogenase genes were found to be more abundant in bromopyrrole-containing sponges. The sponge holobionts (e.g., Agelas spp.) with the greatest number of sequences related to clustered, interspaced, short, palindromic repeats (CRISPRs) exhibited the fewest phage halogenases, suggesting a possible mechanism of protection from phage infection by the sponge host. This study highlights the potential of phages to transport halogenases horizontally across host sponges, particularly in more permissive holobiont hosts, such as Tedania spp.
Santos, L; Santos, E B H; Dias, J M; Cunha, A; Almeida, A
2014-08-01
The influence of photochemical transformations of chromophoric dissolved organic matter (CDOM) on microbial communities was evaluated in the estuarine system Ria de Aveiro. Two sites, representative of the marine and brackish water zones of the estuary, were surveyed regularly in order to determine seasonal and vertical profiles of variation of CDOM properties. Optical parameters of CDOM indicative of aromaticity and molecular weight were used to establish CDOM sources, and microbial abundance and activity was characterized. Additionally, microcosm experiments were performed in order to simulate photochemical reactions of CDOM and to evaluate microbial responses to light-induced changes in CDOM composition. The CDOM of the two estuarine zones showed different spectral characteristics, with significantly higher values of the specific ultra-violet absorbance at 254 nm (SUVA254) (5.5 times) and of the absorption coefficient at 350 nm (a350) (12 times) and lower SR (S275-295/S350-400) ratio at brackish water compared with the marine zone, reflecting the different amounts and prevailing sources of organic matter, as well as distinct riverine and oceanic influences. At the marine zone, the abundance of bacteria and the activity of Leu-AMPase correlated with a350 and a254, suggesting a microbial contribution to the HMW CDOM pool. The irradiation of DOM resulted in a decrease of the values of a254 and a350 and an increase of the slope S275-295 and of the ratios E2 : E3 (a250/a365) and SR, which in turn increase its bioavailability. However, the extent of photoinduced transformations and microbial responses was dependent on the initial optical characteristics of CDOM. In Ria de Aveiro both photochemical and microbial processes yielded optical changes in CDOM and the overall results of these combined processes determine the fate of CDOM in the estuarine system and have an influence on local productivity and in adjacent coastal areas.
Radjasa, Ocky K.; Vaske, Yvette M.; Navarro, Gabriel; Vervoort, Hélène C.; Tenney, Karen; Linington, Roger G.; Crews, Phillip
2011-01-01
Coral reefs are among the most productive marine ecosystems and are the source of a large group of structurally unique biosynthetic products. Annual reviews of marine natural products continue to illustrate that the most prolific source of bioactive compounds consist of coral reef invertebrates—sponges, ascidians, mollusks, and bryozoans. This account examines recent milestone developments pertaining to compounds from invertebrates designated as therapeutic leads for biomedical discovery. The focus is on the secondary metabolites, their inspirational structural scaffolds and the possible role of microorganism associants in their biosynthesis. Also important are the increasing concerns regarding the collection of reef invertebrates for the discovery process. The case examples considered here will be useful to insure that future research to unearth bioactive invertebrate-derived compounds will be carried out in a sustainable and environmentally conscious fashion. Our account begins with some observations pertaining to the natural history of these organisms. Many still believe that a serious obstacle to the ultimate development of a marine natural product isolated from coral reef invertebrates is the problem of compound supply. Recent achievements through total synthesis can now be drawn on to forcefully cast this myth aside. The tools of semisynthesis of complex natural products or insights from SAR efforts to simplify an active pharmacophore are at hand and demand discussion. Equally exciting is the prospect that invertebrate-associated micro-organisms may represent the next frontier to accelerate the development of high priority therapeutic candidates. Currently in the United States there are two FDA approved marine-derived therapeutic drugs and two others that are often cited as being marine-inspired. This record will be examined first followed by an analysis of a dozen of our favorite examples of coral reef invertebrate natural products having therapeutic potential. The record of using complex scaffolds of marine invertebrate products as the starting point for development will be reviewed by considering eight case examples. The potential promise of developing invertebrate-derived micro-organisms as the starting point for further exploration of therapeutically relevant structures is considered. Also significant is the circumstance that there are some 14 sponge-derived compounds that are available to facilitate fundamental biological investigations. PMID:21835627
Effects of Fluid Environment on Microbial Uptake Kinetics
1990-09-26
Marine snow parti- is crucial for the performance of all biological wastewater cles, large amorphous aggregates that form in marine sys - treatment...particle trajectories in computer models (Tambo and Wata- nabe 1979). These computer-generated aggregates, de- the %%ater column (Table 2). This analysis
Pereira, Florbela; Latino, Diogo A. R. S.; Gaudêncio, Susana P.
2014-01-01
The comprehensive information of small molecules and their biological activities in the PubChem database allows chemoinformatic researchers to access and make use of large-scale biological activity data to improve the precision of drug profiling. A Quantitative Structure–Activity Relationship approach, for classification, was used for the prediction of active/inactive compounds relatively to overall biological activity, antitumor and antibiotic activities using a data set of 1804 compounds from PubChem. Using the best classification models for antibiotic and antitumor activities a data set of marine and microbial natural products from the AntiMarin database were screened—57 and 16 new lead compounds for antibiotic and antitumor drug design were proposed, respectively. All compounds proposed by our approach are classified as non-antibiotic and non-antitumor compounds in the AntiMarin database. Recently several of the lead-like compounds proposed by us were reported as being active in the literature. PMID:24473174
Xie, Yunxuan; Qiu, Ning; Wang, Guangyi
2017-05-15
Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.
A multiomics approach to study the microbiome response to phytoplankton blooms.
Song, Liyan
2017-06-01
Phytoplankton blooms are predictable features of marine and freshwater habitats. Despite a good knowledge base of the environmental factors controlling blooms, complex interactions between the bacterial and archaeal communities and phytoplankton bloom taxa are only now emerging. Here, the current research on bacterial community's structural and functional response to phytoplankton blooms is reviewed and discussed and further research is proposed. More attention should be paid on structure and function of autotrophic bacteria and archaea during phytoplankton blooms. A multiomics integration approach is needed to investigate bacterial and archaeal communities' diversity, metabolic diversity, and biogeochemical functions of microbial interactions during phytoplankton blooms.
This chapter will provide the reader with a historical perspective of microbial water quality and monitoring of recreational waters, with special attention to marine environments. It will review the regulations that are currently in effect in the United States and discuss critic...
Microbial Ecology of Thailand Tsunami and Non-Tsunami Affected Terrestrials
Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades
2014-01-01
The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species. PMID:24710002
Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.
Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades
2014-01-01
The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.
NASA Astrophysics Data System (ADS)
Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.
2014-12-01
In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.
Nuzzo, Andrea; Hosseinkhani, Baharak; Boon, Nico; Zanaroli, Giulio; Fava, Fabio
2017-01-01
Biogenic palladium nanoparticles (bio-Pd NPs) represent a promising catalyst for organohalide remediation in water and sediments. However, the available information regarding their possible impact in case of release into the environment, particularly on the environmental microbiota, is limited. In this study the toxicity of bio-Pd NPs on the model marine bacterium V. fischeri was assessed. The impacts of different concentrations of bio-Pd NPs on the respiratory metabolisms (i.e. organohalide respiration, sulfate reduction and methanogenesis) and the structure of a PCB-dechlorinating microbial community enriched form a marine sediment were also investigated in microcosms mimicking the actual sampling site conditions. Bio-Pd NPs had no toxic effect on V. fischeri. In addition, they had no significant effects on PCB-dehalogenating activity, while showing a partial, dose-dependent inhibitory effect on sulfate reduction as well as on methanogenesis. No toxic effects by bio-Pd NPs could be also observed on the total bacterial community structure, as its biodiversity was increased compared to the not exposed community. In addition, resilience of the microbial community to bio-Pd NPs exposure was observed, being the final community organization (Gini coefficient) of samples exposed to bio-Pd NPs similar to that of the not exposed one. Considering all the factors evaluated, bio-Pd NPs could be deemed as non-toxic to the marine microbiota in the conditions tested. This is the first study in which the impact of bio-Pd NPs is extensively evaluated over a microbial community in relevant environmental conditions, providing important information for the assessment of their environmental safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones
Glass, Jennifer B.; Kretz, Cecilia B.; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L.; Buck, Kristen N.; Landing, William M.; Morton, Peter L.; Moffett, James W.; Giovannoni, Stephen J.; Vergin, Kevin L.; Stewart, Frank J.
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3−, NO2−, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu. PMID:26441925
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.
Glass, Jennifer B; Kretz, Cecilia B; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L; Buck, Kristen N; Landing, William M; Morton, Peter L; Moffett, James W; Giovannoni, Stephen J; Vergin, Kevin L; Stewart, Frank J
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.
NASA Astrophysics Data System (ADS)
Fang, J.
2015-12-01
Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.
Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes.
Ollivier, Patrick R L; Bahrou, Andrew S; Marcus, Sarah; Cox, Talisha; Church, Thomas M; Hanson, Thomas E
2008-12-01
Microbial resistance to tellurite, an oxyanion of tellurium, is widespread in the biosphere, but the geochemical significance of this trait is poorly understood. As some tellurite resistance markers appear to mediate the formation of volatile tellurides, the potential contribution of tellurite-resistant microbial strains to trace element volatilization in salt marsh sediments was evaluated. Microbial strains were isolated aerobically on the basis of tellurite resistance and subsequently examined for their capacity to volatilize tellurium in pure cultures. The tellurite-resistant strains recovered were either yeasts related to marine isolates of Rhodotorula spp. or gram-positive bacteria related to marine strains within the family Bacillaceae based on rRNA gene sequence comparisons. Most strains produced volatile tellurides, primarily dimethyltelluride, though there was a wide range of the types and amounts of species produced. For example, the Rhodotorula spp. produced the greatest quantities and highest diversity of volatile tellurium compounds. All strains also produced methylated sulfur compounds, primarily dimethyldisulfide. Intracellular tellurium precipitates were a major product of tellurite metabolism in all strains tested, with nearly complete recovery of the tellurite initially provided to cultures as a precipitate. Different strains appeared to produce different shapes and sizes of tellurium containing nanostructures. These studies suggest that aerobic marine yeast and Bacillus spp. may play a greater role in trace element biogeochemistry than has been previously assumed, though additional work is needed to further define and quantify their specific contributions.
Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.
Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M
2018-02-01
Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Biogeochemical models predict microbial mediated pathways but generally do not account for microorganisms. This study was undertaken to better understand relationships among microbial communities and N, S, Fe and C cycling in three lakes. Jackson Lakes formed from abandoned sand...
Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.
2014-01-01
The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961
Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E
2014-01-01
The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.
NASA Astrophysics Data System (ADS)
Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai
2016-04-01
The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (Δ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus slowing down C turnover, and indirectly changes microbial structure, namely relative fungal abundance, by reducing high-quality marine organic matter inputs.
Lytou, Anastasia E; Nychas, George-John E; Panagou, Efstathios Z
2018-02-21
Pomegranate juice is a product with enhanced functional properties that could be used as an alternative to traditional marination ingredients and effectively retard microbial growth along with providing an improved sensory result. In this study, two pomegranate based marinades were prepared for the marination of chicken breast fillets and the marinated samples were aerobically stored at 4 and 10°C for 9days. Raw, non-marinated chicken samples were used as control. Levels of total viable counts (TVC), Pseudomonas spp., Brochothrix thermosphacta, Enterobacteriaceae and lactic acid bacteria (LAB) were determined together with sensory assessment to evaluate the evolution of spoilage. The profile of organic acids and volatile compounds was also analyzed during storage. The shelf life of marinated samples was significantly extended compared to control samples at both storage temperatures (e.g., up to 5 and 6days for the pomegranate/lemon marinated samples stored at 4 and 10°C, respectively) as evaluated by both microbiological and sensory analyses. The profile of the organic acids and the volatilome of marinated and control samples were remarkably differentiated according to storage time, microbial load and sensory score. The findings of this study suggest that pomegranate juice could be used as a novel ingredient in marinades to improve the sensory attributes, while prolonging the shelf life of chicken meat. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.
2014-01-01
Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.
Role of Fe-Oxidizing Bacteria in Metal Bio-Corrosion in the Marine Environment
2015-06-30
laboratory. This system allowed control of Oj levels, pH, flow rates, and supplemental iron additions, and was designed so steel coupons could be...2012. The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Special Topics eBook for Frontiers in
Marine beaches are occasionally contaminated by unacceptably high levels of fecal indicator bacteria (FIB) that exceed EPA water quality criteria. Here we describe application of a recent version of the software package Virtual Beach tool (VB 3.0.6) to build and evaluate multiple...
Microbial Composition and Adaptations in Oligotrophic Inland Seas
NASA Astrophysics Data System (ADS)
Coleman, M.; Paver, S.; Anderson, M. R.; Vargas, G.
2016-02-01
The Laurentian Great Lakes comprise an interconnected freshwater system with certain areas resembling the oligotrophic open ocean in terms of productivity and nutrient availability. This resemblance creates an opportunity for comparing marine and Great Lake microorganisms to identify signatures of adaptation to low nutrient environments and re-evaluate differences between marine and freshwater microorganisms. We present results from the first comprehensive microbial characterization of all five Great Lakes. We compared community structure, genetic functional potential, and genome properties across the Great Lakes and other aquatic systems. Taxonomic and functional comparisons across lakes yielded three consistent groups: trophically distinct Lake Erie, Lakes Michigan and Huron, and Lakes Superior and Ontario. Lake metagenomic signatures were repeatedly differentiated by the presence of phage sequences and phage-related functional genes. We observed sequence similarity and synteny between contigs assembled from Great Lake metagenomes and genomes of marine organisms, including Nitrosopumilus sp. NF5, Synechococcus sp. RCC307 and Synechococcus phage S-SKS1. Assembly of metagenomic sequences additionally yielded large contigs from poorly characterized taxa. These results begin to fill the gap in our understanding of how nutrients, salinity, and other environmental factors shape microbial structure and function.
Marine and giant viruses as indicators of a marine microbial community in a riverine system.
Dann, Lisa M; Rosales, Stephanie; McKerral, Jody; Paterson, James S; Smith, Renee J; Jeffries, Thomas C; Oliver, Rod L; Mitchell, James G
2016-12-01
Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Kumagai, Yohei; Yoshizawa, Susumu; Nakajima, Yu; Watanabe, Mai; Fukunaga, Tsukasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Oshima, Kenshiro; Hattori, Masahira; Ikeuchi, Masahiko; Kogure, Kazuhiro; DeLong, Edward F; Iwasaki, Wataru
2018-05-01
Proteorhodopsin (PR) is a light-driven proton pump that is found in diverse bacteria and archaea species, and is widespread in marine microbial ecosystems. To date, many studies have suggested the advantage of PR for microorganisms in sunlit environments. The ecophysiological significance of PR is still not fully understood however, including the drivers of PR gene gain, retention, and loss in different marine microbial species. To explore this question we sequenced 21 marine Flavobacteriia genomes of polyphyletic origin, which encompassed both PR-possessing as well as PR-lacking strains. Here, we show that the possession or alternatively the lack of PR genes reflects one of two fundamental adaptive strategies in marine bacteria. Specifically, while PR-possessing bacteria utilize light energy ("solar-panel strategy"), PR-lacking bacteria exclusively possess UV-screening pigment synthesis genes to avoid UV damage and would adapt to microaerobic environment ("parasol strategy"), which also helps explain why PR-possessing bacteria have smaller genomes than those of PR-lacking bacteria. Collectively, our results highlight the different strategies of dealing with light, DNA repair, and oxygen availability that relate to the presence or absence of PR phototrophy.
Acidobacteria appear to dominate the microbiome of two sympatric Caribbean Sponges and one Zoanthid.
O'Connor-Sánchez, Aileen; Rivera-Domínguez, Adán J; Santos-Briones, César de los; López-Aguiar, Lluvia K; Peña-Ramírez, Yuri J; Prieto-Davo, Alejandra
2014-12-10
Marine invertebrate-associated microbial communities are interesting examples of complex symbiotic systems and are a potential source of biotechnological products. In this work, pyrosequencing-based assessment from bacterial community structures of sediments, two sponges, and one zoanthid collected in the Mexican Caribbean was performed. The results suggest that the bacterial diversity at the species level is higher in the sediments than in the animal samples. Analysis of bacterial communities' structure showed that about two thirds of the bacterial diversity in all the samples belongs to the phyla Acidobacteria and Proteobacteria. The genus Acidobacterium appears to dominate the bacterial community in all the samples, reaching almost 80% in the sponge Hyrtios. Our evidence suggests that the sympatric location of these benthonic species may lead to common bacterial structure features among their bacterial communities. The results may serve as a first insight to formulate hypotheses that lead to more extensive studies of sessile marine organisms' microbiomes from the Mexican Caribbean.
Haruta, Shin; Yoshida, Takehito; Aoi, Yoshiteru; Kaneko, Kunihiko; Futamata, Hiroyuki
2013-01-01
In the past couple of decades, molecular ecological techniques have been developed to elucidate microbial diversity and distribution in microbial ecosystems. Currently, modern techniques, represented by meta-omics and single cell observations, are revealing the incredible complexity of microbial ecosystems and the large degree of phenotypic variation. These studies propound that microbiological techniques are insufficient to untangle the complex microbial network. This minireview introduces the application of advanced mathematical approaches in combination with microbiological experiments to microbial ecological studies. These combinational approaches have successfully elucidated novel microbial behaviors that had not been recognized previously. Furthermore, the theoretical perspective also provides an understanding of the plasticity, robustness and stability of complex microbial ecosystems in nature. PMID:23995424
Wang, Yilong; Zhang, Yun; Hu, Yunfeng
2016-11-01
One novel microbial esterase PHE21 was cloned from the genome of Pseudomonas oryzihabitans HUP022 identified from the deep sea of the Western Pacific. PHE21 was heterologously expressed and functionally characterized to be a robust esterase which behaved high resistance to various metal ions, organic solvents, surfactants, and NaCl. Despite the fact that the two enantiomers of ethyl 3-hydroxybutyrate were hard to be enzymatically resolved before, we successfully resolved racemic ethyl 3-hydroxybutyrate through direct hydrolysis reactions and generated chiral ethyl (S)-3-hydroxybutyrate using esterase PHE21. After process optimization, the enantiomeric excess, the conversion rate, and the yield of desired product ethyl (S)-3-hydroxybutyrate could reach 99, 65, and 87 %, respectively. PHE21 is a novel marine microbial esterase with great potential in asymmetric synthesis as well as in other industries.
NASA Astrophysics Data System (ADS)
Emerson, J. B.; Brum, J. R.; Roux, S.; Bolduc, B.; Woodcroft, B. J.; Singleton, C. M.; Boyd, J. A.; Hodgkins, S. B.; Wilson, R.; Trubl, G. G.; Jang, H. B.; Crill, P. M.; Chanton, J.; Saleska, S. R.; Rich, V. I.; Tyson, G. W.; Sullivan, M. B.
2016-12-01
Methane and carbon dioxide emissions, which are under significant microbial control, provide positive feedbacks to climate change in thawing permafrost peatlands. Although viruses in marine systems have been shown to impact microbial ecology and biogeochemical cycling through host cell lysis, horizontal gene transfer, and auxiliary metabolic gene expression, viral ecology in permafrost and other soils remains virtually unstudied due to methodological challenges. Here, we identified viral sequences in 208 assembled bulk soil metagenomes derived from a permafrost thaw gradient in Stordalen Mire, northern Sweden, from 2010-2012. 2,048 viral populations were recovered, which genome- and network-based classification revealed to be largely novel, increasing known viral genera globally by 40%. Ecologically, viral communities differed significantly across the thaw gradient and by soil depth. Co-occurring microbial community composition, soil moisture, and pH were predictors of viral community composition, indicative of biological and biogeochemical feedbacks as permafrost thaws. Host prediction—achieved through clustered regularly interspaced short palindromic repeats (CRISPRs), tetranucleotide frequency patterns, and other sequence similarities to binned microbial population genomes—was able to link 38% of the viral populations to a microbial host. 5% of the implicated hosts were archaea, predominantly methanogens and ammonia-oxidizing Nitrososphaera, 45% were Acidobacteria or Verrucomicrobia (mostly predicted heterotrophic complex carbon degraders), and 21% were Proteobacteria, including methane oxidizers. Recovered viral genome fragments also contained auxiliary metabolic genes involved in carbon and nitrogen cycling. Together, these data reveal multiple levels of previously unknown viral contributions to biogeochemical cycling, including to carbon gas emissions, in peatland soils undergoing and contributing to climate change. This work represents a significant step towards understanding viral roles in microbially-mediated biogeochemical cycling in soil.
Thrash, J Cameron; Seitz, Kiley W; Baker, Brett J; Temperton, Ben; Gillies, Lauren E; Rabalais, Nancy N; Henrissat, Bernard; Mason, Olivia U
2017-09-12
Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called "dead zones," are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota , SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments- Parcubacteria (OD1) and Peregrinibacteria Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter. IMPORTANCE Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity such as fertilizer runoff result in algal blooms and therefore ample new carbon for aerobic microbial metabolism. Combined with strong stratification, microbial respiration reduces oxygen in shelf bottom waters to levels unfit for many animals (termed hypoxia). The nGOM shelf remains one of the largest eutrophication-driven hypoxic zones in the world, yet despite its potential as a model study system, the microbial metabolisms underlying and resulting from this phenomenon-many of which occur in bacterioplankton from poorly understood lineages-have received only preliminary study. Our work details the metabolic potential and gene expression activity for uncultivated lineages across several low DO sites in the nGOM, improving our understanding of the active biogeochemical cycling mediated by these "microbial dark matter" taxa during hypoxia. Copyright © 2017 Thrash et al.
USDA-ARS?s Scientific Manuscript database
Methods to monitor microbial contamination typically involve collecting discrete samples at specific time-points and analyzing for a single contaminant. While informative, many of these methods suffer from poor recovery rates and only provide a snapshot of the microbial load at the time of collectio...
Metagenome Sequencing of a Coastal Marine Microbial Community from Monterey Bay, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Ryan S.; Bryson, Sam; Kieft, Brandon
Heterotrophic microbes are critical components of aquatic food webs. Linkages between populations and the substrates they utilize are not well defined. Here we present the metagenome of microbial communities from the coastal Pacific Ocean exposed to various nutrient additions in order to better understand substrate utilization and partitioning in this environment.
Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...
Metagenome Sequencing of a Coastal Marine Microbial Community from Monterey Bay, California
Mueller, Ryan S.; Bryson, Sam; Kieft, Brandon; ...
2015-04-30
Heterotrophic microbes are critical components of aquatic food webs. Linkages between populations and the substrates they utilize are not well defined. Here we present the metagenome of microbial communities from the coastal Pacific Ocean exposed to various nutrient additions in order to better understand substrate utilization and partitioning in this environment.
Marquez, Gian Powell B; Reichardt, Wolfgang T; Azanza, Rhodora V; Klocke, Michael; Montaño, Marco Nemesio E
2013-04-01
Sea wrack (dislodged sea grasses and seaweeds) was used in biogas production. Fresh water scarcity in island communities where sea wrack could accumulate led to seawater utilization as liquid substrate. Three microbial seeds cow manure (CM), marine sediment (MS), and sea wrack-associated microflora (SWA) were explored for biogas production. The average biogas produced were 2172±156 mL (MS), 1223±308 mL (SWA) and 551±126 mL (CM). Though methane potential (396.9 mL(CH4) g(-1) volatile solid) computed from sea wrack proximate values was comparable to other feedstocks, highest methane yield was low (MS=94.33 mL(CH4) g(-1) VS). Among the microbial seeds, MS proved the best microbial source in utilizing sea wrack biomass and seawater. However, salinity (MS=42‰) observed exceeded average seawater salinity (34‰). Hence, methanogenic activity could have been inhibited. This is the first report on sea wrack biomass utilization for thalassic biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Marine crude-oil biodegradation: a central role for interspecies interactions
2012-01-01
The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such “microbial modules” interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons. PMID:22591596
Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean
Arrieta, Jesús M.; Duarte, Carlos M.; Sala, M. Montserrat; Dachs, Jordi
2016-01-01
Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget. PMID:26834717
Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean.
Arrieta, Jesús M; Duarte, Carlos M; Sala, M Montserrat; Dachs, Jordi
2015-01-01
Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.
Keswani, Anisha; Oliver, David M; Gutierrez, Tony; Quilliam, Richard S
2016-07-01
Marine plastic debris is well characterized in terms of its ability to negatively impact terrestrial and marine environments, endanger coastal wildlife, and interfere with navigation, tourism and commercial fisheries. However, the impacts of potentially harmful microorganisms and pathogens colonising plastic litter are not well understood. The hard surface of plastics provides an ideal environment for opportunistic microbial colonisers to form biofilms and might offer a protective niche capable of supporting a diversity of different microorganisms, known as the "Plastisphere". This biotope could act as an important vector for the persistence and spread of pathogens, faecal indicator organisms (FIOs) and harmful algal bloom species (HABs) across beach and bathing environments. This review will focus on the existent knowledge and research gaps, and identify the possible consequences of plastic-associated microbes on human health, the spread of infectious diseases and bathing water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Galgani, L.; Engel, A.
2015-12-01
The coastal upwelling system off Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. During the Meteor (M91) cruise to the Peruvian upwelling system in 2012, we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples at 38 stations determining DOC concentration, amino acid composition, marine gels, CDOM and bacterial and phytoplankton abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. We identified five fluorescent components of the CDOM pool, of which two had excitation/emission characteristics of protein-like fluorophores and were highly enriched in the SML. CDOM composition and changes in spectral slope properties suggested a local microbial release of HMW DOM directly in the SML as a response to light exposure in this extreme environment. Our results suggest that microbial and photochemical processes play an important role for the production, alteration and loss of optically active substances in the SML.
Microbial community composition along a 50 000-year lacustrine sediment sequence
Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D
2018-01-01
Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361
Antibiotic activity and microbial community of the temperate sponge, Haliclona sp.
Hoppers, A; Stoudenmire, J; Wu, S; Lopanik, N B
2015-02-01
Sessile marine invertebrates engage in a diverse array of beneficial interactions with bacterial symbionts. One feature of some of these relationships is the presence of bioactive natural products that can defend the holobiont from predation, competition or disease. In this study, we investigated the antimicrobial activity and microbial community of a common temperate sponge from coastal North Carolina. The sponge was identified as a member of the genus Haliclona, a prolific source of bioactive natural products, based on its 18S rRNA gene sequence. The crude chemical extract and methanol partition had broad activity against the assayed Gram-negative and Gram-positive pathogenic bacteria. Further fractionation resulted in two groups of compounds with differing antimicrobial activity, primarily against Gram-positive test organisms. There was, however, notable activity against the Gram-negative marine pathogen, Vibrio parahaemolyticus. Microbial community analysis of the sponge and surrounding sea water via denaturing gradient gel electrophoresis (DGGE) indicates that it harbours a distinct group of bacterial associates. The common temperate sponge, Haliclona sp., is a source of multiple antimicrobial compounds and has some consistent microbial community members that may play a role in secondary metabolite production. These data suggest that common temperate sponges can be a source of bioactive chemical and microbial diversity. Further studies may reveal the importance of the microbial associates to the sponge and natural product biosynthesis. © 2014 The Society for Applied Microbiology.
Functional tradeoffs underpin salinity-driven divergence in microbial community composition.
Dupont, Chris L; Larsson, John; Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R; Andersson, Anders F; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A A; Brami, Daniel; Badger, Jonathan H; Allen, Andrew E; Rusch, Douglas B; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J Craig; Bergman, Birgitta
2014-01-01
Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Hata, T.; Nishida, H.
2017-12-01
In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottesen, Elizabeth A.; Marin, Roman; Preston, Christina M.
Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically undersampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at roommore » temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities.« less
Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica.
Carr, S A; Vogel, S W; Dunbar, R B; Brandes, J; Spear, J R; Levy, R; Naish, T R; Powell, R D; Wakeham, S G; Mandernack, K W
2013-07-01
Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153-cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 10⁷ cells mL⁻¹ in the top ten centimeters of sediments. These densities are lower than those calculated for most near-shore sites but consistent with deep-sea locations with comparable sedimentation rates. The δ¹³C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ¹³C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from -2.5‰ to -3.7‰, while δ¹³C values for the corresponding sedimentary particulate OC (POC) varied from -26.2‰ to -23.1‰. The δ¹³C values of PLFAs ranged between -29‰ and -35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by β-, δ-, and γ-Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ¹³CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ¹³CDIC and δ¹³CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Suffridge, C.; Gomez-Consarnau, L.; Qu, P.; Tenenbaum, N.; Fu, F.; Hutchins, D. A.; Sanudo-Wilhelmy, S. A.
2016-02-01
The availability of B-vitamins has the ability to directly affect the dynamics of the marine microbial community. Here we show, for the first time, the connection between dissolved and intracellular B-vitamins in a marine environmental community. Two incubation experiments were conducted at a long-term study site (SPOT) in the San Pedro Basin off the coast of Los Angeles, CA. Experiments were conducted in oligotrophic, preupwelling conditions. Due to the 2015 El Niño event, the seasonal upwelling at SPOT did not occur, creating unusually nutrient depleted conditions. Vitamins B1, B7, and B12 were added in addition to macronutrients at concentrations similar to typical SPOT upwelling conditions. Intracellular and dissolved B-vitamin analyses were conducted to determine shifts in cellular B-vitamin requirements as a function of growth rate. We observed a significant bacterioplankton and phytoplankton growth responses with the addition of B-vitamins in a manner that appears to match the enzymatic requirements for these compounds (e.g. B1>B7>B12). Intracellular B-vitamin analysis of T0 samples support this observation, as all four forms of B12 were not detectable within cells, yet multiple forms of B1 and B7 were detected at or near levels previously reported. Treatments with B12 and macronutrients were observed to have the greatest growth rates. This finding, in addition to the apparent lack of intracellular B12 in the initial community, appears to indicate that the initial microbial community was limited by B12. The addition of each vitamin caused a distinct shift in the blooming microbial community. Our results demonstrate that B-vitamins strongly influence not only the growth rate, but also the species composition and species succession of the microbial community as a whole. Large-scale changes to upwelling regimes are predicted in the future ocean; our results indicate that B-vitamins will have a substantial role in controlling microbial community dynamics under these future conditions.
Vargas, Julio E.; Andrés, Sonia; Snelling, Timothy J.; López-Ferreras, Lorena; Yáñez-Ruíz, David R.; García-Estrada, Carlos; López, Secundino
2017-01-01
This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132), but the contrast comparing oil–supplemented diets with the control was significant (P = 0.039). Methane production was reduced (P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen. PMID:28676798
Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance
Rappé, Michael S.
2013-01-01
In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156
Lidbury, Ian; Kröber, Eileen; Zhang, Zhidong; Zhu, Yijun; Murrell, J Colin; Chen, Yin; Schäfer, Hendrik
2016-09-01
The volatile organosulfur compound, dimethylsulfide (DMS), plays an important role in climate regulation and global sulfur biogeochemical cycles. Microbial oxidation of DMS to dimethylsulfoxide (DMSO) represents a major sink of DMS in surface seawater, yet the underlying molecular mechanisms and key microbial taxa involved are not known. Here, we reveal that Ruegeria pomeroyi, a model marine heterotrophic bacterium, can oxidize DMS to DMSO using trimethylamine monooxygenase (Tmm). Purified Tmm oxidizes DMS to DMSO at a 1:1 ratio. Mutagenesis of the tmm gene in R. pomeroyi completely abolished DMS oxidation and subsequent DMSO formation. Expression of Tmm and DMS oxidation in R. pomeroyi is methylamine-dependent and regulated at the post-transcriptional level. Considering that Tmm is present in approximately 20% of bacterial cells inhabiting marine surface waters, particularly the marine Roseobacter clade and the SAR11 clade, our observations contribute to a mechanistic understanding of biological DMSO production in surface seawater. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Microbial Diversity in Extreme Marine Habitats and Their Biomolecules
Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara
2017-01-01
Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857
Wang, Peng; Zhang, Dun; Lu, Zhou; Sun, Shimei
2016-01-20
Microbially influenced corrosion (MIC) accelerates the failure of metal in a marine environment. In this research, slippery lubricant-infused porous surface (SLIPS) was designed on aluminum, and its great potential for inhibiting MIC induced by sulfate-reducing bacteria (SRB) was demonstrated in a simulated marine environment. The inhibition mechanism of SLIPS to MIC was proposed based on its effective roles in the suppression of SRB settlement and isolation effect to corrosive metabolites. The liquid-like property is demonstrated to be the major contributor to the suppression effect of SLIPS to SRB settlement. The effects of environmental factors (static and dynamic conditions) and lubricant type to SRB settlement over SLIPS were also investigated. It was indicated that the as-fabricated SLIPS can inhibit the SRB settlement in both static and dynamic marine conditions, and lubricant type presents a negligible effect on the SRB settlement. These results will provide a series of foundational data for the future practical application of SLIPS in the marine environment, and also a lubricant selecting instruction to construct SLIPS for MIC control.
NASA Astrophysics Data System (ADS)
Tyagi, P.
2014-12-01
To better understand the long-range atmospheric transport of microbial aerosols from Southeast Asia to the western North Pacific, marine aerosols were collected at a remote Island, Chichi-Jima on a biweekly basis during 1990-1993. These samples were investigated for the atmospheric abundances of hydroxy fatty acids (OH FAs). β-OH FAs are the major structural components of endotoxins in the outer membrane of Gram-negative bacteria (GNB) whereas w-OH FAs are present in cell walls of higher plants. Thus, we tested the applicability of the β-OH FAs (C10-C18) and ω-OH FAs (C16-C26) to assess the Gram-negative bacteria (GNB) and contribution of terrestrial higher plants, respectively. The average concentrations of β- and ω-OH FAs show pronounced seasonal variability with spring maximum (~301 ng/m-3 and ~ 272 ng/m-3, respectively). The concentrations of total OH FAs increased in winter/spring and decreased in summer/autumn, except for 1992-93. This seasonal trend can be interpreted by the atmospheric transport of microbial soil dust and higher plant metabolites from the Asian continent during winter/spring, when westerly winds dominate over the western North Pacific. The even carbon predominance of β- and ω-OH FAs (80 and 74 % of total) in marine aerosols could be explained by their significant contribution from GNB and terrestrial higher plants. These results have implications towards assessing the bacterial transport in the continental outflows. This study also confirms that β-OH FAs can be used as bacterial tracers in ambient aerosol samples.Keywords: β- and ω-hydroxy fatty acids, terrestrial biomarkers, marine aerosols, GC-MS
Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F
2013-01-01
Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488-494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle.
Scott, Nicole M.; Hess, Matthias; Bouskill, Nick J.; ...
2014-03-25
During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance ofmore » genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. Furthermore, these data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Nicole M.; Hess, Matthias; Bouskill, Nick J.
2014-03-25
During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance ofmore » genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longman, M.W.
1996-10-01
The Lower Mississippian Lodgepole carbonate buildup reservoir at Dickinson Field in Stark County, North Dakota, has been widely reported as being a Waulsortian (or Waulsortian-like) mound. The term {open_quotes}Waulsortian mound{close_quotes} is used for a variety of Early Mississippian carbonate buildups that share a number of features including an abundance of carbonate mud, a {open_quotes}framework{close_quotes} of organisms such as fenestrate bryozoans and crinoids that tended to trap or baffle sediment, and a general absence of marine-cemented reef framework. Although the age of the Lodgepole mound at Dickinson Field qualifies it to be a Waulsortian mound, petrographic study of cores reveals thatmore » the reservoir rocks are quite unlike those in true Waulsortian mounds. Instead of being dominated by carbonate mud, the Lodgepole mound core is dominated by marine cement. Furthermore, ostracods and microbial limestones are common in the mound core where they occur with crinoid debris and small amounts of bryozoan, coral, and brachiopod debris. The abundant microbial limestones and marine cement indicate that the Dickinson mound formed as a lithified reef on the sea floor rather than as a Waulsortian mud mound. The microbial limestones, marine cement, and common ostracods in the mount core, and the fact that the mound nucleated almost directly o top of the Bakken Shale, suggest that the Dickinson Lodgepole mound formed at the site of a submarine spring and gas seep.« less
Volatilization and Precipitation of Tellurium by Aerobic, Tellurite-Resistant Marine Microbes▿ †
Ollivier, Patrick R. L.; Bahrou, Andrew S.; Marcus, Sarah; Cox, Talisha; Church, Thomas M.; Hanson, Thomas E.
2008-01-01
Microbial resistance to tellurite, an oxyanion of tellurium, is widespread in the biosphere, but the geochemical significance of this trait is poorly understood. As some tellurite resistance markers appear to mediate the formation of volatile tellurides, the potential contribution of tellurite-resistant microbial strains to trace element volatilization in salt marsh sediments was evaluated. Microbial strains were isolated aerobically on the basis of tellurite resistance and subsequently examined for their capacity to volatilize tellurium in pure cultures. The tellurite-resistant strains recovered were either yeasts related to marine isolates of Rhodotorula spp. or gram-positive bacteria related to marine strains within the family Bacillaceae based on rRNA gene sequence comparisons. Most strains produced volatile tellurides, primarily dimethyltelluride, though there was a wide range of the types and amounts of species produced. For example, the Rhodotorula spp. produced the greatest quantities and highest diversity of volatile tellurium compounds. All strains also produced methylated sulfur compounds, primarily dimethyldisulfide. Intracellular tellurium precipitates were a major product of tellurite metabolism in all strains tested, with nearly complete recovery of the tellurite initially provided to cultures as a precipitate. Different strains appeared to produce different shapes and sizes of tellurium containing nanostructures. These studies suggest that aerobic marine yeast and Bacillus spp. may play a greater role in trace element biogeochemistry than has been previously assumed, though additional work is needed to further define and quantify their specific contributions. PMID:18849455
NASA Astrophysics Data System (ADS)
Giorgioni, M.; Jovane, L.; Millo, C.; Sawakuchi, H. O.; Bertassoli, D. J., Jr.; Gamba Romano, R.; Pellizari, V.; Castillo Franco, D.; Krusche, A. V.
2016-12-01
The Saco do Mamangua is a narrow and elongated gulf located along the southeastern coast of Brazil, in the state of Rio de Janeiro (RJ). It is surrounded by high relieves, which form a peculiar environment called riá, with little river input and limited water exchange with the Atlantic Ocean. These features make the Saco do Mamangua an ideal environment to study sedimentary carbon cycling under well-constrained boundary conditions in order to investigate if tropical coastal environments serve dominantly as potential carbon sinks or sources. In this work we integrate geochemical data from marine sediments and pore waters in the Saco do Mamangua with mapping of benthic microbial communities, in order to unravel the biogeochemical carbon cycling linked to the production of biogenic methane. Our results reveal that carbon cycling occurs in two parallel pathways. The Saco do Mamangua receives organic carbon both by surface runoff and by primary production in the water column. A large part of this organic carbon is buried within the sediment resulting in the production of biogenic methane, which gives rise to methane seepages at the sea floor. These methane seeps sustain methanotrophic microbial communities in the sediment pore water, but also escapes into the atmosphere by ebullition. Consequently, the sediments of Saco do Mamangua acts simultaneously as carbon sink and carbon source. Future work will allow us to accurately quantify the actual carbon fluxes and calculate the net carbon balance in the local environment.
Treatment with activated water by GlidArc technology of bacteria producing Biofouling
NASA Astrophysics Data System (ADS)
Hnatiuc, B.; Ghita, S.; Sabau, A.; Hnatiuc, M.; Dumitrache, C. L.; Wartel, M.
2015-02-01
Corrosion in marine environment is an actual problem, being a complex dynamic process influenced mainly by physical, chemical, microbiological and mechanical parameters. Around 70% of the maintenance costs of a ship are associated with the corrosion protection. Times for maintenance related to this phenomenon are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and for its reduction different methods could be applied, especially in the first part of its production. The atmospheric pressure non-thermal plasmas have been gaining an ever increasing interest for different biodecontamination applications and present potential utilisation in the control of biofouling and biodeterioration. They have a high efficiency of the antimicrobial treatment, including capacity to eradicate microbial biofilms. The adhesion microbial biofilm is mainly influenced by presence of bacteria from the liquid environment. That is why this work concerns the study of annihilation of maximum amount of bacteria from sea water, by using GlidArc technology that produces non-thermal plasma. Bacteria suspended in sea water are placed in contact with activated water. This water is activated by using GlidArc working in humid air. Experimental results refer to the number of different activated and inactivated marine organisms and their evolution, present in solution at certain time intervals after mixing different amounts of seawater with plasma activated water.
Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited)
NASA Astrophysics Data System (ADS)
Edwards, K. J.; Wheat, C. G.
2010-12-01
The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.
Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems
Decho, Alan W.; Gutierrez, Tony
2017-01-01
Microbial cells (i.e., bacteria, archaea, microeukaryotes) in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs) or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured ‘biofilm’ communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called ‘marine snow.’ Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs), sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS contribute to efficient trophic-transfer of environmental contaminants, and may provide a protective refugia for pathogenic cells within marine systems; one that enhances their survival/persistence. Finally, these secretions are prominent in ‘extreme’ environments ranging from sea-ice communities to hypersaline systems to the high-temperatures/pressures of hydrothermal-vent systems. This overview summarizes some of the roles of exopolymer in oceans. PMID:28603518
NASA Astrophysics Data System (ADS)
Glazer, B. T.; Chan, C. S. Y.; Mcallister, S.; Leavitt, A.; Emerson, D.
2015-12-01
Microbial mats are formed by microorganisms working in coordinated symbiosis, often benefitting the community by controlling the local geochemical or physical environment. Thus, the ecology of the mat depends on the individual roles of microbes organized into niches within a larger architecture. Chemolithotrophic Fe-oxidizing bacteria (FeOB) form distinctive Fe oxyhydroxide biominerals which constitute the building blocks of the mat. However, the majority of our progress has been in understanding the overall community structure. Understanding the physical mat structure on the microbial scale is important to unraveling FeOB evolution, the biogeochemistry and ecology of Fe-rich habitats, and ultimately interpreting FeOB biosignatures in the rock record. Mats in freshwater and marine environments contain strikingly similar biomineral morphologies, yet they are formed by phylogenetically distinct microorganisms. This suggests that the overall architecture and underlying genetics of freshwater and marine mats has evolved to serve particular roles specific to Fe oxidation. Thus, we conducted a comparative study of Fe seep freshwater mats and marine hydrothermal mats. We have developed a new approach to sampling Fe mats in order to preserve the delicate structure for analysis by confocal and scanning electron microscopy. Our analyses of these intact mats show that freshwater and marine mats are similarly initiated by a single type of structure-former. These ecosystem engineers form either a hollow sheath or a twisted stalk biomineral during mat formation, with a highly directional structure. These microbes appear to be the vanguard organisms that anchor the community within oxygen/Fe(II) gradients, further allowing for community succession in the mat interior as evidenced by other mineralized morphologies. Patterns in biomineral thickness and directionality were indicative of redox gradients and temporal changes in the geochemical environment. These observations show that the FeOB create the structure of the environment for the entire microbial community, acting as environmental engineers. Furthermore, they leave behind distinctive signatures of environmental conditions (e.g. presence of oxygen, hydrothermal pulsing), which can be recorded in the rock record.
Ghanem, Nawras; Kiesel, Bärbel; Kallies, René; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y
2016-12-06
Although several studies examined the transport of viruses in terrestrial systems only few studies exist on the use of marine phages (i.e., nonterrestrial viruses infecting marine host bacteria) as sensitively detectable microbial tracers for subsurface colloid transport and water flow. Here, we systematically quantified and compared for the first time the effects of size, morphology and physicochemical surface properties of six marine phages and two coliphages (MS2, T4) on transport in sand-filled percolated columns. Phage-sand interactions were described by colloidal filtration theory and the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO), respectively. The phages belonged to different families and comprised four phages never used in transport studies (i.e., PSA-HM1, PSA-HP1, PSA-HS2, and H3/49). Phage transport was influenced by size, morphology and hydrophobicity in an approximate order of size > hydrophobicity ≥ morphology. Two phages PSA-HP1, PSA-HS2 (Podoviridae and Siphoviridae) exhibited similar mass recovery as commonly used coliphage MS2 and were 7-fold better transported than known marine phage vB_PSPS-H40/1. Differing properties of the marine phages may be used to trace transport of indigenous viruses, natural colloids or anthropogenic nanomaterials and, hence, contribute to better risk analysis. Our results underpin the potential role of marine phages as microbial tracer for transport of colloidal particles and water flow.
Zouch, Hana; Karray, Fatma; Armougom, Fabrice; Chifflet, Sandrine; Hirschler-Réa, Agnès; Kharrat, Hanen; Kamoun, Lotfi; Ben Hania, Wajdi; Ollivier, Bernard; Sayadi, Sami; Quéméneur, Marianne
2017-01-01
Anaerobic biotechnology using sulfate-reducing bacteria (SRB) is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG), an acidic (pH ~3) by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate) and sulfate sources (i.e., sodium sulfate or PG) as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia). Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures) was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB. PMID:28871244
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; ...
2017-08-11
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Samuel; Li, Zhou; Chavez, Francisco
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; Weber, Peter K; Pett-Ridge, Jennifer; Hettich, Robert L; Pan, Chongle; Mayali, Xavier; Mueller, Ryan S
2017-01-01
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populations did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone. PMID:28800138
Global-Scale Structure of the Eelgrass Microbiome.
Fahimipour, Ashkaan K; Kardish, Melissa R; Lang, Jenna M; Green, Jessica L; Eisen, Jonathan A; Stachowicz, John J
2017-06-15
Plant-associated microorganisms are essential for their hosts' survival and performance. Yet, most plant microbiome studies to date have focused on terrestrial species sampled across relatively small spatial scales. Here, we report the results of a global-scale analysis of microbial communities associated with leaf and root surfaces of the marine eelgrass Zostera marina throughout its range in the Northern Hemisphere. By contrasting host microbiomes with those of surrounding seawater and sediment, we uncovered the structure, composition, and variability of microbial communities associated with eelgrass. We also investigated hypotheses about the assembly of the eelgrass microbiome using a metabolic modeling approach. Our results reveal leaf communities displaying high variability and spatial turnover that mirror their adjacent coastal seawater microbiomes. By contrast, roots showed relatively low compositional turnover and were distinct from surrounding sediment communities, a result driven by the enrichment of predicted sulfur-oxidizing bacterial taxa on root surfaces. Predictions from metabolic modeling of enriched taxa were consistent with a habitat-filtering community assembly mechanism whereby similarity in resource use drives taxonomic cooccurrence patterns on belowground, but not aboveground, host tissues. Our work provides evidence for a core eelgrass root microbiome with putative functional roles and highlights potentially disparate processes influencing microbial community assembly on different plant compartments. IMPORTANCE Plants depend critically on their associated microbiome, yet the structure of microbial communities found on marine plants remains poorly understood in comparison to that for terrestrial species. Seagrasses are the only flowering plants that live entirely in marine environments. The return of terrestrial seagrass ancestors to oceans is among the most extreme habitat shifts documented in plants, making them an ideal testbed for the study of microbial symbioses with plants that experience relatively harsh abiotic conditions. In this study, we report the results of a global sampling effort to extensively characterize the structure of microbial communities associated with the widespread seagrass species Zostera marina , or eelgrass, across its geographic range. Our results reveal major differences in the structure and composition of above- versus belowground microbial communities on eelgrass surfaces, as well as their relationships with the environment and host. Copyright © 2017 Fahimipour et al.
2006-05-10
nifH encoding plasmids of diazotrophic bacteria isolated from roots of a salt marsh grass. Meeting Abstract, 105th General Meeting of the American...When the method was applied to 100 endogenous plasmids isolated from cultivated marine diazotrophs from salt marsh grass rhizoplane niches remarkably...Beeson, K.E., D.L. Erdner, C.E. Bagwell, C.R. Lovell, and P.A. Sobecky. 2002. Differentiation of plasmids in marine diazotroph assemblages
NASA Astrophysics Data System (ADS)
Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.
2014-09-01
Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.
Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria.
Moss, Nathan A; Leao, Tiago; Glukhov, Evgenia; Gerwick, Lena; Gerwick, William H
2018-01-01
Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics. Here, we describe workflows, procedures, and commentary on sample collection, cultivation, genomic DNA generation, bioinformatics tools, and biosynthetic pathway analysis concerning filamentous cyanobacteria. © 2018 Elsevier Inc. All rights reserved.
Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...
A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater.
Flaviani, Flavia; Schroeder, Declan C; Balestreri, Cecilia; Schroeder, Joanna L; Moore, Karen; Paszkiewicz, Konrad; Pfaff, Maya C; Rybicki, Edward P
2017-03-17
The aquatic microbiome is composed of a multi-phylotype community of microbes, ranging from the numerically dominant viruses to the phylogenetically diverse unicellular phytoplankton. They influence key biogeochemical processes and form the base of marine food webs, becoming food for secondary consumers. Due to recent advances in next-generation sequencing, this previously overlooked component of our hydrosphere is starting to reveal its true diversity and biological complexity. We report here that 250 mL of seawater is sufficient to provide a comprehensive description of the microbial diversity in an oceanic environment. We found that there was a dominance of the order Caudovirales (59%), with the family Myoviridae being the most prevalent. The families Phycodnaviridae and Mimiviridae made up the remainder of pelagic double-stranded DNA (dsDNA) virome. Consistent with this analysis, the Cyanobacteria dominate (52%) the prokaryotic diversity. While the dinoflagellates and their endosymbionts, the superphylum Alveolata dominates (92%) the microbial eukaryotic diversity. A total of 834 prokaryotic, 346 eukaryotic and 254 unique virus phylotypes were recorded in this relatively small sample of water. We also provide evidence, through a metagenomic-barcoding comparative analysis, that viruses are the likely source of microbial environmental DNA (meDNA). This study opens the door to a more integrated approach to oceanographic sampling and data analysis.
Microbial biotechnology addressing the plastic waste disaster.
Narancic, Tanja; O'Connor, Kevin E
2017-09-01
Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Metagenomes from two microbial consortia associated with Santa Barbara seep oil.
Hawley, Erik R; Malfatti, Stephanie A; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R; Gilbert, Jack A; Tringe, Susannah Green; Lorenson, Thomas D; Hess, Matthias
2014-12-01
The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. Copyright © 2014 Elsevier B.V. All rights reserved.
Pooled assembly of marine metagenomic datasets: enriching annotation through chimerism.
Magasin, Jonathan D; Gerloff, Dietlind L
2015-02-01
Despite advances in high-throughput sequencing, marine metagenomic samples remain largely opaque. A typical sample contains billions of microbial organisms from thousands of genomes and quadrillions of DNA base pairs. Its derived metagenomic dataset underrepresents this complexity by orders of magnitude because of the sparseness and shortness of sequencing reads. Read shortness and sequencing errors pose a major challenge to accurate species and functional annotation. This includes distinguishing known from novel species. Often the majority of reads cannot be annotated and thus cannot help our interpretation of the sample. Here, we demonstrate quantitatively how careful assembly of marine metagenomic reads within, but also across, datasets can alleviate this problem. For 10 simulated datasets, each with species complexity modeled on a real counterpart, chimerism remained within the same species for most contigs (97%). For 42 real pyrosequencing ('454') datasets, assembly increased the proportion of annotated reads, and even more so when datasets were pooled, by on average 1.6% (max 6.6%) for species, 9.0% (max 28.7%) for Pfam protein domains and 9.4% (max 22.9%) for PANTHER gene families. Our results outline exciting prospects for data sharing in the metagenomics community. While chimeric sequences should be avoided in other areas of metagenomics (e.g. biodiversity analyses), conservative pooled assembly is advantageous for annotation specificity and sensitivity. Intriguingly, our experiment also found potential prospects for (low-cost) discovery of new species in 'old' data. dgerloff@ffame.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard
2005-07-01
The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.
Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars
NASA Astrophysics Data System (ADS)
Morrill, Penny L.; Kuenen, J. Gijs; Johnson, Orion J.; Suzuki, Shino; Rietze, Amanda; Sessions, Alex L.; Fogel, Marilyn L.; Nealson, Kenneth H.
2013-05-01
Ultra-basic (pH 11-12) reducing (-656 to -585 mV) groundwater springs discharging from serpentinized peridotite of The Cedars, CA, were investigated for their geochemistry and geobiology. The spring waters investigated were of meteoric origin; however, geochemical modeling suggests that there were two sources of groundwater, a shallow source with sufficient contact with The Cedars' peridotite body to be altered geochemically by serpentinization, and a deeper groundwater source that not only flows through the peridotite body but was also in contact with the marine sediments of the Franciscan Subduction Complex (FSC) below the peridotite body. We propose that the groundwater discharging from lower elevations (GPS1 and CS1) reflect the geochemistry of the deeper groundwater in contact with FSC, while groundwaters discharging from springs at higher elevations (NS1 and BSC) were a mixture of the shallow peridotite-only groundwater and the deeper groundwater that has been in contact with the FSC. Cell densities of suspended microbes within these waters were extremely low. In the NS1 and BSC spring fluids, cell densities ranged from 102 to 103 cells/ml, while suspended cells at GPS were lower than 10 cells/mL. However, glass slides incubated in the BSC and GPS1 springs for 2-3 weeks were colonized by cells with densities ranging from 106 to 107 cells/cm2 attached to their surfaces. All of the springs were very low (⩽1 μM) in several essential elements and electron acceptors (e.g. nitrate/ammonium, sulfate, and phosphate) required for (microbial) growth, which is not uncommon at sites of continental serpentinization. Gases rich in N2, H2, and CH4 were exsolving from the springs. The stable carbon isotope value (δ13CCH4 = -68 ± 0.6‰) and the CH4/C2+ (>103) of methane and other gaseous hydrocarbons exsolving from NS1 were typical of microbially sourced methane, whereas the isotope values and the CH4/C2+ of BSC and CS1 springs were more enriched in 13C and had CH4/C2+ < 103, suggesting a mixture of microbial and non-microbial methane. The concentrations of aromatic compounds, and ethane, propane, iso- and n-butane were well described by simple physical mixing between the aromatic- and alkane-poor, shallow groundwater and the relatively aromatic, and alkane-rich groundwater that flows through both the peridotite and the FSC suggesting that these aromatic and alkane compounds originated in the deeper FSC groundwater and are not produced in the shallow peridotite-only groundwater. The aromatic compounds most probably originated from the diagenesis/degradation of organic matter in the marine sediments below the peridotite body, while the gaseous alkanes may have multiple sources including thermal degradation of the organic matter in the marine sediments below the peridotite body and possibly by abiogenic reactions occurring within the peridotite body. This geochemical study demonstrates the complexity of The Cedars, and the possible sources of hydrocarbons at continental sites of serpentinization.
NASA Astrophysics Data System (ADS)
Sandifer, P. A.
2012-12-01
Fully functioning ecosystems, as well as healthy humans, depend on robust and diverse communities of microbes. The diversity of microbes in the marine environment is estimated to be huge, dwarfing diversity of other life forms, and crucial for many ecosystem processes. Despite the ubiquity and extreme importance of microbial life in the sea - from the air-surface interface to the deepest abyss and sediments - we know relatively little about this biotic component that may compose a large proportion of the total biomass on the planet. As the nation's principal steward of marine living resources, NOAA is both responsible for and vitally interested in marine microbes, from a variety of perspectives. These include (1) health threats to humans and other organisms and how these may be affected by climate change and ecosystem alteration; (2) detoxification of organic pollutants such as hydrocarbons (e.g., in the Deep Water Horizon oil catastrophe); (3) production of valuable natural products including potential new pharmaceuticals; (4) roles in biogeochemical cycles (e.g., for carbon, nitrogen, phosphorus, iron, etc.) and how human activities may affect these roles; (5) development and deployment of new methods to detect and quantify certain marine microbes, and incorporation of these into ocean observing systems; (6) development of Earth System models that include much improved understanding of microbial functional diversity and microbially mediated biogeochemical processes; (7) dynamics of bacterial, phyto- and zooplankton blooms, including for harmful algae and bacteria; (8) effects of climate change factors (e.g., temperature, CO2 concentrations, ocean acidification, changes in habitats and species distribution, etc.) on marine microbes; and others. Many of these topics likely will be discussed by others in this session. This presentation will focus primarily on NOAA's activities in addressing health threats emanating from a variety of microbes in the marine environment and the agency's developing efforts to collect routine observational data on selected microbes and establish regular forecasts of such threats and their likely impacts. Such "ecological forecasts" are projected to become a regular part of NOAA's service portfolio and may be expanded beyond disease-causing microbes in the future.
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The survival of our early biosphere depended upon efficient coordination anion- diverse microbial populations. Microbial mats exhibit a 3.46-billion-year fossil record, thus they are the oldest known ecosystems. Photosynthetic microbial mats were key because, today, sunlight powers more than 99 percent of global primary productivity. Thus photosynthetic ecosystems have affected the atmosphere profoundly and have created the most pervasive, easily-detected fossils. Photosynthetic biospheres elsewhere will be most detectible via telescopes or spacecraft. As a part of the Astrobiology Institute, our Ames Microbial Ecosystems group examines the roles played by ecological processes in the early evolution of our biosphere, as recorded in geologic fossils and in the macromolecules of living cells: (1) We are defining the microbial mat microenvironment, which was an important milieu for early evolution. (2) We are comparing mats in contrasting environments to discern strategies of adaptation and diversification, traits that were key for long-term survival. (3) We have selected sites that mimic key environmental attributes of early Earth and thereby focus upon evolutionary adaptations to long-term changes in the global environment. (4) Our studies of gas exchange contribute to better estimates of biogenic gases in Earth's early atmosphere. This group therefore directly addresses the question: How have the Earth and its biosphere influenced each other over time Our studies strengthen the systematics for interpreting the microbial fossil record and thereby enhance astrobiological studies of martian samples. Our models of biogenic gas emissions will enhance models of atmospheres that might be detected on inhabited extrasolar planets. This work therefore also addresses the question: How can other biospheres be recogniZed" Our choice of field sites helps us explore Earth's evolving early environment. For example, modern mats that occupy thermal springs and certain freshwater environments experience conditions such as low O2 and sulfate and high inorganic carbon and sulfide levels that resemble those of ancient marine environments. Later in history, both biologically-induced carbonate precipitation and the trapping and binding of suspended grains of carbonate became a dominant mechanism for carbonate deposition. Modern marine carbonate platforms and alkaline offer good examples of microbiologically-induced calcification. Both marine platforms and solar salterns illustrate microbially-driven trapping and binding. We are also exploring the effects of water composition upon the exchange of biogenic gases with the atmosphere.
The Village Marine Tec. Generation 1 Expeditionary Unit Water Purifier (EUWP) is a mobile skid-mounted system employing ultrafiltration (UF) and reverse osmosis (RO) to produce drinking water from a variety of different water quality sources. The UF components were evaluated to t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
López, José L.; Golemba, Marcelo; Hernández, Edgardo
Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non-viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non-viral microbial rhodopsin genes weremore » ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments.« less
High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.
Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert
2014-07-01
Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.
Vader, Anna; Stübner, Eike I.; Reigstad, Marit
2016-01-01
The Adventfjorden time series station (IsA) in Isfjorden, West Spitsbergen, Norway, was sampled frequently from December 2011 to December 2012. The community composition of microbial eukaryotes (size, 0.45 to 10 μm) from a depth of 25 m was determined using 454 sequencing of the 18S V4 region amplified from both DNA and RNA. The compositional changes throughout the year were assessed in relation to in situ fjord environmental conditions. Size fractionation analyses of chlorophyll a showed that the photosynthetic biomass was dominated by small cells (<10 μm) most of the year but that larger cells dominated during the spring and summer. The winter and early-spring communities were more diverse than the spring and summer/autumn communities. Dinophyceae were predominant throughout the year. The Arctic Micromonas ecotype was abundant mostly in the early-bloom and fall periods, whereas heterotrophs, such as marine stramenopiles (MASTs), Picozoa, and the parasitoid marine alveolates (MALVs), displayed higher relative abundance in the winter than in other seasons. Our results emphasize the extreme seasonality of Arctic microbial eukaryotic communities driven by the light regime and nutrient availability but point to the necessity of a thorough knowledge of hydrography for full understanding of their succession and variability. PMID:26746718
Discriminative detection and enumeration of microbial life in marine subsurface sediments.
Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio
2009-05-01
Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology.
NASA Astrophysics Data System (ADS)
Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Kubo, M.
2009-12-01
We report on the mineralogy, organic preservation potential and habitability of sulfate deposits in acid sulfate volcanic settings at Valles Caldera, New Mexico. Fumaroles and acidic springs are potential analogs for aqueous environments on Mars and may offer insights into habitability of sulfate deposits such as those at Meridiani Planum. Sulfates recently detected on Mars are posited to have formed from fluids derived from basaltic weathering and igneous volatile input, ultimately precipitating from acidic brines subjected to desiccation and freeze-thaw cycles (McClennan and Grotzinger, 2008). Key issues concerning martian sulfate deposits are their relationship to aqueous clay deposits, and whether or not specific sulfates deposits represent former habitable environments (see Soderblum and Bell, 2008; Tosca et al., 2008). Modern terrestrial volcanic fumaroles and hot springs precipitate various Ca-, Mg- and Fe- sulfates along with clays, and can help clarify whether certain acid sulfate mineral assemblages reflect habitable environments. Valles caldera is a resurgent caldera last active in the Pleistocene (1.4 - 1.0 Ma) that hosts several active fumaroles and over 40 geothermal exploration wells (see Goff, 2009). Fumaroles and associated mudpots and springs at Valles range from pH < 1 to 3, and affect argillic alteration upon rhylolitic tuffs and sedimentary deposits (Charles et al., 1986). We identified assemblages containing gypsum, quartz, Al-sulfates, elemental sulfur, clays and other minerals using XRD and SEM-EDS. Our previous research has shown that sulfates from different marine depositional environments display textural and morphological traits that are indicative of biological influence, or specific conditions in the depositional environments (Vogel et al., 2009). Gypsum crystals that develop in the presence of microbial biofilms in marine environments may have distorted crystal morphologies, biofilm - associated dissolution features, and accessory carbonate minerals. Gypsum from Valles Caldera fumaroles develops in the absence of microbial biofilms and differs from biologically influenced marine gypsum in terms of is highly prismatic morphology, lack of texture, and association with clays, and other sulfates. Studies of Valles gypsum crystals therefore support the uniqueness of the putative morphological biosignatures in marine gypsum. We also assayed organic matter from fumarole encrustations to understand how low pH and sulfate content may discriminate against or enhance preservation of specific classes of organic compounds in acid sulfate environments. Similar to gypsiferous marine environments, organics are characterized by abundant organosulfur complexes. Long chain alkanes (> nC22) are abundant from acid sulfate environments. As with hypersaline marine depositional environments, sulfidation appears to be a major diagenetic pathway for organic matter in acid sulfate environments.
Gallagher, M; Turner, E C; Kamber, B S
2015-07-01
Pre-Cambrian atmospheric and oceanic redox evolutions are expressed in the inventory of redox-sensitive trace metals in marine sedimentary rocks. Most of the currently available information was derived from deep-water sedimentary rocks (black shale/banded iron formation). Many of the studied trace metals (e.g. Mo, U, Ni and Co) are sensitive to the composition of the exposed land surface and prevailing weathering style, and their oceanic inventory ultimately depends on the terrestrial flux. The validity of claims for increased/decreased terrestrial fluxes has remained untested as far as the shallow-marine environment is concerned. Here, the first systematic study of trace metal inventories of the shallow-marine environment by analysis of microbial carbonate-hosted pyrite, from ca. 2.65-0.52 Ga, is presented. A petrographic survey revealed a first-order difference in preservation of early diagenetic pyrite. Microbial carbonates formed before the 2.4 Ga great oxygenation event (GOE) are much richer in pyrite and contain pyrite grains of greater morphological variability but lesser chemical substitution than samples deposited after the GOE. This disparity in pyrite abundance and morphology is mirrored by the qualitative degree of preservation of organic matter (largely as kerogen). Thus, it seems that in microbial carbonates, pyrite formation and preservation were related to presence and preservation of organic C. Several redox-sensitive trace metals show interpretable temporal trends supporting earlier proposals derived from deep-water sedimentary rocks. Most notably, the shallow-water pyrite confirms a rise in the oceanic Mo inventory across the pre-Cambrian-Cambrian boundary, implying the establishment of efficient deep-ocean ventilation. The carbonate-hosted pyrite also confirms the Neoarchaean and early Palaeoproterozoic ocean had higher Ni concentration, which can now more firmly be attributed to a greater proportion of magnesian volcanic rock on land rather than a stronger hydrothermal flux of Ni. Additionally, systematic trends are reported for Co, As, and Zn, relating to terrestrial flux and oceanic productivity. © 2015 John Wiley & Sons Ltd.
Marine Fungi: Their Ecology and Molecular Diversity
NASA Astrophysics Data System (ADS)
Richards, Thomas A.; Jones, Meredith D. M.; Leonard, Guy; Bass, David
2012-01-01
Fungi appear to be rare in marine environments. There are relatively few marine isolates in culture, and fungal small subunit ribosomal DNA (SSU rDNA) sequences are rarely recovered in marine clone library experiments (i.e., culture-independent sequence surveys of eukaryotic microbial diversity from environmental DNA samples). To explore the diversity of marine fungi, we took a broad selection of SSU rDNA data sets and calculated a summary phylogeny. Bringing these data together identified a diverse collection of marine fungi, including sequences branching close to chytrids (flagellated fungi), filamentous hypha-forming fungi, and multicellular fungi. However, the majority of the sequences branched with ascomycete and basidiomycete yeasts. We discuss evidence for 36 novel marine lineages, the majority and most divergent of which branch with the chytrids. We then investigate what these data mean for the evolutionary history of the Fungi and specifically marine-terrestrial transitions. Finally, we discuss the roles of fungi in marine ecosystems.
NASA Astrophysics Data System (ADS)
Noriega-Ortega, B. E.; Wienhausen, G.; Dittmar, T.; Simon, M.; Niggemann, J.
2016-02-01
Dissolved organic matter (DOM) in the ocean, the marine geometabolome, is an extremely complex mixture composed of a wide variety of compounds. The molecular chemodiversity affects the function and turnover rate of DOM in the ocean. We hypothesize that the active microbial community essentially contributes to the complexity of the DOM pool through uptake and excretion of compounds. We tested this hypothesis in culture experiments with fully-sequenced strains of the Roseobacter clade. Bacteria of the Roseobacter clade are among the most abundant microbial players in the ocean. We studied the exometabolome of two representatives of the Roseobacter clade, Phaeobacter inhibens DSM 17395 and Dinoroseobacter shibae. The organisms were grown separately in cultures on defined single model substrates (acetate, succinate, glutamate, glucose). We used a non-targeted analytical approach via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the exometabolome at the molecular level, complemented by compound-specific analyses of free and combined amino acids and carbohydrates. The exometabolome composition varied between the tested strains, which released a different suite of compounds depending on the growth phase as well as on growth conditions (substrate). Both organisms exhibited a core exometabolome with compounds released when growing on either substrate and at all growth phases, and a variable exometabolome specific for different substrates and growth phases. However, only a small fraction of the exometabolites detected by FT-ICR-MS could be directly linked to the genome or transcriptome. We interpret these findings as evidence for the excretion of molecularly highly-diverse metabolic waste, whose composition is dependent on the metabolic state and genetic repertoire of the organisms. The molecular diversity of compounds excreted by a single strain is extraordinary and is likely the reason for the molecular diversity of natural DOM in the ocean.
Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D.; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi
2017-01-01
Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS. PMID:28680420
Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms
Webster, Nicole S.; Smith, Luke D.; Heyward, Andrew J.; Watts, Joy E. M.; Webb, Richard I.; Blackall, Linda L.; Negri, Andrew P.
2004-01-01
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA. PMID:14766608
Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.
2011-01-01
Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011
NASA Astrophysics Data System (ADS)
Rakociński, Michał; Racki, Grzegorz
2016-01-01
Microbial carbonates, consisting of abundant girvanellid oncoids, are described from cephalopod-crinoid and crinoid-brachiopod coquinas (rudstones) occurring in the lowermost Famennian of the Holy Cross Mountains, Poland. A Girvanella-bearing horizon (consist with numerous girvanellid oncoids) has been recognised at the Psie Górki section, and represents the northern slope succession of the drowned Dyminy Reef. This occurrence of microbialites in the aftermath of the Frasnian-Famennian event is interpreted as the result of opportunistic cyanobacteria blooms, which, as 'disaster forms', colonised empty shallow-water ecological niches during the survival phase following the Frasnian metazoan reef collapse, due to collapsed activity of epifaunal, grazing, and/or burrowing animals. The anachronistic lithofacies at Psie Górki is linked with catastrophic mass mortality of the cephalopod and crinoid-brachiopod communities during the heavy storm events. This mass occurrence of girvanellid oncoids, along with Frutexites-like microbial shrubs and, at least partly, common micritisation of some skeletal grains, records an overall increase in microbial activity in eutrophic normal marine environments. Microbial communities in the Holy Cross Mountains are not very diverse, being mainly represented by girvanellid oncoids, and stand in contrast to the very rich microbial communities known from the Guilin area (China), Canning Basin (Australia) and the Timan-northern Ural area (Russia). The association from Poland is similar to more diverse microbial communities represented by oncoids, trombolites and stromatolites, well known from the Canadian Alberta basin.
A microarray for assessing transcription from pelagic marine microbial taxa
Shilova, Irina N; Robidart, Julie C; James Tripp, H; Turk-Kubo, Kendra; Wawrik, Boris; Post, Anton F; Thompson, Anne W; Ward, Bess; Hollibaugh, James T; Millard, Andy; Ostrowski, Martin; J Scanlan, David; Paerl, Ryan W; Stuart, Rhona; Zehr, Jonathan P
2014-01-01
Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions. PMID:24477198
Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition
Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P.; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J.; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R.; Andersson, Anders F.; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A. A.; Brami, Daniel; Badger, Jonathan H.; Allen, Andrew E.; Rusch, Douglas B.; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J. Craig; Bergman, Birgitta
2014-01-01
Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity. PMID:24586863
Molecular evidence for a uniform microbial community in sponges from different oceans.
Hentschel, Ute; Hopke, Jörn; Horn, Matthias; Friedrich, Anja B; Wagner, Michael; Hacker, Jörg; Moore, Bradley S
2002-09-01
Sponges (class Porifera) are evolutionarily ancient metazoans that populate the tropical oceans in great abundances but also occur in temperate regions and even in freshwater. Sponges contain large numbers of bacteria that are embedded within the animal matrix. The phylogeny of these bacteria and the evolutionary age of the interaction are virtually unknown. In order to provide insights into the species richness of the microbial community of sponges, we performed a comprehensive diversity survey based on 190 sponge-derived 16S ribosomal DNA (rDNA) sequences. The sponges Aplysina aerophoba and Theonella swinhoei were chosen for construction of the bacterial 16S rDNA library because they are taxonomically distantly related and they populate nonoverlapping geographic regions. In both sponges, a uniform microbial community was discovered whose phylogenetic signature is distinctly different from that of marine plankton or marine sediments. Altogether 14 monophyletic, sponge-specific sequence clusters were identified that belong to at least seven different bacterial divisions. By definition, the sequences of each cluster are more closely related to each other than to a sequence from nonsponge sources. These monophyletic clusters comprise 70% of all publicly available sponge-derived 16S rDNA sequences, reflecting the generality of the observed phenomenon. This shared microbial fraction represents the smallest common denominator of the sponges investigated in this study. Bacteria that are exclusively found in certain host species or that occur only transiently would have been missed. A picture emerges where sponges can be viewed as highly concentrated reservoirs of so far uncultured and elusive marine microorganisms.
2013-08-23
oxidation of propionate in a microbial fuel cell. Biotechnol. Lett. 32:79-85 32. Kan, J. B. Flood, J.P. McCrow, J.S. Kim, L. Tan , and K.H. Nealson. 2011...Y., A. Obraztsova, G. Rosen, J. Leather , K.G. Scheckel, K.H. Nealson, and Y.M. Arias-Thode. 2011. Marine microbial community response to inorganic
Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui
2016-06-01
Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_I and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and AMOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations in abundance of a large proportion of longstanding species rather than the appearance and disappearance of major archaeal species. Temperature was found to positively correlate with the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea, Marine_Group_I; and might be the primary driving force for the seasonal variation of the microbial community. Copyright © 2016. Published by Elsevier B.V.
Biodiversity of air-borne microorganisms at Halley Station, Antarctica.
Pearce, David A; Hughes, K A; Lachlan-Cope, T; Harangozo, S A; Jones, A E
2010-03-01
A study of air-borne microbial biodiversity over an isolated scientific research station on an ice-shelf in continental Antarctica was undertaken to establish the potential source of microbial colonists. The study aimed to assess: (1) whether microorganisms were likely to have a local (research station) or distant (marine or terrestrial) origin, (2) the effect of changes in sea ice extent on microbial biodiversity and (3) the potential human impact on the environment. Air samples were taken above Halley Research Station during the austral summer and austral winter over a 2-week period. Overall, a low microbial biodiversity was detected, which included many sequence replicates. No significant patterns were detected in the aerial biodiversity between the austral summer and the austral winter. In common with other environmental studies, particularly in the polar regions, many of the sequences obtained were from as yet uncultivated organisms. Very few marine sequences were detected irrespective of the distance to open water, and around one-third of sequences detected were similar to those identified in human studies, though both of these might reflect prevailing wind conditions. The detected aerial microorganisms were markedly different from those obtained in earlier studies over the Antarctic Peninsula in the maritime Antarctic.
ELIXIR pilot action: Marine metagenomics - towards a domain specific set of sustainable services.
Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Bongo, Lars Ailo; Willassen, Nils Peder
2017-01-01
Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities. There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action "Marine metagenomics - towards user centric services".
Zong, Humin; Ma, Deyi; Wang, Juying; Hu, Jiangtao
2010-02-01
An analytical method based on high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been developed to investigate florfenicol residues. Among 11 stations, florfenicol was detected in six water samples. The concentrations of florfenicol in the six samples were 64.2 microg L(-1), 390.6 microg L(-1), 1.1 x 10(4) microg L(-1), 29.8 microg L(-1), 61.6 microg L(-1), 34.9 microg L(-1), respectively. These results showed that high levels of florfenicol were observed in water samples collected from stations influenced by aquaculture discharges. However, no florfenicol residue was detected in the sediment samples. Furthermore, the functional diversities of microbial community in four marine sediment samples were analyzed by Biolog microplate. For the sediment samples from the stations where antibacterials had been used, the functional diversity of microbial community was much lower than those from the stations where antibacterials were not used.
Buttigieg, Pier Luigi; Fadeev, Eduard; Bienhold, Christina; Hehemann, Laura; Offre, Pierre; Boetius, Antje
2018-02-21
Microbial observation is of high relevance in assessing marine phenomena of scientific and societal concern including ocean productivity, harmful algal blooms, and pathogen exposure. However, we have yet to realise its potential to coherently and comprehensively report on global ocean status. The ability of satellites to monitor the distribution of phytoplankton has transformed our appreciation of microbes as the foundation of key ecosystem services; however, more in-depth understanding of microbial dynamics is needed to fully assess natural and anthropogenically induced variation in ocean ecosystems. While this first synthesis shows that notable efforts exist, vast regions such as the ocean depths, the open ocean, the polar oceans, and most of the Southern Hemisphere lack consistent observation. To secure a coordinated future for a global microbial observing system, existing long-term efforts must be better networked to generate shared bioindicators of the Global Ocean's state and health. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Hannes; Slaby, Beate M.; Jahn, Martin T.
Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, clustered regularly interspaced short palindromic repeats, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defensemore » is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. Furthermore, this study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.« less
Horn, Hannes; Slaby, Beate M.; Jahn, Martin T.; ...
2016-11-08
Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, clustered regularly interspaced short palindromic repeats, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defensemore » is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. Furthermore, this study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.« less
Microbial processes in marine ecosystem models: state of the art and future prospective
NASA Astrophysics Data System (ADS)
Polimene, L.; Butenschon, M.; Blackford, J.; Allen, I.
2012-12-01
Heterotrophic bacteria play a key role in the marine biogeochemistry being the main consumer of dissolved organic matter (DOM) and the main producer of carbon dioxide (CO2) by respiration. Quantifying the carbon and energy fluxes within bacteria (i.e. production, respiration, overflow metabolism etc.) is therefore crucial for the assessment of the global ocean carbon and nutrient cycles. Consequently, the description of bacteria dynamic in ecosystem models is a key (although challenging) issue which cannot be overlooked if we want to properly simulate the marine environment. We present an overview of the microbial processes described in the European Sea Regional Ecosystem Model (ERSEM), a state of the art biogeochemical model resolving carbon and nutrient cycles (N, P, Si and Fe) within the low trophic levels (up to mesozooplankton) of the marine ecosystem. The description of the theoretical assumptions and philosophy underpinning the ERSEM bacteria sub-model will be followed by the presentation of some case studies highlighting the relevance of resolving microbial processes in the simulation of ecosystem dynamics at a local scale. Recent results concerning the implementation of ERSEM on a global ocean domain will be also presented. This latter exercise includes a comparison between simulations carried out with the full bacteria sub-model and simulations carried out with an implicit parameterization of bacterial activity. The results strongly underline the importance of explicitly resolved bacteria in the simulation of global carbon fluxes. Finally, a summary of the future developments along with issues still open on the topic will be presented and discussed.
Reticulamoeba Is a Long-Branched Granofilosean (Cercozoa) That Is Missing from Sequence Databases
Bass, David; Yabuki, Akinori; Santini, Sébastien; Romac, Sarah; Berney, Cédric
2012-01-01
We sequenced the 18S ribosomal RNA gene of seven isolates of the enigmatic marine amoeboflagellate Reticulamoeba Grell, which resolved into four genetically distinct Reticulamoeba lineages, two of which correspond to R. gemmipara Grell and R. minor Grell, another with a relatively large cell body forming lacunae, and another that has similarities to both R. minor and R. gemmipara but with a greater propensity to form cell clusters. These lineages together form a long-branched clade that branches within the cercozoan class Granofilosea (phylum Cercozoa), showing phylogenetic affinities with the genus Mesofila. The basic morphology of Reticulamoeba is a roundish or ovoid cell with a more or less irregular outline. Long and branched reticulopodia radiate from the cell. The reticulopodia bear granules that are bidirectionally motile. There is also a biflagellate dispersal stage. Reticulamoeba is frequently observed in coastal marine environmental samples. PCR primers specific to the Reticulamoeba clade confirm that it is a frequent member of benthic marine microbial communities, and is also found in brackish water sediments and freshwater biofilm. However, so far it has not been found in large molecular datasets such as the nucleotide database in NCBI GenBank, metagenomic datasets in Camera, and the marine microbial eukaryote sampling and sequencing consortium BioMarKs, although closely related lineages can be found in some of these datasets using a highly targeted approach. Therefore, although such datasets are very powerful tools in microbial ecology, they may, for several methodological reasons, fail to detect ecologically and evolutionary key lineages. PMID:23226495
The Influence of Terrestrial Matter in Marine Food Webs of the Beaufort Sea Shelf and Slope
NASA Astrophysics Data System (ADS)
Bell, L.; Iken, K.; Bluhm, B.
2016-02-01
Forecasted increases in terrestrial organic matter (OMterr) inputs to the Beaufort Sea necessitate a better understanding of the contribution of this organic matter food source to the trophic structure of marine communities. This study investigated the relative ecological importance of OMterr across the Beaufort Sea shelf and slope by examining differences in community trophic structure concurrent with variation in terrestrial versus marine organic matter influence. Interannual variability in organism trophic level was assessed to confirm the persistent impact of these large-scale patterns in food source distribution on marine consumers. Oxygen stable isotope ratios (δ18O) of surface water confirmed the widespread influence of Canada's Mackenzie River plume across the Beaufort Sea. Carbon stable isotope ratios (δ13C values) of pelagic particulate organic matter (pPOM) and marine consumers from locations ranging from 20 to 1000 m bottom depth revealed a strong isotopic imprint of OMterr in the eastern Beaufort Sea, which decreased westward from the Mackenzie River. Food web length, based on the nitrogen stable isotope ratios (δ15N values) of marine consumers, was greater closer to the Mackenzie River outflow both in shelf and slope locations due to relatively higher δ15N values of pelagic and benthic primary consumers. Strong microbial processing of OMterr in the eastern regions of the Beaufort Sea is inferred based on a trophic gap between sources and lower trophic consumers. A large proportion of epifaunal biomass occupying higher trophic levels suggests that OMterr as a basal food source can provide substantial energetic support for higher marine trophic levels. These findings support the concept that terrestrial matter is an important source in the Arctic marine food web, and compel a more specific understanding of energy transfer through the OMterr-associated microbial loop.
Cleary, Daniel F R; Becking, Leontine E; Polónia, Ana R M; Freitas, Rossana M; Gomes, Newton C M
2015-03-01
In the present study, we sampled bacterial communities associated with mussels inhabiting two distinct coastal marine ecosystems in Kalimantan, Indonesia, namely, marine lakes and coastal mangroves. We used 16S rRNA gene pyrosequencing and predicted metagenomic analysis to compare microbial composition and function. Marine lakes are small landlocked bodies of seawater isolated to varying degrees from the open sea environment. They contain numerous endemic taxa and represent natural laboratories of speciation. Our primary goals were to (1) use BLAST search to identify closely related organisms to dominant bacterial OTUs in our mussel dataset and (2) to compare bacterial communities and enrichment in the predicted bacterial metagenome among lakes. Our sequencing effort yielded 3553 OTUs belonging to 44 phyla, 99 classes and 121 orders. Mussels in the largest marine lake (Kakaban) and the coastal mangrove habitat were dominated by bacteria belonging to the phylum Proteobacteria whereas smaller lakes, located on the island of Maratua, were dominated by bacteria belonging to the phyla Firmicutes and Tenericutes. The single most abundant OTU overall was assigned to the genus Mycoplasma. There were several significant differences among locations with respect to metabolic pathways. These included enrichment of xenobiotic biodegradation pathways in the largest marine lake and coastal mangrove. These locations were also the most enriched with respect to nitrogen metabolism. The presence of genes related to isoquinoline alkaloids, polyketides, hydrolases, mono and dioxygenases in the predicted analysis of functional pathways is an indication that the bacterial communities of Brachidontes mussels may be potentially important sources of new marine medicines and enzymes of industrial interest. Future work should focus on measuring how mussel microbial communities influence nutrient dynamics within the marine lake environment and isolating microbes with potential biotechnological applications.
NASA Astrophysics Data System (ADS)
Collins, S.
2010-07-01
Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology
DeLong, Edward F.; Béjà, Oded; González, José M.; Pedrós-Alió, Carlos
2016-01-01
SUMMARY The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of “heterotrophic” bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250
Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA
NASA Astrophysics Data System (ADS)
Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.
2015-12-01
Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.
Wang, Xueliang; Wang, Xin; Jiang, Hao; Cai, Chao; Li, Guoyun; Hao, Jiejie; Yu, Guangli
2018-09-01
Marine polysaccharides (MPs), including plant, animal, and microbial-derived polysaccharides, can alleviate metabolic syndrome (MetS) by different regulation mechanisms. MPs and their derivatives can attenuate MetS by vary cellular signal pathways, such as peroxisome proliferator-activated receptor, 5' adenosine monophosphate-activated protein kinase, and CCAAT/enhancer binding protein-α. Also, most of MPs cannot be degraded by human innate enzymes, but they can be degraded and fermented by human gut microbiota. The final metabolic products of these polysaccharides are usually short-chain fatty acids (SCFAs), which can change the gut microbiota ecology by altering the existing percentage of special microorganisms. In addition, the SCFAs and changed gut microbiota can regulate enteroendocrine hormone secretion, blood glucose, lipid metabolism levels, and other MetS symptoms. Here, we summarize the up-to-date findings on the effects of MPs, particularly marine microbial-derived polysaccharides, and their metabolites on attenuating MetS. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina
2016-02-15
To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evidence for a persistent microbial seed bank throughout the global ocean
Gibbons, Sean M.; Caporaso, J. Gregory; Pirrung, Meg; Field, Dawn; Knight, Rob; Gilbert, Jack A.
2013-01-01
Do bacterial taxa demonstrate clear endemism, like macroorganisms, or can one site’s bacterial community recapture the total phylogenetic diversity of the world’s oceans? Here we compare a deep bacterial community characterization from one site in the English Channel (L4-DeepSeq) with 356 datasets from the International Census of Marine Microbes (ICoMM) taken from around the globe (ranging from marine pelagic and sediment samples to sponge-associated environments). At the L4-DeepSeq site, increasing sequencing depth uncovers greater phylogenetic overlap with the global ICoMM data. This site contained 31.7–66.2% of operational taxonomic units identified in a given ICoMM biome. Extrapolation of this overlap suggests that 1.93 × 1011 sequences from the L4 site would capture all ICoMM bacterial phylogenetic diversity. Current technology trends suggest this limit may be attainable within 3 y. These results strongly suggest the marine biosphere maintains a previously undetected, persistent microbial seed bank. PMID:23487761
Nothdurft, L.D.; Webb, G.E.; Buster, N.A.; Holmes, C.W.; Sorauf, J.E.; Kloprogge, J.T.
2005-01-01
Brucite [Mg(OH)2] microbialites occur in vacated interseptal spaces of living scleractinian coral colonies (Acropora, Pocillopora, Porites) from subtidal and intertidal settings in the Great Barrier Reef, Australia, and subtidal Montastraea from the Florida Keys, United States. Brucite encrusts microbial filaments of endobionts (i.e., fungi, green algae, cyanobacteria) growing under organic biofilms; the brucite distribution is patchy both within interseptal spaces and within coralla. Although brucite is undersaturated in seawater, its precipitation was apparently induced in the corals by lowered pCO 2 and increased pH within microenvironments protected by microbial biofilms. The occurrence of brucite in shallow-marine settings highlights the importance of microenvironments in the formation and early diagenesis of marine carbonates. Significantly, the brucite precipitates discovered in microenvironments in these corals show that early diagenetic products do not necessarily reflect ambient seawater chemistry. Errors in environmental interpretation may arise where unidentified precipitates occur in microenvironments in skeletal carbonates that are subsequently utilized as geochemical seawater proxies. ?? 2005 Geological Society of America.
Mendonça, Ana; Arístegui, Javier; Vilas, Juan Carlos; Montero, Maria Fernanda; Ojeda, Alicia; Espino, Minerva; Martins, Ana
2012-01-01
Seamounts are considered to be "hotspots" of marine life but, their role in oceans primary productivity is still under discussion. We have studied the microbial community structure and biomass of the epipelagic zone (0-150 m) at two northeast Atlantic seamounts (Seine and Sedlo) and compared those with the surrounding ocean. Results from two cruises to Sedlo and three to Seine are presented. Main results show large temporal and spatial microbial community variability on both seamounts. Both Seine and Sedlo heterotrophic community (abundance and biomass) dominate during winter and summer months, representing 75% (Sedlo, July) to 86% (Seine, November) of the total plankton biomass. In Seine, during springtime the contribution to total plankton biomass is similar (47% autotrophic and 53% heterotrophic). Both seamounts present an autotrophic community structure dominated by small cells (nano and picophytoplankton). It is also during spring that a relatively important contribution (26%) of large cells to total autotrophic biomass is found. In some cases, a "seamount effect" is observed on Seine and Sedlo microbial community structure and biomass. In Seine this is only observed during spring through enhancement of large autotrophic cells at the summit and seamount stations. In Sedlo, and despite the observed low biomasses, some clear peaks of picoplankton at the summit or at stations within the seamount area are also observed during summer. Our results suggest that the dominance of heterotrophs is presumably related to the trapping effect of organic matter by seamounts. Nevertheless, the complex circulation around both seamounts with the presence of different sources of mesoscale variability (e.g. presence of meddies, intrusion of African upwelling water) may have contributed to the different patterns of distribution, abundances and also changes observed in the microbial community.
Differences in Intertidal Microbial Assemblages on Urban Structures and Natural Rocky Reef
Tan, Elisa L.-Y.; Mayer-Pinto, Mariana; Johnston, Emma L.; Dafforn, Katherine A.
2015-01-01
Global seascapes are increasingly modified to support high levels of human activity in the coastal zone. Modifications include the addition of defense structures and boating infrastructure, such as seawalls and marinas that replace natural habitats. Artificial structures support different macrofaunal communities to those found on natural rocky shores; however, little is known about differences in microbial community structure or function in urban seascapes. Understanding how artificial constructions in marine environments influence microbial communities is important as these assemblages contribute to many basic ecological processes. In this study, the bacterial communities of intertidal biofilms were compared between artificial structures (seawalls) and natural habitats (rocky shores) within Sydney Harbour. Plots were cleared on each type of habitat at eight locations. After 3 weeks the newly formed biofilm was sampled and the 16S rRNA gene sequenced using the Illumina Miseq platform. To account for differences in orientation and substrate material between seawalls and rocky shores that might have influenced our survey, we also deployed recruitment blocks next to the habitats at all locations for 3 weeks and then sampled and sequenced their microbial communities. Intertidal bacterial community structure sampled from plots differed between seawalls and rocky shores, but when substrate material, age and orientation were kept constant (with recruitment blocks) then bacterial communities were similar in composition and structure among habitats. This suggests that changes in bacterial communities on seawalls are not related to environmental differences between locations, but may be related to other intrinsic factors that differ between the habitats such as orientation, complexity, or predation. This is one of the first comparisons of intertidal microbial communities on natural and artificial surfaces and illustrates substantial ecological differences with potential consequences for biofilm function and the recruitment of macrofauna. PMID:26635747
Early microbial biofilm formation on marine plastic debris.
Lobelle, Delphine; Cunliffe, Michael
2011-01-01
An important aspect of the global problem of plastic debris pollution is plastic buoyancy. There is some evidence that buoyancy is influenced by attached biofilms but as yet this is poorly understood. We submerged polyethylene plastic in seawater and sampled weekly for 3 weeks in order to study early stage processes. Microbial biofilms developed rapidly on the plastic and coincided with significant changes in the physicochemical properties of the plastic. Submerged plastic became less hydrophobic and more neutrally buoyant during the experiment. Bacteria readily colonised the plastic but there was no indication that plastic-degrading microorganisms were present. This study contributes to improved understanding of the fate of plastic debris in the marine environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Under the sea: microbial life in volcanic oceanic crust.
Edwards, Katrina J; Wheat, C Geoffrey; Sylvan, Jason B
2011-09-06
Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.
Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V
2008-04-01
In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.
NASA Astrophysics Data System (ADS)
Sarkar, Subir; Banerjee, Santanu; Samanta, Pradip; Chakraborty, Nivedita; Chakraborty, Partha Pratim; Mukhopadhyay, Soumik; Singh, Arvind K.
2014-09-01
Microbial mat-related structures (MRS) in siliciclastics have been investigated from four Proterozic formations in India, namely the Marwar Supergroup, the Vindhyan Supergroup, the Chhatisgarh Supergroup and the Khariar Group for their spectral variations, genetic aspects, palaeo-environmental significance and influence on sequence stratigraphic architecture. The maximum diversification of MRS has been experienced in shallow marine coastal Precambrian successions. Observations made from modern environment as well as Precambrian rock records clearly indicates that the features like petee ridges, sand-cracks, gas domes, multi-directed ripples, reticulate surfaces, sieve-like surfaces and setulf are most likely to form in the shallowest part of the marine basins, in upper intertidal to supratidal conditions while wrinkle structures, roll-up structures and patchy ripples had a broader range of palaeogeographic settings from the supratidal to subtidal conditions. Discoidal microbial colony (DMC) represents a special variety of the mat-layer feature in modern environment that may have diverse internal architecture, sometimes falsely resembles Ediacaran medusoids. The uniqueness in sequence stratigraphic architecture of the microbial mat-covered sediment is reflected by the presence of more amalgamated HSTs compare to that of TSTs. The preservation of forced and normal regressive deposits on low-gradient epeiric shelf under low continental freeboard indicates microbial mat-infested sea-floor impedes erosion and concomitant sediment supply may facilitate formation and preservation of regressive packages.
Emerging biopharmaceuticals from marine actinobacteria.
Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber
2017-01-01
Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016. Copyright © 2016 Elsevier B.V. All rights reserved.
Connecting Water Quality With Air Quality Through Microbial Aerosols
NASA Astrophysics Data System (ADS)
Dueker, M. Elias
Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.
Keystone taxa as drivers of microbiome structure and functioning.
Banerjee, Samiran; Schlaeppi, Klaus; van der Heijden, Marcel G A
2018-05-22
Microorganisms have a pivotal role in the functioning of ecosystems. Recent studies have shown that microbial communities harbour keystone taxa, which drive community composition and function irrespective of their abundance. In this Opinion article, we propose a definition of keystone taxa in microbial ecology and summarize over 200 microbial keystone taxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome. We explore the importance of keystone taxa and keystone guilds for microbiome structure and functioning and discuss the factors that determine their distribution and activities.
Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko
2010-01-01
The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and microbial ecosystems in marine environments. PMID:20228114
2011-07-23
organoclay in geotextile mats), acetate, and chitin on environmental microbial communities in overlying water and sediment profiles are reported here...Significant changes in both bacterial cell densities and populations were observed in response to amendments of apatiteþorganoclay, chitin , and acetate... chitin treatment led to a dominance of Bacteroidetes and Alphaproteobacteria. In amended sediments, Firmicutes, Bacteroidetes, and Deltaproteobacteria
Metagenomic studies of the Red Sea.
Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi
2016-02-01
Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and the bio-prospecting potential of the Red Sea microbiota. Furthermore, we discuss the limitations of the previous studies and the need for generating a large and representative metagenomic database of the Red Sea to help establish a dynamic model of the Red Sea microbiota. Copyright © 2015 Elsevier B.V. All rights reserved.
PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.
Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela
2014-01-01
The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on bioavailability are important to include. In addition, these results add to the understanding that bioavailability measurements of PAHs are a more correct assessment compared to measurements of total PAH concentrations, and need to be included when estimating effects of PAHs in marine benthic communities. Copyright © 2013 Elsevier B.V. All rights reserved.
Cellular content of biomolecules in sub-seafloor microbial communities
NASA Astrophysics Data System (ADS)
Braun, Stefan; Morono, Yuki; Becker, Kevin W.; Hinrichs, Kai-Uwe; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Lomstein, Bente Aa.
2016-09-01
Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density centrifugation. Amino acids, amino sugars, muramic acid, and intact polar lipids were analyzed in both whole sediment and cell extract, and cell separation was optimized and evaluated in terms of purity, separation efficiency, taxonomic resemblance, and compatibility to high-performance liquid chromatography and mass spectrometry for biomolecule analyses. Because cell extracts from density centrifugation still contained considerable amounts of detrital particles and non-cellular biomolecules, we further purified cells from two samples by fluorescence-activated cell sorting (FACS). Cells from these highly purified cell extracts had an average content of amino acids and lipids of 23-28 fg cell-1 and 2.3 fg cell-1, respectively, with an estimated carbon content of 19-24 fg cell-1. In the sediment, the amount of biomolecules associated with vegetative cells was up to 70-fold lower than the total biomolecule content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates of microbial biomass.
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination. PMID:29867858
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination.
Röling, Wilfred F. M.; van Bodegom, Peter M.
2014-01-01
Molecular ecology approaches are rapidly advancing our insights into the microorganisms involved in the degradation of marine oil spills and their metabolic potentials. Yet, many questions remain open: how do oil-degrading microbial communities assemble in terms of functional diversity, species abundances and organization and what are the drivers? How do the functional properties of microorganisms scale to processes at the ecosystem level? How does mass flow among species, and which factors and species control and regulate fluxes, stability and other ecosystem functions? Can generic rules on oil-degradation be derived, and what drivers underlie these rules? How can we engineer oil-degrading microbial communities such that toxic polycyclic aromatic hydrocarbons are degraded faster? These types of questions apply to the field of microbial ecology in general. We outline how recent advances in single-species systems biology might be extended to help answer these questions. We argue that bottom-up mechanistic modeling allows deciphering the respective roles and interactions among microorganisms. In particular constraint-based, metagenome-derived community-scale flux balance analysis appears suited for this goal as it allows calculating degradation-related fluxes based on physiological constraints and growth strategies, without needing detailed kinetic information. We subsequently discuss what is required to make these approaches successful, and identify a need to better understand microbial physiology in order to advance microbial ecology. We advocate the development of databases containing microbial physiological data. Answering the posed questions is far from trivial. Oil-degrading communities are, however, an attractive setting to start testing systems biology-derived models and hypotheses as they are relatively simple in diversity and key activities, with several key players being isolated and a high availability of experimental data and approaches. PMID:24723922
Röling, Wilfred F M; van Bodegom, Peter M
2014-01-01
Molecular ecology approaches are rapidly advancing our insights into the microorganisms involved in the degradation of marine oil spills and their metabolic potentials. Yet, many questions remain open: how do oil-degrading microbial communities assemble in terms of functional diversity, species abundances and organization and what are the drivers? How do the functional properties of microorganisms scale to processes at the ecosystem level? How does mass flow among species, and which factors and species control and regulate fluxes, stability and other ecosystem functions? Can generic rules on oil-degradation be derived, and what drivers underlie these rules? How can we engineer oil-degrading microbial communities such that toxic polycyclic aromatic hydrocarbons are degraded faster? These types of questions apply to the field of microbial ecology in general. We outline how recent advances in single-species systems biology might be extended to help answer these questions. We argue that bottom-up mechanistic modeling allows deciphering the respective roles and interactions among microorganisms. In particular constraint-based, metagenome-derived community-scale flux balance analysis appears suited for this goal as it allows calculating degradation-related fluxes based on physiological constraints and growth strategies, without needing detailed kinetic information. We subsequently discuss what is required to make these approaches successful, and identify a need to better understand microbial physiology in order to advance microbial ecology. We advocate the development of databases containing microbial physiological data. Answering the posed questions is far from trivial. Oil-degrading communities are, however, an attractive setting to start testing systems biology-derived models and hypotheses as they are relatively simple in diversity and key activities, with several key players being isolated and a high availability of experimental data and approaches.
Recent updates of marine antimicrobial peptides.
Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal
2018-03-01
Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.
NASA Astrophysics Data System (ADS)
Lynch, J. E.; Wallace, M. W.
2011-12-01
Stromatolites and thrombolites are microbially-mediated, sedimentary structures of various size and morphology, found throughout the rock record. Although they do not always contain fossils of microbial cells, ancient stromatolitic structures are considered biogenic in origin and, therefore, evidence of early life. Modern, living stromatolites are found in lacustrine and marine environments and can provide a window in which to observe some of Earth's earliest biological processes. However, secular variation in marine chemistry over geological time means that modern marine settings are not always the best analogues for ancient carbonates. This study describes the occurrence of modern stromatolites in a saline, alkaline maar in Victoria, Australia. Dolomite is a principle carbonate mineral precipitating from this lake, an unusual and poorly understood occurrence in modern environments, but one that was common in the Precambrian. The peculiar lacustrine chemistry in this volcanic region may, therefore, provide a better analogue for Precambrian marine carbonates than modern marine environments. Several types of stromatolites/thrombolites are observed occurring around this maar. Living thrombolites grow just below the shoreline to ~60 cm below the surface of the water. They are nucleating on the cemented surfaces of older lake carbonates, as well as cattle skulls and fence wires that have become submerged. Distinct microbial mats are observed, the uppermost being cyanobacteria, followed by purple sulfur bacteria, and underlain by sulfate reducing bacteria. Older exposed stromatolites are more consolidated and have a more clearly defined laminated and columnar morphology. The thickness ranges from a few to 15 cm and each column is up to a centimeter in diameter. Together these give the surface of the rock a "bubbly" appearance. Along the shore, a sandy-gravel composed of stromatolite remnants has formed, indicating that wind-generated surface waves of substantial strength to break apart stomatolites can form in the lake. The next bench contains mudstone layers with clasts of basalt and olivine from the surrounding volcanic tuff, but lacks stromatolitic features. Visible ostrocod shells are abundant in these layers, perhaps suggesting that microorganisms could not compete with grazers at this time to form mats of sufficient size to form stromatolites. Finally, a bench lying about 1.8 m above the current water level is a carbonate rock containing small cavities (mm to a few cm in size) in which cements have formed. Also present are ooids of ~1-2 cm diameter. The mineralogy of these cements, ooids, and stromatolites will be determined by XRD and SEM. These data will be combined with an assessment of microbial 16S rRNA gene phylogeny in order to interpret the stromatolite morphogenesis of this unique lake. By studying stromatolite morphogenesis and microbial ecology in a modern dolomite-precipitating saline maar, we hope to gain a better understanding of the factors that controlled ancient stromatolite morphogenesis; and to examine the extent to which microorganisms versus the environment drive these processes.
Significant contribution of Archaea to extant biomass in marine subsurface sediments.
Lipp, Julius S; Morono, Yuki; Inagaki, Fumio; Hinrichs, Kai-Uwe
2008-08-21
Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells. Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (ref. 1) and 303 Pg (ref. 3) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem. Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells, are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.
Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa
2014-10-01
Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M.; Cai, Zhonghua
2017-01-01
Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS. PMID:28966438
NASA Astrophysics Data System (ADS)
Sutor, M.; Longnecker, K.
2016-02-01
The oligotrophic regions of the world oceans represent large and important marine ecosystems. The vast majority of animals in these zones are plankton and marine microbes and they play a key role in the export of carbon and organic matter to seafloor benthic communities and higher trophic levels. There is little published data on the ecology of plankton and microbes in the offshore waters of the Northern Gulf of Mexico. In the wake of the Deepwater Horizon oil spill, which was a primarily oceanic event, it is clear that understanding the microbial and planktonic community and how it responded to this event is critical to interpret any observed changes at higher trophic levels (i.e. fish). We conducted three cruises in the spring of 2011, 2012, and 2013 and measured the primary production, respiration, bacterial production, and community composition of plankton and marine microbes. The data show that there are important differences in these parameters between the surface waters and the deep chlorophyll maximum and proximity to the spill site in 2011. Spatial patterns in relation to the spill site are not pronounced in 2012 and 2013. These data represent an important estimate of the microbial and planktonic community ecology of this region and demonstrate the important role the deep chlorophyll maximum plays in this system.
ELIXIR pilot action: Marine metagenomics – towards a domain specific set of sustainable services
Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D.; Bongo, Lars Ailo; Willassen, Nils Peder
2017-01-01
Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities. There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action “Marine metagenomics – towards user centric services”. PMID:28620454
NASA Astrophysics Data System (ADS)
Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party
2011-12-01
The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum Proteobacteria) at 8%, and Formosa (phylum Bacteroidetes) at 7%. These lineages support a paradigm suggesting the importance of fermentation in the subsurface. However, this study extends the predicted range for fermentation below the shallow subsurface and into organic carbon limited marine sediments. Other previously characterized subsurface active populations from environments with higher organic carbon concentrations do not show similar levels of reduced diversity or predominance of fermentative populations. This study further emphasizes the spatial variability of microbial populations in the deep subsurface and highlights the need for continued exploration.
Bolhuis, Henk; Stal, Lucas J
2011-11-01
Coastal microbial mats are small-scale and largely closed ecosystems in which a plethora of different functional groups of microorganisms are responsible for the biogeochemical cycling of the elements. Coastal microbial mats play an important role in coastal protection and morphodynamics through stabilization of the sediments and by initiating the development of salt-marshes. Little is known about the bacterial and especially archaeal diversity and how it contributes to the ecological functioning of coastal microbial mats. Here, we analyzed three different types of coastal microbial mats that are located along a tidal gradient and can be characterized as marine (ST2), brackish (ST3) and freshwater (ST3) systems. The mats were sampled during three different seasons and subjected to massive parallel tag sequencing of the V6 region of the 16S rRNA genes of Bacteria and Archaea. Sequence analysis revealed that the mats are among the most diverse marine ecosystems studied so far and consist of several novel taxonomic levels ranging from classes to species. The diversity between the different mat types was far more pronounced than the changes between the different seasons at one location. The archaeal community for these mats have not been studied before and revealed a strong reaction on a short period of draught during summer resulting in a massive increase in halobacterial sequences, whereas the bacterial community was barely affected. We concluded that the community composition and the microbial diversity were intrinsic of the mat type and depend on the location along the tidal gradient indicating a relation with salinity.
Coastal urbanisation affects microbial communities on a dominant marine holobiont.
Marzinelli, Ezequiel M; Qiu, Zhiguang; Dafforn, Katherine A; Johnston, Emma L; Steinberg, Peter D; Mayer-Pinto, Mariana
2018-01-01
Host-associated microbial communities play a fundamental role in the life of eukaryotic hosts. It is increasingly argued that hosts and their microbiota must be studied together as 'holobionts' to better understand the effects of environmental stressors on host functioning. Disruptions of host-microbiota interactions by environmental stressors can negatively affect host performance and survival. Substantial ecological impacts are likely when the affected hosts are habitat-forming species (e.g., trees, kelps) that underpin local biodiversity. In marine systems, coastal urbanisation via the addition of artificial structures is a major source of stress to habitat formers, but its effect on their associated microbial communities is unknown. We characterised kelp-associated microbial communities in two of the most common and abundant artificial structures in Sydney Harbour-pier-pilings and seawalls-and in neighbouring natural rocky reefs. The kelp Ecklonia radiata is the dominant habitat-forming species along 8000 km of the temperate Australian coast. Kelp-associated microbial communities on pilings differed significantly from those on seawalls and natural rocky reefs, possibly due to differences in abiotic (e.g., shade) and biotic (e.g., grazing) factors between habitats. Many bacteria that were more abundant on kelp on pilings belonged to taxa often associated with macroalgal diseases, including tissue bleaching in Ecklonia . There were, however, no differences in kelp photosynthetic capacity between habitats. The observed differences in microbial communities may have negative effects on the host by promoting fouling by macroorganisms or by causing and spreading disease over time. This study demonstrates that urbanisation can alter the microbiota of key habitat-forming species with potential ecological consequences.
Grindberg, Rashel V.; Ishoey, Thomas; Brinza, Dumitru; Esquenazi, Eduardo; Coates, R. Cameron; Liu, Wei-ting; Gerwick, Lena; Dorrestein, Pieter C.; Pevzner, Pavel; Lasken, Roger; Gerwick, William H.
2011-01-01
Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites. PMID:21533272
Rygaard, Anita Mac; Thøgersen, Mariane Schmidt; Nielsen, Kristian Fog; Gram, Lone
2017-01-01
ABSTRACT Only 1% of marine bacteria are currently culturable using standard laboratory procedures, and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of this study was to investigate if improved cultivation conditions, including the use of an alternative gelling agent and supplementation with signaling molecules, improve the culturability of bacteria from seawater. Replacing agar with gellan gum improved viable counts 3- to 40-fold, depending on medium composition and incubation conditions, with a maximum of 6.6% culturability relative to direct cell counts. Through V4 amplicon sequencing we found that culturable diversity was also affected by a change in gelling agent, facilitating the growth of orders not culturable on agar-based substrates. Community analyses showed that communities grown on gellan gum substrates were significantly different from communities grown on agar and that they covered a larger fraction of the seawater community. Other factors, such as incubation temperature and time, had less obvious effects on viable counts and culturable diversity. Supplementation with acylated homoserine lactones (AHLs) did not have a positive effect on total viable counts or a strong effect on culturable diversity. However, low concentrations of AHLs increased the relative abundance of sphingobacteria. Hence, with alternative growth substrates, it is possible to significantly increase the number and diversity of cultured marine bacteria. IMPORTANCE Serious challenges to human health, such as the occurrence and spread of antibiotic resistance and an aging human population in need of bioactive pharmaceuticals, have revitalized the search for natural microbial products. The marine environment, representing the largest ecosystem in the biosphere, harbors an immense and virtually untapped microbial diversity producing unique bioactive compounds. However, we are currently able to cultivate only a minute fraction of this diversity. The lack of cultivated microbes is hampering not only bioprospecting efforts but also our general understanding of marine microbes. In this study, we present a means to increase the number and diversity of cultured bacteria from seawater, showing that relatively simple changes to medium components may facilitate the isolation and growth of hitherto unknown bacterial orders. PMID:28213548
Zhou, Jin; Song, Xiao; Zhang, Chun-Yun; Chen, Guo-Fu; Lao, Yong-Min; Jin, Hui; Cai, Zhong-Hua
2018-02-14
A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.
NASA Astrophysics Data System (ADS)
Engel, A.; Galgani, L.
2016-02-01
The coastal upwelling system off Peru is characterized by high biological activity and associated subsurface oxygen minimum zone, leading to an enhanced emission of atmospheric trace gases. High biological productivity in the water column may promote the establishment of enriched organic surface films, key environments for processes regulating gas fluxes across the water-air interface. During M91 cruise to the Peruvian upwelling, we focused our attention on the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples in 38 stations determining DOC concentrations, amino acids composition, marine gels, CDOM and bacterial abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slopes (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources. Profound changes in spectral slope properties were observed suggesting smaller MW CDOM in the SML compared to underlying water. Microbial and photochemical degradation are likely the main drivers for organic matter cycling in the top layer of the ocean. Consequences on the formation of inorganic and organic species highly relevant for air-sea gas exchange and for climate dynamics will be discussed.
Rates and extent of microbial debromination in the deep subseafloor biosphere
NASA Astrophysics Data System (ADS)
Berg, R. D.; Solomon, E. A.; Morris, R. M.
2013-12-01
Recent genomic and porewater geochemical data suggest that reductive dehalogenation of a wide range of halogenated organic compounds could represent an important energy source for deep subseafloor microbial communities. At continental slope sites worldwide, there is a remarkably linear relationship between porewater profiles of ammonium and bromide, indicating that the factors controlling the distribution and rates of dehalogenation have the potential to influence carbon and nitrogen cycling in the deep subsurface biosphere. Though this metabolic pathway could play an important role in the cycling of otherwise refractory pools of carbon and nitrogen in marine sediments and provide energy to microbial communities in the deep subsurface biosphere, the rates and extent of dehalogenation in marine sediments are poorly constrained. Here we report net reaction rate profiles of debromination activity in continental slope sediments, calculated from numerical modeling of porewater bromide profiles from several margins worldwide. The reaction rate profiles indicate three common zones of debromination activity in slope sediments: 1) low rates of debromination, and a potential bromine sink, in the upper sediment column correlating to the sulfate reduction zone, with net bromide removal rates from -3.6 x 10^-2 to -4.85 x 10^-1 μmol m^-2 yr^-1, 2) high rates of debromination from the sulfate-methane transition zone to ~40-100 mbsf, with net bromide release rates between 7.1 x 10^-2 to 3.9 x 10^-1 μmol m^-2 yr^-1, and 3) an inflection point at ~40-100 mbsf, below which net rates of debromination decrease by an order of magnitude and at several sites are indistinguishable from zero. These results indicate that dehalogenating activity is widely distributed in marine sediments, providing energy to fuel deep subseafloor microbial communities, with potentially important consequences for the global bromine and nitrogen cycles.
Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Glavina del Rio, Tijana; Foster, Brian; Copeland, Alex; Jansson, Janet; Pati, Amrita; Tringe, Susannah; Gilbert, Jack A.; Lorenson, Thomas D.; Hess, Matthias
2014-01-01
Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders – and their metabolic capabilities – may be fundamental to the ecology of the SBC oil seep. PMID:25197496
NASA Astrophysics Data System (ADS)
Turchyn, A. V.; Walker, K.; Sun, X.
2016-12-01
The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.
2014-01-02
Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of the main constituents of crude oil. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of themore » assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders and their metabolic capabilities may be fundamental to the ecology of the SBC oil seep.« less
15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.
NASA Astrophysics Data System (ADS)
Sheik, C.
2017-12-01
Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual biogeochemical role and potential for a cryptic sulfur cycle. Together, Lake Superior sediments offer a glimpse into microbial metabolism in carbon limited environments. Further the pervasiveness of co-metabolic pathways suggests interpretation of isotopic records may be messier than previously thought.
NASA Astrophysics Data System (ADS)
Schmidt, Hannes; Seki, David; Woebken, Dagmar; Eickhorst, Thilo
2017-04-01
Fluorescence in situ hybridization (FISH) is routinely used for the phylogenetic identification, detection, and quantification of single microbial cells environmental microbiology. Oligonucleotide probes that match the 16S rRNA sequence of target organisms are generally applied and the resulting signals are visualized via fluorescence microscopy. Consequently, the detection of the microbial cells of interest is limited by the resolution and the sensitivity of light microscopy where objects smaller than 0.2 µm can hardly be represented. Visualizing microbial cells at magnifications beyond light microscopy, however, can provide information on the composition and potential complexity of microbial habitats - the actual sites of nutrient cycling in soil and sediments. We present a recently developed technique that combines (1) the phylogenetic identification and detection of individual microorganisms by epifluorescence microscopy, with (2) the in situ localization of gold-labelled target cells on an ultrastructural level by SEM. Based on 16S rRNA targeted in situ hybridization combined with catalyzed reporter deposition, a streptavidin conjugate labeled with a fluorescent dye and nanogold particles is introduced into whole microbial cells. A two-step visualization process including an autometallographic enhancement of nanogold particles then allows for either fluorescence or electron microscopy, or a correlative application thereof. We will present applications of the Gold-FISH protocol to samples of marine sediments, agricultural soils, and plant roots. The detection and enumeration of bacterial cells in soil and sediment samples was comparable to CARD-FISH applications via fluorescence microscopy. Examples of microbe-surface interaction analysis will be presented on the basis of bacteria colonizing the rhizoplane of rice roots. In principle, Gold-FISH can be performed on any material to give a snapshot of microbe-surface interactions and provides a promising tool for the acquisition of correlative information on microorganisms within their respective habitats.
Mobberley, Jennifer M; Ortega, Maya C; Foster, Jamie S
2012-01-01
Thrombolites are unlaminated carbonate structures that form as a result of the metabolic interactions of complex microbial mat communities. Thrombolites have a long geological history; however, little is known regarding the microbes associated with modern structures. In this study, we use a barcoded 16S rRNA gene-pyrosequencing approach coupled with morphological analysis to assess the bacterial, cyanobacterial and archaeal diversity associated with actively forming thrombolites found in Highborne Cay, Bahamas. Analyses revealed four distinct microbial mat communities referred to as black, beige, pink and button mats on the surfaces of the thrombolites. At a coarse phylogenetic resolution, the domain bacterial sequence libraries from the four mats were similar, with Proteobacteria and Cyanobacteria being the most abundant. At the finer resolution of the rRNA gene sequences, significant differences in community structure were observed, with dramatically different cyanobacterial communities. Of the four mat types, the button mats contained the highest diversity of Cyanobacteria, and were dominated by two sequence clusters with high similarity to the genus Dichothrix, an organism associated with the deposition of carbonate. Archaeal diversity was low, but varied in all mat types, and the archaeal community was predominately composed of members of the Thaumarchaeota and Euryarchaeota. The morphological and genetic data support the hypothesis that the four mat types are distinctive thrombolitic mat communities. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Bengtsson, Mia M; Wagner, Karoline; Schwab, Clarissa; Urich, Tim; Battin, Tom J
2018-04-21
Phototrophic biofilms are ubiquitous in freshwater and marine environments where they are critical for biogeochemical cycling, food webs and in industrial applications. In streams, phototrophic biofilms dominate benthic microbial life and harbor an immense prokaryotic and eukaryotic microbial biodiversity with biotic interactions across domains and trophic levels. Here, we examine how community structure and function of these biofilms respond to varying light availability, as the crucial energy source for phototrophic biofilms. Using metatranscriptomics, we found that under light limitation dominant phototrophs, including diatoms and cyanobacteria, displayed a remarkable plasticity in their photosynthetic machinery manifested as higher abundance of messenger RNAs (mRNAs) involved in photosynthesis and chloroplast ribosomal RNA. Under higher light availability, bacterial mRNAs involved in phosphorus metabolism, mainly from Betaproteobacteria and Cyanobacteria, increased, likely compensating for nutrient depletion in thick biofilms with high biomass. Consumers, including diverse ciliates, displayed community shifts indicating preferential grazing on algae instead of bacteria under higher light. For the first time, we show that the functional integrity of stream biofilms under variable light availability is maintained by structure-function adaptations on several trophic levels. Our findings shed new light on complex biofilms, or "microbial jungles", where in analogy to forests, diverse and multi-trophic level communities lend stability to ecosystem functioning. This multi-trophic level perspective, coupling metatranscriptomics to process measurements, could advance understanding of microbial-driven ecosystems beyond biofilms, including planktonic and soil environments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.
Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A
2010-01-01
Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.
Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.
Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan
2016-11-01
The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.
Synthetic microbial ecology and the dynamic interplay between microbial genotypes.
Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R
2016-11-01
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
NASA Astrophysics Data System (ADS)
Bristow, Laura A.
2018-04-01
Substantial amounts of denitrification and other anaerobic metabolisms can occur in anoxic microenvironments within marine snow particles, according to model simulations. This microbial activity may have a global impact on nitrogen cycling.
Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A.; Shouche, Yogesh S.; Sharma, Avinash
2015-01-01
Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1–40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1–20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25–40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity. PMID:26066038
Kumbhare, Shreyas V; Dhotre, Dhiraj P; Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A; Shouche, Yogesh S; Sharma, Avinash
2015-01-01
Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1-40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1-20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25-40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity.
NASA Astrophysics Data System (ADS)
Wright, J.; Hallam, S.; Merzouk, A.; Tortell, P.
2008-12-01
Oxygen minimum zones (OMZs) are areas of low dissolved oxygen concentrations that play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the greenhouse gases carbon dioxide and nitrous oxide. Therefore, microbial mediated biological activity associated with these systems directly impacts ocean productivity and global climate balance. There is increasing evidence that ocean warming trends will decrease dissolved oxygen concentrations within the coastal and interior regions of the subarctic Pacific, causing an expansion of the hypoxic boundary layer. This expansion will have a direct effect on coastal benthic ecosystems and the productivity of marine fisheries due to habitat loss and changes in nutrient cycling. In order to understand the potential implications of these transitions, we are performing environmental genomic analyses of indigenous microbial communities found in coastal and open ocean OMZs in the subarctic Pacific Ocean in relation to dissolved gas and nutrient concentrations. In addition to identifying and describing the key microbial players and biochemical pathways contributing to carbon, nitrogen and sulfur metabolism within the subarctic Pacific Ocean, this work provides a solid comparative genomic foundation for understanding the biogeochemical processes at work in marine OMZs around the globe.
Huggett, Megan J; Kavazos, Christopher R J; Bernasconi, Rachele; Czarnik, Robert; Horwitz, Pierre
2017-06-01
The factors that shape microbial community assembly in aquatic ecosystems have been widely studied; yet it is still unclear how distinct communities within a connected landscape influence one another. Coastal lakes are recipients of, and thus are connected to, both marine and terrestrial environments. Thus, they may host microbial assemblages that reflect the relative degree of influence by, and connectivity to, either system. In order to address this idea, we interrogated microbial community diversity at 49 sites in seven ponds in two seasons in the Lake MacLeod basin, a system fed by seawater flowing inland through underground karst. Environmental and spatial variation within ponds explain <9% of the community structure, while identity of the pond that samples were taken from explains 50% of community variation. That is, ponds each host distinct assemblages despite similarities in size, environment and position in the landscape, indicating a dominant role for local species sorting. The ponds contain a substantial amount of previously unknown microbial taxa, reflecting the unusual nature of this inland system. Rare marine taxa, possibly dispersed from seawater assemblages via the underground karst connection, are abundant within the inland system, suggesting an important role for regional dispersal within the metacommunities. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Jeffries, Thomas C.; Ostrowski, Martin; Williams, Rohan B.; Xie, Chao; Jensen, Rachelle M.; Grzymski, Joseph J.; Senstius, Svend Jacob; Givskov, Michael; Hoeke, Ron; Philip, Gayle K.; Neches, Russell Y.; Drautz-Moses, Daniela I.; Chénard, Caroline; Paulsen, Ian T.; Lauro, Federico M.
2015-10-01
Microorganisms act both as drivers and indicators of perturbations in the marine environment. In an effort to establish baselines to predict the response of marine habitats to environmental change, here we report a broad survey of microbial diversity across the Indian Ocean, including the first microbial samples collected in the pristine lagoon of Salomon Islands, Chagos Archipelago. This was the first large-scale ecogenomic survey aboard a private yacht employing a ‘citizen oceanography’ approach and tools and protocols easily adapted to ocean going sailboats. Our data highlighted biogeographic patterns in microbial community composition across the Indian Ocean. Samples from within the Salomon Islands lagoon contained a community which was different even from adjacent samples despite constant water exchange, driven by the dominance of the photosynthetic cyanobacterium Synechococcus. In the lagoon, Synechococcus was also responsible for driving shifts in the metatranscriptional profiles. Enrichment of transcripts related to photosynthesis and nutrient cycling indicated bottom-up controls of community structure. However a five-fold increase in viral transcripts within the lagoon during the day, suggested a concomitant top-down control by bacteriophages. Indeed, genome recruitment against Synechococcus reference genomes suggested a role of viruses in providing the ecological filter for determining the β-diversity patterns in this system.
Jeffries, Thomas C; Ostrowski, Martin; Williams, Rohan B; Xie, Chao; Jensen, Rachelle M; Grzymski, Joseph J; Senstius, Svend Jacob; Givskov, Michael; Hoeke, Ron; Philip, Gayle K; Neches, Russell Y; Drautz-Moses, Daniela I; Chénard, Caroline; Paulsen, Ian T; Lauro, Federico M
2015-10-20
Microorganisms act both as drivers and indicators of perturbations in the marine environment. In an effort to establish baselines to predict the response of marine habitats to environmental change, here we report a broad survey of microbial diversity across the Indian Ocean, including the first microbial samples collected in the pristine lagoon of Salomon Islands, Chagos Archipelago. This was the first large-scale ecogenomic survey aboard a private yacht employing a 'citizen oceanography' approach and tools and protocols easily adapted to ocean going sailboats. Our data highlighted biogeographic patterns in microbial community composition across the Indian Ocean. Samples from within the Salomon Islands lagoon contained a community which was different even from adjacent samples despite constant water exchange, driven by the dominance of the photosynthetic cyanobacterium Synechococcus. In the lagoon, Synechococcus was also responsible for driving shifts in the metatranscriptional profiles. Enrichment of transcripts related to photosynthesis and nutrient cycling indicated bottom-up controls of community structure. However a five-fold increase in viral transcripts within the lagoon during the day, suggested a concomitant top-down control by bacteriophages. Indeed, genome recruitment against Synechococcus reference genomes suggested a role of viruses in providing the ecological filter for determining the β-diversity patterns in this system.
Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.
2015-01-01
The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212
Metaproteomics of aquatic microbial communities in a deep and stratified estuary.
Colatriano, David; Ramachandran, Arthi; Yergeau, Etienne; Maranger, Roxane; Gélinas, Yves; Walsh, David A
2015-10-01
Here we harnessed the power of metaproteomics to assess the metabolic diversity and function of stratified aquatic microbial communities in the deep and expansive Lower St. Lawrence Estuary, located in eastern Canada. Vertical profiling of the microbial communities through the stratified water column revealed differences in metabolic lifestyles and in carbon and nitrogen processing pathways. In productive surface waters, we identified heterotrophic populations involved in the processing of high and low molecular weight organic matter from both terrestrial (e.g. cellulose and xylose) and marine (e.g. organic compatible osmolytes) sources. In the less productive deep waters, chemosynthetic production coupled to nitrification by MG-I Thaumarchaeota and Nitrospina appeared to be a dominant metabolic strategy. Similar to other studies of the coastal ocean, we identified methanol oxidation proteins originating from the common OM43 marine clade. However, we also identified a novel lineage of methanol-oxidizers specifically in the particle-rich bottom (i.e. nepheloid) layer. Membrane transport proteins assigned to the uncultivated MG-II Euryarchaeota were also specifically detected in the nepheloid layer. In total, these results revealed strong vertical structure of microbial taxa and metabolic activities, as well as the presence of specific "nepheloid" taxa that may contribute significantly to coastal ocean nutrient cycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeffries, Thomas C.; Ostrowski, Martin; Williams, Rohan B.; Xie, Chao; Jensen, Rachelle M.; Grzymski, Joseph J.; Senstius, Svend Jacob; Givskov, Michael; Hoeke, Ron; Philip, Gayle K.; Neches, Russell Y.; Drautz-Moses, Daniela I.; Chénard, Caroline; Paulsen, Ian T.; Lauro, Federico M.
2015-01-01
Microorganisms act both as drivers and indicators of perturbations in the marine environment. In an effort to establish baselines to predict the response of marine habitats to environmental change, here we report a broad survey of microbial diversity across the Indian Ocean, including the first microbial samples collected in the pristine lagoon of Salomon Islands, Chagos Archipelago. This was the first large-scale ecogenomic survey aboard a private yacht employing a ‘citizen oceanography’ approach and tools and protocols easily adapted to ocean going sailboats. Our data highlighted biogeographic patterns in microbial community composition across the Indian Ocean. Samples from within the Salomon Islands lagoon contained a community which was different even from adjacent samples despite constant water exchange, driven by the dominance of the photosynthetic cyanobacterium Synechococcus. In the lagoon, Synechococcus was also responsible for driving shifts in the metatranscriptional profiles. Enrichment of transcripts related to photosynthesis and nutrient cycling indicated bottom-up controls of community structure. However a five-fold increase in viral transcripts within the lagoon during the day, suggested a concomitant top-down control by bacteriophages. Indeed, genome recruitment against Synechococcus reference genomes suggested a role of viruses in providing the ecological filter for determining the β-diversity patterns in this system. PMID:26481089
Monitoring microbial responses to ocean deoxygenation in a model oxygen minimum zone.
Hallam, Steven J; Torres-Beltrán, Mónica; Hawley, Alyse K
2017-10-31
Today in Scientific Data, two compendia of geochemical and multi-omic sequence information (DNA, RNA, protein) generated over almost a decade of time series monitoring in a seasonally anoxic coastal marine setting are presented to the scientific community. These data descriptors introduce a model ecosystem for the study of microbial responses to ocean deoxygenation, a phenotype that is currently expanding due to climate change. Public access to this time series information is intended to promote scientific collaborations and the generation of new hypotheses relevant to microbial ecology, biogeochemistry and global change issues.
Asker, Dalal
2018-09-30
Carotenoids are valuable natural colorants that exhibit numerous health promoting properties, and thus are widely used in food, feeds, pharmaceutical and nutraceuticals industries. In this study, we isolated and identified novel microbial sources that produced high-value carotenoids using high throughput screening (HTS). A total of 701 pigmented microbial strains library including marine bacteria and red yeast was constructed. Carotenoids profiling using HPLC-DAD-MS methods showed 88 marine bacterial strains with potential for the production of high-value carotenoids including astaxanthin (28 strains), zeaxanthin (21 strains), lutein (1 strains) and canthaxanthin (2 strains). A comprehensive 16S rRNA gene based phylogenetic analysis revealed that these strains can be classified into 30 species belonging to five bacterial classes (Flavobacteriia, α-Proteobacteria, γ-Proteobacteria, Actinobacteria and Bacilli). Importantly, we discovered novel producers of zeaxanthin and lutein, and a high diversity in both carotenoids and producing microbial strains, which are promising and highly selective biotechnological sources for high-value carotenoids. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbial alignment in flow changes ocean light climate.
Marcos; Seymour, Justin R; Luhar, Mitul; Durham, William M; Mitchell, James G; Macke, Andreas; Stocker, Roman
2011-03-08
The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent "swirls" when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s(-1)) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s(-1)) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.
Microbes in deep marine sediments viewed through amplicon sequencing and metagenomics
NASA Astrophysics Data System (ADS)
Biddle, J.; Leon, Z. R.; Russell, J. A., III; Martino, A. J.
2016-12-01
Nearly twenty percent of microbial biomass on Earth can be found in the marine subsurface. The majority of this is concentrated on continental margins, which have been investigated by scientific drilling. On the Costa Rica Margin, Iberian Margin and Peru Margins, sediment samples have been investigated through DNA extraction followed by amplicon and metagenomic sequencing. Overall samples show a high degree of microbial diversity, including many lineages of newly defined groups. In this talk, metagenome assembled genomes of unusual lineages will be presented, including their relationships to shallower relatives. From Costa Rica, in particular, we have retrieved deep relatives of Lokiarchaeota and Thorarchaeota, as well as other deeply branching archaeal relatives. We discuss their genome similarities to both other archaea and eukaryotes. From the Iberian Margin, relatives of Atribacteria and Aerophobetes will be discussed. Finally, we will detail the knowledge lost or gained depending on whether samples are studied via amplicon sequencing or total metagenomics, as studies in other environments have shown that up to 15% of microbial diversity is ignored when samples are studied via amplicon sequencing alone.
Bao, Mu-tai; Wang, Li-na; Sun, Pei-yan; Cao, Li-xin; Zou, Jie; Li, Yi-ming
2012-06-01
Ochrobactrum sp. N1, Brevibacillus parabrevis N2, B. parabrevis N3 and B. parabrevis N4 were selected when preparing a mixed bacterial consortium based on the efficiency of crude oil utilization. A crude oil degradation rate of the N-series microbial consortium reached upwards of 79% at a temperature of 25 °C in a 3.0% NaCl solution in the shake flask trial. In the mesocosm experiment, a specially designed device was used to simulate the marine environment. The internal tank size was 1.5 m (L)×0.8 m (W)×0.7 m (H). The microbial growth conditions, nutrient utilization and environmental factors were thoroughly investigated. Over 51.1% of the crude oil was effectively removed from the simulated water body. The escalation process (from flask trials to the mesocosm experiment), which sought to represent removal under conditions more similar to the field, proved the high efficiency of using N-series bacteria in crude oil degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.
The microbial biosphere of the coral Acropora cervicornis in Northeastern Puerto Rico
Ruiz-Diaz, Claudia P.; Rivera-Seda, Abigail; Ramírez-Lugo, Juan S.
2017-01-01
Background Coral reefs are the most biodiverse ecosystems in the marine realm, and they not only contribute a plethora of ecosystem services to other marine organisms, but they also are beneficial to humankind via, for instance, their role as nurseries for commercially important fish species. Corals are considered holobionts (host + symbionts) since they are composed not only of coral polyps, but also algae, other microbial eukaryotes and prokaryotes. In recent years, Caribbean reef corals, including the once-common scleractinian coral Acropora cervicornis, have suffered unprecedented mortality due to climate change-related stressors. Unfortunately, our basic knowledge of the molecular ecophysiology of reef corals, particularly with respect to their complex bacterial microbiota, is currently too poor to project how climate change will affect this species. For instance, we do not know how light influences microbial communities of A. cervicornis, arguably the most endangered of all Caribbean coral species. To this end, we characterized the microbiota of A. cervicornis inhabiting water depths with different light regimes. Methods Six A. cervicornis fragments from different individuals were collected at two different depths (three at 1.5 m and three at 11 m) from a reef 3.2 km off the northeastern coast of Puerto Rico. We characterized the microbial communities by sequencing the 16S rRNA gene region V4 with the Illumina platform. Results A total of 173,137 good-quality sequences were binned into 803 OTUs with a 97% similarity. We uncovered eight bacterial phyla at both depths with a dominance of 725 Rickettsiales OTUs (Proteobacteria). A fewer number (38) of low dominance OTUs varied by depth and taxa enriched in shallow water corals included Proteobacteria (e.g. Rhodobacteraceae and Serratia) and Firmicutes (Streptococcus). Those enriched in deeper water corals featured different Proteobacterial taxa (Campylobacterales and Bradyrhizobium) and Firmicutes (Lactobacillus). Discussion Our results confirm that the microbiota of A. cervicornis inhabiting the northeastern region of Puerto Rico is dominated by a Rickettsiales-like bacterium and that there are significant changes in less dominant taxa at different water depths. These changes in less dominant taxa may potentially impact the coral’s physiology, particularly with respect to its ability to respond to future increases in temperature and CO2. PMID:28875073
Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell
2014-01-01
sulfate-reducing bacteria; marine I. INTRODUCTION Ocean-based energy recovery devices are often based on kinetic or solar energy harvesting . In...enhancement would scale with an increase in system size. More work is also planned on improving energy harvesting efficiency and understanding the...utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii,” J Biol Chem, 1991. vol 266, pp. 24276-24286
Vieira, Gabriela A L; Magrini, Mariana Juventina; Bonugli-Santos, Rafaella C; Rodrigues, Marili V N; Sette, Lara D
2018-05-03
Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL -1 ) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology. Copyright © 2018. Published by Elsevier Editora Ltda.
Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T
2007-01-01
In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.
NASA Astrophysics Data System (ADS)
Maki, Teruya; Ishikawa, Akira; Mastunaga, Tomoki; Pointing, Stephen B.; Saito, Yuuki; Kasai, Tomoaki; Watanabe, Koichi; Aoki, Kazuma; Horiuchi, Amane; Lee, Kevin C.; Hasegawa, Hiroshi; Iwasaka, Yasunobu
2016-12-01
Atmospheric aerosols contain particulates that are deposited to oceanic surface waters. These can represent a major source of nutrients, trace metals, and organic compounds for the marine environment. The Japan Sea and the western Pacific Ocean are particularly affected by aerosols due to the transport of desert dust and industrially derived particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from continental Asia. We hypothesized that supplementing seawater with aerosol particulates would lead to measurable changes in surface water nutrient composition as well as shifts in the marine microbial community. Shipboard experiments in the Pacific Ocean involved the recovery of oligotrophic oceanic surface water and subsequent supplementation with aerosol particulates obtained from the nearby coastal mountains, to simulate marine particulate input in this region. Initial increases in nitrates due to the addition of aerosol particulates were followed by a decrease correlated with the increase in phytoplankton biomass, which was composed largely of Bacillariophyta (diatoms), including Pseudo-nitzschia and Chaetoceros species. This shift was accompanied by changes in the bacterial community, with apparent increases in the relative abundance of heterotrophic Rhodobacteraceae and Colwelliaceae in aerosol particulate treated seawater. Our findings provide empirical evidence revealing the impact of aerosol particulates on oceanic surface water microbiology by alleviating nitrogen limitation in the organisms.
Flavins in Marine Sediments: A Potentially Ubiquitous Intermediary In Microbial Electron Transfer
NASA Astrophysics Data System (ADS)
Monteverde, D.; Sylvan, J. B.; Suffridge, C.; Berelson, W.; Sanudo-Wilhelmy, S. A.; Baronas, J. J.
2016-12-01
The flavins (riboflavin, flavin mononucleotide [FMN], flavin adenine dinucleotide [FAD]) are a class of organic compounds synthesized by organisms to assist in redox reactions. They represent the largest class of required coenzymes, rivaled only by iron in the number of unique enzymes they bind. In addition to internal use, cultured metal-reducing organisms such as Shewanella and Geobacter have been known to release flavins into the extracellular pool to aid in external electron transfer. So called "electron shuttles" can allow organisms to overcome unfavorable geochemical zonation by transferring electrons onto a relatively distant insoluble acceptor. Despite the extensive culture work, flavins have not been systematically measured in the environment. Here we present the first set of flavin profiles from the water column and pore waters of a marine environment. Samples were taken from San Pedro Basin, a 900 meter deep, silled basin, with high seasonal inputs of organic carbon, low bottom water oxygen concentrations, and laminated sediments - making it ideal to explore variations in sediment geochemical zonations. Dissolved flavin concentrations in the water column and pore waters collected from two cores were preconcentrated via solid phase extraction and measured via LC/MS. Flavin profiles are compared to a suite of geochemical parameters as well as sediment microbial 16s rRNA data. Preliminary results show that FMN is typically an order of magnitude higher concentration than riboflavin (800-300pM versus 100-50pM). Porewater concentrations were elevated over water column values for all analytes (ranging from 100-2000pM) and displayed an increasing trend with depth in both cores. This increasing trend correlated with a decrease in dissolved Fe (ranging from 160 µM in surface sediments to 65 µM at 40 cm) and shifts in microbial diversity from sediments shallower than 5 cm depth dominated by Delta- and Gammaproteobacteria to subsurface sediments dominated by Chloroflexi and Archaea at 20-40 cm. These first environmental profiles of flavins in the marine environmental support previous observations of the importance of electron transfer intermediaries in culture and point to an important role for flavins in modern marine microbial communities.
Zecher, Karsten; Aitha, Vishwa Prasad; Heuer, Kirsten; Ahlers, Herbert; Roland, Katrin; Fiedel, Michael; Philipp, Bodo
2018-03-01
Marine biofouling on artificial surfaces such as ship hulls or fish farming nets causes enormous economic damage. The time for the developmental process of antifouling coatings can be shortened by reliable laboratory assays. For designing such test systems, it is important that toxic effects can be excluded, that multiple parameters can be addressed simultaneously and that mechanistic aspects can be included. In this study, a multi-step approach for testing antifouling coatings was established employing photoautotrophic biofilm formation of marine microorganisms in micro- and mesoscoms. Degree and pattern of biofilm formation was determined by quantification of chlorophyll fluorescence. For the microcosms, co-cultures of diatoms and a heterotrophic bacterium were exposed to fouling-release coatings. For the mesocosms, a novel device was developed that permits parallel quantification of a multitude of coatings under defined conditions with varying degrees of shear stress. Additionally, the antifouling coatings were tested for leaching of potential compounds and finally tested in sea trials. This multistep-approach revealed that the individual steps led to consistent results regarding antifouling activity of the coatings. Furthermore, the novel mesocosm system can be employed for advanced antifouling analysis including metagenomic approaches for determination of microbial diversity attaching to different coatings under changing shear forces. Copyright © 2018 Elsevier B.V. All rights reserved.
Dell'Anno, F; Sansone, C; Ianora, A; Dell'Anno, A
2018-06-01
The contamination of marine sediments is widespread in coastal regions of the world and represents a major concern for the potential detrimental consequences on ecosystems' health and provision of goods and services for human wellbeing. Thus, there is an urgent need to find sustainable and eco-compatible solutions for the remediation of contaminated sediments. Bioremediation is a low cost and environmental-friendly strategy with a high potential for the remediation of contaminated marine sediments. Here we review the potential application of biosurfactants produced by microbial taxa for the remediation of contaminated marine sediments and we discuss future research needs to develop efficient and eco-sustainable biosurfactant-based strategies for the recovery of contaminated marine sediments, in view of large-scale applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka
2016-01-01
Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Marine-influenced microbial communities inhabit terrestrial hot springs on a remote island volcano.
Stewart, Lucy C; Stucker, Valerie K; Stott, Matthew B; de Ronde, Cornel E J
2018-07-01
Raoul Island is a subaerial island volcano approximately 1000 km northeast of New Zealand. Its caldera contains a circumneutral closed-basin volcanic lake and several associated pools, as well as intertidal coastal hot springs, all fed by a hydrothermal system sourced from both meteoric water and seawater. Here, we report on the geochemistry, prokaryotic community diversity, and cultivatable abundance of thermophilic microorganisms of four terrestrial features and one coastal feature on Raoul. Hydrothermal fluid contributions to the volcanic lake and pools make them brackish, and consequently support unusual microbial communities dominated by Planctomycetes, Chloroflexi, Alphaproteobacteria, and Thaumarchaeota, as well as up to 3% of the rare sister phylum to Cyanobacteria, Candidatus Melainabacteria. The dominant taxa are mesophilic to moderately thermophilic, phototrophic, and heterotrophic marine groups related to marine Planctomycetaceae. The coastal hot spring/shallow hydrothermal vent community is similar to other shallow systems in the Western Pacific Ocean, potentially due to proximity and similarities of geochemistry. Although rare in community sequence data, thermophilic methanogens, sulfur-reducers, and iron-reducers are present in culture-based assays.
Terrisse, Fanny; Cravo-Laureau, Cristiana; Noël, Cyril; Cagnon, Christine; Dumbrell, Alex J.; McGenity, Terry J.; Duran, Robert
2017-01-01
Deciphering the ecology of marine obligate hydrocarbonoclastic bacteria (MOHCB) is of crucial importance for understanding their success in occupying distinct niches in hydrocarbon-contaminated marine environments after oil spills. In marine coastal sediments, MOHCB are particularly subjected to extreme fluctuating conditions due to redox oscillations several times a day as a result of mechanical (tide, waves and currents) and biological (bioturbation) reworking of the sediment. The adaptation of MOHCB to the redox oscillations was investigated by an experimental ecology approach, subjecting a hydrocarbon-degrading microbial community to contrasting oxygenation regimes including permanent anoxic conditions, anoxic/oxic oscillations and permanent oxic conditions. The most ubiquitous MOHCB, Alcanivorax and Cycloclasticus, showed different behaviors, especially under anoxic/oxic oscillation conditions, which were more favorable for Alcanivorax than for Cycloclasticus. The micro-diversity of 16S rRNA gene transcripts from these genera revealed specific ecotypes for different oxygenation conditions and their dynamics. It is likely that such ecotypes allow the colonization of distinct ecological niches that may explain the success of Alcanivorax and Cycloclasticus in hydrocarbon-contaminated coastal sediments during oil-spills. PMID:28861063
Bacterioplankton: A Sink for Carbon in a Coastal Marine Plankton Community
NASA Astrophysics Data System (ADS)
Ducklow, Hugh W.; Purdie, Duncan A.; Leb. Williams, Peter J.; Davies, John M.
1986-05-01
Recent determinations of high production rates (up to 30 percent of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a ``microbial loop'' that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14--labeled bacterioplankton for over 50 days. Only 2 percent of the label initially fixed from carbon-14--labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20 percent of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food.
Redox effects on the microbial degradation of refractory organic matter in marine sediments
NASA Astrophysics Data System (ADS)
Reimers, Clare E.; Alleau, Yvan; Bauer, James E.; Delaney, Jennifer; Girguis, Peter R.; Schrader, Paul S.; Stecher, Hilmar A.
2013-11-01
Microbially mediated reduction-oxidation (redox) reactions are often invoked as being the mechanisms by which redox state influences the degradation of sedimentary organic matter (OM) in the marine environment. To evaluate the effects of elevated, oscillating and reduced redox potentials on the fate of primarily aged, mineral-adsorbed OM contained in continental shelf sediments, we used microbial fuel cells to control redox state within and around marine sediments, without amending the sediments with reducing or oxidizing substances. We subsequently followed electron fluxes in the redox elevated and redox oscillating treatments, and related sediment chemical, isotopic and bacterial community changes to redox conditions over a 748-day experimental period. The electron fluxes of the elevated and oscillating redox cells were consistent with models of organic carbon (OC) oxidation with time-dependent first-order rate constants declining from 0.023 to 0.005 y-1, in agreement with rate constants derived from typical OC profiles and down core ages of offshore sediments, or from sulfate reduction rate measurements in similar sediments. Moreover, although cumulative electron fluxes were higher in the continuously elevated redox treatment, incremental rates of electron harvesting in the two treatments converged over the 2 year experiment. These similar rates were reflected in chemical indicators of OM metabolism such as dissolved OC and ammonia, and particulate OC concentrations, which were not significantly different among all treatments and controls over the experimental time-scale. In contrast, products of carbonate and opal dissolution and metal mobilization showed greater enrichments in sediments with elevated and oscillating redox states. Microbial community composition in anode biofilms and surrounding sediments was assessed via high-throughput 16S rRNA gene sequencing, and these analyses revealed that the elevated and oscillatory redox treatments led to the enrichment of Deltaproteobacteria on the sediment-hosted anodes over time. Many Deltaproteobacteria are capable of using electrodes as terminal electron acceptors to completely oxidize organic substrates. Notably, Deltaproteobacteria were not measurably enriched in the sediments adjacent to anodes, suggesting that - in these experiments - electron-shuttling bacterial networks did not radiate out away from the electrodes, affecting millimeters or centimeters of sediment. Rather, microbial phylotypes allied to the Clostridia appeared to dominate in the sediment amongst all treatments, and likely played essential roles in converting complex dissolved and particulate sources of OM to simple fermentation products. Thus, we advance that the rate at which fermentation products are generated and migrate to oxidation fronts is what limits the remineralization of OM in many subsurface sediments removed from molecular oxygen. This is a diagenetic scenario that is consistent with the discharging behavior of redox oscillating sediment MFCs. It is also compatible with hypotheses that molecular O2 - and not just the resulting elevated redox potential - may be required to effectively catalyze the degradation of refractory OM. Such decomposition reactions have been suggested to depend on substrate interactions with highly reactive oxygen-containing radicals and/or with specialized extracellular enzymes produced by aerobic prokaryotic or eukaryotic cells.
NASA Astrophysics Data System (ADS)
Canovas, Peter A.; Hoehler, Tori; Shock, Everett L.
2017-07-01
Various classes of microbial and biomolecular evidence from global studies in marine and continental settings are used to identify a set of reactions that appear to support microbial metabolism during serpentinization of ultramafic rocks. Geochemical data from serpentinizing ecosystems in the Samail ophiolite of Oman are used to evaluate the extent of disequilibria that can support this set of microbial metabolisms and to provide a ranking of potential metabolic energy sources in hyperalkaline fluids that are direct products of serpentinization. Results are used to construct hypotheses for how microbial metabolism may be supported in the subsurface for two cases: ecosystems hosted in rocks that have already undergone significant serpentinization and those hosted by deeper, active serpentinization processes.
Geobiology of Marine Magnetotactic Bacteria
2006-06-01
acids (e.g. lactate, acetate, oxalate , succinate, fumarate, malate, and citrate) which are continually transported into the soil, in part due to the...microbial mats, and hydrothermal vent waters. J Environ Monit 3: 61-66. 177 Lyons TW (1997) Sulfur isotopic trends and pathways of iron sulfide formation in...case in sediments, microbial mats, and hydrothermal vent waters. J Environ Monit 3: 61-66. 200 O’Sullivan DW, Hanson Jr AK, Kester DR (1997) The
Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments.
Wentzel, Lia Costa Pinto; Inforsato, Fábio José; Montoya, Quimi Vidaurre; Rossin, Bruna Gomes; Nascimento, Nadia Regina; Rodrigues, André; Sette, Lara Durães
2018-06-19
Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.
Bogomolni, Andrea L.; Gast, Rebecca J.; Ellis, Julie C.; Dennett, Mark; Pugliares, Katie R.; Lentell, Betty J.; Moore, Michael J.
2017-01-01
Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1–4 drugs and 27% (128/468) resistant to 5–13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beach goers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health. PMID:18828560
A simple method to reduce discharge of sewage microorganisms from an Antarctic research station.
Hughes, Kevin A; Blenkharn, Nigel
2003-03-01
The majority of coastal Antarctic stations release untreated sewage into the near-shore marine environment. This study examined bacterial reproduction within the temporary sewage-holding tanks of Rothera Research Station (Adelaide Island, Antarctic Peninsula) and monitored sewage pollution in the local marine environment. By continuously flushing the sewage-holding tanks with cold seawater we inhibited microbial reproduction and decreased the numbers of bacteria subsequently released into the sea by >90%. The widespread use of this simple method could significantly reduce the numbers of faecal coliform and other non-native microorganisms introduced into the Antarctic marine environment.
2008 Marine Microbes Gordon Research Conference (July 13-17, 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Kirchman
2009-09-16
Marine microbes are very abundant and diverse. They play significant roles in all element cycles, both quantitatively and qualitatively. However, they are little known, as the continuous series of surprising discoveries in the last few years shows. In the present conference the main focus will be on how these microbes interact: with other cells of their own species, with other microbes and with large living beings, from biofilms to symbiants. Another important topic will be the exploration of marine microbial diversity based on the recently developed sequencing approaches and on efforts to obtain marine organisms in pure cultures. This conferencemore » will be the third in the Marine Microorganisms series. We hope it will contribute to enlarge the community of marine microbiologists and help in pointing the future directions of research even more than the two previous meetings.« less
76 FR 3095 - Taking and Importing Marine Mammals; U.S. Navy Training in the Hawaii Range Complex
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... Hawaii Institute of Marine Biology (HIMB) is underway to share acoustic data. Results from the February... Importing Marine Mammals; U.S. Navy Training in the Hawaii Range Complex AGENCY: National Marine Fisheries... Plan. SUMMARY: In accordance with the Marine Mammal Protection Act (MMPA), as amended, and implementing...
Microplastic-associated Bacterial Assemblages in the Intertidal Zone
NASA Astrophysics Data System (ADS)
Jiang, P.; Zhao, S.; Zhu, L.; Li, D.
2017-12-01
Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.
A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.
Hubert, Casey; Loy, Alexander; Nickel, Maren; Arnosti, Carol; Baranyi, Christian; Brüchert, Volker; Ferdelman, Timothy; Finster, Kai; Christensen, Flemming Mønsted; Rosa de Rezende, Júlia; Vandieken, Verona; Jørgensen, Bo Barker
2009-09-18
Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis, fermentation, and sulfate reduction upon induction at 50 degrees C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may broadly influence microbial community composition in the marine environment.
Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza
2014-01-01
Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.
Ferreira, Ari J. S.; Siam, Rania; Setubal, João C.; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S.; Dawe, Adam S.; Ghazy, Mohamed A.; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M.; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A. C.; Jankovic, Boris R.; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza
2014-01-01
Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648
Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.
The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less
Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep
Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; ...
2017-02-27
The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less
Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep
Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; Kellermann, Matthias Y.; Redmond, Molly C.; Andersen, Gary L.; Valentine, David L.
2017-01-01
The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane and CO2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems. PMID:28289403
The development of permafrost bacterial communities under submarine conditions
NASA Astrophysics Data System (ADS)
Mitzscherling, Julia; Winkel, Matthias; Winterfeld, Maria; Horn, Fabian; Yang, Sizhong; Grigoriev, Mikhail N.; Wagner, Dirk; Overduin, Pier P.; Liebner, Susanne
2017-07-01
Submarine permafrost is more vulnerable to thawing than permafrost on land. Besides increased heat transfer from the ocean water, the penetration of salt lowers the freezing temperature and accelerates permafrost degradation. Microbial communities in thawing permafrost are expected to be stimulated by warming, but how they develop under submarine conditions is completely unknown. We used the unique records of two submarine permafrost cores from the Laptev Sea on the East Siberian Arctic Shelf, inundated about 540 and 2500 years ago, to trace how bacterial communities develop depending on duration of the marine influence and pore water chemistry. Combined with geochemical analysis, we quantified total cell numbers and bacterial gene copies and determined the community structure of bacteria using deep sequencing of the bacterial 16S rRNA gene. We show that submarine permafrost is an extreme habitat for microbial life deep below the seafloor with changing thermal and chemical conditions. Pore water chemistry revealed different pore water units reflecting the degree of marine influence and stages of permafrost thaw. Millennia after inundation by seawater, bacteria stratify into communities in permafrost, marine-affected permafrost, and seabed sediments. In contrast to pore water chemistry, the development of bacterial community structure, diversity, and abundance in submarine permafrost appears site specific, showing that both sedimentation and permafrost thaw histories strongly affect bacteria. Finally, highest microbial abundance was observed in the ice-bonded seawater unaffected but warmed permafrost of the longer inundated core, suggesting that permafrost bacterial communities exposed to submarine conditions start to proliferate millennia after warming.
Patterns of rare and abundant marine microbial eukaryotes.
Logares, Ramiro; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Gobet, Angélique; Kooistra, Wiebe H C F; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Stoeck, Thorsten; Santini, Sébastien; Siano, Raffaele; Wincker, Patrick; Zingone, Adriana; Richards, Thomas A; de Vargas, Colomban; Massana, Ramon
2014-04-14
Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial utilization of nitrogen in cold core eddies: size does matter
NASA Astrophysics Data System (ADS)
McInnes, A.; Messer, L. F.; Laiolo, L.; Laverock, B.; Laczka, O.; Brown, M. V.; Seymour, J.; Doblin, M.
2016-02-01
As the base of the marine food web, and the first step in the biological carbon pump, understanding changes in microbial community composition is essential for predicting changes in the marine nitrogen (N) cycle. Climate change projections suggest that oligotrophic waters will become more stratified with a concomitant shift in microbial community composition based on changes in N supply. In regions of strong boundary currents, eddies could reduce this limitation through nutrient uplift and other forms of eddy mixing. Understanding the preference for different forms of N by microbes is essential for understanding and predicting shifts in the microbial community. This study aims to understand the utilization of different N species within different microbial size fractions as well as understand the preferred source of N to these groups across varying mesoscale and sub-mesoscale features in the East Australian Current (EAC). In June 2015 we sampled microbial communities from three depths (surface, chlorophyll-a maximum and below the mixed layer), in three mesoscale and sub-mesoscale eddy features, as well as two end-point water masses (coastal and oligotrophic EAC water). Particulate matter was analysed for stable C and N isotopes, and seawater incubations with trace amounts of 15NO3, 15NH4, 15N2, 15Urea and 13C were undertaken. All samples were size fractionated into 0.3-2.0 µm, 2.0-10 µm, and >10 µm size classes, encompassing the majority of microbes in these waters. Microbial community composition was also assessed (pigments, flow cytometry, DNA), as well as physical and chemical parameters, to better understand the drivers of carbon fixation and nitrogen utilization across a diversity of water masses and microbial size classes. We observed that small, young features have a greater abundance of larger size classes. We therefore predict that these microbes will preferentially draw down the recently pulsed NO3. Ultimately, the size and age of a feature will determine the N compound utilization and microbial community composition and as the feature grows in size and age a community succession will lead to differential more diverse N compound utilization.
Free-Living Nematodes in the Freshwater Food Web: A Review
Majdi, Nabil; Traunspurger, Walter
2015-01-01
Free-living nematodes are well-recognized as an abundant and ubiquitous component of benthic communities in inland waters. Compelling evidence from soil and marine ecosystems has highlighted the importance of nematodes as trophic intermediaries between microbial production and higher trophic levels. However, the paucity of empirical evidence of their role in freshwater ecosystems has hampered their inclusion in our understanding of freshwater food web functioning. This literature survey provides an overview of research efforts in the field of freshwater nematode ecology and of the complex trophic interactions between free-living nematodes and microbes, other meiofauna, macro-invertebrates, and fishes. Based on an analysis of the relevant literature and an appreciation of the potential of emerging approaches for the evaluation of nematode trophic ecology, we point out research gaps and recommend relevant directions for further research. The latter include (i) interactions of nematodes with protozoans and fungi; (ii) nonconsumptive effects of nematodes on microbial activity and the effects of nematodes on associated key ecosystem processes (decomposition, primary production); and (iii) the feeding selectivity and intraspecific feeding variability of nematodes and their potential impacts on the structure of benthic communities. PMID:25861114
NASA Astrophysics Data System (ADS)
Aceves, A.; Pierson, J. J.; Millette, N.
2016-02-01
Mixotrophic plankton are capable of obtaining their energy through photosynthesis and phagocytosis, and have been observed to be common among marine and freshwater dinoflagellates. The role of mixotrophic dinoflagellates in the `microbial loop' has received little attention. Organisms that were only thought to introduce new carbon into the loop through photosynthesis may also consume fixed carbon by ingesting bacteria, making the `microbial loop' more complex that originally conceived. The nanodinoflagellate Heterocapsa rotundata was cultured under various light and nutrient regimes to investigate the role of phototrophy and phagotrophy during winter conditions in the Chesapeake Bay. We quantified grazing rates of H. rotundata on bacteria using two feeding methods, ingestion of polycarbonate microspheres and prey removal experiments. Ingestion of fluorescent microspheres by H. rotundata revealed their ability to phagocytize particles. Using flow cytometry we calculated grazing rates of H. rotundata on bacteria under various light intensities and ammonium concentrations and found that H. rotundata increased phagotrophy at lower light intensities and ammonium was positively correlated with the grazing rates of H. rotundata. We conclude that H. rotundata uses mixotrophy as a primary source for obtaining carbon during the winter when there is limited light and lower temperatures.
Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.
Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia
2015-01-01
Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology. © 2015 Elsevier Ltd. All rights reserved.
Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments
Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey
2016-01-01
The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420
Efficacies of soy sauce and wine base marinades for controlling spoilage of raw beef.
Kargiotou, C; Katsanidis, E; Rhoades, J; Kontominas, M; Koutsoumanis, K
2011-02-01
Fresh beef slices were marinated by immersion in marinades based on soy sauce without (SB) or with lactic acid (SBLA) or red wine base without (WB) or with 0.5% v/v oregano essential oil (WBO). For control samples (immersed in saline), a mean increase of 0.9log CFU/cm(2) in total viable counts (TVCs) occurred during the 24h treatment. During marination with WB and SB, mean TVC decreased by 0.7 and 0.3log CFU/cm(2), respectively. The mean decrease in TVC for samples marinated in WBO or SBLA was 1.2log CFU/cm(2). Subsequent storage of beef resulted in a rapid increase of TVC in control samples, to ≥9.5log CFU/cm(2) after 8 days at 5°C or 3 days at 15°C. Significant (P<0.05) microbial growth occurred in marinated samples stored at 5°C. During storage at 15°C TVC increased in only WB samples but the final numbers of 5.9log CFU/cm(2) were significantly lower (P<0.05) than the numbers in the control. Results similar to those for TVC were observed for Pseudomonas spp. All marinades also gave meat with significant lower TBARS values than the controls. There were no significant differences (P>0.05) in the toughness of the marinated samples compared to the control, except for SBLA samples which had significantly higher (P<0.05) shear force values. Marination with soy sauce or red wine marinades can evidently control microbial spoilage and oxidation of meat. Copyright © 2010 Elsevier Ltd. All rights reserved.
Amoutzias, Grigoris D.; Chaliotis, Anargyros; Mossialos, Dimitris
2016-01-01
Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515
Kim, Sun Ae; Choi, Eun Sook; Kim, Nam Hee; Kim, Hye Won; Lee, Na Young; Cho, Tae Jin; Jo, Jun Il; Kim, Soon Han; Lee, Soon Ho; Ha, Sang Do; Rhee, Min Suk
2017-04-01
The present study examined the changes in microbiological composition during the production process of crab marinated in soy sauce, potential microbial hazards, potential contamination routes and effective critical control points. Crab and soy sauce samples were obtained from six different manufacturing plants at different stages, and their microbiological content was comprehensively assessed by quantitative and qualitative analyses. The results revealed the following: (1) the final products contained 4.0 log colony-forming units (CFU) g -1 aerobic plate counts (APCs) and 1.1 log CFU g -1 coliforms, which may have been introduced from the raw materials (the level of APCs in raw crab and soy sauce mixed with other ingredients was 3.8 log CFU g -1 and 4.0 log CFU mL -1 respectively); (2) marination of crab in soy sauce may allow cross-contamination by coliforms; (3) only Bacillus cereus and Staphylococcus aureus were qualitatively detected in samples at different stages of manufacture (detection rate of 28 and 5.6% respectively), and these bacteria may impact the microbiological quality and safety of crab marinated in soy sauce; and (4) bacterial counts were either maintained or increased during the manufacturing process (suggesting that no particular step can be targeted to reduce bacterial counts). Proper management of raw materials and the marination process are effective critical control points, and alternative interventions may be needed to control bacterial quantity. The results provide important basic information about the production of crab marinated in soy sauce and may facilitate effective implementation of sanitary management practices in related industries and research fields. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Marine Enzymes: Production and Applications for Human Health.
Rao, T Eswara; Imchen, M; Kumavath, R
Marine microbial enzymes have wide applications in bioindustries. Selection of microorganisms for enzyme production at the industrial level requires good yield and high production rate. A number of enzymes such as amylase, caseinase, lipase, gelatinase, and DNases have been discovered from microbes isolated from extreme marine environments. Such enzymes are thermostable, tolerant to a varied range of pH and other harsh conditions required in industrial applications. Novelty in their structure and characteristics has shown promising scope to the researchers in academia and industry. In this chapter, we present a bird's eye view on recent research works in the field of enzyme production from marine origin as well as their potential biological applications relevant to human health. © 2017 Elsevier Inc. All rights reserved.
Penesyan, Anahit; Tebben, Jan; Lee, Matthew; Thomas, Torsten; Kjelleberg, Staffan; Harder, Tilmann; Egan, Suhelen
2011-01-01
Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA) was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was shown to effectively inhibit a range of marine bacteria from various phylogenetic groups. However TDA-producers themselves were resistant and are likely to possess resistance mechanism preventing autoinhibition. We propose that TDA in isolate D323 and related eukaryote-associated bacteria plays a role in defending the host organism against unwanted microbial colonisation and, possibly, bacterial pathogens.
Weber, Marc; Teeling, Hanno; Huang, Sixing; Waldmann, Jost; Kassabgy, Mariette; Fuchs, Bernhard M; Klindworth, Anna; Klockow, Christine; Wichels, Antje; Gerdts, Gunnar; Amann, Rudolf; Glöckner, Frank Oliver
2011-05-01
Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion.
Delport, Tiffany C.; Power, Michelle L.; Harcourt, Robert G.; Webster, Koa N.
2016-01-01
ABSTRACT Gut microbiota play an important role in maintenance of mammalian metabolism and immune system regulation, and disturbances to this community can have adverse impacts on animal health. To better understand the composition of gut microbiota in marine mammals, fecal bacterial communities of the Australian sea lion (Neophoca cinerea), an endangered pinniped with localized distribution, were examined. A comparison of samples from individuals across 11 wild colonies in South and Western Australia and three Australian captive populations showed five dominant bacterial phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. The phylum Firmicutes was dominant in both wild (76.4% ± 4.73%) and captive animals (61.4% ± 10.8%), while Proteobacteria contributed more to captive (29.3% ± 11.5%) than to wild (10.6% ± 3.43%) fecal communities. Qualitative differences were observed between fecal communities from wild and captive animals based on principal-coordinate analysis. SIMPER (similarity percentage procedure) analyses indicated that operational taxonomic units (OTU) from the bacterial families Clostridiaceae and Ruminococcaceae were more abundant in wild than in captive animals and contributed most to the average dissimilarity between groups (SIMPER contributions of 19.1% and 10.9%, respectively). Differences in the biological environment, the foraging site fidelity, and anthropogenic impacts may provide various opportunities for unique microbial establishment in Australian sea lions. As anthropogenic disturbances to marine mammals are likely to increase, understanding the potential for such disturbances to impact microbial community compositions and subsequently affect animal health will be beneficial for management of these vulnerable species. IMPORTANCE The Australian sea lion is an endangered species for which there is currently little information regarding disease and microbial ecology. In this work, we present an in-depth study of the fecal microbiota of a large number of Australian sea lions from geographically diverse wild and captive populations. Colony location and captivity were found to influence the gut microbial community compositions of these animals. Our findings significantly extend the baseline knowledge of marine mammal gut microbiome composition and variability. PMID:27037116
2006-12-18
Defense. Reference herein to any specific commercial product, process , or service by trade name, trademark, manufacturer, or otherwise, does not...result of a combination of both respiratory and cometabolic processes . For in situ bioremediation, it would be most desirable to stimulate...conditions we examined. While the process has much potential, a key aspect of the technology – the nature and capability of the intrinsic microbial
Sipler, Rachel E; Kellogg, Colleen T E; Connelly, Tara L; Roberts, Quinn N; Yager, Patricia L; Bronk, Deborah A
2017-01-01
Warming at nearly twice the global rate, higher than average air temperatures are the new 'normal' for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 - 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.
Mosaic patterns of B-vitamin synthesis and utilization in a natural marine microbial community.
Gómez-Consarnau, Laura; Sachdeva, Rohan; Gifford, Scott M; Cutter, Lynda S; Fuhrman, Jed A; Sañudo-Wilhelmy, Sergio A; Moran, Mary Ann
2018-04-16
Aquatic environments contain large communities of microorganisms whose synergistic interactions mediate the cycling of major and trace nutrients, including vitamins. B-vitamins are essential coenzymes that many organisms cannot synthesize. Thus, their exchange among de novo synthesizers and auxotrophs is expected to play an important role in the microbial consortia and explain some of the temporal and spatial changes observed in diversity. In this study, we analyzed metatranscriptomes of a natural marine microbial community, diel sampled quarterly over one year to try to identify the potential major B-vitamin synthesizers and consumers. Transcriptomic data showed that the best-represented taxa dominated the expression of synthesis genes for some B-vitamins but lacked transcripts for others. For instance, Rhodobacterales dominated the expression of vitamin-B 12 synthesis, but not of vitamin-B 7 , whose synthesis transcripts were mainly represented by Flavobacteria. In contrast, bacterial groups that constituted less than 4% of the community (e.g., Verrucomicrobia) accounted for most of the vitamin-B 1 synthesis transcripts. Furthermore, ambient vitamin-B 1 concentrations were higher in samples collected during the day, and were positively correlated with chlorophyll-a concentrations. Our analysis supports the hypothesis that the mosaic of metabolic interdependencies through B-vitamin synthesis and exchange are key processes that contribute to shaping microbial communities in nature. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Reconstruction of a Bacterial Genome from DNA Cassettes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Dupont; John Glass; Laura Sheahan
2011-12-31
This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolicmore » processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.« less
Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt
Jungbluth, Sean P; Bowers, Robert M; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S
2016-01-01
Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. PMID:26872042
Predicting Biological Information Flow in a Model Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Louca, S.; Hawley, A. K.; Katsev, S.; Beltran, M. T.; Bhatia, M. P.; Michiels, C.; Capelle, D.; Lavik, G.; Doebeli, M.; Crowe, S.; Hallam, S. J.
2016-02-01
Microbial activity drives marine biochemical fluxes and nutrient cycling at global scales. Geochemical measurements as well as molecular techniques such as metagenomics, metatranscriptomics and metaproteomics provide great insight into microbial activity. However, an integration of molecular and geochemical data into mechanistic biogeochemical models is still lacking. Recent work suggests that microbial metabolic pathways are, at the ecosystem level, strongly shaped by stoichiometric and energetic constraints. Hence, models rooted in fluxes of matter and energy may yield a holistic understanding of biogeochemistry. Furthermore, such pathway-centric models would allow a direct consolidation with meta'omic data. Here we present a pathway-centric biogeochemical model for the seasonal oxygen minimum zone in Saanich Inlet, a fjord off the coast of Vancouver Island. The model considers key dissimilatory nitrogen and sulfur fluxes, as well as the population dynamics of the genes that mediate them. By assuming a direct translation of biocatalyzed energy fluxes to biosynthesis rates, we make predictions about the distribution and activity of the corresponding genes. A comparison of the model to molecular measurements indicates that the model explains observed DNA, RNA, protein and cell depth profiles. This suggests that microbial activity in marine ecosystems such as oxygen minimum zones is well described by DNA abundance, which, in conjunction with geochemical constraints, determines pathway expression and process rates. Our work further demonstrates how meta'omic data can be mechanistically linked to environmental redox conditions and biogeochemical processes.
Inagaki, F; Hinrichs, K-U; Kubo, Y; Bowles, M W; Heuer, V B; Hong, W-L; Hoshino, T; Ijiri, A; Imachi, H; Ito, M; Kaneko, M; Lever, M A; Lin, Y-S; Methé, B A; Morita, S; Morono, Y; Tanikawa, W; Bihan, M; Bowden, S A; Elvert, M; Glombitza, C; Gross, D; Harrington, G J; Hori, T; Li, K; Limmer, D; Liu, C-H; Murayama, M; Ohkouchi, N; Ono, S; Park, Y-S; Phillips, S C; Prieto-Mollar, X; Purkey, M; Riedinger, N; Sanada, Y; Sauvage, J; Snyder, G; Susilawati, R; Takano, Y; Tasumi, E; Terada, T; Tomaru, H; Trembath-Reichert, E; Wang, D T; Yamada, Y
2015-07-24
Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10(4) cells cm(-3). Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed. Copyright © 2015, American Association for the Advancement of Science.
Gene expression in the deep biosphere.
Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F
2013-07-11
Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.
Weiner, Ronald M.; Taylor, Larry E.; Henrissat, Bernard; Hauser, Loren; Land, Miriam; Coutinho, Pedro M.; Rancurel, Corinne; Saunders, Elizabeth H.; Longmire, Atkinson G.; Zhang, Haitao; Bayer, Edward A.; Gilbert, Harry J.; Larimer, Frank; Zhulin, Igor B.; Ekborg, Nathan A.; Lamed, Raphael; Richardson, Paul M.; Borovok, Ilya; Hutcheson, Steven
2008-01-01
The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment. PMID:18516288
Bryant, Jessica A; Stewart, Frank J; Eppley, John M; DeLong, Edward F
2012-07-01
Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.
Impacts of chemical gradients on microbial community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.; ...
2017-01-17
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
Signatures of natural selection and ecological differentiation in microbial genomes.
Shapiro, B Jesse
2014-01-01
We live in a microbial world. Most of the genetic and metabolic diversity that exists on earth - and has existed for billions of years - is microbial. Making sense of this vast diversity is a daunting task, but one that can be approached systematically by analyzing microbial genome sequences. This chapter explores how the evolutionary forces of recombination and selection act to shape microbial genome sequences, leaving signatures that can be detected using comparative genomics and population-genetic tests for selection. I describe the major classes of tests, paying special attention to their relative strengths and weaknesses when applied to microbes. Specifically, I apply a suite of tests for selection to a set of closely-related bacterial genomes with different microhabitat preferences within the marine water column, shedding light on the genomic mechanisms of ecological differentiation in the wild. I will focus on the joint problem of simultaneously inferring the boundaries between microbial populations, and the selective forces operating within and between populations.
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-01-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems. PMID:28094795
Impacts of chemical gradients on microbial community structure.
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-04-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.
Yakimov, Michail M; La Cono, Violetta; Denaro, Renata; D'Auria, Giuseppe; Decembrini, Franco; Timmis, Kenneth N; Golyshin, Peter N; Giuliano, Laura
2007-12-01
Meso- and bathypelagic ecosystems represent the most common marine ecological niche on Earth and contain complex communities of microorganisms that are for the most part ecophysiologically poorly characterized. Gradients of physico-chemical factors (for example, depth-related gradients of light, temperature, salinity, nutrients and pressure) constitute major forces shaping ecosystems at activity 'hot spots' on the ocean floor, such as hydrothermal vents, cold seepages and mud volcanoes and hypersaline lakes, though the relationships between community composition, activities and environmental parameters remain largely elusive. We report here results of a detailed study of primary producing microbial communities in the deep Eastern Mediterranean Sea. The brine column of the deep anoxic hypersaline brine lake, L'Atalante, the overlying water column and the brine-seawater interface, were characterized physico- and geochemically, and microbiologically, in terms of their microbial community compositions, functional gene distributions and [(14)C]bicarbonate assimilation activities. The depth distribution of genes encoding the crenarchaeal ammonia monooxygenase alpha subunit (amoA), and the bacterial ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RuBisCO), was found to coincide with two different types of chemoautotrophy. Meso- and bathypelagic microbial communities were enriched in ammonia-oxidizing Crenarchaeota, whereas the autotrophic community at the oxic/anoxic interface of L'Atalante lake was dominated by Epsilonproteobacteria and sulfur-oxidizing Gammaproteobacteria. These autotrophic microbes are thus the basis of the food webs populating these deep-sea ecosystems.
NASA Astrophysics Data System (ADS)
Paul, Andreas; Lessa Andrade, Luiza; Dutton, Kirsten E.; Sherry, Angela; Court, Wesley M.; Van der Land, Cees; Lokier, Stephen W.; Head, Ian M.
2017-04-01
Stromatolitic features are documented from both marine and terrestrial environments worldwide. These features form through a combination of trapping and binding of allochthonous grains, and through microbially mediated and/or controlled precipitation of carbonate minerals. The combined effects of these processes result in the continuous vertical and lateral growth of stromatolites. While the Abu Dhabi coastal sabkha is well known for a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats, no stromatolitic features have been reported from this area so far. In this study, we report evidence for stromatolitic features from the coastal sabkha of Abu Dhabi, based on observations in an intertidal but permanently submerged pool. This pool lies embedded within the laminated microbial mat zone, and is marked by the development of true laminated stromatolite at its margins and microbial build-ups at its centre. In order to characterise processes that lead to the formation of these stromatolitic features, and to develop a conceptual model that describes their development in the context of variations in sea level, tidal energy and other environmental factors, we employ a multitude of environmental, sedimentological, mineralogical and geochemical methods. These methods include the analysis of water data in terms of temporal variations in temperature, salinity, dissolved oxygen and water level, the analysis of petrographic thin sections of both lithified and unlithified features as well as an analysis of the stromatolites' mineralogical composition, and the amounts of incorporated organic carbon and calcium carbonate. Initial results suggest that the development of the observed stromatolitic features in the coastal sabkha of Abu Dhabi is the result of a complex interplay between simultaneous erosion of laminated microbial mat, and biotic/abiotic lithification processes. Initially, the location of this pool was characterised by a continuous laminated microbial mat. Through Recent changes in sea level and/or of the associated environmental conditions, this microbial mat was removed. At the same time as this erosion occurred, lithification processes set-in that continuously stabilised the extending pool margin. Through this extension, selected areas of the newly lithified mat were left behind, and formed the build-ups in the pool's centre that are observed today. This lithification might have been controlled by a change in the associated microbial mat communities from non-lithifying to lithifying, due to the permanent exposure to seawater by which this pool is characterised.
Kunihiro, Tadao; Veuger, Bart; Vasquez-Cardenas, Diana; Pozzato, Lara; Le Guitton, Marie; Moriya, Kazuyoshi; Kuwae, Michinobu; Omori, Koji; Boschker, Henricus T S; van Oevelen, Dick
2014-01-01
Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.
Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M.
2013-01-01
Background The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Methodology/Principal Findings Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4–12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. Conclusions/Significance The spatial, environmental and temporal complexity of the high-altitude soils of the Himalaya generates ongoing disturbance and colonization events that subject heterogeneous microniches to stochastic colonization by far away dust associated microbes and result in the observed spatially divergent bacterial communities. PMID:24086740
Microbial Extremophiles in Aspect of Limits of Life
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Hoover, Richard B.; Tang, Jane
2007-01-01
During Earth's evolution accompanied by geophysical and climatic changes a number of ecosystems have been formed. These ecosystems differ by the broad variety of physicochemical and biological factors composing our environment. Traditionally, pH and salinity are considered as geochemical extremes, as opposed to the temperature, pressure and radiation that are referred to as physical extremes (Van den Burg, 2003). Life inhabits all possible places on Earth interacting with the environment and within itself (cross species relations). In nature it is very rare when an ecotope is inhabited by a single species. As a rule, most ecosystems contain the functionally related and evolutionarily adjusted communities (consortia and populations). In contrast to the multicellular structure of eukaryotes (tissues, organs, systems of organs, whole organism), the highest organized form of prokaryotic life in nature is the benthic colonization in biofilms and microbial mats. In these complex structures all microbial cells of different species are distributed in space and time according to their functions and to physicochemical gradients that allow more effective system support, self-protection, and energy distribution. In vitro, of course, the most primitive organized structure for bacterial and archaeal cultures is the colony, the size, shape, color, consistency, and other characteristics of which could carry varies specifics on species or subspecies levels. In table 1 all known types of microbial communities are shown (Pikuta et a]., 2005). In deep underground (lithospheric) and deep-sea ecosystems an additional factor - pressure, and irradiation - could also be included in the list of microbial communities. Currently the beststudied ecosystems are: human body (due to the medical importance), and fresh water and marine ecosystems (due to the reason of an environmental safety). For a long time, extremophiles were terra incognita, since the environments with aggressive parameters (compared to the human body temperature, pH, mineralization, and pressure) were considered a priori as a dead zone.
Experimental incubations elicit profound changes in community transcription in OMZ bacterioplankton.
Stewart, Frank J; Dalsgaard, Tage; Young, Curtis R; Thamdrup, Bo; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E; Delong, Edward F
2012-01-01
Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for "challenging" microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia) increased 4-13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations.
Experimental Incubations Elicit Profound Changes in Community Transcription in OMZ Bacterioplankton
Stewart, Frank J.; Dalsgaard, Tage; Young, Curtis R.; Thamdrup, Bo; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward F.
2012-01-01
Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for “challenging” microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia) increased 4–13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations. PMID:22615914
Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E
2016-05-01
The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken. Copyright © 2015 Elsevier Ltd. All rights reserved.
Possibilities for extremophilic microorganisms in microbial electrochemical systems
Dopson, Mark; Ni, Gaofeng; Sleutels, Tom HJA
2015-01-01
Microbial electrochemical systems exploit the metabolism of microorganisms to generate electrical energy or a useful product. In the past couple of decades, the application of microbial electrochemical systems has increased from the use of wastewaters to produce electricity to a versatile technology that can use numerous sources for the extraction of electrons on the one hand, while on the other hand these electrons can be used to serve an ever increasing number of functions. Extremophilic microorganisms grow in environments that are hostile to most forms of life and their utilization in microbial electrochemical systems has opened new possibilities to oxidize substrates in the anode and produce novel products in the cathode. For example, extremophiles can be used to oxidize sulfur compounds in acidic pH to remediate wastewaters, generate electrical energy from marine sediment microbial fuel cells at low temperatures, desalinate wastewaters and act as biosensors of low amounts of organic carbon. In this review, we will discuss the recent advances that have been made in using microbial catalysts under extreme conditions and show possible new routes that extremophilic microorganisms open for microbial electrochemical systems. PMID:26474966
Mustafa, Ghada A; Abd-Elgawad, Amr; Abdel-Haleem, Alyaa M; Siam, Rania
2014-01-01
The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.-suggesting a "marine Vibrio phenomenon"; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites.
NASA Astrophysics Data System (ADS)
AbdSharad, Ali; Usup, Gires; Sahrani, Fathul Karim; Ahmad, Asmat
2016-11-01
Biogenic souring and microbial-influenced corrosion is a common scenario in petroleum reservoir. The serious threat normally comes from sulfate-reducing bacteria (SRB). Alcaligenes faecalis was tested in this study for the ability to inhibit the growth of SRB. Ethyl acetate extraction of A. faecalis grown in marine broth was carried out to produce crude ethyl acetate of A. faecalis (CEAF). CEAF was diluted at concentrations 0.2-12.8 mg/mL and was tested for anti-microbial activity by microdilution susceptibility tests in 96-wells plate. CEAF was then analyzed by Gas Chromatography Mass Spectrometry (GC-MS). The microdilution susceptibility tests showed that the crude have anti- microbial activities on SRB. CEAF showed immediate killing effect against SRB in liquid medium which suggest the presence of active chemical compounds with antimicrobial activity. The GC-MS analysis showed the presence of 20 different chemical compounds in CEAF, The major components in CEAF can be related to antimicrobial, antifungal, antioxidant, pesticide, metabolism, toxicity, anticancer and corrosion inhibition activities. In conclusion, crude ethyl acetate extract of A. faecalis has the ability to inhibit SRB growth.
Effects of triclosan on bacterial community composition and ...
Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, Vibrio, a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm) can induce a significant Vibrio growth response (68–1,700 fold increases) in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary), Doctors Arm Canal (Big Pine Key, FL), and Clam Bank Landing (North Inlet Estuary, Georgetown, SC). Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of Vibrionaceae (17-fold), Pseudoalteromonadaceae (65-fold), Alteromonadaceae (108-fold), Colwelliaceae (430-fold), and Oceanospirillaceae (1,494-fold). While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to u
Hu, Sarah K; Campbell, Victoria; Connell, Paige; Gellene, Alyssa G; Liu, Zhenfeng; Terrado, Ramon; Caron, David A
2016-04-01
Microbial eukaryotes fulfill key ecological positions in marine food webs. Molecular approaches that connect protistan diversity and biogeography to their diverse metabolisms will greatly improve our understanding of marine ecosystem function. The majority of molecular-based studies to date use 18S rRNA gene sequencing to characterize natural microbial assemblages, but this approach does not necessarily discriminate between active and non-active cells. We incorporated RNA sequencing into standard 18S rRNA gene sequence surveys with the purpose of assessing those members of the protistan community contributing to biogeochemical cycling (active organisms), using the ratio of cDNA (reverse transcribed from total RNA) to 18S rRNA gene sequences within major protistan taxonomic groups. Trophically important phytoplankton, such as diatoms and chlorophytes exhibited seasonal trends in relative activity. Additionally, both radiolaria and ciliates displayed previously unreported high relative activities below the euphotic zone. This study sheds new light on the relative metabolic activity of specific protistan groups and how microbial communities respond to changing environmental conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past.
Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine; Ilsøe, Peter C; Perrigault, Mickael; Butler, Paul; Chauvaud, Laurent; Eiríksson, Jón; Scourse, James; Paillard, Christine; Orlando, Ludovic
2017-09-01
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management. © 2017 John Wiley & Sons Ltd.
Ettinger, Cassandra L.; Voerman, Sofie E.; Lang, Jenna M.; Stachowicz, John J.
2017-01-01
Background Zostera marina (also known as eelgrass) is a foundation species in coastal and marine ecosystems worldwide and is a model for studies of seagrasses (a paraphyletic group in the order Alismatales) that include all the known fully submerged marine angiosperms. In recent years, there has been a growing appreciation of the potential importance of the microbial communities (i.e., microbiomes) associated with various plant species. Here we report a study of variation in Z. marina microbiomes from a field site in Bodega Bay, CA. Methods We characterized and then compared the microbial communities of root, leaf and sediment samples (using 16S ribosomal RNA gene PCR and sequencing) and associated environmental parameters from the inside, edge and outside of a single subtidal Z. marina patch. Multiple comparative approaches were used to examine associations between microbiome features (e.g., diversity, taxonomic composition) and environmental parameters and to compare sample types and sites. Results Microbial communities differed significantly between sample types (root, leaf and sediment) and in sediments from different sites (inside, edge, outside). Carbon:Nitrogen ratio and eelgrass density were both significantly correlated to sediment community composition. Enrichment of certain taxonomic groups in each sample type was detected and analyzed in regard to possible functional implications (especially regarding sulfur metabolism). Discussion Our results are mostly consistent with prior work on seagrass associated microbiomes with a few differences and additional findings. From a functional point of view, the most significant finding is that many of the taxa that differ significantly between sample types and sites are closely related to ones commonly associated with various aspects of sulfur and nitrogen metabolism. Though not a traditional model organism, we believe that Z. marina can become a model for studies of marine plant-microbiome interactions. PMID:28462046
Cryptic oxygen cycling in anoxic marine zones.
Garcia-Robledo, Emilio; Padilla, Cory C; Aldunate, Montserrat; Stewart, Frank J; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter
2017-08-01
Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O 2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O 2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O 2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O 2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.