Science.gov

Sample records for complex material systems

  1. Multiscale characterisation of geological materials through complex systems

    NASA Astrophysics Data System (ADS)

    Tordesillas, A.; Walker, D. M.; Ando, E.; Viggiani, C.

    2012-12-01

    Understanding the fundamental mechanisms underpinning the nucleation, propagation, and arrest of shear zones in geological materials has broad implications for planetary science, earthquake and plate tectonics and deep-Earth energy production, to name a few examples. Such mechanisms are inherently multiscale in space and time. Here we use complex systems techniques to characterise the evolution of shear zones in Hostun and Caicos Ooid sand under triaxial compression, using x-ray micro computed tomography measurements of particle kinematics and interparticle contacts. Observational data on the evolution of individual grain contacts allows the construction of representative contact networks resplendent in topological motifs, especially the stable 3-cycles, formed by three grains in mutual contact. The lifespans of such cycles can be tracked and the special subset of persistent 3-cycles surviving the deformation from the onset of loading can be shown to exhibit spatial clustering at multiple scales, thus pinpointing the spatial and temporal boundaries of shear zones. More abstract complex networks built from relationships between individual grain kinematics rather than physical grain contacts can also provide a wealth of information. In particular, a study of network communities in these kinematical networks helps to uncover a spatial length scale that remains essentially invariant throughout loading and is consistent with the observed shear band thickness. Moreover, community borders in and around the band delineate the band boundaries. A ranking of the complex network measure of closeness centrality of nodes reveals the collection of grains where the persistent shear band ultimately develops. Communities, length scales and centrality measures all depend on shortest path measures and thus we can interpret information in these networks spreads the fastest to and from those nodes corresponding to the grains in the region of strain localisation. This trend, whereby a

  2. Complex Materials

    ScienceCinema

    Cooper, Valentino

    2016-07-12

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  3. Thermal properties of composite materials: a complex systems approximation

    NASA Astrophysics Data System (ADS)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  4. Using materials prognosis to maximize the utilization potential of complex mechanical systems

    NASA Astrophysics Data System (ADS)

    Christodoulou, Leo; Larsen, James M.

    2004-03-01

    Performance and life limits for structural materials in complex mechanical systems are often established based heavily on a fear of failure. Conventional approaches for avoiding structural failure often involve extensive periodic in spections, lengthy maintenance processes, and highly conservative “go, no-go” operational decisions, all of which may significantly impair system readiness. This article summarizes a typical present-day life-management process for an advanced system and then presents the key elements of an alternative life-management approach known as materials damage prognosis.

  5. Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems

    PubMed Central

    Hamman, Josias H.

    2010-01-01

    Chitosan has been the subject of interest for its use as a polymeric drug carrier material in dosage form design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. However, one drawback of using this natural polysaccharide in modified release dosage forms for oral administration is its fast dissolution rate in the stomach. Since chitosan is positively charged at low pH values (below its pKa value), it spontaneously associates with negatively charged polyions in solution to form polyelectrolyte complexes. These chitosan based polyelectrolyte complexes exhibit favourable physicochemical properties with preservation of chitosan’s biocompatible characteristics. These complexes are therefore good candidate excipient materials for the design of different types of dosage forms. It is the aim of this review to describe complexation of chitosan with selected natural and synthetic polyanions and to indicate some of the factors that influence the formation and stability of these polyelectrolyte complexes. Furthermore, recent investigations into the use of these complexes as excipients in drug delivery systems such as nano- and microparticles, beads, fibers, sponges and matrix type tablets are briefly described. PMID:20479980

  6. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    PubMed

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  7. Complex Organic Materials on Planetary Satellites and Other Small Bodies of the Solar System

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2006-01-01

    The search for organic materials on small bodies of the Solar System is conducted spectroscopically from Earth-based telescopes and from spacecraft. Although the carbonaceous meteorites carry a significant inventory of complex organic solids, the sources of these meteorites have not been identified. Infrared spectra of a sample of the suspected sources, the C- and D-class asteroids, including new data from the Spitzer Space Telescope, show signatures of silicates, but none diagnostic of organic compounds. In the absence of discrete spectral features, the low albedos and colors in the visible and near-IR spectral regions are the principal links between the organic-bearing meteorites and the asteroids. While Pluto and a few trans-neptunian objects show spectral signatures of frozen CH4. Solid CH3OH has been identified on two Centaur objects in the outer Solar System. In some cases the red colors of those objects suggest the presence of tholins. The VIMS instrument aboard the Cassini spacecraft in orbit around Saturn has detected near-IR spectral features on at least three of Saturn's satellites that are indicative or suggestive of organic molecules. One entire hemisphere of the satellite Iapetus is covered with low-albedo material that shows a spectral signature of aromatic hydrocarbons (3.3 microns) and the -CH2 stretching mode bands of an aliphatic component. Organics absorbing at 3.44 microns are suspected in the region of the south pole of Enceladus, and also on the surface of Phoebe. Organic material may originate on icy bodies in the current epoch by various processes of energy deposition into native material, or they may fall to the surface from an external (probably cometary) source. Some organic material may be pre-solar, having originated in the interstellar medium before the formation of the Solar System. Using the techniques of remote sensing, its detection and analysis are slow and difficult.

  8. Complex Organic Materials on Planetary Satellites and Other Small Bodies of the Solar System

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2006-01-01

    The search for organic materials on small bodies of the Solar System is conducted spectroscopically from Earth-based telescopes and from spacecraft. Although the carbonaceous meteorites carry a significant inventory of complex organic solids, the sources of these meteorites have not been identified. Infrared spectra of a sample of the suspected sources, the C- and D-class asteroids, including new data from the Spitzer Space Telescope, show signatures of silicates, but none diagnostic of organic compounds. In the absence of discrete spectral features, the low albedos and colors in the visible and near-IR spectral regions are the principal links between the organic-bearing meteorites and the asteroids. While Pluto and a few trans-neptunian objects show spectral signatures of frozen CH4. Solid CH3OH has been identified on two Centaur objects in the outer Solar System. In some cases the red colors of those objects suggest the presence of tholins. The VIMS instrument aboard the Cassini spacecraft in orbit around Saturn has detected near-IR spectral features on at least three of Saturn's satellites that are indicative or suggestive of organic molecules. One entire hemisphere of the satellite Iapetus is covered with low-albedo material that shows a spectral signature of aromatic hydrocarbons (3.3 microns) and the -CH2 stretching mode bands of an aliphatic component. Organics absorbing at 3.44 microns are suspected in the region of the south pole of Enceladus, and also on the surface of Phoebe. Organic material may originate on icy bodies in the current epoch by various processes of energy deposition into native material, or they may fall to the surface from an external (probably cometary) source. Some organic material may be pre-solar, having originated in the interstellar medium before the formation of the Solar System. Using the techniques of remote sensing, its detection and analysis are slow and difficult.

  9. Dislocations in complex materials.

    PubMed

    Chisholm, Matthew F; Kumar, Sharvan; Hazzledine, Peter

    2005-02-04

    Deformation of metals and alloys by dislocations gliding between well-separated slip planes is a well-understood process, but most crystal structures do not possess such simple geometric arrangements. Examples are the Laves phases, the most common class of intermetallic compounds and exist with ordered cubic, hexagonal, and rhombohedral structures. These compounds are usually brittle at low temperatures, and transformation from one structure to another is slow. On the basis of geometric and energetic considerations, a dislocation-based mechanism consisting of two shears in different directions on adjacent atomic planes has been used to explain both deformation and phase transformations in this class of materials. We report direct observations made by Z-contrast atomic resolution microscopy of stacking faults and dislocation cores in the Laves phase Cr2Hf. These results show that this complex dislocation scheme does indeed operate in this material. Knowledge gained of the dislocation core structure will enable improved understanding of deformation mechanisms and phase transformation kinetics in this and other complex structures.

  10. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  11. Materials and Fuels Complex Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  12. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  13. Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system

    SciTech Connect

    Chang, C.W.; Chen, K.M.; Qian, J.

    1996-07-01

    A nondestructive measurement of electromagnetic (EM) properties of anisotropic materials using an open-ended waveguide probe has been conducted. Two coupled electric field integral equations (EFIEs) for the aperture electric field are derived and solved numerically by employing the method of moments (MoM). After the determination of the aperture electric field, the reflection coefficient of the incident wave can be expressed in terms of the EM parameters of the material. Then, the EM parameters of the material layer can be inversely determined if the reflection coefficient of the incident wave is experimentally measured. A series of experiments has been conducted using the waveguide probe system constructed at MSU electromagnetics laboratory. The inverse results of the EM properties of various materials are presented. Finally, the effects of material parameters on the probe input admittance that cause problems in the measurement are analyzed.

  14. Preparation of Nanostructured Materials and Electrical Conductance in Complex Physical Systems

    NASA Astrophysics Data System (ADS)

    Cai, Weilong

    Production of materials with controlled physical characteristics presents a fundamentally new method for materials science. A new facility has been designed and built using evaporation onto a moving liquid surface. Using this technique metallic particles with diameters less than 200 A with well-characterized surfaces can be prepared. The applications of these nanostructured particles to fundamental investigations is discussed. Particular attention has been given to the investigations of electrical transport in three complex physical systems. Aqueous colloidal dispersions of alpha - Fe_2O_3 particles (average diameter 65 nm) have been prepared at different volume concentrations. The electrical conduction of these composites has been investigated as a function of particle concentration, temperature (from 77 K to 300 K), frequency (including the d.c. case) of the applied electric field, and the strength (up to 7 kOe) of the applied magnetic field. The conductivity increases with particle concentration and with temperature. The frequency dependence of conductivity obeys a power law with an index slightly less than unity and decreasing somewhat with increasing temperature. These observations are interpreted with a model of conduction by electron hopping between localized states. The composites also show an increase in conductivity with the application of a magnetic field. This conductivity enhancement is believed to result from field -induced agglomeration and particle chaining. The ferromagnetic Curie temperature (T _{c}) has been determined for Fe -Ge alloys as a function of Ge concentration (up to ~10 at.%) using electrical resistivity studies. The investigation shows that addition of Ge to Fe causes a small, gradual increase in T_{c} , reaching the maximum value of ~ 1050 K at ~1.5 at.%Ge, followed by a gradual decrease with higher Ge concentrations. This behavior is in sharp contrast with the usual theories which predict decrease of T_{c} with increasing the

  15. Complex Materials and Devices

    DTIC Science & Technology

    2013-03-07

    Disruptive Basic Research Areas” – Metamaterials and Plasmonics – Quantum Information Science – Cognitive Neuroscience – Nanoscience and...Sayir, Fuller) Bio-Sensing of Magnetic Fields (Larkin, Bradshaw, Curcic, DeLong 2D Materials & Devices Beyond Graphene (Hwang, Pomrenke, Harrison

  16. Complex Fluids and Materials Processing

    NASA Astrophysics Data System (ADS)

    Leal, L. Gary

    1998-11-01

    Complex fluids, such as polymeric liquids, colloidal dispersions, surfactant solutions, immiscible fluid blends and fiber suspensions are the basis of many manufactured products. These fluids are distinct from common Newtonian liquids in that there is a strong coupling between flow and the microstructural state of the fluid. Thus, when processed in the liquid state, the macroscopic properties of the material may be changed. This can either be detrimental or it may offer an opportunity to tailor the processing flow to optimize the property of interest. In any case, there is a tremendous need and an opportunity for fluid mechanicians to develop a theoretical and experimental basis for understanding the fluid mechanics of complex fluids, including the coupling between flow and the microstructural state of the material. In the present talk, I discuss (a personal view of) the underlying basis of current fluid mechanics research on the dynamics of complex fluids. The general principles are then illustrated using the specific example of nematic liquid crystalline polymers (LCPs). At the theoretical model level, LCPs resemble a concentrated suspension of rod-like fibers with the addition of a so-called nematic potential energy that is minimized when the system is in a state of uniform alignment. The primary technological interest in LCPs is their potential for high modulus, low weight, structural materials. The one very successful example of a product which realizes this potential is the DuPont fiber known as Kevlar.® To date, however, no two- or three-dimensional object with comparable strength has been made successfully. The main problem is the tendency for the fluid to spontaneously degenerate into a polydomain structure in the shear-like flows that exist in injection molding a sea of small, well-oriented microdomains, each of which is oriented randomly relative to its neighbors. The predecessor to this polydomain state is the appearance in flow of orientational

  17. Material behavior under complex loading

    SciTech Connect

    Breuer, H.J.; Raule, G.; Rodig, M.

    1984-09-01

    Studies of material behavior under complex loading form a bridge between standard material testing methods and the stress analysis calculations for reactor components at high temperatures. The aim of these studies is to determine the influence of typical load change sequences on material properties, to derive the equations required for stress analyses, to carry out tests under multiaxial conditions, and to investigate the structural deformation mechanisms of creep buckling and ratcheting. The present state of the investigations within the high-temperature gas-cooled reactor materials program is described, with emphasis on the experimental apparatus, the scope of the program, and the initial results obtained.

  18. Ultracold Molecules in Crystals of Light: A Highly Tunable System for Exploring Novel Materials, Quantum Dynamics, and Quantum Complexity

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln; Maeda, Kenji; Wall, Michael L.

    2015-03-01

    Ultracold molecules trapped in optical lattices present a new regime of physical chemistry and a new state of matter: complex dipolar matter. Such systems open up the prospect of tunable quantum complexity. We present models for the quantum many-body statics and dynamics of present experiments on polar bi-alkali dimer molecules. We are developing Hamiltonians and simulations for upcoming experiments on dimers beyond the alkali metals, including biologically and chemically important naturally occurring free radicals like the hydroxyl free radical (OH), as well as symmetric top polyatomic molecules like methyl fluoride (CH3F). These systems offer surprising opportunities in modeling and design of new materials. For example, symmetric top polyatomics can be used to study quantum molecular magnets and quantum liquid crystals. We use matrix-product-state (MPS) algorithms, supplemented by exact diagonalization, variational, perturbative, and other approaches. MPS algorithms not only produce experimentally measurable quantum phase diagrams but also explore the dynamical interplay between internal and external degrees of freedom inherent in complex dipolar matter. We maintain open source code (openTEBD and openMPS) available freely and used widely. Funded by NSF and AFOSR.

  19. Terahertz Spectroscopy of Complex Materials

    NASA Astrophysics Data System (ADS)

    Averitt, Richard D.

    2011-04-01

    Terahertz time-domain spectroscopy is a powerful tool to investigate complex materials broadly defined. This includes artificial electromagnetic composites such as metamaterials, and correlated electron materials where the interplay between microscopic degrees of freedom leads to phenomena such as superconductivity or metal-insulator transitions. I will discuss our recent results in these areas. Metamaterials are a relatively new type of artificial composite with electromagnetic properties that derive from their sub-wavelength structure. The judicious combination of metamaterials with MEMS technology enables reconfigurable metamaterials where artificial "atoms" reorient within unit cells in response to an external stimulus. This is accomplished by fabricating planar arrays of split ring resonators on bimaterial cantilevers designed to bend out of plane in response to a thermal stimulus. In this way we can control the electric and magnetic response of these metamaterials. Vanadium dioxide (VO2) exhibits a metal-insulator transition (MIT) at a temperature (340K) that coincides with a structural phase transition. This leads to the "chicken and egg" problem. Is it the structural change or electron correlations that lead to the MIT transition? Uniaxially strained VO2 films have been fabricated to help solve this problem. In unstrained VO2 crystals the insulator to metal transition enables the electrons move freely in three dimensions. Non-contact THz-TDS conductivity measurements of strained samples reveal that the electrons prefer to move in one direction. That is, strain induces a quasi one-dimensional metallic conductivity. These results reveal the utility of terahertz spectroscopy to investigate complex materials and point the way towards future studies of hybrid composites incorporating metamaterials with quantum-based complex matter. Such multi-scale structures may offer complementary benefits where quantum materials confer additional functionality to artificial

  20. Cultural Resource Investigation for the Materials and Fuels Complex Wastewater System Upgrade at the Idaho National Laboratory

    SciTech Connect

    Brenda R. Pace; Julie B raun Williams; Hollie Gilbert; Dino Lowrey; Julie Brizzee

    2010-05-01

    The Materials and Fuels Complex (MFC) located in Bingham County at the Idaho National Laboratory (INL) in southeastern Idaho is considering several alternatives to upgrade wastewater systems to meet future needs at the facility. In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, archaeological field surveys, and coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by the proposed construction and to provide recommendations to protect any resources listed or eligible for listing on the National Register of Historic Places. These investigations showed that one National Register-eligible archaeological site is located on the boundary of the area of potential effects for the wastewater upgrade. This report outlines protective measures to help ensure that this resource is not adversely affected by construction.

  1. Method for decreasing CT simulation time of complex phantoms and systems through separation of material specific projection data

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2017-03-01

    Computer simulation is a powerful tool in CT; however, long simulation times of complex phantoms and systems, especially when modeling many physical aspects (e.g., spectrum, finite detector and source size), hinder the ability to realistically and efficiently evaluate and optimize CT techniques. Long simulation times primarily result from the tracing of hundreds of line integrals through each of the hundreds of geometrical shapes defined within the phantom. However, when the goal is to perform dynamic simulations or test many scan protocols using a particular phantom, traditional simulation methods inefficiently and repeatedly calculate line integrals through the same set of structures although only a few parameters change in each new case. In this work, we have developed a new simulation framework that overcomes such inefficiencies by dividing the phantom into material specific regions with the same time attenuation profiles, acquiring and storing monoenergetic projections of the regions, and subsequently scaling and combining the projections to create equivalent polyenergetic sinograms. The simulation framework is especially efficient for the validation and optimization of CT perfusion which requires analysis of many stroke cases and testing hundreds of scan protocols on a realistic and complex numerical brain phantom. Using this updated framework to conduct a 31-time point simulation with 80 mm of z-coverage of a brain phantom on two 16-core Linux serves, we have reduced the simulation time from 62 hours to under 2.6 hours, a 95% reduction.

  2. A low-cost gradient system for high-performance liquid chromatography. Quantitation of complex pharmaceutical raw materials.

    PubMed

    Erni, F; Frei, R W

    1976-09-29

    A device is described that makes use of an eight-port motor valve to generate step gradients on the low-pressure side of a piston pump with a low dead volume. Such a gradient device with an automatic control unit, which also permits repetition of previous steps, can be built for about half the cost of a gradient system with two pumps. Applications of this gradient unit to the separation of complex mixtures of glycosides and alkaloids are discussed and compared with separations systems using two high-pressure pumps. The gradients that are used on reversed-phase material with solvent mixtures of water and completely miscible organic solvents are suitable for quantitative routine control of pharmaceutical products. The reproducibility of retention data is excellent over several months and, with the use of loop injectors, major components can be determined quantitatively with a reproducibility of better than 2% (relative standard deviation). The step gradient selector valve can also be used as an introduction system for very large sample volumes. Up to 11 can be injected and samples with concentrations of less than 1 ppb can be determined with good reproducibilities.

  3. Comparison of Different Upscaling Methods for Predicting Thermal Conductivity of Complex Heterogeneous Materials System: Application on Nuclear Waste Forms

    SciTech Connect

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-06-16

    To develop a strategy in thermal conductivity prediction of a complex heterogeneous materials system, loaded nuclear waste forms, the computational efficiency and accuracy of different upscaling methods have been evaluated. The effective thermal conductivity, obtained from microstructure information and local thermal conductivity of different components, is critical in predicting the life and performance of waste form during storage. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling method, were developed and implemented. Microstructure based finite element method (FEM) prediction results were used to as benchmark to determine the accuracy of the different upscaling methods. Micrographs from waste forms with varying waste loadings were used in the prediction of thermal conductivity in FEM and homogenization methods. Prediction results demonstrated that in term of efficiency, boundary models (e.g., Taylor model and Sachs model) are stronger than the self-consistent model, statistical upscaling method, and finite element method. However, when balancing computational efficiency and accuracy, statistical upscaling is a useful method in predicting effective thermal conductivity for nuclear waste forms.

  4. Ultrafast laser spectroscopy in complex solid state materials

    SciTech Connect

    Li, Tianqi

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  5. Complexation of Optoelectronic Systems

    NASA Astrophysics Data System (ADS)

    Boreisho, A. S.; Il‧in, M. Yu.; Konyaev, M. A.; Mikhailenko, A. S.; Morozov, A. V.; Strakhov, S. Yu.

    2016-05-01

    Problems of increasing the efficiency and the functionality of complex optoelectronic systems for monitoring real atmospheric conditions and of their use are discussed. It is shown by the example of a meteorological complex comprising an infrared wind-sensing lidar and an X-range Doppler radar that the complexation of probing systems working in different electromagnetic-radiation ranges opens up new opportunities for determining the meteorological parameters of a turbulent atmosphere and investigating the interaction of radiation with it.

  6. Complex and Stereoregular Nonlinear Optical Materials

    DTIC Science & Technology

    1993-09-07

    FINAL_ .POR_’ _15 Dec 93-14 Aug 93 SLE AND SUBTITLE 5. FUNDING NUMBERS Complex and Stereoregular Nonlinear Optical Materials nj OR(S...540-4400 EAST FALMOUTH, MA 02536 FAX (508) 540.4428 I I COMPLEX & STEREOREGULAR NONLINEAR OPTICAL MATERIALS * Final Report 3 September 7, 1993 U... nonlinear optical materials . Basically the intercalating metal oxide served as a crystalline framework which forced the liquid crystalline component into a

  7. COMPLEXITY IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    The enormous complexity of ecosystems is generally obvious under even the most cursory examination. In the modern world, this complexity is further augmented by the linkage of ecosystems to economic and social systems through the human use of the environment for technological pu...

  8. COMPLEXITY IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    The enormous complexity of ecosystems is generally obvious under even the most cursory examination. In the modern world, this complexity is further augmented by the linkage of ecosystems to economic and social systems through the human use of the environment for technological pu...

  9. Complexity: against systems.

    PubMed

    Chu, Dominique

    2011-09-01

    This article assumes a specific intuitive notion of complexity as a difficulty to generate and/or assess the plausibility of models. Based on this intuitive understanding of complexity, it identifies two main causes of complexity, namely, radical openness and contextuality. The former is the idea that there are no natural systems. The modeler always needs to draw artificial boundaries around phenomena to generate feasible models. Contextuality is intimately connected to the requirement to simplify models and to leave out most aspects. Complexity occurs when contextuality and radical openness cannot be contained that is when it is not clear where the boundaries of the system are and which abstractions are the correct ones. This concept of complexity is illustrated using a number of example from evolution.

  10. Complexity in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  11. Observability of complex systems

    PubMed Central

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2013-01-01

    A quantitative description of a complex system is inherently limited by our ability to estimate the system’s internal state from experimentally accessible outputs. Although the simultaneous measurement of all internal variables, like all metabolite concentrations in a cell, offers a complete description of a system’s state, in practice experimental access is limited to only a subset of variables, or sensors. A system is called observable if we can reconstruct the system’s complete internal state from its outputs. Here, we adopt a graphical approach derived from the dynamical laws that govern a system to determine the sensors that are necessary to reconstruct the full internal state of a complex system. We apply this approach to biochemical reaction systems, finding that the identified sensors are not only necessary but also sufficient for observability. The developed approach can also identify the optimal sensors for target or partial observability, helping us reconstruct selected state variables from appropriately chosen outputs, a prerequisite for optimal biomarker design. Given the fundamental role observability plays in complex systems, these results offer avenues to systematically explore the dynamics of a wide range of natural, technological and socioeconomic systems. PMID:23359701

  12. Marine Education Materials System.

    ERIC Educational Resources Information Center

    Gammisch, Sue; Gray, Kevin

    1980-01-01

    Described is a marine education materials clearinghouse, the Marine Education Materials System (MEMS). MEMS classifies marine education documents and reproduces them on microfiche for distribution. There are 25 distribution centers, each of which has a collection of documents and provides assistance on a request basis to teachers. (Author/DS)

  13. Marine Education Materials System.

    ERIC Educational Resources Information Center

    Gammisch, Sue; Gray, Kevin

    1980-01-01

    Described is a marine education materials clearinghouse, the Marine Education Materials System (MEMS). MEMS classifies marine education documents and reproduces them on microfiche for distribution. There are 25 distribution centers, each of which has a collection of documents and provides assistance on a request basis to teachers. (Author/DS)

  14. Managing Complex Dynamical Systems

    ERIC Educational Resources Information Center

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  15. Complexity, Systems, and Software

    DTIC Science & Technology

    2014-08-14

    2014 Carnegie Mellon University Complexity, Systems, and Software Software Engineering Institute Carnegie Mellon University Pittsburgh, PA...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 8...for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United States

  16. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  17. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  18. From cells to embryos: the application of femtosecond laser pulses for altering cellular material in complex biological systems

    NASA Astrophysics Data System (ADS)

    Kohli, V.; Elezzabi, A. Y.

    2008-02-01

    We report the application of high-intensity femtosecond laser pulses as a novel tool for manipulating biological specimens. When femtosecond laser pulses were focused to a near diffraction-limited focal spot, cellular material within the laser focal volume was surgically ablated. Several dissection cuts were made in the membrane of live mammalian cells, and membrane surgery was accomplished without inducing cell collapse or disassociation. By altering how the laser pulses were applied, focal adhesions joining live epithelial cells were surgically removed, resulting in single cell isolation. To further examine the versatility of this reported tool, cells were transiently permeabilized for introducing foreign material into the cytoplasm of live mammalian cells. Localizing focused femtosecond laser pulses on the biological membrane resulted in the formation of transient pores, which were harnessed as a pathway for the delivery of exogenous material. Individual mammalian cells were permeabilized in the presence of a hyperosmotic cryoprotective disaccharide. Material delivery was confirmed by measuring the volumetric response of cells permeabilized in 0.2, 0.3, 0.4 and 0.5 M cryoprotective sugar. The survival of permeabilized cells in increasing osmolarity of sugar was assessed using a membrane integrity assay. Further demonstrating the novelty of this reported tool, laser surgery of an aquatic embryo, the zebrafish (Danio rerio), was also performed. Utilizing the transient pores that were formed in the embryonic cells of the zebrafish embryo, an exogenous fluorescent probe FITC, Streptavidin-conjugated quantum dots or plasmid DNA (sCMV) encoding EGFP was introduced into the developing embryonic cells. To determine if the laser induced any short- or long-term effects on development, laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Light microscopy and scanning electron microscopy

  19. Complex coacervate-based materials for biomedicine.

    PubMed

    Blocher, Whitney C; Perry, Sarah L

    2017-07-01

    There has been increasing interest in complex coacervates for deriving and transporting biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liquid that results from the electrostatic complexation of oppositely charged macroions. Coacervates have long been used as a strategy for encapsulation, particularly in food and personal care products. More recent efforts have focused on the utility of this class of materials for the encapsulation of small molecules, proteins, RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. Furthermore, coacervate-related materials have found utility in other areas of biomedicine, including cartilage mimics, tissue culture scaffolds, and adhesives for wet, biological environments. Here, we discuss the self-assembly of complex coacervate-based materials, current challenges in the intelligent design of these materials, and their utility applications in the broad field of biomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1442. doi: 10.1002/wnan.1442 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  20. Materials management information systems.

    PubMed

    1996-01-01

    The hospital materials management function--ensuring that goods and services get from a source to an end user--encompasses many areas of the hospital and can significantly affect hospital costs. Performing this function in a manner that will keep costs down and ensure adequate cash flow requires effective management of a large amount of information from a variety of sources. To effectively coordinate such information, most hospitals have implemented some form of materials management information system (MMIS). These systems can be used to automate or facilitate functions such as purchasing, accounting, inventory management, and patient supply charges. In this study, we evaluated seven MMISs from seven vendors, focusing on the functional capabilities of each system and the quality of the service and support provided by the vendor. This Evaluation is intended to (1) assist hospitals purchasing an MMIS by educating materials managers about the capabilities, benefits, and limitations of MMISs and (2) educate clinical engineers and information system managers about the scope of materials management within a healthcare facility. Because software products cannot be evaluated in the same manner as most devices typically included in Health Devices Evaluations, our standard Evaluation protocol was not applicable for this technology. Instead, we based our ratings on our observations (e.g., during site visits), interviews we conducted with current users of each system, and information provided by the vendor (e.g., in response to a request for information [RFI]). We divided the Evaluation into the following sections: Section 1. Responsibilities and Information Requirements of Materials Management: Provides an overview of typical materials management functions and describes the capabilities, benefits, and limitations of MMISs. Also includes the supplementary article, "Inventory Cost and Reimbursement Issues" and the glossary, "Materials Management Terminology." Section 2. The

  1. Natural Materials, Systems & Extremophiles

    DTIC Science & Technology

    2012-03-06

    PORTFOLIO: The goals of this program are to: 1) study, use, mimic, or alter how biological systems accomplish a desired (from our point of view) task...and 2) enable them to task-specifically produce natural materials and systems. Both goals are to advance or create future USAF technologies...Program Constant with Additions Coming From Outside Program • Chromophores/Bioluminescence – Bio-X STT phase 1 focus. One of its discoveries are

  2. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-09

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Forecasting in Complex Systems

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  4. Natural Materials and Systems

    DTIC Science & Technology

    2013-03-07

    AREAS IN PORTFOLIO: BioMimetics - Study principles, processes, designs as well as manipulate sensors /processing systems. Mimicking of sensor denial...film and fiber – leads to new method to fabricate sensors , etc; stabilization of vaccines • Biocamouflage – regeneration of coloration assemblies...Narrowing silk focus to Spider and Silkworm only. Reducing cellulose footprint. • Biomolecular assembly/Programmable Materials – BRI program, MURI

  5. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  6. What Drives Spacecraft Cost: A Look Into How Material Characteristics Relate to the Material Complexity Multipliers

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1996-01-01

    Today a variety of engineered materials are used to build the space vehicles and satellites that NASA, DOD and the aerospace community will use in future projects. These materials can be a significant part of the cost when designing and building these systems. Current cost models such as NASCOM, SEER-H and PRICE allow the cost analysis to select materials requirements during the development of the cost model. It should be noted however that some of these models do not always give the most detailed information with respect to material specifications for the given cost model. Instead the materials are defined within broad classification, giving questionable data with regard to specific material cost. It is the objective of this paper to present a summary of basic information on materials to assist the cost analyst in the development of their models. Specifically, this paper will compare materials and their complexity multipliers to some specific material properties.

  7. Waves in complex systems

    NASA Astrophysics Data System (ADS)

    Xie, Hang

    The theme of this thesis is the study of wave phenomena in complex systems. In particular, the following three topics constitute the foci of my research. The first topic involves the generalization of an electronic transport mechanism commonly observed in disordered media, fluctuation induced tunneling conduction, by considering tunneling through not just insulating potential barriers, but also narrow conducting channels. Here the wave nature of the electron implies that a narrow conduction channel can act as an electronic waveguide, with a cutoff transverse dimension that is half the Fermi wavelength. My research involves the study of electronic transport through finite-length conducting channels with transverse dimensions below the cutoff. Such narrow conduction channel may be physically realized by chains of single conducting atoms, for example. At small voltage bias across the conduction channel, only tunneling transport is possible at zero temperature. But at finite temperatures some of the electrons with energies above the Fermi level can ballistically transport across the channel. By considering both tunneling and thermal activation mechanisms, with thermally-generated (random) voltage bias across the narrow channel, we obtained a temperature-dependent conductivity behavior that is in good agreement with the measured two-lead conductance of RuO2 and IrO2 nanowires. Furthermore, by considering high applied voltage across the nano conduction channels, our model predicts interesting electronic Fabry-Perot behavior whose experimental verification is presently underway. The second topic involves the study of the Hall effect in mesoscopic samples. In particular, we are interested in the possibility of enhancing the Hall effect by nano-patterning samples of 2D electron gas. Through numerical solution of the Schrodinger equation in the presence of a magnetic field, mesoscopic transport behavior is obtained for samples with given geometric patterns of the

  8. Curriculum Materials Examination System.

    ERIC Educational Resources Information Center

    Bond, David J.

    This document is a guideline for selection and evaluation of social studies curriculum materials developed by the Marin Social Studies Project. Questions are presented which will help in the examination of materials so that specific strengths and weaknesses in the materials can be determined. Consideration is given to the objectives and rationale…

  9. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  10. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  11. Understanding and Controlling Transitions in Polyelectrolyte Complex Materials

    NASA Astrophysics Data System (ADS)

    Perry, Sarah; Chang, Li-Wei; Liu, Yalin; Momani, Brian; Velez, Jon; Winter, H. Henning

    Polyelectrolyte complexation can be used in the self-assembly of a wide range of responsive soft materials ranging from dehydrated thin film and bulk solids to dense, polymer-rich liquid complex coacervates, and more complex hierarchical structures such as micelles and hydrogels. This responsivity can include swelling and dissolution, or liquid-to-solid transitions, typically as a function of ionic strength and/or pH. The patterning or presentation of charges and other chemical functionalities represents a powerful strategy for the design and manipulation of this type of responsiveness and the corresponding material properties. We utilize polypeptides and polypeptide derivatives as a model platform for the study of sequence and patterning effects on materials self-assembly. We also utilize rheology to understand the nature of the solid-to-liquid transition that has been observed in some systems. The goal of this systematic investigation of the effects of charge patterning is to elucidate design rules that facilitate the tailored creation of materials based on polyelectrolyte complexation with defined properties for a wide range of applications.

  12. Complex Permittivities of Candidate Radome Materials at W-band

    NASA Technical Reports Server (NTRS)

    Cravey, Robin

    1997-01-01

    This report presents the results of w-band complex permittivity measurements performed in NASA Langley's Electromagnetics Research Branch. The test articles included in the permittivity study were flat panels of materials which are under consideration for use in a radome for the Passive Millimeter Wave Camera (PMMWC) flight experiment. This experiment is scheduled to fly on the Air Force's 'Speckled Trout' aircraft in late 1997. The radome design is very important because the PMMWC can tolerate only a small amount of electromagnetic loss through the radome. A free space measurement system was used to obtain complex reflection and transmission coefficients of the samples. The frequency of interest was 89 GHz, so measurements were performed over a range of 79 to 99 GHz. The transmission and reflection coefficients were used, along with the measured sample thickness, to calculate complex permittivity over the frequency range. The material samples measured in this study can be divided into four categories: skin materials, core materials, coating materials, and layered samples.

  13. Layered Atom Arrangements in Complex Materials

    SciTech Connect

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  14. [Health: an adaptive complex system].

    PubMed

    Toro-Palacio, Luis Fernando; Ochoa-Jaramillo, Francisco Luis

    2012-02-01

    This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that will hopefully serve to help us understand all that we have become as individuals and as a species. The article proposes that the delivery of health care services be regarded as an adaptive complex system.

  15. Method and system for producing complex-shape objects

    DOEpatents

    Jeantette, Francisco P.; Keicher, David M.; Romero, Joseph A.; Schanwald, Lee P.

    2000-01-01

    A method and system are provided for producing complex, three-dimensional, net shape objects from a variety of powdered materials. The system includes unique components to ensure a uniform and continuous flow of powdered materials as well as to focus and locate the flow of powdered materials with respect to a laser beam which results in the melting of the powdered material. The system also includes a controller so that the flow of molten powdered materials can map out and form complex, three-dimensional, net-shape objects by layering the molten powdered material. Advantageously, such complex, three-dimensional net-shape objects can be produced having material densities varying from 90% of theoretical to fully dense, as well as a variety of controlled physical properties. Additionally, such complex, three-dimensional objects can be produced from two or more different materials so that the composition of the object can be transitioned from one material to another.

  16. The complexity of anatomical systems

    PubMed Central

    Grizzi, Fabio; Chiriva-Internati, Maurizio

    2005-01-01

    Background The conception of anatomical entities as a hierarchy of infinitely graduated forms and the increase in the number of observed anatomical sub-entities and structural variables has generated a growing complexity, thus highlighting new properties of organised biological matter. Results (1) Complexity is so pervasive in the anatomical world that it has come to be considered as a primary characteristic of anatomical systems. (2) Anatomical entities, when viewed at microscopic as well as macroscopic level of observation, show a different degree of complexity. (3) Complexity can reside in the structure of the anatomical system (having many diverse parts with varying interactions or an intricate architecture) or in its behaviour. Often complexity in structure and behaviour go together. (4) Complex systems admit many descriptions (ways of looking at the system) each of which is only partially true. Each way of looking at a complex system requires its own description, its own mode of analysis and its own breaking down of the system in different parts; (5) Almost all the anatomical entities display hierarchical forms: their component structures at different spatial scales or their process at different time scales are related to each other. Conclusion The need to find a new way of observing and measuring anatomical entities, and objectively quantifying their different structural changes, prompted us to investigate the non-Euclidean geometries and the theories of complexity, and to apply their concepts to human anatomy. This attempt has led us to reflect upon the complex significance of the shape of an observed anatomical entity. Its changes have been defined in relation to variations in its status: from a normal (i.e. natural) to a pathological or altered state introducing the concepts of kinematics and dynamics of anatomical forms, speed of their changes, and that of scale of their observation. PMID:16029490

  17. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-18

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  18. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  19. Challenges in complex systems science

    NASA Astrophysics Data System (ADS)

    San Miguel, M.; Johnson, J. H.; Kertesz, J.; Kaski, K.; Díaz-Guilera, A.; MacKay, R. S.; Loreto, V.; Érdi, P.; Helbing, D.

    2012-11-01

    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda.

  20. Complex systems: physics beyond physics

    NASA Astrophysics Data System (ADS)

    Holovatch, Yurij; Kenna, Ralph; Thurner, Stefan

    2017-03-01

    Complex systems are characterised by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behaviour. Examples arise both in the physical and non-physical worlds. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicists' point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualised in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new ground for physicists to explore and that methodical and conceptual progress is needed most.

  1. Hybrid estimation of complex systems.

    PubMed

    Hofbaur, Michael W; Williams, Brian C

    2004-10-01

    Modern automated systems evolve both continuously and discretely, and hence require estimation techniques that go well beyond the capability of a typical Kalman Filter. Multiple model (MM) estimation schemes track these system evolutions by applying a bank of filters, one for each discrete system mode. Modern systems, however, are often composed of many interconnected components that exhibit rich behaviors, due to complex, system-wide interactions. Modeling these systems leads to complex stochastic hybrid models that capture the large number of operational and failure modes. This large number of modes makes a typical MM estimation approach infeasible for online estimation. This paper analyzes the shortcomings of MM estimation, and then introduces an alternative hybrid estimation scheme that can efficiently estimate complex systems with large number of modes. It utilizes search techniques from the toolkit of model-based reasoning in order to focus the estimation on the set of most likely modes, without missing symptoms that might be hidden amongst the system noise. In addition, we present a novel approach to hybrid estimation in the presence of unknown behavioral modes. This leads to an overall hybrid estimation scheme for complex systems that robustly copes with unforeseen situations in a degraded, but fail-safe manner.

  2. Language Networks as Complex Systems

    ERIC Educational Resources Information Center

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  3. Establishment of multiple pesticide biodegradation capacities from pesticide-primed materials in on-farm biopurification system microcosms treating complex pesticide-contaminated wastewater.

    PubMed

    Sniegowski, Kristel; Springael, Dirk

    2015-07-01

    On-farm biopurification systems (BPSs) treat pesticide-containing wastewater at farms by biodegradation and sorption processes. The inclusion of pesticide-primed material carrying a pesticide-degrading microbial community is beneficial for improving biodegradation, but no data exist for treating wastewater containing multiple pesticides, as often occurs on farms. In a microcosm set-up, an examination was carried out to determine whether multiple pesticide degradation activities could be simultaneously established in the matrix of a BPS by the simultaneous inclusion of different, appropriate pesticide-primed materials. The microcosms were fed with a mixture of pesticides including the fungicide metalaxyl and the herbicides bentazon, isoproturon, linuron and metamitron, and pesticide-degrading activities were monitored over time. The strategy immediately provided the microcosms with a multiple pesticide degradation/mineralisation capacity, which improved during feeding of the pesticide mixture. Not only did the degradation of the parent compound improve but also that of the produced metabolites and compound mineralisation. The time to achieve maximum degradation/mineralisation capacity depended on the pesticide degradation capacity of the pesticide-primed materials. The data obtained show that the addition of pesticide-primed materials into the matrix of a BPS as an approach to improve biodegradation can be extended to the treatment of pesticide mixtures. © 2014 Society of Chemical Industry.

  4. Control principles of complex systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  5. Transparent materials processing system

    NASA Technical Reports Server (NTRS)

    Hetherington, J. S.

    1977-01-01

    A zero gravity processing furnace system was designed that will allow acquisition of photographic or other visual information while the sample is being processed. A low temperature (30 to 400 C) test model with a flat specimen heated by quartz-halide lamps was constructed. A high temperature (400 to 1000 C) test model heated by resistance heaters, utilizing a cylindrical specimen and optics, was also built. Each of the test models is discussed in detail. Recommendations are given.

  6. Semi materialized mediator system

    NASA Astrophysics Data System (ADS)

    Alaoui, Soukaina; Zellou, Ahmed; Idri, Ali

    2015-02-01

    With the technological progress experienced by the world throughout the past two decades, a large number of applications and information sources have emerged. These sources are characterized by high heterogeneity making access to information scattered between these different sources, a very difficult task. In this context, the integration of information presents itself as a reliable solution for querying data uniformly present and spread over several independent, heterogeneous, distributed and scalable sources. This article is a first step in positioning our research in the context of data integration in a system of mediation. An overview of the technologies that have been developed in recent years are briefly presented and the challenge of integrating different data sources is exposed. Indeed, we will look later at integration system based on mediator. To facilitate and accelerate research in such a system, we propose in this paper a new indexing approach based on the MapReduce technology. A brief overview of this new approach and a proposed architecture are presented in this direction.

  7. Tailorable Dielectric Material with Complex Permittivity Characteristics

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Delozier, Donavon Mark (Inventor)

    2014-01-01

    A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.

  8. 1998 Complex Systems Summer School

    SciTech Connect

    1998-12-15

    For the past eleven years a group of institutes, centers, and universities throughout the country have sponsored a summer school in Santa Fe, New Mexico as part of an interdisciplinary effort to promote the understanding of complex systems. The goal of these summer schools is to provide graduate students, postdoctoral fellows and active research scientists with an introduction to the study of complex behavior in mathematical, physical, and living systems. The Center for Nonlinear Studies supported the eleventh in this series of highly successful schools in Santa Fe in June, 1998.

  9. Physical approach to complex systems

    NASA Astrophysics Data System (ADS)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  10. Studies of complexity in fluid systems

    SciTech Connect

    Kadanoff, L.P.; Constantin, P.; Dupont, T.F.; Nagel, S.

    1993-02-01

    Objective is to bring together researchers from several disciplines (mathematics, numerical computation, theoretical and experimental physics) who share an interest in the development of complexity in fluid systems. Work is in progress on development of singular interfluid interfaces on several fronts. Striking variations in droplet formation can be observed in physical experiments and simulations based on simple models. High-speed photographs are being taken of small liquid drop breaking into droplets. Experimental studies of granular materials are being continued.

  11. Ultrafast Laser Dynamics and Interactions in Complex Materials

    NASA Astrophysics Data System (ADS)

    Patz, Aaron Edward

    The work described in this thesis underscores specific examples of using an ultrafast laser as a materials research tool for studying condensed matter physics in complex materials. The majority of materials studied fall into the iron-pnictide class of unconventional superconductors, which exhibit a multitude of phases that appear to be dependent on each other, or the magnetic semiconductor, GaMnAs. In my work I show various ultrafast laser techniques for studying these complex materials in order to decouple the different properties in the time-domain and gain information about the underlying physics governing the material properties.

  12. Materials challenges for nuclear systems

    SciTech Connect

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclear systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.

  13. Materials challenges for nuclear systems

    DOE PAGES

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  14. Disorder in Complex Human System

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    2011-11-01

    Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.

  15. Prognostics Methodology for Complex Systems

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Mackey, Ryan

    2003-01-01

    An automatic method to schedule maintenance and repair of complex systems is produced based on a computational structure called the Informed Maintenance Grid (IMG). This method provides solutions to the two fundamental problems in autonomic logistics: (1) unambiguous detection of deterioration or impending loss of function and (2) determination of the time remaining to perform maintenance or other corrective action based upon information from the system. The IMG provides a health determination over the medium-to-longterm operation of the system, from one or more days to years of study. The IMG is especially applicable to spacecraft and both piloted and autonomous aircraft, or industrial control processes.

  16. BOOK REVIEW: Modeling Complex Systems

    NASA Astrophysics Data System (ADS)

    Schreckenberg, M.

    2004-10-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as `complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a compehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this `wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany--Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success!

  17. Double Retort System for Materials Compatibility Testing

    SciTech Connect

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.

  18. MATERIALS WITH COMPLEX ELECTRONIC/ATOMIC STRUCTURES

    SciTech Connect

    D. M. PARKIN; L. CHEN; ET AL

    2000-09-01

    We explored both experimentally and theoretically the behavior of materials at stresses close to their theoretical strength. This involves the preparation of ultra fine scale structures by a variety of fabrication methods. In the past year work has concentrated on wire drawing of in situ composites such as Cu-Ag and Cu-Nb. Materials were also fabricated by melting alloys in glass and drawing them into filaments at high temperatures by a method known as Taylor wire technique. Cu-Ag microwires have been drawn by this technique to produce wires 10 {micro}m in diameter that consist of nanoscale grains of supersaturated solid solution. Organogels formed from novel organic gelators containing cholesterol tethered to squaraine dyes or trans-stilbene derivatives have been studied from several different perspectives. The two types of molecules are active toward several organic liquids, gelling in some cases at w/w percentages as low as 0.1. While relatively robust, acroscopically dry gels are formed in several cases, studies with a variety of probes indicate that much of the solvent may exist in domains that are essentially liquid-like in terms of their microenvironment. The gels have been imaged by atomic force microscopy and conventional and fluorescence microscopy, monitoring both the gelator fluorescence in the case of the stilbene-cholesterol gels and, the fluorescence of solutes dissolved in the solvent. Remarkably, our findings show that several of the gels are composed of similarly appearing fibrous structures visible at the nano-, micro-, and macroscale.

  19. Materials for future energy systems

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on materials testing. Topics considered at the conference included a national perspective on current and national energy outlook, new developments in oil and gas, nuclear fission energy, reactor technology, conventional and advanced systems for fossil fuel combustion, fast reactor technologies, coal gasification, coal liquefaction, trends in fusion energy, energy savings in transportation, advances in solid state materials, energy savings in the industrial sector, and trends in solar energy.

  20. Realistic modeling of complex oxide materials

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.

    2011-01-01

    Since electronic and magnetic properties of many transition-metal oxides can be efficiently controlled by external factors such as the temperature, pressure, electric or magnetic field, they are regarded as promising materials for various applications. From the viewpoint of the electronic structure, these phenomena are frequently related to the behavior of a small group of states located near the Fermi level. The basic idea of this project is to construct a model for the low-energy states, derive all the parameters rigorously on the basis of density functional theory (DFT), and to study this model by modern techniques. After a brief review of the method, the abilities of this approach will be illustrated on a number of examples, including multiferroic manganites and spin-orbital-lattice coupled phenomena in RVO 3 (where R is the three-valent element).

  1. Human Error In Complex Systems

    NASA Technical Reports Server (NTRS)

    Morris, Nancy M.; Rouse, William B.

    1991-01-01

    Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.

  2. Semiotics of constructed complex systems

    SciTech Connect

    Landauer, C.; Bellman, K.L.

    1996-12-31

    The scope of this paper is limited to software and other constructed complex systems mediated or integrated by software. Our research program studies foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. There have really been only two theoretical approaches that have helped us understand and develop computational systems: mathematics and linguistics. We show how semiotics can also play a role, whether we think of it as part of these other theories or as subsuming one or both of them. We describe our notion of {open_quotes}computational semiotics{close_quotes}, which we define to be the study of computational methods of dealing with symbols, show how such a theory might be formed, and describe what we might get from it in terms of more interesting use of symbols by computing systems. This research was supported in part by the Federal Highway Administration`s Office of Advanced Research and by the Advanced Research Projects Agency`s Software and Intelligent Systems Technology Office.

  3. Data Analysis of Complex Systems

    DTIC Science & Technology

    2011-06-01

    is very commonly used in the pulp and paper industry . Approved for Public Release; Distribution Unlimited...strands of cellulose (organic plant material) called fibers. Eventually, the old paper turns into pulp . Water is brought into the system to keep the...huge flat wire screen which is moving very quickly through the paper machine. While on the screen, water starts to drain from the pulp , and the

  4. Mesoscopic hydrothermodynamics of complex-structured materials

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Áurea R.; Silva, A. A. P.; Luzzi, Roberto; Casas-Vázquez, J.; Jou, David

    2013-10-01

    Some experimental results in the study of disordered systems, polymeric fluids, solutions of micelles and surfactants, ionic-glass conductors, and others show a hydrodynamic behavior labeled “anomalous” with properties described by some kind of fractional power laws in place of the standard ones. This is a consequence of the fractal-like structure that is present in these systems of which we do not have a detailed description, thus impairing the application of the conventional ensemble formalism of statistical mechanics. In order to obtain a physical picture of the phenomenon for making predictions which may help with technological and industrial decisions, one may resort to different styles (so-called nonconventional) in statistical mechanics. In that way can be introduced a theory for handling such impaired situations, a nonconventional mesoscopic hydrothermodynamics (MHT). We illustrate the question presenting an application in a contracted description of such nonconventional MHT, consisting in the use of the Renyi approach to derive a set of coupled nonstandard evolution equations, one for the density, a nonconventional Maxwell-Cattaneo equation, which in a limiting case goes over a non-Fickian diffusion equation, and other for the velocity in fluids under forced flow. For illustration the theory is applied to the study of the hydrodynamic motion in several soft-matter systems under several conditions such as streaming flow appearing in electrophoretic techniques and flow generated by harmonic forces arising in optical traps. The equivalence with Lévy processes is discussed and comparison with experiment is done.

  5. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  6. Advanced materials systems as commercial opportunities

    SciTech Connect

    Gilman, J.J.

    1987-04-01

    This paper shows that commercial opportunities in the materials area lie principally in materials systems, and much less in components made from differentiated individual materials. Examples are given.

  7. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  8. Interstellar material in the solar system

    NASA Technical Reports Server (NTRS)

    Wood, J. A.

    1986-01-01

    All the substance of the Earth and other terrestrial planets once existed in the form of interstellar grains and gas. A major aspect of solar system formation (and undoubtedly of star formation generally) is the complex series of processes that converted infalling interstellar grains into planets. A cryptic record of these processes is preserved in certain samples of planetary materials, such as chondritic meteorites, that were preserved in a relatively unchanged form since the beginning. It is to be expected that some of these primitive materials might contain or even consist of preserved presolar interstellar grains. The identification and study of such grains, the ancestors of our planetary system, is a matter of intense interest. Types of primitive material accessible or potentially accessible, and component of or relationship to presolar interstellar grains are discussed.

  9. Complex Systems: Science for the 21st Century

    SciTech Connect

    Shank, Charles V.; Awschalom, David; Bawendi, Moungi; Frechet, Jean; Murphy, Donald; Stupp, Sam; Wolynes, Peter

    1999-03-06

    The workshop was designed to help define new scientific directions related to complex systems in order to create new understanding about the nano world and complicated, multicomponent structures. Five emerging themes regarding complexity were covered: Collective Phenomena; Materials by Design; Functional Systems; Nature's Mastery; and New Tools.

  10. Microwave techniques for measuring complex permittivity and permeability of materials

    SciTech Connect

    Guillon, P.

    1995-08-01

    Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.

  11. Conveyor system moves material continuously

    SciTech Connect

    Not Available

    1983-12-01

    German technology and equipment is used in mining operations worldwide. A PHB Wesserhutte system is being used with face shovel, mobile crusher, crawler-mounted transfer conveyor, and shiftable conveyor which results in crushing and transporting the minerals to the processing plant in a continuous flow path. The entire process is controlled by a programmable logic controller (a mini-computer) and all systems are sequentially interlocked according to the material flow path. Working methods using the mobile crusher and conveying systems are illustrated.

  12. Complex System Governance for Acquisition

    DTIC Science & Technology

    2016-04-30

    corresponding language , and systems theoretic grounding to acquisition . Unfortunately, the current emphasis too often engages research that directs...qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = Complex System Governance for Acquisition Joseph Bradley, President...the Acquisition Research Program of the Graduate School of Business & Public Policy at the Naval Postgraduate School. To request defense

  13. Sustainability, Complexity and Learning: Insights from Complex Systems Approaches

    ERIC Educational Resources Information Center

    Espinosa, A.; Porter, T.

    2011-01-01

    Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…

  14. Sustainability, Complexity and Learning: Insights from Complex Systems Approaches

    ERIC Educational Resources Information Center

    Espinosa, A.; Porter, T.

    2011-01-01

    Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…

  15. Coupling suspension complex system optimization

    NASA Astrophysics Data System (ADS)

    English, Kenneth William

    The design of a complex product requires multiple analyses, many of which trade information. In some cases, some information is required before it is available, as a result an estimate must be made of that input for the analysis to proceed. Once the input becomes available, additional calculations must be made to ensure that the result of the analysis reflects the changed input. This iteration creates a considerable computational cost in the design process. This iteration may be eliminated through the reordering of the analyses, or through the temporary or permanent removal of the couplings between the system analyses. This elimination of couplings is termed system reduction. Until relatively recently, the trade of accuracy and efficiency that enables system reduction was only carried out in the context of local sensitivities, how much one analysis output impacts another output. Recent developments expanded this capability to include a system level measure of introduced error into the objective function and constraints, allowing the development of a selection subproblem that trades accuracy and efficiency in the system reduction context. The current state of the trade-off between accuracy and efficiency is far form complete. The initial subproblem formulation resulted in potentially destabilizing sets of couplings being selected, which could result in system analysis convergence errors. Additionally, the technique employed to select couplings for suspension is extremely limited in scope. The designer's intuition and experience had been eliminated from the selection process, replaced by a simple selection algorithm. First, the current coupling suspension problem is augmented, incorporating additional constraints to improve performance in system analysis stability, improved convergence characteristics, and more accurate error growth modeling. The second issue this dissertation addresses is the development of a methodology that allows a designer to interactively

  16. Automated Design of Complex Dynamic Systems

    PubMed Central

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969

  17. Discovery of xanthine oxidase inhibitors from a complex mixture using an online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection system.

    PubMed

    Li, De-qiang; Zhao, Jing; Li, Shao-ping; Zhang, Qing-wen

    2014-03-01

    To find potential lead compounds for antigout drug discovery, an automated online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection (RAM-LC-DAD) system was developed for screening of xanthine oxidase (XO) inhibitors and their affinity rankings in complex mixtures. The system was first evaluated by analyzing a mixture of six compounds with known inhibition of XO. Nonspecific binding to the denatured XO was investigated and used as the control for screening. Subsequently, the newly developed system was applied to screening of a natural product, Oroxylum indicum extract, and four compounds which could specifically interact with XO were found and identified as oroxin B, oroxin A, baicalin, and baicalein. The results were verified by a competitive binding test using the known competitive inhibitor allopurinol and were further validated by an inhibition assay in vitro. The online RAM-LC-DAD system developed was shown to be a simple and effective strategy for the rapid screening of bioactive compounds from a complex mixture.

  18. Multilevel Complex Networks and Systems

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  19. Complexity in Strongly Correlated Electronic Systems

    SciTech Connect

    Dagotto, Elbio R

    2005-01-01

    A wide variety of experimental results and theoretical investigations in recent years have convincingly demonstrated that several transition metal oxides and other materials have dominant states that are not spatially homogeneous. This occurs in cases in which several physical interactions - spin, charge, lattice, and/or orbital - are simultaneously active. This phenomenon causes interesting effects, such as colossal magnetoresistance, and it also appears crucial to understand the high-temperature superconductors. The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems. This electronic complexity could have potential consequences for applications of correlated electronic materials, because not only charge (semiconducting electronic), or charge and spin (spintronics) are of relevance, but in addition the lattice and orbital degrees of freedom are active, leading to giant responses to small perturbations. Moreover, several metallic and insulating phases compete, increasing the potential for novel behavior.

  20. Complexity and synchronization in stochastic chaotic systems

    NASA Astrophysics Data System (ADS)

    Dang, Thai Son; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  1. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation

  2. Complex systems in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.

    2007-11-01

    Aeolian geomorphology provides a rich ground for investigating Earth surface processes and landforms as complex systems. Sand transport by wind is a classic dissipative process with non-linear dynamics, while dune field evolution is a prototypical self-organisation phenomenon. Both of these broad areas of aeolian geomorphology are discussed and analysed in the context of complexity and a systems approach. A feedback loop analysis of the aeolian boundary-layer-flow/sediment-transport/bedform interactions, based on contemporary physical models, reveals that the system is fundamentally unstable (or at most meta-stable) and likely to exhibit chaotic behaviour. Recent field-experimental research on aeolian streamers and spatio-temporal transport patterns, however, indicates that sand transport by wind may be wholly controlled by a self-similar turbulence cascade in the boundary layer flow, and that key aspects of transport event time-series can be fully reproduced from a combination of (self-organised) 1/ f forcing, motion threshold, and saltation inertia. The evolution of various types of bare-sand dunes and dune field patterns have been simulated successfully with self-organising cellular automata that incorporate only simplified physically-based interactions (rules). Because of their undefined physical scale, however, it not clear whether they in fact simulate ripples (bedforms) or dunes (landforms), raising fundamental cross-cutting questions regarding the difference between aeolian dunes, impact ripples, and subaqueous (current) ripples and dunes. An extended cellular automaton (CA) model, currently under development, incorporates the effects of vegetation in the aeolian environment and is capable of simulating the development of nebkhas, blow-outs, and parabolic coastal dunes. Preliminary results indicate the potential for establishing phase diagrams and attractor trajectories for vegetated aeolian dunescapes. Progress is limited, however, by a serious lack of

  3. Harvesting bioenergy with rationally designed complex functional materials

    NASA Astrophysics Data System (ADS)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  4. Collaboration in Complex Medical Systems

    NASA Technical Reports Server (NTRS)

    Xiao, Yan; Mankenzie, Colin F.

    1998-01-01

    Improving our understanding of collaborative work in complex environments has the potential for developing effective supporting technologies, personnel training paradigms, and design principles for multi-crew workplaces. USing a sophisticated audio-video-data acquisition system and a corresponding analysis system, the researchers at University of Maryland have been able to study in detail team performance during real trauma patient resuscitation. The first study reported here was on coordination mechanisms and on characteristics of coordination breakdowns. One of the key findings was that implicit communications were an important coordination mechanism (e.g. through the use of shared workspace and event space). The second study was on the sources of uncertainty during resuscitation. Although incoming trauma patients' status is inherently uncertain, the findings suggest that much of the uncertainty felt by care providers was related to communication and coordination. These two studies demonstrate the value of and need for creating a real-life laboratory for studying team performance with the use of comprehensive and integrated data acquisition and analysis tools.

  5. Collaboration in Complex Medical Systems

    NASA Technical Reports Server (NTRS)

    Xiao, Yan; Mankenzie, Colin F.

    1998-01-01

    Improving our understanding of collaborative work in complex environments has the potential for developing effective supporting technologies, personnel training paradigms, and design principles for multi-crew workplaces. USing a sophisticated audio-video-data acquisition system and a corresponding analysis system, the researchers at University of Maryland have been able to study in detail team performance during real trauma patient resuscitation. The first study reported here was on coordination mechanisms and on characteristics of coordination breakdowns. One of the key findings was that implicit communications were an important coordination mechanism (e.g. through the use of shared workspace and event space). The second study was on the sources of uncertainty during resuscitation. Although incoming trauma patients' status is inherently uncertain, the findings suggest that much of the uncertainty felt by care providers was related to communication and coordination. These two studies demonstrate the value of and need for creating a real-life laboratory for studying team performance with the use of comprehensive and integrated data acquisition and analysis tools.

  6. Test System for Thermoelectric Modules and Materials

    NASA Astrophysics Data System (ADS)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot < 450°C) and mechanical loading ( P = 0 N to 104 N). The proposed instrument is able to monitor the temperature and electrical output of the TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  7. Optimal reconstruction of material properties in complex multiphysics phenomena

    NASA Astrophysics Data System (ADS)

    Bukshtynov, Vladislav; Protas, Bartosz

    2013-06-01

    We develop an optimization-based approach to the problem of reconstructing temperature-dependent material properties in complex thermo-fluid systems described by the equations for the conservation of mass, momentum and energy. Our goal is to estimate the temperature dependence of the viscosity coefficient in the momentum equation based on some noisy temperature measurements, where the temperature is governed by a separate energy equation. We show that an elegant and computationally efficient solution of this inverse problem is obtained by formulating it as a PDE-constrained optimization problem which can be solved with a gradient-based descent method. A key element of the proposed approach, the cost functional gradients are characterized by mathematical structure quite different than in typical problems of PDE-constrained optimization and are expressed in terms of integrals defined over the level sets of the temperature field. Advanced techniques of integration on manifolds are required to evaluate numerically such gradients, and we systematically compare three different methods. As a model system we consider a two-dimensional unsteady flow in a lid-driven cavity with heat transfer, and present a number of computational tests to validate our approach and illustrate its performance.

  8. Starch-lipid complexes: Interesting material and applications from amylose-fatty acid salt inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...

  9. Complex biological and bio-inspired systems

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately

  10. Fieldable Nuclear Material Identification System

    SciTech Connect

    Radle, James E; Archer, Daniel E; Carter, Robert J; Mullens, James Allen; Mihalczo, John T; Britton Jr, Charles L; Lind, Randall F; Wright, Michael C

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  11. The Testing Effect Is Alive and Well with Complex Materials

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; Aue, William R.

    2015-01-01

    Van Gog and Sweller (2015) claim that there is no testing effect--no benefit of practicing retrieval--for complex materials. We show that this claim is incorrect on several grounds. First, Van Gog and Sweller's idea of "element interactivity" is not defined in a quantitative, measurable way. As a consequence, the idea is applied…

  12. The Testing Effect Is Alive and Well with Complex Materials

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; Aue, William R.

    2015-01-01

    Van Gog and Sweller (2015) claim that there is no testing effect--no benefit of practicing retrieval--for complex materials. We show that this claim is incorrect on several grounds. First, Van Gog and Sweller's idea of "element interactivity" is not defined in a quantitative, measurable way. As a consequence, the idea is applied…

  13. The complexity of hierarchical systems

    NASA Astrophysics Data System (ADS)

    Ceccatto, H. A.; Huberman, B. A.

    1988-01-01

    We introduce a procedure for coarse graining a given hierarchical structure and show how it leads to an effective saturation of the complexity value with increasing number of lower levels. Secondly, we verify that this coarse grained measure has the property of isolating the most diverse trees as the ones with maximal complexity. As a corollary, we cast the dynamical measure of complexity of Bachas and Huberman in terms of purely static properties of trees representing ultradiffusion. We also discuss the differences between the coarse-grained measure of complexity and that provided by relaxation processes.

  14. Reduction of Subjective and Objective System Complexity

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.

    2015-01-01

    Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached

  15. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  16. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    SciTech Connect

    Michael Rodriquez

    2009-03-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the “Nuclear Renaissance”. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very

  17. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity.

  18. Dinuclear transition metal complexes in carbon nanostructured materials synthesis

    NASA Astrophysics Data System (ADS)

    Ayuso, J. I.; Hernández, E.; Delgado, E.

    2013-06-01

    Carbon nanomaterials (CNMs) were prepared with two similar techniques using organometallic complexes as catalysts precursors. Chemical vapour deposition (CVD) and pyrolysis with chlorine gas approaches were employed in order to explore the effect of dinuclear transition metal compounds [Fe2(CO)6(μ-S2C6H2X2), (X=OH, Cl)] in synthesis of CNMs. Our to-date results have shown these complexes generate different carbonaceous materials when they are used in bulk, it was also observed that their performances in synthesis differ even though these compounds are analogous. With X=OH complex used in CVD process, metal nanoparticles of ca. 20-50 nm in size and embedded in carbon matrix were obtained. X=C1 complex has been used in pyrolysis experiments and showed an entire volatilisation or no reaction, depending on selected temperature. Furthermore, obtaining of a new tetranuclear iron cluster is presented in this work.

  19. Waste tank ventilation system waste material accumulations

    SciTech Connect

    Van Vleet, R.J., Westinghouse Hanford

    1996-08-06

    This paper calculates the amount of material that accumulates in the ventilation systems of various Tank Waste Remediation System facilities and estimates the amount of material that could be released due to a rapid pressurization.

  20. Emergent complexity in simple neural systems

    PubMed Central

    Oster, George

    2009-01-01

    The ornate and diverse patterns of seashells testify to the complexity of living systems. Provocative computational explorations have shown that similarly complex patterns may arise from the collective interaction of a small number of rules. This suggests that, although a system may appear complex, it may still be understood in terms of simple principles. It is still debatable whether shell patterns emerge from some undiscovered simple principles, or are the consequence of an irreducibly complex interaction of many effects. Recent work by Boettiger, Ermentrout and Oster on the biological mechanisms of shell patterning has provided compelling evidence that, at least for this system, simplicity produces diversity and complexity. PMID:20195452

  1. Is Echo a complex adaptive system?

    PubMed

    Smith, R M; Bedau, M A

    2000-01-01

    We evaluate whether John Holland's Echo model exemplifies his theory of complex adaptive systems. After reviewing Holland's theory of complex adaptive systems and describing his Escho model, we describe and explain the characteristic evolutionary behavior observed in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchically organized aggregates that typify complex adaptive systems, and we explore possible explanations for this failure.

  2. Materials for Hydrogen Storage: From Complex Hydrides to Functionalized Nanostructures

    NASA Astrophysics Data System (ADS)

    Das, G. P.

    2011-07-01

    The world wide effort for a transition to renewable and clean (i.e. carbon-free) form of energy has resulted in an upsurge of interest in harnessing and utilizing Hydrogen. Apart from being the most abundant element in the universe, hydrogen offers many advantages over other fuels: it is non-toxic, clean to use, and packs more energy per mass than any other fuel. Hydrogen energy production, storage and distribution constitute a multi-disciplinary area of research. Coming to the material issues for solid state storage of hydrogen, the most desirable criteria are high storage capacity, satisfactory kinetics, and optimal thermodynamics. Complex hydrides involving light metals, such as Alanates, Imides, Borates, Amidoboranes etc. show impressive gravimetric efficiencies, although the hydrogen desorption temperatures turn out to be rather high. Apart from complex hydrides, there are other kinds of novel materials that have been investigated, e.g. carbon based materials activated with nano-catalysts, clathrate hydrates, metal-organic complexes, and more recently nanostructured cages viz. fullerenes and nanotubes decorated with simple or transition metals that serve to attract hydrogen in molecular form. In this talk, after giving a broad overview on hydrogen economy, I shall focus on first-principles design of materials for hydrogen storage, from complex hydrides to various kinds of functinalized nanostructures, and discuss the recent results obtained in our laboratory [1-6]. Some outstanding issues and challenges, like how to circumvent the problem of metal clustering on surface, or how to bring down the hydrogen desorption temperature etc. will be discussed.

  3. Proteins as paradigms of complex systems.

    SciTech Connect

    Fenimore, P. W.; Frauenfelder, Hans,; Young, R. D.

    2003-03-26

    The science of complexity has moved to center stage within the past few decades. Complex systems range from glasses to the immune system and the brain. Glasses are too simple to possess all aspects of complexity; brains are too complex to expose common concepts and laws of complexity. Proteins, however, are systems where many concepts and laws of complexity can be explored experimentally, theoretically, and computationally. Such studies have elucidated crucial aspects. The energy landscape has emerged as one central concept; it describes the free energy of a system as a function of temperature and the coordinates of all relevant atoms. A second concept is that of fluctuations. Without fluctuations, proteins would be dead and life impossible. A third concept is slaving. Proteins are not isolated systems; they are embedded in cells and membranes. Slaving arises when the fluctuations in the surroundings of a protein dominate many of the motions of the protein proper.

  4. Designing Biomimetic, Dissipative Material Systems

    SciTech Connect

    Balazs, Anna C.; Whitesides, George M.; Brinker, C. Jeffrey; Aranson, Igor S.; Chaikin, Paul; Dogic, Zvonimir; Glotzer, Sharon; Hammer, Daniel; Irvine, Darrell; Little, Steven R.; Olvera de la Cruz, Monica; Parikh, Atul N.; Stupp, Samuel; Szostak, Jack

    2016-01-21

    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  5. Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems

    DOEpatents

    Kong, Peter C.; Grandy, Jon D.

    2002-01-01

    In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.

  6. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    SciTech Connect

    Williams, Rube B.

    2004-02-04

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  7. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  8. Complex metallic alloys as new materials for additive manufacturing.

    PubMed

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  9. Complex metal borohydrides: multifunctional materials for energy storage and conversion.

    PubMed

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-07

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  10. Complex metallic alloys as new materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Kenzari, Samuel; Bonina, David; Dubois, Jean Marie; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  11. Complex metal borohydrides: multifunctional materials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  12. Complex metallic alloys as new materials for additive manufacturing

    PubMed Central

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-01-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal–matrix composites or of polymer–matrix composites with improved properties. Functional parts using these alloys are now commercialized. PMID:27877661

  13. Developing Higher-Order Materials Knowledge Systems

    NASA Astrophysics Data System (ADS)

    Fast, Anthony Nathan

    2011-12-01

    Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these

  14. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  15. Thermal Systems and Materials Testing

    NASA Technical Reports Server (NTRS)

    Aguirre, Nathan

    2010-01-01

    During my internship, I was involved in Boeing Thermal System/M&P, which handles maintenance and repairs of shuttle tiles, blankets, gap fillers, etc. One project I took part in was the revision of TPS-227, a repair process to tiles that entailed drilling out tile damage and using a cylindrical insert to fill the hole. The previous specification used minimal adhesive for application and when the adhesive cured, there would be several voids in the adhered material, causing an unsatisfactory bond. The testing compared several new methods and I analyzed the number of voids produced by each method to determine which one was most effective at eliminating void space. We revised the original process to apply a light adhesive coat to the top 25% of the borehole and a heavy coat to 100% of the insert. I was also responsible for maintaining the subnominal bond database, which records all unsatisfactory SIP (Strain Isolator Pad) bonds. I then archived each SIP physically for future referral data and statistics. In addition, I performed post-flight tile inspections for damages and wrote dispositions to have these tiles repaired. This also included writing a post-flight damage report for a section of Atlantis and creating summarized repair process guidelines for orbiter technicians.

  16. Inline evenflow material distributor for pneumatic material feed systems

    DOEpatents

    Thiry, Michael J.

    2007-02-20

    An apparatus for reducing clogs in a pneumatic material feed line, such as employed in abrasive waterjet machining systems, by providing an evenflow feed of material therethrough. The apparatus preferably includes a hollow housing defining a housing volume and having an inlet capable of connecting to an upstream portion of the pneumatic material feed line, an outlet capable of connecting to a downstream portion of the pneumatic material feed line, and an air vent located between the inlet and outlet for venting excess air pressure out from the housing volume. A diverter, i.e. an impingement object, is located at the inlet and in a path of incoming material from the upstream portion of the pneumatic material feed line, to break up clumps of ambient moisture-ridden material impinging on the diverter. And one or more filter screens is also preferably located in the housing volume to further break up clumps and provide filtering.

  17. WFGD system materials cost update

    SciTech Connect

    Milobowski, M.G.

    1998-12-31

    This paper is an update of the report ``Economic Comparison of Materials of Construction of Wet FGD Absorbers and Internals`` which was presented at the 1991 EPRI/EPA/DOE SO{sub 2} Control symposium. An economic comparison of the materials standardly used for fabrication of wet FGD spray towers will be presented in this paper. Costs for various materials of construction for such absorber components as spray headers, moisture separators, and gas distribution devices will also be addressed,

  18. Application of Nuclear Material Tracking System to nuclear materials control

    SciTech Connect

    Eggers, R.F.

    1989-11-01

    This paper briefly reviews the design concept of the Nuclear Material Tracking System, which is called NTRAK. Subsequently, it provides preliminary estimates of NTRAK detection capability for selected situations and outlines how NTRAK can be used to defend against the insider adversary attempting to steal special nuclear material (SNM). The NTRAK is a special assembly of gamma radiation detectors. The feature of NTRAK which makes it unique is its ability to direction-find and triangulate the position of localized sources of gamma radiation. This capability allows the nuclear safeguards system designer to develop material control procedures based on the position or motion of detected material. This capability was not previously available, because detection systems were unable to determine the direction from the detectors to the nuclear material being monitored. Other features of NTRAK that make it useful for nuclear material control include its abilities to (1) detect SNM at significant ranges from the detectors, (2) verify material quantity, (3) detect theft material traveling piggyback on authorized material, and (4) provide defense in depth against the adversary insider attempting to steal SNM.

  19. Social networks as embedded complex adaptive systems.

    PubMed

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  20. Systems and methods for treating material

    SciTech Connect

    Scheele, Randall D; McNamara, Bruce K

    2014-10-21

    Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.

  1. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  2. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  3. The Ontologies of Complexity and Learning about Complex Systems

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Kapur, Manu; So, Hyo-Jeong; Lee, June

    2011-01-01

    This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that…

  4. The Ontologies of Complexity and Learning about Complex Systems

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Kapur, Manu; So, Hyo-Jeong; Lee, June

    2011-01-01

    This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that…

  5. Determination of microwave complex permittivity of particulate materials

    NASA Astrophysics Data System (ADS)

    Wu, Mingzhong; Yao, Xi; Zhai, Jiwei; Zhang, Liangying

    2001-11-01

    A practical method for determining the broadband microwave complex permittivity of particulate materials is described. In this method, particulate materials are dispersed randomly in paraffin wax; thin disc samples are prepared for measurement from the particle-wax mixtures. During measurements, the samples are backed by a conducting plane, and an open-ended coaxial probe is used to determine the permittivity of the samples. A mixture equation is used to calculate the permittivity of the particulate materials from the permittivity of the samples. The validity of six well known mixture equations is examined. The experimental results indicate that only the QCA-CP and Bruggeman mixture equations can accurately describe the microwave permittivity of the particle-wax mixtures over the wide particle concentration range. To validate this described method, the complex permittivities of PbTiO3 and Pb(Zr0.53Ti0.47)O3 particles are determined over a frequency range of 0.2 to 6 GHz. The determined results are found to be in agreement with the coaxial transmission/reflection measurement results. The advantages and limitations of this method are also discussed in this paper.

  6. Large Caliber Gun Tube Materials Systems Design

    DTIC Science & Technology

    2001-04-26

    gun tube environment and current gun tube materials, properties , dimensions, and fabrication methods will be reviewed, as well as the erosion test...for a tank gun is shown in Figure 1. Any materials system can be examined in terms of PROCESSING! MANUFACTURING, STRUCTURE/COMPOSITION, PROPERTIES ...part of gun materials systems design. The list of required and desired properties is long, and a material that satisfies the list completely does not

  7. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    PubMed

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  8. Studies of complexity in fluid systems

    SciTech Connect

    Nagel, Sidney R.

    2000-06-12

    This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.

  9. Armor systems including coated core materials

    SciTech Connect

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  10. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  11. MDTS: automatic complex materials design using Monte Carlo tree search.

    PubMed

    M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-01-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  12. Statistically Validated Networks in Bipartite Complex Systems

    PubMed Central

    Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N.

    2011-01-01

    Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved. PMID:21483858

  13. PAMTRAK: A personnel and material tracking system

    SciTech Connect

    Anspach, D.A.; Anspach, J.P.; Walters, B.G.; Crain, B. Jr.

    1996-06-01

    There is a need for an automated system for protecting and monitoring sensitive or classified parts and material. Sandia has developed a real-time personnel and material tracking system (PAMTRAK) that has been installed at selected DOE facilities. It safeguards sensitive parts and material by tracking tags worn by personnel and by monitoring sensors attached to the parts or material. It includes remote control and alarm display capabilities and a complementary program in Keyhole to display measured material attributes remotely. This paper describes the design goals, the system components, current installations, and the benefits a site can expect when using PAMTRAK.

  14. Ontology of Earth's nonlinear dynamic complex systems

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  15. A complex systems approach to bibliometrics

    NASA Astrophysics Data System (ADS)

    Stringer, Michael J.

    Enabled by technological change, we are in the midst of a fundamental shift in how scientific information is produced and communicated. Electronic publishing, preprint archives, blogs, and wikis are emerging as possible viable alternatives to the current journal publishing and peer review system. However, these new technologies flood the environment with information, making it increasingly difficult to find the highest quality and most relevant papers. Additionally, accreditation and quality assessment of published material becomes nearly impossible for agencies interested in funding the research and development that is most likely to succeed. Recently, bibliometric tools have emerged as an effective means for the filtering, accreditation, and assessment of scholarly information. In this thesis, we approach bibliometrics from a complex systems perspective. A unique characteristic of the work presented in this thesis is that we perform empirical validation of bibliometric models using the most comprehensive bibliographic database available. Using these methods, we quantify the dynamics of citations to scientific journals, and investigate the relationship between social network position and research performance.

  16. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  17. Monitoring Performance of Complex Systems

    NASA Technical Reports Server (NTRS)

    Thomas, W. F.

    1985-01-01

    33-page report describes use of computers in automatic on-line monitoring of Centaur rocket prior to launch. Computers analyze measurements and verify events and commands. System uses adaptive software so only real problems are detected and brought to attention of engineers. Software techniques transferable to such industrial uses as batch process control and production line automation.

  18. Simple molecules as complex systems

    PubMed Central

    Furtenbacher, Tibor; Árendás, Péter; Mellau, Georg; Császár, Attila G.

    2014-01-01

    For individual molecules quantum mechanics (QM) offers a simple, natural and elegant way to build large-scale complex networks: quantized energy levels are the nodes, allowed transitions among the levels are the links, and transition intensities supply the weights. QM networks are intrinsic properties of molecules and they are characterized experimentally via spectroscopy; thus, realizations of QM networks are called spectroscopic networks (SN). As demonstrated for the rovibrational states of H216O, the molecule governing the greenhouse effect on earth through hundreds of millions of its spectroscopic transitions (links), both the measured and first-principles computed one-photon absorption SNs containing experimentally accessible transitions appear to have heavy-tailed degree distributions. The proposed novel view of high-resolution spectroscopy and the observed degree distributions have important implications: appearance of a core of highly interconnected hubs among the nodes, a generally disassortative connection preference, considerable robustness and error tolerance, and an “ultra-small-world” property. The network-theoretical view of spectroscopy offers a data reduction facility via a minimum-weight spanning tree approach, which can assist high-resolution spectroscopists to improve the efficiency of the assignment of their measured spectra. PMID:24722221

  19. Revealing and exploiting hierarchical material structure through complex atomic networks

    NASA Astrophysics Data System (ADS)

    Ahnert, Sebastian E.; Grant, William P.; Pickard, Chris J.

    2017-08-01

    One of the great challenges of modern science is to faithfully model, and understand, matter at a wide range of scales. Starting with atoms, the vastness of the space of possible configurations poses a formidable challenge to any simulation of complex atomic and molecular systems. We introduce a computational method to reduce the complexity of atomic configuration space by systematically recognising hierarchical levels of atomic structure, and identifying the individual components. Given a list of atomic coordinates, a network is generated based on the distances between the atoms. Using the technique of modularity optimisation, the network is decomposed into modules. This procedure can be performed at different resolution levels, leading to a decomposition of the system at different scales, from which hierarchical structure can be identified. By considering the amount of information required to represent a given modular decomposition we can furthermore find the most succinct descriptions of a given atomic ensemble. Our straightforward, automatic and general approach is applied to complex crystal structures. We show that modular decomposition of these structures considerably simplifies configuration space, which in turn can be used in discovery of novel crystal structures, and opens up a pathway towards accelerated molecular dynamics of complex atomic ensembles. The power of this approach is demonstrated by the identification of a possible allotrope of boron containing 56 atoms in the primitive unit cell, which we uncover using an accelerated structure search, based on a modular decomposition of a known dense phase of boron, γ-B28.

  20. Intelligent Complex Evolutionary Agent-Based Systems

    NASA Astrophysics Data System (ADS)

    Iantovics, Barna; Enǎchescu, Cǎlin

    2009-04-01

    In this paper, we investigate the possibility to develop intelligent agent-based complex systems that use evolutionary learning techniques in order to adapt for the efficient solving of the problems by reorganizing their structure. For this investigation is proposed a complex multiagent system called EAMS (Evolutionary Adaptive Multiagent System), which using an evolutionary learning technique can learn different patterns of reorganization. The realized study proves that evolutionary techniques successfully can be used to create complex multiagent systems capable to intelligently reorganize their structure during their life cycle. The practical establishment of the intelligence of a computational system in generally, an agent-based system in particularly consists in how efficiently and flexibly the system can solve difficult problems.

  1. Prediction and characterization of complex systems

    SciTech Connect

    Mainieri, R.; Baer, M.; Brand, H.

    1996-10-01

    Complex systems are difficult to characterize and to simulate. By considering a series of explicit systems, through experiments and analysis, this project has shown that dynamical systems can be used to model complex systems. A complex dynamical system requires an exponential amount of computer work to simulate accurately. Direct methods are not practical and it is only by an hierarchical approach that one can gain control over the exponential behavior. This allows the development of efficient methods to study fluid flow and to simulate biological systems. There are two steps in the hierarchical approach. First, one must characterize the complex system as a collection of large domains or objects that have their own forms of interactions. This is done by considering coherent structures, such as solitons, spirals, and propagating fronts and determining their interactions. Second, one must be able to predict the properties of the resulting low-dimensional dynamical system.This is accomplished by an understanding of the topology of the orbits of the dynamical system. The coherent structure description was carried out in fluid and reaction diffusion systems. It was shown that very simple models from statistical mechanics could characterize a rotating Rayleigh-Benard system and that patters in reaction-diffusion systems are well described by soliton-like solutions. The studies of dynamical systems showed that simple characterizations of the phase space can be used to determine long time bounds. Also, that periodic orbit theory can be used to demonstrate that Monte Carlo simulations will converge to incorrect results.

  2. The Self as a Complex Dynamic System

    ERIC Educational Resources Information Center

    Mercer, Sarah

    2011-01-01

    This article explores the potential offered by complexity theories for understanding language learners' sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual…

  3. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  4. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  5. Microstructure-based modelling of multiphase materials and complex structures

    NASA Astrophysics Data System (ADS)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian

    2016-09-01

    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  6. Material permeance measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2012-05-08

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  7. Hierarchical Models of the Nearshore Complex System

    DTIC Science & Technology

    2004-01-01

    unclassified unclassified /,andard Form 7 7Qien. -pii Prescrbed by ANS Sid 239-18 zgB -10z Hierarchical Models of the Nearshore Complex System: Final...TITLE AND SUBTITLE S. FUNDING NUMBERS Hierarchical Models of the Nearshore Complex System N00014-02-1-0358 6. AUTHOR(S) Brad Werner 7. PERFORMING...8217 ........... The long-term goal of this reasearch was to develop and test predictive models for nearshore processes. This grant was terminaton funding for the

  8. Material Instabilities in Particulate Systems

    NASA Technical Reports Server (NTRS)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  9. Focused Research Group in Correlated Electron and Complex Materials

    SciTech Connect

    Wang, Ziqiang

    2016-02-17

    While the remarkable physical properties of correlated and complex electronic materials hold great promise for technological applications, one of the key values of the research in this field is its profound impact on fundamental physics. The transition metal oxides, pnictides, and chalcogenides play a key role and occupy an especially important place in this field. The basic reason is that the outer shell of transition metals contains the atomic d-orbitals that have small spatial extent, but not too small to behave as localized orbtials. These d-electrons therefore have a small wave function overlap in a solid, e.g. in an octahedral environment, and form energy bands that are relatively narrow and on the scale of the short-range intra-atomic Coulomb repulsion (Hubbard U). In this intermediate correlation regime lies the challenge of the many-body physics responsible for new and unconventional physical properties. The study of correlated electron and complex materials represents both the challenge and the vitality of condensed matter and materials physics and often demands close collaborations among theoretical and experimental groups with complementary techniques. Our team has a track record and a long-term research goal of studying the unusual complexities and emergent behaviors in the charge, spin, and orbital sectors of the transition metal compounds in order to gain basic knowledge of the quantum electronic states of matter. During the funding period of this grant, the team continued their close collaborations between theory, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy and made significant progress and contributions to the field of iron-based superconductors, copper-oxide high-temperature superconductors, triangular lattice transition metal oxide cobaltates, strontium ruthenates, spin orbital coupled iridates, as well as topological insulators and other topological quantum states of matter. These results include both new

  10. Methodology for assessing systems materials requirements

    SciTech Connect

    Culver, D.H.; Teeter, R.R.; Jamieson, W.M.

    1980-01-01

    A potential stumbling block to new system planning and design is imprecise, confusing, or contradictory data regarding materials - their availability and costs. A methodology is now available that removes this barrier by minimizing uncertainties regarding materials availability. Using this methodology, a planner can assess materials requirements more quickly, at lower cost, and with much greater confidence in the results. Developed specifically for energy systems, its potential application is much broader. This methodology and examples of its use are discussed.

  11. What Is a Complex Innovation System?

    PubMed

    Katz, J Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too.

  12. What Is a Complex Innovation System?

    PubMed Central

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  13. Vehicular applications of smart material systems

    NASA Astrophysics Data System (ADS)

    Leo, Donald J.; Weddle, Craig; Naganathan, Ganapathy; Buckley, Stephen J.

    1998-06-01

    The results of an initial investigation in the use of smart material system for automobiles are presented. For this work, a smart material system is defined as a network of embedded electromechanical devices that are able to sense and affect their environment and autonomously adapt to changes in operating conditions. The development of smart material system for production vehicles has the potential for compact, lightweight subsystems that reduce vehicle weight and improve vehicle performance. This paper presents an overview of current technology and how it contrasts with the development of highly integrated smart material systems. Automotive design requirements are examined to highlight practical constraints associated with integrating smart material technology into automobiles. Representative examples of a embedded sensor-actuator system for camless engines and a smart automotive seat are presented to illustrate the design concepts.

  14. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  15. Data Mining and Complex Problems: Case Study in Composite Materials

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Marin, Mario

    2009-01-01

    Data mining is defined as the discovery of useful, possibly unexpected, patterns and relationships in data using statistical and non-statistical techniques in order to develop schemes for decision and policy making. Data mining can be used to discover the sources and causes of problems in complex systems. In addition, data mining can support simulation strategies by finding the different constants and parameters to be used in the development of simulation models. This paper introduces a framework for data mining and its application to complex problems. To further explain some of the concepts outlined in this paper, the potential application to the NASA Shuttle Reinforced Carbon-Carbon structures and genetic programming is used as an illustration.

  16. Data Mining and Complex Problems: Case Study in Composite Materials

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Marin, Mario

    2009-01-01

    Data mining is defined as the discovery of useful, possibly unexpected, patterns and relationships in data using statistical and non-statistical techniques in order to develop schemes for decision and policy making. Data mining can be used to discover the sources and causes of problems in complex systems. In addition, data mining can support simulation strategies by finding the different constants and parameters to be used in the development of simulation models. This paper introduces a framework for data mining and its application to complex problems. To further explain some of the concepts outlined in this paper, the potential application to the NASA Shuttle Reinforced Carbon-Carbon structures and genetic programming is used as an illustration.

  17. Half-Heusler thermoelectrics: a complex class of materials.

    PubMed

    Bos, Jan-Willem G; Downie, Ruth A

    2014-10-29

    Half-Heusler thermoelectrics first attracted interest in the late-1990s and are currently undergoing a renaissance. This has been driven by improved synthesis, processing and characterisation methods, leading to increases in the thermoelectric figure of merit and the observation of novel phenomena such as carrier filtering in nanocomposite samples. The difficulty in extracting good thermoelectric performance is at first glance surprising given the relative simplicity of the ideal crystal structure with only site occupancies and lattice parameter as crystallographic variables. However, the observed thermoelectric properties are found to depend sensitively on sample processing. Recent work has shown that prepared ingots can contain a range of inhomogeneities, including interstitials, nano- and micron sized Heusler inclusions and multiple half-Heusler phases. For this reason, the prepared materials are far more complex than initially appreciated and this may offer opportunities to enhance the thermoelectric figure of merit.

  18. Stereoscopy for visual simulation of materials of complex appearance

    NASA Astrophysics Data System (ADS)

    da Graça, Fernando; Paljic, Alexis; Lafon-Pham, Dominique; Callet, Patrick

    2014-03-01

    The present work studies the role of stereoscopy on perceived surface aspect of computer generated complex materials. The objective is to investigate if, and how, the additional information conveyed by the binocular vision affects the observer judgment on the evaluation of flake density in an effect paint simulation. We have set up a heuristic flake model with a Voronoi: modelization of flakes. The model was implemented in our rendering engine using global illumination, ray tracing, with an off axis-frustum method for the calculation of stereo images. We conducted a user study based on a flake density discrimination task to determine perception thresholds (JNDs). Results show that stereoscopy slightly improves density perception. We propose an analysis methodology based on granulometry. This allows for a discussion of the results on the basis of scales of observation.

  19. New Approaches for Characterizing Sensor and Other Modern Complex Materials

    SciTech Connect

    Baer, Donald R.; Engelhard, Mark H.; Felmy, Andrew R.; Ford, Joseph J.; Hu, Jian Z.; Lea, Alan S.; Nachimuthu, Ponnusamy; Saraf, Laxmikant V.; Sears, Jesse A.; Thevuthasan, Suntharampillai

    2009-05-18

    Advances in understanding of sensor and other modern complex materials are often enabled by new research tools. This paper highlights three capability development themes used to identify new research tools to be provided to users of the U. S. Department of Energy’s Environmental Molecular Sciences Laboratory. These capability development directions address the importance of dynamic measurements in realistic environments, the need for increased resolution in three dimensional analyses as well as the importance of linking theory and experiment. Capability development involves expanding the range of operation for a number of important techniques, developing and applying new capabilities, and advancing methods of data processing. Examples of current developments are provided including those related to magnetic resonance, x-ray diffraction, application of a focused beam capability to fuel cell aging, and near real time analysis of XPS spectra.

  20. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  1. Introducing Complex Systems into the Mathematics Curriculum

    ERIC Educational Resources Information Center

    English, Lyn D.

    2008-01-01

    Children live in a highly sophisticated world composed of interlocking complex systems. An appreciation and understanding of such systems is critical for making effective decisions about everyone's lives as individuals and as community members. This article addresses one approach to introducing children of all achievement levels to introductory…

  2. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  3. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  4. Large-scale systems: Complexity, stability, reliability

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1975-01-01

    After showing that a complex dynamic system with a competitive structure has highly reliable stability, a class of noncompetitive dynamic systems for which competitive models can be constructed is defined. It is shown that such a construction is possible in the context of the hierarchic stability analysis. The scheme is based on the comparison principle and vector Liapunov functions.

  5. Design tools for complex dynamic security systems.

    SciTech Connect

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III; Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  6. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  7. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  8. Materials performance in advanced combustion systems

    SciTech Connect

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  9. Analysis and interpretation of diffraction data from complex, anisotropic materials

    NASA Astrophysics Data System (ADS)

    Tutuncu, Goknur

    Most materials are elastically anisotropic and exhibit additional anisotropy beyond elastic deformation. For instance, in ferroelectric materials the main inelastic deformation mode is via domains, which are highly anisotropic crystallographic features. To quantify this anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric ceramics. Data analysis was challenging due to the complex constitutive behavior of these materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, a number of data analysis techniques such as the single peak and Rietveld methods were used and their advantages and disadvantages compared. It was observed that the single peak analysis fails at low peak intensities especially after domain switching while the Rietveld method does not account for lattice strain anisotropy although it overcomes the low intensity problem via whole pattern analysis. To better account for strain anisotropy the constant stress (Reuss) approximation was employed within the Rietveld method and new formulations to estimate lattice strain were proposed. Along the way, new approaches for handling highly anisotropic lattice strain data were also developed and applied. All of the ceramics studied exhibited significant changes in their crystallographic texture after loading indicating non-180° domain switching. For a full interpretation of domain switching the spherical harmonics method was employed in Rietveld. A procedure for simultaneous refinement of multiple data sets was established for a complete texture analysis. To further interpret diffraction data, a solid mechanics model based on the self-consistent approach was used in calculating lattice strain and texture evolution during the loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average response of a specimen and its hkl

  10. Catalogue data system for new metallic materials

    NASA Astrophysics Data System (ADS)

    Makiura, Hirofumi

    In the event of realizing wide practical use of new metallic material, it is necessary that both manufacture and utilization sides on the material have common understanding and recognition for the performance. As one of the information source for that, a catalogue data system of new metallic material has been developed. In this system, 3000 cases of catalogue information from around 150 domestic companies were recorded into CD-ROM, and the information can easily be searched and processed using a personal computer. Introducing details on 36 kinds of the new metallic material recorded and 26 data items, this report summerizes the search method.

  11. Particlelike wave packets in complex scattering systems

    NASA Astrophysics Data System (ADS)

    Gérardin, Benoît; Laurent, Jérôme; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre

    2016-07-01

    A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging, or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. From the direct experimental access to the time-delay matrix of these systems, we demonstrate the existence of particlelike wave packets that remain focused in time and space throughout their complex trajectory. Due to their limited dispersion, their selective excitation will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.

  12. Elastocaloric cooling materials and systems

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  13. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems

    DTIC Science & Technology

    2011-02-23

    FINAL REPORT (February 24, 2010 - February 23, 2011) "Integrated Reconfigurable Intelligent Systems ( IRIS ) for Complex Naval Systems" Contract...RECONFIGURABLE INTELLIGENT SYSTEMS ( IRIS ) FOR COMPLEX NAVAL SYSTEMS 5a. CONTRACT NUMBER N00014-10-1-0629 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT...ASDL in developing and applying the IRIS concept for 1. The main effort is to develop an integrated dynamic standing the behavior of the next

  14. [Complex biotechnical feedback in electrostimulation systems].

    PubMed

    Osipov, A N; Dik, S K; Senkovskiĭ, K G

    2002-01-01

    Basic principles in design of electrostimulating equipment with complex biotechnical coupling combining biotechnical feedback and biological feedback are formulated. Realization of these principles in one system leads to qualitatively new capacities of enhancing the efficiency of implemented rehabilitative measures, which is the basis of the designed multichannel electromyostimulation device MYOS having a complex biotechnical feedback, which is used to treat a number of central and peripheral motor disorders (paralyses, pareses), to correct movements, to learn motor skills during training, etc.

  15. Fault detection and isolation for complex system

    NASA Astrophysics Data System (ADS)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  16. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    SciTech Connect

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  17. Complex system modelling for veterinary epidemiology.

    PubMed

    Lanzas, Cristina; Chen, Shi

    2015-02-01

    The use of mathematical models has a long tradition in infectious disease epidemiology. The nonlinear dynamics and complexity of pathogen transmission pose challenges in understanding its key determinants, in identifying critical points, and designing effective mitigation strategies. Mathematical modelling provides tools to explicitly represent the variability, interconnectedness, and complexity of systems, and has contributed to numerous insights and theoretical advances in disease transmission, as well as to changes in public policy, health practice, and management. In recent years, our modelling toolbox has considerably expanded due to the advancements in computing power and the need to model novel data generated by technologies such as proximity loggers and global positioning systems. In this review, we discuss the principles, advantages, and challenges associated with the most recent modelling approaches used in systems science, the interdisciplinary study of complex systems, including agent-based, network and compartmental modelling. Agent-based modelling is a powerful simulation technique that considers the individual behaviours of system components by defining a set of rules that govern how individuals ("agents") within given populations interact with one another and the environment. Agent-based models have become a recent popular choice in epidemiology to model hierarchical systems and address complex spatio-temporal dynamics because of their ability to integrate multiple scales and datasets.

  18. Toolsets Maintain Health of Complex Systems

    NASA Technical Reports Server (NTRS)

    2010-01-01

    First featured in Spinoff 2001, Qualtech Systems Inc. (QSI), of Wethersfield, Connecticut, adapted its Testability, Engineering, and Maintenance System (TEAMS) toolset under Small Business Innovation Research (SBIR) contracts from Ames Research Center to strengthen NASA's systems health management approach for its large, complex, and interconnected systems. Today, six NASA field centers utilize the TEAMS toolset, including TEAMS-Designer, TEAMS-RT, TEAMATE, and TEAMS-RDS. TEAMS is also being used on industrial systems that generate power, carry data, refine chemicals, perform medical functions, and produce semiconductor wafers. QSI finds TEAMS can lower costs by decreasing problems requiring service by 30 to 50 percent.

  19. The Teaching Materials System in Japan.

    ERIC Educational Resources Information Center

    Shimizu, Atsumi

    An overview is given of the state of teaching materials and aids used in schools in Japan. In section I, an outline is presented of the Japanese system of providing teaching materials. Several laws and regulations regarding the provision and use of textbooks are described, including: (1) school education law; (2) law concerning the organization…

  20. Heat transport system, method and material

    DOEpatents

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  1. Nuclear Materials Identification System Operational Manual

    SciTech Connect

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  2. Trends in modeling Biomedical Complex Systems

    PubMed Central

    Milanesi, Luciano; Romano, Paolo; Castellani, Gastone; Remondini, Daniel; Liò, Petro

    2009-01-01

    In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards tools to investigate complex biomedical systems are discussed and the prominent literature useful to both the practitioner and the theoretician are presented. PMID:19828068

  3. Emergent "Quantum" Theory in Complex Adaptive Systems.

    PubMed

    Minic, Djordje; Pajevic, Sinisa

    2016-04-30

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  4. System crash as dynamics of complex networks.

    PubMed

    Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2016-10-18

    Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.

  5. Complexity in electronic negotiation support systems.

    PubMed

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  6. Detection of timescales in evolving complex systems

    PubMed Central

    Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo

    2016-01-01

    Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820

  7. Mapping complex traits as a dynamic system

    NASA Astrophysics Data System (ADS)

    Sun, Lidan; Wu, Rongling

    2015-06-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a "system" in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states.

  8. Mapping complex traits as a dynamic system.

    PubMed

    Sun, Lidan; Wu, Rongling

    2015-06-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a "system" in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Detection of timescales in evolving complex systems

    NASA Astrophysics Data System (ADS)

    Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo

    2016-12-01

    Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system.

  10. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  11. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  12. Multiphase reliability analysis of complex systems

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad S.; Tu, Fang; Pattipati, Krishna R.

    2003-08-01

    Modern industrial systems assume different configurations to accomplish multiple objectives during different phases of operation, and the component parameters may also vary from one phase to the next. Consequently, reliability evaluation of complex multi-phased systems is a vital and challenging issue. Maximization of mission reliability of a multi-phase system via optimal asset selection is another key demand; incorporation of optimization issues adds to the complexities of reliability evaluation processes. Introduction of components having self-diagnostics and self-recovery capabilities, along with increased complexity and phase-dependent configuration variations in network architectures, requires new approaches for reliability evaluation. This paper considers the problem of evaluating the reliability of a complex multi-phased system with self-recovery/fault-protection options. The reliability analysis is based on a colored digraph (i.e., multi-functional) model that subsumes fault trees and digraphs as special cases. These models enable system designers to decide on system architecture modifications and to determine the optimum levels of redundancy. A sum of disjoint products (SDP) approach is employed to compute system reliability. We also formulated the problem of optimal asset selection in a multi-phase system as one of maximizing the probability of mission success under random load profiles on components. Different methods (e.g., ordinal optimization, robust design, and nonparametric statistical testing) are explored to solve the problem. The resulting analytical expressions and the software tool are demonstrated on a generic programmable software-controlled switchgear, a data bus controller system and a multi-phase mission involving helicopters.

  13. Thermorheologically complex behavior of multi-phase viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Brinson, L. C.; Knauss, W. G.

    T HE DYNAMIC correspondence principle of viscoelasticity is used to study the nature of time-temperature behavior of multi-phase composites by means of finite element computation. The composite considered contains viscoelastic inclusions embedded in a viscoelastic matrix. Each phase of the composite is considered to be thermorheologically simple, but the resulting mechanical properties of the composite are thermorheologically complex. The deviation of the composite moduli from thermorheologically simple behavior of the matrix material is shown to occur at frequencies and temperatures where the glass-to-rubber transition of the included phases are reached. Properties of a styrene-butadiene-styrene (SBS) block copolymer are investigated based on the individual phase properties of polystyrene and polybutadiene. To achieve congruence of the results with experimental data, it is necessary to consider a transition phase of properties "intermediate" to those of polystyrene and polybutadiene. Using accurate physical information on the individual phase properties and on the interphase region, it is possible to predict properties of multiphase composites. Although detailed a priori knowledge of such an interphase is usually lacking, it is shown that the computational procedure presented here together with an extended range of test frequencies will aid in estimating the properties of the phase in question.

  14. Thermal properties of composite materials with a complex fractal structure

    NASA Astrophysics Data System (ADS)

    Cervantes-Álvarez, F.; Reyes-Salgado, J. J.; Dossetti, V.; Carrillo, J. L.

    2014-06-01

    In this work, we report the thermal characterization of platelike composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, the thermal diffusivity, conductivity and volumetric heat capacity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal conductivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a decrease in the thermal conductivity of some of the anisotropic samples, compared to the isotropic randomly distributed ones. Our analysis indicates that the development of elongated inclusion structures leads to the formation of magnetite and resin domains, causing this effect. We correlate the complexity of the inclusion structure with the observed thermal response through a multifractal and lacunarity analysis. All the experimental data are contrasted with the well known Maxwell-Garnett effective media approximation for composite materials.

  15. Meeting on flows of granular materials in complex geometries

    SciTech Connect

    Passman, S.L.; Fukushima, E.; Evans, R.E.

    1994-11-01

    The International Energy Agency Fossil Fuel Multiphase Flow Sciences Agreement has been in effect since 1986. The traditional mechanism for the effort has been information exchange, effected by the inclusion of scientists in annual Executive committee meetings, by exchange of reports and papers, and by visits of scientists to one another`s institutions. In a sequence of informal meetings and at the 1993 Executive committee meeting, held in Pittsburgh, US in March 1994, it was decided that more intensive interactions could be productive. A candidate for such interactions would be specific projects. Each of these would be initiated through a meeting of scientists in which feasibility of the particular project was decided, followed by relatively intense international co-operation in which the work would be done. This is a report of the first of these meetings. Official or unofficial representatives from Canada, italy, japan, mexico, the United Kingdom, and the US met in Albuquerque, New Mexico, US, to consider the subject Flows of Granular Materials in Complex Geometries. Representatives of several other countries expressed interest but were unable to attend this meeting. Sixteen lectures were given on aspects of this topic. It was decided that a co-operative effort was desirable and possible. The most likely candidate for the area of study would be flows in bins and hoppers. Each of the countries wishing to co-operate will pursue funding for its effort. This report contains extended abstracts of the sixteen presentations and a transcription of the final discussion.

  16. Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology.

    PubMed

    Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz

    2014-02-01

    Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.

  17. Complex permittivity measurements and mixing laws of ceramic materials and application to microwave processing

    NASA Astrophysics Data System (ADS)

    Gershon, David Louis

    The complex permittivity of alumina composites was examined with respect to its dependence on the volume fraction of constituents, microstructure, processing temperature, and processing method. In addition, the effective permittivity of these composites was quantitatively modeled based on the permittivities, volume fractions, and microstructures of the constituents. The studies focused on the complex permittivity of alumina composites, which contained the lossy additives silicon carbide and copper oxide. Two composite systems were prepared by physically mixing alumina and one of the additives. A third composite system was produced by chemically precipitating copper oxide onto alumina. The two synthesis methods produced composites with different microstructures and complex permittivities. The imaginary part of the complex permittivity was generally larger in the chemically precipitated composites than in the physically mixed composites. The dependence of the complex permittivities of the composites on volume fraction and microstructure were compared with several algebraic mixing laws and with three dimensional, electrostatic numerical simulations. The algebraic mixing laws do not take into account for the dependence of the imaginary part of the complex permittivity on absorbed water and microstructure, which is affected by composite synthesis. By incorporating general physical characteristics of the composites, the electrostatic simulations were able to accurately predict their permittivity. Heating some selected alumina composites in conventional and microwave furnaces demonstrate several interesting results. The densification and dielectric proper-ties of the alumina/copper oxide composites varied due to processing temperature. The changes in these properties depended upon preparation method and not on heating method. The density and real part of the complex permittivity of alumina/silicon carbide also varied due to processing temperature and not on heating method

  18. Constructing minimal models for complex system dynamics

    NASA Astrophysics Data System (ADS)

    Barzel, Baruch; Liu, Yang-Yu; Barabási, Albert-László

    2015-05-01

    One of the strengths of statistical physics is the ability to reduce macroscopic observations into microscopic models, offering a mechanistic description of a system's dynamics. This paradigm, rooted in Boltzmann's gas theory, has found applications from magnetic phenomena to subcellular processes and epidemic spreading. Yet, each of these advances were the result of decades of meticulous model building and validation, which are impossible to replicate in most complex biological, social or technological systems that lack accurate microscopic models. Here we develop a method to infer the microscopic dynamics of a complex system from observations of its response to external perturbations, allowing us to construct the most general class of nonlinear pairwise dynamics that are guaranteed to recover the observed behaviour. The result, which we test against both numerical and empirical data, is an effective dynamic model that can predict the system's behaviour and provide crucial insights into its inner workings.

  19. Energy Consumption Monitoring System for Large Complexes

    NASA Astrophysics Data System (ADS)

    Jorge, André; Guerreiro, João; Pereira, Pedro; Martins, João; Gomes, Luís

    This paper describes the development of an open source system for monitoring and data acquisition of several energy analyzers. The developed system is based on a computer with Internet/Intranet connection by means of RS485 using Modbus RTU as communication protocol. The monitoring/metering system was developed for large building complexes and was validated in the Faculdade de Ciências e Tecnologia University campus. The system considers two distinct applications. The first one allows the user to verify, in real time, the energy consumption of any department in the complex, produce load diagrams, tables and print, email or save all available data. The second application keeps records of active/reactive energy consumption in order to verify the existence of some anomalous situation, and also monthly charge energy consumption to each corresponding department.

  20. Managing interoperability and complexity in health systems.

    PubMed

    Bouamrane, M-M; Tao, C; Sarkar, I N

    2015-01-01

    In recent years, we have witnessed substantial progress in the use of clinical informatics systems to support clinicians during episodes of care, manage specialised domain knowledge, perform complex clinical data analysis and improve the management of health organisations' resources. However, the vision of fully integrated health information eco-systems, which provide relevant information and useful knowledge at the point-of-care, remains elusive. This journal Focus Theme reviews some of the enduring challenges of interoperability and complexity in clinical informatics systems. Furthermore, a range of approaches are proposed in order to address, harness and resolve some of the many remaining issues towards a greater integration of health information systems and extraction of useful or new knowledge from heterogeneous electronic data repositories.

  1. Lasercom system architecture with reduced complexity

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homayoon (Inventor)

    1994-01-01

    Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention, a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides the means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.

  2. Resource Letter CS-1: Complex Systems

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.

    2011-08-01

    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed-matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here, I give a selection of introductory resources, ranging from classic papers to recent books and reviews.

  3. Sensitivity of complex, internally coupled systems

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    A method is presented for computing sensitivity derivatives with respect to independent (input) variables for complex, internally coupled systems, while avoiding the cost and inaccuracy of finite differencing performed on the entire system analysis. The method entails two alternative algorithms: the first is based on the classical implicit function theorem formulated on residuals of governing equations, and the second develops the system sensitivity equations in a new form using the partial (local) sensitivity derivatives of the output with respect to the input of each part of the system. A few application examples are presented to illustrate the discussion.

  4. System for detecting special nuclear materials

    DOEpatents

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  5. Cosmogenic nuclides in early solar system materials

    NASA Astrophysics Data System (ADS)

    Bricker, Glynn Edward

    2009-09-01

    The overall goal of this research was to assess early solar system processes, particularly ancient proto-solar activity. This goal was addressed on two fronts. First, a model was developed to explain the provenance of now extinct radionuclides in early solar system materials, namely the refractory inclusions termed CAIs (Calcium-Aluminum-Inclusion) found in carbonaceous chondrites. As CAIs are believed to be the first solids to condense in the solar system and are also believed to have formed close to the proto-Sun, a model which explains the now extinct radionuclides found in CAIs constrains early solar system processes. Secondly, a series of measurements were performed on samples of the early solar system, namely chrondritic meteorites and the inclusions called chondrules, often contained within these meteorites. Chondrules, which are often a chief constituent of these meteorites, are believed to have originated close to the proto-Sun. As such, these materials should contain clues about solar processes at the beginning of the solar system. We propose a model for the incorporation of SLRs (short lived radionuclide) within CAIs in primitive carbonaceous meteorites. In this model SLRs are produced by energetic particle reactions in the proto-solar atmosphere of a more active proto-Sun characterized by proton fluxes higher than contemporary particle fluxes. These SLRs are entrained in the solar wind that is then implanted into CAI precursor material. This production mechanism is operational in the contemporary solar system and is responsible for implantation of 10 Be, 14 C and other nuclides in lunar materials. We utilize contemporary experimental solar wind production rates for 10Be and 14 C and theoretical ancient production rates for 7 Be, 10 Be, 14 C, 26 Al, 36 Cl, 41 Ca, and 53 Mn. Using a ~ 10 5 enhancement in SEPs (solar energetic particles) and hence production rates in conjunction with an accepted refractory mass inflow rates close to the proto-Sun, we model

  6. Security assurances for intelligent complex systems

    NASA Astrophysics Data System (ADS)

    Naqvi, Syed; Riguidel, Michel

    2007-04-01

    Intelligent complex systems are drawing considerable attention of researchers in various scientific areas. These architectures require adequate assurances of security, reliability, and fault-tolerance. The implementation of security functions such as identification, authentication, access control, and data protection can be viewed in terms of a security assurance model. This model relies on the security architecture of a system, which in turn is based on a trusted infrastructure. This assurance model defines the level and features of the protection it offers, and determines the need and relevance of the deployment of specific security mechanisms. In this article, we first examine how the verification of the security measures, and notably their presence, correctness, effectiveness, the impact of changes in the existing intelligent complex systems with respect to vulnerabilities, systems engineering choices, reconfigurations, patch installations, network management, etc. We then explore how we can evaluate the overall security assurance of a given system. We emphasis that it is desirable to separate the trust providing assurance model and the security architecture, into two separated distributed entities (instrumentations, protocols, architectures, management). We believe that this segregation will allow us to automate and boost the trusted infrastructure and security infrastructure, while the authorizations, exceptions, and security management as a whole, are achieved through their interaction. Finally, we discuss the security metrics for these complex intelligent systems. New mechanisms and tools are needed for assessing and proving the security and dependability of a complex system as the scale of these systems and the kind of threats and assumptions on their operational environment pose new challenges. We conclude with a description of our proposed security management model.

  7. Complexity of coupled human and natural systems.

    PubMed

    Liu, Jianguo; Dietz, Thomas; Carpenter, Stephen R; Alberti, Marina; Folke, Carl; Moran, Emilio; Pell, Alice N; Deadman, Peter; Kratz, Timothy; Lubchenco, Jane; Ostrom, Elinor; Ouyang, Zhiyun; Provencher, William; Redman, Charles L; Schneider, Stephen H; Taylor, William W

    2007-09-14

    Integrated studies of coupled human and natural systems reveal new and complex patterns and processes not evident when studied by social or natural scientists separately. Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units. They also exhibit nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises. Furthermore, past couplings have legacy effects on present conditions and future possibilities.

  8. Degeneracy and complexity in biological systems

    PubMed Central

    Edelman, Gerald M.; Gally, Joseph A.

    2001-01-01

    Degeneracy, the ability of elements that are structurally different to perform the same function or yield the same output, is a well known characteristic of the genetic code and immune systems. Here, we point out that degeneracy is a ubiquitous biological property and argue that it is a feature of complexity at genetic, cellular, system, and population levels. Furthermore, it is both necessary for, and an inevitable outcome of, natural selection. PMID:11698650

  9. Neural networks and dynamic complex systems

    SciTech Connect

    Fox, G.; Furmanski, Wojtek; Ho, Alex; Koller, J.; Simic, P.; Wong, Isaac

    1989-01-01

    We describe the use of neural networks for optimization and inference associated with a variety of complex systems. We show how a string formalism can be used for parallel computer decomposition, message routing and sequential optimizing compilers. We extend these ideas to a general treatment of spatial assessment and distributed artificial intelligence. 34 refs., 12 figs.

  10. Language Teacher Cognitions: Complex Dynamic Systems?

    ERIC Educational Resources Information Center

    Feryok, Anne

    2010-01-01

    Language teacher cognition research is a growing field. In recent years several features of language teacher cognitions have been noted: they can be complex, ranging over a number of different subjects; they can be dynamic, changing over time and under different influences; and they can be systems, forming unified and cohesive personal or…

  11. Promoting Transfer by Grounding Complex Systems Principles

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Wilensky, Uri

    2008-01-01

    Understanding scientific phenomena in terms of complex systems principles is both scientifically and pedagogically important. Situations from different disciplines of science are often governed by the same principle, and so promoting knowledge transfer across disciplines makes valuable cross-fertilization and scientific unification possible.…

  12. Designing To Learn about Complex Systems.

    ERIC Educational Resources Information Center

    Hmelo, Cindy E.; Holton, Douglas L.; Kolodner, Janet L.

    2000-01-01

    Indicates the presence of complex structural, behavioral, and functional relations to understanding. Reports on a design experiment in which 6th grade children learned about the human respiratory system by designing artificial lungs and building partial working models. Makes suggestions for successful learning from design activities. (Contains 44…

  13. Promoting Transfer by Grounding Complex Systems Principles

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Wilensky, Uri

    2008-01-01

    Understanding scientific phenomena in terms of complex systems principles is both scientifically and pedagogically important. Situations from different disciplines of science are often governed by the same principle, and so promoting knowledge transfer across disciplines makes valuable cross-fertilization and scientific unification possible.…

  14. Language Teacher Cognitions: Complex Dynamic Systems?

    ERIC Educational Resources Information Center

    Feryok, Anne

    2010-01-01

    Language teacher cognition research is a growing field. In recent years several features of language teacher cognitions have been noted: they can be complex, ranging over a number of different subjects; they can be dynamic, changing over time and under different influences; and they can be systems, forming unified and cohesive personal or…

  15. Engineering Education as a Complex System

    ERIC Educational Resources Information Center

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  16. Complex Systems: Boundary-Spanning Training Techniques.

    ERIC Educational Resources Information Center

    Adler, Terry; Black, Janice A.; Loveland, John P.

    2003-01-01

    The complex system dynamics of organizations and the influence of information technology requires workers to have boundary-spanning skills and the ability to work in virtual teams. The integrated business core is an experiential graduate-level course designed to develop these skills; it is also adaptable for inservice training. (Contains 69…

  17. Designing To Learn about Complex Systems.

    ERIC Educational Resources Information Center

    Hmelo, Cindy E.; Holton, Douglas L.; Kolodner, Janet L.

    2000-01-01

    Indicates the presence of complex structural, behavioral, and functional relations to understanding. Reports on a design experiment in which 6th grade children learned about the human respiratory system by designing artificial lungs and building partial working models. Makes suggestions for successful learning from design activities. (Contains 44…

  18. Mapping complex traits as a dynamic system

    PubMed Central

    Sun, Lidan; Wu, Rongling

    2017-01-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476

  19. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  20. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples.

  1. A new method to study complex materials in solid state chemistry: application to chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Lippens, P. E.; Olivier-Fourcade, J.; Jumas, J. C.

    1998-08-01

    We show that a combined application of Mössbauer spectroscopy and other experimental tools such as X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and nuclear magnetic resonance provides a coherent picture of the local electronic structure in chalcogenide materials. In order to develop this idea we propose an analysis of the Sn, Sb and Te local electronic structures for three different systems of materials. The first example concerns the In Sn S system. We show that Li insertion in In16Sn4S32 leads to changes of the Sn oxidation states from Sn(IV) to Sn(II). The second example concerns materials of the Tl Sb S system. We show that variations of the 121Sb Mössbauer isomer shift and surface of the first peak of the X-ray absorption spectra at the Sb LIII edge can be linearly correlated because of the main influence of the Sb 5s electrons. This is explained by changes in the local environment of the Sb atoms. The last example concerns the crystalline phases of the Tl Sn Te system. The formal oxidation numbers of the Te atoms are determined from 125Te Mössbauer spectroscopy and X-ray photoelectron spectroscopy. They are related to the different types of bonds involving the Te atoms in the Tl Sn Te compounds.

  2. Buried waste containment system materials. Final Report

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  3. Material control and accounting in the Department of Energy's nuclear fuel complex

    SciTech Connect

    1989-01-01

    Material control and accounting takes place within an envelope of activities related to safeguards and security, as well as to safety, health, and environment, all of which need to be managed to assure that the entire nuclear fuel complex can operate in a societally accepted manner. Within this envelope the committee was directed to carry out the following scope of work: (1) Review the MCandA systems in use at selected DOE facilities that are processing special nuclear material (SNM) in various physical and chemical forms. (2) Design and convene a workshop for senior representatives from each of DOE's facilities on the flows and inventories of nuclear materials. (3) Plan and conduct a series of site visits to each of the facilities to observe first hand the processing operations and the related MCandA systems. (4) Review the potential improvement in overall safeguard systems effectiveness, as measured by expected reduction in inventory difference control limits and inventory differences for materials balance accounts and facilities, or other criteria as appropriate. Indicate how this affects the relative degree of uncertainty in the system. (5) Review the efficiency of operating the MCandA system with and without the upgrading options and assess whether upgrading will contribute further efficiencies in operation, which may reduce many of the current operations costs. Determine if the current system is cost-effective. (6) Recommend the most promising technical approaches for further development by DOE and further study as warranted.

  4. Dependency visualization for complex system understanding

    SciTech Connect

    Smart, J. Allison Cory

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  5. Gaia as a complex adaptive system.

    PubMed Central

    Lenton, Timothy M; van Oijen, Marcel

    2002-01-01

    We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia. PMID:12079529

  6. Systems Medicine-Complexity Within, Simplicity Without.

    PubMed

    Berlin, Richard; Gruen, Russell; Best, James

    2017-01-01

    This paper presents a brief history of Systems Theory, progresses to Systems Biology, and its relation to the more traditional investigative method of reductionism. The emergence of Systems Medicine represents the application of Systems Biology to disease and clinical issues. The challenges faced by this transition from Systems Biology to Systems Medicine are explained; the requirements of physicians at the bedside, caring for patients, as well as the place of human-human interaction and the needs of the patients are addressed. An organ-focused transition to Systems Medicine, rather than a genomic-, molecular-, or cell-based effort is emphasized. Organ focus represents a middle-out approach to ease this transition and to maximize the benefits of scientific discovery and clinical application. This method manages the perceptions of time and space, the massive amounts of human- and patient-related data, and the ensuing complexity of information.

  7. Membrane Tethering Complexes in the Endosomal System

    PubMed Central

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic. PMID:27243003

  8. Interactions of platinum metals and their complexes in biological systems.

    PubMed Central

    LeRoy, A F

    1975-01-01

    Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed. PMID:50943

  9. Interactions of platinum metals and their complexes in biological systems.

    PubMed

    LeRoy, A F

    1975-04-01

    Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed.

  10. A Multifaceted Mathematical Approach for Complex Systems

    SciTech Connect

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  11. Complex Physical, Biophysical and Econophysical Systems

    NASA Astrophysics Data System (ADS)

    Dewar, Robert L.; Detering, Frank

    1. Introduction to complex and econophysics systems: a navigation map / T. Aste and T. Di Matteo -- 2. An introduction to fractional diffusion / B. I. Henry, T.A.M. Langlands and P. Straka -- 3. Space plasmas and fusion plasmas as complex systems / R. O. Dendy -- 4. Bayesian data analysis / M. S. Wheatland -- 5. Inverse problems and complexity in earth system science / I. G. Enting -- 6. Applied fluid chaos: designing advection with periodically reoriented flows for micro to geophysical mixing and transport enhancement / G. Metcalfe -- 7. Approaches to modelling the dynamical activity of brain function based on the electroencephalogram / D. T. J. Liley and F. Frascoli -- 8. Jaynes' maximum entropy principle, Riemannian metrics and generalised least action bound / R. K. Niven and B. Andresen -- 9. Complexity, post-genomic biology and gene expression programs / R. B. H. Williams and O. J.-H. Luo -- 10. Tutorials on agent-based modelling with NetLogo and network analysis with Pajek / M. J. Berryman and S. D. Angus.

  12. Systems biology and complex neurobehavioral traits.

    PubMed

    Giegling, I; Hartmann, A M; Genius, J; Benninghoff, J; Möller, H-J; Rujescu, D

    2008-09-01

    There is evidence for a strong genetic component in the etiology of schizophrenia, as demonstrated by family, twin and adoption studies suggesting a heritability of about 80%. There are several approaches in the search for genetic risk factors such as linkage or association studies. Additionally, much effort was done in refining the phenotype including neuropsychology, neurophysiology, imaging or the generation of animal models. Genes becoming associated with schizophrenia have to be tested for functionality including e.g. metabolomics, transcriptomics, proteomics, generation of transgenic mice, analysis of protein-protein interactions, allele-specific RNA expression analysis, analysis of neuronal and stem cell cultures, as well as post mortem studies and behavioral studies in rodents. This amount of data requires complex data analysis. A system's perspective can help in the analysis of the structural and functional complexity of the brain. New tools will be needed for a more complex and systemic view. The systems biology approach could be a pivotal tool in understanding of complex behavior and diseases in future.

  13. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    SciTech Connect

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  14. Causes of catastrophic failure in complex systems

    NASA Astrophysics Data System (ADS)

    Thomas, David A.

    2010-08-01

    Root causes of mission critical failures and major cost and schedule overruns in complex systems and programs are studied through the post-mortem analyses compiled for several examples, including the Hubble Space Telescope, the Challenger and Columbia Shuttle accidents, and the Three Mile Island nuclear power plant accident. The roles of organizational complexity, cognitive biases in decision making, the display of quantitative data, and cost and schedule pressure are all considered. Recommendations for mitigating the risk of similar failures in future programs are also provided.

  15. Systems genetics approaches to understand complex traits

    PubMed Central

    Civelek, Mete; Lusis, Aldons J.

    2014-01-01

    Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534

  16. Structured analysis and modeling of complex systems

    NASA Technical Reports Server (NTRS)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  17. Stability threshold approach for complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Klinshov, Vladimir V.; Nekorkin, Vladimir I.; Kurths, Jürgen

    2016-01-01

    A new measure to characterize the stability of complex dynamical systems against large perturbations is suggested, the stability threshold (ST). It quantifies the magnitude of the weakest perturbation capable of disrupting the system and switch it to an undesired dynamical regime. In the phase space, the ST corresponds to the ‘thinnest site’ of the attraction basin and therefore indicates the most ‘dangerous’ direction of perturbations. We introduce a computational algorithm for quantification of the ST and demonstrate that the suggested approach is effective and provides important insights. The generality of the obtained results defines their vast potential for application in such fields as engineering, neuroscience, power grids, Earth science and many others where the robustness of complex systems is studied.

  18. Library Sign Systems. Workshop Program Materials.

    ERIC Educational Resources Information Center

    Ridgeway, Patricia M.

    These program materials from the Library Sign Systems Workshop include a news story on the workshop; notes in outline form for a speech presented by Joe Sonderman, president of a graphic designs firm; and an annotated bibliography on signs and sign systems. The news release summarizes a presentation by Dorothy Pollet and Peter Haskell, editors of…

  19. Complexity and whole-system change programmes.

    PubMed

    Dattée, Brice; Barlow, James

    2010-04-01

    There has been growing interest in applying complexity theory to health care systems, both in policy and academic research discourses. However, its application often lacks rigour - authors discuss the properties of complex systems, state that they apply to health care and draw conclusions anchored around the idea of 'whole system change'. This paper explores the use of whole systems change in a programme to improve the delivery of unscheduled health care in Scotland. Qualitative case-studies of five health boards in Scotland reflecting different demographics, initial performance data and progress towards meeting programme targets. The programme's collaborative approach was successful in moving to a culture of mutual understanding and greater awareness of the interdependencies between different functions within the hospitals. There was whole system working at the acute hospital level, leading to improved patient flows. But despite recognizing the need for whole system change overall, it proved hard to address relationships with stakeholders influencing wider out-of-hospital patient flows. This was exacerbated by the structure of the programme, which was designed much more around acute patient flows. The programme worked well to improve performance by focusing on interdependencies within a large part of the acute care subsystem but did not have the same impact at the overall health care system level. This has important implications for the design of policy and associated programmes which seek to effect whole system reform, or at least are realistic about the magnitude of change they can achieve.

  20. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  1. Computerized systems to provide materials selection advice

    SciTech Connect

    Krisher, A.S.

    1996-07-01

    The rapid advance of computer science has increased the ability to store and retrieve information. These new capabilities are beginning to be applied to the problem of providing sound advice to non-specialist engineers who make materials selection decisions. This paper presents an overview of the large scale systems which exist in finished or near finished form and are (or may soon be) available for use by the public. The paper focuses on systems which transfer knowledge taking into account the many qualifications which enter into the reasoning processes of materials/corrosion specialists. The paper discusses both the strengths and limitations of each system.

  2. Terahertz Ray System Calibration and Material Characterizations

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Blackshire, James L.; Thompson, R. Bruce

    2009-03-01

    Recently, terahertz ray imaging has emerged as one of the most promising new NDE techniques, and new systems are being developed for applications. In this work, we conducted system calibration on a new time-domain spectroscopy system, and then utilized this system to characterize glass-fiber composite plates and polyimide resin disks. Extensive experimental measurements in thru-transmission mode were made to map out the T-ray beam pattern in free space as well as to scan these two test materials. Material properties such as index of fraction and absorption coefficient are of the primary interest. Both results were shown in good agreement with known data. Using these characterized material properties, we also demonstrated accurate modeling of the T-ray signal propagating through the polyimide resin disk.

  3. Engineering education as a complex system

    NASA Astrophysics Data System (ADS)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  4. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  5. Nuclear Space Power Systems Materials Requirements

    SciTech Connect

    Buckman, R.W. Jr.

    2004-02-04

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  6. Nuclear Space Power Systems Materials Requirements

    NASA Astrophysics Data System (ADS)

    Buckman, R. W.

    2004-02-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  7. [Complex systems variability analysis using approximate entropy].

    PubMed

    Cuestas, Eduardo

    2010-01-01

    Biological systems are highly complex systems, both spatially and temporally. They are rooted in an interdependent, redundant and pleiotropic interconnected dynamic network. The properties of a system are different from those of their parts, and they depend on the integrity of the whole. The systemic properties vanish when the system breaks down, while the properties of its components are maintained. The disease can be understood as a systemic functional alteration of the human body, which present with a varying severity, stability and durability. Biological systems are characterized by measurable complex rhythms, abnormal rhythms are associated with disease and may be involved in its pathogenesis, they are been termed "dynamic disease." Physicians have long time recognized that alterations of physiological rhythms are associated with disease. Measuring absolute values of clinical parameters yields highly significant, clinically useful information, however evaluating clinical parameters the variability provides additionally useful clinical information. The aim of this review was to study one of the most recent advances in the measurement and characterization of biological variability made possible by the development of mathematical models based on chaos theory and nonlinear dynamics, as approximate entropy, has provided us with greater ability to discern meaningful distinctions between biological signals from clinically distinct groups of patients.

  8. TDR measurements looking for complex dielectric permittivity and complex magnetic permeability in lossy materials

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele

    2017-04-01

    TDR probes can be exploited for the measure of the electromagnetic characteristics of the soil, or of any penetrable material. They are commonly exploited as instruments for the measure of the propagation velocity of the electromagnetic waves in the probed medium [1], in its turn useful for the proper focusing of GPR data [2-5]. However, a more refined hardware and processing can allow to extrapolate from these probes also the discrimination between dielectric and magnetic characteristics of the material under test, which can be relevant for a better interpretation of the buried scenario or in order to infer physical-chemical characteristics of the material at hand. This requires a TDR probe that can work in frequency domain, and in particular that allows to retrieve the reflection coefficient at the air soil interface. It has been already shown [6] that in lossless cases this can be promising. In the present contribution, it will be shown at the EGU conference that it is possible to look for both the relative complex permittivity and the relative magnetic permeability of the probed material, on condition that the datum has an acceptable SNR and that some diversity of information is guaranteed, either by multifrequency data or by a TDR that can prolong its arms in the soil. References [1] F. Soldovieri, G. Prisco, R. Persico, Application of Microwave Tomography in Hydrogeophysics: some examples, Vadose Zone Journal, vol. 7, n. 1 pp. 160-170, Feb. 2008. [2] I. Catapano, L. Crocco, R. Persico, M. Pieraccini, F. Soldovieri, "Linear and Nonlinear Microwave Tomography Approaches for Subsurface Prospecting: Validation on Real Data", IEEE Trans. on Antennas and Wireless Propagation Letters, vol. 5, pp. 49-53, 2006. [3] G. Leucci, N. Masini, R. Persico, F. Soldovieri." GPR and sonic tomography for structural restoration : the case of the Cathedral of Tricarico", Journal of Geophysics and Engineering, vol. 8, pp. S76-S92, Aug. 2011. [4] S. Piscitelli, E. Rizzo, F. Cristallo

  9. Damage Tolerance and Durability of Material Systems

    NASA Astrophysics Data System (ADS)

    Reifsnider, Kenneth L.; Case, Scott W.

    2002-04-01

    A daring, original approach to understanding and predicting the mechanical behavior of materials "Damage is an abstraction . . . Strength is an observable, an independent variable that can be measured, with clear and familiar engineering definitions." -from the Preface to Damage Tolerance and Durability of Material Systems Long-term behavior is one of the most challenging and important aspects of material engineering. There is a great need for a useful conceptual or operational framework for measuring long-term behavior. As much a revolution in philosophy as an engineering text, Damage Tolerance and Durability of Material Systems postulates a new mechanistic philosophy and methodology for predicting the remaining strength and life of engineering material. This philosophy associates the local physical changes in material states and stress states caused by time-variable applied environments with global properties and performance. There are three fundamental issues associated with the mechanical behavior of engineering materials and structures: their stiffness, strength, and life. Treating these issues from the standpoint of technical difficulty, time, and cost for characterization, and relationship to safety, reliability, liability, and economy, the authors explore such topics as: * Damage tolerance and failure modes * Factors that determine composite strength * Micromechanical models of composite stiffness and strength * Stiffness evolution * Strength evolution during damage accumulation * Non-uniform stress states * Lifetime prediction With a robust selection of example applications and case studies, this book takes a step toward the fulfillment of a vision of a future in which the prediction of physical properties from first principles will make possible the creation and application of new materials and material systems at a remarkable cost savings.

  10. Multifractal Resilience Metrics for Complex Systems?

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.

    2011-12-01

    The term resilience has become extremely fashionable, especially for complex systems, whereas corresponding operational definitions have remained rather elusive (Carpenter et al. 2001). More precisely, the resilience assessment of man-made systems (from nuclear plants to cities) to geophysical extremes require mathematically defined resilience metrics based on some conceptual definition, e.g. the often cited definition of "ecological resilience" (Hollings 1973): "the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks". Surprisingly, whereas it was acknowledged by Folke et al. (2010) that "multiscale resilience is fundamental for understanding the interplay between persistence and change, adaptability and transformability", the relation between resilience and scaling has not been so much questioned, see however Peterson (2000). We argue that is rather indispensable to go well beyond the attractor approach (Pimm and Lawton 1977; Collings and Wollkind 1990;), as well as extensions (Martin et al., 2011) into the framework of the viability theory (Aubin 1991; Aubin et al. 2011). Indeed, both are rather limited to systems that are complex only in time. Scale symmetries are indeed indispensable to reduce the space-time complexity by defining scale independent observables, which are the singularities of the original, scale dependent fields. These singularities enable to define across-scale resilience, instead of resilience at a given scale.

  11. Heat transport system, method and material

    DOEpatents

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  12. Controlling Complex Systems and Developing Dynamic Technology

    NASA Astrophysics Data System (ADS)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  13. Best geoscience approach to complex systems in environment

    NASA Astrophysics Data System (ADS)

    Mezemate, Yacine; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    The environment is a social issue that continues to grow in importance. Its complexity, both cross-disciplinary and multi-scale, has given rise to a large number of scientific and technological locks, that complex systems approaches can solve. Significant challenges must met to achieve the understanding of the environmental complexes systems. There study should proceed in some steps in which the use of data and models is crucial: - Exploration, observation and basic data acquisition - Identification of correlations, patterns, and mechanisms - Modelling - Model validation, implementation and prediction - Construction of a theory Since the e-learning becomes a powerful tool for knowledge and best practice shearing, we use it to teach the environmental complexities and systems. In this presentation we promote the e-learning course dedicated for a large public (undergraduates, graduates, PhD students and young scientists) which gather and puts in coherence different pedagogical materials of complex systems and environmental studies. This course describes a complex processes using numerous illustrations, examples and tests that make it "easy to enjoy" learning process. For the seek of simplicity, the course is divided in different modules and at the end of each module a set of exercises and program codes are proposed for a best practice. The graphical user interface (GUI) which is constructed using an open source Opale Scenari offers a simple navigation through the different module. The course treats the complex systems that can be found in environment and their observables, we particularly highlight the extreme variability of these observables over a wide range of scales. Using the multifractal formalism through different applications (turbulence, precipitation, hydrology) we demonstrate how such extreme variability of the geophysical/biological fields should be used solving everyday (geo-)environmental chalenges.

  14. Uranium(iii) and thorium(iv) alkyl complexes as potential starting materials.

    PubMed

    Behrle, Andrew C; Myers, Alexander J; Rungthanaphatsophon, Pokpong; Lukens, Wayne W; Barnes, Charles L; Walensky, Justin R

    2016-12-13

    The synthesis and characterisation of a rare U(iii) alkyl complex, U[η(4)-Me2NC(H)C6H5]3, using the dimethylbenzylamine (DMBA) ligand has been accomplished. While attempting to prepare the U(iv) compound, reduction to the U(iii) complex occurred. In the analogous Th(iv) system, C-H bond activation of a methyl group of one dimethylamine was observed yielding Th[η(4)-Me2NC(H)C6H5]2[η(5)-(CH2)MeNC(H)C6H5] with a dianionic DMBA ligand. The utility of these complexes as starting materials has been analyzed using a bulky dithiocarboxylate ligand to yield tetravalent actinide species.

  15. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  16. Estimating optimal partitions for stochastic complex systems

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aihara, Kazuyuki

    2013-06-01

    Partitions provide simple symbolic representations for complex systems. For a deterministic system, a generating partition establishes one-to-one correspondence between an orbit and the infinite symbolic sequence generated by the partition. For a stochastic system, however, a generating partition does not exist. In this paper, we propose a method to obtain a partition that best specifies the locations of points for a time series generated from a stochastic system by using the corresponding symbolic sequence under a constraint of an information rate. When the length of the substrings is limited with a finite length, the method coincides with that for estimating a generating partition from a time series generated from a deterministic system. The two real datasets analyzed in Kennel and Buhl, Phys. Rev. Lett. 91, 084102 (2003), are reanalyzed with the proposed method to understand their underlying dynamics intuitively.

  17. Fire water systems in composite materials

    SciTech Connect

    Sundt, J.L.

    1993-12-31

    Due to corrosion problems in fire water systems offshore there is a need for a corrosion resistant material to improve the reliability of onboard fire fighting systems. Glass Reinforced Epoxy (GRE) pipe is seen as a cost effective and light weight alternative to metals. Through a test program run by AMAT, Advanced Materials a/s in collaboration with the Norwegian Fire and Research Laboratory (NBL, SINTEF), GRE pipes have proved to be viable materials for offshore fire water systems. The test program included furnace testing, jetfire testing and simulated explosion testing. GRE pipes (2--12 inches) from two suppliers were fire tested and evaluated. Both adhesively bonded joints and flange connections were tested. During the course of the project, application methods of passive fire protection and nozzle attachments were improved.

  18. What drives transient behavior in complex systems?

    NASA Astrophysics Data System (ADS)

    Grela, Jacek

    2017-08-01

    We study transient behavior in the dynamics of complex systems described by a set of nonlinear ordinary differential equations. Destabilizing nature of transient trajectories is discussed and its connection with the eigenvalue-based linearization procedure. The complexity is realized as a random matrix drawn from a modified May-Wigner model. Based on the initial response of the system, we identify a novel stable-transient regime. We calculate exact abundances of typical and extreme transient trajectories finding both Gaussian and Tracy-Widom distributions known in extreme value statistics. We identify degrees of freedom driving transient behavior as connected to the eigenvectors and encoded in a nonorthogonality matrix T0. We accordingly extend the May-Wigner model to contain a phase with typical transient trajectories present. An exact norm of the trajectory is obtained in the vanishing T0 limit where it describes a normal matrix.

  19. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems

    DTIC Science & Technology

    2009-09-30

    INTEGRATED RECONFIGURABLE INTELLIGENT SYSTEMS (IRIS) FOR COMPLEX NAVAL SYSTEMS 5a. CONTRACT NUMBER N00014-09-C-0394 5b. GRANT NUMBER N/A 5c...298 (Rev, 8-98) Prescribed by ANSI-std Z39-18 QUARTERLY REPORT (July 1, 2009 - September 30, 2009) Integrated Reconflgurable Intelligent Systems (IRIS...Introduction The Integrated Reconfigurable Intelligent Systems (IRIS) is an initiative employing advanced methods to facilitate the design and operation of

  20. Fire and materials modeling for transportation systems

    SciTech Connect

    Skocypec, R.D.; Gritzo, L.A.; Moya, J.L.; Nicolette, V.F.; Tieszen, S.R.; Thomas, R.

    1994-10-01

    Fire is an important threat to the safety of transportation systems. Therefore, understanding the effects of fire (and its interaction with materials) on transportation systems is crucial to quantifying and mitigating the impact of fire on the safety of those systems. Research and development directed toward improving the fire safety of transportation systems must address a broad range of phenomena and technologies, including: crash dynamics, fuel dispersion, fire environment characterization, material characterization, and system/cargo thermal response modeling. In addition, if the goal of the work is an assessment and/or reduction of risk due to fires, probabilistic risk assessment technology is also required. The research currently underway at Sandia National Laboratories in each of these areas is summarized in this paper.

  1. Incorporation of bioactive materials into integrated systems

    NASA Astrophysics Data System (ADS)

    Bunker, Bruce C.; Huber, Dale L.; Manginell, Ronald P.; Kim, Byung-Il; Boal, Andrew K.; Bachand, George D.; Rivera, Susan B.; Bauer, Joseph M.; Matzke, Carolyn M.

    2003-10-01

    Sandia is exploring two classes of integrated systems involving bioactive materials: 1) microfluidic systems that can be used to manipulate biomolecules for applications ranging from counter-terrorism to drug delivery systems, and 2) fluidic systems in which active biomolecules such as motor proteins provide specific functions such as active transport. An example of the first class involves the development of a reversible protein trap based on the integration of the thermally-switchable polymer poly(N-isopropylacrylamide)(PNIPAM) into a micro-hotplate device. To exemplify the second class, we describe the technical challenges associated with integrating microtubules and motor proteins into microfluidic systems for: 1) the active transport of nanoparticle cargo, or 2) templated growth of high-aspect ratio nanowires. These examples illustrate the functions of bioactive materials, synthesis and fabrication issues, mechanisms for switching surface chemistry and active transport, and new techniques such as the interfacial force microscope (IFM) that can be used to characterize bioactive surfaces.

  2. Endogenous Biologically Inspired Art of Complex Systems.

    PubMed

    Ji, Haru; Wakefield, Graham

    2016-01-01

    Since 2007, Graham Wakefield and Haru Ji have looked to nature for inspiration as they have created a series of "artificial natures," or interactive visualizations of biologically inspired complex systems that can evoke nature-like aesthetic experiences within mixed-reality art installations. This article describes how they have applied visualization, sonification, and interaction design in their work with artificial ecosystems and organisms using specific examples from their exhibited installations.

  3. [A medical consumable material management information system].

    PubMed

    Tang, Guoping; Hu, Liang

    2014-05-01

    Medical consumables material is essential supplies to carry out medical work, which has a wide range of varieties and a large amount of usage. How to manage it feasibly and efficiently that has been a topic of concern to everyone. This article discussed about how to design a medical consumable material management information system that has a set of standardized processes, bring together medical supplies administrator, suppliers and clinical departments. Advanced management mode, enterprise resource planning (ERP) applied to the whole system design process.

  4. Biodeterioration of materials in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Maki, James S.; Mitchell, Ralph

    1992-01-01

    The chemicals produced by the microbial processes involved in the 'biofilms' which form on the surfaces of manned spacecraft water reclamation systems encompass both metals and organic poisons; both are potential hazards to astronaut health and the growth of the plants envisioned for closed-cycle life support systems. Image analysis is here shown to be a very useful technique for the study of biofilm formation on candidate water-processor materials for Space Station Freedom. The biodeterioration of materials exposed to biofilms can be swiftly evaluated by means of electrochemical impedance spectroscopy.

  5. Biodeterioration of materials in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Maki, James S.; Mitchell, Ralph

    1992-01-01

    The chemicals produced by the microbial processes involved in the 'biofilms' which form on the surfaces of manned spacecraft water reclamation systems encompass both metals and organic poisons; both are potential hazards to astronaut health and the growth of the plants envisioned for closed-cycle life support systems. Image analysis is here shown to be a very useful technique for the study of biofilm formation on candidate water-processor materials for Space Station Freedom. The biodeterioration of materials exposed to biofilms can be swiftly evaluated by means of electrochemical impedance spectroscopy.

  6. Toward self-constructing materials: a systems chemistry approach.

    PubMed

    Giuseppone, Nicolas

    2012-12-18

    To design the next generation of so-called "smart" materials, researchers will need to develop chemical systems that respond, adapt, and multitask. Because many of these features occur in living systems, we expect that such advanced artificial systems will be inspired by nature. In particular, these new materials should ultimately combine three key properties of life: metabolism, mutation, and self-replication. In this Account, we discuss our endeavors toward the design of such advanced functional materials. First, we focus on dynamic molecular libraries. These molecular and supramolecular chemical systems are based on mixtures of reversibly interacting molecules that are coupled within networks of thermodynamic equilibria. We will explain how the superimposition of combinatorial networks at different length scales of structural organization can provide valuable hierarchical dynamics for producing complex functional systems. In particular, our experimental results highlight why these libraries are of interest for the design of responsive materials and how their functional properties can be modulated by various chemical and physical stimuli. Then, we introduce examples in which these dynamic combinatorial systems can be coupled to kinetic feedback loops to produce self-replicating pathways that amplify a selected component from the equilibrated libraries. Finally, we discuss the discovery of highly functional self-replicating supramolecular assemblies that can transfer an electric signal in space and time. We show how these wires can be directly incorporated within an electronic nanocircuit by self-organization and functional feedback loops. Because the network topologies act as complex algorithms to process information, we present these systems in this order to provide context for their potential for extending the current generation of responsive materials. We propose a general description for a potential autonomous (self-constructing) material. Such a system

  7. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required

  8. Birefringence measurement in complex optical systems

    NASA Astrophysics Data System (ADS)

    Knell, Holger; Heuck, Hans-Martin

    2017-06-01

    State of the art optical systems become more complex. There are more lenses required in the optical design and optical coatings have more layers. These complex designs are prone to induce more thermal stress into the optical system which causes birefringence. In addition, there is a certain degree of freedom required to meet optical specifications during the assembly process. The mechanical fixation of these degrees of freedom can also lead to mechanical stress in the optical system and therefore to birefringence. To be able to distinguish those two types of stress a method to image the birefringence in the optical system is required. In the proposed setup light is polarized by a circular polarization filter and then is transmitted through a rotatable linear retarder and the tested optical system. The light then is reflected on the same path by a mirror. After the light passes the circular polarization filter on the way back, the intensity is recorded. When the rotatable retarder is rotated, the recorded intensity is modulated depending on the birefringence of the tested optical system. This modulation can be analyzed in Fourier domain and the linear retardance angle between the slow and the fast axis as well as the angle of the fast axis can be calculated. The retardance distribution over the pupil of the optical system then can be analyzed using Zernike decomposition. From the Zernike decomposition, the origin of the birefringence can be identified. Since it is required to quantify small amounts of retardance well below 10nm, the birefringence of the measurement system must be characterized before the measurement and considered in the calculation of the resulting birefringence. Temperature change of the measurement system still can produce measurement artifacts in the calculated result, which must also be compensated for.

  9. Complex Networks/Foundations of Information Systems

    DTIC Science & Technology

    2013-03-06

    Information Systems 6 March 2013 Robert J. Bonneau, Ph.D. Division Chief AFOSR/RTC Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...if it does not display a currently valid OMB control number. 1. REPORT DATE 06 MAR 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00...2013 4. TITLE AND SUBTITLE Complex Networks/Foundations of Information Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  10. Synchronization in node of complex networks consist of complex chaotic system

    SciTech Connect

    Wei, Qiang; Xie, Cheng-jun; Liu, Hong-jun; Li, Yan-hui

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  11. Complex Engineered Systems: A New Paradigm

    NASA Astrophysics Data System (ADS)

    Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer

    Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.

  12. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    SciTech Connect

    Forsberg, C.W.; Ferrada, J.J.

    1996-03-19

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials.

  13. Complex anion inclusion compounds: flexible anion-exchange materials.

    PubMed

    Williams, Edward R; Leithall, Rebecca M; Raja, Robert; Weller, Mark T

    2013-01-11

    Copper chloropyrophosphate frameworks have been synthesised with a wide variety of complex inorganic anions trapped in a large, flexible, one-dimensional pore, with anions including chloride, bromide, phosphate and the complex metal halo-anions PtCl(4)(2-), PdBr(4)(2-), CuCl(4)(2-) and AuCl(4)(-).

  14. Complexity for Survival of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2009-01-01

    A logical connection between the survivability of living systems and the complexity of their behavior (equivalently, mental complexity) has been established. This connection is an important intermediate result of continuing research on mathematical models that could constitute a unified representation of the evolution of both living and non-living systems. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the two most relevant being Characteristics of Dynamics of Intelligent Systems (NPO- 21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; and Self-Supervised Dynamical Systems (NPO- 30634) NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72. As used here, living systems is synonymous with active systems and intelligent systems. The quoted terms can signify artificial agents (e.g., suitably programmed computers) or natural biological systems ranging from single-cell organisms at one extreme to the whole of human society at the other extreme. One of the requirements that must be satisfied in mathematical modeling of living systems is reconciliation of evolution of life with the second law of thermodynamics. In the approach followed in this research, this reconciliation is effected by means of a model, inspired partly by quantum mechanics, in which the quantum potential is replaced with an information potential. The model captures the most fundamental property of life - the ability to evolve from disorder to order without any external interference. The model incorporates the equations of classical dynamics, including Newton s equations of motion and equations for random components caused by uncertainties in initial conditions and by Langevin forces. The equations of classical dynamics are coupled with corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces that are

  15. Complexity VIII. Ontology of closure in complex systems: The C* hypothesis and the O° notation

    NASA Astrophysics Data System (ADS)

    Chandler, Jerry LR

    1999-03-01

    Closure is a common characteristic of mathematical, natural and socio-cultural systems. Whether one is describing a graph, a molecule, a cell, a human, or a nation state, closure is implicitly understood. An objective of this paper is to continue a construction of a systematic framework for closure which is sufficient for future quantitative transdisciplinary investigations. A further objective is to extend the Birkhoff-von Neumann criterion for quantum systems to complex natural objects. The C* hypothesis is being constructed to be consistent with algebraic category theory (Ehresmann and Vanbremeersch, 1987, 1997, Chandler, 1990, 1991, Chandler, Ehresmann and Vanbremeersch, 1996). Five aspects of closure will be used to construct a framework for categories of complex systems: 1. Truth functions in mathematics and the natural sciences 2. Systematic descriptions in the mks and O° notations 3. Organizational structures in hierarchical scientific languages 4. Transitive organizational pathways in the causal structures of complex behaviors 5. Composing additive, multiplicative and exponential operations in complex systems Truth functions can be formal or objective or subjective, depending on the complexity of the system and on our capability to represent the fine structure of the system symbolically, observationally or descriptively. "Complete" material representations of the fine structure of a system may allow truth functions to be created over sets of one to one correspondences. Less complete descriptions can support less stringent truth functions based on coherence or subjective judgments. The role of human values in creating and perpetuating truth functions can be placed in context of the degree of fine structure in the system's description. The organization of complex systems are hypothesized to be categorizable into degrees relative to one another, thereby creating an ordering relationship. This ordering relationship is denoted by the symbols: O°1, O°2,O°3

  16. Characterization of electrochemical systems and batteries: Materials and systems

    SciTech Connect

    McBreen, J.

    1992-12-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  17. Characterization of electrochemical systems and batteries: Materials and systems

    SciTech Connect

    McBreen, J.

    1992-01-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  18. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  19. Representing the Complexity of Engineering Systems: A Multidisciplinary Perceptual Approach

    NASA Astrophysics Data System (ADS)

    Motyka, Matt; Maier, Jonathan R. A.; Fadel, Georges M.

    The natural evolution of design leads to the creation of devices that are increasingly complex. From the invention of the wheel to the use of the wheel in the landing gear of a spacecraft, new technology often builds upon or further develops existing products. As devices become more complex, so does the process of designing them. In order to meet consumer demands, design requires the integration of technology from multiple disciplines. This can lead to the formation of intricate interdependencies between components and systems within the device. These interdependencies may include material, geometric, dynamic, pneumatic, vibration, acoustical, thermal, electrical, and chemical considerations. Because of their complex nature, the interdependencies within a device are not always apparent, and may easily be overlooked by inexperienced designers.

  20. Complex-wide representation of material packaged in 3013 containers

    SciTech Connect

    Narlesky, Joshua E.; Peppers, Larry G.; Friday, Gary P.

    2009-06-01

    The DOE sites packaging plutonium oxide materials packaged according to Department of Energy 3013 Standard (DOE-STD-3013) are responsible for ensuring that the materials are represented by one or more samples in the Materials Identification and Surveillance (MIS) program. The sites categorized most of the materials into process groups, and the remaining materials were characterized, based on the prompt gamma analysis results. The sites issued documents to identify the relationships between the materials packaged in 3013 containers and representative materials in the MIS program. These “Represented” documents were then reviewed and concurred with by the MIS Working Group. However, these documents were developed uniquely at each site and were issued before completion of sample characterization, small-scale experiments, and prompt gamma analysis, which provided more detailed information about the chemical impurities and the behavior of the material in storage. Therefore, based on the most recent data, relationships between the materials packaged in 3013 containers and representative materials in the MIS program been revised. With the prompt gamma analysis completed for Hanford, Rocky Flats, and Savannah River Site 3013 containers, MIS items have been assigned to the 3013 containers for which representation is based on the prompt gamma analysis results. With the revised relationships and the prompt gamma analysis results, a Master “Represented” table has been compiled to document the linkages between each 3013 container packaged to date and its representative MIS items. This table provides an important link between the Integrated Surveillance Program database, which contains information about each 3013 container to the MIS items database, which contains the characterization, prompt gamma data, and storage behavior data from shelf-life experiments for the representative MIS items.

  1. Ion irradiation: its relevance to the evolution of complex organics in the outer solar system.

    PubMed

    Strazzulla, G

    1997-01-01

    Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined.

  2. Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems

    PubMed Central

    Wang, Shibing; Wang, Xingyuan; Han, Bo

    2016-01-01

    In this paper, generalized synchronization (GS) is extended from real space to complex space, resulting in a new synchronization scheme, complex generalized synchronization (CGS). Based on Lyapunov stability theory, an adaptive controller and parameter update laws are designed to realize CGS and parameter identification of two nonidentical chaotic (hyperchaotic) complex systems with respect to a given complex map vector. This scheme is applied to synchronize a memristor-based hyperchaotic complexsystem and a memristor-based chaotic complex Lorenz system, a chaotic complex Chen system and a memristor-based chaotic complex Lorenz system, as well as a memristor-based hyperchaotic complexsystem and a chaotic complexsystem with fully unknown parameters. The corresponding numerical simulations illustrate the feasibility and effectiveness of the proposed scheme. PMID:27014879

  3. Effect of entropy-packing fraction relation on the formation of complex metallic materials

    NASA Astrophysics Data System (ADS)

    Tourki Samaei, Arash; Mohammadi, Ehsan

    2015-09-01

    By combining a number of elements to form complex metallic materials without a base element, it was recently shown that one can obtain rather complex structures, including random solute solutions, multi-phased mixtures and amorphous structures with/without nano-precipitations. Compared to conventional metallic materials, these complex ones could show excellent mechanical and physical properties across a wide range of temperatures, therefore being a promising advanced material for high-temperature applications; however, designing these complex materials, at present, still lacks a unified physical approach but relies on the choice of a few metallurgical parameters, such as atomic size mismatch, heat of mixing and valence electron concentration. Here, we identify a physical mechanism through the optimization of the excess configurational entropy of mixing in the control of phase formation in these metallic materials. The theoretical framework herein established is expected to provide a new paradigm in pursuit of complex metallic materials with superior properties.

  4. Overview of DYMCAS, the Y-12 Material Control And Accountability System

    SciTech Connect

    Alspaugh, D. H.

    2001-07-01

    This paper gives an overview of DYMCAS, the material control and accountability information system for the Y-12 National Security Complex. A common misconception, even within the DOE community, understates the nature and complexity of material control and accountability (MC and A) systems, likening them to parcel delivery systems tracking packages at various locations or banking systems that account for money, down to the penny. A major point set forth in this paper is that MC and A systems such as DYMCAS can be and often are very complex. Given accountability reporting requirements and the critical and sensitive nature of the task, no MC and A system can be simple. The complexity of site-level accountability systems, however, varies dramatically depending on the amounts, kinds, and forms of nuclear materials and the kinds of processing performed at the site. Some accountability systems are tailored to unique and highly complex site-level materials and material processing and, consequently, are highly complex systems. Sites with less complexity require less complex accountability systems, and where processes and practices are the same or similar, sites on the mid-to-low end of the complexity scale can effectively utilize a standard accountability system. In addition to being complex, a unique feature of DYMCAS is its integration with the site production control and manufacturing system. This paper will review the advantages of such integration, as well as related challenges, and make the point that the effectiveness of complex MC and A systems can be significantly enhanced through appropriate systems integration.

  5. Propagating wave correlations in complex systems

    NASA Astrophysics Data System (ADS)

    Creagh, Stephen C.; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures.

  6. Complex defects in crystal scintillation materials and phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V.; Lisitsyna, L.; Polisadova, E.

    2017-01-01

    The possibility of the existence of complex defects in pure and doped crystal phosphor discussed in work. The luminescent properties of mono- and nanocrystals of zinc tungstate, the powders of YAG with various compositions are studied. It is shown that the intrinsic defects, impurities, oxygen vacancies, the hydroxyl groups may be present in the structure of the complex defects (nanodefects). Nanodefects form during synthesis and have high efficiency of the transfer of excitation energy to the emission centres.

  7. Composite material systems for hydrogen management

    NASA Technical Reports Server (NTRS)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  8. Evaluation of Composite Materials for Use on Launch Complexes

    NASA Technical Reports Server (NTRS)

    Finchum, A.; Welch, Peter J.

    1989-01-01

    Commercially available composite structural shapes were evaluated for use. These composites, fiberglass-reinforced polyester and vinylester resin materials are being used extensively in the fabrication and construction of low maintenance, corrosion resistant structures. The evaluation found that in many applications these composite materials can be successfully used at the space center. These composite materials should not be used where they will be exposed to the hot exhaust plume/cloud of the launch vehicle during the liftoff, and caution should be taken in their use in areas where electrostatic discharge and hypergolic propellant compatibility are primary concerns.

  9. Addressing the Complexity of the Earth System

    SciTech Connect

    Nobre, Carlos; Brasseur, Guy P.; Shapiro, Melvyn; Lahsen, Myanna; Brunet, Gilbert; Busalacchi, Antonio; Hibbard, Kathleen A.; Seitzinger, Sybil; Noone, Kevin; Ometto, Jean P.

    2010-10-01

    This paper highlights the role of the Earth-system biosphere and illustrates the complex: biosphere-atmosphere interactions in the Amazon Basin, changes in nitrogen cycling, ocean chemistry, and land use. It introduces three important requirements for accelerating the development and use of Earth system information. The first requirement is to develop Earth system analysis and prediction models that account for multi-scale physical, chemical and biological processes, including their interactions in the coupled atmosphere-ocean-land-ice system. The development of these models requires partnerships between academia, national research centers, and operational prediction facilities, and builds upon accomplishments in weather and climate predictions. They will highlight the regional aspects of global change, and include modules for water system, agriculture, forestry, energy, air quality, health, etc. The second requirement is to model the interactions between humans and the weather-climate-biogeochemical system. The third requirement is to introduce novel methodologies to account for societal drivers, impacts and feedbacks. This is a challenging endeavor requiring creative solutions and some compromising because human behavior cannot be fully represented within the framework of present-day physical prediction systems.

  10. Automated Diagnosis and Control of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kurien, James; Plaunt, Christian; Cannon, Howard; Shirley, Mark; Taylor, Will; Nayak, P.; Hudson, Benoit; Bachmann, Andrew; Brownston, Lee; Hayden, Sandra; hide

    2007-01-01

    Livingstone2 is a reusable, artificial intelligence (AI) software system designed to assist spacecraft, life support systems, chemical plants, or other complex systems by operating with minimal human supervision, even in the face of hardware failures or unexpected events. The software diagnoses the current state of the spacecraft or other system, and recommends commands or repair actions that will allow the system to continue operation. Livingstone2 is an enhancement of the Livingstone diagnosis system that was flight-tested onboard the Deep Space One spacecraft in 1999. This version tracks multiple diagnostic hypotheses, rather than just a single hypothesis as in the previous version. It is also able to revise diagnostic decisions made in the past when additional observations become available. In such cases, Livingstone might arrive at an incorrect hypothesis. Re-architecting and re-implementing the system in C++ has increased performance. Usability has been improved by creating a set of development tools that is closely integrated with the Livingstone2 engine. In addition to the core diagnosis engine, Livingstone2 includes a compiler that translates diagnostic models written in a Java-like language into Livingstone2's language, and a broad set of graphical tools for model development.

  11. Simulating Complex Window Systems using BSDF Data

    SciTech Connect

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  12. Flowgraph Models for Complex Multistate System Reliabiliy.

    SciTech Connect

    Williams, B. J.; Huzurbazar, A. V.

    2005-01-01

    This chapter reviews flowgraph models for complex multistate systems. The focus is on modeling data from semi-Markov processes and constructing likelihoods when different portions of the system data are censored and incomplete. Semi-Markov models play an important role in the analysis of time to event data. However, in practice, data analysis for semi-Markov processes can be quite difficult and many simplifying assumptions are made. Flowgraph models are multistate models that provide a data analytic method for semi-Markov processes. Flowgraphs are useful for estimating Bayes predictive densities, predictive reliability functions, and predictive hazard functions for waiting times of interest in the presence of censored and incomplete data. This chapter reviews data analysis for flowgraph models and then presents methods for constructing likelihoods when portions of the system data are missing.

  13. PREFACE: Complex Dynamics in Spatially Extended Systems

    NASA Astrophysics Data System (ADS)

    Mosekilde, Erik; Bohr, Tomas; Rasmussen, Jens Juul; Leth Christiansen, Peter

    1996-01-01

    Self-organization, or the spontaneous emergence of patterns and structures under far-from-equilibrium conditions, turbulence, and related nonlinear dynamic phenomena in spatially extended systems have developed into one of the most exciting topics of modern science. Phenomena of this type arise in a wide variety of different fields, ranging from the development of chemical and biological patterns in reaction-diffusion systems over vortex formation in connection with chemical, optical, hydrodynamic or magnetohydrodynamic turbulence to technical applications in connection with liquid crystal displays or pulse compression in optical communication systems. Lasers often show interesting patterns produced by self-focusing and other nonlinear phenomena, diffusion limited aggregation is known to generate fractal-like structures, and amazing struc- tures also arise in bacterial growth processes or when a droplet of an oil suspension of finely divided magnetic particles is subject to a magnetic field perpendicular to the surface of the cell in which it is contained. In September 1995 the Niels Bohr Institute in Copenhagen was the venue of an International Conference on Complex Dynamics in Spatially Extended Systems. Organizers of the conference were the three Danish centers for nonlinear dynamics: The Center for Chaos and Turbulence Studies (CATS), located at the Niels Bohr Institute; the Center for Modeling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT), located at the Technical University of Denmark, and the Center for Nonlinear Dynamics in Continuum Systems, located at the Risø National Laboratories. In the spirit of the successful NATO Advanced Research Workshops on Spatiotemporal Patterns in Nonequilibrium Systems of which the last was held in Santa Fe, New Mexico in 1993, the conference aimed at stimulating new ideas and providing a forum for the exchange of knowledge between leading practitioners of the field. With its 50 invited speakers and more than

  14. Nonlinear Dynamics, Chaotic and Complex Systems

    NASA Astrophysics Data System (ADS)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  15. Passive sensor systems for nuclear material monitoring

    SciTech Connect

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-09-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y{sub 2}O{sub 3}) with {sup 6}LiF (95% {sup 6}Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant.

  16. Barium compatibility of insulator material systems

    NASA Astrophysics Data System (ADS)

    Merrill, John M.; Zee, Ralph; Schuller, Michael

    1997-01-01

    The compatibility of insulator material systems in a barium environment was investigated. This work is part of an ongoing program to identify weaknesses in insulator/braze/refractory metal materials systems which provide electrical insulation in alkali-metal enhanced thermionic devices and other alkali-metal thermal-to-electric converters. Test articles consisting of alumina or sapphire insulators brazed to molybdenum via a nominal Cu-30% Ni braze, were exposed to barium vapor to ascertain possible reactions and/or failure mechanisms. The test matrix consisted of eight samples; 5 with a sapphire insulator, 3 with an alumina insulator. Each sample was exposed to a different combination of insulator/braze region temperature (1000 K or 1100 K) and partial pressure of barium (10-3 or 10-2 torr) for approximately 750 hours. Initial analysis indicated that the ceramic portions were free from corrosion and that the braze material was the weak link in the material system. Evidence of formation of a Cu-Ba intermetallic at the braze region was visible. Further analysis indicated that in some cases Al2O3 was being reduced by the Barium. The results of this research imply that use of Al2O3 based ceramics in a barium environment may be suspect to failures in the long term and that Cu-Ni brazes are not suitable for the barium environment.

  17. Complex system analysis using CI methods

    NASA Astrophysics Data System (ADS)

    Fathi, Madjid; Hildebrand, Lars

    1999-03-01

    Modern technical tasks often need the use of complex system models. In many complex cases the model parameters can be gained using neural networks, but these systems allow only a one-way simulation from the input values to the learned output values. If evaluation in the other direction is needed, these model allow no direct evaluation. This task can be solved using evolutionary algorithms, which are part of the computational intelligence. The term computational intelligence covers three special fields of the artificial intelligence, fuzzy logic, artificial neural networks and evolutionary algorithms. We will focus only on the topic of evolutionary algorithms and fuzzy logic. Evolutionary algorithms covers the fields of genetic algorithms, evolution strategies and evolutionary programming. These methods can be used to optimize technical problems. Evolutionary algorithms have certain advantages, if these problems have no mathematical properties, like steadiness or the possibility to obtain the derivatives. Fuzzy logic systems normally lack these properties. The use of a combination of evolutionary algorithms and fuzzy logic allow an evaluation of the learned simulation models in the direction form output to the input values. An example can be given from the field of screw rotor design.

  18. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  19. Femtosecond Element-Specific XUV Spectroscopy of Complex Molecules and Materials

    NASA Astrophysics Data System (ADS)

    Vura-Weis, Josh

    2017-06-01

    Systems with multiple heavy atoms, such as the multimetallic clusters favored by Nature for redox catalysis and emerging photovoltaic materials such as CH_{3}NH_{3}PbI_{3}, pose challenges for traditional spectroscopic techniques. The growing field of high-harmonic extreme ultraviolet spectroscopy combines the element-, oxidation state-, spin state-, and ligand field specificity of XANES spectroscopy with the femtosecond time resolution of tabletop Ti:Sapphire lasers. We will show that this technique can be used to measure the photophysics of transition metal complexes, organohalide perovskites, and even small metalloproteins, extending the technique to mainstream problems in physical and inorganic chemistry.

  20. The Hazardous Materials Information System. Users Guide

    DTIC Science & Technology

    1987-01-01

    only on hazardous materials used by the Government. Keep in mind that the HMIS is a growing system. Just because an item is not listed in the system does...NoO-0729 W. R. GRACE & CO POLYCEL I (CIC) A-A-1543 8520-00-270-0065 CONTINENTAL CHEM CORP BORAX A-A-S 7930-00-281-4731 PAUL CO PRODUCTS INC...As was written earlier, the HMIS is a growing database. Some items in the supply system have not yet been entered into HMIS. Therefore, to be sure

  1. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  2. Safety assurance of complex integrated systems

    NASA Technical Reports Server (NTRS)

    Abrignani, Vincent A.; Jordan, John R.

    1991-01-01

    Interface hazard analysis (IHA) is used as a 'tool' to systematically assess safety for the integration of a diverse set of experiments and payload hardware into the Spacelab carrier which flies in the Space Shuttle's Orbiter cargo bay. The IHA when performed by a thorough analysis provides safety assurance of complex integrated systems by systematically linking analysis efforts performed by the organizations thus providing the respective elements to be integrated into an objective, unique analysis. Particular attention is given to verification methods of the safety assurance of the Spacelab carrier and its experiment payload for which the IHA was performed.

  3. Ultrametricity in the theory of complex systems

    NASA Astrophysics Data System (ADS)

    Kozyrev, S. V.

    2015-11-01

    We review applications of p-adic and ultrametric methods in the theory of complex systems. We consider the following examples: the p-adic parameterization of the Parisi matrix in the replica method; the method of hierarchical (interbasin) kinetics, which allows describing macromolecular dynamics by models of ultrametric diffusion; the two-dimensional 2-adic parameterization of the genetic code, which demonstrates that degenerations of the genetic code are described by local constancy domains of maps in the 2-adic metric. We discuss clustering methods for a family of metrics and demonstrate that the multiclustering (ensemble clustering) approach is related to the Bruhat-Tits building theory.

  4. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  5. The Status of the Testing Effect for Complex Materials: Still a Winner

    ERIC Educational Resources Information Center

    Rawson, Katherine A.

    2015-01-01

    The target articles in the special issue address a timely and important question concerning whether practice tests enhance learning of complex materials. The consensus conclusion from these articles is that the testing effect does not obtain for complex materials. In this commentary, I discuss why this conclusion is not warranted either by the…

  6. [Progress of organometallic complexes and their application to organic electroluminescent materials].

    PubMed

    Zhou, Rui; An, Zhong-Wei; Chai, Sheng-Yong

    2004-08-01

    Organic electroluminescent (EL) material is one of most prospective display materials in flat panel display. Organometallic complexes, which have five or six member ring structures, with high stability, high melting point and high fluorescence quantum efficiency, are widely applied in organic EL devices. The recent progress in organometallic complexes is summarized in terms of the electroluminescence of ligands and metal atoms.

  7. The Status of the Testing Effect for Complex Materials: Still a Winner

    ERIC Educational Resources Information Center

    Rawson, Katherine A.

    2015-01-01

    The target articles in the special issue address a timely and important question concerning whether practice tests enhance learning of complex materials. The consensus conclusion from these articles is that the testing effect does not obtain for complex materials. In this commentary, I discuss why this conclusion is not warranted either by the…

  8. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  9. Spontaneous magnetic order in complex materials: Role of longitudinal spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subrata; Vijay, Amrendra

    2017-06-01

    We show that the longitudinal spin-orbit interactions (SOI) critically determine the fate of spontaneous magnetic order (SMO) in complex materials. To study the magnetic response of interacting electrons constituting the material, we implement an extension of the Hubbard model that faithfully accounts for the SOI. Next, we use the double-time Green functions of quantum statistical mechanics to obtain the spontaneous magnetization, Msp , and thence ascertain the possibility of SMO. For materials with quenched SOI, in an arbitrary dimension, Msp vanishes at finite temperatures, implying the presence of the disordered (paramagnetic) phase. This is consistent with and goes beyond the Bogolyubov's inequality based analysis in one and two dimensions. In the presence of longitudinal SOI, Msp , for materials in an arbitrary dimension, remains non-zero at finite temperatures, which indicates the existence of the ordered (ferromagnetic) phase. As a plausible experimental evidence of the present SOI-based phenomenology, we discuss, inter alia, a recent experimental study on Y4Mn1-xGa12-yGey, an intermetallic compound, which exhibits a magnetic phase transition (paramagnetic to ferromagnetic) upon tuning the fraction of Ge atoms and thence the vacancies of the magnetic centers in this system. The availability of Ge atoms to form a direct chemical bond with octahedral Mn in this material appears to quench the SOI and, as a consequence, favours the formation of the disordered (paramagnetic) phase.

  10. Innovation Study for Laser Cutting of Complex Geometries with Paper Materials

    NASA Astrophysics Data System (ADS)

    Happonen, A.; Stepanov, A.; Piili, H.; Salminen, A.

    Even though technology for laser cutting of paper materials has existed for over 30 years, it seems that results of applications of this technology and possibilities of laser cutting systems are not easily available. The aim of this study was to analyze the feasibility of the complex geometry laser cutting of paper materials and to analyze the innovation challenges and potential of current laser cutting technologies offer. This research studied the potential and possible challenges in applying CO2 laser cutting technology for cutting of paper materials in current supply chains trying to fulfil the changing needs of customer in respect of shape, fast response during rapid delivery cycle. The study is focused on examining and analyzing the different possibilities of laser cutting of paper material in application area of complex low volume geometry cutting. The goal of this case was to analyze the feasibility of the laser cutting from technical, quality and implementation points of view and to discuss availability of new business opportunities. It was noticed that there are new business models still available within laser technology applications in complex geometry cutting. Application of laser technology, in business-to-consume markets, in synergy with Internet service platforms can widen the customer base and offer new value streams for technology and service companies. Because of this, existing markets and competition has to be identified, and appropriate new and innovative business model needs to be developed. And to be competitive in the markets, models like these need to include the earning logic and the stages from production to delivery as discussed in the paper.

  11. Contrarian behavior in a complex adaptive system

    NASA Astrophysics Data System (ADS)

    Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.

    2013-01-01

    Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.

  12. Innovative Design of Complex Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2004-01-01

    The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

  13. Theoretical kinetic computations in complex reacting systems

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1986-01-01

    Nasa Lewis' studies of complex reacting systems at high temperature are discussed. The changes which occur are the result of many different chemical reactions occurring at the same time. Both an experimental and a theoretical approach are needed to fully understand what happens in these systems. The latter approach is discussed. The differential equations which describe the chemical and thermodynamic changes are given. Their solution by numerical techniques using a detailed chemical mechanism is described. Several different comparisons of computed results with experimental measurements are also given. These include the computation of (1) species concentration profiles in batch and flow reactions, (2) rocket performance in nozzle expansions, and (3) pressure versus time profiles in hydrocarbon ignition processes. The examples illustrate the use of detailed kinetic computations to elucidate a chemical mechanism and to compute practical quantities such as rocket performance, ignition delay times, and ignition lengths in flow processes.

  14. Contrarian behavior in a complex adaptive system.

    PubMed

    Liang, Y; An, K N; Yang, G; Huang, J P

    2013-01-01

    Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.

  15. Alarm system for a nuclear control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  16. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  17. Topological analysis of complexity in multiagent systems

    NASA Astrophysics Data System (ADS)

    Abaid, Nicole; Bollt, Erik; Porfiri, Maurizio

    2012-04-01

    Social organisms at every level of evolutionary complexity live in groups, such as fish schools, locust swarms, and bird flocks. The complex exchange of multifaceted information across group members may result in a spectrum of salient spatiotemporal patterns characterizing collective behaviors. While instances of collective behavior in animal groups are readily identifiable by trained and untrained observers, a working definition to distinguish these patterns from raw data is not yet established. In this work, we define collective behavior as a manifestation of low-dimensional manifolds in the group motion and we quantify the complexity of such behaviors through the dimensionality of these structures. We demonstrate this definition using the ISOMAP algorithm, a data-driven machine learning algorithm for dimensionality reduction originally formulated in the context of image processing. We apply the ISOMAP algorithm to data from an interacting self-propelled particle model with additive noise, whose parameters are selected to exhibit different behavioral modalities, and from a video of a live fish school. Based on simulations of such model, we find that increasing noise in the system of particles corresponds to increasing the dimensionality of the structures underlying their motion. These low-dimensional structures are absent in simulations where particles do not interact. Applying the ISOMAP algorithm to fish school data, we identify similar low-dimensional structures, which may act as quantitative evidence for order inherent in collective behavior of animal groups. These results offer an unambiguous method for measuring order in data from large-scale biological systems and confirm the emergence of collective behavior in an applicable mathematical model, thus demonstrating that such models are capable of capturing phenomena observed in animal groups.

  18. Polymer hybrid materials for planar optronic systems

    NASA Astrophysics Data System (ADS)

    Körner, Martin; Prucker, Oswald; Rühe, Jürgen

    2015-09-01

    Planar optronic systems made entirely from polymeric functional materials on polymeric foils are interesting architectures for monitoring and sensing applications. Key components in this regard are polymer hybrid materials with adjustable optical properties. These materials can then be processed into optical components such as waveguides for example by using embossing techniques. However, the resulting microstructures have often low mechanical or thermal stability which quickly leads to a degradation of the microstructures accompanied often by a complete loss of function. A simple and versatile way to increase the thermal and mechanical stability of polymers is to connect the individual chains to a polymer network by using thermally or photochemically reactive groups. Upon excitation, these groups form reactive intermediates such as radicals or nitrenes which then crosslink with adjacent C-H-groups through a C,H insertion reaction (CHic = C,H insertion based crosslinking). To generate waveguide structures a PDMS stamp is filled with the waveguide core material e.g. poly(methylmethacrylate) (PMMA), which is modified with a few mol% of the thermal crosslinker and hot embossed onto a foil substrate e.g. PMMA. In this one-step hot embossing process polymer ridge waveguides are formed and simultaneously the polymer becomes crosslinked. Due to the reaction across the boundary between waveguide and substrate it is also possible to combine initially incompatible polymers for the waveguide and the substrate foil. The thermomechanical properties of the obtained materials are studied.

  19. Intrinsic Uncertainties in Modeling Complex Systems.

    SciTech Connect

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  20. A simple method to measure the complex permittivity of materials at variable temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Yin, Yang; Liu, Zhanwei; Zhang, Di; Wu, Shiyue; Yuan, Jianping; Li, Lixin

    2017-10-01

    Measurement of the complex permittivity (CP) of a material at different temperatures in microwave heating applications is difficult and complicated. In this paper a simple and convenient method is employed to measure the CP of a material over variable temperature. In this method the temperature of a sample is increased experimentally to obtain the formula for the relationship between CP and temperature by a genetic algorithm. We chose agar solution (sample) and a Yangshao reactor (microwave heating system) to validate the reliability and feasibility of this method. The physical parameters (the heat capacity, C p , density, ρ, and thermal conductivity, k) of the sample are set as constants in the process of simulation and inversion. We analyze the influence of the variation of physical parameters with temperature on the accuracy of the inversion results. It is demonstrated that the variation of these physical parameters has little effect on the inversion results in a certain temperature range.

  1. Study of the Materials Microstructure using Topological Properties of Complex Networks

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Lelushkina, Kira

    2016-06-01

    A method for mapping a two-dimensional color image of the microstructure of the material to a complex network is proposed. Each image elements is assigned to node network. A weighted combination of distance metrics - the Euclidean distance and the Manhattan distance - defines whether there is or not an edge between corresponding nodes. The first metric is used to calculate the spatial distance between the picture elements (pixels), the second metric takes into account the contrast between the brightness of pixels in the gray scale. On the basis of the topological properties of the constructed network the edge pixels were detected that allows us to identify the border areas in the microstructure of materials. The proposed method can be used in automated systems of materialographic analysis.

  2. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  3. Active Materials for Photonic Systems (AMPS)

    DTIC Science & Technology

    2007-11-02

    market . Overall Program Summary The overall objective of the Active Materials for Photonic Systems (AMPS) program was to develop and demonstrate...mode fiber, with alignment tolerances of several microns functions well for data communications , single mode fiber is required for several significant...in the laser/optics community . Boeing and MCNC have signed a memorandum of agreement for commercialization and are actively seeking partners for

  4. A method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures

    SciTech Connect

    Ortiz, M.G.

    1991-12-31

    This invention is useful in thermal imaging of conducting materials, and is particularly useful in measuring thermal conductivity and thermal boundary conditions in composite anisotropic materials, in materials of irregular shape, and in materials for high-temperature applications. It also has utility in visualizing the integrity of complex structures such as a machine, power plant, or chemical plant. The method is for modeling a conducting material sample or structure (system) as an electrical network of resistances, for measuring electric resistance between selected leads attached to the surface of the system, and, using basic circuit theory, for translating measured resistances into temperatures or indications of integrity in corresponding regions of the system. 10 figs.

  5. Herd behavior in a complex adaptive system

    PubMed Central

    Zhao, Li; Yang, Guang; Wang, Wei; Chen, Yu; Huang, J. P.; Ohashi, Hirotada; Stanley, H. Eugene

    2011-01-01

    In order to survive, self-serving agents in various kinds of complex adaptive systems (CASs) must compete against others for sharing limited resources with biased or unbiased distribution by conducting strategic behaviors. This competition can globally result in the balance of resource allocation. As a result, most of the agents and species can survive well. However, it is a common belief that the formation of a herd in a CAS will cause excess volatility, which can ruin the balance of resource allocation in the CAS. Here this belief is challenged with the results obtained from a modeled resource-allocation system. Based on this system, we designed and conducted a series of computer-aided human experiments including herd behavior. We also performed agent-based simulations and theoretical analyses, in order to confirm the experimental observations and reveal the underlying mechanism. We report that, as long as the ratio of the two resources for allocation is biased enough, the formation of a typically sized herd can help the system to reach the balanced state. This resource ratio also serves as the critical point for a class of phase transition identified herein, which can be used to discover the role change of herd behavior, from a ruinous one to a helpful one. This work is also of value to some fields, ranging from management and social science, to ecology and evolution, and to physics. PMID:21876133

  6. Optimal control of complex atomic quantum systems

    NASA Astrophysics Data System (ADS)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  7. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  8. Optimal control of complex atomic quantum systems.

    PubMed

    van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S

    2016-10-11

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  9. Visualizing complex (hydrological) systems with correlation matrices

    NASA Astrophysics Data System (ADS)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  10. Automatic restart of complex irrigation systems

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I. . Dept. of Agricultural Engineering)

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  11. Herd behavior in a complex adaptive system.

    PubMed

    Zhao, Li; Yang, Guang; Wang, Wei; Chen, Yu; Huang, J P; Ohashi, Hirotada; Stanley, H Eugene

    2011-09-13

    In order to survive, self-serving agents in various kinds of complex adaptive systems (CASs) must compete against others for sharing limited resources with biased or unbiased distribution by conducting strategic behaviors. This competition can globally result in the balance of resource allocation. As a result, most of the agents and species can survive well. However, it is a common belief that the formation of a herd in a CAS will cause excess volatility, which can ruin the balance of resource allocation in the CAS. Here this belief is challenged with the results obtained from a modeled resource-allocation system. Based on this system, we designed and conducted a series of computer-aided human experiments including herd behavior. We also performed agent-based simulations and theoretical analyses, in order to confirm the experimental observations and reveal the underlying mechanism. We report that, as long as the ratio of the two resources for allocation is biased enough, the formation of a typically sized herd can help the system to reach the balanced state. This resource ratio also serves as the critical point for a class of phase transition identified herein, which can be used to discover the role change of herd behavior, from a ruinous one to a helpful one. This work is also of value to some fields, ranging from management and social science, to ecology and evolution, and to physics.

  12. Orbital Architectures of Dynamically Complex Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.

    2015-01-01

    The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. We develop a differential evolution Markov chain Monte Carlo (RUN DMC) to tackle these difficult aspects of data analysis. We apply RUN DMC to two classic multi-planet systems from radial velocity surveys, 55 Cancri and GJ 876. For 55 Cancri, we find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet's orbit to cross the stellar surface. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50±610 degrees), but they are not orbiting in a mean-motion resonance. For GJ 876, we can meaningfully constrain the three-dimensional orbital architecture of all the planets based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations (Φ) so they must be roughly coplanar (Φcb = 1.41±0.620.57 degrees and Φbe = 3.87±1.991.86 degrees). The three-dimensional Laplace argument librates with an amplitude of 50.5±7.910.0 degrees, indicating significant past disk migration and ensuring long-term stability. These empirically derived models will provide new challenges for planet formation models and motivate the need for more sophisticated algorithms to analyze exoplanet data.

  13. Empirical and theoretical analysis of complex systems

    NASA Astrophysics Data System (ADS)

    Zhao, Guannan

    This thesis is an interdisciplinary work under the heading of complexity science which focuses on an arguably common "hard" problem across physics, finance and biology [1], to quantify and mimic the macroscopic "emergent phenomenon" in large-scale systems consisting of many interacting "particles" governed by microscopic rules. In contrast to traditional statistical physics, we are interested in systems whose dynamics are subject to feedback, evolution, adaption, openness, etc. Global financial markets, like the stock market and currency market, are ideal candidate systems for such a complexity study: there exists a vast amount of accurate data, which is the aggregate output of many autonomous agents continuously competing with each other. We started by examining the ultrafast "mini flash crash (MFC)" events in the US stock market. An abrupt system-wide composition transition from a mixed human machine phase to a new all-machine phase is uncovered, and a novel theory developed to explain this observation. Then in the study of FX market, we found an unexpected variation in the synchronicity of price changes in different market subsections as a function of the overall trading activity. Several survival models have been tested in analyzing the distribution of waiting times to the next price change. In the region of long waiting-times, the distribution for each currency pair exhibits a power law with exponent in the vicinity of 3.5. By contrast, for short waiting times only, the market activity can be mimicked by the fluctuations emerging from a finite resource competition model containing multiple agents with limited rationality (so called El Farol Model). Switching to the biomedical domain, we present a minimal mathematical model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in mice experiment and with clinical metastasis data. In the quest to understand contagion phenomena in systems where social group

  14. Fluctuation electron microscopy studies of complex structured materials

    NASA Astrophysics Data System (ADS)

    Zhao, Gongpu; Rougée, Annick; Buseck, Peter; Treacy, Michael

    2008-03-01

    Fluctuation electron microscopy (FEM) is a hybrid imaging-diffraction technique. This technique is particularly sensitive to paracrystalline structures of dimension 0.5-2 nm, which are difficult to detect by either imaging or diffraction techniques alone. It has been successfully deployed to study paracrystalline structures in amorphous silicon, germanium thin film. This technique has also been used to study metallic glasses and oxide glasses. Until now, FEM has not been used to study disordered geological materials. In this talk we present our FEM studies of shungite, a naturally occurring disordered carbonaceous material, reveal that trace quantities of tightly curved graphene structures such as C60, or fragments of C60, is present in shungite. We also present results from our study of metamict zircon, whose crystal structure is destroyed by self-radiation during naturally occurring α decay events. Work is in progress to study the structural evolution during the metamictization process.

  15. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  16. Mechanical Adaptivity as a Process: Implications to New Materials and Material System Design

    DTIC Science & Technology

    2012-08-01

    Work Output (force or displacement) State 1 State 2 Conversion Store Release Mechanical Design: Material : Simple Machines Springs Inflation...Mechanical Adaptivity as a Process: Implications to New Materials and Material System Design Functional Materials Division Materials and...Lee, Timothy J. White, David Wang, Loon-Seng Tan Richard A. Vaia Funding: Air Force Office of Scientific Research AFRL Materials & Manufacturing

  17. Development of new inorganic luminescent materials by organic-metal complex route

    NASA Astrophysics Data System (ADS)

    Manavbasi, Alp

    The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the

  18. Divertor materials evaluation system (DiMES)

    SciTech Connect

    Wong, C.P.C.; West, W.P.; Whyte, D.G.; Bastasz, R.J.; Brooks, J.; Wampler, W.R.

    1997-12-31

    The mission of the Divertor Materials Evaluation System (DiMES) in DIII-D is to establish an integrated data base from measurements in the divertor of a tokamak in order to address some of the ITER and fusion power reactor plasma material interaction issues. Carbon and metal coatings of Be, W, V, and Mo were exposed to the steady-state outer strike point on DIII-D for 4--18 s. These short exposure times ensure controlled exposure conditions, and the extensive arrays of DIII-D divertor diagnostics provide a well-characterized plasma for modeling efforts. Post-exposure analysis provides a direct measure of surface material erosion rates and the amount of retained deuterium. For carbon, these results match closely with the results of accumulated carbon deposition and erosion, and the corresponding deuterium retention of long term exposure tiles in DIII-D. Under the carbon-contaminated background plasma of DIII-D, metal coatings of Be, V, Mo, and W were exposed to the steady-state outer strike point under ELMing and ELM-free H-mode discharges. The rate of material erosion and deuterium retention were measured. As expected, W shows the lowest erosion rate at 0.1 mm/s and the lowest deuterium uptake of 2 {times} 10{sup 20}/m{sup 2}.

  19. Using SysML to model complex systems for security.

    SciTech Connect

    Cano, Lester Arturo

    2010-08-01

    As security systems integrate more Information Technology the design of these systems has tended to become more complex. Some of the most difficult issues in designing Complex Security Systems (CSS) are: Capturing Requirements: Defining Hardware Interfaces: Defining Software Interfaces: Integrating Technologies: Radio Systems: Voice Over IP Systems: Situational Awareness Systems.

  20. Modern X-ray scattering studies of complex biological systems.

    PubMed

    Kornreich, M; Avinery, R; Beck, R

    2013-08-01

    X-ray scattering is one of the most prominent structural characterization techniques in biology. The key advantage of X-ray scattering is its ability to penetrate and weakly interact with the bare studied materials. In addition, X-ray scattering does not require any tags, markers or modification to the sample under examination, and is not limited by the nature of the surrounding environment. The main handicapping limitation of X-ray scattering is the subject of particles polydispersity. However, the monodispersity in biological complexes and supra-molecular interactions makes them ideal for structural and interaction studies in particular when combined with higher (e.g. NMR) and/or lower resolution (e.g. optical microscopy) techniques. This review seeks to highlight some of the major recent achievements in the field of X-ray scattering as being implemented for complex biological systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Nematodes ultrastructure: complex systems and processes.

    PubMed

    Basyoni, Maha M A; Rizk, Enas M A

    2016-12-01

    Nematode worms are among the most ubiquitous organisms on earth. They include free-living forms as well as parasites of plants, insects, humans and other animals. Recently, there has been an explosion of interest in nematode biology, including the area of nematode ultrastructure. Nematodes are round with a body cavity. They have one way guts with a mouth at one end and an anus at the other. They have a pseudocoelom that is lined on one side with mesoderm and on the other side with endoderm. It appears that the cuticle is a very complex and evolutionarily plastic feature with important functions involving protection, body movement and maintaining shape. They only have longitudinal muscles so; they seem to thrash back and forth. While nematodes have digestive, reproductive, nervous and excretory systems, they do not have discrete circulatory or respiratory systems. Nematodes use chemosensory and mechanosensory neurons embedded in the cuticle to orient and respond to a wide range of environmental stimuli. Adults are made up of roughly 1000 somatic cells and hundreds of those cells are typically associated with the reproductive systems. Nematodes ultrastructure seeks to provide studies which enable their use as models for diverse biological processes including; human diseases, immunity, host-parasitic interactions and the expression of phylogenomics. The latter has, however, not been brought into a single inclusive entity. Consequently, in the current review we tried to provide a comprehensive approach to the current knowledge available for nematodes ultrastructures.

  2. Evolutionary resilience and complex lagoon systems.

    PubMed

    Davoudi, Simin; Zaucha, Jacek; Brooks, Elizabeth

    2016-10-01

    The present study applies an evolutionary resilience framework to complex socioecological systems in the coastal regions in Europe with a particular focus on lagoons. Despite their variations, lagoons share common challenges in achieving effective and sustainable ways of governing and managing economic, social, and environmental uncertainties. Our aim is to demonstrate that building resilience involves planning not only for recovery from shocks but also for cultivating preparedness and seeking potential transformative opportunities that emerge from change. The framework consists of 4 dimensions: persistence, adaptability, transformability, and preparedness. To illustrate how this 4-dimensional framework can be applied to the specific context of lagoons, we draw on examples of good and poor practices from the 10 lagoons studied as part of the ARCH project. Integr Environ Assess Manag 2016;12:711-718. © 2016 SETAC. © 2016 SETAC.

  3. Modeling complex systems in the geosciences

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-03-01

    Many geophysical phenomena can be described as complex systems, involving phenomena such as extreme or "wild" events that often do not follow the Gaussian distribution that would be expected if the events were simply random and uncorrelated. For instance, some geophysical phenomena like earthquakes show a much higher occurrence of relatively large values than would a Gaussian distribution and so are examples of the "Noah effect" (named by Benoit Mandelbrot for the exceptionally heavy rain in the biblical flood). Other geophysical phenomena are examples of the "Joseph effect," in which a state is especially persistent, such as a spell of multiple consecutive hot days (heat waves) or several dry summers in a row. The Joseph effect was named after the biblical story in which Joseph's dream of seven fat cows and seven thin ones predicted 7 years of plenty followed by 7 years of drought.

  4. Optoelectronic inventory system for special nuclear material

    SciTech Connect

    Sieradzki, F.H.

    1994-01-01

    In support of the Department of Energy`s Dismantlement Program, the Optoelectronics Characterization and Sensor Development Department 2231 at Sandia National Laboratories/New Mexico has developed an in situ nonintrusive Optoelectronic Inventory System (OIS) that has the potential for application wherever periodic inventory of selected material is desired. Using a network of fiber-optic links, the OIS retrieves and stores inventory signatures from data storage devices (which are permanently attached to material storage containers) while inherently providing electromagnetic pulse immunity and electrical noise isolation. Photovoltaic cells (located within the storage facility) convert laser diode optic power from a laser driver to electrical energy. When powered and triggered, the data storage devices sequentially output their digital inventory signatures through light-emitting diode/photo diode data links for retrieval and storage in a mobile data acquisition system. An item`s exact location is determined through fiber-optic network and software design. The OIS provides an on-demand method for obtaining acceptable inventory reports while eliminating the need for human presence inside the material storage facility. By using modularization and prefabricated construction with mature technologies and components, an OIS installation with virtually unlimited capacity can be tailored to the customer`s requirements.

  5. Broadband Impedance Microscopy for Research on Complex Quantum Materials

    DTIC Science & Technology

    2016-02-08

    imaging with a spatial resolution better than 100 nm and a capacitance sensitivity better than 10 aF over 7 orders of magnitude in frequency (from 1 kHz...capacitance sensitivity better than 10 aF over 7 orders of magnitude in frequency (from 1 kHz to 10 GHz), as specified in the initially proposed...function in various materials. Figure 2. Sensitivity limit of the broadband impedance microscope (BIM). Figure 3. Preliminary BIM data on YMnO3

  6. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System

    PubMed Central

    Proudfoot, Amanda E. I.; Johnson, Zoë; Bonvin, Pauline; Handel, Tracy M.

    2017-01-01

    Chemokines have two types of interactions that function cooperatively to control cell migration. Chemokine receptors on migrating cells integrate signals initiated upon chemokine binding to promote cell movement. Interactions with glycosaminoglycans (GAGs) localize chemokines on and near cell surfaces and the extracellular matrix to provide direction to the cell movement. The matrix of interacting chemokine–receptor partners has been known for some time, precise signaling and trafficking properties of many chemokine–receptor pairs have been characterized, and recent structural information has revealed atomic level detail on chemokine–receptor recognition and activation. However, precise knowledge of the interactions of chemokines with GAGs has lagged far behind such that a single paradigm of GAG presentation on surfaces is generally applied to all chemokines. This review summarizes accumulating evidence which suggests that there is a great deal of diversity and specificity in these interactions, that GAG interactions help fine-tune the function of chemokines, and that GAGs have other roles in chemokine biology beyond localization and surface presentation. This suggests that chemokine–GAG interactions add complexity to the already complex functions of the receptors and ligands. PMID:28792472

  7. Smart Optical Material Characterization System and Method

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.

  8. Divertor Materials Evaluation System (DiMES)

    SciTech Connect

    Wong, C.P.; West, W.P.; Whyte, D.G.; Bastasz, R.J.; Brooks, J.; Wampler, W.R.

    1997-11-01

    The mission of the Divertor Materials Evaluation System (DiMES) in DIII-D is to establish an integrated data base from measurements in the divertor of a tokamak in order to address some of the ITER and fusion power reactor plasma material interaction issues. Carbon and metal coatings of Be, W, V, and Mo were exposed to the steady-state outer strike point on DIII-D for 4-18 s. These short exposure times ensure controlled exposure conditions, and the extensive arrays of DIII-D divertor diagnostics provide a well-characterized plasma for modeling efforts. Postexposure analysis provides a direct measure of surface material erosion rates and the amount of retained deuterium. For carbon, these results match closely with the results of accumulated carbon deposition and erosion, and the corresponding deuterium retention of long term exposure tiles in DIII-D. Deuterium retention of different materials was measured using the {sup 3}He(d,p) {sup 4}He nuclear reaction. For carbon, these measurements showed peak deuterium areal density of about 8 {times} 10 {sup 18} D/cm{sup 2} in a co-deposited layer about 6 {micro}m deep, mainly at the usually detached inboard divertor leg. That layer of carbon near the inner divertor strike point has an atomic saturation concentration of D/C {approx} 0.25, which is not significantly lower than the laboratory-measured saturation retention of 0.4. Under the carbon contaminated background plasma of DIII-D, metal coatings of Be, V, Mo, and W were exposed to the steady state outer strike point under ELMing and ELM-free H-mode discharges. The rate of material erosion and tritium retention were measured. As expected, W shows the lowest erosion rate at 0.1 nm/s and the lowest deuterium uptake.

  9. Panpsychic organicism: Sewall Wright's philosophy for understanding complex genetic systems.

    PubMed

    Steffes, David M

    2007-01-01

    Sewall Wright first encountered the complex systems characteristic of gene combinations while a graduate student at Harvard's Bussey Institute from 1912 to 1915. In Mendelian breeding experiments, Wright observed a hierarchical dependence of the organism's phenotype on dynamic networks of genetic interaction and organization. An animal's physical traits, and thus its autonomy from surrounding environmental constraints, depended greatly on how genes behaved in certain combinations. Wright recognized that while genes are the material determinants of the animal phenotype, operating with great regularity, the special nature of genetic systems contributes to the animal phenotype a degree of spontaneity and novelty, creating unpredictable trait variations by virtue of gene interactions. As a result of his experimentation, as well as his keen interest in the philosophical literature of his day, Wright was inspired to see genetic systems as conscious, living organisms in their own right. Moreover, he decided that since genetic systems maintain ordered stability and cause unpredictable novelty in their organic wholes (the animal phenotype), it would be necessary for biologists to integrate techniques for studying causally ordered phenomena (experimental method) and chance phenomena (correlation method). From 1914 to 1921 Wright developed his "method of path coefficient" (or "path analysis"), a new procedure drawing from both laboratory experimentation and statistical correlation in order to analyze the relative influence of specific genetic interactions on phenotype variation. In this paper I aim to show how Wright's philosophy for understanding complex genetic systems (panpsychic organicism) logically motivated his 1914-1921 design of path analysis.

  10. Fabrication of complex three-dimensional microchannel systems in PDMS.

    PubMed

    Wu, Hongkai; Odom, Teri W; Chiu, Daniel T; Whitesides, George M

    2003-01-15

    This paper describes a method for fabricating three-dimensional (3D) microfluidic channel systems in poly(dimethylsiloxane) (PDMS) with complex topologies and geometries that include a knot, a spiral channel, a "basketweave" of channels, a chaotic advective mixer, a system with "braided" channels, and a 3D grid of channels. Pseudo-3D channels, which are topologically equivalent to planar channels, are generated by bending corresponding planar channels in PDMS out of the plane into 3D shapes. True 3D channel systems are formed on the basis of the strategy of decomposing these complex networks into substructures that are planar or pseudo-3D. A methodology is developed that connects these planar and/or pseudo-3D structures to generate PDMS channel systems with the original 3D geometry. This technique of joining separate channel structures can also be used to create channel systems in PDMS over large areas by connecting features on different substrates. The channels can be used as templates to form 3D structures in other materials.

  11. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total

  12. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  13. Tutorial: Electroporation of cells in complex materials and tissue

    NASA Astrophysics Data System (ADS)

    Rems, L.; Miklavčič, D.

    2016-05-01

    Electroporation is being successfully used in biology, medicine, food processing, and biotechnology, and in some environmental applications. Recent applications also include in addition to classical electroporation, where cells are exposed to micro- or milliseconds long pulses, exposures to extremely short nanosecond pulses, i.e., high-frequency electroporation. Electric pulses are applied to cells in different structural configurations ranging from suspended cells to cells in tissues. Understanding electroporation of cells in tissues and other complex environments is a key to its successful use and optimization in various applications. Thus, explanation will be provided theoretically/numerically with relation to experimental observations by scaling our understanding of electroporation from the molecular level of the cell membrane up to the tissue level.

  14. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    SciTech Connect

    Wang, Shi-bing E-mail: wangxy@dlut.edu.cn; Wang, Xing-yuan E-mail: wangxy@dlut.edu.cn; Wang, Xiu-you; Zhou, Yu-fei

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complexsystem, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  15. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    SciTech Connect

    Kevan, Stephen

    2016-05-27

    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  16. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  17. Ancestral vertebrate complexity of the opioid system.

    PubMed

    Larhammar, Dan; Bergqvist, Christina; Sundström, Görel

    2015-01-01

    The evolution of the opioid peptides and nociceptin/orphanin as well as their receptors has been difficult to resolve due to variable evolutionary rates. By combining sequence comparisons with information on the chromosomal locations of the genes, we have deduced the following evolutionary scenario: The vertebrate predecessor had one opioid precursor gene and one receptor gene. The two genome doublings before the vertebrate radiation resulted in three peptide precursor genes whereupon a fourth copy arose by a local gene duplication. These four precursors diverged to become the prepropeptides for endorphin (POMC), enkephalins, dynorphins, and nociceptin, respectively. The ancestral receptor gene was quadrupled in the genome doublings leading to delta, kappa, and mu and the nociceptin/orphanin receptor. This scenario is corroborated by new data presented here for coelacanth and spotted gar, representing two basal branches in the vertebrate tree. A third genome doubling in the ancestor of teleost fishes generated additional gene copies. These results show that the opioid system was quite complex already in the first vertebrates and that it has more components in teleost fishes than in mammals. From an evolutionary point of view, nociceptin and its receptor can be considered full-fledged members of the opioid system.

  18. RNA viruses as complex adaptive systems.

    PubMed

    Elena, Santiago F; Sanjuán, Rafael

    2005-07-01

    RNA viruses have high mutation rates and so their populations exist as dynamic and complex mutant distributions. It has been consistently observed that when challenged with a new environment, viral populations adapt following hyperbolic-like kinetics: adaptation is initially very rapid, but then slows down as fitness reaches an asymptotic value. These adaptive dynamics have been explained in terms of populations moving towards the top of peaks on rugged fitness landscapes. Fitness fluctuations of varying magnitude are observed during adaptation. Often the presence of fluctuations in the evolution of physical systems indicates some form of self-organization, or where many components of the system are simultaneously involved. Here we analyze data from several in vitro evolution experiments carried out with vesicular stomatitis virus (VSV) looking for the signature of criticality and scaling. Long-range fitness correlations have been detected during the adaptive process. We also found that the magnitude of fitness fluctuations, far from being trivial, conform to a Weibull probability distribution function, suggesting that viral adaptation belongs to a broad category of phenomena previously documented in other fields and related with emergence.

  19. Major Depression as a Complex Dynamic System

    PubMed Central

    Cramer, Angélique O. J.; van Borkulo, Claudia D.; Giltay, Erik J.; van der Maas, Han L. J.; Kendler, Kenneth S.; Scheffer, Marten; Borsboom, Denny

    2016-01-01

    In this paper, we characterize major depression (MD) as a complex dynamic system in which symptoms (e.g., insomnia and fatigue) are directly connected to one another in a network structure. We hypothesize that individuals can be characterized by their own network with unique architecture and resulting dynamics. With respect to architecture, we show that individuals vulnerable to developing MD are those with strong connections between symptoms: e.g., only one night of poor sleep suffices to make a particular person feel tired. Such vulnerable networks, when pushed by forces external to the system such as stress, are more likely to end up in a depressed state; whereas networks with weaker connections tend to remain in or return to a non-depressed state. We show this with a simulation in which we model the probability of a symptom becoming ‘active’ as a logistic function of the activity of its neighboring symptoms. Additionally, we show that this model potentially explains some well-known empirical phenomena such as spontaneous recovery as well as accommodates existing theories about the various subtypes of MD. To our knowledge, we offer the first intra-individual, symptom-based, process model with the potential to explain the pathogenesis and maintenance of major depression. PMID:27930698

  20. Understanding Complex Adaptive Systems by Playing Games

    ERIC Educational Resources Information Center

    van Bilsen, Arthur; Bekebrede, Geertje; Mayer, Igor

    2010-01-01

    While educators teach their students about decision making in complex environments, managers have to deal with the complexity of large projects on a daily basis. To make better decisions it is assumed, that the latter would benefit from better understanding of complex phenomena, as do students as the professionals of the future. The goal of this…

  1. Etoile Project : Social Intelligent ICT-System for very large scale education in complex systems

    NASA Astrophysics Data System (ADS)

    Bourgine, P.; Johnson, J.

    2009-04-01

    The project will devise new theory and implement new ICT-based methods of delivering high-quality low-cost postgraduate education to many thousands of people in a scalable way, with the cost of each extra student being negligible (< a few Euros). The research will create an in vivo laboratory of one to ten thousand postgraduate students studying courses in complex systems. This community is chosen because it is large and interdisciplinary and there is a known requirement for courses for thousand of students across Europe. The project involves every aspect of course production and delivery. Within this the research focused on the creation of a Socially Intelligent Resource Mining system to gather large volumes of high quality educational resources from the internet; new methods to deconstruct these to produce a semantically tagged Learning Object Database; a Living Course Ecology to support the creation and maintenance of evolving course materials; systems to deliver courses; and a ‘socially intelligent assessment system'. The system will be tested on one to ten thousand postgraduate students in Europe working towards the Complex System Society's title of European PhD in Complex Systems. Étoile will have a very high impact both scientifically and socially by (i) the provision of new scalable ICT-based methods for providing very low cost scientific education, (ii) the creation of new mathematical and statistical theory for the multiscale dynamics of complex systems, (iii) the provision of a working example of adaptation and emergence in complex socio-technical systems, and (iv) making a major educational contribution to European complex systems science and its applications.

  2. Measurement of complex permittivities of biological materials and human skin in vivo in the frequency band

    SciTech Connect

    Ghodgaonkar, D.K.

    1987-01-01

    A new method, namely, modified infinite sample method, has been developed which is particularly suitable for millimeter-wave dielectric measurements of biological materials. In this method, an impedance transformer is used which reduces the reflectivity of the biological sample. Because of the effect of introducing impendance transformer, the measured reflection coefficients are more sensitive to the complex permittivities of biological samples. For accurate measurement of reflection coefficients, two automated measurment systems were developed which cover the frequencies range of 26.5-60 GHz. An uncertainty analysis was performed to get an estimate of the errors in the measured complex permittivities. The dielectric properties were measured for 10% saline solution, whole human blood, 200 mg/ml bovine serum albumin (BSA) solution and suspension of Saccharomyces cerevisiae cells. The Maxwell-Fricke equation, which is derived from dielectric mixture theory, was used for determination bound water in BSA solution. The results of all biological samples were interpreted by fitting Debye relaxation and Cole-Cole model. It is observed that the dielectric data for the biological materials can be explained on the basis of Debye relaxation of water molecule.

  3. Spin Dynamics in Novel Materials Systems

    NASA Astrophysics Data System (ADS)

    Yu, Howard

    chemically tuning the organic ligand. We are therefore interested in exploring the resonance properties of this materials system to lay the groundwork for future spin pumping applications. Third, we have made preliminary measurements of spin pumping in hybrid and all-organic bilayer structures. As mentioned above, FMR-driven spin pumping is method for generating pure spin currents with no associated charge motion. This can be detected in a number of ways, one of which is monitoring the FMR characteristics of two ferromagnets in close contact, where spins injected from one magnet into the other changes the linewidth. In conjunction with the magnetic resonance measurements, we have started to investigate the FMR properties of these bilayer systems.

  4. Hazardous materials information hotline using System 2000

    SciTech Connect

    Brower, J.E.; Fuchel, K.

    1984-04-30

    The Center for Assessment of Chemical and Physical Hazards (CACPH) at Brookhaven National Laboratory (BNL) has developed a computer hotline service for the Department of Energy (DOE) and its contractors. This service provides access to health and safety information for over 800 chemicals and hazardous materials. The data base uses System 2000 on a CDC 6600 and provides information on the chemical name and its synonyms, 17 categories of health and safety information, composition of chemical mixtures, categories of chemicals, use and hazards, and physical, chemical and toxicity attributes. In order to make this information available to people unfamiliar with System 2000, a user-friendly interface was developed using a Fortran PLEX Program. 1 reference, 1 figure.

  5. Integration mockup and process material management system

    NASA Astrophysics Data System (ADS)

    Verble, Adas James, Jr.

    1992-02-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  6. Integration mockup and process material management system

    NASA Technical Reports Server (NTRS)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  7. A complex permittivity and permeability measurement system for elevated temperatures

    NASA Technical Reports Server (NTRS)

    Friederich, Paul

    1990-01-01

    The three goals of this research include: (1) to fully develop a method to measure the permittivity and permeability of special materials as a function of frequency in the range of 2.6 to 18 GHz, and of temperature in the range of 25 to 1100 C; (2) to assist LeRC in setting up an in-house system for the measurement of high-temperature permittivity and permeability; and (3) to measure the complex permittivity and permeability of special materials as a function of frequency and temperature to demonstrate the capability of the method. The method chosen for characterizing the materials relies on perturbation of a resonant cavity with a small volume of sample material. Different field configurations in the cavity can be used to separate electric and magnetic effects. The cavity consists of a section of rectangular waveguide terminated at each end of a vertical slot iris. In the center of one wall is a small hole through which the sample is introduced.

  8. A complex permittivity and permeability measurement system for elevated temperatures

    NASA Technical Reports Server (NTRS)

    Friederich, Paul

    1990-01-01

    The three goals of this research include: (1) to fully develop a method to measure the permittivity and permeability of special materials as a function of frequency in the range of 2.6 to 18 GHz, and of temperatures in the range of 25 to 1100 C; (2) to assist LeRC in setting up an in-house system for the measurement of high-temperature permittivity and permeability; and (3) to measure the complex permittivity and permeability of special materials as a function of frequency and temperature to demonstrate the capability of the method. The method chosen for characterizing the materials relies on perturbation of a resonant cavity with a small volume of sample material. Different field configurations in the cavity can be used to separate electric and magnetic effects. The cavity consists of a section of rectangular waveguide terminated at each end of a vertical slot iris. The center of one wall is a small hole through which the sample is introduced.

  9. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a

  10. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  11. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  12. Advanced algorithms for radiographic material discrimination and inspection system design

    NASA Astrophysics Data System (ADS)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Deinert, Mark R.

    2016-10-01

    X-ray and neutron radiography are powerful tools for non-invasively inspecting the interior of objects. However, current methods are limited in their ability to differentiate materials when multiple materials are present, especially within large and complex objects. Past work has demonstrated that the spectral shift that X-ray beams undergo in traversing an object can be used to detect and quantify nuclear materials. The technique uses a spectrally sensitive detector and an inverse algorithm that varies the composition of the object until the X-ray spectrum predicted by X-ray transport matches the one measured. Here we show that this approach can be adapted to multi-mode radiography, with energy integrating detectors, and that the Cramér-Rao lower bound can be used to choose an optimal set of inspection modes a priori. We consider multi-endpoint X-ray radiography alone, or in combination with neutron radiography using deuterium-deuterium (DD) or deuterium-tritium (DT) sources. We show that for an optimal mode choice, the algorithm can improve discrimination between high-Z materials, specifically between tungsten and plutonium, and estimate plutonium mass within a simulated nuclear material storage system to within 1%.

  13. Advanced algorithms for radiographic material discrimination and inspection system design

    SciTech Connect

    Gilbert, Andrew J.; McDonald, Benjamin S.; Deinert, Mark R.

    2016-10-01

    X-ray and neutron radiography are powerful tools for non-invasively inspecting the interior of objects. Materials can be discriminated by noting how the radiographic signal changes with variations in the input spectrum or inspection mode. However, current methods are limited in their ability to differentiate when multiple materials are present, especially within large and complex objects. With X-ray radiography, the inability to distinguish materials of a similar atomic number is especially problematic. To overcome these critical limitations, we augmented our existing inverse problem framework with two important expansions: 1) adapting the previous methodology for use with multi-modal radiography and energy-integrating detectors, and 2) applying the Cramer-Rao lower bound to select an optimal set of inspection modes for a given application a priori. Adding these expanded capabilities to our algorithmic framework with adaptive regularization, we observed improved discrimination between high-Z materials, specifically plutonium and tungsten. The combined system can estimate plutonium mass within our simulated system to within 1%. Three types of inspection modes were modeled: multi-endpoint X-ray radiography alone; in combination with neutron radiography using deuterium-deuterium (DD); or in combination with neutron radiography using deuterium-tritium (DT) sources.

  14. NASA Now: Materials Science: Thermal Protection Systems

    NASA Image and Video Library

    Metallurgical and materials engineers use science, technology and mathematics to study different types of materials. They analyze the materials to determine what they are made of and evaluate their...

  15. Conveying the Complex: Updating U.S. Joint Systems Analysis Doctrine with Complexity Theory

    DTIC Science & Technology

    2013-12-10

    CONVEYING THE COMPLEX: UPDATING U.S. JOINT SYSTEMS ANALYSIS DOCTRINE WITH COMPLEXITY THEORY A Monograph by Major Eddie J...Updating U.S. Joint Systems Analysis Doctrine with Complexity Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Complexity theory is an interdisciplinary set of concepts and tools that has proved useful for many

  16. A framework for implementing systems engineering development of complex systems

    NASA Astrophysics Data System (ADS)

    Brunson, Karl Leonard

    The Department of Defense and the aerospace industry are responsible for decades of successful implementation of systems engineering process models used for the development of complex systems. The process models implemented throughout acquisition life cycles have proven to be comprehensive and flexible, and hence are designed to reduce acquisition schedule variability and the inherent risks of life-cycle cost overruns. While implementing the appropriate process model is important, various process models do not evaluate and quantify potential technical, manufacturing, scheduling and cost risks that may impact acquisition activities throughout the acquisition life cycle of the complex system. A potential way to effectively manage these risks with the appropriate process model is through the incorporation of the Synthesized Framework , the proposed method developed in this dissertation. With the described Synthesized Framework (SF), process models and risk drivers can be analyzed using this comprehensive approach, which implements qualitative and quantitative risk analysis techniques through Monte Carlo simulation. The result is a repeatable, inherent, risk-driven commitment process that can stabilize and synchronize both systems engineering and acquisition processes.

  17. Incidence of systemic mycoses in autopsy material.

    PubMed

    Koch, S; Höhne, F-M; Tietz, H-J

    2004-02-01

    The incidence of systemic mycoses was investigated in the autopsy material of the Institute of Pathology of the Humaine Hospital in Bad Saarow, Germany. This hospital provides qualified standard care in east Brandenburg with a wide spectrum of medical disciplines caring for patients with acute medical conditions as well as oncological cases (660 beds). Between 1973 and 2001, 47 systemic mycoses were diagnosed in 4813 autopsies of deceased adults, corresponding to 0.98%. During the period of investigation, both the care provided by the hospital and the organization of the health service changed. The autopsy frequency fell from about 80% (1973-1991) to about 28% (1992-2001). This is thus still far higher than the average of about 3% assumed for the Federal Republic of Germany. Although the incidence of systemic mycoses increased during the entire 29-year period of investigation, the number of cases in whom this was the immediate cause of death decreased. Whereas candidoses predominated from 1973 to 1991, a shift in favor of aspergilloses was noticed in the period from 1992 to 2001. Systemic mycosis was diagnosed intravitally in only three of 47 cases. The present study therefore underscores the significance of clinical autopsy as a diagnostic method and means of medical quality control.

  18. Modeling Complex Chemical Systems: Problems and Solutions

    NASA Astrophysics Data System (ADS)

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  19. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  20. Solubility and Diffusivity of Hydrogen in Complex Materials

    NASA Astrophysics Data System (ADS)

    Kirchheim, R.

    A general model based on Statistical Mechanics and Random Walk is presented'which allows to desribe the behavior of hydrogen in disordered systems, i.e. metallic glasses, amorphous silicon, nanocrystalline metals, deformed metals, disordered metallic solutions, and metallic multi layers. The various systems are specified by a lattice with an appropriate site energy disorder and a distribution of site transitions rates. Lattice sites are filled according to Fermi-Dirac Statistics because double occupancy is excluded. Thus the model is applicable to adsorption on heterogeneous surfaces or solutions of small particles in oxide glasses and polymers. With a given distribution'of site energies a relationship between chemical potential (Fermi energy) of hydrogen and its concentration can be derived and compared with experimental results. It is a unique feature of hydrogen that its chemical potential'and its diffusion coefficient can be determined rather easily by electrochemical'techniques or by measuring partial pressures at moderate temperatures around 300 K. With increasing H-content the sites are usually filled from lower to higher energies. As a consequence Henry's Law is not fulfilled and the diffusion coefficient increases because at high concentrations low energy sites are saturated and additional H-atoms have to perform their random walk through sites of low occupancy or small time of residence, respectively. Some results for metallic glasses, nanocrystalline metals, deformed metals, and metallic multi layers are presented and compared'with the model. Thus information on the interaction between defects (dislocations, grain boundries, distorted tetrahedral sites in glasses) and hydrogen are obtained. For extended defects the diffusion is strongly anisotropic, i.e. it differs in a Pd/Nb-multi layer by a factor of 105 for diffusion in plane and out of plane.

  1. Materials irradiation facilities at the high-power Swiss proton accelerator complex

    NASA Astrophysics Data System (ADS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Aebersold, Hans-Ulrich

    2007-04-01

    Within the Swiss proton accelerator complex at the Paul-Scherrer-Institute (PSI), several irradiation facilities are operated for investigation of materials behavior under high-dose irradiation conditions as well as for neutron activation analysis and isotope production. In LiSoR (liquid solid reaction), a liquid metal loop connected to the 72 MeV proton accelerator Injector 1, steel samples are irradiated while being in contact with flowing lead-bismuth-eutectic (LBE) at elevated temperatures and under tensile stress. In the spallation neutron source SINQ, the STIP program (SINQ Target Irradiation Program) allows materials irradiation under realistic spallation conditions, i.e. in a mixed spectrum of 570 MeV protons and spallation neutrons. Hundreds of samples, mainly austenitic and ferritic-martensitic steels such as 316L, T91 or F82H, were irradiated to doses up to 20 dpa as part of STIP. These also included steel samples in contact with liquid Hg and liquid LBE. MEGAPIE (MEGAwatt PIlot Experiment), a liquid metal target employing LBE, operated in SINQ during the second half of 2006, can be taken as a materials irradiation facility on its own. Adjacent to the target position, SINQ houses a neutron irradiation rabbit system serving activation analysis and isotope production.

  2. Mathematics of Failures in Complex Systems: Characterization and Mitigation of Service Failures in Complex Dynamic Systems

    DTIC Science & Technology

    2007-06-30

    equivalently , the 3nite-state machine Fig. 2 can be started from any arbitrary state corresponding to no speci3c initial condition.) While the time...University Research Initiative (MURI) Project Characterization and Mitigation of Failures in Complex Dynamical Systems Principal Investigator: Professor...Failure (CSF) Multidisciplinary University Research Initiative (MURI) project has been to formulate and disseminate a knowledge base of science and

  3. Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation

    ERIC Educational Resources Information Center

    McDaniel, Reuben R., Jr.

    2007-01-01

    Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…

  4. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  5. Teaching Methodology of Flexible Pavement Materials and Pavement Systems

    ERIC Educational Resources Information Center

    Mehta, Yusuf; Najafi, Fazil

    2004-01-01

    Flexible pavement materials exhibit complex mechanical behavior, in the sense, that they not only show stress and temperature dependency but also are sensitive to moisture conditions. This complex behavior presents a great challenge to the faculty in bringing across the level of complexity and providing the concepts needed to understand them. The…

  6. Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization

    PubMed Central

    Hyeon, Jeong Eun; Shin, Sang Kyu

    2016-01-01

    Abstract The utilization of scaffolds for enzyme immobilization involves advanced bionanotechnology applications in biorefinery fields, which can be achieved by optimizing the function of various enzymes. This review presents various current scaffolding techniques based on proteins, microbes and nanomaterials for enzyme immobilization, as well as the impact of these techniques on the biorefinery of lignocellulosic materials. Among them, architectural scaffolds have applied to useful strategies for protein engineering to improve the performance of immobilized enzymes in several industrial and research fields. In complexed enzyme systems that have critical roles in carbon metabolism, scaffolding proteins assemble different proteins in relatively durable configurations and facilitate collaborative protein interactions and functions. Additionally, a microbial strain, combined with designer enzyme complexes, can be applied to the immobilizing scaffold because the in vivo immobilizing technique has several benefits in enzymatic reaction systems related to both synthetic biology and metabolic engineering. Furthermore, with the advent of nanotechnology, nanomaterials possessing ideal physicochemical characteristics, such as mass transfer resistance, specific surface area and efficient enzyme loading, can be applied as novel and interesting scaffolds for enzyme immobilization. Intelligent application of various scaffolds to couple with nanoscale engineering tools and metabolic engineering technology may offer particular benefits in research. PMID:27783468

  7. Evaluation of Alternative Refractory Materials for the Main Flame Deflectors at KSC Launch Complexes

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Trejo, David; Rutkowsky, Justin

    2006-01-01

    The deterioration of the refractory materials used to protect the KSC launch complex steel base structures from the high temperatures during launches results in frequent and costly repairs and safety hazards. KSC-SPEC-P-0012, Specification for Refractory Concrete, is ineffective in qualifying refractory materials. This study of the specification and of alternative refractory materials recommends a complete revision of the specification and further investigation of materials that were found to withstand the environment of the Solid Rocket Booster main flame deflector better than the refractory materials in current use in terms of compressive strength, tensile strength, modulus of rupture, shrinkage, and abrasion.

  8. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    SciTech Connect

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

  9. Asbestos penetration test system for clothing materials

    SciTech Connect

    Bradley, O.D.; Stampfer, J.F.; Sandoval, A.N.; Heath, C.A.; Cooper, M.H.

    1997-04-01

    For hazardous work such as asbestos abatement, there is a need to assess protective clothing fabrics and seam constructions to assure an adequate barrier against hazardous material. The penetration of aerosols through fabrics usually is measured by challenging fabric samples with an aerosol stream at a constant specified airflow. To produce the specified airflow, pressure differentials across the samples often are higher than exist in a work environment. This higher airflow results in higher aerosol velocities through the fabric and, possibly, measured penetration values not representative of those actually experienced in the field. The objective of the reported work was to develop a test method that does not require these higher airflows. The authors have designed and fabricated a new system that tests fabric samples under a low, constant, specified pressure differential across the samples. This differential is adjustable from tenths of a mm Water Gauge (hundredths of an in WG) to over 25-mm WG (1-in WG). The system operates at a pressure slightly lower than its surroundings. Although designed primarily for asbestos, the system is equally applicable to the testing of other aerosols by changing the aerosol generator and detector. Through simple modification of the sample holders, the test apparatus would be capable of evaluating seam and closure constructions.

  10. Material Outgassing, Identification and Deposition, MOLIDEP System

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Montoya, Alex F.

    2002-01-01

    The outgassing tests are performed employing a modified vacuum operated Cahn analytical microbalance, identified as the MOLIDEP system. The test measures under high vacuum, the time varying Molecular mass loss of a material sample held at a chosen temperature; it Identifies the outgassing molecular components using an inline SRS 300 amu Residual Gas Analyzer (RGA) and employs a temperature controlled 10 MHz Quartz Crystal Microbalance (QCM) to measure the condensable DEPosits. Both the QCM and the RGA intercept within the conductive passage the outgassing products being evacuated by a turbomolecular pump. The continuous measurements of the mass loss, the rate of loss, the sample temperature, the rate of temperature change, the QCM temperature and the QCM recorded condensable deposits or rate of deposits are saved to an Excel spreadsheet. A separate computer controls the RGA.

  11. Complex Systems Thinking and Current Impasses in Health Disparities Research

    PubMed Central

    2011-01-01

    Complex systems approaches have received increasing attention in public health because reductionist approaches yield limited insights in the context of dynamic systems. Most discussions have been highly abstract. There is a need to consider the application of complex systems approaches to specific research questions. I review the features of population health problems for which complex systems approaches are most likely to yield new insights, and discuss possible applications of complex systems to health disparities research. I provide illustrative examples of how complex systems approaches may help address unanswered and persistent questions regarding genetic factors, life course processes, place effects, and the impact of upstream policies. The concepts and methods of complex systems may help researchers move beyond current impasse points in health disparities research. PMID:21778505

  12. A calibration-independent method for accurate complex permittivity determination of liquid materials

    SciTech Connect

    Hasar, U. C.

    2008-08-15

    This note presents a calibration-independent method for accurate complex permittivity determination of liquid materials. There are two main advantages of the proposed method over those in the literature, which require measurements of two cells with different lengths loaded by the same liquid material. First, it eliminates any inhomogeneity or impurity present in the second sample and decreases the uncertainty in sample thickness. Second, it removes the undesired impacts of measurement plane deterioration on measurements of liquid materials. For validation of the proposed method, we measure the complex permittivity of distilled water and compare its extracted permittivity with the theoretical datum obtained from the Debye equation.

  13. Synergistically Enhanced Optical Limiting Property of Graphene Oxide Hybrid Materials Functionalized with Pt Complexes.

    PubMed

    Liu, Rui; Hu, Jinyang; Zhu, Senqiang; Lu, Jiapeng; Zhu, Hongjun

    2017-09-27

    Recently, graphene-based materials have become well-known nonlinear optical materials for the potential application of laser protection. Two new graphene oxide-platinum  complex (GO-Pt) hybrid materials (GO-Pt-1, GO-Pt-2) have been fabricated through covalent modification and electrostatic adsorption of different Pt complexes with GO. The structural and photophysical properties of the resultant hybrid materials were studied. The nonlinear optical properties and optical power limiting (OPL) performance of Pt complexes, GO, and GO-Pt hybrid materials were investigated by using Z-scan measurements at 532 nm. At the same transmittance, the results illustrate that functionalization of GO makes GO-Pt hybrid materials possess better nonlinear optical properties and OPL performance than individual Pt complexes and GO due to a combination of nonlinear scattering, nonlinear absorption, and photoinduced electron and energy transfer between GO and Pt complex moieties. Furthermore, the nonlinear optics and OPL performance of GO-Pt-2 are better than those of GO-Pt-1, due to not only the excellent optical limiting of Pt-2 and more molecules per area of GO but also the way of combination of Pt-2 and GO.

  14. Development of the RFID System for nuclear materials management.

    SciTech Connect

    Chen, K.; Tsai, H.; Liu, Y. Y.

    2008-01-01

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field

  15. Multistage spectral relaxation method for solving the hyperchaotic complex systems.

    PubMed

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  16. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    PubMed Central

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624

  17. Tethering Complexes in the Arabidopsis Endomembrane System

    PubMed Central

    Vukašinović, Nemanja; Žárský, Viktor

    2016-01-01

    Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model—Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology. PMID:27243010

  18. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials.

    PubMed

    Elacqua, Elizabeth; Lye, Diane S; Weck, Marcus

    2014-08-19

    template polymerizations to enhance the control afforded by ROMP. Main-chain-functionalized alternating block polymers based upon SCS-Pd(II) pincer-pyridine motifs were achieved through the combined exploitation of bimetallic initiators and supramolecularly functionalized terminators. Our initial design principles led to the successful fabrication of both main-chain- and side-chain-functionalized poly(norbornenes) via ROMP. Utilizing all of these techniques in concert led to engineering orthogonality while achieving complexity through the installation of multiple supramolecular motifs within the side chain, main chain, or both in our polymer systems. The exploitation and modification of design principles based upon functional ROMP initiators and terminators has resulted in the first synthesis of main-chain heterotelechelic polymers that self-assemble into A/B/C supramolecular triblock polymers composed of orthogonal cyanuric acid-Hamilton wedge and SCS-Pd(II) pincer-pyridine motifs. Furthermore, supramolecular A/B/A triblock copolymers were realized through the amalgamation of functionalized monomers, ROMP initiators, and terminators. To date, this ROMP-fabricated system represents the only known method to afford polymer main chains and side chains studded with orthogonal motifs. We end by discussing the impetus to attain functional materials via orthogonal self-assembly. Collectively, our studies suggest that combining covalent and noncovalent bonds in a well-defined and precise manner is an essential design element to achieve complex architectures. The results discussed in this Account illustrate the finesse associated with engineering orthogonal interactions within supramolecular systems and are considered essential steps toward developing complex biomimetic materials with high precision and fidelity.

  19. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing systems materials. 23... Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. For commuter category airplanes, the following apply: (a) No material in any fire extinguishing system may react chemically with...

  20. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  1. Cause and effect in geomorphic systems: Complex systems perspectives

    NASA Astrophysics Data System (ADS)

    Murray, A. Brad; Coco, Giovanni; Goldstein, Evan B.

    2014-06-01

    Applying complex systems perspectives to geomorphic systems leads to the conclusion that cause and effect in landscape systems does not always apply in the ways that common sense and traditional assumptions would suggest. Geomorphologists have long thought that events must have causes and that landscape structures exist where they do for particular reasons. In addition, since the rise of process geomorphology, geomorphologists have often assumed that small-scale processes directly cause large-scale, long-term landscape evolution; that for understanding or predicting the large-scale behaviors, the details of the small-scale processes matter; and that large-scale processes do not directly cause behaviors at much smaller scales. However, in self-organized systems, autogenic events can arise from feedbacks internal to the system, without any variation in the forcing to cause the event. Similarly, structures within self-organized patterns in the landscape can emerge spontaneously, even though there may not be any pre-existing heterogeneity to cause the localization of the structure. In addition, cause and effect can operate from large scales to small ones as well as the reverse, and interactions that emerge at larger scales can determine the characteristics of the landscape, independent of the details of the small-scale processes. To exemplify these points, we will use research on 'sorted bedforms', striking shallow seabed grain-sized sorted patterns on scales ranging from tens of meters to kilometers. The stripes of coarse sand or gravel that are segregated from intervening fine-sand domains were originally ascribed to hypothesized, spatially focused currents. However, more recent modeling and field observations point to a self-organization mechanism in which the locations of the features do not correspond with any heterogeneity in the forcing or antecedent conditions. Very recent modeling work shows that regionally the pattern can spontaneously break down and reform

  2. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect

    Uday B. Pal; Srikanth Gopalan

    2005-01-24

    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  3. Differential Multiscale Modeling of Chemically Complex Materials under Heavy Deformation: Biological, Bioinspired and Synthetic Hierarchical Materials

    DTIC Science & Technology

    2010-06-01

    to provide protective surfaces (e.g. in seashells, bone, spider silk ). We demonstrated the development and application of such material design...M.J. Buehler, “Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils”, Nano Letters, accepted for...level. Courtesy J. Andzelm (ARL) Mechanical response of spider silk 1-2 GPa 34 Z. Shao and F. Vollrath, Nature, 2002 Spider silk with diameter of O(inch

  4. Understanding Equilibrium: The Study of Complex Systems. Final Project Report.

    ERIC Educational Resources Information Center

    Duckworth, Eleanor; And Others

    The Educational Technology Center (ETC) Complex Systems Project was initiated to explore ways of using computers to help students understand systems which have often proven too complex for most high school students to understand. Preliminary work concentrated on the cognitive processes involved in modeling simple systems. This paper describes an…

  5. Understanding Equilibrium: The Study of Complex Systems. Final Project Report.

    ERIC Educational Resources Information Center

    Duckworth, Eleanor; And Others

    The Educational Technology Center (ETC) Complex Systems Project was initiated to explore ways of using computers to help students understand systems which have often proven too complex for most high school students to understand. Preliminary work concentrated on the cognitive processes involved in modeling simple systems. This paper describes an…

  6. Integration of the immune system: a complex adaptive supersystem

    NASA Astrophysics Data System (ADS)

    Crisman, Mark V.

    2001-10-01

    Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.

  7. Toward a space materials systems program

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1981-01-01

    A program implementation model is presented which covers the early stages of space material processing and manufacturing. The model includes descriptions of major program elements, development and experiment requirements in space materials processing and manufacturing, and an integration of the model into NASA's long range plans as well as its evolution from present Materials Processing in Space plans.

  8. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  9. Cryostat system for spacecraft materials testing

    NASA Astrophysics Data System (ADS)

    Dekany, Justin

    The main cause of spacecraft failures is due to the harsh space environment; therefore, rigorous testing of materials used in modern spacecraft is imperative to ensure proper operation during the life span of the mission. Enhancing the capabilities of ground-based test facilities allows for more accurate measurements to be taken as it better simulates the environment to which spacecraft will be exposed. The range of temperature measurements has been significantly extended for an existing space environment simulation test chamber used in the study of electron emission, sample charging and discharge, electrostatic discharge and arcing, electron transport, and luminescence of spacecraft materials. This was accomplished by incorporating a new two-stage, closed-cycle helium cryostat, which has an extended sample temperature range from 450 K, with long-term controlled stability of <0.5 K. The system was designed to maintain compatibility with an existing ultrahigh vacuum chamber (base pressure <10-7 Pa) that can simulate diverse space environments. These existing capabilities include controllable vacuum and ambient neutral gases conditions (<10-7 to 10 -1 Pa), electron fluxes (5 eV to 30 keV monoenergetic, focused, pulsed sources ranging from 10-4 to 1010 nA-cm -2), ion fluxes (<0.1 to 5 keV monoenergetic sources for inert and reactive gases with pulsing capabilities), and photon irradiation (numerous continuous and pulsed monochromatic and broadband IR/VIS/UV [0.5 to 7 eV] sources). The original sample mount accommodates one to four samples of 1 cm to 2.5 cm diameter in a low- temperature carousel, which allows rapid sample exchange and controlled exposure of the individual samples. Multiple additional sample mounts have been added to allow for standalone use for constant voltage measurements, radiation induced and conductivity tests, as well as extended capabilities for electron-induced luminescent measurements to be conducted using various material sample thicknesses

  10. Large-scale simulations of complex physical systems

    NASA Astrophysics Data System (ADS)

    Belić, A.

    2007-04-01

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results. In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  11. Large-scale simulations of complex physical systems

    SciTech Connect

    Belic, A.

    2007-04-23

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results.In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  12. Material efficient production of complex (hybrid) components using semi solid forming processes

    NASA Astrophysics Data System (ADS)

    Riedmüller, Kim Rouven; Liewald, Mathias

    2016-10-01

    By means of lightweight design and lightweight material structures, weight of single components and of resulting component assemblies should be reduced and, additionally, existing functionalities, reliabilities and material properties should be preserved. Therefore, on the one hand novel materials and hybrid material combinations are investigated and on the other hand weight reduction is realized by material efficient component designs. With regard to the manufacturing of such complex component geometries with high dimensional accuracy and relating to the realization of hybrid material concepts, semi solid forming technology offers promising prospects. This paper deals with two research projects recently conducted at the Institute for Metal Forming Technology (IFU, University of Stuttgart) in the field of this forming technology. First project is concerned with the manufacturing of hybrid components with integrated sensor and/or actuator functions and second project is in the field of material efficient manufacturing.

  13. Synthesis and transformations of alkylphosphate and alkoxysiloxide metal complexes to multicomponent oxide materials

    NASA Astrophysics Data System (ADS)

    Lugmair, Claus Guenter

    This thesis describes the synthesis of mixed element oxide materials utilizing oxygen rich ``single-source precursor'' molecules. The key attributes of these precursor complexes are that they possess the stoichiometry of the targeted oxide material and that they can be converted to carbon free materials by mild thermal treatment. Complexes of Al, Cu, Fe, Hf, Nb, Ta, Ti, and Zr were prepared that contain tris(tert-butoxy)siloxy ligands as precursors to silica based materials. The pyrolytic decomposition of these complexes occur under mild conditions, with onset temperatures to decomposition between 95 and 200sp°C. The resulting metal-silica or metal oxide-silica materials contain very little carbon. The solid state transformation of Zrlbrack OSi(OsptBu)sb3rbracksb4 to ZrOsb2{*}4SiOsb2 produced an open fibrous material with pores which are ca. 20 nm in diameter. The solution phase thermolysis of the various metal siloxide complexes in anhydrous organic solvents led to xerogels consisting of small spherical primary particles (≤ca. 5 nm). These xerogels typically possess very high surface areas. The ZrOsb2{*}4SiOsb2 materials are amorphous as initially formed, and subsequent crystallizations of tetragonal ZrOsb2, monoclinic ZrOsb2, and cristobalite occur at relatively high temperatures. The enhanced stabilization of the amorphous and tetragonal phases of zirconia, relative to those derived from many sol-gel systems, implies that these single-source precursors initially produce highly homogeneous materials and that subsequent crystallizations are to a large degree diffusion-controlled, Careful addition of 1 or 2 equiv of water to THF solutions of Mlbrack OSi(OsptBu)sb3rbracksb4 (M = Zr, Hf) produced the isolable aqua complexes Mlbrack OSi(OsptBu)sb3rbracksb4(Hsb2O) and Mlbrack OSi(OsptBu)sb3rbracksb4(Hsb2O)sb2. It is likely that the hydrolysis of Zrlbrack OSi(OsptBu)sb3rbracksb4(Hsb2O)sb2 also occurs by an associative mechanism via the tris(aqua) intermediate

  14. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect

    Uday B. Pal; Srikanth Gopalan

    2006-01-12

    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  15. Characterization of the relation between energy landscape and the time evolution of complex materials using kinetic ART

    NASA Astrophysics Data System (ADS)

    N'tsouaglo, Kokou; Joly, Jean-Francois; Beland, Laurent; Brommer, Peter; Mousseau, Normand

    2013-03-01

    In the last two decades, there has been a considerable interest in the development of accelerated numerical methods for sampling the energy landscape of complex materials. Many of these methods are based on the kinetic Monte Carlo (KMC) algorithm introduced 40 years ago. This is the case of kinetic ART, for example, which uses a very efficient transition-state searching method, ART nouveau, coupled with a topological tool, NAUTY, to offer an off-lattice KMC method with on-the-fly catalog building to study complex systems, such as ion-bombarded and amorphous materials, on timescales of a second or more. Looking at two systems, vacancy aggregation in Fe and energy relaxation in ion-bombarded c-Si, we characterize the changes in the energy landscape and the relation to its time evolution with kinetic ART and its correspondence with the well-known Bell-Evans-Polanyi principle used in chemistry.

  16. Towards socio-material approaches in simulation-based education: lessons from complexity theory.

    PubMed

    Fenwick, Tara; Dahlgren, Madeleine Abrandt

    2015-04-01

    Review studies of simulation-based education (SBE) consistently point out that theory-driven research is lacking. The literature to date is dominated by discourses of fidelity and authenticity - creating the 'real' - with a strong focus on the developing of clinical procedural skills. Little of this writing incorporates the theory and research proliferating in professional studies more broadly, which show how professional learning is embodied, relational and situated in social - material relations. A key concern for medical educators concerns how to better prepare students for the unpredictable and dynamic ambiguity of professional practice; this has stimulated the movement towards socio-material theories in education that address precisely this question. Among the various socio-material theories that are informing new developments in professional education, complexity theory has been of particular importance for medical educators interested in updating current practices. This paper outlines key elements of complexity theory, illustrated with examples from empirical study, to argue its particular relevance for improving SBE. Complexity theory can make visible important material dynamics, and their problematic consequences, that are not often noticed in simulated experiences in medical training. It also offers conceptual tools that can be put to practical use. This paper focuses on concepts of emergence, attunement, disturbance and experimentation. These suggest useful new approaches for designing simulated settings and scenarios, and for effective pedagogies before, during and following simulation sessions. Socio-material approaches such as complexity theory are spreading through research and practice in many aspects of professional education across disciplines. Here, we argue for the transformative potential of complexity theory in medical education using simulation as our focus. Complexity tools open questions about the socio-material contradictions inherent in

  17. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    ERIC Educational Resources Information Center

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  18. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    ERIC Educational Resources Information Center

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  19. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials.

    PubMed

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-09-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts.

  20. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

    PubMed Central

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2016-01-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts. PMID:27679820

  1. Periodic reference tracking control approach for smart material actuators with complex hysteretic characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyong; Hao, Lina; Song, Bo; Yang, Ruiguo; Cao, Ruimin; Cheng, Yu

    2016-10-01

    Micro/nano positioning technologies have been attractive for decades for their various applications in both industrial and scientific fields. The actuators employed in these technologies are typically smart material actuators, which possess inherent hysteresis that may cause systems behave unexpectedly. Periodic reference tracking capability is fundamental for apparatuses such as scanning probe microscope, which employs smart material actuators to generate periodic scanning motion. However, traditional controller such as PID method cannot guarantee accurate fast periodic scanning motion. To tackle this problem and to conduct practical implementation in digital devices, this paper proposes a novel control method named discrete extended unparallel Prandtl-Ishlinskii model based internal model (d-EUPI-IM) control approach. To tackle modeling uncertainties, the robust d-EUPI-IM control approach is investigated, and the associated sufficient stabilizing conditions are derived. The advantages of the proposed controller are: it is designed and represented in discrete form, thus practical for digital devices implementation; the extended unparallel Prandtl-Ishlinskii model can precisely represent forward/inverse complex hysteretic characteristics, thus can reduce modeling uncertainties and benefits controllers design; in addition, the internal model principle based control module can be utilized as a natural oscillator for tackling periodic references tracking problem. The proposed controller was verified through comparative experiments on a piezoelectric actuator platform, and convincing results have been achieved.

  2. On the hitchhiker Robot Operated Materials Processing System: Experiment data system

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Jenstrom, Del

    1995-01-01

    The Space Shuttle Discovery STS-64 mission carried the first American autonomous robot into space, the Robot Operated Materials Processing System (ROMPS). On this mission ROMPS was the only Hitchhiker experiment and had a unique opportunity to utilize all Hitchhiker space carrier capabilities. ROMPS conducted rapid thermal processing of the one hundred semiconductor material samples to study how micro gravity affects the resulting material properties. The experiment was designed, built and operated by a small GSFC team in cooperation with industry and university based principal investigators who provided the material samples and data interpretation. ROMPS' success presents some valuable lessons in such cooperation, as well as in the utilization of the Hitchhiker carrier for complex applications. The motivation of this paper is to share these lessons with the scientific community interested in attached payload experiments. ROMPS has a versatile and intelligent material processing control data system. This paper uses the ROMPS data system as the guiding thread to present the ROMPS mission experience. It presents an overview of the ROMPS experiment followed by considerations of the flight and ground data subsystems and their architecture, data products generation during mission operations, and post mission data utilization. It then presents the lessons learned from the development and operation of the ROMPS data system as well as those learned during post-flight data processing.

  3. Initiator system in holographic photopolymer materials

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Fernández, E.; Fuentes, R.; Gallego, S.; Márquez, A.

    2010-05-01

    The photopolymers with a hydrophilic matrix as poly(vinyl alcohol), PVA, are versatile holographic recording materials in hologram recording experiments. They use water as solvent and they can be made in layers with several thickness. One of the photopolymers more used is composed of acrylamide as polymerizable monomer, PVA and water as binder. The pair: triethanolamine, TEA, and the dye yellowish eosin, YE, is widely used as initiator system due to its high sensitivity and efficiency. TEA is the radical initiator more used with dyes derived from fluorescein as YE because they can generate a radical by redox reaction under dye excitation by light. The dye is bleached in this process because is decomposed in the photoinitiation reaction. The ethylenediaminetetraacetic acid EDTA has a molecular structure very similar to TEA and therefore could replace it in this kind of photopolymers. The 4,4' azo-bis-(4-cyanopentanoic acid), ACPA, is a radical initiator that is soluble in water and usually used in polymerizations in solution with thermal initiation. In this work, we use EDTA and ACPA in order to check their properties as radical initiator in the photochemical reaction that takes place inside the photopolymer while a hologram is being recorded. We will compare the results obtained with those derived from TEA and will evaluate the possibilities for these substances.

  4. Surface nucleation in complex rheological systems

    NASA Astrophysics Data System (ADS)

    Herfurth, J.; Ulrich, J.

    2017-07-01

    Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.

  5. Statistical Features of Complex Systems ---Toward Establishing Sociological Physics---

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki; Kuninaka, Hiroto; Wakita, Jun-ichi; Matsushita, Mitsugu

    2011-07-01

    Complex systems have recently attracted much attention, both in natural sciences and in sociological sciences. Members constituting a complex system evolve through nonlinear interactions among each other. This means that in a complex system the multiplicative experience or, so to speak, the history of each member produces its present characteristics. If attention is paid to any statistical property in any complex system, the lognormal distribution is the most natural and appropriate among the standard or ``normal'' statistics to overview the whole system. In fact, the lognormality emerges rather conspicuously when we examine, as familiar and typical examples of statistical aspects in complex systems, the nursing-care period for the aged, populations of prefectures and municipalities, and our body height and weight. Many other examples are found in nature and society. On the basis of these observations, we discuss the possibility of sociological physics.

  6. Materials for Liquid Propulsion Systems. Chapter 12

    NASA Technical Reports Server (NTRS)

    Halchak, John A.; Cannon, James L.; Brown, Corey

    2016-01-01

    Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton's third law: for every action there is an equal and opposite reaction. Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned. They also have a considerably higher thrust to weigh ratio. Since liquid rocket engines can be tested several times before flight, they have the capability to be more reliable, and their ability to shut down once started provides an extra margin of safety. Liquid propellant engines also can be designed with restart capability to provide orbital maneuvering capability. In some instances, liquid engines also can be designed to be reusable. On the solid side, hybrid solid motors also have been developed with the capability to stop and restart. Solid motors are covered in detail in chapter 11. Liquid

  7. Complex notation for the dielectric response of ferroelectric materials beyond the small sinusoidal fields.

    PubMed

    Zhou, Xin; Chu, Baojin; Zhang, Qiming M

    2006-08-01

    For the polarization response beyond the small field range, Rayleigh's law has been introduced in the past to describe the field-dependent behavior (with loss) of ferroelectric materials with some success. We examine the relationship between Rayleigh's law and the complex dielectric constant notation that has been used widely in the scientific and engineering community; and we show that a modified complex notation can describe the field-dependent dielectric response with loss in the small and medium field range quite well. In addition, the modified complex notation easily can include a field independent dielectric loss that is, in fact, present in all the dielectric materials. The results also show that the alternating current (AC) field response is still predominantly linear with the amplitude and phase of the complex coefficient changing with the applied field amplitude.

  8. Towards an evaluation framework for complex social systems

    NASA Astrophysics Data System (ADS)

    McDonald, Diane M.; Kay, Nigel

    While there is growing realisation that the world in which we live in is highly complex with multiple interdependencies and irreducibly open to outside influence, how to make these 'systems' more manageable is still a significant outstanding issue. As (2004) suggests, applying the theoretical principles of Complex Systems may help solve complex problems in this complex world. While Bar-Yam provides examples of forward-thinking organisations which have begun to see the relevance of complex systems principles, for many organisations the language and concepts of complexity science such as self-organisation and unpredictability while they make theoretical sense offer no practical or acceptable method of implementation to those more familiar with definitive facts and classical hierarchical, deterministic approaches to control. Complexity Science explains why designed systems or interventions may not function as anticipated in differing environments, without providing a silver bullet which enables control or engineering of the system to ensure the desired results. One familiar process which might, if implemented with complex systems in mind, provide the basis of an accessible and understandable framework that enables policy makers and practitioners to better design and manage complex socio-technical systems is that of evaluation.

  9. Towards an evaluation framework for complex social systems

    NASA Astrophysics Data System (ADS)

    McDonald, Diane M.; Kay, Nigel

    While there is growing realisation that the world in which we live in is highly complex with multiple interdependencies and irreducibly open to outside influence, how to make these `systems' more manageable is still a significant outstanding issue. As (2004) suggests, applying the theoretical principles of Complex Systems may help solve complex problems in this complex world. While Bar-Yam provides examples of forward-thinking organisations which have begun to see the relevance of complex systems principles, for many organisations the language and concepts of complexity science such as self-organisation and unpredictability while they make theoretical sense offer no practical or acceptable method of implementation to those more familiar with definitive facts and classical hierarchical, deterministic approaches to control. Complexity Science explains why designed systems or interventions may not function as anticipated in differing environments, without providing a silver bullet which enables control or engineering of the system to ensure the desired results. One familiar process which might, if implemented with complex systems in mind, provide the basis of an accessible and understandable framework that enables policy makers and practitioners to better design and manage complex socio-technical systems is that of evaluation.

  10. Low-mass materials and vertex detector systems

    DOE PAGES

    Cooper, William E.

    2014-01-01

    Physics requirements set the material budget and the precision and stability necessary in low-mass vertex detector systems. Operational considerations, along with physics requirements, set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi-layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Lastly, comments are made on future directions to be considered in using present materials effectively and in developing newmore » materials.« less

  11. Low-mass materials and vertex detector systems

    SciTech Connect

    Cooper, William E.

    2014-01-01

    Physics requirements set the material budget and the precision and stability necessary in low-mass vertex detector systems. Operational considerations, along with physics requirements, set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi-layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Lastly, comments are made on future directions to be considered in using present materials effectively and in developing new materials.

  12. Refractory Materials for Flame Deflector Protection System Corrosion Control: Coatings Systems Literature Survey

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven; hide

    2009-01-01

    When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).

  13. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  14. Confluence and convergence: team effectiveness in complex systems.

    PubMed

    Porter-OʼGrady, Tim

    2015-01-01

    Complex adaptive systems require nursing leadership to rethink organizational work and the viability and effectiveness of teams. Much of emergent thinking about complexity and systems and organizations alter the understanding of the nature and function of teamwork and the configuration and leadership of team effort. Reflecting on basic concepts of complexity and their application to team formation, dynamics, and outcomes lays an important foundation for effectively guiding the strategic activity of systems through the focused tactical action of teams. Basic principles of complexity, their impact on teams, and the fundamental elements of team effectiveness are explored.

  15. Control system for the FFAG complex at KURRI

    NASA Astrophysics Data System (ADS)

    Tanigaki, M.; Takamiya, K.; Yoshino, H.; Abe, N.; Takeshita, T.; Osanai, A.

    2010-01-01

    A simple and convenient control system has been developed for the 150 MeV proton FFAG accelerator complex at Research Reactor Institute, Kyoto University. This control system is designed as a distributed control scheme and developed with simple and versatile tools, such as PLCs, LabVIEW and an IP based network, expecting applications in small accelerators, which are often operated by non-specialists in computer programming or in control systems. The control system for the FFAG accelerator complex has actually been developed by non-specialists, and the developed control system was successfully used for commissioning the FFAG complex.

  16. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire extinguishing system materials. 29.1201 Section 29.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing...

  17. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire extinguishing system materials. 29.1201 Section 29.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing...

  18. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire extinguishing system materials. 29.1201 Section 29.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing...

  19. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  20. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  1. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  2. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... materials. (b) Connections that are subject to relative motion between components of the airplane must be... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire-extinguishing system materials. 121....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section,...

  3. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... materials. (b) Connections that are subject to relative motion between components of the airplane must be... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire-extinguishing system materials. 121....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section,...

  4. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  5. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  6. Composite materials research in support of supersonic propulsion systems

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1976-01-01

    Two engine components, fan blades and exhaust systems, were selected for composite materials development efforts in support of the supersonic cruise aircraft research (SCAR) engine program. The materials selected were boron/aluminum for fan blades and silicon carbide/superalloy sheet for the exhaust system. The current status of the research into applying these two composite materials to SCAR engines is reviewed.

  7. Materials for programmed, functional transformation in transient electronic systems.

    PubMed

    Hwang, Suk-Won; Kang, Seung-Kyun; Huang, Xian; Brenckle, Mark A; Omenetto, Fiorenzo G; Rogers, John A

    2015-01-07

    Materials and device designs are presented for electronic systems that undergo functional transformation by a controlled time sequence in the dissolution of active materials and/or encapsulation layers. Demonstration examples include various biocompatible, multifunctional systems with autonomous behavior defined by materials selection and layout.

  8. On the consistency of complex moduli for transversely-isotropic viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Lesieutre, George A.

    The ability of advanced composite materials and structures to damp vibration is important in many applications. Use of the complex modulus approach to represent the dissipative properties of transversely-isotropic materials, such as unidirectional fiber-reinforced composites, requires the definition of a set of 5 (imaginary) loss moduli in addition to the 5 (real) storage moduli needed to describe the elastic behavior. In practice, designers of composite materials rarely have experimental data for all 5 loss moduli, and must assume values for the remaining moduli in their analyses. If values for these unknown loss moduli are specified arbitrarily, physically unreasonable behavior can result. This paper develops the conditions necessary for physical consistency of the complex moduli of transversely isotropic materials.

  9. It's all about flow in a complex adaptive system.

    PubMed

    Clancy, Thomas R

    2014-04-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on the application of management strategies in health systems. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. In this article, I discuss the Constructal Law and its impact on nurse workflow.

  10. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  11. Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations

    ERIC Educational Resources Information Center

    Li, Na

    2013-01-01

    Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research…

  12. Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations

    ERIC Educational Resources Information Center

    Li, Na

    2013-01-01

    Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research…

  13. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  14. Acquisition of Complex Systemic Thinking: Mental Models of Evolution

    ERIC Educational Resources Information Center

    d'Apollonia, Sylvia T.; Charles, Elizabeth S.; Boyd, Gary M.

    2004-01-01

    We investigated the impact of introducing college students to complex adaptive systems on their subsequent mental models of evolution compared to those of students taught in the same manner but with no reference to complex systems. The students' mental models (derived from similarity ratings of 12 evolutionary terms using the pathfinder algorithm)…

  15. Acquisition of Complex Systemic Thinking: Mental Models of Evolution

    ERIC Educational Resources Information Center

    d'Apollonia, Sylvia T.; Charles, Elizabeth S.; Boyd, Gary M.

    2004-01-01

    We investigated the impact of introducing college students to complex adaptive systems on their subsequent mental models of evolution compared to those of students taught in the same manner but with no reference to complex systems. The students' mental models (derived from similarity ratings of 12 evolutionary terms using the pathfinder algorithm)…

  16. Application of Complex Adaptive Systems in Portfolio Management

    ERIC Educational Resources Information Center

    Su, Zheyuan

    2017-01-01

    Simulation-based methods are becoming a promising research tool in financial markets. A general Complex Adaptive System can be tailored to different application scenarios. Based on the current research, we built two models that would benefit portfolio management by utilizing Complex Adaptive Systems (CAS) in Agent-based Modeling (ABM) approach.…

  17. A 360-deg Digital Image Correlation system for materials testing

    NASA Astrophysics Data System (ADS)

    Genovese, K.; Cortese, L.; Rossi, M.; Amodio, D.

    2016-07-01

    The increasing research interest toward natural and advanced engineered materials demands new experimental protocols capable of retrieving highly dense sets of experimental data on the full-surface of samples under multiple loading conditions. Such information, in fact, would allow to capture the possible heterogeneity and anisotropy of the material by using up-to-date inverse characterization methods. Although the development of object-specific test protocols could represent the optimal choice to address this need, it is unquestionable that universal testing machines (UTM) remain the most widespread and versatile option to test materials and components in both academic and industrial contexts. A major limitation of performing standard material tests with UTM, however, consists in the scarce information obtainable with the commonly associated sensors since they provide only global (LVDTs, extensometers, 2D-video analyzers) or local (strain gages) measures of displacement and strain. This paper presents a 3D Digital Image Correlation (DIC) system developed to perform highly accurate full-surface 360-deg measurements on either standard or custom-shaped samples under complex loading within universal testing machines. To this aim, a low cost and easy to setup video rig was specifically designed to overcome the practical limitations entailed with the integration of a multi-camera system within an already existing loading frame. In particular, the proposed system features a single SLR digital camera moved through multiple positions around the specimen by means of a large rotation stage. A proper calibration and data-processing procedure allows to automatically merge the experimental data obtained from the multiple views with an accuracy of 10-2 m m . The results of a full benchmarking of the metrological performances of the system are here reported and discussed together with illustrative examples of full-360-deg shape and deformation measurements on a Grade X65 steel

  18. Nanoscale control of optical heating in complex plasmonic systems.

    PubMed

    Baffou, Guillaume; Quidant, Romain; García de Abajo, F Javier

    2010-02-23

    We introduce a numerical technique to investigate the temperature distribution in arbitrarily complex plasmonic systems subject to external illumination. We perform both electromagnetic and thermodynamic calculations based upon a time-efficient boundary element method. Two kinds of plasmonic systems are investigated in order to illustrate the potential of such a technique. First, we focus on individual particles with various morphologies. In analogy with electrostatics, we introduce the concept of thermal capacitance. This geometry-dependent quantity allows us to assess the temperature increase inside a plasmonic particle from the sole knowledge of its absorption cross section. We present universal thermal-capacitance curves for ellipsoids, rods, disks, and rings. Additionally, we investigate assemblies of nanoparticles in close proximity and show that, despite its diffusive nature, the temperature distribution can be made highly non-uniform even at the nanoscale using plasmonic systems. A significant degree of nanoscale control over the individual temperatures of neighboring particles is demonstrated, depending on the external light wavelength and direction of incidence. We illustrate this concept with simulations of gold sphere dimers and chains in water. Our work opens new possibilities for selectively controlling processes such as local melting for dynamic patterning of textured materials, chemical and metabolic thermal activation, and heat delivery for producing mechanical motion with spatial precision in the nanoscale.

  19. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by

  20. Size and complexity in model financial systems.

    PubMed

    Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M

    2012-11-06

    The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in "confidence" in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases.

  1. Size and complexity in model financial systems

    PubMed Central

    Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M.

    2012-01-01

    The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in “confidence” in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases. PMID:23091020

  2. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    PubMed

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The physics of complex systems in information and biology

    NASA Astrophysics Data System (ADS)

    Walker, Dylan

    Citation networks have re-emerged as a topic intense interest in the complex networks community with the recent availability of large-scale data sets. The ranking of citation networks is a necessary practice as a means to improve information navigability and search. Unlike many information networks, the aging characteristics of citation networks require the development of new ranking methods. To account for strong aging characteristics of citation networks, we modify the PageRank algorithm by initially distributing random surfers exponentially with age, in favor of more recent publications. The output of this algorithm, which we call CiteRank, is interpreted as approximate traffic to individual publications in a simple model of how researchers find new information. We optimize parameters of our algorithm to achieve the best performance. The results are compared for two rather different citation networks: all American Physical Society publications between 1893-2003 and the set of high-energy physics theory (hep-th) preprints. Despite major differences between these two networks, we find that their optimal parameters for the CiteRank algorithm are remarkably similar. The advantages and performance of CiteRank over more conventional methods of ranking publications are discussed. Collaborative voting systems have emerged as an abundant form of real-world, complex information systems that exist in a variety of online applications. These systems are comprised of large populations of users that collectively submit and vote on objects. While the specific properties of these systems vary widely, many of them share a core set of features and dynamical behaviors that govern their evolution. We study a subset of these systems that involve material of a time-critical nature as in the popular example of news items. We consider a general model system in which articles are introduced, voted on by a population of users, and subsequently expire after a proscribed period of time. To

  4. Dispersion Modeling in Complex Urban Systems

    EPA Science Inventory

    Models are used to represent real systems in an understandable way. They take many forms. A conceptual model explains the way a system works. In environmental studies, for example, a conceptual model may delineate all the factors and parameters for determining how a particle move...

  5. Evaluation in the Design of Complex Systems

    ERIC Educational Resources Information Center

    Ho, Li-An; Schwen, Thomas M.

    2006-01-01

    We identify literature that argues the process of creating knowledge-based system is often imbalanced. In most knowledge-based systems, development is often technology-driven instead of requirement-driven. Therefore, we argue designers must recognize that evaluation is a critical link in the application of requirement-driven development models…

  6. Method of storing hydrogen using nonequilibrium materials and system

    SciTech Connect

    Kumar, K.

    1986-01-21

    A process is described for reversibly storing hydrogen in an amorphous rare earth-transition metal alloy material. The process consists of: supplying hydrogen to amorphous rare earth-transition metal alloy material in a closed system, cycling the hydrogen over the alloy material to cause hydrogen to be stored in the alloy material; and withdrawing hydrogen from the system to retrieve the stored hydrogen.

  7. On the synthesis atmosphere influence in the technology of complex composite materials in the wide temperature range

    NASA Astrophysics Data System (ADS)

    Uspensky, A. A.; Yavshits, S.; Lipin, V.; Zhigalov, P.; Slobodov, A.

    2017-02-01

    Heterogeneous and homogeneous processes of synthesis for complex functional materials are studied by the methods of thermodynamic modeling and calculation, based on minimization of the Gibbs energy of the researched system. The conditions and products of gasification in the field of 0-2000 °C are determined for the synthesis conditions of a ceramic tile with complex composition (10-component system). All main products of interaction of components of ceramic mass (the system SiO2 – K2O – Na2O – Al2O3 – Fe2O3 – CaO – MgO – TiO2 – P2O5 – SO3) and main components of air (the system N2 – O2 – CO2 – H2O) are found for the synthesis of material in the conditions of the air atmosphere at various temperatures. The character of physico-chemical influence of each components on the occurring processes is revealed, that determines a theoretical and calculation base of management and optimization of the synthesis engineering process for various functional materials.

  8. Broad-band characterization of the complex permittivity and permeability of materials

    SciTech Connect

    Avalle, C.A.

    1994-11-01

    By employment of state-of-the-art Vector Network Analyzers, and other wide-band measurement equipment and techniques, the authors have the capability of measuring the complex permittivity and permeability of materials, for frequencies ranging from several tens of Kilohertz up to several Gigahertz. Measurement methods and equations for numerical determination are based on recommendations by the National Institute of Standards and Technology (NIST). Types of materials which can be analyzed are dielectric or magnetic RF and radar absorbers; thin sheets, paints, coatings; castable resins; foams and low density materials; ceramics and ferrites; carbonized fabrics; and composites.

  9. Complexity analyses of multi-wing chaotic systems

    NASA Astrophysics Data System (ADS)

    He, Shao-Bo; Sun, Ke-Hui; Zhu, Cong-Xu

    2013-05-01

    The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger—Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.

  10. Circulating immune complexes in systemic scleroderma and generalized morphea.

    PubMed

    O'Loughlin, S; Tappeiner, G; Jordon, R E

    1980-01-01

    There is growing evidence that pathologic changes in the vascular system are implicated in the pathogenesis of systemic scleroderma. It has been suggested that immune complex deposition may be responsible for such changes. We measured circulating immune complexes in 10 patients with severe systemic scleroderma, 1 of whom had clinical evidence of renal disease, and in 3 patients with generalized morphea. None of the patients had significantly elevated levels. Our findings suggest that although circulating immune complexes are of diagnostic and prognostic value in other collagen vascular diseases, they do not play a major role in the pathogenesis of systemic scleroderma in patients who lack clinical evidence of renal disease.

  11. CONFERENCE ANNOUNCEMENT: European Conference on Complex Systems 2009 European Conference on Complex Systems 2009

    NASA Astrophysics Data System (ADS)

    2009-05-01

    The 2009 European Conference on Complex Systems will take place 21-25 September 2009 at the University of Warwick in the UK. Local Organising Committee Markus Kirkilionis (Warwick, Chair), Francois Kepes (Genopole, Programme Chair), Robert MacKay (Warwick), Robin Ball (Warwick), Jeff Johnson (Open University). International Steering Committee Markus Kirkilionis (Warwick; Chair 2008-10), Fatihcan Atay (Leipzig), Jürgen Jost (Leipzig), Scott Kirkpatrick (Jerusalem), David Lane (University of Modena and Reggio Emillia), Andreas Lorincz (Hungarian Academy of Sciences), Denise Pumain (Sorbonne), Felix Reed-Tsochas (Oxford), Eörs Szathmáry (Collegium Budapest, Hungary), Stephan Thurner (Wien), Paul Verschure (Barcelona), Alessandro Vespignani (Indiana, ISI), Riccardo Zecchina (Torino). Main tracks and Organisers Policy, Planning & Infrastructure: Jeff Johnson (Open University, Chair), Arnaud Banos (Strasbourg) Collective Human Behaviour and Society: Felix Reed-Tsochas (Oxford, Chair), Frances Griffiths (Warwick), Edmund Chattoe-Brown (Leicester) Interacting Populations and Environment: TBA Complexity and Computer Science: András Lörincz (Eötvös Loránd University), Paul Verschure (Zürich) From Molecules to Living Systems: Mark Chaplain (Dundee, Chair), Wolfgang Marwan (Magdeburg) Mathematics and Simulation: Holger Kantz (Dresden, Chair), Fatihcan Atay (Leipzig), Matteo Marsili (Trieste). Deadlines Paper submission: 31 March 2009 with decisions 15 May 2009. Paper submission deadline likely to be extended. See http://www.eccs09.info for more information. Meeting registration: early registration July 2009; last assured chance 1 Sept. Further information For contacts and the most up-to-date information visit http://www.eccs09.info.

  12. Electrode materials and lithium battery systems

    DOEpatents

    Amine, Khalil [Downers Grove, IL; Belharouak, Ilias [Westmont, IL; Liu, Jun [Naperville, IL

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  13. Bag-out material handling system

    DOEpatents

    Brak, Stephen B.; Milek, Henry F.

    1984-01-01

    A bagging device for transferring material from a first chamber through an pening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  14. Bag-out material handling system

    DOEpatents

    Brak, Stephen B.

    1985-01-01

    A bagging device for transferring material from a first chamber through an opening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  15. Teaching about Complex Systems Is No Simple Matter: Building Effective Professional Development for Computer-Supported Complex Systems Instruction

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Anderson, Emma; Koehler-Yom, Jessica; Evans, Chad; Park, Miyoung; Sheldon, Josh; Schoenfeld, Ilana; Wendel, Daniel; Scheintaub, Hal; Klopfer, Eric

    2017-01-01

    The recent next generation science standards in the United States have emphasized learning about complex systems as a core feature of science learning. Over the past 15 years, a number of educational tools and theories have been investigated to help students learn about complex systems; but surprisingly, little research has been devoted to…

  16. Forewarning of Failure in Complex Systems

    SciTech Connect

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J; Schlicher, Bob G; Sheldon, Frederick T

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.

  17. Complex Dynamical Behavior in Hybrid Systems

    DTIC Science & Technology

    2012-09-29

    Teel, ``Analytical and numerical Lyapunov functions for SISO linear control systems with first-order reset elements”, International Journal of...2010. J15. T. Hu, T. Thibodeau, A.R. Teel, ``A Unified Lyapunov Approach to Analysis of Oscillations and Stability for Systems With Piecewise...Teel, `` Lyapunov Functions, Stability and Input-to-State Stability Subtleties for Discrete-Time Discontinuous Systems’’, IEEE Transactions on

  18. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  19. Millimeter and submillimeter wave measurements of complex optical and dielectric parameters of materials

    NASA Astrophysics Data System (ADS)

    Afsar, M. N.; Button, Kenneth J.

    1982-11-01

    These coolant materials were chosen for the first in this series of measrements of the complex parameters of liquids over the entire millimeter and submillimeter wavelength range of the spectrum. The fluorocarbon coolants not reported here exhibit an order of magnitude lower loss. It is the characteristic of these liquids that the absorption coefficient increases monotonically with frequency.

  20. Effects of the Cognitive Level of Thought on Learning Complex Material

    ERIC Educational Resources Information Center

    Alkhalifa, Eshaa M.

    2005-01-01

    The main goal here is to introduce a new perspective through which cognitive learning theory plays an active role in instructional hypermedia design and evaluation through testing educational mediums that elicit two distinct levels of cognitive processing for materials of different levels of complexity. Results indicate that if the cognitive level…