Sample records for complex mechanical properties

  1. Mechanical properties of bulk graphene oxide/poly(acrylic acid)/poly(ethylenimine) ternary polyelectrolyte complex.

    PubMed

    Duan, Yipin; Wang, Chao; Zhao, Mengmeng; Vogt, Bryan D; Zacharia, Nicole S

    2018-05-30

    Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.

  2. Grindability and mechanical property of ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Changsheng; Chand, R.H.

    1996-12-31

    For cost-effective ceramic machining, material-specific machining methodology is needed. This requires characterizing ceramics from machining view point. In this paper, a preliminary study of the correlation between grindability and mechanical properties is reported. Results indicate that there exists complex correlations between grindability and mechanical properties such as hardness, fracture toughness and elasticity. Some ceramics of similar mechanical properties have different grindabilities, which implies that it is possible to develop ceramics of both superior mechanical properties and good grindability.

  3. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    PubMed

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Schümann, M.; Morich, J.; Kaufhold, T.; Böhm, V.; Zimmermann, K.; Odenbach, S.

    2018-05-01

    Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.

  5. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    PubMed

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  6. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.

    PubMed

    Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent

    2016-02-01

    Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  7. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    PubMed

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  8. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties.

    PubMed

    Martins, Jéssica G; de Oliveira, Ariel C; Garcia, Patrícia S; Kipper, Matt J; Martins, Alessandro F

    2018-05-15

    Processing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation. By performing the complexation at low pH, the complexes form with a high degree of intermolecular association, instead of forming by electrostatic complexation. This method avoids precipitation, and overcomes the aqueous instability typical of PT/CS complexes. After neutralization, the PEC membranes display features characteristic of a high degree of intermolecular association because of the self-assembling of polymer chains. The PT/CS ratio can be tuned to enhance the mechanical strength (σ = 39 MPa) of the membranes. These polysaccharide-based materials can demonstrate advantages over synthetic materials for technological applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The effects of morphological irregularity on the mechanical behavior of interdigitated biological sutures under tension.

    PubMed

    Liu, Lei; Jiang, Yunyao; Boyce, Mary; Ortiz, Christine; Baur, Jeffery; Song, Juha; Li, Yaning

    2017-06-14

    Irregular interdigitated morphology is prevalent in biological sutures in nature. Suture complexity index has long been recognized as the most important morphological parameter to govern the mechanical properties of biological sutures. However, the suture complexity index alone does not reflect all aspects of suture morphology. The goal of this investigation was to determine that besides suture complexity index, whether the degree of morphological irregularity of biological sutures has influences on the mechanical properties, and if there is any, how to quantify these influences. To explore these issues, theoretical and finite element (FE) suture models with the same suture complexity index but different levels of morphological irregularity were developed. The quasi-static stiffness, strength for damage initiation and post-failure process of irregular sutures were studied. It was shown that for the same suture complexity index, when the level of morphological irregularity increases, the overall strain to failure will increase while tensile stiffness is retained; also, the total energy to fracture increases with a sacrifice in strength to damage initiation. These results reveal that morphological irregularity is another important independent parameter to govern and balance the mechanical properties of biological sutures. Therefore, from the mechanics point of view, the prevalence of irregular suture morphology in nature is a merit, not a defect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments.

    PubMed

    Rocha, M S

    2015-09-01

    In this review we focus on the idea of establishing connections between the mechanical properties of DNA-ligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in particular when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch DNA-ligand complexes and to obtain "force × extension" data, from which the mechanical properties of the complexes can be determined. We also discuss the characteristics of the main types of interactions that can occur between DNA and ligands, from covalent binding to simple electrostatic driven interactions. Finally, we present a historical survey of the attempts to connect mechanics to physical chemistry for DNA-ligand systems, emphasizing a recently developed fitting approach useful to connect the persistence length of DNA-ligand complexes to the physicochemical properties of the interaction. Such an approach in principle can be used for any type of ligand, from drugs to proteins, even if multiple binding modes are present.

  11. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    PubMed

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  12. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G

    2015-05-15

    A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Formation of core-shell structured complex microparticles during fabrication of magnetorheological elastomers and their magnetorheological behavior

    NASA Astrophysics Data System (ADS)

    Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin

    2016-11-01

    To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.

  14. Mechanism of Hydrogen Production in [Fe-Fe]-Hydrogenase: A Density Functional Theory Study (Postprint)

    DTIC Science & Technology

    2007-03-01

    Chem. Soc. 2001, 123, 1596-1601. (8) Volbeda, A.; Fontecilla-Camps, J. C. The Active Site and Catalytic Mechanism of NiFe Hydrogenases. Dalton Trans... Properties of Diiron Complexes Related to the [2Fe]H Subcluster of Fe-Only Hydrogenases. Inorg. Chem. 2002, 41, 1421-1429. (16) Bruschi, M.; Fantucci, P...Structural, Electronic, and Reactivity Properties of Complexes Related to the [2Fe]H Subcluster. Inorg. Chem. 2003, 42, 4773-4781. (17) Bruschi, M.; Fantucci

  15. Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase.

    PubMed

    Wu, Xiaomeng; Liu, Yaowei; Liu, Anjun; Wang, Wenhang

    2017-05-01

    The inferior thermal- stability of collagen hinders its extensive application in food industry, including edible packaging. To improve the thermal- stability and mechanical properties of collagen, we attempted to crosslink collagen with some proteins possessing excellent thermal stability (i. e., casein, keratin and soy protein isolate (SPI)). Observed from the SDS- PAGE and particle size distribution, some complexes with higher molecule weight and relative bigger size particle occurred in the protein mixture, especially after TGase crosslinking. Importantly, the crosslinking greatly improved the thermal- stable property of protein complex, especially that of the collagen- casein complex judged from differential scanning calorimetric (DSC). Moreover, the crosslinking enhanced the mechanical properties of the combined films in terms of tensile strength (TS) and elongation at break (EAB). Also, some obvious differences in morphology of proteins before and after TGase crosslinking were observed by scanning electron microscopy (SEM). These impacts of TGase crosslinking with heat- resistant proteins on collagen features were associated with the conformational changes of the protein complex analyzed by Fourier transform infrared spectroscopy (FTIR). In conclusion, TGase crosslinking with higher thermally stable proteins could be an effective method to contribute to collagen' application in food packaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Novel polyelectrolyte complex based carbon nanotube composite architectures

    NASA Astrophysics Data System (ADS)

    Razdan, Sandeep

    This study focuses on creating novel architectures of carbon nanotubes using polyelectrolytes. Polyelectrolytes are unique polymers possessing resident charges on the macromolecular chains. This property, along with their biocompatibility (true for most polymers used in this study) makes them ideal candidates for a variety of applications such as membranes, drug delivery systems, scaffold materials etc. Carbon nanotubes are also unique one-dimensional nanoscale materials that possess excellent electrical, mechanical and thermal properties owing to their small size, high aspect ratio, graphitic structure and strength arising from purely covalent bonds in the molecular structure. The present study tries to investigate the synthesis processes and material properties of carbon nanotube composites comprising of polyelectrolyte complexes. Carbon nanotubes are dispersed in a polyelectrolyte and are induced into taking part in a complexation process with two oppositely charged polyelectrolytes. The resulting stoichiometric precipitate is then drawn into fiber form and dried as such. The material properties of the carbon nanotube fibers were characterized and related to synthesis parameters and material interactions. Also, an effort was made to understand and predict fiber morphology resulting from the complexation and drawing process. The study helps to delineate the synthesis and properties of the said polyelectrolyte complex-carbon nanotube architectures and highlights useful properties, such as electrical conductivity and mechanical strength, which could make these structures promising candidates for a variety of applications.

  17. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    PubMed Central

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  18. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.

    PubMed

    Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em

    2016-01-01

    Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).

  19. Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy.

    PubMed

    Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech

    2018-04-01

    Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Azidin, A.; Taib, Z. A. M.; Harun, W. S. W.; Che Ghani, S. A.; Faisae, M. F.; Omar, M. A.; Ramli, H.

    2015-12-01

    Orthodontic implants have been a major focus through mechanical and biological performance in advance to fabricate shape of complex anatomical. Designing the part with a complex mechanism is one of the challenging process and addition to achieve the balance and desired mechanical performance brought to the right manufacture technique to fabricate. Metal additive manufacturing (MAM) is brought forward to the newest fabrication technology in this field. In this study, selective laser melting (SLM) process was utilized on a medical grade cobalt-chrome molybdenum (CoCrMo) alloy. The work has focused on mechanical properties of the CoCrMo open cellular structures samples with 60%, 70%, and 80% designed volume porosity that could potentially emulate the properties of human bone. It was observed that hardness values decreased as the soaking time increases except for bottom face. For compression test, 60% designed volume porosity demonstrated highest ultimate compressive strength compared to 70% and 80%.

  1. Properties of a memory network in psychology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedemann, Roseli S.; Donangelo, Raul; Carvalho, Luis A. V. de

    We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.

  2. Properties of a memory network in psychology

    NASA Astrophysics Data System (ADS)

    Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.

    2007-12-01

    We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.

  3. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP)more » with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  4. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  5. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE PAGES

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao; ...

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  6. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  7. Microfabrication of hierarchical structures for engineered mechanical materials

    NASA Astrophysics Data System (ADS)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  8. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  9. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  10. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    PubMed Central

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  11. Study of Al-Si Alloy Oxygen Saturation on Its Microstructure and Mechanical Properties.

    PubMed

    Finkelstein, Arkady; Schaefer, Arseny; Chikova, Оlga; Borodianskiy, Konstantin

    2017-07-11

    One of the main goals of modern materials research is obtaining different microstructures and studying their influence on the mechanical properties of metals; aluminum alloys are particularly of interest due to their advanced performance. Traditionally, their required properties are obtained by alloying process, modification, or physical influence during solidification. The present work describes a saturation of the overheated AlSi₇Fe₁ casting alloy by oxides using oxygen blowing approach in overheated alloy. Changes in metals' microstructural and mechanical properties are also described in the work. An Al 10 SiFe intermetallic complex compound was obtained as a preferable component to Al₂O₃ precipitation on it, and its morphology was investigated by scanning electron microscopy. The mechanical properties of the alloy after the oxygen blowing treatment are discussed in this work.

  12. Designer biomaterials for mechanobiology

    NASA Astrophysics Data System (ADS)

    Li, Linqing; Eyckmans, Jeroen; Chen, Christopher S.

    2017-12-01

    Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

  13. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    PubMed

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPa

  14. Nanoscale Charge Balancing Mechanism in Calcium-Silicate-Hydrate Gels: Novel Complex Disordered Materials from First-principles

    NASA Astrophysics Data System (ADS)

    Ozcelik, Ongun; White, Claire

    Alkali-activated materials which have augmented chemical compositions as compared to ordinary Portland cement are sustainable technologies that have the potential to lower CO2 emissions associated with the construction industry. In particular, calcium-silicate-hydrate (C-S-H) gel is altered at the atomic scale due to changes in its chemical composition. Here, based on first-principles calculations, we predict a charge balancing mechanism at the molecular level in C-S-H gels when alkali atoms are introduced into their structure. This charge balancing process is responsible for the formation of novel structures which possess superior mechanical properties compared to their charge unbalanced counterparts. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these charge balancing effects on the structures is assessed by analyzing their formation energies, local bonding environments, diffusion barriers and mechanical properties. These results provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental mechanisms that play a crucial role in these complex disordered materials. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF.

  15. The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria

    NASA Astrophysics Data System (ADS)

    Afolagboye, Lekan Olatayo; Talabi, Abel Ojo; Oyelami, Charles Adebayo

    2017-05-01

    This study assessed the possibility of using index tests to determine the mechanical properties of crushed aggregates. The aggregates used in this study were derived from major Precambrian basement rocks in Ado-Ekiti, Nigeria. Regression analyses were performed to determine the empirical relations that mechanical properties of the aggregates may have with the point load strength (IS(50)), Schmidt rebound hammer value (SHR) and unconfined compressive strength (UCS) of the rocks. For all the data, strong correlation coefficients were found between IS(50), SHR, UCS, and mechanical properties of the aggregates. The regression analysis conducted on the different rocks separately showed that correlations coefficients obtained between the IS(50), SHR, UCS and mechanical properties of the aggregates were stronger than those of the grouped rocks. The T-test and F-test showed that the derived models were valid. This study has shown that the mechanical properties of the aggregates can be estimated from IS(50), SHR and USC but the influence of rock type on the relationships should be taken into consideration.

  16. Nonlinear optical properties and excited state dynamics of sandwich-type mixed (phthalocyaninato)(Schiff-base) triple-decker complexes: Effect of rare earth atom

    NASA Astrophysics Data System (ADS)

    Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin

    2018-07-01

    The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.

  17. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber.

    PubMed

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W; Wu, Sizhu

    2015-12-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  18. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    PubMed Central

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu

    2015-01-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513

  19. Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites

    NASA Astrophysics Data System (ADS)

    Farzanian, Shafee; Shahsavari, Rouzbeh

    2018-03-01

    Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.

  20. DNA-cisplatin binding mechanism peculiarities studied with single molecule stretching experiments

    NASA Astrophysics Data System (ADS)

    Crisafuli, F. A. P.; Cesconetto, E. C.; Ramos, E. B.; Rocha, M. S.

    2012-02-01

    We propose a method to determine the DNA-cisplatin binding mechanism peculiarities by monitoring the mechanical properties of these complexes. To accomplish this task, we have performed single molecule stretching experiments by using optical tweezers, from which the persistence and contour lengths of the complexes can be promptly measured. The persistence length of the complexes as a function of the drug total concentration in the sample was used to deduce the binding data, from which we show that cisplatin binds cooperatively to the DNA molecule, a point which so far has not been stressed in binding equilibrium studies of this ligand.

  1. Star polymers as unit cells for coarse-graining cross-linked networks

    NASA Astrophysics Data System (ADS)

    Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.

    2018-03-01

    Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.

  2. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Treesearch

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  3. Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet

    NASA Astrophysics Data System (ADS)

    Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.

    2017-09-01

    Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.

  4. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  5. New classification methods on singularity of mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Jianguo; Han, Jianyou

    2010-07-01

    Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.

  6. Mechanism of Hydrogen Production in [Fe-Fe]-Hydrogenase: A Density Functional Theory Study (Preprint)

    DTIC Science & Technology

    2007-03-01

    of NiFe hydrogenases. Dalton Transactions 2003,4030-4038. (9) Armstrong, F. A., Hydrogenases: active site puzzles and progress. Current Opinion in...DFT Investigation of Structural, Electronic, and Catalytic Properties of Diiron Complexes Related to the [2Fe]H Subcluster of Fe-Only Hydrogenases...Hydrogenases: Effects of Redox State and Ligand Characteristics on Structural, Electronic, and Reactivity Properties of Complexes Related to the [2Fe]H

  7. Towards high-performance materials for road construction

    NASA Astrophysics Data System (ADS)

    Gladkikh, V.; Korolev, E.; Smirnov, V.

    2017-10-01

    Due to constant increase of traffic, modern road construction is in need of high-performance pavement materials. The operational performance of such materials can be characterized by many properties. Nevertheless, the most important ones are resistance to rutting and resistance to dynamical loads. It was proposed earlier to use sulfur extended asphalt concrete in road construction practice. To reduce the emission of sulfur dioxide and hydrogen sulfide during the concrete mix preparation and pavement production stages, it is beneficial to make such a concrete on the base of complex sulfur modifier. In the present work the influence of the complex modifier to mechanical properties of sulfur extended asphalt concrete was examined. It was shown that sulfur extended asphalt concrete is of high mechanical properties. It was also revealed that there as an anomalous negative correlations between strain capacity, fatigue life and fracture toughness.

  8. Influence of chirality on vibrational and relaxational properties of (S)- and (R,S)-ibuprofen/methyl-β-cyclodextrin inclusion complexes: an INS and QENS study.

    PubMed

    Crupi, Vincenza; Guella, Graziano; Longeville, Stéphane; Majolino, Domenico; Mancini, Ines; Paciaroni, Alessandro; Rossi, Barbara; Venuti, Valentina

    2013-10-03

    In this paper, we analyze the internal picosecond dynamics of enantiomeric ((S)-) and racemic ((R,S)-) ibuprofen (IBP), when forming inclusion complexes, in solid state, with methyl-β-cyclodextrin (Me-β-CD), by inelastic and quasi elastic neutron scattering. The study was aimed at understanding, by the analysis of the vibrational and relaxational properties of the inclusion complexes also with respect to the single components, if and how the differences in the structural properties of the hydrogen bond (HB) network of (S)- and (R,S)-IBP can have influence on the complexation process triggered by "host-guest" interactions, whose detailed knowledge is retained as a prerequisite for enantiodiscrimination. From the results, a similar complexation mechanism for (S)- and (R,S)-IBP is argued, with a preferred penetration mode involving the isopropyl group of IBP.

  9. Relationship between mechanical-property and energy-absorption trends for composite tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    U.S. Army helicopters are designed to dissipate prescribed levels of crash impact kinetic energy without compromising the integrity of the fuselage. Because of the complexity of the energy-absorption process it is imperative for designers of energy-absorbing structures to develop an in-depth understanding of how and why composite structures absorb energy. A description of the crushing modes and mechanisms of energy absorption for composite tubes and beams is presented. Three primary crushing modes of composite structures including transverse shearing, lamina bending, and local buckling are described. The experimental data presented show that fiber and matrix mechanical properties and laminate stiffness and strength mechanical properties cannot reliably predict the energy-absorption response of composite tubes.

  10. Method of forming biaxially textured alloy substrates and devices thereon

    DOEpatents

    Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan

    2000-01-01

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  11. Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice.

    PubMed

    Felix, Richard A; Portfors, Christine V

    2007-06-01

    Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57Bl/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech.

  12. The Effect of Water Molecules on Mechanical Properties of Bamboo Microfibrils

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima

    Bamboo fibers have higher strength-to-weight ratios than steel and concrete. The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. Our results suggest that hemicellulose exhibits better mechanical properties and lignin shows greater tendency to adhere to cellulose nanofibrils. Consequently, the role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils is responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content (less than 10 NSF CAREER Grant No. 1261284.

  13. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint

    PubMed Central

    Zhang, Xiangming

    2011-01-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint. PMID:21061141

  14. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.

    PubMed

    Zhang, Xiangming; Gan, Rong Z

    2011-10-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.

  15. Mechanical properties and fibrin characteristics of endovascular coil–clot complexes: relevance to endovascular cerebral aneurysm repair paradigms

    PubMed Central

    Haworth, Kevin J; Weidner, Christopher R; Abruzzo, Todd A; Shearn, Jason T; Holland, Christy K

    2015-01-01

    Background Although coil embolization is known to prevent rebleeding from acutely ruptured cerebral aneurysms, the underlying biological and mechanical mechanisms have not been characterized. We sought to determine if microcoil-dependent interactions with thrombus induce structural and mechanical changes in the adjacent fibrin network. Such changes could play an important role in the prevention of aneurysm rebleeding. Methods The stiffness of in vitro human blood clots and coil–clot complexes implanted into aneurysm phantoms were measured immediately after formation and after retraction for 3 days using unconfined uniaxial compression assays. Scanning electron microscopy of the coil–clot complexes showed the effect of coiling on clot structure. Results The coil packing densities achieved were in the range of clinical practice. Bare platinum coils increased clot stiffness relative to clot alone (Young’s modulus 6.9 kPa and 0.83 kPa, respectively) but did not affect fibrin structure. Hydrogel-coated coils prevented formation of a clot and had no significant effect on clot stiffness (Young’s modulus 2 kPa) relative to clot alone. Clot age decreased fiber density by 0.2 fibers/µm2 but not the stiffness of the bare platinum coil–clot complex. Conclusions The stiffness of coil–clot complexes is related to the summative stiffness of the fibrin network and associated microcoils. Hydrogel-coated coils exhibit significantly less stiffness due to the mechanical properties of the hydrogel and the inhibition of fibrin network formation by the hydrogel. These findings have important implications for the design and engineering of aneurysm occlusion devices. PMID:24668257

  16. Diffusive, Displacive Deformations and Local Phase Transformation Govern the Mechanics of Layered Crystals: The Case Study of Tobermorite.

    PubMed

    Tao, Lei; Shahsavari, Rouzbeh

    2017-07-19

    Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.

  17. Accomplishment Summary 1968-1969. Biological Computer Laboratory.

    ERIC Educational Resources Information Center

    Von Foerster, Heinz; And Others

    This report summarizes theoretical, applied, and experimental studies in the areas of computational principles in complex intelligent systems, cybernetics, multivalued logic, and the mechanization of cognitive processes. This work is summarized under the following topic headings: properties of complex dynamic systems; computers and the language…

  18. Effect of the chiral discrimination on the vibrational properties of (R)-, (S)- and (R, S)-ibuprofen/methyl-β-cyclodextrin inclusion complexes

    NASA Astrophysics Data System (ADS)

    Crupi, V.; Guella, G.; Majolino, D.; Mancini, I.; Paciaroni, A.; Rossi, B.; Venuti, V.; Verrocchio, P.; Viliani, G.

    2011-05-01

    The effects of chiral discrimination of ibuprofen (IBP) on the complexation process with methyl-β-cyclodextrin (Me-β-CD) were investigated in the solid phase by FTIR-ATR spectroscopy and numerical simulation. The inclusion mechanism was deduced from the temperature-dependent analysis of the vibrational spectra, in the C=O stretching region, of complexes formed by Me-β-CD with the two enantiomeric and the racemic forms of IBP. The mechanism turned out to be enthalpy-driven, with IBP enantiomers giving rise to more stable inclusion complexes with respect to the racemate.

  19. The Surface Layer Mechanical Condition and Residual Stress Forming Model in Surface Plastic Deformation Process with the Hardened Body Effect Consideration

    NASA Astrophysics Data System (ADS)

    Mahalov, M. S.; Blumenstein, V. Yu

    2017-10-01

    The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  20. A high throughput array microscope for the mechanical characterization of biomaterials

    NASA Astrophysics Data System (ADS)

    Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard

    2015-02-01

    In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.

  1. Fracture surface analysis in composite and titanium bonding

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1985-01-01

    To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.

  2. Electrospun ultra-fine cellulose acetate fibrous mats containing tannic acid-Fe+++ complexes

    USDA-ARS?s Scientific Manuscript database

    Cellulose acetate (CA) fibrous mats with improved mechanical and antioxidant properties were produced by a simple, scalable and cost-effective electrospinning method. Fibers loaded with small amounts of TA-Fe+++ complexes showed an increase in tensile strength of approximately 117% when compared to ...

  3. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  4. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  5. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    NASA Astrophysics Data System (ADS)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  6. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites

    PubMed Central

    Li, Feng; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-01-01

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO4)2, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed. PMID:29659504

  7. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.

    PubMed

    Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-04-16

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  8. Influence of particle size on water absorption capacity and mechanical properties of polyethylene-wood flour composites

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2015-10-01

    Biocomposites based on low density polyethylene (LDPE) and birch wood flour (WF) were investigated. The mechanical properties and water absorption capacity were examined depending on the particle size of a filler in biocomposites. The aim of the paper is the investigation of composite properties depending on the filler particle size. The filler particle sizes were 0-80 µm, 80-140 µm, 140-200 µm, and 0-200 µm. The tensile strength of composite samples varied within the range 5.7-8.2 MPa. Elongation at break of composites varied within the range 5.1-7.5%. Highest mechanical properties were found in composites with the lowest filler fraction. Highest water absorption was observed in composition with a complex fraction of the filler. The influence of the filler particle size on composite properties was shown. It was found that an increase of the filler particle size decreases mechanical parameters and increases water absorption.

  9. The influence of build parameters on the microstructure during electron beam melting of Titanium6Aluminum4Vanadium

    NASA Astrophysics Data System (ADS)

    Puebla, Karina

    With the demand of devices to replace or improve areas, such as: electronic, biomedical and aerospace industries. Improvements in these areas of engineering have been in need due to the customer's needs for product properties requirements. The design of components must exhibit better material properties (mechanical or biocompatible) close to those of any given product. Rapid prototyping (RP) technologies that were originally designed to build prototypes may now be required to build functional end-use products. To carry out the transition, from RP to rapid manufacturing (RM), the available materials utilized in RP must provide the performance required for RM. The specific technology being used should be capable of producing reliable parts in regards to their mechanical properties. The research presented in this work investigated the effects of building parameters (build orientation and melt scan rate) on microstructure and the mechanical properties of test specimens fabricated via Electron Beam Melting (EBM) using Ti6Al4V. EBM, a rapid prototyping technology, has the potential to manufacture complex 3-dimensional end-use products layer-by-layer. In this work, a design of experiments approach was performed to determine the effects of build orientation and melt scan rate on both the microstructure and mechanical properties of test samples fabricated using EBM. Two randomized setups were designed to build two batches of 18 specimens. The experimental designs were carried out to determine the effect of different build parameters (build orientation and melt scan rate) in the mechanical properties of the fabricated specimens. The results demonstrated that EBM manufactured specimens built with different melt scan rates and build orientations have different microstructures and mechanical properties. Different melt scans produced variations in particle sintering resulting in dissimilar porosities and in mechanical properties (hardness and tensile testing). The mechanical properties decreased as the porosity increased for tensile testing and Rockwell C-scale (HR C), while Vickers hardness (HV) measurements increased and are related to the microstructure. The different build orientations of the specimens produced different mechanical properties since the orientation of the fabricated specimens impact the local heat transfer flow. This influenced the microstructure where the specimens oriented horizontally cooled more rapidly than those built vertically. Statistically significant differences in mechanical properties were found as an effect of melt scan rate. The statistical analyses that were done can help identify and classify fabrication parameters on mechanical properties for EBM-fabricated products. Optical images demonstrated the presence of alpha and beta phases, and alpha'-martensite with slight differences in microstructure. Dislocation substructures were observed in acicular alpha-plates from TEM images and alpha, beta, and alpha'-phase features. Mechanical and thermal treatment on Ti6Al4V can generate different microstructures promoting Ti6Al4V as an evolutionary alloy. Tailored mechanical properties of complex 3-dimensional end-use products can be achieved by modifying the building parameters of the EBM system. The EBM system can facilitate the process of manufacturing components by varying build parameters in order to obtain desirable physical and mechanical properties. Once the desired properties for Ti6Al4V are established, the fabrication process will lead to more successful end-use products.

  10. Method of forming biaxially textured alloy substrates and devices thereon

    DOEpatents

    Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan

    1999-01-01

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  11. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2003-08-01

    Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

  12. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    PubMed Central

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-01-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  13. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    PubMed

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  14. Direct measurement of local material properties within living embryonic tissues

    NASA Astrophysics Data System (ADS)

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger

    The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.

  15. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C)

    PubMed Central

    Alfieri, Claudio; Zhang, Suyang

    2017-01-01

    The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes. PMID:29167309

  16. Rhodium complexes as therapeutic agents.

    PubMed

    Ma, Dik-Lung; Wang, Modi; Mao, Zhifeng; Yang, Chao; Ng, Chan-Tat; Leung, Chung-Hang

    2016-02-21

    The landscape of inorganic medicinal chemistry has been dominated by the investigation of platinum, and to a lesser extent ruthenium, complexes over the past few decades. Recently, complexes based on other metal centers such as rhodium have attracted attention due to their tunable chemical and biological properties as well as distinct mechanisms of action. This perspective highlights recent examples of rhodium complexes that show diverse biological activities against various targets, including enzymes and protein-protein interactions.

  17. Evolution of weighted complex bus transit networks with flow

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei

    2016-02-01

    Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.

  18. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.

    PubMed

    Hu, Yang; Dan, Weihua; Xiong, Shanbai; Kang, Yang; Dhinakar, Arvind; Wu, Jun; Gu, Zhipeng

    2017-01-01

    To improve the mechanical properties and biocompatibility of collagen I matrix, a novel and facile strategy was developed to modify porcine acellular dermal matrix (PADM) via dopamine self-polymerization followed by collagen immobilization to enhance the biological, mechanical and physicochemical properties of PADM. Mechanism study indicated that the polymerization of dopamine onto PADM surface could be regulated by controlling the amount of hydrogen bonds forming between phenol hydroxyl (COH) and nitrogen atom (NCO) within collagen fibers of PADM. The investigations of surface interactions between PDA and PADM illustrated that PDA-PADM system yielded better mechanical properties, thermal stability, surface hydrophilicity and the structural integrity of PADM was maintained after dopamine coating. Furthermore, collagen (COL) was immobilized onto the fresh PDA-PADM to fabricate the collagen-PDA-PADM (COL-PDA-PADM) complexed scaffold. The MTT assay and CLSM observation showed that COL-PDA-PADM had better biocompatibility and higher cellular attachment than pure PADM and COL-PADM without dopamine coating, thus demonstrating the efficacy of PDA as the intermediate layer. Meanwhile, the expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) of COL-PDA-PADM were investigated by an in vivo study. The results revealed that COL-PDA-PADM could effectively promote bFGF and VEGF expression, possibly leading to enhancing the dura repairing process. Overall, this work contributed a new insight into the development of a semi-natural tissue engineering scaffold with high biocompatibility and good mechanical properties. Obtaining scaffolds with high biocompatibility and good mechanical properties is still one of the most challenging issues in tissue engineering. To have excellent in vitro and in vivo performance, scaffolds are desired to have similar mechanical and biological properties as the natural extracellular matrix, such as collagen based matrix. Utilizing the surface self-crosslinking and coating strategy, we successfully obtained a novel semi-natural platform with excellent biological and mechanical properties from porcine acellular dermal matrix (PADM), polydopamine and collagen. The results confirmed that this scaffold platform has very excellent cellular performance and very little toxicity/side effects in vivo. Therefore, this semi-natural scaffold may be an appropriate platform for tissue engineering and this strategy would further help to develop more robust scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    PubMed

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Network geometry with flavor: From complexity to quantum geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .

  1. Network geometry with flavor: From complexity to quantum geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.

  2. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.

    PubMed

    Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder

    2007-11-01

    A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.

  3. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states

    PubMed Central

    Schlau-Cohen, Gabriela S.; Wang, Quan; Southall, June; Cogdell, Richard J.; Moerner, W. E.

    2013-01-01

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities. PMID:23776245

  4. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    PubMed

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-02

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  5. Chapter 4. Cytomechanics of hair basics of the mechanical stability.

    PubMed

    Popescu, Crisan; Höcker, Hartwig

    2009-01-01

    Hair is a complex "cornified" multicellular tissue composed of cuticle and cortex cells mechanically acting as a whole. The cuticle cells overlap and cortex cells interdigitate, all cells being composed of different morphological elements and separated by the cell membrane complex (CMC). The CMC and the morphological elements of the cortex cells, the macrofibrils, composed of microfibrils or intermediate filaments (IFs), and the intermacrofibrillar and intermicrofibrillar cement or the amorphous matrix material determine the mechanical properties of hair. The IFs consist of alpha-keratin molecules being arranged in a sophisticated way of two parallel monomers and antiparallel and shifted dimers rationalized by the amino acid composition and sequence. The mechanical properties of hair result from mechanical interlocking effects, hydrophobic effects, hydrogen bridges, Coulombic interactions, and (covalent) isodipeptide and, in particular, disulfide bridges on a molecular level. The mechanical models applied to hair are based on a simple two-component system, the microfibril/matrix structure. An important regime of the stress-strain curve is the transition of the molecules of the microfibrils from the alpha-helical to the beta-sheet structure. Due to the longitudinal orientation of the IF molecules the longitudinal swelling of the fibers in water is negligible, the radial swelling, however, is substantial.

  6. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp; Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198; Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp

    Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integralsmore » on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.« less

  7. Regional and depth variability of porcine meniscal mechanical properties through biaxial testing.

    PubMed

    Kahlon, A; Hurtig, M B; Gordon, K D

    2015-01-01

    The menisci in the knee joint undergo complex loading in-vivo resulting in a multidirectional stress distribution. Extensive mechanical testing has been conducted to investigate the tissue properties of the knee meniscus, but the testing conditions do not replicate this complex loading regime. Biaxial testing involves loading tissue along two different directions simultaneously, which more accurately simulates physiologic loading conditions. The purpose of this study was to report mechanical properties of meniscal tissue resulting from biaxial testing, while simultaneously investigating regional variations in properties. Ten left, fresh porcine joints were obtained, and the medial and lateral menisci were harvested from each joint (twenty menisci total). Each menisci was divided into an anterior, middle and posterior region; and three slices (femoral, deep and tibial layers) were obtained from each region. Biaxial and constrained uniaxial testing was performed on each specimen, and Young's moduli were calculated from the resulting stress strain curves. Results illustrated significant differences in regional mechanical properties, with the medial anterior (Young's modulus (E)=11.14 ± 1.10 MPa), lateral anterior (E=11.54 ± 1.10 MPa) and lateral posterior (E=9.0 ± 1.2 MPa) regions exhibiting the highest properties compared to the medial central (E=5.0 ± 1.22 MPa), medial posterior (E=4.16 ± 1.13 MPa) and lateral central (E=5.6 ± 1.20 MPa) regions. Differences with depth were also significant on the lateral meniscus, with the femoral (E=12.7 ± 1.22 MPa) and tibial (E=8.6 ± 1.22 MPa) layers exhibiting the highest Young's moduli. This data may form the basis for future modeling of meniscal tissue, or may aid in the design of synthetic replacement alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recoding Numerics to Geometrics for Complex Discrimination Tasks; A Feasibility Study of Coding Strategy.

    ERIC Educational Resources Information Center

    Simpkins, John D.

    Processing complex multivariate information effectively when relational properties of information sub-groups are ambiguous is difficult for man and man-machine systems. However, the information processing task is made easier through code study, cybernetic planning, and accurate display mechanisms. An exploratory laboratory study designed for the…

  9. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  10. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    NASA Astrophysics Data System (ADS)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  11. Relationship between radial compressive modulus of elasticity and shear modulus of wood

    Treesearch

    Jen Y. Liu; Robert J. Ross

    2005-01-01

    Wood properties in transverse compression are difficult to determine because of such factors as anatomical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, considered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the reference coordinate system changes its orientation. In this...

  12. The RNA-induced silencing complex: a versatile gene-silencing machine.

    PubMed

    Pratt, Ashley J; MacRae, Ian J

    2009-07-03

    RNA interference is a powerful mechanism of gene silencing that underlies many aspects of eukaryotic biology. On the molecular level, RNA interference is mediated by a family of ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs), which can be programmed to target virtually any nucleic acid sequence for silencing. The ability of RISC to locate target RNAs has been co-opted by evolution many times to generate a broad spectrum of gene-silencing pathways. Here, we review the fundamental biochemical and biophysical properties of RISC that facilitate gene targeting and describe the various mechanisms of gene silencing known to exploit RISC activity.

  13. Can misfolded proteins be beneficial? The HAMLET case.

    PubMed

    Pettersson-Kastberg, Jenny; Aits, Sonja; Gustafsson, Lotta; Mossberg, Anki; Storm, Petter; Trulsson, Maria; Persson, Filip; Mok, K Hun; Svanborg, Catharina

    2009-01-01

    By changing the three-dimensional structure, a protein can attain new functions, distinct from those of the native protein. Amyloid-forming proteins are one example, in which conformational change may lead to fibril formation and, in many cases, neurodegenerative disease. We have proposed that partial unfolding provides a mechanism to generate new and useful functional variants from a given polypeptide chain. Here we present HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) as an example where partial unfolding and the incorporation of cofactor create a complex with new, beneficial properties. Native alpha-lactalbumin functions as a substrate specifier in lactose synthesis, but when partially unfolded the protein binds oleic acid and forms the tumoricidal HAMLET complex. When the properties of HAMLET were first described they were surprising, as protein folding intermediates and especially amyloid-forming protein intermediates had been regarded as toxic conformations, but since then structural studies have supported functional diversity arising from a change in fold. The properties of HAMLET suggest a mechanism of structure-function variation, which might help the limited number of human protein genes to generate sufficient structural diversity to meet the diverse functional demands of complex organisms.

  14. Laser-assisted manufacturing of super-insulation materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David

    2017-02-01

    Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.

  15. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks

    PubMed Central

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A.; Mullins, R. Dyche

    2016-01-01

    Branched actin networks–created by the Arp2/3 complex, capping protein, and a nucleation promoting factor– generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry, but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  16. Structural elements and organization of the ancestral translational machinery

    NASA Technical Reports Server (NTRS)

    Rein, R.; Srinivasan, S.; Mcdonald, J.; Raghunathan, G.; Shibata, M.

    1987-01-01

    The molecular mechanisms of the primitive translational apparatus are discussed in the framework of present-day protein biosynthesis. The structural necessities of an early adaptor and the multipoint recognition properties of such an adaptor are investigated on the basis of structure/function relationships found in a contemporary system and a molecular model of the contemporary transpeptidation complex. A model of the tRNA(Tyr)-tyrosyl tRNA synthetase complex including the positioning of the disordered region is proposed; the model is used to illustrate the required recognition properties of the ancestor aminoacyl synthetase.

  17. Integrity Constraint Monitoring in Software Development: Proposed Architectures

    NASA Technical Reports Server (NTRS)

    Fernandez, Francisco G.

    1997-01-01

    In the development of complex software systems, designers are required to obtain from many sources and manage vast amounts of knowledge of the system being built and communicate this information to personnel with a variety of backgrounds. Knowledge concerning the properties of the system, including the structure of, relationships between and limitations of the data objects in the system, becomes increasingly more vital as the complexity of the system and the number of knowledge sources increases. Ensuring that violations of these properties do not occur becomes steadily more challenging. One approach toward managing the enforcement or system properties, called context monitoring, uses a centralized repository of integrity constraints and a constraint satisfiability mechanism for dynamic verification of property enforcement during program execution. The focus of this paper is to describe possible software architectures that define a mechanism for dynamically checking the satisfiability of a set of constraints on a program. The next section describes the context monitoring approach in general. Section 3 gives an overview of the work currently being done toward the addition of an integrity constraint satisfiability mechanism to a high-level program language, SequenceL, and demonstrates how this model is being examined to develop a general software architecture. Section 4 describes possible architectures for a general constraint satisfiability mechanism, as well as an alternative approach that, uses embedded database queries in lieu of an external monitor. The paper concludes with a brief summary outlining the, current state of the research and future work.

  18. A small organic compound enhances the religation reaction of human topoisomerase I and identifies crucial elements for the religation mechanism

    PubMed Central

    Arnò, Barbara; Coletta, Andrea; Tesauro, Cinzia; Zuccaro, Laura; Fiorani, Paola; Lentini, Sara; Galloni, Pierluca; Conte, Valeria; Floris, Barbara; Desideri, Alessandro

    2013-01-01

    The different steps of the human Top1 (topoisomerase I) catalytic cycle have been analysed in the presence of a pentacyclic-diquinoid synthetic compound. The experiments indicate that it efficiently inhibits the cleavage step of the enzyme reaction, fitting well into the catalytic site. Surprisingly the compound, when incubated with the binary topoisomerase–DNA cleaved complex, helps the enzyme to remove itself from the cleaved DNA and close the DNA gap, increasing the religation rate. The compound also induces the religation of the stalled enzyme–CPT (camptothecin)–DNA ternary complex. Analysis of the molecule docked over the binary complex, together with its chemical properties, suggests that the religation enhancement is due to the presence on the compound of two oxygen atoms that act as hydrogen acceptors. This property facilitates the deprotonation of the 5′ DNA end, suggesting that this is the limiting step in the topoisomerase religation mechanism. PMID:23368812

  19. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  20. Fibre reinforced concrete exposed to elevated temperature

    NASA Astrophysics Data System (ADS)

    Novák, J.; Kohoutková, A.

    2017-09-01

    Although concrete when subject to fire performs very well, its behaviour and properties change dramatically under high temperature due to damaged microstructure and mesostructure. As fibre reinforced concrete (FRC) represents a complex material composed of various components with different response to high temperature, to determine its behaviour and mechanical properties in fire is a demanding task. The presented paper provides a summary of findings on the fire response of fibre FRC. Namely, the information on steel fibre reinforced concrete (SFRC), synthetic fibre reinforced concrete and hybrid (steel + synthetic) fibre reinforced concrete have been gathered from various contributions published up to date. The mechanical properties including the melting point and ignition point of fibres affect significantly the properties of concrete composites with addition of fibres. The combination of steel and synthetic fibres represents a promising alternative how to ensure good toughness of a concrete composite before heating and improve its residual mechanical behaviour and spalling resistance as well as the ductility after heating. While synthetic fibres increase concrete spalling resistance, steel fibres in a concrete mix leads to an improvement in both mechanical properties and resistance to heating effects.

  1. Cell-wall recovery after irreversible deformation of wood

    NASA Astrophysics Data System (ADS)

    Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter

    2003-12-01

    The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

  2. Physico-chemical Properties of Supramolecular Complexes of Natural Flavonoids with Biomacromolecules

    NASA Astrophysics Data System (ADS)

    Barvinchenko, V. M.; Lipkovska, N. O.; Fedyanina, T. V.; Pogorelyi, V. K.

    Polyvinylpyrrolidone (a water-soluble biopolymer) and human serum albumin (a globular protein) form supramolecular complexes with natural flavonoids quercetin and rutin in aqueous medium. The interaction with these biomacromolecules (BMM) causes the alteration of flavonoid spectral, protolytic, and other properties; in particular, it essentially increases their solubility. Absorption and solubility measurements revealed the supramolecular compounds of 1:1 stoichiometry for all systems studied. First it was demonstrated experimentally that the interaction with BMM promotes the tautomeric transformation in quercetin molecule. The mechanism of tautomerization via flavonoid molecular structure was discussed. Adsorption of BMM and their supramolecular compounds with flavonoids onto nanosilica was studied as a function of pH, and the properties of the biomacromolecules, flavonoids, and silica surface. It was found that BMM either complexed with quercetin (rutin) or preliminary immobilized on nanosilica increases the flavonoid adsorption.

  3. Characterization of an Explosion Source in a Complex Medium by Modeling and Wavelet Domain Inversion

    DTIC Science & Technology

    2006-06-01

    1 2. Mechanisms on Scattering due to an Explosive Source...the S wave at the tunnel. TRA has great potential for determining the seismic source properties. 2 2. Mechanisms on Scattering due to an Explosive...and prominent SH and Love waves. Various mechanisms have been proposed to explain the generation of these transverse waves. 2.2 Objectives of This

  4. Spectroscopic comparison of effects of electron radiation on mechanical properties of two polyimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.

    1987-01-01

    The differences in the radiation durabilities of two polyimide materials, Du Pont Kapton and General Electric Ultem, are compared. An explanation of the basic mechanisms which occur during exposure to electron radiation from analyses of infrared (IR) and electron paramagnetic resonance (EPR) spectroscopic data for each material is provided. The molecular model for Kapton was, in part, established from earlier modeling for Ultem (pp. 1293-1298 of IEEE Transactions on Nuclear Science, December 1984). Techniques for understanding the durability of one complex polymer based on the understanding of a different and equally complex polymer are demonstrated. The spectroscopic data showed that the primary radiation-generated change in the tensile properties of Ultem (a large reduction in tensile elongation) was due to crosslinking, which followed the capture by phenyl radicals of hydrogen atoms removed from gem-dimethyl groups. In contrast, the tensile properties of Kapton remained unchanged because radical-radical recombination, a self-mending process, took place.

  5. Inherent structure length in metallic glasses: Simplicity behind complexity

    DOE PAGES

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; ...

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomicmore » distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.« less

  6. Mechanisms of Neuronal Computation in Mammalian Visual Cortex

    PubMed Central

    Priebe, Nicholas J.; Ferster, David

    2012-01-01

    Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1—the cells that receive direct input from thalamic relay cells—and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel’s feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant. PMID:22841306

  7. Mechanically tunable actin networks using programmable DNA based cross-linkers

    NASA Astrophysics Data System (ADS)

    Schnauss, Joerg; Lorenz, Jessica; Schuldt, Carsten; Kaes, Josef; Smith, David

    Cells employ multiple cross-linkers with very different properties. Studies of the entire phase space, however, were infeasible since they were restricted to naturally occurring cross-linkers. These components cannot be controllably varied and differ in many parameters. We resolve this limitation by forming artificial actin cross-linkers, which can be controllably varied. The basic building block is DNA enabling a well-defined length variation. DNA can be attached to actin binding peptides with known binding affinities. We used bulk rheology to investigate mechanical properties of these networks. We were able to reproduce mechanical features of actin networks cross-linked by fascin by using a short version of our artificial complex with a high binding affinity. Additionally, we were able to resemble findings for the cross-linker alpha-actinin by employing a long cross-linker with a low binding affinity. Between these natural limits we investigated three different cross-linker lengths each with two different binding affinities. With these controlled variations we are able to precisely screen the phase space of cross-linked actin networks by changing only one specific parameter and not the entire set of properties as in the case of naturally occurring cross-linking complexes.

  8. Mechanical design of DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua

    2015-03-01

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k

  9. New concepts for molecular magnets

    NASA Astrophysics Data System (ADS)

    Pilawa, Bernd

    1999-03-01

    Miller and Epstein (1994) define molecular magnets as magnetic materials which are prepared by the low-temperature methods of the preparative chemistry. This definition includes molecular crystals of neutral radicals, radical salts and charge transfer complexes as well as metal complexes and polymers with unpaired spins (Dormann 1995). The challenge of molecular magnets consists in tailoring magnetic properties by specific modifications of the molecular units. The combination of magnetism with mechanical or electrical properties of molecular compounds promise materials of high technical interest (Gatteschi 1994a and 1994b, Möhwald 1996) and both the chemical synthesis of new molecular materials with magnetic properties as well as the physical investigation and explanation of these properties is important, in order to achieve any progress. This work deals with the physical characterization of the magnetic properties of molecular materials. It is organized as follows. In the first part molecular crystals of neutral radicals are studied. After briefly discussing the general magnetic properties of these materials and after an overview over the physical principles of exchange interaction between organic radicals I focus on the interplay between the crystallographic structure and the magnetic properties of various derivatives of the verdazyl and nitronyl nitroxide radicals. The magnetic properties of metal complexes are the subject of the second part. After an overview over the experimental and theoretical tools which are used for the investigation of the magnetic properties I shortly discuss the exchange coupling of transition metal ions and the magnetic properties of complexes of two and three metal ions. Special emphasis is given to spin cluster compounds. Spin cluster denote complexes of many magnetic ions. They are attractive as building blocks of molecular magnets as well as magnetic model compounds for the study of spin frustration, molecular super-paramagnetism and quasi one-dimensional magnets.

  10. Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells.

    PubMed

    Leon, I E; Porro, V; Di Virgilio, A L; Naso, L G; Williams, P A M; Bollati-Fogolín, M; Etcheverry, S B

    2014-01-01

    Flavonoids are a large family of polyphenolic compounds synthesized by plants. They display interesting biological effects mainly related to their antioxidant properties. On the other hand, vanadium compounds also exhibit different biological and pharmacological effects in cell culture and in animal models. Since coordination of ligands to metals can improve or change the pharmacological properties, we report herein, for the first time, a detailed study of the mechanisms of action of an oxidovanadium(IV) complex with the flavonoid silibinin, Na2[VO(silibinin)2]·6H2O (VOsil), in a model of the human osteosarcoma derived cell line MG-63. The complex inhibited the viability of osteosarcoma cells in a dose-dependent manner with a greater potency than that of silibinin and oxidovanadium(IV) (p < 0.01), demonstrating the benefit of complexation. Cytotoxicity and genotoxicity studies also showed a concentration effect for VOsil. The increase in the levels of reactive oxygen species and the decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of the complex. Besides, the complex caused cell cycle arrest and activated caspase 3, triggering apoptosis as determined by flow cytometry. As a whole, these results show the main mechanisms of the deleterious effects of VOsil in the osteosarcoma cell line, demonstrating that this complex is a promising compound for cancer treatments.

  11. Point Defects in Oxides: Tailoring Materials Through Defect Engineering

    NASA Astrophysics Data System (ADS)

    Tuller, Harry L.; Bishop, Sean R.

    2011-08-01

    Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.

  12. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  13. Novel Gold(I) Thiolate Derivatives Synergistic with 5-Fluorouracil as Potential Selective Anticancer Agents in Colon Cancer.

    PubMed

    Atrián-Blasco, Elena; Gascón, Sonia; Rodrı Guez-Yoldi, Ma Jesus; Laguna, Mariano; Cerrada, Elena

    2017-07-17

    New gold(I) thiolate complexes have been synthesized and characterized, and their physicochemical properties and anticancer activity have been tested. The coordination of PTA derivatives provides optimal hydrophilicity/lipophilicity properties to the complexes, which present high solution stability. Moreover, the complexes show a high anticancer activity against Caco-2 cells, comparable to that of auranofin, and a very low cytotoxic activity against enterocyte-like differentiated cells. Their activity has been shown to produce cell death by apoptosis and arrest of the cell cycle because of interaction with the reductase enzymes and consequent reactive oxygen species production. Some of these new complexes are also able to decrease the necessary dose of 5-fluorouracil, a drug used for the treatment of colon cancer, by a synergistic mechanism.

  14. What is microbial community ecology?

    PubMed

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Allan

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbesmore » possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered a community property.« less

  16. The Effect of Water Molecules on Mechanical Properties of Cell Walls

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Youssefian, Sina

    The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.

  17. Generalized statistical mechanics approaches to earthquakes and tectonics.

    PubMed

    Vallianatos, Filippos; Papadakis, Giorgos; Michas, Georgios

    2016-12-01

    Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes.

  18. Generalized statistical mechanics approaches to earthquakes and tectonics

    PubMed Central

    Papadakis, Giorgos; Michas, Georgios

    2016-01-01

    Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes. PMID:28119548

  19. Origami-inspired building block and parametric design for mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  20. Mechanism of the photochemical ligand substitution reactions of fac-[Re(bpy)(CO)(3)(PR(3))](+) complexes and the properties of their triplet ligand-field excited states.

    PubMed

    Koike, Kazuhide; Okoshi, Nobuaki; Hori, Hisao; Takeuchi, Koji; Ishitani, Osamu; Tsubaki, Hideaki; Clark, Ian P; George, Michael W; Johnson, Frank P A; Turner, James J

    2002-09-25

    We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.

  1. Coexisting properties of thermostability and ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans.

    PubMed

    Farci, Domenica; Slavov, Chavdar; Piano, Dario

    2018-01-17

    Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses. Recently, we have described a novel complex composed of the surface (S)-layer protein DR_2577 and the carotenoid deinoxanthin. We also showed a role of this complex in the UV resistance under desiccation. Both these properties, UV and desiccation resistance, suggest a selective pressure generated by Sun irradiation. In order to confirm this hypothesis we checked whether this S-layer Deinoxanthin Binding Complex (SDBC) has features of thermo-resistance, a property also expected in proteins evolved under solar irradiative pressure. We performed the spectroscopic characterization of the SDBC by means of thermal shift assay, circular dichroism and related in silico analysis. Our findings identify a stability typical of thermo-adapted proteins and provide a new insight into the origin of specific S-layer types. The results are discussed in terms of co-evolutionary mechanisms related to Sun-induced desiccation and heat.

  2. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  3. DNA origami compliant nanostructures with tunable mechanical properties.

    PubMed

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2014-01-28

    DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.

  4. Mechanics of additively manufactured biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Investigating the pharmacodynamic and magnetic properties of pyrophosphate-bridged coordination complexes

    NASA Astrophysics Data System (ADS)

    Ikotun, Oluwatayo (Tayo) F.

    The multidentate nature of pyrophosphate makes it an attractive ligand for complexation of metal cations. The participation of pyrophosphate in a variety of biological pathways and its metal catalyzed hydrolysis has driven our investigation into its coordination chemistry. We have successfully synthesized a library of binuclear pyrophosphate bridge coordination complexes. The problem of pyrophosphate hydrolysis to phosphate in the presence of divalent metal ions was overcome by incorporating capping ligands such as 1,10-phenanthroline and 2,2'-bipyridine prior to the addition of the pyrophosphate. The magnetic properties of these complexes was investigated and magneto-structural analysis was conducted. The biological abundance of pyrophosphate and the success of metal based drugs such as cisplatin, prompted our investigation of the cytotoxic properties of M(II) pyrophosphate dimeric complexes (where M(II) is CoII, CuII, and NiII) in adriamycin resistant human ovarian cancer cells. Thess compounds were found to exhibit toxicity in the nanomolar to picomolar range. We conducted in vitro stability studies and the mechanism of cytoxicity was elucidated by performing DNA mobility and binding assays, enzyme inhibition assays, and in vitro oxidative stress studies.

  6. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

    PubMed Central

    Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels

    2015-01-01

    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715

  7. Synthesis, characterization and properties of copper(I) complexes with bis(diphenylphosphino)-ferrocene ancillary ligand

    NASA Astrophysics Data System (ADS)

    Liu, Xinfang; Zhang, Songlin; Ding, Yuqiang

    2012-06-01

    Three copper(I) complexes (2-4) containing dppf ancillary ligand (dppf = bis(diphenylphosphino)-ferrocene) were synthesized when chloride-bridged copper(I) complex 1 reacted with acetanilide and characterized by IR, element analysis and NMR spectrum. And the crystal structures of complexes 2 and 4 have been determined by X-ray diffraction method. Complex 2, an acetate-bridged copper(I) complex, was obtained under N2 atmosphere in un-dried solvent; the acetate ion came from the hydrolysis reaction of acetanilide due to residual water in solvent. Acetanilide was deprotonated and coordinated with the copper(I) centre to form a copper(I) amidate complex 3 when reacted in pre-dried solvent. In addition, a known complex 4, the oxidation product of dppf, was isolated from the same reaction system when reacted in air atmosphere. CV and TG experiments were carried out to check the electron transfer properties and thermal stabilities of complexes 2-3. Finally, the arylation reaction of complex 3 with iodobenzene was performed to study the reaction mechanism of copper(I) catalyzed Goldberg reaction.

  8. Mechanical Properties of Mineralized Collagen Fibrils As Influenced By Demineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balooch, M.; Habelitz, S.; Kinney, J.H.

    2009-05-11

    Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPamore » to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.« less

  9. Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions

    PubMed Central

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette

    2014-01-01

    To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362

  10. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.

    PubMed

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Clausmeyer, Till; Tekkaya, A Erman

    2018-05-09

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  11. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  12. Structure and Properties of Melt-spun Bio-based Polyamide/Eu(TTA)3Phen Composite fibers

    NASA Astrophysics Data System (ADS)

    Li, Yunye; Lou, Pengfei; Jia, Qingxiu

    2018-02-01

    In this paper, the bio-based polyamide (PA ) was melt polymerized from four bio-based monomers. Composites of the bio-based PA and europium complex Eu(TTA)3Phen were prepared through solution mixing using N, N-Dimethylformamide (DMF) and formic acid as the mixed solvent, and then composite fibers were obtained by melt spinning method. The structure and properties of the melt-spun composite fibers were characterized by FTIR and SEM. The results indicated that the Eu(TTA)3Phen complex, with the average diameter below 300 nm, was homogeneously dispersed in the PA matrix. FTIR spectra indicated that the coordination bond between carbonyl of BDIS and Eu(TTA)3Phen complex formed, which was also confirmed by the mechanical properties. The initial modulus and breaking strength of these fibers can arrived at 2.5GPa and 0.3GPa, respectively.

  13. On the structure of transition metals complexes with the new tridentate dye of thiazole series: Theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Fizer, Maksym; Sidey, Vasyl; Tupys, Andrii; Ostapiuk, Yurii; Tymoshuk, Oleksandr; Bazel, Yaroslav

    2017-12-01

    The 1-[(5-Benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol (BnTAN) is a recently synthesized azo dye that can act as a tridentate ligand in complexes with transition metals. In a series of previous works, this analytical reagent was shown to be applicable for selective, reliable, express and relatively inexpensive determination of heavy metals in different objects through the spectrophotometric technique. Although the action of 1-(2-thiazolylazo)-2-naphthol (TAN) dyes as tridentate ligands has been suggested in the literature long time ago, due to the lack of experimental data, it was necessary to investigate the mechanism of formation and the structure of BnTAN complexes with the such transition metals as Cu(II), Zn(II) and Cd(II). Furthermore, the reactivity and properties of different acidity forms and conformers of BnTAN and related TAN dyes were not fully defined, so the determination of these properties by analysis of wavefunction was also necessary. Two standard spectrophotometric methods and voltammetric technique were used to determine the composition of complex of BnTAN with metals ions. All three experimental methods indicate that coordination ratio of metal:dye is equal to 1:2. Moreover, this study reports the stability and geometry of conformers of different forms (anionic/neutral/cationic) of BnTAN, along with a detailed analysis of electronic properties, reactivity and aromaticity of the most stable conformers of BnTAN forms. Each of the above forms has some difference in position of benzyl ring against the thiazole moiety, which is explained in terms of attraction and repulsion of these two fragments induced by partial atomic charges. The crucial influence of hydrogen bond and weak non-covalent interactions between naphthyl, aza- and thiazolyl fragments has been established. The quantum chemical calculations have shown that partial atomic charges of anionic, neutral and cationic forms can explain the reactivity of each BnTAN form, and have also clarified the mechanism of formation of metal complex through the connection of metal with phenol oxygen, thiazolyl nitrogen and one nitrogen of aza group - thus giving two five-membered metal-containing cycles and confirming that BnTAN acts as a tridentate ligand. The obtained results introduce novel and crucial information which can assist in understanding the mechanism of complex formation of BnTAN and display the strength and level of detail of applying quantum chemical methods to reveal the reactivity, energy properties, and electronic properties of this new dye.

  14. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bondsmore » to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).« less

  15. Properties- and applications of quasicrystals and complex metallic alloys.

    PubMed

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.

  16. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications.

    PubMed

    Trevisan, Francesco; Calignano, Flaviana; Aversa, Alberta; Marchese, Giulio; Lombardi, Mariangela; Biamino, Sara; Ugues, Daniele; Manfredi, Diego

    2018-04-01

    The mechanical properties and biocompatibility of titanium alloy medical devices and implants produced by additive manufacturing (AM) technologies - in particular, selective laser melting (SLM), electron beam melting (EBM) and laser metal deposition (LMD) - have been investigated by several researchers demonstrating how these innovative processes are able to fulfil medical requirements for clinical applications. This work reviews the advantages given by these technologies, which include the possibility to create porous complex structures to improve osseointegration and mechanical properties (best match with the modulus of elasticity of local bone), to lower processing costs, to produce custom-made implants according to the data for the patient acquired via computed tomography and to reduce waste.

  17. An In Vitro Enzymatic Assay to Measure Transcription Inhibition by Gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles

    PubMed Central

    Tang, Grace Y.; Pribisko, Melanie A.; Henning, Ryan K.; Lim, Punnajit; Termini, John; Gray, Harry B.; Grubbs, Robert H.

    2015-01-01

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme. Adding the complex after RNA transcription can be used to test whether the complexes degrade or hydrolyze the RNA. This assay can also be used to study additional anticancer candidates. PMID:25867444

  18. An in vitro enzymatic assay to measure transcription inhibition by gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles.

    PubMed

    Tang, Grace Y; Pribisko, Melanie A; Henning, Ryan K; Lim, Punnajit; Termini, John; Gray, Harry B; Grubbs, Robert H

    2015-03-18

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme. Adding the complex after RNA transcription can be used to test whether the complexes degrade or hydrolyze the RNA. This assay can also be used to study additional anticancer candidates.

  19. Investigating the Mechanical Properties of Plasma von Willebrand Factor Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sitara; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela; Frey, Eric; Moake, Joel; Dong, Jing-Fei; Kiang, Ching-Hwa

    2011-10-01

    Single-molecule manipulation allows us to study the real-time kinetics of complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be probed by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF that are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine its conformational states. We found the shear-induced conformational changes, hence the mechanical property, can be detected by the change in unfolding forces. The relaxation rate of such effect is much longer than expected. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.

  20. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films.

    PubMed

    Liu, Pengfei; Wang, Rui; Kang, Xuemin; Cui, Bo; Yu, Bin

    2018-06-01

    To investigate the effect of ultrasonic treatment on the properties of sweet potato starch and sweet potato starch-based films, the complexing index, thermograms and diffractograms of the sweet potato starch-lauric acid composite were tested, and light transmission, microstructure, and mechanical and moisture barrier properties of the films were measured. The results indicated that the low power density ultrasound was beneficial to the formation of an inclusion complex. In thermograms, the gelatinization enthalpies of the ultrasonically treated starches were lower than those of the untreated sample. With the ultrasonic amplitude increased from 40% to 70%, the melting enthalpy (ΔH) of the inclusion complex gradually decreased. X-ray diffraction revealed that the diffraction intensity of the untreated samples was weaker than that of the ultrasonically treated samples. When the ultrasonic amplitude was above 40%, the diffraction intensity and relative crystallinity of inclusion complex gradually decreased. The scanning electronic microscope showed that the surface of the composite films became smooth after being treated by ultrasonication. Ultrasonication led to a reduction in film surface roughness under atomic force microscopy analysis. The films with ultrasonic treatment exhibited higher light transmission, lower elongation at break, higher tensile strength and better moisture barrier property than those without ultrasonic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Ab initio single and multideterminant methods used in the determination of reduction potentials and magnetic properties of Rieske ferredoxins

    NASA Astrophysics Data System (ADS)

    Powers, Nathan Lee

    2008-10-01

    The [Fe2S2]2+/[Fe2S 2]+ electronic structure of seven Rieske protein active sites (bovine mitochondrial cytochrome bc1 complex, spinach chloroplast cytochrome b6f complex, Rieske-type ferredoxin associated with biphenyl dioxygenase from Burkholderia cepacia, yeast cytochrome bcl complex from Saccharomyces cerevisiae, Rieske subunit of arsenite oxidase from Alcaligenes faecalis, respiratory-type Rieske protein from Thermus thermophilus, and Rieske protein II (soxF) from Sulfolobus acidocaldarius), which lie in a reduction potential range from -150 mV to 375 mV, have been studied by both single and multi-determinant quantum mechanical methods. Calculated reduction potentials and magnetic properties are found comparable to experimental values.

  2. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.

    PubMed

    Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S

    2011-02-01

    X-ray contrast medium (BaSO(4) or ZrO(2)) used in commercially available PMMA bone cements imparts a detrimental effect on mechanical properties, particularly on flexural strength and fracture toughness. These lower properties facilitate the chance of implant loosening resulting from cement mantle failure. The present study was performed to examine the mechanical properties of a commercially available cement (CMW1) by introducing novel nanostructured titania fibers (n-TiO(2) fibers) into the cement matrix, with the fibers acting as a reinforcing phase. The hydrophilic nature of the n-TiO(2) fibers was modified by using a bifunctional monomer, methacrylic acid. The n-TiO(2) fiber content of the cement was varied from 0 to 2 wt%. Along with the mechanical properties (fracture toughness (K (IC)), flexural strength (FS), and flexural modulus (FM)) of the reinforced cements the following properties were investigated: complex viscosity-versus-time, maximum polymerization temperature (T (max)), dough time (t (dough)), setting time (t (set)), radiopacity, and in vitro biocompatibility. On the basis of the determined mechanical properties, the optimized composition was found at 1 wt% n-TiO(2) fibers, which provided a significant increase in K (IC) (63%), FS (20%), and FM (22%), while retaining the handling properties and in vitro biocompatibility compared to that exhibited by the control cement (CMW1). Moreover, compared to the control cement, there was no significant change in the radiopacity of any of the reinforced cements at p = 0.05. This study demonstrated a novel pathway to augment the mechanical properties of PMMA-based cement by providing an enhanced interfacial interaction and strong adhesion between the functionalized n-TiO( 2) fibers and PMMA matrix, which enhanced the effective load transfer within the cement.

  3. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    PubMed Central

    He, Yi-Ming; Ma, Bin-Guang

    2016-01-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions. PMID:27220911

  4. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    NASA Astrophysics Data System (ADS)

    He, Yi-Ming; Ma, Bin-Guang

    2016-05-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.

  5. Gels of sodium alginate‒chitosan interpolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Brovko, O. S.; Palamarchuk, I. A.; Val'chuk, N. A.; Chukhchin, D. G.; Bogolitsyn, K. G.; Boitsova, T. A.

    2017-08-01

    Aspects of the formation of gels of interpolyelectrolyte complexes (IPECs) based on sodium alginate (NaAlg) and chitosan are studied. The effect the conditions of synthesis and complex composition have on the morphological structure and functional properties of these complexes is examined. It is established that complexation in this system proceeds according to a mechanism of electrostatic interaction between the oppositely charged carboxylic groups of the L-hyaluronic acid pyranose cycles of NaAlg proximal polymer chains and chitosan's amino groups, along with a multitude of hydrogen bonds and dispersion forces. We show that the mechanism of IPEC formation is strongly influenced by the conformational state of a lyophilizing component that is present in the system in excess. The inner surfaces of cryogels based on NaAlg‒chitosan IPECs is found to be strongly influenced by the degree of conversion between the parental polyelectrolytes. The most developed mesoporous structure is obtained when a denser gel forms in the system.

  6. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit.

  7. Single and collective cell migration: the mechanics of adhesions

    PubMed Central

    De Pascalis, Chiara; Etienne-Manneville, Sandrine

    2017-01-01

    Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell–ECM and cell–cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration. PMID:28684609

  8. Fabrication and Properties of Composite Artificial Muscles Based on Nylon and a Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Yin, Haibin; Zhou, Jia; Li, Junfeng; Joseph, Vincent S.

    2018-05-01

    This paper focuses on the design, fabrication and investigation of the mechanical properties of new artificial muscles formed by twisting and annealing. The artificial muscles designed by twisting nylon have become a popular topic in the field of smart materials due to their high mechanical performance with a large deformation and power density. However, the complexity of the heating and cooling system required to control the nylon muscle is a disadvantage, so we have proposed a composite artificial muscle for providing a direct electricity-driven actuation by integrating nylon and a shape memory alloy (SMA). In this paper, the design and fabrication process of these composite artificial muscles are introduced before their mechanical properties, which include the deformation, stiffness, load and response, are investigated. The results show that these composite artificial muscles that integrate nylon and a SMA provide better mechanical properties and yield up to a 44.1% deformation and 3.43 N driving forces. The good performance and direct electro-thermal actuation make these composite muscles ideal for driving robots in a method similar to human muscles.

  9. Failure Analysis in Platelet Molded Composite Systems

    NASA Astrophysics Data System (ADS)

    Kravchenko, Sergii G.

    Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.

  10. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals.

  11. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    PubMed

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  12. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    NASA Astrophysics Data System (ADS)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  13. Let's push things forward: disruptive technologies and the mechanics of tissue assembly.

    PubMed

    Varner, Victor D; Nelson, Celeste M

    2013-09-01

    Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems - embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly.

  14. Let's push things forward: disruptive technologies and the mechanics of tissue assembly

    PubMed Central

    Varner, Victor D.; Nelson, Celeste M.

    2013-01-01

    Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems – embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly. PMID:23907401

  15. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    PubMed

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories

    NASA Astrophysics Data System (ADS)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  17. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    PubMed

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  18. Interfacial complexation in microfluidic droplets for single-step fabrication of microcapsule

    NASA Astrophysics Data System (ADS)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Williams, Danielle; Liu, Wei; Schloss, Ashley; Regan, Lynn; Yan, Elsa; Dufrense, Eric; Loewenberg, Michael; Osuji, Chinedum

    We present microfluidic interfacial complexation in emulsion droplets as a simple single-step approach for fabricating a large variety of stable monodisperse microcapsules with tailored mechanical properties, protein binding and controlled release behavior. We rely on electrostatic interactions and hydrogen bonding to direct the assembly of complementary species at oil-water droplet interfaces to form microcapsules with polyelectrolyte shells, composite polyelectrolyte-nanoparticle shells, and copolymer-nanofiber shells. Additionally, we demonstrate the formation of microcapsules by adsorption of an amphiphilic bacterial hydrophobin, BslA, at oil-in-water and water-in-oil droplets, and protein capture on these capsules using engineered variants of the hydrophobin. We discuss the composition dependence of mechanical properties, shell thickness and release behavior, and regimes of stability for microcapsule fabrication. Nanoparticle based microcapsules display an intriguing plastic deformation response which enables the formation of large aspect ratio asperities by pipette aspiration of the shell.

  19. The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses.

    PubMed

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-07-01

    The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca 2+ gated outward K + currents. To quantify how the voltage-dependent activation of the K + channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K + conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K + channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K + channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography.

    PubMed

    Palaganas, Napolabel B; Mangadlao, Joey Dacula; de Leon, Al Christopher C; Palaganas, Jerome O; Pangilinan, Katrina D; Lee, Yan Jie; Advincula, Rigoberto C

    2017-10-04

    The advantages of 3D printing on cost, speed, accuracy, and flexibility have attracted several new applications in various industries especially in the field of medicine where customized solutions are highly demanded. Although this modern fabrication technique offers several benefits, it also poses critical challenges in materials development suitable for industry use. Proliferation of polymers in biomedical application has been severely limited by their inherently weak mechanical properties despite their other excellent attributes. Earlier works on 3D printing of polymers focus mainly on biocompatibility and cellular viability and lack a close attention to produce robust specimens. Prized for superior mechanical strength and inherent stiffness, cellulose nanocrystal (CNC) from abaca plant is incorporated to provide the necessary toughness for 3D printable biopolymer. Hence, this work demonstrates 3D printing of CNC-filled biomaterial with significant improvement in mechanical and surface properties. These findings may potentially pave the way for an alternative option in providing innovative and cost-effective patient-specific solutions to various fields in medical industry. To the best of our knowledge, this work presents the first successful demonstration of 3D printing of CNC nanocomposite hydrogel via stereolithography (SL) forming a complex architecture with enhanced material properties potentially suited for tissue engineering.

  1. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    PubMed Central

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  2. In situ assessment of shortening and lengthening contractile properties of hind limb ankle flexors in intact mice.

    PubMed

    Gorselink, M; Drost, M R; de Louw, J; Willems, P J; Hesselink, M K; Dekkers, E C; Rosielle, N; van der Vusse, G J

    2001-05-01

    The availability of animal models with disrupted genes has increased the need for small-scale measurement devices. Recently, we developed an experimental device to assess in situ mechanical properties of isometric contractions of intact muscle complexes of the mouse. Although this apparatus provides valuable information on muscle mechanical performance, it is not appropriate for determining contractile properties during shortening and lengthening contractions. In the present study we therefore developed and evaluated an experimental apparatus for assessment of shortening and lengthening contractile properties of intact plantar and dorsal flexors of the mouse. The current through a custom-built, low-inertia servomotor was measured to assess contractile muscular torque ranging from -50 to mN.m. Evaluation of the fixation procedure of the animal to the apparatus via 3-D monitoring of the muscle-tendon complex length showed that the additional shortening in length due to a contraction with maximal torque output has only minor effects on the measured torque. Furthermore, misalignment of the axis of rotation of the apparatus relative to the axis of rotation in the ankle joint, i.e. eccentricity, during a routine experiment was estimated to be less than 1.0 mm and hence did not influence the measured torque output under our experimental conditions. Peak power per unit muscle mass (mean +/- SD) of intact dorsal and plantar flexors was 0.27 +/- 0.02 and 0.19 +/- 0.03 W.g-1, respectively. The angular velocity at maximal peak power generated by the dorsal flexor complex and the plantar flexor complex was 1100 +/- 190 and 700 +/- 90 degrees.s-1, respectively.

  3. Use-dependent activation of neuronal Kv1.2 channel complexes.

    PubMed

    Baronas, Victoria A; McGuinness, Brandon R; Brigidi, G Stefano; Gomm Kolisko, Rachel N; Vilin, Yury Y; Kim, Robin Y; Lynn, Francis C; Bamji, Shernaz X; Yang, Runying; Kurata, Harley T

    2015-02-25

    In excitable cells, ion channels are frequently challenged by repetitive stimuli, and their responses shape cellular behavior by regulating the duration and termination of bursts of action potentials. We have investigated the behavior of Shaker family voltage-gated potassium (Kv) channels subjected to repetitive stimuli, with a particular focus on Kv1.2. Genetic deletion of this subunit results in complete mortality within 2 weeks of birth in mice, highlighting a critical physiological role for Kv1.2. Kv1.2 channels exhibit a unique property described previously as "prepulse potentiation," in which activation by a depolarizing step facilitates activation in a subsequent pulse. In this study, we demonstrate that this property enables Kv1.2 channels to exhibit use-dependent activation during trains of very brief depolarizations. Also, Kv subunits usually assemble into heteromeric channels in the central nervous system, generating diversity of function and sensitivity to signaling mechanisms. We demonstrate that other Kv1 channel types do not exhibit use-dependent activation, but this property is conferred in heteromeric channel complexes containing even a single Kv1.2 subunit. This regulatory mechanism is observed in mammalian cell lines as well as primary cultures of hippocampal neurons. Our findings illustrate that use-dependent activation is a unique property of Kv1.2 that persists in heteromeric channel complexes and may influence function of hippocampal neurons. Copyright © 2015 the authors 0270-6474/15/353515-10$15.00/0.

  4. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  5. Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators

    NASA Astrophysics Data System (ADS)

    Kulkarni, Parth

    This thesis describes the centrifugal forming and resulting mechanical properties of silicone-based elastomers for the manufacture of soft robotic actuators. This process is effective at removing bubbles that get entrapped within 3D-printed, enclosed molds. Conventional methods for rapid prototyping of soft robotic actuators to remove entrapped bubbles typically involve degassing under vacuum, with open-faced molds that limit the layout of formed parts to raised 2D geometries. As the functionality and complexity of soft robots increase, there is a need to mold complete 3D structures with controlled thicknesses or curvatures on multiples surfaces. In addition, characterization of the mechanical properties of common elastomers for these soft robots has lagged the development of new designs. As such, relationships between resulting material properties and processing parameters are virtually non-existent. One of the goals of this thesis is to provide guidelines and physical insights to relate the design, processing conditions, and resulting properties of soft robotic components to each other. Centrifugal forming with accelerations on the order of 100 g's is capable of forming bubble-free, true 3D components for soft robotic actuators, and resulting demonstrations in this work include an aquatic locomotor, soft gripper, and an actuator that straightens when pressurized. Finally, this work shows that the measured mechanical properties of 3D geometries fabricated within enclosed molds through centrifugal forming possess comparable mechanical properties to vacuumed materials formed from open-faced molds with raised 2D features.

  6. Interactive relationship between the mechanical properties of food and the human response during the first bite.

    PubMed

    Dan, Haruka; Kohyama, Kaoru

    2007-05-01

    Biting is an action that results from interplay between food properties and the masticatory system. The mechanical factors of food that cause biting adaptation and the recursive effects of modified biting on the mechanical phenomena of food are largely unknown. We examined the complex interaction between the bite system and the mechanical properties. Nine subjects were each given a cheese sample and instructed to bite it once with their molar teeth. An intra-oral bite force-time profile was measured using a tactile pressure-measurement system with a sheet sensor inserted between the molars. Time, force, and impulse for the first peak were specified as intra-oral parameters of the sample fracture. Mechanical properties of the samples were also examined using a universal testing machine at various test speeds. Besides fracture parameters, initial slope was also determined as a mechanical property possibly sensed shortly after bite onset. The bite profile was then examined based on the mechanical parameters. Sample-specific bite velocities were identified as characteristic responses of a human bite. A negative correlation was found between bite velocity and initial slope of the sample, suggesting that the initial slope is the mechanical factor that modifies the consequent bite velocity. The sample-specific bite velocity had recursive effects on the following fracture event, such that a slow velocity induced a low bite force and high impulse for the intra-oral fracture event. We demonstrated that examination of the physiological and mechanical factors during the first bite can provide valuable information about the food-oral interaction.

  7. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  8. New welding fluxes based on silicomanganese slag for deposition and welding of canopies and crib bed of mine support

    NASA Astrophysics Data System (ADS)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.; Kozyreva, O. E.

    2017-09-01

    The paper considers the possibility of efficient use of silicomanganese slag for the production of welding fluxes. The results of studying the use of metallurgical wastes as components of welding fluxes are given. Analysis of the results of mechanical properties of the samples made it possible to determine the optimum content of the pulverized fraction less than 0.45 mm in the flux. The composition and technology of manufacturing a new welding flux using slag of silicomanganese production was developed. The effect of fractional composition on the welding-technological properties of fluxes was studied. The optimal content of liquid glass in the flux, which allows a favorable complex of mechanical properties to be obtained, is 20-30%. To reduce the level of contamination of the weld metal with non-metallic oxide inclusions and to increase the mechanical properties of the welded joint, it is proposed to introduce a carbon-fluorine-containing additive FD-UFS into fluxes based on the slag.

  9. Borate cross-linking chitosan/graphene oxide films: Toward the simultaneous enhancement of gases barrier and mechanical properties

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Buonocore, Giovanna G.; Tescione, Fabiana; Lavorgna, Marino; Xia, Hesheng; Ambrosio, Luigi

    2015-12-01

    Borate adducts, originated from hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan (CS) and graphene oxide (GO) nanosheets for the production of innovative composite sustainable materials. CS/GO film consisting of 10wt% borax and 1wt% GO exhibits a significant improvement of both toughness and oxygen barrier properties in comparison to pristine chitosan. In particular the tensile strength increases by about 100% and 150% after thermal annealing of samples at 90°C for 50min whereas the oxygen permeability reduces of about 90% compared to pristine chitosan. The enhancement of both mechanical and barrier properties is ascribed to the formation of a resistant network due to the chemical crosslinking, including borate orthoester bonds and hydroxyl moieties complexes, formed among borate ions, chitosan, and GO nanoplatelets. The crosslinked graphene-based chitosan material with its enhanced mechanical and barrier properties may significantly broad the range of applications of chitosan based-materials which presently are very limited and addressed only to packaging.

  10. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  11. Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) - Applications to the design of 3D-printed architectured materials

    NASA Astrophysics Data System (ADS)

    Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro

    2018-01-01

    Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.

  12. Structural complexity and wide application of two-dimensional S/O type antimonene

    NASA Astrophysics Data System (ADS)

    Li, T. T.; He, C.; Zhang, W. X.

    2018-05-01

    Inspired by stable two-dimensional antimonene phases, two new allotropes (S/O and tricycle) antimonenes have been predicted by first-principles calculations in this paper. S/O type antimonene possesses remarkably thermodynamical and dynamical stability, which are comparable to that of buckled type antimonene. The results indicate that S/O type antimonene is a direct band gap semiconductor with a band gap of 2.314 eV and the electronic properties could be effectively tuned by the in-plane strain. In order to explore the potential application, the mechanical properties and optical properties of S/O type antimonene are also extensively studied. It is found the S/O type antimonene is an anisotropic material by the method of analyzing the linear Poisson's ratios and the phonon band structure. These systematical analyses show that S/O type antimonene is a new 2D material with tunable electronic properties, excellent mechanical and optical properties.

  13. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  14. Investigating the dental toolkit of primates based on food mechanical properties: Feeding action does matter.

    PubMed

    Thiery, Ghislain; Guy, Franck; Lazzari, Vincent

    2017-06-01

    Although conveying an indisputable morphological and behavioral signal, traditional dietary categories such as frugivorous or folivorous tend to group a wide range of food mechanical properties together. Because food/tooth interactions are mostly mechanical, it seems relevant to investigate the dental morphology of primates based on mechanical categories. However, existing mechanical categories classify food by its properties but cannot be used as factors to classify primate dietary habits. This comes from the fact that one primate species might be adapted to a wide range of food mechanical properties. To tackle this issue, what follows is an original framework based on action-related categories. The proposal here is to classify extant primates based on the range of food mechanical properties they can process through one given action. The resulting categories can be used as factors to investigate the dental tools available to primates. Furthermore, cracking, grinding, and shearing categories assigned depending on the hardness and the toughness of food are shown to be supported by morphological data (3D relative enamel thickness) and topographic data (relief index, occlusal complexity, and Dirichlet normal energy). Inferring food mechanical properties from dental morphology is especially relevant for the study of extinct primates, which are mainly documented by dental remains. Hence, we use action-related categories to investigate the molar morphology of an extinct colobine monkey Mesopithecus pentelicus from the Miocene of Pikermi, Greece. Action-related categories show contrasting results compared with classical categories and give us new insights into the dietary adaptations of this extinct primate. Finally, we provide some possible directions for future research aiming to test action-related categories. In particular, we suggest acquiring more data on mechanically challenging fallback foods and advocate the use of other food mechanical properties such as abrasiveness. The development of new action-related dental metrics is also crucial for primate dental studies. © 2017 Wiley Periodicals, Inc.

  15. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    PubMed

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties.

  16. Studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doraiswamy, N.; Kestel, B.; Alexander, D.E.

    1997-04-01

    The favorable physical and mechanical properties of V-3.8Cr-3.9Ti (wt.%), when subjected to neutron irradiation, has lead to considerable attention being focused on it for use in fusion reactor structural applications. However, there is limited data on the effects of helium on physical and mechanical properties of this alloy. Understanding these effects are important since helium will be generated by direct {alpha}-injection or transmutation reactions in the fusion environment, typically at a rate of {approx}5 appm He/dpa. Helium has been shown to cause substantial embrittlement, even at room temperature in vanadium and its alloys. Recent simulations of the fusion environment usingmore » the Dynamic Helium Charging Experiments (DHCE) have also indicated that the mechanical properties of vanadium alloys are altered by the presence of helium in post irradiation tests performed at room temperature. While the strengths were lower, room temperature ductilities of the DHCE specimens were higher than those of non-DHCE specimens. These changes have been attributed to the formation of different types of hardening centers in these alloys due to He trapping. Independent thermal desorption experiments suggest that these hardening centers may be associated with helium-vacancy-X (where X = O, N, and C) complexes. These complexes are stable below 290{degrees}C and persist at room temperature. However, there has been no direct microstructural evidence correlating the complexes with irradiation effects. An examination of the irradiation induced microstructure in samples preimplanted with He to different levels would enable such a correlation.« less

  17. Pt-Mechanistic Study of the β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes

    PubMed Central

    Alexanian, Erik J.; Hartwig, John F.

    2010-01-01

    A detailed mechanistic investigation of the thermal reactions of a series of bisphosphine alkylplatinum(II) enolate complexes is reported. The reactions of methylplatinum enolate complexes in the presence of added phosphine form methane and either free or coordinated enone, depending on the steric properties of the enone. Kinetic studies were conducted to determine the relationship between the rates and mechanism of β-hydrogen elimination from enolate complexes and the rates and mechanism of β-hydrogen elimination from alkyl complexes. The rates of reactions of the enolates were inversely dependent on the concentration of added phosphine, indicating that β-hydrogen elimination from the enolate complexes occurs after reversible dissociation of a phosphine. A normal, primary kinetic isotope effect was measured, and this effect was consistent with rate-limiting β-hydrogen elimination or C-H bond-forming reductive elimination to form methane. Reactions of substituted enolate complexes were also studied to determine the effect of the steric and electronic properties of the enolate complexes on the rates of β-hydrogen elimination. These studies showed that reactions of the alkylplatinum enolate complexes were retarded by electron-withdrawing substituents on the enolate and that reactions of enolate complexes possessing alkyl substituents at the β-position occurred at rates that were similar to those of complexes lacking alkyl substituents at this position. Despite the trend in electronic effects on the rates of reactions of enolate complexes and the substantial electronic differences between an enolate and an alkyl ligand, the rates of decomposition of the enolate complexes were similar to those of the analogous alkyl complexes. To the extent that the rates of reaction of the two types of complex are different, those involving β-hydrogen elimination from the enolate ligand were faster. A difference between the identity of the rate-determining step for decomposition of the two classes of complexes and an effect of stereochemistry on the selectivity for β-hydrogen elimination are possible origins of the observed phenomena. PMID:18954048

  18. Screening Pinus taeda (loblolly pine) families for physical and mechanical properties using vibrational spectroscopy

    Treesearch

    Gifty E. Acquah; Brian K. Via; Lori G. Eckhardt

    2016-01-01

    In a bid to control the loblolly pine decline complex, stakeholders are using the selection and deployment of genetically superior families that are disease tolerant. It is vital that we do not compromise other important properties while breeding for disease tolerance. In this preliminary study, near infrared spectroscopy was utilized in conjunction with data collected...

  19. Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties

    NASA Astrophysics Data System (ADS)

    Schweizer, Jürg; Reuter, Benjamin; van Herwijnen, Alec; Richter, Bettina; Gaume, Johan

    2016-11-01

    If a weak snow layer below a cohesive slab is present in the snow cover, unstable snow conditions can prevail for days or even weeks. We monitored the temporal evolution of a weak layer of faceted crystals as well as the overlaying slab layers at the location of an automatic weather station in the Steintälli field site above Davos (Eastern Swiss Alps). We focussed on the crack propagation propensity and performed propagation saw tests (PSTs) on 7 sampling days during a 2-month period from early January to early March 2015. Based on video images taken during the tests we determined the mechanical properties of the slab and the weak layer and compared them to the results derived from concurrently performed measurements of penetration resistance using the snow micro-penetrometer (SMP). The critical cut length, observed in PSTs, increased overall during the measurement period. The increase was not steady and the lowest values of critical cut length were observed around the middle of the measurement period. The relevant mechanical properties, the slab effective elastic modulus and the weak layer specific fracture, overall increased as well. However, the changes with time differed, suggesting that the critical cut length cannot be assessed by simply monitoring a single mechanical property such as slab load, slab modulus or weak layer specific fracture energy. Instead, crack propagation propensity is the result of a complex interplay between the mechanical properties of the slab and the weak layer. We then compared our field observations to newly developed metrics of snow instability related to either failure initiation or crack propagation propensity. The metrics were either derived from the SMP signal or calculated from simulated snow stratigraphy (SNOWPACK). They partially reproduced the observed temporal evolution of critical cut length and instability test scores. Whereas our unique dataset of quantitative measures of snow instability provides new insights into the complex slab-weak layer interaction, it also showed some deficiencies of the modelled metrics of instability - calling for an improved representation of the mechanical properties.

  20. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, Alexandra; Yeager, John; Bahr, David

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  1. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE PAGES

    Burch, Alexandra; Yeager, John; Bahr, David

    2017-11-01

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  2. Identifying protein complexes in PPI network using non-cooperative sequential game.

    PubMed

    Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta

    2017-08-21

    Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.

  3. Fibrin mechanical properties and their structural origins.

    PubMed

    Litvinov, Rustem I; Weisel, John W

    2017-07-01

    Fibrin is a protein polymer that is essential for hemostasis and thrombosis, wound healing, and several other biological functions and pathological conditions that involve extracellular matrix. In addition to molecular and cellular interactions, fibrin mechanics has been recently shown to underlie clot behavior in the highly dynamic intra- and extravascular environments. Fibrin has both elastic and viscous properties. Perhaps the most remarkable rheological feature of the fibrin network is an extremely high elasticity and stability despite very low protein content. Another important mechanical property that is common to many filamentous protein polymers but not other polymers is stiffening occurring in response to shear, tension, or compression. New data has begun to provide a structural basis for the unique mechanical behavior of fibrin that originates from its complex multi-scale hierarchical structure. The mechanical behavior of the whole fibrin gel is governed largely by the properties of single fibers and their ensembles, including changes in fiber orientation, stretching, bending, and buckling. The properties of individual fibrin fibers are determined by the number and packing arrangements of double-stranded half-staggered protofibrils, which still remain poorly understood. It has also been proposed that forced unfolding of sub-molecular structures, including elongation of flexible and relatively unstructured portions of fibrin molecules, can contribute to fibrin deformations. In spite of a great increase in our knowledge of the structural mechanics of fibrin, much about the mechanisms of fibrin's biological functions remains unknown. Fibrin deformability is not only an essential part of the biomechanics of hemostasis and thrombosis, but also a rapidly developing field of bioengineering that uses fibrin as a versatile biomaterial with exceptional and tunable biochemical and mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Probing the Mechanical Properties of Plasma von Willebrand Factor Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sitara; Botello, Eric; Frey, Eric; Kiang, Ching-Hwa; Dong, Jing-Fei; Yeh, Hui-Chun

    2010-03-01

    Single-molecule manipulation allows us to study the real time kinetics of many complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be unraveled by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine the conformational states of VWF. We found the shear induced conformational, hence mechanical property changes can be detected by the change in unfolding forces. The relaxation rate of such effect is much longed than expected. This supports the model of lateral association VWF under shear stress. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.

  5. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.

    PubMed

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-01-15

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties which may be attributed to the diversity of cells within individual brain regions. The regional viscoelastic properties of P56 mouse brain tissue, up to 70μm displacement, are presented and discussed in the context of traumatic brain injury, particularly how the different regions of the brain respond to mechanical loads. Force-relaxation data obtained from micro-indentation measurements were fit to both linear and quasi-linear viscoelastic models to determine the time and frequency domain viscoelastic response of the pons, cortex, medulla oblongata, cerebellum, and thalamus. The damping ratio of each region was also determined. Each region was found to have a unique mechanical response to the applied displacement, with the pons and thalamus exhibiting the largest and smallest force-response, respectively. All brain regions appear to have an optimal frequency for the dissipation of energies which lies between 1 and 10Hz. We present the first mechanical characterization of the viscoelastic response for different regions of mouse brain. Force-relaxation tests are performed under large strain dynamic micro-indentation, and viscoelastic models are used subsequently, providing time-dependent mechanical properties of brain tissue under loading conditions comparable to what is experienced in TBI. The unique mechanical properties of different brain regions are highlighted, with substantial variations in the viscoelastic properties and damping ratio of each region. Cortex and pons were the stiffest regions, while the thalamus and medulla were most compliant. The cerebellum and thalamus had highest damping ratio values and those of the medulla were lowest. The reported material parameters can be implemented into finite element computer models of the mouse to investigate the effects of trauma on individual brain regions. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties

    PubMed Central

    Valencia, Alvaro; Burdiles, Patricio; Ignat, Miguel; Mura, Jorge; Rivera, Rodrigo; Sordo, Juan

    2013-01-01

    Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time. PMID:24151523

  7. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    PubMed Central

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Tekkaya, A. Erman

    2018-01-01

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties. PMID:29747417

  8. Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells

    NASA Astrophysics Data System (ADS)

    Jaspers, Maarten; Vaessen, Sarah L.; van Schayik, Pim; Voerman, Dion; Rowan, Alan E.; Kouwer, Paul H. J.

    2017-05-01

    The mechanical properties of cells and the extracellular environment they reside in are governed by a complex interplay of biopolymers. These biopolymers, which possess a wide range of stiffnesses, self-assemble into fibrous composite networks such as the cytoskeleton and extracellular matrix. They interact with each other both physically and chemically to create a highly responsive and adaptive mechanical environment that stiffens when stressed or strained. Here we show that hybrid networks of a synthetic mimic of biological networks and either stiff, flexible and semi-flexible components, even very low concentrations of these added components, strongly affect the network stiffness and/or its strain-responsive character. The stiffness (persistence length) of the second network, its concentration and the interaction between the components are all parameters that can be used to tune the mechanics of the hybrids. The equivalence of these hybrids with biological composites is striking.

  9. Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

    NASA Astrophysics Data System (ADS)

    Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan

    Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

  10. Nitrogen Doped Carbon Nanotubes from Organometallic Compounds: A Review

    PubMed Central

    Nxumalo, Edward N.; Coville, Neil J.

    2010-01-01

    Nitrogen doped carbon nanotubes (N-CNTs) have become a topic of increased importance in the study of carbonaceous materials. This arises from the physical and chemical properties that are created when N is embedded in a CNT. These properties include modified chemical reactivity and modified conductivity and mechanical properties. A range of methodologies have been devised to synthesize N-CNTs. One of the procedures uses a floating catalyst in which an organometallic complex is decomposed in the gas phase in the presence of a nitrogen containing reactant to give N-CNTs. Most studies have been limited to ferrocene, ring substituted ferrocene and Fe(CO)5. This review covers the synthesis (and properties) of N-CNTs and other shaped carbon nanomaterials (SCNMs) produced using organometallic complexes. It summarizes the effects that physical parameters such as temperature, pressure, gas flow rates, type and concentration of N source etc. have on the N-CNT type, size and yields as well as the nitrogen content incorporated into the tubes that are produced from organometallic complexes. Proposed growth models for N-CNT synthesis are also reported.

  11. Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr-10Ni-Ti austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Gurovich, B. A.; Kuleshova, E. A.; Frolov, A. S.; Maltsev, D. A.; Prikhodko, K. E.; Fedotova, S. V.; Margolin, B. Z.; Sorokin, A. A.

    2015-10-01

    A complex study of structural state and properties of 18Cr-10Ni-Ti austenitic stainless steel after irradiation in BOR-60 fast research reactor (in the temperature range 330-400 °С up to damaging doses of 145 dpa) and in VVER-1000 light water reactor (at temperature ∼320 °С and damaging doses ∼12-14 dpa) was performed. The possibility of recovery of structural-phase state and mechanical properties to the level almost corresponding to the initial state by the recovery annealing was studied. The principal possibility of the recovery annealing of pressurized water reactor internals that ensures almost complete recovery of its mechanical properties and microstructure was shown. The optimal mode of recovery annealing was established: 1000 °C during 120 h.

  12. Mechanical, dielectric, and physicochemical properties of impregnating resin based on unsaturated polyesterimides

    NASA Astrophysics Data System (ADS)

    Fetouhi, Louiza; Petitgas, Benoit; Dantras, Eric; Martinez-Vega, Juan

    2017-10-01

    This work aims to characterize the dielectric and the mechanical properties of a resin based on an unsaturated polyesterimide diluted in methacrylate reactive diluents used in the impregnation of rotating machines. The broadband dielectric spectrometry and the dynamic mechanical analysis were used to quantify the changes in dielectric and mechanical properties of the network PEI resin, as a function of temperature and frequency. The network characterizations highlight the presence of two main relaxations, α and α', confirmed by the differential scanning calorimetry analysis, showing the complexity of the chemical composition of this resin. The dielectric spectroscopy shows a significant increase in the dielectric values due to an increase of the material conductivity, while the mechanical spectroscopy shows an important decrease of the polymer rigidity and viscosity expressed by an important decrease in the storage modulus. The PEI resin shows a high reactivity when it is submitted in successive heating ramps, which involves in a post-cross-linking reaction. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  13. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less

  14. Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Ahmadi, S. M.; Jain, R. K. Ashok Kumar; Zadpoor, A. A.; Ayas, C.; Popovich, V. A.

    2017-12-01

    Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be needed to improve their mechanical properties. For instance, AM Ti6Al4V samples may be brittle and incapable of withstanding dynamic mechanical loads due to their martensitic microstructure. The aim of this study was to apply two different heat treatment regimes (below and above β-transus) to investigate their effects on the microstructure and mechanical properties of porous Ti6Al4V specimens. After heat treatment, fine acicular α‧ martensitic microstructure was transformed to a mixture of α and β phases. The ductility of the heat-treated specimens, as well as some mechanical properties such as hardness, plateau stress, and first maximum stress changed while the density and elastic gradient of the porous structure remained unchanged.

  15. Organic-inorganic Interface in Nacre: Learning Lessons from Nature

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Askarinejad, Sina

    Problem-solving strategies of naturally growing composites such as nacre give us a fantastic vision to design and fabricate tough, stiff while strong composites. To provide the outstanding mechanical functions, nature has evolved complex and effective functionally graded interfaces. Particularly in nacre, organic-inorganic interface in which the proteins behave stiffer and stronger in proximity of calcium carbonate minerals provide an impressive role in structural integrity and mechanical deformation of the natural composite. The well-known shear-lag theory was employed on a simplified two-dimensional unit-cell of the multilayered composite considering the interface properties. The closed-form solutions for the displacements in the elastic components as a function of constituent properties can be used to calculate the effective mechanical properties of composite such as elastic modulus, strength and work-to-failure. The results solve the important mysteries about nacre and emphasize on the role of organic-inorganic interface properties and mineral bridges. Our results show that the properties of proteins in proximity of mineral bridges are also significant. More studies need to be performed on the strategies to enhance the interface properties in manmade composites. NSF Career Award no. 1281264.

  16. Aspects of the mechanisms of smoke generation by burning materials

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Zinn, B. T.; Browner, R. F.; Powell, E. A.

    1981-01-01

    An investigation of smoke generation during the burning of natural and synthetic solid materials (relevant to fire safety problems), under simulated fire conditions, is presented. Smoke formation mechanisms, including flaming and nonflaming combustion, are reviewed, and the complex physical, chemical, and electrical processes, important in smoke particulate production, are identified. With reference to the smoke formation mechanisms, measured experimental data are discussed, and include effects of ventilation gas temperature, dependence on material composition, and chemical analysis of smoke particulates. Significant differences in smoke characteristics are observed between flaming and nonflaming conditions, which is attributed to specific differences in controlling mechanisms and resultant ways leading to particulate formation. The effects of polymer substrate properties and effects of additives for a given substrate on smoke properties are also discussed in terms of basic processes. It is shown that many of the measured trends can be interpreted by considering postulated mechanisms of particulate formation.

  17. Ex Vivo Characterization of Canine Liver Tissue Viscoelasticity Following High Intensity Focused Ultrasound (HIFU) Ablation

    PubMed Central

    Shahmirzadi, Danial; Hou, Gary Y.; Chen, Jiangang; Konofagou, Elisa E.

    2014-01-01

    Elasticity imaging has shown great promise in detecting High Intensity Focused Ultrasound (HIFU) lesions based on their distinct biomechanical properties. However, quantitative mechanical properties of the tissue and the optimal intensity for obtaining the best contrast parameters remain scarce. In this study, fresh canine livers were ablated using combinations of ISPTA intensities of 5.55, 7.16 and 9.07 kW/cm2 and time durations of 10 and 30 s ex vivo; leading to six groups of ablated tissues. Biopsy samples were then interrogated using dynamic shear mechanical testing within the range of 0.1-10 Hz to characterize the post-ablation tissue viscoelastic properties. All mechanical parameters were found to be frequency dependent. Compared to the unablated cases, all six groups of ablated tissues showed statistically-significant higher complex shear modulus and shear viscosity. However, among the ablated groups, both complex shear modulus and shear viscosity were found to monotonically increase in groups 1-4 (5.55 kW/cm2 for 10 s, 7.16 kW/cm2 for 10 s, 9.07 kW/cm2 & 10 s, and 5.55 kW/cm2 & 30 s, respectively), but decrease in groups 5 and 6 (7.16 kW/cm2 for 30 s, and 9.07 kW/cm2 for 30 s, respectively). For groups 5 and 6, the temperature was expected to exceed the boiling point, and therefore, the decreased stiffening could be due to the compromised integrity of the tissue microstructure. Future studies are needed to estimate the tissue mechanical properties in vivo and perform real-time monitoring of tissue alterations during ablation. PMID:24315395

  18. Impact of Interlayer Dwell Time on Microstructure and Mechanical Properties of Nickel and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Foster, B. K.; Beese, A. M.; Keist, J. S.; McHale, E. T.; Palmer, T. A.

    2017-09-01

    Path planning in additive manufacturing (AM) processes has an impact on the thermal histories experienced at discrete locations in simple and complex AM structures. One component of path planning in directed energy deposition is the time required for the laser or heat source to return to a given location to add another layer of material. As structures become larger and more complex, the length of this interlayer dwell time can significantly impact the resulting thermal histories. The impact of varying dwell times between 0 and 40 seconds on the microstructural and mechanical properties of Inconel® 625 and Ti-6Al-4V builds has been characterized. Even though these materials display different microstructures and solid-state phase transformations, the addition of an interlayer dwell generally led to a finer microstructure in both materials that impacted the resulting mechanical properties. With the addition of interlayer dwell times up to 40 seconds in the Inconel® 625 builds, finer secondary dendrite arm spacing values, produced by changes in the thermal history, correspond to increased yield and tensile strengths. These mechanical properties did not appear to change significantly, however, for dwell times greater than 20 seconds in the Inconel® 625 builds, indicating that longer dwell times have a minimal impact. The addition of interlayer dwell times in Ti-6Al-4V builds resulted in a slight decrease in the measured alpha lath widths and a much more noticeable decrease in the width of prior beta grains. In addition, the yield and tensile values continued to increase, nearly reaching the values observed in the rolled plate substrate material with dwell times up to 40 seconds.

  19. Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light.

    PubMed

    Grindy, Scott C; Holten-Andersen, Niels

    2017-06-07

    Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising strategy for controlling viscoelasticity in hydrogels, for example leading to systems with precisely tunable mechanical energy-dissipation. We and others have shown that bio-inspired histidine:transition metal ion complexes allow highly precise and tunable control over the viscoelastic properties of transient network hydrogels. In this paper, we extend the design of these hydrogels such that their viscoelastic properties respond to longwave UV radiation. We show that careful selection of the histidine:transition metal ion crosslink mixtures allows unique control over pre- and post-UV viscoelastic properties. We anticipate that our strategy for controlling stimuli-responsive viscoelastic properties will aid biomedical materials scientists in the development of soft materials with specific stress-relaxing or energy-dissipating properties.

  20. Computational discovery of extremal microstructure families

    PubMed Central

    Chen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciech

    2018-01-01

    Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties. PMID:29376124

  1. Effects of filler type and content on mechanical properties of photopolymerizable composites measured across two-dimensional combinatorial arrays.

    PubMed

    Lin-Gibson, Sheng; Sung, Lipiin; Forster, Aaron M; Hu, Haiqing; Cheng, Yajun; Lin, Nancy J

    2009-07-01

    Multicomponent formulations coupled with complex processing conditions govern the final properties of photopolymerizable dental composites. In this study, a single test substrate was fabricated to support multiple formulations with a gradient in degree of conversion (DC), allowing the evaluation of multiple processing conditions and formulations on one specimen. Mechanical properties and damage response were evaluated as a function of filler type/content and irradiation. DC, surface roughness, modulus, hardness, scratch deformation and cytotoxicity were quantified using techniques including near-infrared spectroscopy, laser confocal scanning microscopy, depth-sensing indentation, scratch testing and cell viability. Scratch parameters (depth, width, percent recovery) were correlated to composite modulus and hardness. Total filler content, nanofiller and irradiation time/intensity all affected the final properties, with the dominant factor for improved properties being a higher DC. This combinatorial platform accelerates the screening of dental composites through the direct comparison of properties and processing conditions across the same sample.

  2. Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.

    2012-02-01

    In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.

  3. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part II: high rate or 'surprise' loading.

    PubMed

    Shan, Zhi; Wade, Kelly R; Schollum, Meredith L; Robertson, Peter A; Thambyah, Ashvin; Broom, Neil D

    2017-10-01

    Part I of this study explored mechanisms of disc failure in a complex posture incorporating physiological amounts of flexion and shear at a loading rate considerably lower than likely to occur in a typical in vivo manual handling situation. Given the strain-rate-dependent mechanical properties of the heavily hydrated disc, loading rate will likely influence the mechanisms of disc failure. Part II investigates the mechanisms of failure in healthy discs subjected to surprise-rate compression while held in the same complex posture. 37 motion segments from 13 healthy mature ovine lumbar spines were compressed in a complex posture intended to simulate the situation arising when bending and twisting while lifting a heavy object at a displacement rate of 400 mm/min. Seven of the 37 samples reached the predetermined displacement prior to a reduction in load and were classified as early stage failures, providing insight to initial areas of disc disruption. Both groups of damaged discs were then analysed microstructurally using light microscopy. The average failure load under high rate complex loading was 6.96 kN (STD 1.48 kN), significantly lower statistically than for low rate complex loading [8.42 kN (STD 1.22 kN)]. Also, unlike simple flexion or low rate complex loading, direct radial ruptures and non-continuous mid-wall tearing in the posterior and posterolateral regions were commonly accompanied by disruption extending to the lateral and anterior disc. This study has again shown that multiple modes of damage are common when compressing a segment in a complex posture, and the load bearing ability, already less than in a neutral or flexed posture, is further compromised with high rate complex loading.

  4. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    PubMed Central

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-01-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484

  5. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing

    NASA Astrophysics Data System (ADS)

    Restrepo, S.; Ocampo, S.; Ramírez, J. A.; Paucar, C.; García, C.

    2017-12-01

    Repairing tissues and organs has been the main goal of surgical procedures. Since the 1990s, the main goal of tissue engineering has been reparation, using porous scaffolds that serve as a three-dimensional template for the initial fixation of cells and subsequent tissue formation both in vitro and in vivo. A scaffold must have specific characteristics of porosity, interconnectivity, surface area, pore volume, surface tortuosity, permeability and mechanical properties, which makes its design, manufacturing and characterization a complex process. Inspired by nature, triply periodic minimal surfaces (TPMS) have emerged as an alternative for the manufacture of porous pieces with design requirements, such as scaffolds for tissue repair. In the present work, we used the technique of 3D printing to obtain ceramic structures with Gyroid, Schwarz Primitive and Schwarz Diamond Surfaces shapes, three TPMS that fulfil the geometric requirements of a bone tissue scaffold. The main objective of this work is to compare the mechanical properties of ceramic pieces of three different forms of TPMS printed in 3D using a commercial ceramic paste. In this way it will be possible to clarify which is the TPMS with appropriate characteristics to construct scaffolds of ceramic materials for bone repair. A dependence of the mechanical properties with the geometry was found being the Primitive Surface which shows the highest mechanical properties.

  6. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    PubMed

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  7. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    PubMed

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  8. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone

    NASA Astrophysics Data System (ADS)

    Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.

    2017-11-01

    According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.

  9. Application of Microrheology in Food Science.

    PubMed

    Yang, Nan; Lv, Ruihe; Jia, Junji; Nishinari, Katsuyoshi; Fang, Yapeng

    2017-02-28

    Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.

  10. Self-organizing layers from complex molecular anions

    DOE PAGES

    Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...

    2018-05-14

    The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less

  11. Self-organizing layers from complex molecular anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.

    The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less

  12. Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus

    PubMed Central

    Harrington, Matthew J.; Gupta, Himadri S.; Fratzl, Peter; Waite, J. Herbert

    2009-01-01

    The byssal threads of the California mussel, Mytilus californianus, are highly hysteretic, elastomeric fibers that collectively perform a holdfast function in wave-swept rocky seashore habitats. Following cyclic loading past the mechanical yield point, threads exhibit a damage-dependent reduction in mechanical performance. However, the distal portion of the byssal thread is capable of recovering initial material properties through a time-dependent healing process in the absence of active cellular metabolism. Byssal threads are composed almost exclusively of multi-domain hybrid collagens known as preCols, which largely determine the mechanical properties of the thread. Here, the structure-property relationships that govern thread mechanical performance are further probed. The molecular rearrangements that occur during yield and damage repair were investigated using time-resolved in situ wide angle X-ray diffraction (WAXD) coupled with cyclic tensile loading of threads and through thermally enhanced damage-repair studies. Results indicate that the collagen domains in byssal preCols are mechanically protected by the unfolding of sacrificial non-collagenous domains that refold on a slower time-scale. Time-dependent healing is primarily attributed to stochastic recoupling of broken histidine-metal coordination complexes. PMID:19275941

  13. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    PubMed

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  14. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    PubMed

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  15. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray

    NASA Astrophysics Data System (ADS)

    Rokni, M. R.; Nutt, S. R.; Widener, C. A.; Champagne, V. K.; Hrabe, R. H.

    2017-08-01

    In the cold spray (CS) process, deposits are produced by depositing powder particles at high velocity onto a substrate. Powders deposited by CS do not undergo melting before or upon impacting the substrate. This feature makes CS suitable for deposition of a wide variety of materials, most commonly metallic alloys, but also ceramics and composites. During processing, the particles undergo severe plastic deformation and create a more mechanical and less metallurgical bond with the underlying material. The deformation behavior of an individual particle depends on multiple material and process parameters that are classified into three major groups—powder characteristics, geometric parameters, and processing parameters, each with their own subcategories. Changing any of these parameters leads to evolution of a different microstructure and consequently changes the mechanical properties in the deposit. While cold spray technology has matured during the last decade, the process is inherently complex, and thus, the effects of deposition parameters on particle deformation, deposit microstructure, and mechanical properties remain unclear. The purpose of this paper is to review the parameters that have been investigated up to now with an emphasis on the existent relationships between particle deformation behavior, microstructure, and mechanical properties of various cold spray deposits.

  16. Synthesis and Properties of "Sandwich" Diimine-Coinage Metal Ethylene Complexes.

    PubMed

    Klimovica, Kristine; Kirschbaum, Kristin; Daugulis, Olafs

    2016-09-12

    Synthesis and full characterization of cationic isostructural "sandwich" diimine-coinage metal ethylene complexes are reported. Ethylene self-exchange kinetics proceeds by an associative exchange mechanism for Cu and Au complexes. The fastest ligand exchange was observed for Ag complex 8a . The upper limit of Δ G ‡ , assuming associative ligand exchange, was found to be ca. 5.0 kcal/mol. Ethylene self-exchange in Cu complex 7b proceeds with Δ G 298 ‡ = 12.9 ± 0.1 kcal/mol, while the exchange is the slowest in Au complex 9 , with Δ G 298 ‡ = 16.7 ± 0.1 kcal/mol. Copper complex 7b is unusually stable and can survive in air for years.

  17. Novel characterization method for fibrous materials using non-contact acoustics: material properties revealed by ultrasonic perturbations.

    PubMed

    Periyaswamy, Thamizhisai; Balasubramanian, Karthikeyan; Pastore, Christopher

    2015-02-01

    Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Micro-mechanics of micro-composites

    NASA Technical Reports Server (NTRS)

    Donovan, Richard P.

    1995-01-01

    The Structural Dynamics branch at NASA LaRC is working on developing an active passive mount system for vibration control. Toward this end a system utilizing piezoelectric actuators is currently being utilized. There are limitations to the current system related to space applications under which it is desired to eliminate deformations in the actuators associated with thermal effects. In addition, a material that is readily formable into complex shapes and whose mechanical properties can be optimized with regards to vibration control would be highly desirable. Microcomposite material are currently under study to service these needs. Microcomposite materials are essentially materials in which particles on the scale of microns are bound together with a polyimide (LaRC Si) that has been developed at LaRC. In particular a micro-composite consisting of LaRC Si binder and piezoelectric ceramic particles shows promise in satisfying the needs of the active passive mount project. The LaRC/ Si microcomposite has a unique combination of piezoelectric properties combined with a near zero coefficient of thermal expansion and easy machinability. The goal of this ASEE project is to develop techniques to analytically determine important material properties necessary to characterize the dynamic properties of actuators and mounts made from the LaRC Si / ceramic microcomposite. In particular, a generalized method of cells micromechanics originally developed at NASA Lewis is employed to analyze the microstructural geometry of the microcomposites and predict the overall mechanical properties of the material. A testing program has been established to evaluate and refine the GMC approach to these materials. In addition, a theory of mixtures analysis is being developed that utilizes the GMC micromechanics information to analyze complex behavior of the microcomposite material which has a near zero CTE.

  19. A series of novel lanthanide complexes with 2-bromine-5-methoxybenzoic acid and 2,2‧-bipyridine: Syntheses, crystal structures, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Qing; Zhu, Min-Min; Ren, Ning; Zhang, Jian-Jun

    2017-12-01

    Six new lanthanide complexes [Ln(2-Br-5-MOBA)3(2,2‧-DIPY)]2 (Ln = Nd(1), Eu(2), Gd(3), Tb(4), Ho(5), Er(6); 2-Br-5-MOBA = 2-bromine-5-methoxybenzoate; 2,2‧-DIPY = 2,2‧-bipyridine) have been successfully synthesized and characterized. The complexes 1-5 are isostructural and nine-coordinated by the single-crystal X-ray diffraction analyses, while the complex 6 is eight-coordinated. The difference of crystal structure may be the result of the lanthanide contraction effect. The binuclear units were further assembled into 1D, 2D, 3D supramolecular structures by the π-π stacking and Csbnd H⋯O hydrogen bonding interactions. The thermal decomposition mechanism of complexes 1-6 was studied by TG analysis and further authenticated by TG/DSC-FTIR techniques. The solid-state luminescence properties of complexes 2 and 4 were investigated at room temperature. The results indicate that complexes 2 and 4 show characteristic emission of Eu3+ ion and Tb3+ ion, respectively. What's more, the title complexes have good antibacterial activities against Candida albicans.

  20. Theoretical Insight into the Influences of Molecular Ratios on Stabilities and Mechanical Properties, Solvent Effect of HMX/FOX-7 Cocrystal Explosive

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Ju; Ren, Fu-De; Shi, Wen-Jing; Zhao, Qi

    2016-10-01

    A molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane/1,1-diamino-2,2-dinitroethylene (HMX/FOX-7) cocrystal in different molecular molar ratios. Mechanical properties, densities, and detonation velocities of the cocrystals in different ratios were estimated. The intermolecular interactions and bond dissociation energies (BDEs) of the N-NO2 bond in the HMX:FOX-7 (1:1) complex were calculated using the B3LYP and MP2(full) methods at the 6-311++G (d,p) and 6-311++G(2df,2p) basis sets. Solvent effects on stability are discussed. The results indicate that HMX/FOX-7 cocrystals prefer cocrystalizing in a 1:1 molar ratio, which has good mechanical properties. The N-NO2 bond becomes strong upon the formation of a complex and the sensitivity of HMX might decrease in cocrystals. The sensitivity change of HMX/FOX-7 originates from not only the formation of intermolecular interaction but also the increment in the N-NO2 BDE. HMX/FOX-7 cocrystals exhibit good detonation performance and meet the requirements of high-density energetic materials. Solvents with low dielectric constants may be chosen to obtain stable HMX/FOX-7 cocrystals.

  1. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS.

    PubMed

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-11-04

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  2. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    PubMed Central

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-01-01

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019

  3. The neuroscience of learning: beyond the Hebbian synapse.

    PubMed

    Gallistel, C R; Matzel, Louis D

    2013-01-01

    From the traditional perspective of associative learning theory, the hypothesis linking modifications of synaptic transmission to learning and memory is plausible. It is less so from an information-processing perspective, in which learning is mediated by computations that make implicit commitments to physical and mathematical principles governing the domains where domain-specific cognitive mechanisms operate. We compare the properties of associative learning and memory to the properties of long-term potentiation, concluding that the properties of the latter do not explain the fundamental properties of the former. We briefly review the neuroscience of reinforcement learning, emphasizing the representational implications of the neuroscientific findings. We then review more extensively findings that confirm the existence of complex computations in three information-processing domains: probabilistic inference, the representation of uncertainty, and the representation of space. We argue for a change in the conceptual framework within which neuroscientists approach the study of learning mechanisms in the brain.

  4. Spectro Analytical, Computational and In Vitro Biological Studies of Novel Substituted Quinolone Hydrazone and it's Metal Complexes.

    PubMed

    Nagula, Narsimha; Kunche, Sudeepa; Jaheer, Mohmed; Mudavath, Ravi; Sivan, Sreekanth; Ch, Sarala Devi

    2018-01-01

    Some novel transition metal [Cu (II), Ni (II) and Co (II)] complexes of nalidixic acid hydrazone have been prepared and characterized by employing spectro-analytical techniques viz: elemental analysis, 1 H-NMR, Mass, UV-Vis, IR, TGA-DTA, SEM-EDX, ESR and Spectrophotometry studies. The HyperChem 7.5 software was used for geometry optimization of title compound in its molecular and ionic forms. Quantum mechanical parameters, contour maps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and corresponding binding energy values were computed using semi empirical single point PM3 method. The stoichiometric equilibrium studies of metal complexes carried out spectrophotometrically using Job's continuous variation and mole ratio methods inferred formation of 1:2 (ML 2 ) metal complexes in respective systems. The title compound and its metal complexes screened for antibacterial and antifungal properties, exemplified improved activity in metal complexes. The studies of nuclease activity for the cleavage of CT- DNA and MTT assay for in vitro cytotoxic properties involving metal complexes exhibited high activity. In addition, the DNA binding properties of Cu (II), Ni (II) and Co (II) complexes investigated by electronic absorption and fluorescence measurements revealed their good binding ability and commended agreement of K b values obtained from both the techniques. Molecular docking studies were also performed to find the binding affinity of synthesized compounds with DNA (PDB ID: 1N37) and "Thymidine phosphorylase from E.coli" (PDB ID: 4EAF) protein targets.

  5. Proposed FY13 LRIR: Shock-Mitigating Multilayered Mechanical Metamaterials (SM5)

    DTIC Science & Technology

    2012-08-02

    DoD SMART Scholarship for Service Program Awareness Info Sharing Co-Funded Inter- locked 4Approved for Public Release; Distribution Unlimited (PA...Materials Modeling • Rate-dependent • Temperature-dependent • Complex properties Theoretical Mechanics • Dispersion • Wave modes/ polarization ...Dick (Rice) • Wavelet SEM in Plates, PI: Ratan Jha (Clarkson) – Soliton -Based Artificial Nervous System • PI’s: “JK” Yang (USC), Amanda Schrand

  6. Neuronal avalanches and learning

    NASA Astrophysics Data System (ADS)

    de Arcangelis, Lucilla

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  7. Self-Healing Proton-Exchange Membranes Composed of Nafion-Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells.

    PubMed

    Li, Yixuan; Liang, Liang; Liu, Changpeng; Li, Yang; Xing, Wei; Sun, Junqi

    2018-04-30

    Proton-exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4-carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion-PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion-PVA membrane shows a proton conductivity of 0.11 S cm -1 at 80 °C, which is 1.2-fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion-PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion-PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen-bonding interactions between Nafion and CBA-modified PVA and the high chain mobility of Nafion and CBA-modified PVA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dynamical minimalism: why less is more in psychology.

    PubMed

    Nowak, Andrzej

    2004-01-01

    The principle of parsimony, embraced in all areas of science, states that simple explanations are preferable to complex explanations in theory construction. Parsimony, however, can necessitate a trade-off with depth and richness in understanding. The approach of dynamical minimalism avoids this trade-off. The goal of this approach is to identify the simplest mechanisms and fewest variables capable of producing the phenomenon in question. A dynamical model in which change is produced by simple rules repetitively interacting with each other can exhibit unexpected and complex properties. It is thus possible to explain complex psychological and social phenomena with very simple models if these models are dynamic. In dynamical minimalist theories, then, the principle of parsimony can be followed without sacrificing depth in understanding. Computer simulations have proven especially useful for investigating the emergent properties of simple models.

  9. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy.

    PubMed

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-10-31

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicted dual binding modes across multiple bacterial species, our approach opens up new possibilities for understanding assembly and catalytic properties of a broad range of multi-enzyme complexes.

  10. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    PubMed

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  11. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Self-organizing actin patterns shape membrane architecture but not cell mechanics

    NASA Astrophysics Data System (ADS)

    Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.

    2017-02-01

    Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.

  13. Self-organizing actin patterns shape membrane architecture but not cell mechanics

    PubMed Central

    Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.

    2017-01-01

    Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties. PMID:28194011

  14. The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel

    PubMed Central

    Sun, Lin; Galvin, Deri Rhys; Hill, Paul; Rawson, Martin; Gilbert, Elliot Paul; Bhadeshia, Harshad; Perkins, Karen

    2017-01-01

    Maraging steels gain many of their beneficial properties from heat treatments which induce the precipitation of intermetallic compounds. We consider here a two-stage heat-treatment, first involving austenitisation, followed by quenching to produce martensite and then an ageing treatment at a lower temperature to precipitation harden the martensite of a maraging steel. It is shown that with a suitable choice of the initial austenitisation temperature, the steel can be heat treated to produce enhanced toughness, strength and creep resistance. A combination of small angle neutron scattering, scanning electron microscopy, electron back-scattered diffraction, and atom probe tomography were used to relate the microstructural changes to mechanical properties. It is shown that such a combination of characterisation methods is necessary to quantify this complex alloy, and relate these microstructural changes to mechanical properties. It is concluded that a higher austenitisation temperature leads to a greater volume fraction of smaller Laves phase precipitates formed during ageing, which increase the strength and creep resistance but reduces toughness. PMID:29168800

  15. Superstatistical model of bacterial DNA architecture

    NASA Astrophysics Data System (ADS)

    Bogachev, Mikhail I.; Markelov, Oleg A.; Kayumov, Airat R.; Bunde, Armin

    2017-02-01

    Understanding the physical principles that govern the complex DNA structural organization as well as its mechanical and thermodynamical properties is essential for the advancement in both life sciences and genetic engineering. Recently we have discovered that the complex DNA organization is explicitly reflected in the arrangement of nucleotides depicted by the universal power law tailed internucleotide interval distribution that is valid for complete genomes of various prokaryotic and eukaryotic organisms. Here we suggest a superstatistical model that represents a long DNA molecule by a series of consecutive ~150 bp DNA segments with the alternation of the local nucleotide composition between segments exhibiting long-range correlations. We show that the superstatistical model and the corresponding DNA generation algorithm explicitly reproduce the laws governing the empirical nucleotide arrangement properties of the DNA sequences for various global GC contents and optimal living temperatures. Finally, we discuss the relevance of our model in terms of the DNA mechanical properties. As an outlook, we focus on finding the DNA sequences that encode a given protein while simultaneously reproducing the nucleotide arrangement laws observed from empirical genomes, that may be of interest in the optimization of genetic engineering of long DNA molecules.

  16. Dielectric and electric properties as a tool to investigate the coagulation mechanism during sludge treatment.

    PubMed

    Mortadi, A; Chahid, El G; Nasrellah, H; Cherkaoui, O; El Moznine, R

    2017-09-28

    The analysis of the complex permittivity, electrical complex modulus and the hopping conductivity have been employed in order to investigate the impacts of calcium oxide during sludge treatment in textile such as coagulation process. In this context, impedance measurement was performed on five samples, including raw sludge and four compositions containing different amounts of calcium oxide: 2%, 3%, 4% and 5% (w/w). The dielectric spectra of each composition were described by the summation of a power law and a Cole-Cole relaxation model. The relaxation time and the magnitude of the dielectric relaxation obtained from the analysis of dielectric properties showed an increase up to 3% of these parameters with the addition of calcium oxide. Above this critical value, both parameters showed a very small change, suggesting that the aggregation became more stable. In addition, the evolution of the hopping conductivity reached a minimum value at this critical amount (3%). This evolution was well described by a double power law, which allowed us to estimate the optimal amount of the calcium oxide to achieve coagulation process. The analysis of the dielectric properties was found useful in monitoring aggregation processes that occur during the coagulation mechanism in textile sludge.

  17. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.

    PubMed

    Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude

    2015-12-21

    The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.

  18. Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.

    2017-12-01

    Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.

  19. System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks

    PubMed Central

    Miao, Yingbo; Zhang, Liangcai; Wang, Yang; Feng, Rennan; Yang, Lei; Zhang, Shihua; Jiang, Yongshuai; Liu, Guiyou

    2014-01-01

    Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM. PMID:25243143

  20. Neural network potential for Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ryo; Giofré, Daniele; Junge, Till; Ceriotti, Michele; Curtin, William A.

    2017-10-01

    The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly improved through engineered precipitation. To enable atomistic-level simulations of both the processing and performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive database of properties computed using first-principles density functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute, and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that are required for modeling the early stage of precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful potentials in complex alloy systems.

  1. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  2. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  3. Characterizing the mechanical behavior of the zebrafish germ layers

    NASA Astrophysics Data System (ADS)

    Kealhofer, David; Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Lucio, Adam; Campàs, Otger

    Organ morphogenesis and the development of the animal body plan involve complex spatial and temporal control of tissue- and cell-level mechanics. A prime example is the generation of stresses by individual cells to reorganize the tissue. These processes have remained poorly understood due to a lack of techniques to characterize the local constitutive law of the material, which relates local cellular forces to the resulting tissue flows. We have developed a method for quantitative, local in vivo study of material properties in living tissue using magnetic droplet probes. We use this technique to study the material properties of the different zebrafish germ layers using aggregates of zebrafish mesendodermal and ectodermal cells as a model system. These aggregates are ideal for controlled studies of the mechanics of individual germ layers because of the homogeneity of the cell type and the simple spherical geometry. Furthermore, the numerous molecular tools and transgenic lines already developed for this model organism can be applied to these aggregates, allowing us to characterize the contributions of cell cortex tension and cell adhesion to the mechanical properties of the zebrafish germ layers.

  4. Complexion-mediated martensitic phase transformation in Titanium

    PubMed Central

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.

    2017-01-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484

  5. In-situ mechanical test of dragonfly wing veins and their crack arrest behavior.

    PubMed

    Zhang, Zhihui; Zhang, Lan; Yu, Zhenglei; Liu, Jingjing; Li, Xiujuan; Liang, Yunhong

    2018-07-01

    In natural biological systems, many insects in complex environments exhibit exemplary mechanical properties. Dragonfly wings are light and strong enough to withstand wind loading. Their rigid veins play supporting and strengthening roles to enhance resistance to fatigue. To explore the effect of veins on arresting cracking in the wing, the costa, subcosta, radius R1, and two areas of dragonfly hind wings were samples for in situ tensile tests. The fracture process of the samples was observed with a high-speed camera and a scanning electron microscope. The mechanical properties of the veins and the results of nanomechanical tests on the wings were analyzed. The costa was stiffer and more resistant to deformation than the subcosta and radius, but it was less tough. The results of this study may provide inspiration for the design of mechanical structures and materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Complexion-mediated martensitic phase transformation in Titanium.

    PubMed

    Zhang, J; Tasan, C C; Lai, M J; Dippel, A-C; Raabe, D

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  7. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.

  8. First-Principles Studies of Structure-Property Relationships: Enabling Design of Functional Materials

    NASA Astrophysics Data System (ADS)

    Zhou, Qunfei

    First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, we have developed a new quantum mechanical approach to quantitatively predict the thermionic emission current density from materials perspective without any semi-empirical approximations or complicated analytical models, which leads to better understanding of thermionic emission mechanism. The methods from this work could be used to accelerate the design of next-generation thermionic cathodes. For photoresponsive materials, we designed a novel type of azobenzene-containing monomer for light-mediated ring-opening metathesis polymerization (ROMP) toward the fabrication of patterned, photo-responsive polymers by controlling ring strain energy (RSE) of the monomer that drives ROMP. This allows for unprecedented remote, noninvasive, instantaneous spatial and temporal control of photo-responsive polymer deposition on complex surfaces.This work on the above two different materials systems showed the power of quantum mechanical calculations on predicting, understanding and discovering the structures and properties of both known and unknown materials in a fast, efficient and reliable way.

  9. Spectral, coordination and thermal properties of 5-arylidene thiobarbituric acids

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; El-Marghany, Adel; Orabi, Adel; Ali, Alaa E.; Sayed, Reham

    2013-04-01

    Synthesis of 5-arylidine thiobarbituric acids containing different functional groups with variable electronic characters were described and their Co2+, Ni2+ and Cu2+ complexes. The stereochemistry and mode of bonding of 5-(substituted benzylidine)-2-TBA complexes were achieved based on elemental analysis, spectral (UV-VIS, IR, 1H NMR, MS), magnetic susceptibility and conductivity measurements. The ligands were of bidentate and tridentate bonding through S, N and O of pyrimidine nucleolus. All complexes were of octahedral configuration. The thermal data of the complexes pointed to their stability. The mechanism of the thermal decomposition is discussed. The thermodynamic parameters of the dissociation steps were evaluated and discussed.

  10. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    PubMed

    Hawkins, Jared B; Jones, Mark T; Plassmann, Paul E; Thorley-Lawson, David A

    2011-01-01

    Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  11. A novel method for preparation of HAMLET-like protein complexes.

    PubMed

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Leonteva, Marina V; Fadeev, Roman S; Chekanov, Aleksei V; Zhadan, Andrei P; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2011-09-01

    Some natural proteins induce tumor-selective apoptosis. α-Lactalbumin (α-LA), a milk calcium-binding protein, is converted into an antitumor form, called HAMLET/BAMLET, via partial unfolding and association with oleic acid (OA). Besides triggering multiple cell death mechanisms in tumor cells, HAMLET exhibits bactericidal activity against Streptococcus pneumoniae. The existing methods for preparation of active complexes of α-LA with OA employ neutral pH solutions, which greatly limit water solubility of OA. Therefore these methods suffer from low scalability and/or heterogeneity of the resulting α-LA - OA samples. In this study we present a novel method for preparation of α-LA - OA complexes using alkaline conditions that favor aqueous solubility of OA. The unbound OA is removed by precipitation under acidic conditions. The resulting sample, bLA-OA-45, bears 11 OA molecules and exhibits physico-chemical properties similar to those of BAMLET. Cytotoxic activities of bLA-OA-45 against human epidermoid larynx carcinoma and S. pneumoniae D39 cells are close to those of HAMLET. Treatment of S. pneumoniae with bLA-OA-45 or HAMLET induces depolarization and rupture of the membrane. The cells are markedly rescued from death upon pretreatment with an inhibitor of Ca(2+) transport. Hence, the activation mechanisms of S. pneumoniae death are analogous for these two complexes. The developed express method for preparation of active α-LA - OA complex is high-throughput and suited for development of other protein complexes with low-molecular-weight amphiphilic substances possessing valuable cytotoxic properties. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.

    PubMed

    Lee, Won-Jong; Chia, Wen-Jui; Wang, Jinliu; Chen, Yanfeng; Vaynman, Semyon; Fine, Morris E; Chung, Yip-Wah

    2010-11-02

    This article explores the subtle effects of surfaces and interfaces on the mechanical properties of bulk metallic alloys using three examples: environmental effects on fatigue life, hydrogen embrittlement effects on the ductility of intermetallics, and the role of coherent precipitates in the toughness of steels. It is demonstrated that the marked degradation of the fatigue life of metals is due to the strong chemisorption of adsorbates on exposed slip steps that are formed during fatigue deformation. These adsorbates reduce the reversibility of slip, thus accelerating fatigue damage in a chemically active gas environment. For certain intermetallic alloys such as Ni(3)Al and Ni(3)Fe, the ductility depends on the ambient gas composition and the atomic ordering in these alloys, both of which govern the complex surface chemical reactions taking place in the vicinity of crack tips. Finally, it is shown that local stresses at a coherent precipitate-matrix interface can activate dislocation motion at low temperatures, thus improving the fracture toughness of bulk alloys such as steels at cryogenic temperatures. These examples illustrate the complex interplay between surface chemistry and mechanics, often yielding unexpected results.

  13. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison.

    PubMed

    Speirs, M; Van Hooreweder, B; Van Humbeeck, J; Kruth, J-P

    2017-06-01

    Selective laser melting (SLM) is an additive manufacturing technique able to produce complex functional parts via successively melting layers of metal powder. This process grants the freedom to design highly complex scaffold components to allow bone ingrowth and aid mechanical anchorage. This paper investigates the compression fatigue behaviour of three different unit cells (octahedron, cellular gyroid and sheet gyroid) of SLM nitinol scaffolds. It was found that triply periodic minimal surfaces display superior static mechanical properties in comparison to conventional octahedron beam lattice structures at identical volume fractions. Fatigue resistance was also found to be highly geometry dependent due to the effects of AM processing techniques on the surface topography and notch sensitivity. Geometries minimising nodal points and the staircase effect displayed the greatest fatigue resistance when normalized to yield strength. Furthermore oxygen analysis showed a large oxygen uptake during SLM processing which must be altered to meet ASTM medical grade standards and may significantly reduce fatigue life. These achieved fatigue properties indicate that NiTi scaffolds produced via SLM can provide sufficient mechanical support over an implants lifetime within stress range values experienced in real life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    PubMed Central

    Li, Duxin; Xie, Ying; Li, Wenjuan; You, Yilan; Deng, Xin

    2013-01-01

    The effects of polytetrafluoroethylene (PTFE), graphite, ultrahigh molecular weight polyethylene (UHMWPE), and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF) were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study. PMID:23766687

  15. Mechanical properties in crumple-formed paper derived materials subjected to compression.

    PubMed

    Hanaor, D A H; Flores Johnson, E A; Wang, S; Quach, S; Dela-Torre, K N; Gan, Y; Shen, L

    2017-06-01

    The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm -3 , and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.

  16. Mechanics of fresh, frozen-thawed and heated porcine liver tissue.

    PubMed

    Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans

    2014-06-01

    For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.

  17. Research of Influence Modification of Natural Concentrate on Quality Metal

    NASA Astrophysics Data System (ADS)

    Fedoseev, S. N.; Gizatulin, R. A.; Korotkova, E. A.

    2016-08-01

    Questions of increase of mechanical, technological and service properties of metal at minimum cost to produce it are relevant for the metallurgical enterprises. Modification of complex steel alloys containing reactive elements is one of the effective ways to improve the quality of steel. At the same time the direct costs for the use of modifiers are 0.2-0.3%, which little effect on the cost of production. The paper presents the results of the application of natural concentrates as a modifier steel. The effects on the metal quality changes due to the impact of the modification concentrates demonstrate the effectiveness of their application. As a result of modification decreased the content of nonmetallic inclusions and grain size. Reduction of impurity modified metal of was the cause more high plastic properties, especially, impact strength at ordinary and low temperatures of tests. Based on the experimental data evaluated hardening mechanisms that lead to a significant improvement of physic-mechanical properties of the metal workpiece after administration modifier.

  18. Effect of multiple forming tools on geometrical and mechanical properties in incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Wernicke, S.; Dang, T.; Gies, S.; Tekkaya, A. E.

    2018-05-01

    The tendency to a higher variety of products requires economical manufacturing processes suitable for the production of prototypes and small batches. In the case of complex hollow-shaped parts, single point incremental forming (SPIF) represents a highly flexible process. The flexibility of this process comes along with a very long process time. To decrease the process time, a new incremental forming approach with multiple forming tools is investigated. The influence of two incremental forming tools on the resulting mechanical and geometrical component properties compared to SPIF is presented. Sheets made of EN AW-1050A were formed to frustums of a pyramid using different tool-path strategies. Furthermore, several variations of the tool-path strategy are analyzed. A time saving between 40% and 60% was observed depending on the tool-path and the radii of the forming tools while the mechanical properties remained unchanged. This knowledge can increase the cost efficiency of incremental forming processes.

  19. Mechanical properties and structure-function relationships of human chondrocyte-seeded cartilage constructs after in vitro culture.

    PubMed

    Middendorf, Jill M; Griffin, Darvin J; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Cohen, Itai; Bonassar, Lawrence J

    2017-10-01

    Autologous Chondrocyte Implantation (ACI) is a widely recognized method for the repair of focal cartilage defects. Despite the accepted use, problems with this technique still exist, including graft hypertrophy, damage to surrounding tissue by sutures, uneven cell distribution, and delamination. Modified ACI techniques overcome these challenges by seeding autologous chondrocytes onto a 3D scaffold and securing the graft into the defect. Many studies on these tissue engineered grafts have identified the compressive properties, but few have examined frictional and shear properties as suggested by FDA guidance. This study is the first to perform three mechanical tests (compressive, frictional, and shear) on human tissue engineered cartilage. The objective was to understand the complex mechanical behavior, function, and changes that occur with time in these constructs grown in vitro using compression, friction, and shear tests. Safranin-O histology and a DMMB assay both revealed increased sulfated glycosaminoglycan (sGAG) content in the scaffolds with increased maturity. Similarly, immunohistochemistry revealed increased lubricin localization on the construct surface. Confined compression and friction tests both revealed improved properties with increased construct maturity. Compressive properties correlated with the sGAG content, while improved friction coefficients were attributed to increased lubricin localization on the construct surfaces. In contrast, shear properties did not improve with increased culture time. This study suggests the various mechanical and biological properties of tissue engineered cartilage improve at different rates, indicating thorough mechanical evaluation of tissue engineered cartilage is critical to understanding the performance of repaired cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2298-2306, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans

    NASA Astrophysics Data System (ADS)

    Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.

    2017-04-01

    This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.

  1. Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II.

    PubMed

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2007-04-01

    The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum mechanics/molecular mechanics (QM/MM) hybrid methods have enabled the construction of chemically sensible models of the OEC of PSII. The resulting computational structural models suggest the complete ligation of the catalytic center by amino acid residues, water, hydroxide and chloride, as determined from the intrinsic electronic properties of the oxomanganese core and the perturbational influence of the surrounding protein environment. These structures are found to be consistent with available mechanistic data, and are also compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements. It is therefore conjectured that these OEC models are particularly relevant for the elucidation of the catalytic mechanism of water oxidation.

  2. Mechanical design of DNA nanostructures.

    PubMed

    Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua

    2015-04-14

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

  3. Formation and mechanics of granular waves in gravity and shallow overland flow

    USDA-ARS?s Scientific Manuscript database

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of s...

  4. Design of high-strength refractory complex solid-solution alloys

    DOE PAGES

    Singh, Prashant; Sharma, Aayush; Smirnov, A. V.; ...

    2018-03-28

    Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less

  5. Design of high-strength refractory complex solid-solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Sharma, Aayush; Smirnov, A. V.

    Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less

  6. Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1985-01-01

    A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components.

  7. Fullerene Derived Molecular Electronic Devices

    NASA Technical Reports Server (NTRS)

    Menon, Madhu; Srivastava, Deepak; Saini, Subbash

    1998-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale electronic devices. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal grapheme sheet, more complex joints require other mechanisms. In this work we explore structural and electronic properties of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme.

  8. Predictive Modeling in Actinide Chemistry and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  9. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    PubMed

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. On the critical parameters that regulate the deformation behaviour of tooth enamel.

    PubMed

    Xie, Zonghan; Swain, Michael; Munroe, Paul; Hoffman, Mark

    2008-06-01

    Tooth enamel is the hardest tissue in the human body with a complex hierarchical structure. Enamel hypomineralisation--a developmental defect--has been reported to cause a marked reduction in the mechanical properties of enamel and loss of dental function. We discover a distinctive difference in the inelastic deformation mechanism between sound and hypomineralised enamels that is apparently controlled by microstructural variation. For sound enamel, when subjected to mechanical forces the controlling deformation mechanism was distributed shearing within nanometre thick protein layer between its constituent mineral crystals; whereas for hypomineralised enamel microcracking and subsequent crack growth were more evident in its less densely packed microstructure. We develop a mechanical model that not only identifies the critical parameters, i.e., the thickness and shear properties of enamels, that regulate the mechanical behaviour of enamel, but also explains the degradation of hypomineralised enamel as manifested by its lower resistance to deformation and propensity for catastrophic failure. With support of experimental data, we conclude that for sound enamel an optimal microstructure has been developed that endows enamel with remarkable structural integrity for durable mechanical function.

  11. Self-organizing layers from complex molecular anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.

    Ions are promising building blocks for tunable self-organizing materials with advanced technological applications. However, because of strong Coulomb attraction with counterions, the intrinsic properties of ions are difficult to exploit for preparation of bulk materials. Here, we report the precisely-controlled preparation of macroscopic surface layers by soft landing of mass selected complex anions which determine the self organization of the layers with their molecular properties. The family of halogenated dodecaborates [B12X12]2- (X = F, Cl, Br, I), in which the internal charge distribution between core and shell regions of the molecular ions systematically vary, was deposited on different self assembledmore » monolayer surfaces (SAMs) on gold at high coverage. Layers of anions were found to be stabilized by accumulation of neutral molecules. Different phases, self-organization mechanisms and optical properties were observed to depend upon the internal charge distribution of the deposited anions, the underlying surface and the coadsorbed molecules. This demonstrates rational control of the properties of anion based layers.« less

  12. FAST TRACK COMMUNICATION: Novel mechanism for nanoscale catalysis

    NASA Astrophysics Data System (ADS)

    Msezane, Alfred Z.; Felfli, Zineb; Sokolovski, Dmitri

    2010-10-01

    The interplay between Regge resonances and Ramsauer-Townsend minima in the electron elastic total cross sections for Au and Pd atoms along with their large electron affinities is proposed as the fundamental atomic mechanism responsible for the observed exceptional catalytic properties of Au nanoparticles and to explain why the combination Au-Pd possesses an even higher catalytic activity than Au or Pd separately when catalyzing H2O2, consistent with recent experiments. The investigation uses the recent complex angular momentum description of electron scattering from neutral atoms and the proposed mechanism in general.

  13. Structure and functional properties of TiNiZr surface layers obtained by high-velocity oxygen fuel spraying

    NASA Astrophysics Data System (ADS)

    Rusinov, P. O.; Blednova, Zh M.; Borovets, O. I.

    2017-05-01

    The authors studied a complex method of surface modification of steels for materials with shape memory effect (SME) Ti-Ni-Zr with a high-velocity oxygen-fuel spraying (HVOF) of mechanically activated (MA) powder in a protective medium. We assessed the functional properties and X-ray diffraction studies, which showed that the formation of surface layers according to the developed technology ensures the manifestation of the shape memory effect.

  14. Tannins, peptic ulcers and related mechanisms.

    PubMed

    de Jesus, Neyres Zinia Taveira; de Souza Falcão, Heloina; Gomes, Isis Fernandes; de Almeida Leite, Thiago Jose; de Morais Lima, Gedson Rodrigues; Barbosa-Filho, Jose Maria; Tavares, Josean Fechine; da Silva, Marcelo Sobral; de Athayde-Filho, Petrônio Filgueiras; Batista, Leonia Maria

    2012-01-01

    This review of the current literature aims to study correlations between the chemical structure and gastric anti-ulcer activity of tannins. Tannins are used in medicine primarily because of their astringent properties. These properties are due to the fact that tannins react with the tissue proteins with which they come into contact. In gastric ulcers, this tannin-protein complex layer protects the stomach by promoting greater resistance to chemical and mechanical injury or irritation. Moreover, in several experimental models of gastric ulcer, tannins have been shown to present antioxidant activity, promote tissue repair, exhibit anti Helicobacter pylori effects, and they are involved in gastrointestinal tract anti-inflammatory processes. The presence of tannins explains the anti-ulcer effects of many natural products.

  15. Immediate effect of exercise on achilles tendon properties: systematic review.

    PubMed

    Obst, Steven J; Barrett, Rod S; Newsham-West, Richard

    2013-08-01

    Understanding the mechanical and morphological adaptation of the Achilles tendon (AT) in response to acute exercise could have important implications for athletic performance, injury prevention, and rehabilitation. The purpose of this study was to conduct a systematic review and critical evaluation of the literature to determine the immediate effect of a single bout of exercise on the mechanical and morphological properties of the AT in vivo. Five electronic research databases were systematically searched for intervention-based studies reporting mechanical and morphological properties of the AT after a single bout of exercise. Searches revealed 3292 possible articles; 21 met the inclusion criteria. There is evidence that maximal isometric contractions and prolonged static stretching (>5 min) of the triceps surae complex cause an immediate decrease in AT stiffness, whereas prolonged running and hopping have minimal effect. Limited but consistent evidence exists, indicating that AT hysteresis is reduced after prolonged static stretching. Consistent evidence supports a reduction in free AT diameter (anterior-posterior) after dynamic ankle exercise, and this change appears most pronounced in the healthy tendon and after eccentric exercise. The mechanical and morphological properties of the AT in vivo are affected by acute exercise in a mode- and dose-dependent manner. Transient changes in AT stiffness, hysteresis, and diameter after unaccustomed exercise modes and doses may expose the tendon to increased risk of strain injury and impact on the mechanical function of the triceps surae muscle-tendon unit.

  16. Complex technology of vacuum-arc processing of structural material surface

    NASA Astrophysics Data System (ADS)

    Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.

    2015-08-01

    The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.

  17. Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties.

    PubMed

    Linko, Veikko; Leppiniemi, Jenni; Paasonen, Seppo-Tapio; Hytönen, Vesa P; Toppari, J Jussi

    2011-07-08

    We present a novel, defined-size, small and rigid DNA template, a so-called B-A-B complex, based on DNA triple crossover motifs (TX tiles), which can be utilized in molecular scale patterning for nanoelectronics, plasmonics and sensing applications. The feasibility of the designed construct is demonstrated by functionalizing the TX tiles with one biotin-triethylene glycol (TEG) and efficiently decorating them with streptavidin, and furthermore by positioning and anchoring single thiol-modified B-A-B complexes to certain locations on a chip via dielectrophoretic trapping. Finally, we characterize the conductance properties of the non-functionalized construct, first by measuring DC conductivity and second by utilizing AC impedance spectroscopy in order to describe the conductivity mechanism of a single B-A-B complex using a detailed equivalent circuit model. This analysis also reveals further information about the conductivity of DNA structures in general.

  18. Decoupling local mechanics from large-scale structure in modular metamaterials.

    PubMed

    Yang, Nan; Silverberg, Jesse L

    2017-04-04

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  19. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  20. Decoupling local mechanics from large-scale structure in modular metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  1. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  2. Effect of pH on the electrical properties and conducting mechanism of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Periathai, R. Sudha; Abarna, S.; Hirankumar, G.; Jeyakumaran, N.; Prithivikumaran, N.

    2017-03-01

    Semiconductor nanoparticles have attracted more interests because of their size-dependent optical and electrical properties.SnO2 is an oxygen-deficient n-type semiconductor with a wide band gap of 3.6 eV (300 K). It has many remarkable applications as sensors, catalysts, transparent conducting electrodes, anode material for rechargeable Li- ion batteries and optoelectronic devices. In the present work, the role of pH in determining the electrical and dielectric properties of SnO2 nanoparticles has been studied as a function of temperature ranging from Room temperature (RT) to 114 °C in the frequency range of 7 MHz to 50 mHz using impedance spectroscopic technique. The non linear behavior observed in the thermal dependence of the conductance of SnO2 nanoparticles is explained by means of the surface property of SnO2 nanoparticles where proton hopping mechanism is dealt with. Jonscher's power law has been fitted for the conductance spectra and the frequency exponent ("s" value) gives an insight about the ac conducting mechanism. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation.

  3. Time-resolved EPR study on the photoexcited triplet state of the electron-donor-acceptor complex formed in the system of fac-tris[2-(4-octyl-phenyl) pyridine] iridium(III) and tetracene.

    PubMed

    Zhebin, Fu; Shuhei, Yoshioka; Hisao, Murai

    2014-01-09

    The physical properties of the phosphorescent organic light-emitting diode material fac-tris(phenylpyridine) iridium(III), Ir(ppy)3, have been reported with experimental and theoretical studies. Here, the photochemical properties of the excited triplet state of partially modified fac-tris[2-(4-octyl-phenyl) pyridine] iridium(III), Ir(C8ppy)3, were investigated using time-resolved electron paramagnetic resonance (tr-EPR) and optical methods by adding tetracene in the toluene solution. The tr-EPR observation at 77 K revealed the following two species: the excited triplet state of tetracene and another triplet species with zero field splitting parameters of |D| = 0.088 cm(-1) and |E| = 0.018 cm(-1) with characteristic spin polarization. The latter species was assigned to the electron-donor-acceptor (EDA) complex formed between Ir(C8ppy)3 and tetracene. The mechanism of formation and the properties of this EDA complex, including the information on the principal axes of (3)Ir(C8ppy)3*, are discussed.

  4. An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions

    NASA Astrophysics Data System (ADS)

    Brahmkhatri, Varsha P.; Chandra, Kousik; Dubey, Abhinav; Atreya, Hanudatta S.

    2015-07-01

    In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s-1 implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 μM and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems.In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s-1 implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 μM and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03047a

  5. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    PubMed

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  6. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    NASA Astrophysics Data System (ADS)

    Zrelli, K.; Galy, O.; Latour-Lambert, P.; Kirwan, L.; Ghigo, J. M.; Beloin, C.; Henry, N.

    2013-12-01

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms.

  7. Age-related variation in the mechanical properties of foods processed by Sapajus libidinosus.

    PubMed

    Chalk, Janine; Wright, Barth W; Lucas, Peter W; Schuhmacher, Katherine D; Vogel, Erin R; Fragaszy, Dorothy; Visalberghi, Elisabetta; Izar, Patrícia; Richmond, Brian G

    2016-02-01

    The diet of tufted capuchins (Sapajus) is characterized by annual or seasonal incorporation of mechanically protected foods. Reliance on these foods raises questions about the dietary strategies of young individuals that lack strength and experience to access these resources. Previous research has demonstrated differences between the feeding competencies of adult and juvenile tufted capuchins. Here we test the hypothesis that, compared to adults, juveniles will process foods with lower toughness and elastic moduli. We present data on variation in the toughness and elastic modulus of food tissues processed by Sapajus libidinosus during the dry season at Fazenda Boa Vista, Brazil. Food mechanical property data were collected using a portable universal mechanical tester. Results show that food tissues processed by the capuchins showed significant differences in toughness and stiffness. However, we found no relationship between an individual's age and mean or maximum food toughness or elastic modulus, indicating both juvenile and adult S. libidinosus are able to process foods of comparable properties. Although it has been suggested that juveniles avoid mechanically protected foods, age-related differences in feeding competence are not solely due to variation in food toughness or stiffness. Other factors related to food type (e.g., learning complex behavioral sequences, achieving manual dexterity, obtaining physical strength to lift stone tools, or recognizing subtle cues about food state) combined with food mechanical properties better explain variation in juvenile feeding competency. © 2015 Wiley Periodicals, Inc.

  8. Protein adhesives

    Treesearch

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  9. Study of Effects on Mechanical Properties of PLA Filament which is blended with Recycled PLA Materials

    NASA Astrophysics Data System (ADS)

    Babagowda; Kadadevara Math, R. S.; Goutham, R.; Srinivas Prasad, K. R.

    2018-02-01

    Fused deposition modeling is a rapidly growing additive manufacturing technology due to its ability to build functional parts having complex geometry. The mechanical properties of the build part is depends on several process parameters and build material of the printed specimen. The aim of this study is to characterize and optimize the parameters such as layer thickness and PLA build material which is mixed with recycled PLA material. Tensile and flexural or bending test are carried out to determine the mechanical response characteristics of the printed specimen. Taguchi method is used for number of experiments and Taguchi S/N ratio is used to identify the set of parameters which give good results for respective response characteristics, effectiveness of each parameters is investigated by using analysis of variance (ANOVA).

  10. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution

    PubMed Central

    Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615

  11. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    NASA Astrophysics Data System (ADS)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  12. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.

    PubMed

    Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; 'Skip' Garcia, Joe G N; Lussier, Yves A

    2015-12-01

    The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  14. Mechanical Stability of a High-Affinity Toxin Anchor from the Pathogen Clostridium perfringens.

    PubMed

    Milles, Lukas F; Bayer, Edward A; Nash, Michael A; Gaub, Hermann E

    2017-04-20

    The opportunistic pathogen Clostridium perfringens assembles its toxins and carbohydrate-active enzymes by the high-affinity cohesin-dockerin (Coh-Doc) interaction. Coh-Doc interactions characterized previously have shown considerable resilience toward mechanical stress. Here, we aimed to determine the mechanics of this interaction from C. perfringens in the context of a pathogen. Using atomic force microscopy based single-molecule force spectroscopy (AFM-SMFS) we probed the mechanical properties of the interaction of a dockerin from the μ-toxin with the GH84C X82 cohesin domain of C. perfringens. Most probable complex rupture forces were found to be approximately 60 pN and an estimate of the binding potential width was performed. The dockerin was expressed with its adjacent FIVAR (found in various architectures) domain, whose mechanostability we determined to be very similar to the complex. Additionally, fast refolding of this domain was observed. The Coh-Doc interaction from C. perfringens is the mechanically weakest observed to date. Our results establish the relevant force range of toxin assembly mechanics in pathogenic Clostridia.

  15. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    NASA Astrophysics Data System (ADS)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.

  16. Iron chalcogenide superconductors at high magnetic fields

    PubMed Central

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  17. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    NASA Astrophysics Data System (ADS)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  18. Understanding the mechanisms of protein-DNA interactions

    NASA Astrophysics Data System (ADS)

    Lavery, Richard

    2004-03-01

    Structural, biochemical and thermodynamic data on protein-DNA interactions show that specific recognition cannot be reduced to a simple set of binary interactions between the partners (such as hydrogen bonds, ion pairs or steric contacts). The mechanical properties of the partners also play a role and, in the case of DNA, variations in both conformation and flexibility as a function of base sequence can be a significant factor in guiding a protein to the correct binding site. All-atom molecular modeling offers a means of analyzing the role of different binding mechanisms within protein-DNA complexes of known structure. This however requires estimating the binding strengths for the full range of sequences with which a given protein can interact. Since this number grows exponentially with the length of the binding site it is necessary to find a method to accelerate the calculations. We have achieved this by using a multi-copy approach (ADAPT) which allows us to build a DNA fragment with a variable base sequence. The results obtained with this method correlate well with experimental consensus binding sequences. They enable us to show that indirect recognition mechanisms involving the sequence dependent properties of DNA play a significant role in many complexes. This approach also offers a means of predicting protein binding sites on the basis of binding energies, which is complementary to conventional lexical techniques.

  19. Fluorometric detection of nitroaromatics by fluorescent lead complexes: A spectroscopic assessment of detection mechanism

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmay; Chatterjee, Sourav; Majumder, Ishani; Ghosh, Soumen; Yoon, Sangee; Sim, Eunji

    2018-04-01

    Three Schiff base ligands such as 2-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL1), 2-[(2-Hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL2), 2-[(3,5-Dichloro-2-hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL3) have been synthesized by condensation of aldehydes (such as 3,5-Dichloro-2-hydroxy benzaldehyde, 2-Hydroxy-benzaldehyde, and 2-Hydroxy-3-methoxy-benzaldehyde) with Tris-(hydroxymethyl)amino methane and characterized by IR, UV-vis and 1H NMR spectroscopy. Then all these three ligands have been used to prepare Pb(II) complexes by reaction with lead(II) acetate tri-hydrate in methanol. In view of analytical and spectral (IR, UV-vis and Mass) studies, it has been concluded that, except HL2, other two ligands form 1:1 metal complexes (1 and 3) with lead. Between two complexes, complex 3 is highly fluorescent and this property has been used to identify the pollutant nitroaromatics. Finally, the quenching mechanism has been established by means of spectroscopic investigation.

  20. Cytochrome bc1 complexes of microorganisms.

    PubMed Central

    Trumpower, B L

    1990-01-01

    The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae. Images PMID:2163487

  1. Ex Vivo characterization of canine liver tissue viscoelasticity after high-intensity focused ultrasound ablation.

    PubMed

    Shahmirzadi, Danial; Hou, Gary Y; Chen, Jiangang; Konofagou, Elisa E

    2014-02-01

    The potential of elasticity imaging to detect high-intensity focused ultrasound (HIFU) lesions on the basis of their distinct biomechanical properties is promising. However, information on the quantitative mechanical properties of the tissue and the optimal intensity at which to determine the best contrast parameters is scarce. In this study, fresh canine livers were ablated using combinations of ISPTA intensities of 5.55, 7.16 and 9.07 kW/cm(2) and durations of 10 and 30 s ex vivo, resulting in six groups of ablated tissues. Biopsy samples were then interrogated using dynamic shear mechanical testing within the range of 0.1-10 Hz to characterize the tissue's post-ablation viscoelastic properties. All mechanical parameters were found to be frequency dependent. Compared with unablated cases, all six groups of ablated tissues had statistically significant higher complex shear modulus and shear viscosity. However, among the ablated groups, both complex shear modulus and shear viscosity were found to monotonically increase in groups 1-4 (5.55 kW/cm(2) for 10 s, 7.16 kW/cm(2) for 10 s, 9.07 kW/cm(2) for 10 s, and 5.55 kW/cm(2) for 30 s, respectively), but to decrease in groups 5 and 6 (7.16 kW/cm(2) for 30 s, and 9.07 kW/cm(2) for 30 s, respectively). For groups 5 and 6, the temperature was expected to exceed the boiling point, and therefore, the decreased stiffening could be due to the compromised integrity of the tissue microstructure. Future studies will entail estimation tissue mechanical properties in vivo and perform real-time monitoring of tissue alterations during ablation. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr 18 FCC solid solution alloy

    DOE PAGES

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr 18 was successfully developed. This near-equiatomic FeNiMnCr 18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr 18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  3. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints.

    PubMed

    Borba, Natascha Z; Afonso, Conrado R M; Blaga, Lucian; Dos Santos, Jorge F; Canto, Leonardo B; Amancio-Filho, Sergio T

    2017-02-15

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α' martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  4. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology.

    PubMed

    List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.

  5. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology, size, spacing, volume fraction of the second phase, and strength and toughness of the interface. Previous studies suggest these contributions, however, do not provide quantitative experimental evidence. Within this thesis, we paid tribute to the complexity of the toughening mechanism by revealing the correlation between plastic zone size (Rp) and second phase spacing (s ), and the results guided us how to design elasticity through the second phase morphology (AB pore stacking) in MG heterostructures. The second phase elasticity and shear modulus were also found to be contributing to the overall elasticity. We identified the pores' ratio of diameter to spacing (d/s) as one of the major factors controlling the mechanical properties of MG hetero structures, which is most efficient when d/s ≈ 1. Effectiveness of MG heterostructures also depends on the size of the sample, w, in comparison to s. Our experimental findings illuminate the complexity in MG composites, which can be resolved with our artificial microstructure approach. Another subject where we use artificial microstructures is to identify the effect of length scales on structural properties of MG heterostructures. MG structures can be fabricated over 7 orders of magnitude length scale (nm to cm), where the effect of the feature size determines whether the deformation will be homogenous throughout the sample, it will be localized into shear bands, or it will not show any shear bands (no plasticity) during bending and tension. We investigated the deformation modes of Zr-based MGs in hexagonal cellular structures controlled by the relative density, and revealed three distinctive deformation regions: collective buckling, local failure, and global failure which originate from size effects in metallic glasses. The relative density of ˜25.0% was determined as the ideal relative density for energy absorption, strength and plasticity in MG cellular structures. Besides two specific examples studied in detail here, the artificial microstructure concept can be applied to a wide range of problems in microstructures and micro structural architectures of porous and natural materials. Furthermore, it can be used to determine the flaw tolerance, and to investigate the sensitivity of microstructures to imperfections. For example, a mechanistic understanding of shear localization would help address the major shortcoming of metallic glasses and enable predictive models to be developed which would permit one to intelligently design microstructures to exhibit desirable properties.

  6. Synchronous Measuring Techniques in Parallel to MRE: Study of Pressure, Pre-Tension, and Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Brinker, Spencer Thomas

    The contents of this dissertation include investigations in Magnetic Resonance Elastography (MRE) using a preclinical 9.4 Tesla small animal Magnetic Resonance Imaging (MRI) system along with synthetic materials that mimic the mechanical properties of soft human tissue. MRE is used for studying the mechanical behavior of soft tissue particularly applicable to medical applications. Wave motion induced by a mechanical driver is measured with MRI to acquire internal displacement fields over time and space within a material media. Complex shear modulus of the media is calculated from the response of mechanical wave transmission through the material. Changes in soft tissue stiffness is associated with disease progression and thus, is why assessing tissue mechanical properties with MRE has powerful diagnostic potential due to the noninvasive procedure of MRI. The experiments performed in this dissertation used elastic phantoms and specimens to observe the influence of pre-stress on MRE derived mechanical properties while additional mechanical measurements from other related material testing methods were synchronously collected alongside MRI scanning. An organ simulating phantom was used to explore changes in MRE stiffness in response to gas and liquid cyclic pressure loading. MRE stiffness increased with pressure and hysteresis was observed in cyclic pressure loading. The results suggest MRE is applicable to pressure related disease assessment. In addition, an interconnected porosity pressure phantom was constructed for future porous media investigations. A custom system was also built to demonstrate concurrent tensile testing during MRE for investigating homogeneous soft material media undergoing pre-tension. Stiffness increased with uniaxial tensile stress and strain. The tension and stiffness relationship explored can be related to the stress analysis of voluntary muscle. The results also offer prospective experimental strategies for community wide standards on MRE calibration methods. Lastly, a novel platform was developed for synchronous acquisition of Scanning Laser Doppler Vibrometry (SLDV) and MRE for examining surface wave dynamics related to internal media wave propagation in soft material experiencing sinusoidal mechanical excitation. The results indicate that optical displacement measurements of media on the surface are similar in nature to internal displacement measured from MRE. It is concluded that optical and MRI based elastography yield similar values of complex shear modulus.

  7. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    PubMed

    Kela, U; Vijayvargiya, R

    1981-03-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties.

  8. Perspective: Quantum mechanical methods in biochemistry and biophysics.

    PubMed

    Cui, Qiang

    2016-10-14

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.

  9. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    PubMed Central

    Kela, U; Vijayvargiya, R

    1981-01-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties. PMID:6895465

  10. Accelerated crossing of fitness valleys through division of labor and cheating in asexual populations

    NASA Astrophysics Data System (ADS)

    Komarova, Natalia L.; Urwin, Erin; Wodarz, Dominik

    2012-12-01

    Complex traits can require the accumulation of multiple mutations that are individually deleterious. Their evolution requires a fitness valley to be crossed, which can take relatively long time spans. A new evolutionary mechanism is described that accelerates the emergence of complex phenotypes, based on a ``division of labor'' game and the occurrence of cheaters. If each intermediate mutation leads to a product that can be shared with others, the complex type can arise relatively quickly as an emergent property among cooperating individuals, without any given individual having to accumulate all mutations. Moreover, the emergence of cheaters that destroy cooperative interactions can lead to the emergence of individuals that have accumulated all necessary mutations on a time scale that is significantly faster than observed in the absence of cooperation and cheating. Application of this mechanism to somatic and microbial evolution is discussed, including evolutionary processes in tumors, biofilms, and viral infections.

  11. Accelerated crossing of fitness valleys through division of labor and cheating in asexual populations

    PubMed Central

    Komarova, Natalia L.; Urwin, Erin; Wodarz, Dominik

    2012-01-01

    Complex traits can require the accumulation of multiple mutations that are individually deleterious. Their evolution requires a fitness valley to be crossed, which can take relatively long time spans. A new evolutionary mechanism is described that accelerates the emergence of complex phenotypes, based on a “division of labor” game and the occurrence of cheaters. If each intermediate mutation leads to a product that can be shared with others, the complex type can arise relatively quickly as an emergent property among cooperating individuals, without any given individual having to accumulate all mutations. Moreover, the emergence of cheaters that destroy cooperative interactions can lead to the emergence of individuals that have accumulated all necessary mutations on a time scale that is significantly faster than observed in the absence of cooperation and cheating. Application of this mechanism to somatic and microbial evolution is discussed, including evolutionary processes in tumors, biofilms, and viral infections. PMID:23209877

  12. Coordination properties of tridentate (N,O,O) heterocyclic alcohol (PDC) with Cu(II). Mixed ligand complex formation reactions of Cu(II) with PDC and some bio-relevant ligands.

    PubMed

    El-Sherif, Ahmed A; Shoukry, Mohamed M

    2007-03-01

    The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.

  13. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy

    PubMed Central

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-01-01

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicteddual binding modes across multiple bacterial species, our approach opens up newpossibilities for understanding assembly and catalytic properties of a broadrange of multi-enzyme complexes. DOI: http://dx.doi.org/10.7554/eLife.10319.001 PMID:26519733

  14. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  15. Absorption property of C@CIPs composites by the mechanical milling process

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Zhou, Li; Zheng, Dianliang; Xu, Yonggang

    2017-09-01

    The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2-18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell-Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < -4 dB in 4.6-17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2-18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.

  16. Sensing, Measuring and Modelling the Mechanical Properties of Sandstone

    NASA Astrophysics Data System (ADS)

    Antony, S. J.; Olugbenga, A.; Ozerkan, N. G.

    2018-02-01

    We present a hybrid framework for simulating the strength and dilation characteristics of sandstone. Where possible, the grain-scale properties of sandstone are evaluated experimentally in detail. Also, using photo-stress analysis, we sense the deviator stress (/strain) distribution at the micro-scale and its components along the orthogonal directions on the surface of a V-notch sandstone sample under mechanical loading. Based on this measurement and applying a grain-scale model, the optical anisotropy index K 0 is inferred at the grain scale. This correlated well with the grain contact stiffness ratio K evaluated using ultrasound sensors independently. Thereafter, in addition to other experimentally characterised structural and grain-scale properties of sandstone, K is fed as an input into the discrete element modelling of fracture strength and dilation of the sandstone samples. Physical bulk-scale experiments are also conducted to evaluate the load-displacement relation, dilation and bulk fracture strength characteristics of sandstone samples under compression and shear. A good level of agreement is obtained between the results of the simulations and experiments. The current generic framework could be applied to understand the internal and bulk mechanical properties of such complex opaque and heterogeneous materials more realistically in future.

  17. Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Baruah, M.; Bag, S.

    2016-11-01

    The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.

  18. The Location-Specific Role of Proteoglycans in the Flexor Carpi Ulnaris Tendon

    PubMed Central

    Buckley, Mark R.; Huffman, George R.; Iozzo, Renato V.; Birk, David E.; Soslowsky, Louis J.

    2015-01-01

    Tendons like the flexor carpi ulnaris (FCU) that contain region-specific distributions of proteoglycans (PGs) as a result of the heterogeneous, multi-axial loads they are subjected to in vivo provide valuable models for understanding structure-function relationships in connective tissues. However, the contributions of specific PGs to FCU tendon mechanical properties are unknown. Therefore, the objective of this study was to determine how the location-dependent, viscoelastic mechanical properties of the FCU tendon are impacted individually by PG-associated glycosaminoglycans (GAGs) and by two small leucine-rich proteoglycans (SLRPs), biglycan and decorin. Full length FCU tendons from biglycan- and decorin-null mice were compared to wild type mice to evaluate the effects of specific SLRPs, while chondroitinase ABC digestion of isolated specimens removed from the tendon midsubstance was used to determine how chontroitin/dermatan sulfate (CS/DS) GAGs impact mechanics in mature FCU tendons. A novel combined genetic knockout/ digestion technique also was employed to compare SLRP-null and wild-type tendons in the absence of CS/DS GAGs that may impact properties in the mature state. In all genotypes, mechanical properties in the FCU tendon midsubstance were not affected by GAG digestion. Full-length tendons exhibited complex, multi-axial deformation under tension that may be associated with their in vivo loading environment. Mechanical properties were adversely affected by the absence of biglycan, and a decreased modulus localized in the center of the tendon was measured. These results help elucidate the role that local alterations in proteoglycan levels may play in processes that adversely impact tendon functionality including injury and pathology. PMID:23941206

  19. Single Molecule Study of the Intrinsically Disordered FG-Repeat Nucleoporin 153

    PubMed Central

    Milles, Sigrid; Lemke, Edward A.

    2011-01-01

    Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (RE) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (RE/RE,RC = 0.99 ± 0.15 with RE,RC corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (RE/RE,RC = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. PMID:21961597

  20. 3D Thermomechanical Modeling of Rifted Margins with Coupled Surface Processes: the North West Shelf, Australia

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Beucher, R.; Morón, S.; Rey, P. F.; Salles, T.; Brocard, G. Y.; Farrington, R.; Giordani, J.; Mansour, J.

    2017-12-01

    Thermo-mechanical numerical models and analogue experiments with a layered lithosphere have emphasised the role played by the composition and thermal state of the lithosphere on the style of extension. The variation in rheological properties and the coupling between lithospheric layers promote depth-dependent extension with the potential for complex rift evolution over space and time. Local changes in the stress field due to loading / unloading of the lithosphere can perturb the syn and post-rift stability of the margins. We investigate how erosion of the margins and sedimentation within the basins integrate with the thermo-mechanical processes involved in the structural and stratigraphic evolution of the North West Shelf (NWS), one of the most productive and prospective hydrocarbon provinces in Australia. The complex structural characteristics of the NWS include large-scale extensional detachments, difference between amounts of crustal and lithospheric extension and prolonged episodes of thermal sagging after rifting episodes. It has been proposed that the succession of different extensional styles mechanisms (Cambrian detachment faulting, broadly distributed Permo-Carboniferous extension and Late Triassic to Early Cretaceous localised rift development) is best described in terms of variation in deformation response of a lithosphere that has strengthened from one extensional episode to the next. However, previous models invoking large-scale detachments fail to explain changes in extensional styles and overestimate the structural importance of relatively local detachments. Here, we hypothesize that an initially weak lithosphere would distribute deformation by ductile flow within the lower crust and that the interaction between crustal flow, thermal-evolution and sediment loading/unloading could explain some of the structural complexities recorded by the NWS. We run a series of fully coupled 3D thermo-mechanical numerical experiments that include realistic thermal and mechanical properties, as well as surface processes (erosion, sediments transport and sedimentation). This modeling approach aims to provide insights into the thermal and structural history of the NWS, and a better understanding of the complex interactions between tectonics and surface processes at rifted margins.

  1. Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins.

    PubMed

    Bano, Fouzia; Tammi, Markku I; Kang, David W; Harris, Edward N; Richter, Ralf P

    2018-06-19

    The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin⋅biotin bond. Implications for the molecular mechanism of unbinding of HA⋅hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA⋅hyaladherin complexes and HA-rich extracellular matrices. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Complexity: the organizing principle at the interface of biological (dis)order.

    PubMed

    Bhat, Ramray; Pally, Dharma

    2017-07-01

    The term complexity means several things to biologists.When qualifying morphological phenotype, on the one hand, it is used to signify the sheer complicatedness of living systems, especially as a result of the multicomponent aspect of biological form. On the other hand, it has been used to represent the intricate nature of the connections between constituents that make up form: a more process-based explanation. In the context of evolutionary arguments, complexity has been defined, in a quantifiable fashion, as the amount of information, an informatic template such as a sequence of nucleotides or amino acids stores about its environment. In this perspective, we begin with a brief review of the history of complexity theory. We then introduce a developmental and an evolutionary understanding of what it means for biological systems to be complex.We propose that the complexity of living systems can be understood through two interdependent structural properties: multiscalarity of interconstituent mechanisms and excitability of the biological materials. The answer to whether a system becomes more or less complex over time depends on the potential for its constituents to interact in novel ways and combinations to give rise to new structures and functions, as well as on the evolution of excitable properties that would facilitate the exploration of interconstituent organization in the context of their microenvironments and macroenvironments.

  3. Preparation and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com

    2014-08-15

    Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parametersmore » and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.« less

  4. Spectroscopic studies on the lanthanide sensitized luminescence and chemiluminescence properties of fluoroquinolone with different structure.

    PubMed

    Sun, Chunyan; Ping, Hong; Zhang, Minwei; Li, Hongkun; Guan, Fengrui

    2011-11-01

    Lanthanide sensitized luminescence and chemiluminescence (CL) are of great importance because of the unique spectral properties, such as long lifetime, large Stokes shifts, and narrow emission bands characteristic to lanthanide ions (Ln(3+)). With the fluoroquinolone (FQ) compounds including enoxacin (ENX), norfloxacin (NFLX), lomefloxacin (LMFX), fleroxacin (FLRX), ofloxacin (OFLX), rufloxacin (RFX), gatifloxacin (GFLX) and sparfloxacin (SPFX), the luminescence and CL properties of Tb(3+)-FQ and Eu(3+)-FQ complexes have been investigated in this contribution. Ce(4+)-SO(3)(2-) in acidic conditions was taken as the CL system and sensitized CL intensities of Tb(3+)-FQ and Eu(3+)-FQ complexes were determined by flow-injection analysis. The luminescence and CL spectra of Tb(3+)-FQ complexes show characteristic peaks of Tb(3+) at 490 nm, 545 nm, 585 nm and 620 nm. Complexes of Tb(3+)-ENX, Tb(3+)-NFLX, Tb(3+)-LMFX and Tb(3+)-FLRX display relatively strong emission intensity compared with Tb(3+)-OFLX, Tb(3+)-RFX, Tb(3+)-GFLX and Tb(3+)-SPFX. Quite weak peaks with unique characters of Eu(3+) at 590 nm and 617 nm appear in the luminescence and CL spectra of Eu(3+)-ENX, but no notable sensitized luminescence and CL of Eu(3+) could be observed when Eu(3+) is added into other FQ. The distinct differences on emission intensity of Tb(3+)-FQ and Eu(3+)-FQ might originate from the different energy gap between the triplet levels of FQ and the excited levels of the Ln(3+). The different sensitized luminescence and CL signals among Tb(3+)-FQ complexes could be attributed to different optical properties and substituents of these FQ compounds. The detailed mechanism involved in the luminescence and CL properties of Tb(3+)-FQ and Eu(3+)-FQ complexes has been investigated by analyzing the luminescence and CL spectra, quantum yields, and theoretical calculation results. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Jiang, Hao

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are themore » simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.« less

  6. Biomechanics and functional morphology of a climbing monocot

    PubMed Central

    Hesse, Linnea; Wagner, Sarah T.; Neinhuis, Christoph

    2016-01-01

    Plants with a climbing growth habit possess unique biomechanical properties arising from adaptations to changing loading conditions connected with close attachment to mechanical supports. In monocot climbers, mechanical adaptation is restricted by the absence of a bifacial vascular cambium. Flagellaria indica was used to investigate the mechanical properties and adaptations of a monocot climber that, uniquely, attaches to the surrounding vegetation via leaf tendrils. Biomechanical methods such as three-point bending and torsion tests were used together with anatomical studies on tissue development, modification and distribution. In general, the torsional modulus was lower than the bending modulus; hence, torsional stiffness was less than flexural stiffness. Basal parts of mature stems showed the greatest stiffness while that of more apical stem segments levelled off. Mechanical properties were modulated via tissue maturation processes mainly affecting the peripheral region of the stem. Peripheral vascular bundles showed a reduction in the amount of conducting tissue while the proportion and density of the bundle sheath increased. Furthermore, adjacent bundle sheaths merged resulting in a dense ring of fibrous tissue. Although F. indica lacks secondary cambial growth, the climbing habit is facilitated by a complex interaction of tissue maturation and attachment. PMID:26819259

  7. Photo-degradation of CT-DNA with a series of carbothioamide ruthenium (II) complexes - Synthesis and structural analysis

    NASA Astrophysics Data System (ADS)

    Muthuraj, V.; Umadevi, M.

    2018-04-01

    The present research article is related with the method of preparation, structure and spectroscopic properties of a series of carbothioamide ruthenium (II) complexes with N and S donor ligands namely, 2-((6-chloro-4-oxo-4H-chromen-3-yl)methylene) hydrazine carbothioamide (ClChrTs)/2-((6-methoxy-4-oxo-4H-chromen-3-yl)methylene)hydrazine carbothioamide (MeOChrTS). The synthesized complexes were characterized by several techniques using analytical methods as well as by spectral techniques such as FT-IR, 1HNMR, 13CNMR, ESI mass and thermogravimetry/differential thermal analysis (TG-DTA). The IR spectra shows that the ligand acts as a neutral bidentate with N and S donor atoms. The biological activity of the prepared compounds and metal complexes were tested against cell line of calf-thymus DNA via an intercalation mechanism (MCF-7). In addition, the interaction of Ru(II) complexes and its free ligands with CT-DNA were also investigated by titration with UV-Vis spectra, fluorescence spectra, and Circular dichroism studies. Results suggest that both of the two Ru(II) complexes can bind with calf-thymus DNA via an intercalation mechanism.

  8. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.

    PubMed

    Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun

    2016-12-01

    Two new ruthenium (II) polypyridyl complexes [Ru(MeIm) 4 (pip)] 2+ (1) and [Ru(MeIm) 4 (4-npip)] 2+ (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

  9. Structure Optimization of Porous Dental Implant Based on 3D Printing

    NASA Astrophysics Data System (ADS)

    Ji, Fangqiu; Zhang, Chunyu; Chen, Xianshuai

    2018-03-01

    In this paper, selective laser melting (SLM) technology is used to process complex structures. In combination with the theory of biomedicine, a porous implant with a porous structure is designed to induce bone cell growth. The mechanical strength advantage of SLM was discussed by observing the metallographic structure of SLM specimen with mechanical microscope and mechanical tensile test. The osseointegration of porous implants was observed and analyzed by biological experiments. By establishing a mechanical model, the mechanical properties of the bone implant combined with the jaw bone were studied by the simple mechanical analysis under static multi loading and the finite element mechanical analysis. According to the experimental observation and mechanical research, the optimization suggestions for the structure design of the implant made by SLM technology were put forward.

  10. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2010-05-19

    Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Physical properties of repressurized samples recovered during the 2006 National Gas Hydrate Program expedition offshore India

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.

    2008-01-01

    As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.

  12. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network

    PubMed Central

    Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668

  13. A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics

    PubMed Central

    Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2010-01-01

    Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330

  14. Reconsideration of the Detection and Fluorescence Mechanism of a Pyrene-Based Chemosensor for TNT.

    PubMed

    Lu, Meiheng; Zhou, Panwang; Ma, Yinhua; Tang, Zhe; Yang, Yanqiang; Han, Keli

    2018-02-08

    The rapid detection of chemical explosives is crucial for national security and public safety, and the investigation of sensing mechanisms is important for designing highly efficient chemosensors. This study theoretically investigates the detection and fluorescence mechanism of a newly synthesized pyrene-based chemosensor for the detection of trinitrotoluene (TNT) through density-functional-theory (DFT) and time-dependent density-functional-theory (TDDFT) methods and suggests a different interaction product of the probe and TNT from previously reported ones [ Mosca et al. J. Am. Chem. Soc. 2015 , 137 , 7967 ]. Instead of forming Meisenheimer complexes, the energies of which are beyond those of the reactants, a low-energy product generated by a π-π-stacking interaction is more rational and favorable. The fluorescence-quenching property further confirms that the π-π-stacking product is the predicted one rather than luminescent Meisenheimer complexes. Frontier-molecular-orbital (FMO)-analysis results show that photoinduced electron transfer (PET) is the mechanism underlying the luminescence quenching of the probe upon exposure to TNT.

  15. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

    NASA Astrophysics Data System (ADS)

    Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.

    2015-12-01

    Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.

  16. Coordination ability determined transition metal ions substitution of Tb in Tb-Asp fluorescent nanocrystals and a facile ions-detection approach.

    PubMed

    Duan, Jiazhi; Ma, Baojin; Liu, Feng; Zhang, Shan; Wang, Shicai; Kong, Ying; Du, Min; Han, Lin; Wang, Jianjun; Sang, Yuanhua; Liu, Hong

    2018-04-26

    Although the synthesis and fluorescent properties of lanthanide-amino acid complex nanostructures have been investigated extensively, limited studies have been reported on metal ions' substitution ability for the lanthanide ions in the complex and their effect on the fluorescent property. In this study, taking biocompatible Tb-aspartic acid (Tb-Asp) complex nanocrystals as a model, the substitution mechanism of metal ions, particularly transition metals, for Tb ions in Tb-Asp nanocrystals and the change in the fluorescent property of the Tb-Asp nanocrystals after substitution were systematically investigated. The experimental results illustrated that metal ions with higher electronegativity, higher valence, and smaller radius possess stronger ability for Tb ions' substitution in Tb-Asp nanocrystals. Based on the effect of substituting ions' concentration on the fluorescent property of Tb-Asp, a facile method for copper ions detection with high sensitivity was proposed by measuring the fluorescent intensity of Tb-Asp nanocrystals' suspensions containing different concentrations of copper ions. The good biocompatibility, great convenience of synthesis and sensitive detection ability make Tb-Asp nanocrystals a very low cost and effective material for metal ions detection, which also opens a new door for practical applications of metal-Asp coordinated nanocrystals.

  17. Magnetic Resonance Elastography of the Brain using Multi-Shot Spiral Readouts with Self-Navigated Motion Correction

    PubMed Central

    Johnson, Curtis L.; McGarry, Matthew D. J.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.; Sutton, Bradley P.; Georgiadis, John G.

    2012-01-01

    MRE has been introduced in clinical practice as a possible surrogate for mechanical palpation, but its application to study the human brain in vivo has been limited by low spatial resolution and the complexity of the inverse problem associated with biomechanical property estimation. Here, we report significant improvements in brain MRE data acquisition by reporting images with high spatial resolution and signal-to-noise ratio as quantified by octahedral shear strain metrics. Specifically, we have developed a sequence for brain MRE based on multi-shot, variable-density spiral imaging and three-dimensional displacement acquisition, and implemented a correction scheme for any resulting phase errors. A Rayleigh damped model of brain tissue mechanics was adopted to represent the parenchyma, and was integrated via a finite element-based iterative inversion algorithm. A multi-resolution phantom study demonstrates the need for obtaining high-resolution MRE data when estimating focal mechanical properties. Measurements on three healthy volunteers demonstrate satisfactory resolution of grey and white matter, and mechanical heterogeneities correspond well with white matter histoarchitecture. Together, these advances enable MRE scans that result in high-fidelity, spatially-resolved estimates of in vivo brain tissue mechanical properties, improving upon lower resolution MRE brain studies which only report volume averaged stiffness values. PMID:23001771

  18. Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Jacquot, Adrien; Probst, Laurent; Desobry, Stéphane

    2015-02-15

    Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules. Alginate and alginate-sodium caseinate composite liquid-core capsules were prepared by a simple extrusion. The influence of the preparation pH and sodium caseinate concentration on capsules physico-chemical properties was investigated. Results showed that sodium caseinate influenced significantly capsules properties. As regards to the membrane mechanical stability, composite capsules prepared at pH below the isoelectric point of sodium caseinate exhibited the highest surface Young's modulus, increasing with protein content, explained by potential electrostatic interactions between sodium caseinate amino-groups and alginate carboxylic group. The kinetic of cochineal red A release changed significantly for composite capsules and showed a pH-responsive release. Sodium caseinate-dye mixture studied by absorbance and fluorescence spectroscopy confirmed complex formation at pH 2 by electrostatic interactions between sodium caseinate tryptophan residues and cochineal red sulfonate-groups. Consequently, the release mechanism was explained by membrane adsorption process. This global approach is useful to control release mechanism from macro and micro-capsules by incorporating guest molecules which can interact with the entrapped molecule under specific conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. New Methods for the Analysis of Heartbeat Behavior in Risk Stratification

    PubMed Central

    Glass, Leon; Lerma, Claudia; Shrier, Alvin

    2011-01-01

    Developing better methods for risk stratification for tachyarrhythmic sudden cardiac remains a major challenge for physicians and scientists. Since the transition from sinus rhythm to ventricular tachycardia/fibrillation happens by different mechanisms in different people, it is unrealistic to think that a single measure will be adequate to provide a good index for risk stratification. We analyze the dynamical properties of ventricular premature complexes over 24 h in an effort to understand the underlying mechanisms of ventricular arrhythmias and to better understand the arrhythmias that occur in individual patients. Two dimensional density plots, called heartprints, correlate characteristic features of the dynamics of premature ventricular complexes and the sinus rate. Heartprints show distinctive characteristics in individual patients. Based on a better understanding of the natures of transitions from sinus rhythm to sudden cardiac and the mechanisms of arrhythmia prior to cardiac arrest, it should be possible to develop better methods for risk stratification. PMID:22144963

  20. Mechanical Properties of Additively Manufactured Thick Honeycombs.

    PubMed

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-07-23

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson's ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  1. Effects of a scalar scaling field on quantum mechanics

    DOE PAGES

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  2. AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.

    2012-11-01

    AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.

  3. Tannins, Peptic Ulcers and Related Mechanisms

    PubMed Central

    de Jesus, Neyres Zinia Taveira; de Souza Falcão, Heloina; Gomes, Isis Fernandes; de Almeida Leite, Thiago Jose; de Morais Lima, Gedson Rodrigues; Barbosa-Filho, Jose Maria; Tavares, Josean Fechine; da Silva, Marcelo Sobral; de Athayde-Filho, Petrônio Filgueiras; Batista, Leonia Maria

    2012-01-01

    This review of the current literature aims to study correlations between the chemical structure and gastric anti-ulcer activity of tannins. Tannins are used in medicine primarily because of their astringent properties. These properties are due to the fact that tannins react with the tissue proteins with which they come into contact. In gastric ulcers, this tannin-protein complex layer protects the stomach by promoting greater resistance to chemical and mechanical injury or irritation. Moreover, in several experimental models of gastric ulcer, tannins have been shown to present antioxidant activity, promote tissue repair, exhibit anti Helicobacter pylori effects, and they are involved in gastrointestinal tract anti-inflammatory processes. The presence of tannins explains the anti-ulcer effects of many natural products. PMID:22489149

  4. Evolutionary optimization of material properties of a tropical seed

    PubMed Central

    Lucas, Peter W.; Gaskins, John T.; Lowrey, Timothy K.; Harrison, Mark E.; Morrogh-Bernard, Helen C.; Cheyne, Susan M.; Begley, Matthew R.

    2012-01-01

    Here, we show how the mechanical properties of a thick-shelled tropical seed are adapted to permit them to germinate while preventing their predation. The seed has evolved a complex heterogeneous microstructure resulting in hardness, stiffness and fracture toughness values that place the structure at the intersection of these competing selective constraints. Analyses of different damage mechanisms inflicted by beetles, squirrels and orangutans illustrate that cellular shapes and orientations ensure damage resistance to predation forces imposed across a broad range of length scales. This resistance is shown to be around the upper limit that allows cracking the shell via internal turgor pressure (i.e. germination). Thus, the seed appears to strike an exquisitely delicate adaptive balance between multiple selection pressures. PMID:21613287

  5. DNA condensing effects and sequence selectivity of DNA binding of antitumor noncovalent polynuclear platinum complexes.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2014-02-03

    The noncovalent analogues of antitumor polynuclear platinum complexes represent a structurally discrete class of platinum drugs. Their chemical and biological properties differ significantly from those of most platinum chemotherapeutics, which bind to DNA in a covalent manner by formation of Pt-DNA adducts. In spite of the fact that these noncovalent polynuclear platinum complexes contain no leaving groups, they have been shown to bind to DNA with high affinity. We report here on the DNA condensation properties of a series of noncovalent analogues of antitumor polynuclear platinum complexes described by biophysical and biochemical methods. The results demonstrate that these polynuclear platinum compounds are capable of inducing DNA condensation at more than 1 order of magnitude lower concentrations than conventional spermine. Atomic force microscopy studies of DNA condensation confined to a mica substrate have revealed that the DNA morphologies become more compact with increasing concentration of the platinum complexes. Moreover, we also found that the noncovalent polynuclear platinum complex [{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](6+) (TriplatinNC-A) binds to DNA in a sequence-dependent manner, namely, to A/T-rich sequences and A-tract regions, and that noncovalent polynuclear platinum complexes protect DNA from enzymatic cleavage by DNase I. The results suggest that mechanisms of antitumor and cytotoxic activities of these complexes may be associated with their unique ability to condense DNA along with their sequence-specific DNA binding. Owing to their high cellular accumulation, it is also reasonable to suggest that their mechanism of action is based on the competition with naturally occurring DNA condensing agents, such as polyamines spermine, spermidine, and putrescine, for intracellular binding sites, resulting in the disturbance of the correct binding of regulatory proteins initiating the onset of apoptosis.

  6. Alginate-cellulose sulphate-oligocation microcapsules: optimization of mass transport and mechanical properties.

    PubMed

    Schuldt, U; Hunkeler, D

    2007-02-01

    Microcapsules based on polyelectrolyte complexation, where the inner phase involves a blend of alginate and sodium cellulose sulphate (SCS), have mechanical and transport properties which are relatively insensitive to the chemical composition of the rigid polyanion. Specifically, the bursting force of 400- and 1000 microm microcapsules increase slightly with the degree of substitution of the SCS, though the molar mass of the SCS appears to influence the transport properties more strongly than its composition. The concentration of the sodium chloride in the gelling batch can be varied rather extensively, with optimum properties at approximately half (i.e. 0.5 M) the level typically employed for the formation of cell-containing microcapsules. This indicates that the microcapsule properties can be tuned for biocompatability, without concern that changes to the polymer microstructure or reaction process conditions would adversely influence the bursting force or molar mass cut-off of the capsules. The alginate-SCS blend, which is typical equimass, can be slightly increased in favour of the SCS (to 55 wt%) if one seeks to mechanically optimize the system. The substitution of the oligocation polymethylene-co-guanidine with pDADMAC seems strongly undesirable. Similarly, the replacement of SCS with sulphoethylcellulose, while possible, offers no important advantages. The overall optimum conditions appear to be for a SCS with a DS of 2, prepared at 1.2 wt% of total cation with alginate. The ideal ratio, for mechanical and transport properties, of SCS to alginate is 55:45 (wt:wt), which represents a subtle modification from the classical formulation with very good biocompatability.

  7. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  8. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-12-10

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.

  9. Versatile mechanical properties of novel g-SiC x monolayers from graphene to silicene: a first-principles study.

    PubMed

    Lu, X K; Xin, T Y; Zhang, Q; Xu, Q; Wei, T H; Wang, Y X

    2018-08-03

    Recently, a series of graphene-like binary monolayers (g-SiC x ), where Si partly substitutes the C positions in graphene, have been obtained by tailoring the band gaps of graphene and silicene that have made them a promising material for application in opto-electronic devices. Subsequently, evaluating the mechanical properties of g-SiC x has assumed great importance for engineering applications. In this study, we quantified the in-plane mechanical properties of g-SiC x (x = 7, 5, 3, 2 and 1) monolayers (also including graphene and silicene) based on density function theory. It was found that the mechanical parameters of g-SiC x , such as the ideal strength, Young's modulus, shear modulus, Poisson's ratio, as well as fracture toughness, are overall related to the ratio of Si-C to C-C bonds, which varies with Si concentration. However, for g-SiC 7 and g-SiC 3 , the mechanical properties seem to depend on the structure because in g-SiC 7 , the C-C bond strength is severely weakened by abnormal stretching, and in g-SiC 3 , conjugation structure is formed. The microscopic failure of g-SiC x exhibits diverse styles depending on the more complex structural deformation modes introduced by Si substitution. We elaborated the structure-properties relationship of g-SiC x during the failure process, and in particular, found that the structural transformation of g-SiC 3 and g-SiC is due to the singular symmetry of their structure. Due to the homogeneous phase, all the g-SiC x investigated in this study preserve rigorous isotropic Young's moduli and Poisson's ratios. With versatile mechanical performances, the family of g-SiC x may facilitate the design of advanced two-dimensional materials to meet the needs for practical mechanical engineering applications. The results offer a fundamental understanding of the mechanical behaviors of g-SiC x monolayers.

  10. Mechanical Properties of β-Catenin Revealed by Single-Molecule Experiments

    PubMed Central

    Valbuena, Alejandro; Vera, Andrés Manuel; Oroz, Javier; Menéndez, Margarita; Carrión-Vázquez, Mariano

    2012-01-01

    β-catenin is a central component of the adaptor complex that links cadherins to the actin cytoskeleton in adherens junctions and thus, it is a good candidate to sense and transmit mechanical forces to trigger specific changes inside the cell. To fully understand its molecular physiology, we must first investigate its mechanical role in mechanotransduction within the cadherin system. We have studied the mechanical response of β-catenin to stretching using single-molecule force spectroscopy and molecular dynamics. Unlike most proteins analyzed to date, which have a fixed mechanical unfolding pathway, the β-catenin armadillo repeat region (ARM) displays low mechanostability and multiple alternative unfolding pathways that seem to be modulated by its unstructured termini. These results are supported by steered molecular dynamics simulations, which also predict its mechanical stabilization and unfolding pathway restrictions when the contiguous α-helix of the C-terminal unstructured region is included. Furthermore, simulations of the ARM/E-cadherin cytosolic tail complex emulating the most probable stress geometry occurring in vivo show a mechanical stabilization of the interaction whose magnitude correlates with the length of the stretch of the cadherin cytosolic tail that is in contact with the ARM region. PMID:23083718

  11. Transport mechanisms in Schottky diodes realized on GaN

    NASA Astrophysics Data System (ADS)

    Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah

    2017-03-01

    This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.

  12. Effect of geometric size on mechanical properties of dielectric elastomers based on an improved visco-hyperelastic film model

    NASA Astrophysics Data System (ADS)

    Chang, Mengzhou; Wang, Zhenqing; Tong, Liyong; Liang, Wenyan

    2017-03-01

    Dielectric polymers show complex mechanical behaviors with different boundary conditions, geometry size and pre-stress. A viscoelastic model suitable for inhomogeneous deformation is presented integrating the Kelvin-Voigt model in a new form in this work. For different types of uniaxial tensile test loading along the length direction of sample, single-step-relaxation tests, loading-unloading tests and tensile-creep-relaxation tests the improved model provides a quite favorable comparison with the experiment results. Moreover, The mechanical properties of test sample with several length-width ratios under different boundary conditions are also invested. The influences of the different boundary conditions are calculated with a stress applied on the boundary point and the result show that the fixed boundary will increase the stress compare with homogeneous deformation. In modeling the effect of pre-stress in the shear test, three pre-stressed mode are discussed. The model validation on the general mechanical behavior shows excellent predictive capability.

  13. Ti Alloys Processed By Selective Laser Melting And By Laser Cladding: Microstructures And Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mertens, Anne; Contrepois, Quentin; Dormal, Thierry; Lemaire, Olivier; Lecomte-Beckers, Jacqueline

    2012-07-01

    In this study, samples of alloy Ti-6Al-4V have been processed by Selective Laser Melting (SLM) and by Laser Cladding (LC), two layer-by-layer near-net-shape processes allowing for economic production of complex parts. The resulting microstructures have been characterised in details, so as to allow for a better understanding of the solidification process and of the subsequent phase transformations taking place upon cooling for both techniques. On the one hand, a new “MesoClad” laser with a maximum power of 300 W has been used successfully to produce thin wall samples by LC. On the other hand, the influence of processing parameters on the mechanical properties was investigated by means of uniaxial tensile testing performed on samples produced by SLM with different orientations with respect to the direction of mechanical solicitation. A strong anisotropy in mechanical behaviour was thus interpreted in relations with the microstructures and processing conditions.

  14. Observer properties for understanding dynamical displays: Capacities, limitations, and defaults

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.; Kaiser, Mary K.

    1991-01-01

    People's ability to extract relevant information while viewing ongoing events is discussed in terms of human capabilities, limitations, and defaults. A taxonomy of event complexity is developed which predicts which dynamical events people can and cannot construe. This taxonomy is related to the distinction drawn in classical mechanics between particle and extended body motions. People's commonsense understandings of simple mechanical systems are impacted little by formal training, but rather reflect heuristical simplifications that focus on a single dimension of perceived dynamical relevance.

  15. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems

    NASA Astrophysics Data System (ADS)

    Rivera-Jacquez, Hector J.; Masunov, Artëm E.

    2018-06-01

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications.

  16. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems.

    PubMed

    Rivera-Jacquez, Hector J; Masunov, Artëm E

    2018-06-05

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Characterization of craniofacial sutures using the finite element method.

    PubMed

    Maloul, Asmaa; Fialkov, Jeffrey; Wagner, Diane; Whyne, Cari M

    2014-01-03

    Characterizing the biomechanical behavior of sutures in the human craniofacial skeleton (CFS) is essential to understand the global impact of these articulations on load transmission, but is challenging due to the complexity of their interdigitated morphology, the multidirectional loading they are exposed to and the lack of well-defined suture material properties. This study aimed to quantify the impact of morphological features, direction of loading and suture material properties on the mechanical behavior of sutures and surrounding bone in the CFS. Thirty-six idealized finite element (FE) models were developed. One additional specimen-specific FE model was developed based on the morphology obtained from a µCT scan to represent the morphological complexity inherent in CFS sutures. Outcome variables of strain energy (SE) and von Mises stress (σvm) were evaluated to characterize the sutures' biomechanical behavior. Loading direction was found to impact the relationship between SE and interdigitation index and yielded varied patterns of σvm in both the suture and surrounding bone. Adding bone connectivity reduced suture strain energy and altered the σvm distribution. Incorporating transversely isotropic material properties was found to reduce SE, but had little impact on stress patterns. High-resolution µCT scanning of the suture revealed a complex morphology with areas of high and low interdigitations. The specimen specific suture model results were reflective of SE absorption and σvm distribution patterns consistent with the simplified FE results. Suture mechanical behavior is impacted by morphologic factors (interdigitation and connectivity), which may be optimized for regional loading within the CFS. © 2013 Elsevier Ltd. All rights reserved.

  18. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhigang

    A quantitative understanding of the electronic excitations in nanostructures, especially complex nanostructures, is crucial for making new-generation photovoltaic (PV) cells based on nanotechnology, which have high efficiency and low cost. Yet current quantum mechanical simulation methods are either computationally too expensive or not accurate and reliable enough, hindering the rational design of the nanoscale PV cells. The PI seeks to develop new methodologies to overcome the challenges in this very difficult and long-lasting problem, pushing the field forward so that electronic excitations can be accurately predicted for systems involving thousands of atoms. The primary objective of this project is tomore » develop new approaches for electronic excitation calculations that are more accurate than traditional density functional theory (DFT) and are applicable to systems larger than what current beyond-DFT methods can treat. In this proposal, the PI will first address the excited-state problem within the DFT framework to obtain quasiparticle energies from both Kohn-Sham (KS) eigenvalues and orbitals; and the electron-hole binding energy will be computed based on screened Coulomb interaction of corresponding DFT orbitals. The accuracy of these approaches will be examined against many-body methods of GW/BSE and quantum Monte Carlo (QMC). The PI will also work on improving the accuracy and efficiency of the GW/BSE and QMC methods in electronic excitation computations by using better KS orbitals obtained from orbital-dependent DFT as inputs. Then an extended QMC database of ground- and excited-state properties will be developed, and this will be spot checked and supplemented with data from GW/BSE calculations. The investigation will subsequently focus on the development of an improved exchange-correlation (XC) density functional beyond the current generalized gradient approximation (GGA) level of parameterization, with parameters fitted to the QMC database. This will allow the ground-state properties of focus systems to be more precisely predicted using DFT. These new developments will then be applied to investigate a chosen set of complex nanostructures that have great potential for opening new routes in designing materials with improved transport, electronic, and optical properties for PV and other optoelectronic usages: (1) Hybrid interfaces between materials with distinct electronic and optical properties, such as organic molecules (conjugated polymers, e.g. P3HT) and inorganic semiconducting materials (Si and ZnO). Complicated interface structures, including interface bonding configurations, compositional and geometrical blending patterns, interfacial defects, and various sizes and shapes of inorganic nanomaterials, will be considered for the purpose of understanding the working mechanisms of present organic/nano PV systems and designing optimum interface structures for fast charge separation and injection. (2) Complex-structured semiconducting nanomaterials that could induce charge separation without pn- or hetero-junctions. The new methodology will allow the PI to investigate the performance of realistic semiconducting nanomaterials of internal (impurities, defects, etc.) and external (uneven surface, mechanical twisting and bending, surface chemistry, etc.) complexities on optical absorption and charge transport against charge trapping and recombination. Of particular interest is whether such structural complexity in a single material could even be beneficial for PV usage, for example, charge separation through morphology control. Successful completion of the proposed DFT methodology would have a far-reaching impact on our ability to study and exploit the nature of electronic excitations in complex materials, advancing the design of next-generation electronic and optoelectronic devices in all facets of renewable energy conversion and storage, including photovoltaics, thermoelectricity, photochemistry, etc.« less

  19. Structural, electronic, and optical properties of representative Cu-flavonoid complexes.

    PubMed

    Lekka, Ch E; Ren, Jun; Meng, Sheng; Kaxiras, Efthimios

    2009-05-07

    We present density functional theory (DFT) results on the structural, electronic, and optical properties of Cu-flavonoid complexes for molar ratios 1:1, 1:2, and 1:3. We find that the preferred chelating site is close to the 4-oxo group and in particular the 3-4 site followed by the 3'-4' dihydroxy group in ring B. For the Cu-quercetin complexes, the large bathochromic shift of the first absorbance band upon complexation, which is in good agreement with experimental UV-vis spectra, results from the reduction of the electronic energy gap. The HOMO states for these complexes are characterized by pi-bonding between the Cu d orbitals and the C, O p orbitals except for the case of 1:1 complex (spin minority), which corresponds to sigma-type bonds. The LUMO states are attributed to the contribution of Cu p(z) orbitals. Consequently, the main features of the first optical absorption maxima are essentially due to pi --> pi transitions, while the 1:1 complex exhibits also sigma --> pi transitions. Our optical absorption calculations based on time-dependent DFT demonstrate that the 1:1 complex is responsible for the spectroscopic features at pH 5.5, whereas the 1:2 complex is mainly the one responsible for the characteristic spectra at pH 7.4. These theoretical predictions explain in detail the behavior of the optical absorption for the Cu-flavonoid complexes observed in experiments and are thus useful in elucidating the complexation mechanism and antioxidant activity of flavonoids.

  20. On the use of SPM to probe the interplay between polymer surface chemistry and polymer surface mechanics

    NASA Astrophysics Data System (ADS)

    Brogly, Maurice; Noel, Olivier; Awada, Houssein; Castelein, Gilles

    2007-03-01

    Adhesive properties of a polymer surface results from the complex contribution of surface chemistry and activation of sliding and dissipating mechanisms within the polymer surface layer. The purpose of this study is to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish relationships between the surface viscoelastic properties of the polymer, the surface chemistry of functionalized polymer surfaces and the adhesive forces, as determined by C-AFM experiments. Indeed we are interested in the measurements of local attractive or adhesive forces in AFM contact mode, of controlled chemical and mechanical model substrates. In order to investigate the interplay between mechanical or viscoelastic mechanisms and surface chemistry during the tip - polymer contact, we achieved force measurements on model PDMS polymer networks, whose surfaces are chemically controlled with the same functional groups as before (silicon substrates). On the basis of AFM nano-indentation experiments, surface Young moduli have been determined. The results show that the viscoelastic contribution is dominating in the adhesion force measurement. We propose an original model, which express the local adhesion force to the energy dissipated within the contact and the surface properties of the material (thermodynamic work of adhesion). Moreover we show that the dissipation function is related to Mc, the mass between crosslinks of the network.

  1. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    PubMed

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering.

    PubMed

    Guo, Jin; Li, Chunmei; Ling, Shengjie; Huang, Wenwen; Chen, Ying; Kaplan, David L

    2017-11-01

    Continuous gradients present at tissue interfaces such as osteochondral systems, reflect complex tissue functions and involve changes in extracellular matrix compositions, cell types and mechanical properties. New and versatile biomaterial strategies are needed to create suitable biomimetic engineered grafts for interfacial tissue engineering. Silk protein-based composites, coupled with selective peptides with mineralization domains, were utilized to mimic the soft-to-hard transition in osteochondral interfaces. The gradient composites supported tunable mineralization and mechanical properties corresponding to the spatial concentration gradient of the mineralization domains (R5 peptide). The composite system exhibited continuous transitions in terms of composition, structure and mechanical properties, as well as cytocompatibility and biodegradability. The gradient silicified silk/R5 composites promoted and regulated osteogenic differentiation of human mesenchymal stem cells in an osteoinductive environment in vitro. The cells differentiated along the composites in a manner consistent with the R5-gradient profile. This novel biomimetic gradient biomaterial design offers a useful approach to meet a broad range of needs in regenerative medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance.

    PubMed

    Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T

    2018-01-22

    Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.

  4. Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers.

    PubMed

    Sebe, István; Kállai-Szabó, Barnabás; Kovács, Krisztián Norbert; Szabadi, Enikő; Zelkó, Romána

    2015-01-01

    The application of high-speed rotary spinning can offer a useful mean for either preparation of fibrous intermediate for conventional dosage forms or drug delivery systems. Polyvinylpyrrolidone (PVP) and poly(vinylpyrrolidone-vinylacetate) (PVP VA) micro- and nanofibers of different polymer concentrations and solvent ratios were prepared with a high-speed rotary spinning technique. In order to study the influence of parameters that enable successful fiber production from polymeric viscous solutions, a complex micro- and macrostructural screening method was implemented. The obtained fiber mats were subjected to detailed morphological analysis using scanning electron microscope (SEM), and rheological measurements while the microstructural changes of fiber samples, based on the free volume changes, was analyzed by positron annihilation lifetime spectroscopy (PALS) and compared with their mechanical characteristics. The plasticizing effect of water tracked by ortho-positronium lifetime changes in relation to the mechanical properties of fibers. A concentration range of polyvinylpyrrolidone solutions was defined for the preparation of fibers of optimum fiber morphology and mechanical properties. The method enabled fiber formulation of advantageous functionality-related properties for further formulation of solid dosage forms.

  5. Role of the Z band in the mechanical properties of the heart.

    PubMed

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  6. Complexity and diversity.

    PubMed

    Doebeli, Michael; Ispolatov, Iaroslav

    2010-04-23

    The mechanisms for the origin and maintenance of biological diversity are not fully understood. It is known that frequency-dependent selection, generating advantages for rare types, can maintain genetic variation and lead to speciation, but in models with simple phenotypes (that is, low-dimensional phenotype spaces), frequency dependence needs to be strong to generate diversity. However, we show that if the ecological properties of an organism are determined by multiple traits with complex interactions, the conditions needed for frequency-dependent selection to generate diversity are relaxed to the point where they are easily satisfied in high-dimensional phenotype spaces. Mathematically, this phenomenon is reflected in properties of eigenvalues of quadratic forms. Because all living organisms have at least hundreds of phenotypes, this casts the potential importance of frequency dependence for the origin and maintenance of diversity in a new light.

  7. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  8. Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate.

    PubMed

    Eghbal, Noushin; Yarmand, Mohammad Saeid; Mousavi, Mohammad; Degraeve, Pascal; Oulahal, Nadia; Gharsallaoui, Adem

    2016-10-20

    Coacervation between sodium caseinate (CAS) and low methoxyl pectin (LMP) at pH 3 was investigated as a function of protein/polysaccharide ratio. The highest amount of complex coacervates was formed at a CAS/LMP ratio of 2 at which the ζ-potential value was zero and the turbidity reached its highest value. Then, the properties of films based on these complex coacervates were studied. Coacervation resulted in decreasing water content and water sorption of films as the protein concentration increased. The mechanical properties of films were highly influenced by the formation of electrostatic complexes. The highest values of Young's modulus (182.97± 6.48MPa) and tensile strength (15.64±1.74MPa) with a slight increase of elongation at break (9.35±0.10%) were obtained for films prepared at a CAS/LMP ratio equal to 0.05. These findings show that interactions between LMP and CAS can be used to develop innovative packaging containing active molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The development and characterization of degradable poly(vinyl ester) and poly(vinyl ester)/PEO block copolymers

    NASA Astrophysics Data System (ADS)

    Lipscomb, Corinne Elizabeth

    The development of biodegradable materials is a challenging and important problem in polymer science. A review of the state of the art in degradable materials is presented, which reveals that current biodegradable materials do not exhibit the thermal or mechanical properties necessary for widespread applications. One strategy for toughening polymeric materials, which has previously been applied to non-degradable thermoplastics and thermoplastic elastomers, is the formation of block copolymers. Poly(vinyl esters) (PVE) homopolymers are known to have a wide range of properties, but PVE block copolymers comprise a class of inexpensive and (bio)degradable materials that were previously unknown. Therefore, the synthesis and properties of these block copolymers were explored in an effort to develop robust degradable materials. This thesis research probes the reaction conditions necessary for the reversible-addition fragmentation chain transfer (RAFT) polymerization and chain extension reactions of vinyl ester monomers. PVE di- and triblock copolymers are synthesized and studied, and the triblock copolymers display extremely poor toughness due to their relatively low molecular weights in light of the high entanglement molecular weight of the poly(vinyl acetate) center block. Attempts to improve the mechanical properties of these materials focus on the incorporation of poly(ethylene oxide) (PEO) as a low entanglement molecular weight and biocompatible center block in PVE-containing triblock copolymers. Depending on the choice of PVE endblocks and the overall polymer composition, crystallization of the PEO block can be controlled, confined, or inhibited. Polymers in which PEO crystallization is completely inhibited exhibit enhanced mechanical properties and behave as weak thermoplastics. In order to understand the relationship between the inhibition of PEO crystallization and the mechanical properties of PVE/PEO materials, these polymers were studied using dynamic mechanical spectroscopy, wide angle X-ray scattering, small angle X-ray scattering, differential scanning calorimetry, and uniaxial tensile tests. By combining insights gained from these techniques, a complex picture emerges that explains the enhanced mechanical properties of these materials based on the type and location of thermal transitions, amorphous PEO entanglements, and the strain-induced crystallization of PEO. This work represents an important step toward developing robust materials with tunable properties containing (bio)degradable components.

  10. Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives

    NASA Astrophysics Data System (ADS)

    Mostaert, Anika S.; Jarvis, Suzanne P.

    2007-01-01

    While biological systems are notorious for their complexity, nature sometimes displays mechanisms that are elegant in their simplicity. We have recently identified such a mechanism at work to enhance the mechanical properties of certain natural adhesives. The mechanism is simple because it utilizes a non-specific protein folding and subsequent aggregation process, now thought to be generic for any polypeptide under appropriate conditions. This non-specific folding forms proteinaceous crossed β-sheet amyloid fibrils, which are usually associated with neurodegenerative diseases. Here we show evidence for the beneficial mechanical characteristics of these fibrils discovered in natural adhesives. We suggest that amyloid protein quaternary structures should be considered as a possible generic mechanism for mechanical strength in a range of natural adhesives and other natural materials due to their many beneficial mechanical features and apparent ease of self-assembly.

  11. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  12. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca 2+ , Mg 2+ , and Zn 2+ ) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG 8k -co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  13. Microstructure based hygromechanical modelling of deformation of fruit tissue

    NASA Astrophysics Data System (ADS)

    Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.

    2017-10-01

    Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.

  14. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch

    NASA Astrophysics Data System (ADS)

    Genovese, Katia; Humphrey, Jay D.

    2015-04-01

    Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries.

  15. Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex.

    PubMed

    Victor, Jonathan D; Mechler, Ferenc; Ohiorhenuan, Ifije; Schmid, Anita M; Purpura, Keith P

    2009-12-01

    A full understanding of the computations performed in primary visual cortex is an important yet elusive goal. Receptive field models consisting of cascades of linear filters and static nonlinearities may be adequate to account for responses to simple stimuli such as gratings and random checkerboards, but their predictions of responses to complex stimuli such as natural scenes are only approximately correct. It is unclear whether these discrepancies are limited to quantitative inaccuracies that reflect well-recognized mechanisms such as response normalization, gain controls, and cross-orientation suppression or, alternatively, imply additional qualitative features of the underlying computations. To address this question, we examined responses of V1 and V2 neurons in the monkey and area 17 neurons in the cat to two-dimensional Hermite functions (TDHs). TDHs are intermediate in complexity between traditional analytic stimuli and natural scenes and have mathematical properties that facilitate their use to test candidate models. By exploiting these properties, along with the laminar organization of V1, we identify qualitative aspects of neural computations beyond those anticipated from the above-cited model framework. Specifically, we find that V1 neurons receive signals from orientation-selective mechanisms that are highly nonlinear: they are sensitive to phase correlations, not just spatial frequency content. That is, the behavior of V1 neurons departs from that of linear-nonlinear cascades with standard modulatory mechanisms in a qualitative manner: even relatively simple stimuli evoke responses that imply complex spatial nonlinearities. The presence of these findings in the input layers suggests that these nonlinearities act in a feedback fashion.

  16. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min Wook; An, Seongpil; Song, Kyo Yong

    2015-12-28

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the matmore » fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.« less

  17. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour.

    PubMed

    Land, Sander; Gurev, Viatcheslav; Arens, Sander; Augustin, Christoph M; Baron, Lukas; Blake, Robert; Bradley, Chris; Castro, Sebastian; Crozier, Andrew; Favino, Marco; Fastl, Thomas E; Fritz, Thomas; Gao, Hao; Gizzi, Alessio; Griffith, Boyce E; Hurtado, Daniel E; Krause, Rolf; Luo, Xiaoyu; Nash, Martyn P; Pezzuto, Simone; Plank, Gernot; Rossi, Simone; Ruprecht, Daniel; Seemann, Gunnar; Smith, Nicolas P; Sundnes, Joakim; Rice, J Jeremy; Trayanova, Natalia; Wang, Dafang; Jenny Wang, Zhinuo; Niederer, Steven A

    2015-12-08

    Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.

  18. Use of Small Angle Neutron Scattering to Study Various Properties of Wool and Mohair Fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklyn, C. B.; Toeroek, Gy.

    2011-12-13

    To maintain a competitive edge in the wool and mohair industry, a detailed knowledge and understanding of the properties of wool fibres is essential. Standard techniques are used to determine fibre diameter, length and strength; however, properties such as hydroscopicity, lustre and changes in fibre structure following chemical or mechanical treatment are not so well understood. The unique capabilities of small angle neutron scattering to study changes in the supermolecular structure of wool fibres, particularly at the level of the microfibril-matrix complex, have been used to provide previously unknown features of the fibres. The results of these studies are presented.

  19. Multi-component nanofibrous scaffolds with tunable properties for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Jose, Moncy V.

    Bone is a highly complex tissue which is an integral part of vertebrates and hence any damage has a major negative effect on the quality of life. Tissue engineering is regarded as an ideal route to resolve the issues related to the scarcity of tissue and organ for transplantation. Apart from cell line and growth factors, the choice of materials and fabrication technique for scaffold are equally important. The goal of this work was to develop a multi-component nanofibrous scaffold based on a synthetic polymer (poly(lactic-co-glycolide) (PLGA)), a biopolymer (collagen) and a biomineral (nano-hydroxyapatite (nano-HA)) by electrospinning technique, which mimics the nanoscopic, chemical, and anisotropic features of bone. Preliminary studies involved fabrication of nanocomposite scaffolds based on PLGA and nano-HA. Morphological and mechanical characterizations revealed that at low concentrations, nano-HA acted as reinforcements, whereas at higher concentrations the presence of aggregation was detrimental to the scaffold. Hydrolytic degradation studies revealed the scaffold had a little mass loss and the mechanical property was maintained for a period of 6 weeks. This study was followed by evaluation of a blend system based on PLGA and collagen. Collagen addition provides hydrophilicity and the necessary cell binding sites in PLGA. The structural characterization revealed that the blend had limited interactions between the two components. The mechanical characterization revealed that with increasing collagen concentration, there was a decline in mechanical properties. However, crosslinking of the blend system, with carbodiimide (EDC) resulted in improving the mechanical properties of the scaffolds. A multi-component system was developed by adding different concentrations of nano-HA to a fixed PLGA/collagen blend composition (80/20). Morphological and mechanical characterizations revealed properties similar to the PLGA/HA system. Cyto-compatibility studies revealed favorable cell adhesion and proliferation. Protein adsorption studies showed the higher surface area as well as the presence of collagen resulted in higher fibronectin and vitronectin adsorption. Crosslinking by EDC resulted in enhanced mechanical property in hydrated state and enhanced degradation stability. These results suggest that such a multi-component system can take advantage of the mechanical benefit available from the individual components and also provide specific biological cues necessary for a successful scaffold.

  20. Recent development in deciphering the structure of luminescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Yu, Junhua

    2017-05-01

    Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.

  1. Essentiality and toxicity of vanadium supplements in health and pathology.

    PubMed

    Gruzewska, K; Michno, A; Pawelczyk, T; Bielarczyk, H

    2014-10-01

    The biological properties of vanadium complexes have become an object of interest due to their therapeutic potential in several diseases. However, the mechanisms of action of vanadium salts are still poorly understood. Vanadium complexes are cofactors for several enzymes and also exhibit insulin-mimetic properties. Thus, they are involved in the regulation of glucose metabolism, including in patients with diabetes. In addition, vanadium salts may also normalize blood pressure and play a key role in the metabolism of the thyroid and of iron as well as in the regulation of total cholesterol, cholesterol HDL and triglyceride (TG) levels in blood. Moreover, in cases of hypoxia, vanadium compounds may improve cardiomyocytes function. They may also exhibit both carcinogenic and anti-cancer properties. These include dose- and exposure-time-dependent induction and inhibition of the proliferation and survival of cancer cells. On the other hand, the balance between vanadium's therapeutic properties and its side effects has not yet been determined. Therefore, any studies on the potential use of vanadium compounds as supplements to support the treatment of a number of diseases must be strictly monitored for adverse effects.

  2. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    PubMed

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  3. Application of Ti6Al7Nb Alloy for the Manufacture of Biomechanical Functional Structures (BFS) for Custom-Made Bone Implants.

    PubMed

    Szymczyk, Patrycja; Ziółkowski, Grzegorz; Junka, Adam; Chlebus, Edward

    2018-06-08

    Unlike conventional manufacturing techniques, additive manufacturing (AM) can form objects of complex shape and geometry in an almost unrestricted manner. AM’s advantages include higher control of local process parameters and a possibility to use two or more various materials during manufacture. In this work, we applied one of AM technologies, selective laser melting, using Ti6Al7Nb alloy to produce biomedical functional structures (BFS) in the form of bone implants. Five types of BFS structures (A1, A2, A3, B, C) were manufactured for the research. The aim of this study was to investigate such technological aspects as architecture, manufacturing methods, process parameters, surface modification, and to compare them with such functional properties such as accuracy, mechanical, and biological in manufactured implants. Initial in vitro studies were performed using osteoblast cell line hFOB 1.19 (ATCC CRL-11372) (American Type Culture Collection). The results of the presented study confirm high applicative potential of AM to produce bone implants of high accuracy and geometric complexity, displaying desired mechanical properties. The experimental tests, as well as geometrical accuracy analysis, showed that the square shaped (A3) BFS structures were characterized by the lowest deviation range and smallestanisotropy of mechanical properties. Moreover, cell culture experiments performed in this study proved that the designed and obtained implant’s internal porosity (A3) enhances the growth of bone cells (osteoblasts) and can obtain predesigned biomechanical characteristics comparable to those of the bone tissue.

  4. Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell.

    PubMed

    Balani, Kantesh; Patel, Riken R; Keshri, Anup K; Lahiri, Debrupa; Agarwal, Arvind

    2011-10-01

    Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I.

    PubMed

    Andrade-Ochoa, S; García-Machorro, J; Bello, Martiniano; Rodríguez-Valdez, L M; Flores-Sandoval, C A; Correa-Basurto, J

    2017-08-03

    Human immunodeficiency virus type-1 (HIV-1) has infected more than 40 million people around the world. HIV-1 treatment still has several side effects, and the development of a vaccine, which is another potential option for decreasing human infections, has faced challenges. This work presents a computational study that includes a quantitative structure activity relationship(QSAR) using density functional theory(DFT) for reported peptides to identify the principal quantum mechanics descriptors related to peptide activity. In addition, the molecular recognition properties of these peptides are explored on major histocompatibility complex I (MHC-I) through docking and molecular dynamics (MD) simulations accompanied by the Molecular Mechanics Generalized Born Surface Area (MMGBSA) approach for correlating peptide activity reported elsewhere vs. theoretical peptide affinity. The results show that the carboxylic acid and hydroxyl groups are chemical moieties that have an inverse relationship with biological activity. The number of sulfides, pyrroles and imidazoles from the peptide structure are directly related to biological activity. In addition, the HOMO orbital energy values of the total absolute charge and the Ghose-Crippen molar refractivity of peptides are descriptors directly related to the activity and affinity on MHC-I. Docking and MD simulation studies accompanied by an MMGBSA analysis show that the binding free energy without considering the entropic contribution is energetically favorable for all the complexes. Furthermore, good peptide interaction with the most affinity is evaluated experimentally for three proteins. Overall, this study shows that the combination of quantum mechanics descriptors and molecular modeling studies could help describe the immunogenic properties of peptides from HIV-1.

  6. Two passive mechanical conditions modulate power generation by the outer hair cells

    PubMed Central

    Gracewski, Sheryl M.

    2017-01-01

    In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884

  7. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films

    NASA Astrophysics Data System (ADS)

    Zeeshan, M. A.; Esqué-de Los Ojos, D.; Castro-Hartmann, P.; Guerrero, M.; Nogués, J.; Suriñach, S.; Baró, M. D.; Nelson, B. J.; Pané, S.; Pellicer, E.; Sort, J.

    2016-01-01

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices.The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices. Electronic supplementary information (ESI) available: Additional details on experimental and analysis methods, additional results on crystalline CoNi(Re)P alloys and two movies to illustrate the stress distribution during deformation of the amorphous and crystalline nanowires. See DOI: 10.1039/c5nr04398k

  8. Computational Models and Emergent Properties of Respiratory Neural Networks

    PubMed Central

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  9. Successes and failures of Hubbard-corrected density functional theory. The case of Mg doped LiCoO 2

    DOE PAGES

    Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; ...

    2014-10-28

    We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO 2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO 2. We find that formation of impurity states results in changes on the valency of Co in LiCoO 2. Variation of the Co U shifts the energy of the impuritymore » state, resulting in energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO 2.« less

  10. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.

    PubMed

    Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M

    2009-06-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.

  11. Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration

    PubMed Central

    Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.

    2009-01-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040

  12. Mechanical reinforcement and environmental effects on a nylon-6/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Shelley, J. Stebbins

    2000-10-01

    Hybridization, or modifying the organic polymers with inorganic constituents, is one method of achieving mechanical property improvements in polymeric materials while preserving processing characteristics. Toyota Central Research developed, and Ube Industries commercialized, one such hybrid nanocomposite: nylon-6/montmorillonite clay. This dissertation explores mechanisms of reinforcement in these nylon-6/clay nanocomposites and studies their degradation by atmospheric pollutants. A 100% improvement in modulus, 77% improvement in yield stress, and 54°C improvement in heat distortion temperature over nylon-6 were observed in extruded 5 wt% clay nanocomposite sheets. Infrared absorption spectrography and dynamic mechanical analysis were used to investigate the mechanisms of reinforcement in these nanocomposites. The improved mechanical properties, increased heat distortion temperature, reduced diffusion rate, and lower susceptibility to degradation in NO x observed where attributed to constraint of polymer chain motion by interaction with clay lamellae. Changes in the loss tangent peak in the glass transition region of the dynamic mechanical data provide an estimate of the volume of chains constrained by complexation of their mid-chain amide oxygen groups with the charged clay lamellae. X-ray analysis, optical microscopy, and light scattering were used to study changes in crystallization due to this complexation. Photomicrographs indicate that the morphology of the crystallites change from spherulitic to planar with the addition of clay. Decreases in diffusion rates of water and total water absorption were demonstrated in immersion experiments. Complexation of nylon-6 with 5 wt% clay reduces the total absorption of water by over 16%. The plane stress fracture toughness of extruded 5 wt% clay nanocomposite was 46% greater than that of nylon-6. The degradation of the nanocomposites in calcium chloride solution and NOx was examined through post exposure residual tensile and stress cracking experiments. CaCl 2 solution degraded the mechanical responses of the nanocomposite materials in proportion to the amount of water absorbed. NOx exposure degraded the mechanical performance regardless of the constraining effect of clay lamellae and the reduced diffusion rate in the nanocomposites. The stress cracking response of the nanocomposite in NOx (apparently not diffusion driven) resulted in a 650% increase in the time to failure of 5 wt% clay nanocomposites over unmodified nylon-6 for the same normalized stress intensity factor.

  13. Cytotoxicity of Manganese (III) Complex in Human Breast Adenocarcinoma Cell Line Is Mediated by the Generation of Reactive Oxygen Species Followed by Mitochondrial Damage.

    PubMed

    Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab

    2016-11-01

    Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC 50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS. © The Author(s) 2016.

  14. [Analysis of Conformational Features of Watson-Crick Duplex Fragments by Molecular Mechanics and Quantum Mechanics Methods].

    PubMed

    Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A

    2016-01-01

    It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.

  15. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    PubMed Central

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  16. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable. ?? 1977.

  17. Structural biological composites: An overview

    NASA Astrophysics Data System (ADS)

    Meyers, Marc A.; Lin, Albert Y. M.; Seki, Yasuaki; Chen, Po-Yu; Kad, Bimal K.; Bodde, Sara

    2006-07-01

    Biological materials are complex composites that are hierarchically structured and multifunctional. Their mechanical properties are often outstanding, considering the weak constituents from which they are assembled. They are for the most part composed of brittle (often, mineral) and ductile (organic) components. These complex structures, which have risen from millions of years of evolution, are inspiring materials scientists in the design of novel materials. This paper discusses the overall design principles in biological structural composites and illustrates them for five examples; sea spicules, the abalone shell, the conch shell, the toucan and hornbill beaks, and the sheep crab exoskeleton.

  18. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    NASA Astrophysics Data System (ADS)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  19. Structural Preferential Attachment: Network Organization beyond the Link

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.

    2011-10-01

    We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.

  20. Complex Nano-Scale Structures for Unprecedented Properties in Steels

    DOE PAGES

    Caballero, Francisca G.; Poplawsky, Jonathan D.; Yen, Hung Wei; ...

    2016-11-01

    Processing bulk nanoscrystalline materials for structural applications still poses a rather large challenge, particularly in achieving an industrially viable process. In this context, recent work has proved that complex nanoscale steel structures can be formed by solid reaction at low temperatures. These nanocrystalline bainitic steels present the highest strength ever recorded, unprecedented ductility, fatigue on par with commercial bearing steels and exceptional rolling-sliding wear performances. In this paper, a description of the characteristics and significance of these remarkable structures in the context of the atomic mechanism of transformation is provided.

  1. Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis.

    PubMed

    Johns, Lennart D

    2002-07-01

    To present the frequency resonance hypothesis, a possible mechanical mechanism by which treatment with non-thermal levels of ultrasound stimulates therapeutic effects. The review encompasses a 4-decade history but focuses on recent reports describing the effects of nonthermal therapeutic levels of ultrasound at the cellular and molecular levels. A search of MEDLINE from 1965 through 2000 using the terms ultrasound and therapeutic ultrasound. The literature provides a number of examples in which exposure of cells to therapeutic ultrasound under nonthermal conditions modified cellular functions. Nonthermal levels of ultrasound are reported to modulate membrane properties, alter cellular proliferation, and produce increases in proteins associated with inflammation and injury repair. Combined, these data suggest that nonthermal effects of therapeutic ultrasound can modify the inflammatory response. The concept of the absorption of ultrasonic energy by enzymatic proteins leading to changes in the enzymes activity is not novel. However, recent reports demonstrating that ultrasound affects enzyme activity and possibly gene regulation provide sufficient data to present a probable molecular mechanism of ultrasound's nonthermal therapeutic action. The frequency resonance hypothesis describes 2 possible biological mechanisms that may alter protein function as a result of the absorption of ultrasonic energy. First, absorption of mechanical energy by a protein may produce a transient conformational shift (modifying the 3-dimensional structure) and alter the protein's functional activity. Second, the resonance or shearing properties of the wave (or both) may dissociate a multimolecular complex, thereby disrupting the complex's function. This review focuses on recent studies that have reported cellular and molecular effects of therapeutic ultrasound and presents a mechanical mechanism that may lead to a better understanding of how the nonthermal effects of ultrasound may be therapeutic. Moreover, a better understanding of ultrasound's mechanical mechanism could lead to a better understanding of how and when ultrasound should be employed as a therapeutic modality.

  2. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vögele, Martin; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M.; Holm, Christian

    2015-12-28

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models aremore » able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.« less

  3. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider.

    PubMed

    Goodwyn, Pablo Perez; De Souza, Emerson; Fujisaki, Kenji; Gorb, Stanislav

    2008-05-01

    Water striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200-300 nm wide, 7-9 microm long), was successfully replicated using a two-step moulding technique. The mould surface exhibited super-hydrophobic properties similar to the original insect surface. The average water contact angle (CA) of the mould was 164.7 degrees , whereas the CA of the flat polymer was about 92 degrees . These results show that (i) in water striders, the topography of the surface plays a dominant role in super-hydrophobicity, (ii) very low surface energy bulk material (typically smaller than 0.020 N m(-1)) is not necessary to achieve super-hydrophobicity; and (3) the two-step moulding technique may be used to mimic quite complex biological functional surfaces.

  4. Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues

    PubMed Central

    Hager, Anastasia; Wu, Mingxuan; Wang, Huanchen; Brown, Nathaniel W.; Shears, Stephen B.

    2016-01-01

    The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions. PMID:27460418

  5. A Coordination Chemistry Approach to Fine-Tune the Physicochemical Parameters of Lanthanide Complexes Relevant to Medical Applications.

    PubMed

    Le Fur, Mariane; Molnár, Enikő; Beyler, Maryline; Kálmán, Ferenc K; Fougère, Olivier; Esteban-Gómez, David; Rousseaux, Olivier; Tripier, Raphaël; Tircsó, Gyula; Platas-Iglesias, Carlos

    2018-03-02

    The geometric features of two pyclen-based ligands possessing identical donor atoms but different site organization have a profound impact in their complexation properties toward lanthanide ions. The ligand containing two acetate groups and a picolinate arm arranged in a symmetrical fashion (L1) forms a Gd 3+ complex being two orders of magnitude less stable than its dissymmetric analogue GdL2. Besides, GdL1 experiences a much faster dissociation following the acid-catalyzed mechanism than GdL2. On the contrary, GdL1 exhibits a lower exchange rate of the coordinated water molecule compared to GdL2. These very different properties are related to different strengths of the Gd-ligand bonds associated to steric effects, which hinder the coordination of a water molecule in GdL2 and the binding of acetate groups in GdL1. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin.

    PubMed

    Orel, Valerii; Shevchenko, Anatoliy; Romanov, Andriy; Tselepi, Marina; Mitrelias, Thanos; Barnes, Crispin H W; Burlaka, Anatoliy; Lukin, Sergey; Shchepotin, Igor

    2015-01-01

    We present a technology and magneto-mechanical milling chamber for the magneto-mechano-chemical synthesis (MMCS) of magneto-sensitive complex nanoparticles (MNC) comprising nanoparticles Fe3O4 and anticancer drug doxorubicin (DOXO). Magnetic properties of MNC were studied with vibrating magnetometer and electron paramagnetic resonance. Under the influence of mechano-chemical and MMCS, the complex show a hysteresis curve, which is typical for soft ferromagnetic materials. We also demonstrate that Lewis lung carcinoma had a hysteresis loop typical for a weak soft ferromagnet in contrast to surrounding tissues, which were diamagnetic. Combined action of constant magnetic field and radio frequency moderate inductive hyperthermia (RFH) below 40°C and MNC was found to induce greater antitumor and antimetastatic effects as compared to conventional DOXO. Radiospectroscopy shows minimal activity of FeS-protein electron transport chain of mitochondria, and an increase in the content of non-heme iron complexes with nitric oxide in the tumor tissues under the influence of RFH and MNC. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Surface tension driven aggregation of organic nanowires via lab in a droplet.

    PubMed

    Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Feng, Man; Zhang, Ziming; Dong, Haiyun; Gao, Faming; Zhao, Yong Sheng

    2018-06-05

    Directing the architecture of complex organic nanostructures is desirable and still remains a challenge in areas of materials science due to their structure-dependent collective optoelectronic properties. Herein, we demonstrate a simple and versatile solution strategy that allows surface tension to drive low-dimensional nanostructures to aggregate into complex structures via a lab in a droplet technique. By selecting a suitable combination of a solvent and an anti-solvent with controllable surface tension difference, the droplets can be automatically cracked into micro-droplets, which provides an aggregation force directed toward the centre of the droplet to drive the low-dimensional building blocks to form the special aggregations during the self-assembly process. This synthetic strategy has been shown to be universal for organic materials, which is beneficial for further optimizing the optoelectronic properties. These results contribute to gaining an insightful understanding on the detailed growth mechanism of complex organic nanostructures and greatly promoting the development of organic nanophotonics.

  8. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    NASA Astrophysics Data System (ADS)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  9. Investigating cell mechanics with atomic force microscopy

    PubMed Central

    Haase, Kristina; Pelling, Andrew E.

    2015-01-01

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells ‘feel’, we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. PMID:25589563

  10. Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes

    PubMed Central

    Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato

    2011-01-01

    Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies. PMID:21915345

  11. Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles

    ERIC Educational Resources Information Center

    Saviz, Camilla M.; Shakerin, Said

    2014-01-01

    Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…

  12. Trans-Homolog Interactions Facilitating Paramutation in Maize

    PubMed Central

    2015-01-01

    Paramutations represent locus-specific trans-homolog interactions affecting the heritable silencing properties of endogenous alleles. Although examples of paramutation are well studied in maize (Zea mays), the responsible mechanisms remain unclear. Genetic analyses indicate roles for plant-specific DNA-dependent RNA polymerases that generate small RNAs, and current working models hypothesize that these small RNAs direct heritable changes at sequences often acting as transcriptional enhancers. Several studies have defined specific sequences that mediate paramutation behaviors, and recent results identify a diversity of DNA-dependent RNA polymerase complexes operating in maize. Other reports ascribe broader roles for some of these complexes in normal genome function. This review highlights recent research to understand the molecular mechanisms of paramutation and examines evidence relevant to small RNA-based modes of transgenerational epigenetic inheritance. PMID:26149572

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballouz, Ronald-Louis; Richardson, Derek C.; Morishima, Ryuji

    We study the B ring’s complex optical depth structure. The source of this structure may be the complex dynamics of the Keplerian shear and the self-gravity of the ring particles. The outcome of these dynamic effects depends sensitively on the collisional and physical properties of the particles. Two mechanisms can emerge that dominate the macroscopic physical structure of the ring: self-gravity wakes and viscous overstability. Here we study the interplay between these two mechanisms by using our recently developed particle collision method that allows us to better model the inter-particle contact physics. We find that for a constant ring surfacemore » density and particle internal density, particles with rough surfaces tend to produce axisymmetric ring features associated with the viscous overstability, while particles with smoother surfaces produce self-gravity wakes.« less

  14. Changes of amplitude and topographical characteristics of event-related potentials during the hypnagogic period.

    PubMed

    Michida, N; Ebata, A; Tanaka, H; Hayashi, M; Hori, T

    1999-04-01

    In the previous study, during the vertex sharp wave period (hypnagogic EEG stage 4), negative components (N300, N550) were dominant at Fz and Cz in contrast to the positive component (P400) being prominent at the other areas, Pz, Oz, T5 and T6. There is no agreement regarding P400 properties during the hypnagogic period. In this study, using topographic mapping, we found that two negative components (N300, N550) and P400 independently increased their amplitude at the different areas of the scalp as arousal level lowered. The anterior negative components may reflect the information processing related to the K-complex. The P400 may reflect other activities different from the K-complex mechanism or P300 attention mechanisms.

  15. Synchrotron X-ray Scattering Analysis of the Interaction Between Corn Starch and an Exogenous Lipid During Hydrothermal Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Hernandez-Hernandez; C Avila-Orta; B Hsiao

    Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreasedmore » within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.« less

  16. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    PubMed

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  17. Audio-based, unsupervised machine learning reveals cyclic changes in earthquake mechanisms in the Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Paté, A.; Paisley, J.; Waldhauser, F.; Repetto, D.; Boschi, L.

    2017-12-01

    The earthquake process reflects complex interactions of stress, fracture and frictional properties. New machine learning methods reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Our methods are based closely on those developed for music information retrieval and voice recognition, using the spectrogram instead of the waveform directly. Unsupervised learning involves identification of patterns based on differences among signals without any additional information provided to the algorithm. Clustering of 46,000 earthquakes of $0.3

  18. Mechanical and electrical tuning in a tonotopically organized insect ear

    NASA Astrophysics Data System (ADS)

    Hummel, Jennifer; Schöneich, Stefan; Hedwig, Berthold; Kössl, Manfred; Nowotny, Manuela

    2015-12-01

    The high-frequency hearing organ of bushcrickets - the crista acustica (CA) - is tonotopically organized. Details about the mechano-electrical transduction mechanisms within the sensory-cell complex, however, remain unknown. In the recent study, we investigated and compared the anatomical, mechanical and electrophysiological properties of the CA and reveal a strong correlation of the mechanical and neuronal frequency tuning, which is supported by an anatomical gradient along the CA. Only in the distal high-frequency region of the CA a discrepancy between a strong mechanical response to low frequencies <30 kHz and a neuronal response that was restricted to frequencies >30 kHz was found. Therefore, we suggest that there might be additional intrinsic tuning mechanisms in the sensory cells of the distal region to distinguish the frequency content of sound.

  19. Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Haeili, Mehri; Moore, Casey; Davis, Christopher J. C.; Cochran, James B.; Shah, Santosh; Shrestha, Tej B.; Zhang, Yaofang; Bossmann, Stefan H.; Benjamin, William H.

    2014-01-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. PMID:24752262

  20. Mechanisms and Kinetics of Alkaline Hydrolysis of the Energetic Nitroaromatic Compounds 2,4,6-Trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Ritchie, Julia J.

    2013-07-02

    The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH– has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation ofmore » an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH–. For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions—and potential variability between the hydrolysis mechanisms for different NACs—mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure–activity relationships, QSARs) for hydrolysis of other NACs.« less

  1. Mechanisms and kinetics of alkaline hydrolysis of the energetic nitroaromatic compounds 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN).

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Ritchie, Julia J; Tratnyek, Paul G

    2013-07-02

    The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH(-) has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation of an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH(-). For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions-and potential variability between the hydrolysis mechanisms for different NACs-mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure-activity relationships, QSARs) for hydrolysis of other NACs.

  2. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes.

  3. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes. PMID:26681483

  4. Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Lunn, R. J.; Shipton, Z. K.

    2016-08-01

    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.

  5. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less

  6. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve; Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo; Zambrano, J.C.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock.more » High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and poor solid-state diffusion. - Graphical abstract: Display Omitted - Highlights: • We made NiCoCrAlYTa alloy by a conventional powder metallurgy route. • High densification and adequate strength were observed. • The presence of unexpected carbides found along γ/γ and γ/β grain boundaries was detected. • The effect of cold press and sintering processing parameters on the microstructure and mechanical properties were studied.« less

  7. Relationship between potency and boiling point of general anesthetics: a thermodynamic consideration.

    PubMed

    Dastmalchi, S; Barzegar-Jalali, M

    2000-07-20

    The most important group of nonspecific drugs is that of the general anesthetics. These nonspecific compounds vary greatly in structure, from noble gases such as Ar or Xe to complex steroids. Since the development of clinical anesthesia over a century ago, there has been a vast amount of research and speculation concerning the mechanism of action of general anesthetics. Despite these efforts, the exact mechanism remains unknown. Many theories of narcosis do not explain how unconsciousness is produced at a molecular level, but instead relate some physicochemical property of anesthetic agents to their anesthetic potencies. In this paper, we address some of those physicochemical properties, with more emphasis on correlating the anesthetic potency of volatile anesthetics to their boiling points based on thermodynamic principles.

  8. Structure-mechanics relationships in mineralized tendons.

    PubMed

    Spiesz, Ewa M; Zysset, Philippe K

    2015-12-01

    In this paper, we review the hierarchical structure and the resulting elastic properties of mineralized tendons as obtained by various multiscale experimental and computational methods spanning from nano- to macroscale. The mechanical properties of mineralized collagen fibres are important to understand the mechanics of hard tissues constituted by complex arrangements of these fibres, like in human lamellar bone. The uniaxial mineralized collagen fibre array naturally occurring in avian tendons is a well studied model tissue for investigating various stages of tissue mineralization and the corresponding elastic properties. Some avian tendons mineralize with maturation, which results in a graded structure containing two zones of distinct morphology, circumferential and interstitial. These zones exhibit different amounts of mineral, collagen, pores and a different mineral distribution between collagen fibrillar and extrafibrillar space that lead to distinct elastic properties. Mineralized tendon cells have two phenotypes: elongated tenocytes placed between fibres in the circumferential zone and cuboidal cells with lower aspect ratios in the interstitial zone. Interestingly some regions of avian tendons seem to be predestined to mineralization, which is exhibited as specific collagen cross-linking patterns as well as distribution of minor tendon constituents (like proteoglycans) and loss of collagen crimp. Results of investigations in naturally mineralizing avian tendons may be useful in understanding the pathological mineralization occurring in some human tendons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.

    PubMed

    Abba, Mohammed T; Hunger, Philipp M; Kalidindi, Surya R; Wegst, Ulrike G K

    2015-03-01

    Functional materials often are hybrids composed of biopolymers and mineral constituents. The arrangement and interactions of the constituents frequently lead to hierarchical structures with exceptional mechanical properties and multifunctionality. In this study, hybrid thin films with a nacre-like brick-and-mortar microstructure were fabricated in a straightforward and reproducible manner through manual shear casting using the biopolymer chitosan as the matrix material (mortar) and alumina platelets as the reinforcing particles (bricks). The ratio of inorganic to organic content was varied from 0% to 15% and the relative humidities from 36% to 75% to determine their effects on the mechanical properties. It was found that increasing the volume fraction of alumina from 0% to 15% results in a twofold increase in the modulus of the film, but decreases the tensile strength by up to 30%, when the volume fraction of alumina is higher than 5%. Additionally, this study quantifies and illustrates the critical role of the relative humidity on the mechanical properties of the hybrid film. Increasing the relative humidity from 36% to 75% decreases the modulus and strength by about 45% and triples the strain at failure. These results suggest that complex hybrid materials can be manufactured and tailor made for specific applications or environmental conditions. Copyright © 2015. Published by Elsevier Ltd.

  10. Tooth and bone deformation: structure and material properties by ESPI

    NASA Astrophysics Data System (ADS)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  11. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions.

    PubMed

    Esteghlal, Sara; Niakousari, Mehrdad; Hosseini, Seyed Mohammad Hashem

    2018-07-15

    The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pH opt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Mechanical Properties of Additively Manufactured Thick Honeycombs

    PubMed Central

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions. PMID:28773735

  13. Visibility in the topology of complex networks

    NASA Astrophysics Data System (ADS)

    Tsiotas, Dimitrios; Charakopoulos, Avraam

    2018-09-01

    Taking its inspiration from the visibility algorithm, which was proposed by Lacasa et al. (2008) to convert a time-series into a complex network, this paper develops and proposes a novel expansion of this algorithm that allows generating a visibility graph from a complex network instead of a time-series that is currently applicable. The purpose of this approach is to apply the idea of visibility from the field of time-series to complex networks in order to interpret the network topology as a landscape. Visibility in complex networks is a multivariate property producing an associated visibility graph that maps the ability of a node "to see" other nodes in the network that lie beyond the range of its neighborhood, in terms of a control-attribute. Within this context, this paper examines the visibility topology produced by connectivity (degree) in comparison with the original (source) network, in order to detect what patterns or forces describe the mechanism under which a network is converted to a visibility graph. The overall analysis shows that visibility is a property that increases the connectivity in networks, it may contribute to pattern recognition (among which the detection of the scale-free topology) and it is worth to be applied to complex networks in order to reveal the potential of signal processing beyond the range of its neighborhood. Generally, this paper promotes interdisciplinary research in complex networks providing new insights to network science.

  14. BSA binding and antimicrobial studies of branched polyethyleneimine-copper(II)bipyridine/phenanthroline complexes

    NASA Astrophysics Data System (ADS)

    Vignesh, Gopalaswamy; Arunachalam, Sankaralingam; Vignesh, Sivanandham; James, Rathinam Arthur

    2012-10-01

    The interaction of two water soluble branched polyethyleneimine-copper(II) complexes containing bipyridine/phenanthroline with bovine serum albumin (BSA) was studied by, UV-Visible absorption, fluorescence, lifetime measurements and circular dichroism spectroscopic techniques. The polymer-copper(II) complexes strongly quench the intrinsic fluorescence of BSA is the static quenching mechanism through hydrogen bonds and van der Waal's attraction. The distance r, between the BSA and the complexes seems to be less than 2 nm indicating that the energy transfer between the donor and acceptor occurs with high probability. Synchronous fluorescence studies indicate the binding of polymer-copper(II) complexes with BSA mostly changes the polarity around tryptophan residues rather than tyrosine residues. The circular dichroism studies indicate that the binding has induced considerable amount of conformational changes in the protein. The complexes also show some antibacterial and antifungal properties.

  15. Convergence of QM/MM and Cluster Models for the Spectroscopic Properties of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A

    2013-08-13

    The latest crystal structure of photosystem II at 1.9 Å resolution, which resolves the topology of the Mn4CaO5 oxygen evolving complex (OEC) at atomistic detail, enables a better correlation between structural features and spectroscopic properties than ever before. Building on the refined crystallographic model of the OEC and the protein, we present combined quantum mechanical/molecular mechanical (QM/MM) studies of the spectroscopic properties of the natural catalyst embedded in the protein matrix. Focusing on the S2 state of the catalytic cycle, we examine the convergence of not only structural parameters but also of the intracluster magnetic interactions in terms of exchange coupling constants and of experimentally relevant (55)Mn, (17)O, and (14)N hyperfine coupling constants with respect to QM/MM partitioning using five QM regions of increasing size. This enables us to assess the performance of the method and to probe second sphere effects by identifying amino acid residues that principally affect the spectroscopic properties of the OEC. Comparison between QM-only and QM/MM treatments reveals that whereas QM/MM models converge quickly to stable values, the QM cluster models need to incorporate significantly larger parts of the second coordination sphere and surrounding water molecules to achieve convergence for certain properties. This is mainly due to the sensitivity of the QM-only models to fluctuations in the hydrogen bonding network and ligand acidity. Additionally, a hydrogen bond that is typically omitted in QM-only treatments is shown to determine the hyperfine coupling tensor of the unique Mn(III) ion by regulating the rotation plane of the ligated D1-His332 imidazole ring, the only N-donor ligand of the OEC.

  16. Tilts, dopants, vacancies and non-stoichiometry: Understanding and designing the properties of complex solid oxide perovskites from first principles

    NASA Astrophysics Data System (ADS)

    Bennett, Joseph W.

    Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both inorganic chemistry and materials science, I have been able to gain insights into solid oxide perovskite-based systems.

  17. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells.

    PubMed

    Prylutskyy, Yu; Bychko, A; Sokolova, V; Prylutska, S; Evstigneev, M; Rybalchenko, V; Epple, M; Scharff, P

    2016-02-01

    With an aim to elucidate the effects of C60 fullerene complexed with antibiotic doxorubicin (Dox) on model bilipid membranes (BLM), the investigation of the electrical properties of BLM under the action of Dox and C60 fullerene, and of their complex, C60+Dox,was performed. The complex as well as its components exert a clearly detectable influence on BLM, which is concentration-dependent and also depends on phospholipid composition. The mechanism of this effect originates either from intermolecular interaction of the drug with fatty-acid residues of phospholipids, or from membranotropic effects of the drug-induced lipid peroxidation, or from the sum of these two effects. By fluorescence microscopy the entering of C60 + Dox complex into HeLa cells was directly shown.

  18. Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153.

    PubMed

    Milles, Sigrid; Lemke, Edward A

    2011-10-05

    Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (R(E)) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (R(E)/R(E,RC) = 0.99 ± 0.15 with R(E,RC) corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (R(E)/R(E,RC) = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Gelation kinetics and characterization of enzymatically enhanced fish scale gelatin-pectin coacervate.

    PubMed

    Huang, Tao; Tu, Zong-Cai; Shangguan, Xinchen; Wang, Hui; Zhang, Nanhai; Zhang, Lu; Sha, Xiaomei

    2018-02-01

    Protein-polysaccharide complex coacervations have been considered extensively for the development of functional foods. The main problem of the complex coacervates is that they are highly unstable under different conditions and that cross-linking is necessary to stabilize them. In this study, the effects of pectin at different concentrations on the gel and structural properties of fish scale gelatin (FSG)-high methoxyl citrus pectin (HMP) coacervate enhanced by microbial transglutaminase (MTGase) were studied. The gelation rates and gel strength of the MTGase-enhanced FSG-HMP coacervate gels decreased with increasing HMP concentration. However, the enhanced coacervate gels exhibited better thermal behavior and mechanical properties compared with the original gels. Also, TG-P 8 exhibited the highest melting point (27.15 ± 0.12 °C), gelation point (15.65 ± 0.01 °C) and stress (15.36 ± 0.48 kPa) as HMP was 8 g kg -1 . Particle size distribution, fluorescence emission and UV absorbance spectra indicated that MTGase and HMP could make FSG form large aggregates. Moreover, confocal laser scanning microscopy of treated coacervate gels showed a continuous protein phase at low HMP concentrations. FSG and HMP could form soluble coacervate, and MTGase could improve the thermal and mechanical properties of coacervate gels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures

    NASA Astrophysics Data System (ADS)

    Ju, Yang; Huang, Yaohui; Zheng, Jiangtao; Qian, Xu; Xie, Heping; Zhao, Xi

    2017-04-01

    Geomaterials inherently contain many discontinuous, multi-scale, geometrically irregular pores, forming a complex porous structure that governs their mechanical and transport properties. The development of an efficient reconstruction method for representing porous structures can significantly contribute toward providing a better understanding of the governing effects of porous structures on the properties of porous materials. In order to improve the efficiency of reconstructing large-scale porous structures, a multi-thread parallel scheme was incorporated into the simulated annealing reconstruction method. In the method, four correlation functions, which include the two-point probability function, the linear-path functions for the pore phase and the solid phase, and the fractal system function for the solid phase, were employed for better reproduction of the complex well-connected porous structures. In addition, a random sphere packing method and a self-developed pre-conditioning method were incorporated to cast the initial reconstructed model and select independent interchanging pairs for parallel multi-thread calculation, respectively. The accuracy of the proposed algorithm was evaluated by examining the similarity between the reconstructed structure and a prototype in terms of their geometrical, topological, and mechanical properties. Comparisons of the reconstruction efficiency of porous models with various scales indicated that the parallel multi-thread scheme significantly shortened the execution time for reconstruction of a large-scale well-connected porous model compared to a sequential single-thread procedure.

  1. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  2. Biomechanics of plant-insect interactions.

    PubMed

    Whitney, Heather M; Federle, Walter

    2013-02-01

    Plant-insect interactions are determined by both chemical and physical mechanisms. Biomechanical factors play an important role across many ecological situations, including pollination, herbivory and plant carnivory, and have led to complex adaptations in both plants and insects. However, while mechanical factors involved in some highly specific interactions have been elucidated, more generalised effects may be widespread but are more difficult to isolate, due to the multifunctional properties of the plant surfaces and tissues where interactions occur. Novel methodologies are being developed to investigate the mechanisms of biomechanical interactions and discover to what extent adaptive structures could be exploited via biomimetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Navigating ligand protein binding free energy landscapes: universality and diversity of protein folding and molecular recognition mechanisms

    NASA Astrophysics Data System (ADS)

    Verkhivker, Gennady M.; Rejto, Paul A.; Bouzida, Djamal; Arthurs, Sandra; Colson, Anthony B.; Freer, Stephan T.; Gehlhaar, Daniel K.; Larson, Veda; Luty, Brock A.; Marrone, Tami; Rose, Peter W.

    2001-03-01

    Thermodynamic and kinetic aspects of ligand-protein binding are studied for the methotrexate-dihydrofolate reductase system from the binding free energy profile constructed as a function of the order parameter. Thermodynamic stability of the native complex and a cooperative transition to the unique native structure suggest the nucleation kinetic mechanism at the equilibrium transition temperature. Structural properties of the transition state ensemble and the ensemble of nucleation conformations are determined by kinetic simulations of the transmission coefficient and ligand-protein association pathways. Structural analysis of the transition states and the nucleation conformations reconciles different views on the nucleation mechanism in protein folding.

  4. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    NASA Astrophysics Data System (ADS)

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  5. Diabetes Alters Mechanical Properties and Collagen Fiber Re-Alignment in Multiple Mouse Tendons

    PubMed Central

    Connizzo, Brianne K.; Bhatt, Pankti R.; Liechty, Kenneth W.; Soslowsky, Louis J.

    2014-01-01

    Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber realignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load. PMID:24833253

  6. Mechanical properties of complex biological systems using AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John Stephen

    An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.

  7. The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Gulizia, S.; Oh, C. H.; Fraser, D.; Leary, M.; Yang, Y. F.; Qian, M.

    2016-03-01

    Achieving a high surface finish is a major challenge for most current metal additive manufacturing processes. We report the first quantitative study of the influence of as-built surface conditions on the tensile properties of Ti-6Al-4V produced by selective electron beam melting (SEBM) in order to better understand the SEBM process. Tensile ductility was doubled along with noticeable improvements in tensile strengths after surface modification of the SEBM-fabricated Ti-6Al-4V by chemical etching. The fracture surfaces of tensile specimens with different surface conditions were characterised and correlated with the tensile properties obtained. The removal of a 650- μm-thick surface layer by chemical etching was shown to be necessary to eliminate the detrimental influence of surface defects on mechanical properties. The experimental results and analyses underline the necessity to modify the surfaces of SEBM-fabricated components for structural applications, particularly for those components which contain complex internal concave and convex surfaces and channels.

  8. Effects of Stress Relaxation Aging with Electrical Pulses on Microstructures and Properties of 2219 Aluminum Alloy

    PubMed Central

    Tan, Jingsheng; Zhan, Lihua; Zhang, Jiao; Yang, Zhan; Ma, Ziyao

    2016-01-01

    To realize the high-efficiency and high-performance manufacture of complex high-web panels, this paper introduced electric pulse current (EPC) into the stress relaxation aging forming process of 2219 aluminum alloy and systematically studied the effects of EPC, stress, and aging time upon the microstructure and properties of 2219 aluminum alloy. It is discovered that: (a) EPC greatly enhanced the mechanical properties after stress relaxation aging and reduced the sensitivity of the yield strength for the initial stress under the aging system of 165 °C/11 h; (b) compared with general aging, stress relaxation aging instead delayed the aging process of 2219 aluminum alloy and greatly increased the peak strength value; (c) EPC accelerated the aging precipitation behavior of 2219 aluminum alloy and reduced transgranular and grain-boundary energy difference, thus leading to a more diffused distribution of the transgranular precipitated phase and the absence of a significant precipitation-free zone (PFZ) and grain-boundary stable phase in the grain boundary, further improving the mechanical properties of the alloy. PMID:28773660

  9. 3D Printer-Manufacturing of Complex Geometry Elements

    NASA Astrophysics Data System (ADS)

    Ciubară, A.; Burlea, Ș L.; Axinte, M.; Cimpoeșu, R.; Chicet, D. L.; Manole, V.; Burlea, G.; Cimpoeșu, N.

    2018-06-01

    In the last 5-10 years the process of 3D printing has an incredible advanced in all the fields with a tremendous number of applications. Plastic materials exhibit highly beneficial mechanical properties while delivering complex designs impossible to achieve using conventional manufacturing. In this article the printing process (filling degree, time, complications and details finesse) of few plastic elements with complicated geometry and fine details was analyzed and comment. 3D printing offers many of the thermoplastics and industrial materials found in conventional manufacturing. The advantages and disadvantages of 3D printing for plastic parts are discussed. Time of production for an element with complex geometry, from the design to final cut, was evaluated.

  10. Electronic energy transfer in bimetallic Ru-Os complexes containing the 3,5-bis(pyridin-2-yl)-1,2,4-triazolate bridging ligand

    NASA Astrophysics Data System (ADS)

    De Cola, Luisa; Barigelletti, Francesco; Balzani, Vincenzo; Hage, Ronald; Haasnoot, Jaap G.; Reedijk, Jan; Vos, Johannes G.

    1991-04-01

    The luminescence and photochemical properties of the two isomeric heterobimetallic [(bpy) 2Ru(bpt)Os(bpy) 2] 3+ and [(bpy) 2Os(bpt)Ru(bpy) 2] 3+ complexes have been investigated (bpy=2,2'-pyridine; bpt -=3,5-bis(pyridin-2-yl)-1,2,4-triazolate ion). The properties of the two isomeric compounds are compared with those of the corresponding dinuclear homometallic inert and exhibit luminescence only from the Os-based component. Excitation in the Ru-based component is followed by ≈ 100% efficient energy transfer to the Os-based component. The energy-transfer mechanism is briefly discussed. The one-electron oxidation products (which contain Os in the 3+ oxidation state) are not luminescent because of the presence of a low-energy intervalence transfer level.

  11. Microfluidics to Mimic Blood Flow in Health and Disease

    NASA Astrophysics Data System (ADS)

    Sebastian, Bernhard; Dittrich, Petra S.

    2018-01-01

    Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

  12. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures.

    PubMed

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-24

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  13. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures

    NASA Astrophysics Data System (ADS)

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-01

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  14. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  15. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.

    PubMed

    Ballard, Christopher C; Esty, C Clark; Egolf, David A

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  16. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems

    PubMed Central

    Aliashkevich, Alena; Alvarez, Laura; Cava, Felipe

    2018-01-01

    In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr’s promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems. PMID:29681896

  17. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.

    PubMed

    Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo

    2015-06-01

    The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    PubMed

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-05-01

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry

    DOE PAGES

    Veytskin, Yuriy B.; Tammina, Vamsi K.; Bobko, Christopher P.; ...

    2017-03-01

    Shales are heterogeneous sedimentary rocks which typically comprise a variable mineralogy (including compacted clay particles sub-micrometer in size), silt grains, and nanometer sized pores collectively arranged with transversely isotropic symmetry. Moreover, a detailed understanding of the micro- and sub-microscale geomechanics of these minerals is required to improve models of shale strength and stiffness properties. In this paper, we propose a linked experimental–computational approach and validate a combination of grid nanoindentation and Scanning Electron Microscopy (SEM) with Energy and Wavelength Dispersive X-ray Spectrometry (EDS/WDS) at the same spatial locations to identify both the nano-mechanical morphology and local mineralogy of these nanocomposites.more » The experimental parameters of each method are chosen to assess a similar volume of material. By considering three different shales of varying mineralogy and mechanical diversity, we show through the EMMIX statistical iterative technique that the constituent phases, including highly compacted plate- or sheet-like clay particles, carbonates, silicates, and sulfides, have distinct nano-mechanical morphologies and associated indentation moduli and hardness. Nanoindentation-based strength homogenization analysis determines an average clay packing density, friction coefficient, and solid cohesion for each tested shale sample. Comparison of bulk to microscale geomechanical properties, through bulk porosimetry measurements, reveals a close correspondence between bulk and microscale clay packing densities. Determining the mechanical microstructure and material properties is useful for predictive microporomechanical models of the stiffness and strength properties of shale. Furthermore, the experimental and computational approaches presented here also apply to other chemically and mechanically complex materials exhibiting nanogranular, composite behavior.« less

  20. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    PubMed Central

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2012-01-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803

  1. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  2. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties

    PubMed Central

    Trevisan, Francesco; Calignano, Flaviana; Lorusso, Massimo; Pakkanen, Jukka; Aversa, Alberta; Ambrosio, Elisa Paola; Lombardi, Mariangela; Fino, Paolo; Manfredi, Diego

    2017-01-01

    The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented. PMID:28772436

  3. Simultaneous Measurements of Geometric and Viscoelastic Properties of Hydrogel Microbeads Using Continuous-Flow Microfluidics with Embedded Electrodes.

    PubMed

    Niu, Ye; Zhang, Xu; Si, Ting; Zhang, Yuntian; Qi, Lin; Zhao, Gang; Xu, Ronald X; He, Xiaoming; Zhao, Yi

    2017-12-01

    Geometric and mechanical characterizations of hydrogel materials at the microscale are attracting increasing attention due to their importance in tissue engineering, regenerative medicine, and drug delivery applications. Contemporary approaches for measuring the these properties of hydrogel microbeads suffer from low-throughput, complex system configuration, and measurement inaccuracy. In this work, a continuous-flow device is developed to measure geometric and viscoelastic properties of hydrogel microbeads by flowing the microbeads through a tapered microchannel with an array of interdigitated microelectrodes patterned underneath the channel. The viscoelastic properties are derived from the trajectories of microbeads using a quasi-linear viscoelastic model. The measurement is independent of the applied volumetric flow rate. The results show that the geometric and viscoelastic properties of Ca-alginate hydrogel microbeads can be determined independently and simultaneously. The bulky high-speed optical systems are eliminated, simplifying the system configuration and making it a truly miniaturized device. A throughput of up to 394 microbeads min -1 is achieved. This study may provide a powerful tool for mechanical profiling of hydrogel microbeads to support their wide applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cannabis: old medicine with new promise for neurological disorders.

    PubMed

    Carter, Gregory T; Weydt, Patrick

    2002-03-01

    Marijuana is a complex substance containing over 60 different forms of cannabinoids, the active ingredients. Cannabinoids are now known to have the capacity for neuromodulation, via direct, receptor-based mechanisms at numerous levels within the nervous system. These have therapeutic properties that may be applicable to the treatment of neurological disorders; including anti-oxidative, neuroprotective, analgesic and anti-inflammatory actions; immunomodulation, modulation of glial cells and tumor growth regulation. This article reviews the emerging research on the physiological mechanisms of endogenous and exogenous cannabinoids in the context of neurological disease.

  5. Wear of carbide inserts with complex surface treatment when milling nickel alloy

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey

    2018-03-01

    One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.

  6. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  7. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  8. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.

    2005-01-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].

  9. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  10. A series of binuclear lanthanide(III) complexes: Crystallography, antimicrobial activity and thermochemistry properties studies

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai

    2015-02-01

    A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.

  11. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE PAGES

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...

    2017-08-18

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  12. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  13. Dynamical Correspondence in a Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2015-05-01

    In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.

  14. Aggregate stability as an indicator of soil erodibility and soil physical quality: review and perspectives

    NASA Astrophysics Data System (ADS)

    Le Bissonnais, Yves; Chenu, Claire; Darboux, Frédéric; Duval, Odile; Legout, Cédric; Leguédois, Sophie; Gumiere, Silvio

    2010-05-01

    Aggregate breakdown due to water and rain action may cause surface crusting, slumping, a reduction of infiltration and interrill erosion. Aggregate stability determines the capacity of aggregates to resist the effects of water and rainfall. In this paper, we evaluated and reviewed the relevance of an aggregate stability measurement to characterize soil physical properties as well as to analyse the processes involved in these properties. Stability measurement assesses the sensitivity of soil aggregates to various basic disaggregation mechanisms such as slaking, differential swelling, dispersion and mechanical breakdown. It has been showed that aggregate size distributions of structural stability tests matched the size distributions of eroded aggregates under rainfall simulations and that erosion amount was well predicted using aggregate stability indexes. It means stability tests could be used to estimate both the erodibility and the size fractions that are available for crust formation and erosion processes. Several studies showed that organic matter was one of the main soil properties affecting soil stability. However, it has also been showed that aggregate stability of a given soil could vary within a year or between years. The factors controlling such changes have still to be specified. Aggregate stability appears therefore as a complex property, depending both on permanent soil characteristics and on dynamic factors such as the crusting stage, the climate and the biological activity. Despite, and may be, because of this complexity, aggregate stability seems an integrative and powerful indicator of soil physical quality. Future research efforts should look at the causes of short-term changes of structural stability, in order to fully understand all its aspects.

  15. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis.

    PubMed

    Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D

    2013-11-01

    An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. © 2013 Elsevier Ltd. All rights reserved.

  16. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys.

    PubMed

    Zhang, Erlin; Ren, Jing; Li, Shengyi; Yang, Lei; Qin, Gaowu

    2016-10-21

    Ti-Cu sintered alloys have shown good antibacterial abilities. However, the sintered method (powder metallurgy) is not convenient to produce devices with a complex structure. In this paper, Ti-Cu alloys with 2.0, 3.0 and 4.0 wt.% Cu were prepared in an arc melting furnace and subjected to different heat treatments: solid solution and ageing, to explore the possibility of preparing an antibacterial Ti-Cu alloy by a casting method and to examine the effect of Cu content. Phase identification was conducted on an XRD diffraction meter, and the microstructure was observed by a metallographic microscope, a scanning electron microscope (SEM) with energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM). Microhardness and the compressive property of Ti-Cu alloys were tested, and the corrosion resistance and antibacterial activity were assessed in order to investigate the effect of the Cu content. Results showed that the as-cast Ti-Cu alloys exhibited a very low antibacterial rate against Staphylococcus aureus (S. aureus). Heat treatment improved the antibacterial rate significantly, especially after a solid and ageing treatment (T6). Antibacterial rates as high as 90.33% and 92.57% were observed on Ti-3Cu alloy and Ti-4Cu alloy, respectively. The hardness, the compressive yield strength, the anticorrosion resistance and the antibacterial rate of Ti-Cu alloys increased with an increase of Cu content in all conditions. It was demonstrated that homogeneous distribution and a fine Ti 2 Cu phase played a very important role in the mechanical property, anticorrosion and antibacterial properties. Furthermore, it should be pointed out that the Cu content should be at least 3 wt.% to obtain good antibacterial properties (>90% antibacterial rate) as well as satisfactory mechanical properties.

  17. Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris

    2018-03-01

    Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure-property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.

  18. Novel Zn(II) complexes of 1,3-diphenyl-4-(arylazo)pyrazol-5-one derivatives: Synthesis, spectroscopic properties, DFT calculations and first order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-03-01

    Eight novel Zn(II) complexes with substituted 1,3-diphenyl-4-(arylazo)pyrazol-5-one (L1-L4) derivatives have been synthesized and elucidated using various physicochemical techniques. Quantum mechanical calculations of energies, geometries were done by DFT using B3LYP/GEN functional combined with 6.311G (d,p) and LAN2DZ basis sets. The analyses of HOMO and LUMO have been used to explain the charge transfer within the ligands and complexes. The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within Zn(II) complexes. Geometrical parameters, molecular electrostatic potential maps (MEP) and total electron densities analyses of the ligands and their Zn complexes have been carried out. Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength has been investigated by the applying of natural bond orbital (NBO) analysis. Total static dipole moment (μ), the mean polarizability (<α>), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (<β>) have been also performed. The obtained values show that Zn(II) complexes is brilliant candidate to NLO materials. The analyses of the 1:1 complexes indicate that the Zn(II) ion is five-coordinated with water molecules at axial position in case of L1, L2 and L4 whereas, six-coordinated with L3 and non-electrolytic behaviour of complexes indicates the absence of counter ion.

  19. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    PubMed

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  1. Biomimetics: lessons from nature--an overview.

    PubMed

    Bhushan, Bharat

    2009-04-28

    Nature has developed materials, objects and processes that function from the macroscale to the nanoscale. These have gone through evolution over 3.8 Gyr. The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices and processes. Properties of biological materials and surfaces result from a complex interplay between surface morphology and physical and chemical properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature to provide properties of interest. Molecular-scale devices, superhydrophobicity, self-cleaning, drag reduction in fluid flow, energy conversion and conservation, high adhesion, reversible adhesion, aerodynamic lift, materials and fibres with high mechanical strength, biological self-assembly, antireflection, structural coloration, thermal insulation, self-healing and sensory-aid mechanisms are some of the examples found in nature that are of commercial interest. This paper provides a broad overview of the various objects and processes of interest found in nature and applications under development or available in the marketplace.

  2. Liquid droplets of cross-linked actin filaments

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  3. Viscoelastic behavior of mineralized (CaCO3) chitin based PVP-CMC hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Čadež, Vida; Saha, Nabanita; Sikirić, Maja Dutour; Saha, Petr

    2017-05-01

    Enhancement of the mechanical as well as functional properties of the perspective mineralized PVP-CMC-CaCO3 hydrogel scaffold applicable for bone tissue engineering is quite essential. Therefore, the incorporation feasibility of chitin, a bioactive, antibacterial and biodegradable material, was examined in order to test its ability to enchance mechanical properties of the PVP-CMC-CaCO3 hydrogel scaffold. Chitin based PVP-CMC hydrogels were prepared and characterized both as non-mineralized and mineralized (CaCO3) form of hydrogel scaffolds. Both α-chitin (commercially bought) and β-chitin (isolated from the cuttlebone) were individually tested. It was observed that at 1% strain all hydrogel scaffolds have linear trend, with highly pronounced elastic properties in comparison to viscous ones. The complex viscosity has directly proportional behavior with negative slope against angular frequency within the range of ω = 0.1 - 100 rad.s-1. Incorporation of β-chitin increased storage modulus of all mineralized samples, making it interesting for further research.

  4. Morphology and conductivity of PEO-based polymers having various end functional groups

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong

    Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.

  5. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties

    PubMed Central

    Guardiola-Lemaitre, B; De Bodinat, C; Delagrange, P; Millan, M J; Munoz, C; Mocaër, E

    2014-01-01

    Agomelatine behaves both as a potent agonist at melatonin MT1 and MT2 receptors and as a neutral antagonist at 5-HT2C receptors. Accumulating evidence in a broad range of experimental procedures supports the notion that the psychotropic effects of agomelatine are due to the synergy between its melatonergic and 5-hydroxytryptaminergic effects. The recent demonstration of the existence of heteromeric complexes of MT1 and MT2 with 5-HT2C receptors at the cellular level may explain how these two properties of agomelatine translate into a synergistic action that, for example, leads to increases in hippocampal proliferation, maturation and survival through modulation of multiple cellular pathways (increase in trophic factors, synaptic remodelling, glutamate signalling) and key targets (early genes, kinases). The present review focuses on the pharmacological properties of this novel antidepressant. Its mechanism of action, strikingly different from that of conventional classes of antidepressants, opens perspectives towards a better understanding of the physiopathological bases underlying depression. PMID:24724693

  6. Preparation process and properties of exfoliated graphite nanoplatelets filled Bisphthalonitrile nanocomposites

    NASA Astrophysics Data System (ADS)

    Lei, Yajie; Hu, Guo-Hua; Zhao, Rui; Guo, Heng; Zhao, Xin; Liu, Xiaobo

    2012-11-01

    Exfoliated graphite nanoplatelets (xGnP) filled 4,4'-Bis (3,4-dicyanophenoxy) biphenyl (BPh) nanocomposites were prepared by a resin transfer molding process. The rheological behavior of the BPh pre-polymer, and the morphology and electrical, mechanical and thermal properties of the xGnP/BPh nanocomposites were systematically investigated. The results showed that the xGnP/BPh pre-polymer possessed a higher complex viscosity and storage modulus than the pure BPh and that the xGnP could significantly enhance the mechanical and electrical properties of the resulted nanocomposites. The electrical percolation threshold of the xGnP/BPh nanocomposites was between 5 and 10 wt% xGnP. The flexural strength and modulus of the xGnP/BPh nanocomposites with 10 wt% xGnP exhibited maximum values and their thermal stabilities were greatly improved. Those novel xGnP/BPh nanocomposites could have advanced applications in areas like aerospace and military industry.

  7. Symposium II: Mechanochemistry in Materials Science, MRS Fall Meeting, Nov 30-Dec 4, 2009, Boston, MA

    DTIC Science & Technology

    2010-09-02

    Dynamic Mechanical Analysis (DMA). The fracture behavior of the mechanophore-linked polymer is also examined through the Double Cleavage Drilled ...multinary complex structures. Structural, microstructural, and chemical characterizations were explored by metrological tools to support this...simple hydrocarbons in order to quantitatively define structure-property relationships for reacting materials under shock compression. Embedded gauge

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuping, Duan, E-mail: duanyp@dlut.edu.c; Jia, Zhang; Hui, Jing

    Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO{sub 2} with Fe, the relative complex permittivity of MnO{sub 2} and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO{sub 2} exhibits good microwavemore » absorption capability. -- Graphical Abstract: Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: {yields} Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized. {yields} We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO{sub 2}. {yields} By doping MnO{sub 2} with Fe, the electromagnetic properties are improved obviously.« less

  9. A process-based framework for soil ecosystem services study and management.

    PubMed

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Mechanism of adsorption and eclipse of bacteriophage phi X174. I. In vitro conformational change under conditions of eclipse.

    PubMed

    Incardona, N L; Blonski, R; Feeney, W

    1972-01-01

    Bacteriophage phiX174 undergoes a conformational change during viral eclipse when virus-host cell complexes are incubated briefly at 37 C in a complex starvation buffer at pH 8. In this report, basically the same transition is demonstrated in vitro. Incubation of phiX alone for 2 to 3 hr at 35 C in 0.1 m CaCl(2) (pH 7.2) results in an irreversible decrease in S(20,w) because of an increase in the frictional coefficient that occurs during the change in conformation. The slower sedimenting conformation is noninfectious. These properties are remarkably similar to those of the eclipsed particles characterized by Newbold and Sinsheimer. Therefore, the key structural requirements for the molecular mechanism must reside within the architecture of the virus itself. This extremely simplified system uncovered the calcium ion requirement and pronounced dependence on pH between 6 and 7, both inherent properties of adsorption. This and the more than 10-fold greater rate of the in vivo conformational transition allude to the cooperative nature of attachment and eclipse for phiX.

  11. Fractality of pulsatile flow in speckle images

    NASA Astrophysics Data System (ADS)

    Nemati, M.; Kenjeres, S.; Urbach, H. P.; Bhattacharya, N.

    2016-05-01

    The scattering of coherent light from a system with underlying flow can be used to yield essential information about dynamics of the process. In the case of pulsatile flow, there is a rapid change in the properties of the speckle images. This can be studied using the standard laser speckle contrast and also the fractality of images. In this paper, we report the results of experiments performed to study pulsatile flow with speckle images, under different experimental configurations to verify the robustness of the techniques for applications. In order to study flow under various levels of complexity, the measurements were done for three in-vitro phantoms and two in-vivo situations. The pumping mechanisms were varied ranging from mechanical pumps to the human heart for the in vivo case. The speckle images were analyzed using the techniques of fractal dimension and speckle contrast analysis. The results of these techniques for the various experimental scenarios were compared. The fractal dimension is a more sensitive measure to capture the complexity of the signal though it was observed that it is also extremely sensitive to the properties of the scattering medium and cannot recover the signal for thicker diffusers in comparison to speckle contrast.

  12. Dielectric Rheo-SANS: An Instrument for the Simultaneous Interrogation of Rheology, Microstructure and Electronic Properties of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Richards, Jeffrey; Hipp, Julie; Butler, Paul

    In situ measurements are an increasingly important tool to inform the complex relationship between nanoscale properties and macroscopic measurements. For conducting colloidal suspensions, we seek intrinsic relationships between the measured electrical and mechanical response of a material both in quiescence and under applied shear. These relationships can be used to inform the development of new materials with enhanced electrical and mechanical performance. In order to study these relationships, we have developed a dielectric rheology instrument that is compatible with small angle neutron scattering (SANS) experiments. This Dielectric RheoSANS instrument consists of a Couette geometry mounted on an ARES G2 strain controlled rheometer enclosed in a modified Forced Convection Oven (FCO). In this talk, we outline the development of the Dielectric RheoSANS instruments and demonstrate its operation using two systems - a suspension of carbon black particles in propylene carbonate and poly(3-hexylthiophene) organogel - where there is interest in how shear influences the microstructure state of the material. By monitoring the conductivity and rheological response of these materials at the same time, we can capture the entire evolution of the material response to an applied deformation. NCNR NIST Cooperative Agreement #70NANB12H239.

  13. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  14. Structural and Functional Analysis of an mRNP Complex That Mediates the High Stability of Human β-Globin mRNA

    PubMed Central

    Yu, Jia; Russell, J. Eric

    2001-01-01

    Human globins are encoded by mRNAs exhibiting high stabilities in transcriptionally silenced erythrocyte progenitors. Unlike α-globin mRNA, whose stability is enhanced by assembly of a specific messenger RNP (mRNP) α complex on its 3′ untranslated region (UTR), neither the structure(s) nor the mechanism(s) that effects the high-level stability of human β-globin mRNA has been identified. The present work describes an mRNP complex assembling on the 3′ UTR of the β-globin mRNA that exhibits many of the properties of the stability-enhancing α complex. The β-globin mRNP complex is shown to contain one or more factors homologous to αCP, a 39-kDa RNA-binding protein that is integral to α-complex assembly. Sequence analysis implicates a specific 14-nucleotide pyrimidine-rich track within its 3′ UTR as the site of β-globin mRNP assembly. The importance of this track to mRNA stability is subsequently verified in vivo using mice expressing human β-globin transgenes that contain informative mutations in this region. In combination, the in vitro and in vivo analyses indicate that the high stabilities of the α- and β-globin mRNAs are maintained through related mRNP complexes that may share a common regulatory pathway. PMID:11486027

  15. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  16. Structural and dielectric properties of A(Fe{sub 1/2}Ta{sub 1/2})O{sub 3} [A = Ba, Sr, Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Alo; Sinha, T.P., E-mail: sinha_tp@yahoo.com

    2011-04-15

    Graphical abstract: FTIR spectra of BFT, SFT and CFT at room temperature. Research highlights: {yields} The structural and dielectric properties of BaFe{sub 1/2}Ta{sub 1/2}O{sub 3}, SrFe{sub 1/2}Ta{sub 1/2}O{sub 3} and CaFe{sub 1/2}Ta{sub 1/2}O{sub 3}. {yields} Fourier transform infrared spectra show two primary phonon modes of the samples at around 450 cm{sup -1} and 620 cm{sup -1}. {yields} The compounds show significant frequency dispersion in its dielectric properties. {yields} The relaxation mechanism of the samples is modelled by Cole-Cole equation. -- Abstract: The complex perovskite oxide barium iron tantalate (BFT), BaFe{sub 1/2}Ta{sub 1/2}O{sub 3}, strontium iron tantalate (SFT), SrFe{sub 1/2}Ta{sub 1/2}O{submore » 3} and calcium iron tantalate (CFT), CaFe{sub 1/2}Ta{sub 1/2}O{sub 3} are synthesized by a solid-state reaction technique. Rietveld refinement of the X-ray diffraction data of the samples shows that BFT and SFT crystallize in cubic structure, with lattice parameter a = 4.06 A for BFT and 3.959 A for SFT, whereas CFT crystallizes in orthorhombic structure having lattice parameters a = 5.443 A, b = 5.542 A and c = 7.757 A. Fourier transform infrared spectra show two primary phonon modes of the samples at around 450 cm{sup -1} and 620 cm{sup -1}. The compounds show significant frequency dispersion in its dielectric properties. The complex impedance plane plots of the samples show that the relaxation (conduction) mechanism in these materials is purely a bulk effect arising from the semiconductive grains. The relaxation mechanism of the samples is modelled by Cole-Cole equation. The frequency dependent conductivity spectra are found to follow the power law.« less

  17. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces.

    PubMed

    Scarratt, Liam R J; Steiner, Ullrich; Neto, Chiara

    2017-08-01

    Advancements in the fabrication and study of superhydrophobic surfaces have been significant over the past 10years, and some 20years after the discovery of the lotus effect, the study of special wettability surfaces can be considered mainstream. While the fabrication of superhydrophobic surfaces is well advanced and the physical properties of superhydrophobic surfaces well-understood, the robustness of these surfaces, both in terms of mechanical and thermodynamic properties, are only recently getting attention in the literature. In this review we cover publications that appeared over the past ten years on the thermodynamic and mechanical robustness of superhydrophobic surfaces, by which we mean the long term stability under conditions of wear, shear and pressure. The review is divided into two parts, the first dedicated to thermodynamic robustness and the second dedicated to mechanical robustness of these complex surfaces. Our work is intended as an introductory review for researchers interested in addressing longevity and stability of superhydrophobic surfaces, and provides an outlook on outstanding aspects of investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mapping intracellular mechanics on micropatterned substrates

    PubMed Central

    Mandal, Kalpana; Asnacios, Atef; Goud, Bruno; Manneville, Jean-Baptiste

    2016-01-01

    The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells. PMID:27799529

  19. Resist surface crosslinking using amine-based reactive rinses to mitagate pattern collapse in thin film lithography

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Ming; Lawson, Richard A.; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    As the semiconductor industry continues to push to smaller critical dimensions, pattern collapse during lithographic processing caused by unbalanced capillary forces during the final rinse and drying process has become an important problem that can limit the practical resolution of a resist material to feature sizes larger than its intrinsic resolution limit. One of the primary modes of pattern collapse is via elastoplastic pattern deformation which is strongly related to the mechanical properties of the resist. One approach to mitigating such collapse problems is to enhance the mechanical properties of the resist features. Since such modification of resist physical properties for pattern collapse purposes is difficult to achieve through modified formulation of the resist itself (i.e. due to the complex set of requirements that a resist must satisfy and the complex set of physical and chemical phenomena that underlie the imaging processing itself), we have pursued an alternative strategy for improving the resist mechanical properties after features are developed in the film but before they are rinsed and dried. The family of techniques being developed in this work function through the use of aqueous compatible reactive rinse solutions that can be applied to developed resist features while they are wet during normal rinse processing on a track system. By applying these techniques during the rinse process, the resist features can be strengthened before they are subjected to significant capillary forces during the final drying step. In this work, the use of diamine compounds to reactively crosslink the surface of resists containing carboxylic acid groups through formation of amide bonds using carbodiimide chemistry has been explored. One advantage of this approach is that it is an aqueous process that should be easily compatible with high volume, track-based lithographic processes. Contact angle studies and x-ray photoelectron spectroscopy (XPS) were used to characterize the surface crosslinking reaction using such diamine surface rinse treatments. Pattern collapse test structures were fabricated and analyzed to measure the amount of mechanical property improvement imparted by such treatments. Application of such amine reactive rinses was found to clearly result in an improvement in the resistance of resists to pattern collapse as observed by SEM. A comparison of the critical stress at the point of pattern collapse as a function of resist feature size also clearly shows a significant improvement in mechanical resilience of resist samples processed with the reactive rinse treatment.

  20. Optimisation of stability and charge transferability of ferrocene-encapsulated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prajongtat, Pongthep; Sriyab, Suwannee; Zentgraf, Thomas; Hannongbua, Supa

    2018-01-01

    Ferrocene-encapsulated carbon nanotubes (Fc@CNTs) became promising nanocomposite materials for a wide range of applications due to their superior catalytic, mechanical and electronic properties. To open up new windows of applications, the highly stable and charge transferable encapsulation complexes are required. In this work, we designed the new encapsulation complexes formed from ferrocene derivatives (FcR, where R = -CHO, -CH2OH, -CON3 and -PCl2) and single-walled carbon nanotubes (SWCNTs). The influence of diameter and chirality of the nanotubes on the stability, charge transferability and electronic properties of such complexes has been investigated using density functional theory. The calculations suggest that the encapsulation stability and charge transferability of the encapsulation complexes depend on the size and chirality of the nanotubes. FcR@SWCNTs are more stable than Fc@SWCNTs at the optimum tube diameter. The greatest charge transfer was observed for FcCH2OH@SWCNTs and Fc@SWCNTs since the Fe d levels of FcCH2OH and Fc are nearly equal and close to the Fermi energy level of the nanotubes. The obtained results pave the way to the design of new encapsulated ferrocene derivatives which can give rise to higher stability and charge transferability of the encapsulation complexes.

Top