Sample records for complex mechanisms including

  1. Identification of Complex Carbon Nanotube Structures

    NASA Technical Reports Server (NTRS)

    Han, Jie; Saini, Subhash (Technical Monitor)

    1998-01-01

    A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.

  2. Mechanisms Mediating the Perception of Complex Acoustic Patterns

    DTIC Science & Technology

    1990-11-09

    units stimulated by the louder sound include the units stimulated by the fainter sound. Thus, auditory induction corresponds to a rather sophisticated...FIELD GRU - auditory perception, complex sounds I. I 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Five studies were...show how auditory mechanisms employed for the processing of complex nonverbal patterns have been modified for the perception of speech. 2 Richard M

  3. Low- and high-spin iron (II) complexes studied by effective crystal field method combined with molecular mechanics.

    PubMed

    Darkhovskii, M B; Pletnev, I V; Tchougréeff, A L

    2003-11-15

    A computational method targeted to Werner-type complexes is developed on the basis of quantum mechanical effective Hamiltonian crystal field (EHCF) methodology (previously proposed for describing electronic structure of transition metal complexes) combined with the Gillespie-Kepert version of molecular mechanics (MM). It is a special version of the hybrid quantum/MM approach. The MM part is responsible for representing the whole molecule, including ligand atoms and metal ion coordination sphere, but leaving out the effects of the d-shell. The quantum mechanical EHCF part is limited to the metal ion d-shell. The method reproduces with reasonable accuracy geometry and spin states of the Fe(II) complexes with monodentate and polydentate aromatic ligands with nitrogen donor atoms. In this setting a single set of MM parameters set is shown to be sufficient for handling all spin states of the complexes under consideration. Copyright 2003 Wiley Periodicals, Inc.

  4. Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy

    PubMed Central

    Fujiwara, Tohru; O'Geen, Henriette; Keles, Sunduz; Blahnik, Kimberly; Linnemann, Amelia K.; Kang, Yoon-A; Choi, Kyunghee; Farnham, Peggy J.; Bresnick, Emery H.

    2009-01-01

    SUMMARY GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis. PMID:19941826

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, J.F.

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{submore » 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.« less

  6. Singlet Oxygen Generation by Cyclometalated Complexes and Applications†

    PubMed Central

    Ashen-Garry, David; Selke, Matthias

    2014-01-01

    While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes is presented, and the mechanism of 1O2 generation is discussed, including evidence for singlet oxygen generation via an electron transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including “traditional” singlet oxygen reactions (ene reaction, [4+2] and [2+2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed. PMID:24344628

  7. Singlet oxygen generation by cyclometalated complexes and applications.

    PubMed

    Ashen-Garry, David; Selke, Matthias

    2014-01-01

    While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes are presented, and the mechanism of (1) O2 generation is discussed, including evidence for singlet oxygen generation via an electron-transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including "traditional" singlet oxygen reactions (ene reaction, [4 + 2] and [2 + 2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed. © 2013 The American Society of Photobiology.

  8. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  9. What is the business case for improving care for patients with complex conditions?

    PubMed

    Luck, Jeff; Parkerton, Patricia; Hagigi, Fred

    2007-12-01

    Patients with complex conditions account for a disproportionate share of health care spending. Although evidence indicates that care for these patients could be provided more efficiently, the financial impact of mechanisms to improve the care they receive is unclear. Numerous mechanisms-emphasizing patient self-management, care coordination, and evidence-based guidelines-aim to improve the quality of care and outcomes for patients with complex conditions. Assessing the overall "business case" for these mechanisms requires carefully estimating all relevant costs and financial benefits, then comparing them in present value terms. Mechanisms that are not cost-saving may still be implemented if they are cost-effective. We reviewed articles in peer-reviewed journals, as well as reports available on publicly accessible websites, which contained data about the business case for mechanisms to improve care for patients with complex conditions. Published studies do not provide clear evidence that current mechanisms are cost saving. This literature also has several major methodological shortcomings with respect to providing an understanding of the business case for these mechanisms. Further research using standardized methodologies is needed to understand the business case for mechanisms to improve care for patients with complex conditions. Implications for VA business case analyses include the necessity of establishing appropriate time horizons, scope of services, and target populations, as well as considering the impact of existing VA systems.

  10. Bio-chemo-mechanics of thoracic aortic aneurysms.

    PubMed

    Wagenseil, Jessica E

    2018-03-01

    Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.

  11. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  12. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-05-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  13. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    PubMed

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  14. Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes

    PubMed Central

    Nagy, Corina; Turecki, Gustavo

    2017-01-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183

  15. Advances in cardiovascular fluid mechanics: bench to bedside.

    PubMed

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  16. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.

    PubMed

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.

  17. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    PubMed Central

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  18. Learning Predictive Statistics: Strategies and Brain Mechanisms.

    PubMed

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe

    2017-08-30

    When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.

  19. Transcriptome Analysis of a Rotenone Model of Parkinsonism Reveals Complex I-Tied and -Untied Toxicity Mechanisms Common to Neurodegenerative Diseases

    PubMed Central

    Cabeza-Arvelaiz, Yofre; Schiestl, Robert H.

    2012-01-01

    The pesticide rotenone, a neurotoxin that inhibits the mitochondrial complex I, and destabilizes microtubules (MT) has been linked to Parkinson disease (PD) etiology and is often used to model this neurodegenerative disease (ND). Many of the mechanisms of action of rotenone are posited mechanisms of neurodegeneration; however, they are not fully understood. Therefore, the study of rotenone-affected functional pathways is pertinent to the understanding of NDs pathogenesis. This report describes the transcriptome analysis of a neuroblastoma (NB) cell line chronically exposed to marginally toxic and moderately toxic doses of rotenone. The results revealed a complex pleiotropic response to rotenone that impacts a variety of cellular events, including cell cycle, DNA damage response, proliferation, differentiation, senescence and cell death, which could lead to survival or neurodegeneration depending on the dose and time of exposure and cell phenotype. The response encompasses an array of physiological pathways, modulated by transcriptional and epigenetic regulatory networks, likely activated by homeostatic alterations. Pathways that incorporate the contribution of MT destabilization to rotenone toxicity are suggested to explain complex I-independent rotenone-induced alterations of metabolism and redox homeostasis. The postulated mechanisms involve the blockage of mitochondrial voltage-dependent anions channels (VDACs) by tubulin, which coupled with other rotenone-induced organelle dysfunctions may underlie many presumed neurodegeneration mechanisms associated with pathophysiological aspects of various NDs including PD, AD and their variant forms. Thus, further investigation of such pathways may help identify novel therapeutic paths for these NDs. PMID:22970289

  20. Association of intraventricular mechanical dyssynchrony with response to cardiac resynchronization therapy in heart failure patients with a narrow QRS complex

    PubMed Central

    van Bommel, Rutger J.; Tanaka, Hidekazu; Delgado, Victoria; Bertini, Matteo; Borleffs, Carel Jan Willem; Ajmone Marsan, Nina; Holzmeister, Johannes; Ruschitzka, Frank; Schalij, Martin J.; Bax, Jeroen J.; Gorcsan, John

    2010-01-01

    Aims Current criteria for cardiac resynchronization therapy (CRT) are restricted to patients with a wide QRS complex (>120 ms). Overall, only 30% of heart failure patients demonstrate a wide QRS complex, leaving the majority of heart failure patients without this treatment option. However, patients with a narrow QRS complex exhibit left ventricular (LV) mechanical dyssynchrony, as assessed with echocardiography. To further elucidate the possible beneficial effect of CRT in heart failure patients with a narrow QRS complex, this two-centre, non-randomized observational study focused on different echocardiographic parameters of LV mechanical dyssynchrony reflecting atrioventricular, interventricular and intraventricular dyssynchrony, and the response to CRT in these patients. Methods and results A total of 123 consecutive heart failure patients with a narrow QRS complex (<120 ms) undergoing CRT was included at two centres. Several widely accepted measures of mechanical dyssynchrony were evaluated: LV filling ratio (LVFT/RR), LV pre-ejection time (LPEI), interventricular mechanical dyssynchrony (IVMD), opposing wall delay (OWD), and anteroseptal posterior wall delay with speckle tracking (ASPWD). Response to CRT was defined as a reduction ≥15% in left ventricular end-systolic volume at 6 months follow-up. Measures of dyssynchrony can frequently be observed in patients with a narrow QRS complex. Nonetheless, for LVFT/RR, LPEI, and IVMD, presence of predefined significant dyssynchrony is <20%. Significant intraventricular dyssynchrony is more widely observed in these patients. With receiver operator characteristic curve analyses, both OWD and ASPWD demonstrated usefulness in predicting response to CRT in narrow QRS patients with a cut-off value of 75 and 107 ms, respectively. Conclusion Mechanical dyssynchrony can be widely observed in heart failure patients with a narrow QRS complex. In particular, intraventricular measures of mechanical dyssynchrony may be useful in predicting LV reverse remodelling at 6 months follow-up in heart failure patients with a narrow QRS complex, but with more stringent cut-off values than currently used in ‘wide’ QRS patients. PMID:20864484

  1. A Class of Multiresponsive Colorimetric and Fluorescent pH Probes via Three Different Reaction Mechanisms of Salen Complexes: A Selective and Accurate pH Measurement.

    PubMed

    Cheng, Jinghui; Gou, Fei; Zhang, Xiaohong; Shen, Guangyu; Zhou, Xiangge; Xiang, Haifeng

    2016-09-19

    We report a class of multiresponsive colorimetric and fluorescent pH probes based on three different reaction mechanisms including cation exchange, protonation, and hydrolysis reaction of K(I), Ca(II), Zn(II), Cu(II), Al(III), and Pd(II) Salen complexes. Compared with traditional pure organic pH probes, these complex-based pH probes exhibited a much better selectivity due to the shielding function of the filled-in metal ion in the complex. Their pH sensing performances were affected by the ligand structure and the central metal ion. This work is the first report of "off-on-on'-off" colorimetric and fluorescent pH probes that possess three different reaction mechanisms and should inspire the design of multiple-responsive probes for important analytes in biological systems.

  2. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bondsmore » to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).« less

  3. Minireview: DNA Replication in Plant Mitochondria

    PubMed Central

    Cupp, John D.; Nielsen, Brent L.

    2014-01-01

    Higher plant mitochondrial genomes exhibit much greater structural complexity as compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified. Mitochondrial dynamics, genome structure, and the complexity of dual-targeted and dual-function proteins that provide at least partial redundancy suggest that plants have a unique model for maintaining and replicating mtDNA when compared to the replication mechanism utilized by most metazoan organisms. PMID:24681310

  4. Using ABAQUS Scripting Interface for Materials Evaluation and Life Prediction

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Arnold, Steven M.; Baranski, Andrzej

    2006-01-01

    An ABAQUS script has been written to aid in the evaluation of the mechanical behavior of viscoplastic materials. The purposes of the script are to: handle complex load histories; control load/displacement with alternate stopping criteria; predict failure and life; and verify constitutive models. Material models from the ABAQUS library may be used or the UMAT routine may specify mechanical behavior. User subroutines implemented include: UMAT for the constitutive model; UEXTERNALDB for file manipulation; DISP for boundary conditions; and URDFIL for results processing. Examples presented include load, strain and displacement control tests on a single element model. The tests are creep with a life limiting strain criterion, strain control with a stress limiting cycle and a complex interrupted cyclic relaxation test. The techniques implemented in this paper enable complex load conditions to be solved efficiently with ABAQUS.

  5. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle.

    PubMed

    Cho, Bomsoo; Pierre-Louis, Gandhy; Sagner, Andreas; Eaton, Suzanne; Axelrod, Jeffrey D

    2015-05-01

    The core components of the planar cell polarity (PCP) signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1)/SkpA/Supernumerary limbs(Slimb) regulates the stability of one of the peripheral membrane components, Prickle (Pk). Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang) and Flamingo (Fmi), and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling.

  6. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  7. Type synthesis for 4-DOF parallel press mechanism using GF set theory

    NASA Astrophysics Data System (ADS)

    He, Jun; Gao, Feng; Meng, Xiangdun; Guo, Weizhong

    2015-07-01

    Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity( GCC), kinematic pair complexity( KPC), and type complexity( TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.

  8. Rhodium complexes as therapeutic agents.

    PubMed

    Ma, Dik-Lung; Wang, Modi; Mao, Zhifeng; Yang, Chao; Ng, Chan-Tat; Leung, Chung-Hang

    2016-02-21

    The landscape of inorganic medicinal chemistry has been dominated by the investigation of platinum, and to a lesser extent ruthenium, complexes over the past few decades. Recently, complexes based on other metal centers such as rhodium have attracted attention due to their tunable chemical and biological properties as well as distinct mechanisms of action. This perspective highlights recent examples of rhodium complexes that show diverse biological activities against various targets, including enzymes and protein-protein interactions.

  9. Kinetics and thermodynamics of irreversible inhibition of matrix metalloproteinase 2 by a Co(III) Schiff base complex

    PubMed Central

    Harney, Allison S.; Sole, Laura B.

    2012-01-01

    Cobalt(III) Schiff base complexes have been used as potent inhibitors of protein function through the coordination to histidine residues essential for activity. The kinetics and thermodynamics of the binding mechanism of Co(acacen)(NH3)2Cl [Co(acacen); where H2acacen is bis(acetylacetone)ethylenediimine] enzyme inhibition has been examined through the inactivation of matrix metalloproteinase 2 (MMP-2) protease activity. Co(acacen) is an irreversible inhibitor that exhibits time- and concentration-dependent inactivation of MMP-2. Co(acacen) inhibition of MMP-2 is temperature-dependent, with the inactivation increasing with temperature. Examination of the formation of the transition state for the MMP-2/Co(acacen) complex was determined to have a positive entropy component indicative of greater disorder in the MMP-2/Co(acacen) complex than in the reactants. With further insight into the mechanism of Co(acacen) complexes, Co(III) Schiff base complex protein inactivators can be designed to include features regulating activity and protein specificity. This approach is widely applicable to protein targets that have been identified to have clinical significance, including matrix metalloproteinases. The mechanistic information elucidated here further emphasizes the versatility and utility of Co(III) Schiff base complexes as customizable protein inhibitors. PMID:22729838

  10. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    PubMed

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  11. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs.

    PubMed

    Machado-Pinilla, Rosario; Liger, Dominique; Leulliot, Nicolas; Meier, U Thomas

    2012-10-01

    The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes.

  12. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs

    PubMed Central

    Machado-Pinilla, Rosario; Liger, Dominique; Leulliot, Nicolas; Meier, U. Thomas

    2012-01-01

    The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes. PMID:22923768

  13. Cadherin genes and evolutionary novelties in the octopus.

    PubMed

    Wang, Z Yan; Ragsdale, Clifton W

    2017-09-01

    All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones

    PubMed Central

    Liu, Chuanbo; Wang, Tianshu; Bai, Yawen; Wang, Jin

    2017-01-01

    A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism. PMID:28552960

  15. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex.

    PubMed

    Bae, Brian; Chen, James; Davis, Elizabeth; Leon, Katherine; Darst, Seth A; Campbell, Elizabeth A

    2015-09-08

    A key point to regulate gene expression is at transcription initiation, and activators play a major role. CarD, an essential activator in Mycobacterium tuberculosis, is found in many bacteria, including Thermus species, but absent in Escherichia coli. To delineate the molecular mechanism of CarD, we determined crystal structures of Thermus transcription initiation complexes containing CarD. The structures show CarD interacts with the unique DNA topology presented by the upstream double-stranded/single-stranded DNA junction of the transcription bubble. We confirm that our structures correspond to functional activation complexes, and extend our understanding of the role of a conserved CarD Trp residue that serves as a minor groove wedge, preventing collapse of the transcription bubble to stabilize the transcription initiation complex. Unlike E. coli RNAP, many bacterial RNAPs form unstable promoter complexes, explaining the need for CarD.

  16. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    PubMed Central

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  17. THE RECRUITMENT AND TRAINING OF AUTOMOBILE MECHANICS.

    ERIC Educational Resources Information Center

    LESH, SEYMOUR

    A SURVEY OF 20 EMPLOYERS, ASSOCIATION REPRESENTATIVES, AND UNION LEADERS INDICATED THAT DIFFICULTIES IN RECRUITING CAPABLE YOUTH FOR THE AUTOMOBILE MECHANICS TRADE ARE CAUSED BY (1) A CHAOTIC STRUCTURE, INCLUDING UNCLEAR DEFINITION OF FUNCTION, VARIETY OF PLACES OF EMPLOYMENT, AND SIZE OF THE EMPLOYING UNITS, (2) THE COMPLEXITIES OF TRAINING AND…

  18. New reactions involving the oxidative O-, N-, and C-phosphorylation of organic compounds by phosphorus and phosphides in the presence of metal complexes

    NASA Astrophysics Data System (ADS)

    Dorfman, Ya A.; Aleshkova, M. M.; Polimbetova, G. S.; Levina, L. V.; Petrova, T. V.; Abdreimova, R. R.; Doroshkevich, D. M.

    1993-09-01

    The mechanisms of new catalytic reactions leading to the formation of di-, and tri-alkyl phosphates, di- and tri-alkyl phosphites, phosphoramidites, phosphazenes, phosphines, and phosphine oxides from hydrogen, copper, and zinc phosphides and white and red phosphorus are analysed. The mechanisms of the activation of the reactants by metal complexes and of the reactions involving the oxidative P-O, P-N, and P-C coupling of organic compounds to phosphorus and phosphides are considered. The bibliography includes 124 references.

  19. Formation mechanism of complex pattern on fishes' skin

    NASA Astrophysics Data System (ADS)

    Li, Xia; Liu, Shuhua

    2009-10-01

    In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.

  20. From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0

    PubMed Central

    Tononi, Giulio

    2014-01-01

    This paper presents Integrated Information Theory (IIT) of consciousness 3.0, which incorporates several advances over previous formulations. IIT starts from phenomenological axioms: information says that each experience is specific – it is what it is by how it differs from alternative experiences; integration says that it is unified – irreducible to non-interdependent components; exclusion says that it has unique borders and a particular spatio-temporal grain. These axioms are formalized into postulates that prescribe how physical mechanisms, such as neurons or logic gates, must be configured to generate experience (phenomenology). The postulates are used to define intrinsic information as “differences that make a difference” within a system, and integrated information as information specified by a whole that cannot be reduced to that specified by its parts. By applying the postulates both at the level of individual mechanisms and at the level of systems of mechanisms, IIT arrives at an identity: an experience is a maximally irreducible conceptual structure (MICS, a constellation of concepts in qualia space), and the set of elements that generates it constitutes a complex. According to IIT, a MICS specifies the quality of an experience and integrated information ΦMax its quantity. From the theory follow several results, including: a system of mechanisms may condense into a major complex and non-overlapping minor complexes; the concepts that specify the quality of an experience are always about the complex itself and relate only indirectly to the external environment; anatomical connectivity influences complexes and associated MICS; a complex can generate a MICS even if its elements are inactive; simple systems can be minimally conscious; complicated systems can be unconscious; there can be true “zombies” – unconscious feed-forward systems that are functionally equivalent to conscious complexes. PMID:24811198

  1. Connections Matter: Social Networks and Lifespan Health in Primate Translational Models

    PubMed Central

    McCowan, Brenda; Beisner, Brianne; Bliss-Moreau, Eliza; Vandeleest, Jessica; Jin, Jian; Hannibal, Darcy; Hsieh, Fushing

    2016-01-01

    Humans live in societies full of rich and complex relationships that influence health. The ability to improve human health requires a detailed understanding of the complex interplay of biological systems that contribute to disease processes, including the mechanisms underlying the influence of social contexts on these biological systems. A longitudinal computational systems science approach provides methods uniquely suited to elucidate the mechanisms by which social systems influence health and well-being by investigating how they modulate the interplay among biological systems across the lifespan. In the present report, we argue that nonhuman primate social systems are sufficiently complex to serve as model systems allowing for the development and refinement of both analytical and theoretical frameworks linking social life to health. Ultimately, developing systems science frameworks in nonhuman primate models will speed discovery of the mechanisms that subserve the relationship between social life and human health. PMID:27148103

  2. Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits.

    PubMed

    Feltus, F Alex

    2014-06-01

    Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Complex organic molecules toward low-mass and high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Favre, C.; Ceccarelli, C.; Lefloch, B.; Bergin, E.; Carvajal, M.; Brouillet, N.; Despois, D.; Jørgensen, J.; Kleiner, I.

    2016-12-01

    One of the most important questions in molecular astrophysics is how, when, and where complex organic molecules, COMs (≥ 6 atoms) are formed. In the Interstellar-Earth connection context, could this have a bearing on the origin of life on Earth? Formation mechanisms of COMs, which include potentially prebiotic molecules, are still debated and may include grain-mantle and/or gas-phase chemistry. Understanding the mechanisms that lead to the interstellar molecular complexification, along with the involved physicochemical processes, is mandatory to answer the above questions. In that context, active researches are ongoing in theory, laboratory experiment, chemical modeling and observations. Thanks to recent progress in radioastronomy instrumentation for both single-dish and millimeter array (e.g. Herschel, NOEMA, ALMA), new results have been obtained. I will review some notable results on the detection of COMs, including prebiotic molecules, towards star forming regions.

  4. Apple (Malus H domestica Borkh.) responds to a simulated severe drought: genes common and unique to leaves and bark

    USDA-ARS?s Scientific Manuscript database

    Dehydration is feature of many abiotic stresses, but is more often an agricultural threat on its own. Plants have evolved numerous mechanisms for coping with dehydration, including morphological, biochemical, and molecular genetic responses. These mechanisms are complex and involve various combina...

  5. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage

    PubMed Central

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong

    2017-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563

  6. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.

    PubMed

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong

    2016-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Metal-containing Complexes of Lactams, Imidazoles, and Benzimidazoles and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Kukalenko, S. S.; Bovykin, B. A.; Shestakova, S. I.; Omel'chenko, A. M.

    1985-07-01

    The results of the latest investigations of the problem of the synthesis of metal-containing complexes of lactams, imidazoles, and benzimidazoles, their structure, and their stability in solutions are surveyed. Some data on their biological activity (pesticide and pharmacological) and the mechanism of their physiological action are presented. The bibliography includes 190 references.

  8. The method of complex characteristics for design of transonic blade sections

    NASA Technical Reports Server (NTRS)

    Bledsoe, M. R.

    1986-01-01

    A variety of computational methods were developed to obtain shockless or near shockless flow past two-dimensional airfoils. The approach used was the method of complex characteristics, which determines smooth solutions to the transonic flow equations based on an input speed distribution. General results from fluid mechanics are presented. An account of the method of complex characteristics is given including a description of the particular spaces and coordinates, conformal transformations, and numerical procedures that are used. The operation of the computer program COMPRES is presented along with examples of blade sections designed with the code. A user manual is included with a glossary to provide additional information which may be helpful. The computer program in Fortran, including numerous comment cards is listed.

  9. Molecular gearing systems

    DOE PAGES

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less

  10. Testing convergent and parallel adaptations in talpids humeral mechanical performance by means of geometric morphometrics and finite element analysis.

    PubMed

    Piras, P; Sansalone, G; Teresi, L; Kotsakis, T; Colangelo, P; Loy, A

    2012-07-01

    The shape and mechanical performance in Talpidae humeri were studied by means of Geometric Morphometrics and Finite Element Analysis, including both extinct and extant taxa. The aim of this study was to test whether the ability to dig, quantified by humerus mechanical performance, was characterized by convergent or parallel adaptations in different clades of complex tunnel digger within Talpidae, that is, Talpinae+Condylura (monophyletic) and some complex tunnel diggers not belonging to this clade. Our results suggest that the pattern underlying Talpidae humerus evolution is evolutionary parallelism. However, this insight changed to true convergence when we tested an alternative phylogeny based on molecular data, with Condylura moved to a more basal phylogenetic position. Shape and performance analyses, as well as specific comparative methods, provided strong evidence that the ability to dig complex tunnels reached a functional optimum in distantly related taxa. This was also confirmed by the lower phenotypic variance in complex tunnel digger taxa, compared to non-complex tunnel diggers. Evolutionary rates of phenotypic change showed a smooth deceleration in correspondence with the most recent common ancestor of the Talpinae+Condylura clade. Copyright © 2012 Wiley Periodicals, Inc.

  11. Transformations of organic compounds under the action of mechanical stress

    NASA Astrophysics Data System (ADS)

    Dubinskaya, Aleksandra M.

    1999-08-01

    Transformations of organic compounds (monomeric and polymeric) under the action of mechanical stress are considered. Two types of processes occur under these conditions. The first type involves disordering and amorphisation of crystal structure and conformational transformations as a result of rupture of intermolecular bonds. The second type includes mechanochemical reactions activated by deformation of valence bonds and angles under mechanical stress, namely, the rupture of bonds, oxidation and hydrolysis. Data on the organic mechanochemical synthesis of new compounds or molecular complexes are systematised and generalised. It is demonstrated that mechanical treatment ensures mass transfer and the contact of reacting species in these reactions. Proteins are especially sensitive to mechanical stress and undergo denaturation; enzymes are inactivated. The bibliography includes 115 references.

  12. DFT Study on the Complexation of Bambus[6]uril with the Perchlorate and Tetrafluoroborate Anions.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vaňura, Petr

    2011-12-01

    By using quantum mechanical DFT calculations, the most probable structures of the bambus[6]uril.ClO4- and bambus[6]uril.BF4- anionic complex species were derived. In these two complexes having C3 symmetry, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion.

  13. Mediator complex dependent regulation of cardiac development and disease.

    PubMed

    Grueter, Chad E

    2013-06-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD. Copyright © 2013. Production and hosting by Elsevier Ltd.

  14. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    NASA Astrophysics Data System (ADS)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  15. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage1

    PubMed Central

    2016-01-01

    We review the mechanism underlying nonphotochemical chlorophyll fluorescence quenching (NPQ) and its role in protecting plants against photoinhibition. This review includes an introduction to this phenomenon, a brief history of major milestones in our understanding of NPQ, definitions, and a discussion of quantitative measurements of NPQ. We discuss the current knowledge and unknown aspects in the NPQ scenario, including the following: ΔpH, the proton gradient (trigger); light-harvesting complex II (LHCII), PSII light harvesting antenna (site); and changes in the antenna induced by ΔpH (change), which lead to the creation of the quencher. We conclude that the minimum requirements for NPQ in vivo are ΔpH, LHCII complexes, and the PsbS protein. We highlight the most important unknown in the NPQ scenario, the mechanism by which PsbS acts upon the LHCII antenna. Finally, we describe a novel, emerging technology for assessing the photoprotective “power” of NPQ and the important findings obtained through this technology. PMID:26864015

  16. Developmental control of integrin expression regulates Th2 effector homing

    USDA-ARS?s Scientific Manuscript database

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  17. Using Malus sieversii Ledeb., the wild apple progenitor of Malus H domestica Borkh., to identify genes contributing to water use efficiency and potential drought resistance

    USDA-ARS?s Scientific Manuscript database

    Dehydration is a feature of many abiotic stresses, but is more often an agricultural threat in its own right. Plants have evolved numerous mechanisms for coping with dehydration, including morphological, biochemical, and molecular biological responses. These mechanisms are complex and involve vari...

  18. Kinetic Isotope Effects as a Probe for the Protonolysis Mechanism of Alkylmetal Complexes: VTST/MT Calculations Based on DFT Potential Energy Surfaces.

    PubMed

    Mai, Binh Khanh; Kim, Yongho

    2016-10-03

    Protonolysis by platinum or palladium complexes has been extensively studied because it is the microscopic reverse of the C-H bond activation reaction. The protonolysis of (COD)Pt II Me 2 , which exhibits abnormally large kinetic isotope effects (KIEs), is proposed to occur via a concerted pathway (S E 2 mechanism) with large tunneling. However, further investigation of KIEs for the protonolysis of ZnMe 2 and others led to a conclusion that there is no noticeable correlation between the mechanism and magnitude of KIE. In this study, we demonstrated that variational transition state theory including multidimensional tunneling (VTST/MT) could accurately predict KIEs and Arrhenius parameters of the protonolysis of alkylmetal complexes based on the potential energy surfaces generated by density functional theory. The predicted KIEs, E a D - E a H values, and A H /A D ratios for the protonolysis of (COD)Pt II Me 2 and Zn II Me 2 by TFA agreed very well with experimental values. The protonolysis of ZnMe 2 with the concerted pathway has a very flat potential energy surface, which produces a very small tunneling effect and therefore a small KIE. The predicted KIE for the stepwise protonolysis (S E (ox) mechanism) of (COD)Pt II Me 2 was much smaller than that of the concerted pathway, but greater than the KIE of the concerted protonolysis of ZnMe 2 . A large KIE, which entails a significant tunneling effect, could be used as an experimental probe of the concerted pathway. However, a normal or small KIE should not be used as an indicator of the stepwise mechanism, and the interplay between experiments and reliable theory including tunneling would be essential to uncover the mechanism correctly.

  19. Complex Riccati equations as a link between different approaches for the description of dissipative and irreversible systems

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2012-08-01

    Quantum mechanics is essentially described in terms of complex quantities like wave functions. The interesting point is that phase and amplitude of the complex wave function are not independent of each other, but coupled by some kind of conservation law. This coupling exists in time-independent quantum mechanics and has a counterpart in its time-dependent form. It can be traced back to a reformulation of quantum mechanics in terms of nonlinear real Ermakov equations or equivalent complex nonlinear Riccati equations, where the quadratic term in the latter equation explains the origin of the phase-amplitude coupling. Since realistic physical systems are always in contact with some kind of environment this aspect is also taken into account. In this context, different approaches for describing open quantum systems, particularly effective ones, are discussed and compared. Certain kinds of nonlinear modifications of the Schrödinger equation are discussed as well as their interrelations and their relations to linear approaches via non-unitary transformations. The modifications of the aforementioned Ermakov and Riccati equations when environmental effects are included can be determined in the time-dependent case. From formal similarities conclusions can be drawn how the equations of time-independent quantum mechanics can be modified to also incluce the enviromental aspects.

  20. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    PubMed

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  1. Synthesis, characterization and antitumor activity of Ln(III) complexes with hydrazone Schiff base derived from 2-acetylpyridine and isonicotinohydrazone

    PubMed Central

    Xie, Jing; Shen, Shanshan; Chen, Ruhua; Xu, Jun; Dong, Kun; Huang, Jiancui; Lu, Qin; Zhu, Wenjiao; Ma, Tieliang; Jia, Lei; Cai, Hongxin; Zhu, Taofeng

    2017-01-01

    In the present study, two isostructural lanthanide (Ln)(III) complexes, namely Ln(HL)2(NO3)(CH3OH)2)·CH3OH, where Ln = La in complex 1 and Ce in complex 2, and hydrogen ligand (HL) = (E)-N'-[1-(2-pyridinyl)ethylidene]isonicotinohydrazone, have been isolated and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction analysis. The results revealed that the acylhydrazone ligand HL in each complex was deprotonated as an anionic ligand and coordinated to the central La(III) ion via enolization of oxygen and nitrogen atoms. Furthermore, the antitumor effects and potential mechanisms of the two complexes were explored in the human lung cancer cell line A549 and in the human gastric cancer cell lines BGC823 and SGC7901. In the present study, the roles the two complexes on the proliferation and apoptosis of the above tumor cell lines were determined by MTT assay and Annexin V/propidium iodide flow cytometry, respectively. Furthermore, various apoptosis-associated key genes, including caspase 3, B cell lymphoma (Bcl)-2-associated X protein (Bax) and Bcl-2, were detected by western blotting to explore the possible antitumor mechanisms of the two complexes. The results revealed that the two complexes had comparable antitumor activities in terms of inhibiting proliferation and inducing apoptosis in tumor cell lines. The changes in the protein expression levels of caspase 3, Bax and Bcl-2 further verified the apoptosis-promoting mechanisms of the two complexes in tumor cell lines. These findings have a great potential in biomedical applications of novel Ln(III) complexes. PMID:28599443

  2. Initiation of DNA replication: functional and evolutionary aspects

    PubMed Central

    Bryant, John A.; Aves, Stephen J.

    2011-01-01

    Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040

  3. Titanium dioxide nanoparticle-induced cytotoxicity and the underlying mechanism in mouse myocardial cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yingjun; Hong, Fashui; Wang, Ling

    2017-11-01

    Exposure to fine particulate matter (PM) is known to cause cardiovascular disease. While extensive research has focused on the risk of atmospheric PM to public health, particularly heart disease, limited studies to date have attempted to clarify the molecular mechanisms underlying myocardial cell damage caused by exposure to titanium dioxide nanoparticles (TiO2 NPs). Data from the current investigation showed that TiO2 NPs are deposited in myocardial mitochondria via the blood circulation accompanied by obvious ultrastructural changes and impairment of mitochondrial structure and function in mouse myocardial cells, including reduction in mitochondrial membrane potential and ATP production, aggravation of oxidative stress along with increased levels of reactive oxygen species, malondialdehyde and protein carbonyl, and decreased glutathione content and enzymatic activities, including superoxide dismutase and glutathione peroxidase. Furthermore, TiO2 NPs induced a significant decrease in the activities of complex I, complex II, complex III, complex IV, succinate dehydrogenase, NADH oxidase, Ca2+-ATPase, Na+/K+-ATPase, and Ca2+/Mg2+-ATPase, and upregulation of cytokine expression (including cytochrome c, caspase-3, and p-JNK) in mitochondria-mediated apoptosis while downregulating Bcl-2 expression in mouse myocardial cells. Our results collectively indicate that chronic exposure to TiO2 NPs induces damage in mitochondrial structure and function as well as mitochondria-mediated apoptosis in mouse myocardial cells, which may be closely associated with heart disease in animals and humans.

  4. Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins

    NASA Astrophysics Data System (ADS)

    Jian, Yiren; Zhao, Yunjie; Zeng, Chen

    The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  5. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells.

    PubMed

    Luo, Heng-Cong; Li, Na; Yan, Li; Mai, Kai-Jin; Sun, Kan; Wang, Wei; Lao, Guo-Juan; Yang, Chuan; Zhang, Li-Ming; Ren, Meng

    2017-01-01

    Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D3)7/MMP-9siRNA complexes: polyplexes) and commercial liposome/MMP-9siRNA complexes (Lipofectamine ® 2000/MMP-9siRNA complexes: liposomes). The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE), caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and the digestion effect of acidic organelles on liposomes was faint compared to the polyplexes, although both complexes escaped from endolysosomes via the proton sponge mechanism. This may be the key aspect that leads to the lower transfection efficiency of the β-CD-(D3)7/MMP-9siRNA complexes. The present study may offer some insights for the rational design of novel delivery systems with increased transfection efficiency but decreased toxicity.

  6. OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function

    EPA Science Inventory

    Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...

  7. Number line estimation and complex mental calculation: Is there a shared cognitive process driving the two tasks?

    PubMed

    Montefinese, Maria; Semenza, Carlo

    2018-05-17

    It is widely accepted that different number-related tasks, including solving simple addition and subtraction, may induce attentional shifts on the so-called mental number line, which represents larger numbers on the right and smaller numbers on the left. Recently, it has been shown that different number-related tasks also employ spatial attention shifts along with general cognitive processes. Here we investigated for the first time whether number line estimation and complex mental arithmetic recruit a common mechanism in healthy adults. Participants' performance in two-digit mental additions and subtractions using visual stimuli was compared with their performance in a mental bisection task using auditory numerical intervals. Results showed significant correlations between participants' performance in number line bisection and that in two-digit mental arithmetic operations, especially in additions, providing a first proof of a shared cognitive mechanism (or multiple shared cognitive mechanisms) between auditory number bisection and complex mental calculation.

  8. Computational Modeling of Morphogenesis Regulated by Mechanical Feedback

    PubMed Central

    Ramasubramanian, Ashok; Taber, Larry A.

    2008-01-01

    Mechanical forces cause changes in form during embryogenesis and likely play a role in regulating these changes. This paper explores the idea that changes in homeostatic tissue stress (target stress), possibly modulated by genes, drive some morphogenetic processes. Computational models are presented to illustrate how regional variations in target stress can cause a range of complex behaviors involving the bending of epithelia. These models include growth and cytoskeletal contraction regulated by stress-based mechanical feedback. All simulations were carried out using the commercial finite element code ABAQUS, with growth and contraction included by modifying the zero-stress state in the material constitutive relations. Results presented for bending of bilayered beams and invagination of cylindrical and spherical shells provide insight into some of the mechanical aspects that must be considered in studying morphogenetic mechanisms. PMID:17318485

  9. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review.

    PubMed

    Belter, Joseph T; Segil, Jacob L; Dollar, Aaron M; Weir, Richard F

    2013-01-01

    In this article, we set forth a detailed analysis of the mechanical characteristics of anthropomorphic prosthetic hands. We report on an empirical study concerning the performance of several commercially available myoelectric prosthetic hands, including the Vincent, iLimb, iLimb Pulse, Bebionic, Bebionic v2, and Michelangelo hands. We investigated the finger design and kinematics, mechanical joint coupling, and actuation methods of these commercial prosthetic hands. The empirical findings are supplemented with a compilation of published data on both commercial and prototype research prosthetic hands. We discuss numerous mechanical design parameters by referencing examples in the literature. Crucial design trade-offs are highlighted, including number of actuators and hand complexity, hand weight, and grasp force. Finally, we offer a set of rules of thumb regarding the mechanical design of anthropomorphic prosthetic hands.

  10. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation.

    PubMed

    Teplova, Vera V; Belosludtsev, Konstantin N; Kruglov, Alexey G

    2017-06-05

    Triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol), a widely used antibacterial agent, exerts adverse effects on the organism of mammals. Recent research reviled that triclosan at low micromolar concentrations causes mitochondrial dysfunction in many cell types, but the mechanisms of its effect are not fully understood. Here we show that exposure to triclosan disrupted membrane potential, prevented the calcium uptake-driven high-amplitude mitochondrial swelling, stimulated the respiration in the presence of complex I substrates, and suppressed the ADP-stimulated respiration in the presence of complex II substrate, succinate. Triclosan directly inhibited complex II activity. Similar to the complex II inhibitor thenoyltrifluoroacetone, triclosan induced the oxidation of the cytochromes b566 and b562 and caused the release of mitochondrial superoxide. Opposite to thenoyltrifluoroacetone, triclosan increased superoxide release synergistically with myxothiazol but not with antimycin A, indicating different topology of superoxide-producing sites. We concluded that triclosan is unique by its capability of acting as both a protonophore and an unusual complex II inhibitor, which interferes with the mitochondrial respiration by blocking the electron transfer between ubiquinone at the Q d -binding site and heme b. Our data can provide an insight into the mechanisms of the carcinogenic effect of triclosan in the liver and other tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of self-interaction on the evolution of cooperation in complex topologies

    NASA Astrophysics Data System (ADS)

    Wu, Yu'e.; Zhang, Zhipeng; Chang, Shuhua

    2017-09-01

    Self-interaction, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this text, we consider a new self-interaction mechanism in the two typical pairwise models including the prisoner's dilemma and the snowdrift games, where the cooperative agents will gain extra bonus for their selfless behavior. We find that under the mechanism the collective cooperation is elevated to a very high level especially after adopting the finite population analogue of replicator dynamics for evolution. The robustness of the new mechanism is tested for different complex topologies for the prisoner's dilemma game. All the presented results demonstrate that the enhancement effects are independent of the structure of the applied spatial networks and the potential evolutionary games, and thus showing a high degree of universality. Our conclusions might shed light on the understanding of the evolution of cooperation in the real world.

  12. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber.

    PubMed

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W; Wu, Sizhu

    2015-12-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  13. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    PubMed Central

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu

    2015-01-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513

  14. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine.

    PubMed

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-16

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  15. Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice.

    PubMed

    Felix, Richard A; Portfors, Christine V

    2007-06-01

    Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57Bl/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech.

  16. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes

    NASA Astrophysics Data System (ADS)

    Mykhalichko, B. M.; Temkin, Oleg N.; Mys'kiv, M. G.

    2000-11-01

    Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H2O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH2OH, CH=CH2, etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.

  17. Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation

    PubMed Central

    Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph; O’Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay; Yadava, Nagendra; Chandra, Dhyan

    2016-01-01

    We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. PMID:26627937

  18. Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation.

    PubMed

    Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph R; O'Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay K; Yadava, Nagendra; Chandra, Dhyan

    2016-01-01

    We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Exploration of the mechanisms of temperature-dependent grain boundary mobility: Search for the common origin of ultrafast grain boundary motion

    DOE PAGES

    O’Brien, C. J.; Foiles, S. M.

    2016-04-19

    The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with Σ values of 5,more » 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. Furthermore, this provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.« less

  20. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-117 - Ross Complex)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, Elaine

    2003-01-16

    Vegetation Management for the non-electric portions of the Bonneville Power Administration’s Ross Complex. BPA proposes to manage and maintain grounds and landscaping in the non-electrical portions of the Ross Facility. Vegetation management at the Facility shall include: 1) bare ground management of graveled storage areas, perimeter roads and parking areas; 2) mechanical and/or spot herbicide control of some broad leafs and noxious weeds; 3) mowing, fertilizing, and broadleaf control of landscaped lawn areas; 4) weed control in ornamental shrub areas; and 4) areas requiring only mechanical control to manage unwanted grasses, and shrubs.

  1. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.

  2. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1985

    1985-01-01

    Presents biology, chemistry, physics, and health activities, experiments, demonstrations, and computer programs. Includes mechanism of stomatal opening, using aquatic plants to help demonstrate chemical buffering, microbial activity/contamination in milk samples, computer computation of fitness scores, reservoir project, complexes of transition…

  3. Phosphorylation-Dependent Regulation of Ryanodine Receptors

    PubMed Central

    Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.

    2001-01-01

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932

  4. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a combined Docking and QM/MM MD Study.

    NASA Astrophysics Data System (ADS)

    Hitzenberger, Manuel; Schuster, Daniela; Hofer, Thomas S.

    2017-10-01

    Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as supplementary material and can be used for further reference.

  5. Correlations between Community Structure and Link Formation in Complex Networks

    PubMed Central

    Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep

    2013-01-01

    Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818

  6. Blueschist- and Eclogite facies Pseudotachylytes: Products of Earthquakes in Collision- and Subduction zones

    NASA Astrophysics Data System (ADS)

    Andersen, T. B.; Austrheim, H.; John, T.; Medvedev, S.; Mair, K.

    2009-04-01

    Pseudotachylytes are the products of violent geological processes such as metorite impacts and seismic faulting. The fault-rock weakening processes leading to release of earthquakes are commonly related to phenomena such as grain size reduction and gouge formation, pressurization of pore-fluids and in some cases to melting by frictional heating. Explaining the frequently observed intermediate and deep earthquakes by brittle failure is, however, inherently difficult to reconcile because of extremely high normal stresses occuring at depth. In recent years several mechanisms for seismic events on deep faults have been suggested. These include: a) The most commonly accepted mechanism, dehydration embrittlement coupled to prograde metamorphic dehydration of wet rocks, such as serpentinites, at depth. b) Grain-size dependent flow-laws coupled with shear heating instability has been suggested as an alternative to explain repeated seismic faulting in Wadati-Benioff zones. c) Self-localized-thermal-runaway (SLTR) has been forwarded as a mechanism for ultimate failure of visco-elastic materials and as mechanism to explain the co-existence of shear zones and pseudotachylyte fault veins formed at eclogite facies conditions. All these mechanism point to the importance of metamorphism and/or metasomatism in understanding the mechanism(s) of intermediate- and deep earthquakes. Exhumed high to ultra-high pressure [(U)HP] metamorphic rocks are recognized in many orogenic belts. These complexes provide avenues to study a number of important products of geological processes including earthquakes with hypocentres at great depths. (U)HP co-seismic fault rocks are difficult to find in the field; nevertheless, a number of occurrences of co-seismic fault rocks from such complexes have been described after the initial discovery of such rocks in Norway (see: Austrheim and Boundy, Science 1994). In this talk we review some observations and interpretations based on these hitherto rarely observed but important co-seismic fault rocks from deep-crust and mantle complexes.

  7. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, H.; Ding, Y.; Bartlam, M.

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also reportmore » that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.« less

  8. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for beta-lactam acetylation.

    PubMed

    He, Hongzhen; Ding, Yi; Bartlam, Mark; Sun, Fei; Le, Yi; Qin, Xincheng; Tang, Hong; Zhang, Rongguang; Joachimiak, Andrzej; Liu, Jinyuan; Zhao, Nanming; Rao, Zihe

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55A resolution. The binary complex forms a characteristic "V" shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  9. Cumulative complexity: a functional, patient-centered model of patient complexity can improve research and practice.

    PubMed

    Shippee, Nathan D; Shah, Nilay D; May, Carl R; Mair, Frances S; Montori, Victor M

    2012-10-01

    To design a functional, patient-centered model of patient complexity with practical applicability to analytic design and clinical practice. Existing literature on patient complexity has mainly identified its components descriptively and in isolation, lacking clarity as to their combined functions in disrupting care or to how complexity changes over time. The authors developed a cumulative complexity model, which integrates existing literature and emphasizes how clinical and social factors accumulate and interact to complicate patient care. A narrative literature review is used to explicate the model. The model emphasizes a core, patient-level mechanism whereby complicating factors impact care and outcomes: the balance between patient workload of demands and patient capacity to address demands. Workload encompasses the demands on the patient's time and energy, including demands of treatment, self-care, and life in general. Capacity concerns ability to handle work (e.g., functional morbidity, financial/social resources, literacy). Workload-capacity imbalances comprise the mechanism driving patient complexity. Treatment and illness burdens serve as feedback loops, linking negative outcomes to further imbalances, such that complexity may accumulate over time. With its components largely supported by existing literature, the model has implications for analytic design, clinical epidemiology, and clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Music preferences of mechanically ventilated patients participating in a randomized controlled trial.

    PubMed

    Heiderscheit, Annie; Breckenridge, Stephanie J; Chlan, Linda L; Savik, Kay

    2014-01-01

    Mechanical ventilation (MV) is a life-saving measure and supportive modality utilized to treat patients experiencing respiratory failure. Patients experience pain, discomfort, and anxiety as a result of being mechanically ventilated. Music listening is a non-pharmacological intervention used to manage these psychophysiological symptoms associated with mechanical ventilation. The purpose of this secondary analysis was to examine music preferences of 107 MV patients enrolled in a randomized clinical trial that implemented a patient-directed music listening protocol to help manage the psychophysiological symptom of anxiety. Music data presented includes the music genres and instrumentation patients identified as their preferred music. Genres preferred include: classical, jazz, rock, country, and oldies. Instrumentation preferred include: piano, voice, guitar, music with nature sounds, and orchestral music. Analysis of three patients' preferred music received throughout the course of the study is illustrated to demonstrate the complexity of assessing MV patients and the need for an ongoing assessment process.

  11. Music preferences of mechanically ventilated patients participating in a randomized controlled trial

    PubMed Central

    Heiderscheit, Annie; Breckenridge, Stephanie J.; Chlan, Linda L.; Savik, Kay

    2014-01-01

    Mechanical ventilation (MV) is a life-saving measure and supportive modality utilized to treat patients experiencing respiratory failure. Patients experience pain, discomfort, and anxiety as a result of being mechanically ventilated. Music listening is a non-pharmacological intervention used to manage these psychophysiological symptoms associated with mechanical ventilation. The purpose of this secondary analysis was to examine music preferences of 107 MV patients enrolled in a randomized clinical trial that implemented a patient-directed music listening protocol to help manage the psychophysiological symptom of anxiety. Music data presented includes the music genres and instrumentation patients identified as their preferred music. Genres preferred include: classical, jazz, rock, country, and oldies. Instrumentation preferred include: piano, voice, guitar, music with nature sounds, and orchestral music. Analysis of three patients’ preferred music received throughout the course of the study is illustrated to demonstrate the complexity of assessing MV patients and the need for an ongoing assessment process. PMID:25574992

  12. Methods for preparation of three-dimensional bodies

    DOEpatents

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji

    2004-09-28

    Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.

  13. Methods for preparation of three-dimensional bodies

    DOEpatents

    Mulligan, Anthony C [Tucson, AZ; Rigali, Mark J [Carlsbad, NM; Sutaria, Manish P [Malden, MA; Artz, Gregory J [Tucson, AZ; Gafner, Felix H [Tucson, AZ; Vaidyanathan, K Ranji [Tucson, AZ

    2008-06-17

    Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.

  14. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands.

    PubMed

    Allison, Simon J; Sadiq, Maria; Baronou, Efstathia; Cooper, Patricia A; Dunnill, Chris; Georgopoulos, Nikolaos T; Latif, Ayşe; Shepherd, Samantha; Shnyder, Steve D; Stratford, Ian J; Wheelhouse, Richard T; Willans, Charlotte E; Phillips, Roger M

    2017-09-10

    Organometallic complexes offer the prospect of targeting multiple pathways that are important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and induction of reactive oxygen species. DNA damage induction was consistent with cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less active against non-cancer cells and shows activity in vivo in a loco-regional setting. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  16. Multiple Approaches to Design Education

    ERIC Educational Resources Information Center

    Fox, Richard L.; And Others

    1974-01-01

    Discusses implementation of Sloan Foundation projects at the Case Western School of Engineering, including the development of a computer assisted mechanical structural design course, the establishment of a complex systems laboratory, and personnel views of industry-university design projects. (CC)

  17. Turf Protecting Toxins.

    ERIC Educational Resources Information Center

    Fischer, Dan

    2002-01-01

    Points out the enthusiasm of students towards the complex chemical survival mechanism of some plants during the early stages of life. Uses allelopathic research to introduce students to conducting experimental research. Includes sample procedures, a timetable, and a sample grading sheet. (YDS)

  18. Bambus[6]uril as a novel macrocyclic receptor for the nitrate anion.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vanura, Petr

    2013-01-01

    By using quantum mechanical DFT calculations, the most probable structure of the bambus[6]uril x NO3(-) anionic complex species was derived. In this complex having C3 symmetry, the nitrate anion NO3(-), included in the macrocyclic cavity, is bound by twelve weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the considered NO3(-) ion.

  19. A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.

  20. Quantum-chemical Calculations in the Study of Antitumour Compounds

    NASA Astrophysics Data System (ADS)

    Luzhkov, V. B.; Bogdanov, G. N.

    1986-01-01

    The results of quantum-chemical calculations on antitumour preparations concerning the mechanism of their action at the electronic and molecular levels and structure-activity correlations are discussed in this review. Preparations whose action involves alkylating and free-radial mechanisms, complex-forming agents, and antimetabolites are considered. Modern quantum-chemical methods for calculations on biologically active substances are described. The bibliography includes 106 references.

  1. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  2. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres

    PubMed Central

    Song, Shufei

    2018-01-01

    Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres. PMID:29642537

  3. Multiple Export Mechanisms for mRNAs

    PubMed Central

    Delaleau, Mildred; Borden, Katherine L. B.

    2015-01-01

    Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed. PMID:26343730

  4. Identification of small molecules that improve ATP synthesis defects conferred by Leber’s hereditary optic neuropathy mutations

    PubMed Central

    Datta, Sandipan; Tomilov, Alexey; Cortopassi, Gino

    2016-01-01

    Inherited mitochondrial complex I mutations cause blinding Leber's hereditary Optic Neuropathy (LHON), for which no curative therapy exists. A specific biochemical consequence of LHON mutations in the presence of trace rotenone was observed: deficient complex I-dependent ATP synthesis (CIDAS) and mitochondrial O2 consumption, proportional to the clinical severity of the three primary LHON mutations. We optimized a high-throughput assay of CIDAS to screen 1600 drugs to 2, papaverine and zolpidem, which protected CIDAS in LHON cells concentration-dependently. TSPO and cAMP were investigated as protective mechanisms, but a conclusive mechanism remains to be elucidated; next steps include testing in animal models. PMID:27497748

  5. Mechanism of the Enantioselective Oxidation of Racemic Secondary Alcohols Catalyzed by Chiral Mn(III)–Salen Complexes

    PubMed Central

    Brown, M. Kevin; Blewett, Megan M.; Colombe, James R.; Corey, E. J.

    2010-01-01

    The experiments described here clarify the mechanism and origin of the enantioselectivity of the oxidation of racemic secondary alcohols catalyzed by chiral Mn(III)–salen complexes using HOBr, Br2/H2O/KOAc or PhI(OAc)2/H2O/KBr as a stoichiometric oxidant. Key points of the proposed pathway include (1) the formation of a Mn(V)–salen dibromide, (2) its subsequent reaction with the alcohol to give an alkoxy-Mn(V) species, and (3) carbonyl-forming elimination to produce the ketone via a highly organized transition state with intramolecular transfer of hydrogen from carbon to an oxygen of the salen ligand. PMID:20666410

  6. Mechanical Properties of β-Catenin Revealed by Single-Molecule Experiments

    PubMed Central

    Valbuena, Alejandro; Vera, Andrés Manuel; Oroz, Javier; Menéndez, Margarita; Carrión-Vázquez, Mariano

    2012-01-01

    β-catenin is a central component of the adaptor complex that links cadherins to the actin cytoskeleton in adherens junctions and thus, it is a good candidate to sense and transmit mechanical forces to trigger specific changes inside the cell. To fully understand its molecular physiology, we must first investigate its mechanical role in mechanotransduction within the cadherin system. We have studied the mechanical response of β-catenin to stretching using single-molecule force spectroscopy and molecular dynamics. Unlike most proteins analyzed to date, which have a fixed mechanical unfolding pathway, the β-catenin armadillo repeat region (ARM) displays low mechanostability and multiple alternative unfolding pathways that seem to be modulated by its unstructured termini. These results are supported by steered molecular dynamics simulations, which also predict its mechanical stabilization and unfolding pathway restrictions when the contiguous α-helix of the C-terminal unstructured region is included. Furthermore, simulations of the ARM/E-cadherin cytosolic tail complex emulating the most probable stress geometry occurring in vivo show a mechanical stabilization of the interaction whose magnitude correlates with the length of the stretch of the cadherin cytosolic tail that is in contact with the ARM region. PMID:23083718

  7. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  8. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    PubMed Central

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-01-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm. PMID:26879404

  9. The structure of plant photosystem I super-complex at 2.8 Å resolution

    PubMed Central

    Mazor, Yuval; Borovikova, Anna; Nelson, Nathan

    2015-01-01

    Most life forms on Earth are supported by solar energy harnessed by oxygenic photosynthesis. In eukaryotes, photosynthesis is achieved by large membrane-embedded super-complexes, containing reaction centers and connected antennae. Here, we report the structure of the higher plant PSI-LHCI super-complex determined at 2.8 Å resolution. The structure includes 16 subunits and more than 200 prosthetic groups, which are mostly light harvesting pigments. The complete structures of the four LhcA subunits of LHCI include 52 chlorophyll a and 9 chlorophyll b molecules, as well as 10 carotenoids and 4 lipids. The structure of PSI-LHCI includes detailed protein pigments and pigment–pigment interactions, essential for the mechanism of excitation energy transfer and its modulation in one of nature's most efficient photochemical machines. DOI: http://dx.doi.org/10.7554/eLife.07433.001 PMID:26076232

  10. Predicting links based on knowledge dissemination in complex network

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Jia, Yifan

    2017-04-01

    Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.

  11. Functional toxicology: tools to advance the future of toxicity testing

    PubMed Central

    Gaytán, Brandon D.; Vulpe, Chris D.

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  12. Critical realism: a practical ontology to explain the complexities of smoking and tobacco control in different resource settings

    PubMed Central

    Oladele, Dunsi; Clark, Alexander M.; Richter, Solina; Laing, Lory

    2013-01-01

    Background This paper presents critical realism (CR) as an innovative system for research in tobacco prevention and control. CR argues that underlying mechanisms are considered and explored to ensure effective implementation of any program/policy or intervention. Any intervention or program/policy that is transposed from one country to another or one setting to another is complex. Methods The research was undertaken and analyzed through a critical ethnography lens using CR as a philosophical underpinning. The study relied upon the following components: original fieldwork in Nigeria including participant observation of smokers, in-depth interviews and focus groups with smokers, and in-depth interviews with health professionals working in the area of tobacco control in Nigeria. Results Findings from this small ethnographic study in Nigeria, suggest that Critical Realism holds promise for addressing underlying mechanism that links complex influences on smoking. Conclusion This paper argues that understanding the underlying mechanisms associated with smoking in different societies will enable a platform for effective implementation of tobacco control policies that work in various settings. PMID:23561029

  13. Is behavioural flexibility evidence of cognitive complexity? How evolution can inform comparative cognition

    PubMed Central

    Mikhalevich, Irina

    2017-01-01

    Behavioural flexibility is often treated as the gold standard of evidence for more sophisticated or complex forms of animal cognition, such as planning, metacognition and mindreading. However, the evidential link between behavioural flexibility and complex cognition has not been explicitly or systematically defended. Such a defence is particularly pressing because observed flexible behaviours can frequently be explained by putatively simpler cognitive mechanisms. This leaves complex cognition hypotheses open to ‘deflationary’ challenges that are accorded greater evidential weight precisely because they offer putatively simpler explanations of equal explanatory power. This paper challenges the blanket preference for simpler explanations, and shows that once this preference is dispensed with, and the full spectrum of evidence—including evolutionary, ecological and phylogenetic data—is accorded its proper weight, an argument in support of the prevailing assumption that behavioural flexibility can serve as evidence for complex cognitive mechanisms may begin to take shape. An adaptive model of cognitive-behavioural evolution is proposed, according to which the existence of convergent trait–environment clusters in phylogenetically disparate lineages may serve as evidence for the same trait–environment clusters in other lineages. This, in turn, could permit inferences of cognitive complexity in cases of experimental underdetermination, thereby placing the common view that behavioural flexibility can serve as evidence for complex cognition on firmer grounds. PMID:28479981

  14. The relation between isotopic composition of argon and carbon in natural gases

    NASA Technical Reports Server (NTRS)

    Gavrilov, Y. Y.; Zhurov, Y. A.; Teplinskiy, G. I.

    1977-01-01

    The methods and results of determination of the argon and carbon isotope compositions of hydrocarbon gases of Mezozoic complexes of Western Siberia are presented. Based on the Ar-36, Ar-40, C-12, C-13 content of the various deposits and on the presumed mechanisms of entry of these isotopes into the deposits, it is concluded that formation of natural gas in some deposits included vertical migration from a lower complex.

  15. Biofluid mechanics--an interdisciplinary research area of the future.

    PubMed

    Liepsch, Dieter

    2006-01-01

    Biofluid mechanics is a complex field that focuses on blood flow and the circulation. Clinical applications include bypass and anastomosis surgery, and the development of artificial heart valves and vessels, stents, vein and dialysis shunts. Biofluid mechanics is also involved in diagnostic and therapeutic measures, including CT and MRI, and ultrasound. The study of biofluid mechanics involves measuring blood flow, pressure, pulse wave, velocity distribution, the elasticity of the vessel wall, the flow behavior of blood to minimize complications in vessel,- neuro-, and heart surgery. Biofluid mechanics influence the lungs and circulatory system, the blood flow and micro-circulation; lymph flow, and artificial organs. Flow studies in arterial models can be done without invasive techniques on patients or animals. The results of fluid mechanic studies have shown that in the addition to basic biology, an understanding of the forces and movement on the cells is essential. Because biofluid mechanics allows for the detection of the smallest flow changes, it has an enormous potential for future cell research. Some of these will be discussed.

  16. Metal ion-improved complexation countercurrent chromatography for enantioseparation of dihydroflavone enantiomers.

    PubMed

    Han, Chao; Wang, Wenli; Xue, Guimin; Xu, Dingqiao; Zhu, Tianyu; Wang, Shanshan; Cai, Pei; Luo, Jianguang; Kong, Lingyi

    2018-01-12

    Cu(II) ion was selected as an additive to improve the enantioseparation efficiency of three dihydroflavone enantiomers in high-speed counter-current chromatography (HSCCC), using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as the chiral selector. The influences of important parameters, including the metal ion, the concentrations of HP-β-CyD and the Cu(II) ion, and the sample size were investigated. Under optimal conditions, three dihydroflavone enantiomers, including (±)-hesperetin, (±)-naringenin, and (±)-farrerol, were successfully enantioseparated. The chiral recognition mechanism was investigated. The enantioseparation was attributed to the different thermodynamic stabilities of the binary complexes of HP-β-CyD and (±)-hesperetin, and Cu(II) ion could enhance this difference by forming ternary complexes with the binary complexes. This Cu(II) ion-improved complexation HSCCC system exhibited improved performance for chiral separation, and therefore it has great application potential in the preparative enantioseparation of other compounds with similar skeletons. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less

  18. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits.

    PubMed

    Wu, Yang; Zeng, Jian; Zhang, Futao; Zhu, Zhihong; Qi, Ting; Zheng, Zhili; Lloyd-Jones, Luke R; Marioni, Riccardo E; Martin, Nicholas G; Montgomery, Grant W; Deary, Ian J; Wray, Naomi R; Visscher, Peter M; McRae, Allan F; Yang, Jian

    2018-03-02

    The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.

  19. [Epigenetics, interface between environment and genes: role in complex diseases].

    PubMed

    Scheen, A J; Junien, C

    2012-01-01

    Epigenetics is the study of heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. Epigenetics is one of the major mechanisms explaining the "Developmental Origin of Health and Diseases" (DOHaD). Besides genetic background inherited from parents, which confers susceptibility to certain pathologies, epigenetic changes constitute the memory of previous events, either positive or negative, along the life cycle, including at the in utero stage. The later exposition to hostile environment may reveal such susceptibility, with the development of various pathologies, among them numerous chronic complex diseases. The demonstration of such a sequence of events has been shown for metabolic diseases as obesity, metabolic syndrome and type 2 diabetes, cardiovascular disease and cancer. In contrast to genetic predisposition, which is irreversible, epigenetic changes are potentially reversible, thus giving targets not only for prevention, but possibly also for the treatment of certain complex diseases.

  20. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage

    PubMed Central

    Sheng, Gang; Zhao, Hongtu; Wang, Jiuyu; Rao, Yu; Tian, Wenwen; Swarts, Daan C.; van der Oost, John; Patel, Dinshaw J.; Wang, Yanli

    2014-01-01

    We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5′-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand. PMID:24374628

  1. Accelerated crossing of fitness valleys through division of labor and cheating in asexual populations

    NASA Astrophysics Data System (ADS)

    Komarova, Natalia L.; Urwin, Erin; Wodarz, Dominik

    2012-12-01

    Complex traits can require the accumulation of multiple mutations that are individually deleterious. Their evolution requires a fitness valley to be crossed, which can take relatively long time spans. A new evolutionary mechanism is described that accelerates the emergence of complex phenotypes, based on a ``division of labor'' game and the occurrence of cheaters. If each intermediate mutation leads to a product that can be shared with others, the complex type can arise relatively quickly as an emergent property among cooperating individuals, without any given individual having to accumulate all mutations. Moreover, the emergence of cheaters that destroy cooperative interactions can lead to the emergence of individuals that have accumulated all necessary mutations on a time scale that is significantly faster than observed in the absence of cooperation and cheating. Application of this mechanism to somatic and microbial evolution is discussed, including evolutionary processes in tumors, biofilms, and viral infections.

  2. Accelerated crossing of fitness valleys through division of labor and cheating in asexual populations

    PubMed Central

    Komarova, Natalia L.; Urwin, Erin; Wodarz, Dominik

    2012-01-01

    Complex traits can require the accumulation of multiple mutations that are individually deleterious. Their evolution requires a fitness valley to be crossed, which can take relatively long time spans. A new evolutionary mechanism is described that accelerates the emergence of complex phenotypes, based on a “division of labor” game and the occurrence of cheaters. If each intermediate mutation leads to a product that can be shared with others, the complex type can arise relatively quickly as an emergent property among cooperating individuals, without any given individual having to accumulate all mutations. Moreover, the emergence of cheaters that destroy cooperative interactions can lead to the emergence of individuals that have accumulated all necessary mutations on a time scale that is significantly faster than observed in the absence of cooperation and cheating. Application of this mechanism to somatic and microbial evolution is discussed, including evolutionary processes in tumors, biofilms, and viral infections. PMID:23209877

  3. Mechanism of water oxidation by [Ru(bda)(L)₂]: The return of the "blue dimer"

    DOE PAGES

    Concepcion, Javier J.; Zhong, Diane K.; Szalda, David J.; ...

    2015-02-05

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)₂] including X-ray structure of intermediates, their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)₂], revealing key features unavailable from solution studies with sacrificial oxidants.

  4. Mechanism of water oxidation by [Ru(bda)(L)2]: the return of the "blue dimer".

    PubMed

    Concepcion, Javier J; Zhong, Diane K; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2015-03-07

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)2] including X-ray structure of intermediates and their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)2], revealing key features unavailable from solution studies with sacrificial oxidants.

  5. Aspects of the mechanisms of smoke generation by burning materials

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Zinn, B. T.; Browner, R. F.; Powell, E. A.

    1981-01-01

    An investigation of smoke generation during the burning of natural and synthetic solid materials (relevant to fire safety problems), under simulated fire conditions, is presented. Smoke formation mechanisms, including flaming and nonflaming combustion, are reviewed, and the complex physical, chemical, and electrical processes, important in smoke particulate production, are identified. With reference to the smoke formation mechanisms, measured experimental data are discussed, and include effects of ventilation gas temperature, dependence on material composition, and chemical analysis of smoke particulates. Significant differences in smoke characteristics are observed between flaming and nonflaming conditions, which is attributed to specific differences in controlling mechanisms and resultant ways leading to particulate formation. The effects of polymer substrate properties and effects of additives for a given substrate on smoke properties are also discussed in terms of basic processes. It is shown that many of the measured trends can be interpreted by considering postulated mechanisms of particulate formation.

  6. Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation.

    PubMed

    Tai, Chao; Li, Yanbin; Yin, Yongguang; Scinto, Leonard J; Jiang, Guibin; Cai, Yong

    2014-07-01

    Photodegradation is the major pathway of methylmercury (MeHg) degradation in many surface waters. However, the mechanism of MeHg photodegradation is still not completely understood. Dissolved organic matter (DOM) is expected to play a critical role in MeHg photodegradation. By using several techniques, including N2/O2 purging and the addition of stable isotope (Me(201)Hg), scavengers, competing ligands, and a singlet oxygen ((1)O2) generator, the role played by MeHg-DOM complexation in MeHg photodegradation of Everglades surface water was investigated. DOM appeared to be involved in MeHg photodegradation via the formation MeHg-DOM complexes based on three findings: (1) MeHg was quickly photodegraded in solutions containing DOM extracts; (2) degradation of MeHg did not occur in deionized water; and (3) addition of competing complexation reagents (dithiothreitol-DTT) dramatically prohibited the photodegradation of MeHg in Everglades water. Further experiments indicated that free radicals/reactive oxygen species, including hydroxyl radical (·OH), (1)O2, triplet excited state of DOM ((3)DOM*), and hydrated electron (e(-)aq), played a minor role in MeHg photodegradation in Everglades water, based on the results of scavenger addition, (1)O2 generator addition and N2/O2 purging. A pathway, involving direct photodegradation of MeHg-DOM complexes via intramolecular electron transfer, is proposed as the dominant mechanism for MeHg photodegradation in Everglades water.

  7. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    PubMed

    Hawkins, Jared B; Jones, Mark T; Plassmann, Paul E; Thorley-Lawson, David A

    2011-01-01

    Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  8. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration

    PubMed Central

    van Dijk, Gertjan; van Heijningen, Steffen; Reijne, Aaffien C.; Nyakas, Csaba; van der Zee, Eddy A.; Eisel, Ulrich L. M.

    2015-01-01

    Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework. PMID:26041981

  9. Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase.

    PubMed

    Wu, Xiaomeng; Liu, Yaowei; Liu, Anjun; Wang, Wenhang

    2017-05-01

    The inferior thermal- stability of collagen hinders its extensive application in food industry, including edible packaging. To improve the thermal- stability and mechanical properties of collagen, we attempted to crosslink collagen with some proteins possessing excellent thermal stability (i. e., casein, keratin and soy protein isolate (SPI)). Observed from the SDS- PAGE and particle size distribution, some complexes with higher molecule weight and relative bigger size particle occurred in the protein mixture, especially after TGase crosslinking. Importantly, the crosslinking greatly improved the thermal- stable property of protein complex, especially that of the collagen- casein complex judged from differential scanning calorimetric (DSC). Moreover, the crosslinking enhanced the mechanical properties of the combined films in terms of tensile strength (TS) and elongation at break (EAB). Also, some obvious differences in morphology of proteins before and after TGase crosslinking were observed by scanning electron microscopy (SEM). These impacts of TGase crosslinking with heat- resistant proteins on collagen features were associated with the conformational changes of the protein complex analyzed by Fourier transform infrared spectroscopy (FTIR). In conclusion, TGase crosslinking with higher thermally stable proteins could be an effective method to contribute to collagen' application in food packaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  11. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  12. A novel laparoscopic grasper with two parallel jaws capable of extracting the mechanical behaviour of soft tissues.

    PubMed

    Nazarynasab, Dariush; Farahmand, Farzam; Mirbagheri, Alireza; Afshari, Elnaz

    2017-07-01

    Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of obtaining compressive force-deformation data related to mechanical behaviour of soft tissues. This new laparoscopic grasper includes four sections as mechanical hardware, sensory part, electrical/electronical part and data storage part. By considering a unique design for mechanical hardware, data recording conditions will be close to unconfined-compression-test conditions; so obtained data can be properly used in extracting the mechanical behaviour of soft tissues. Also, the other distinguishing feature of this new system is its applicability during different laparoscopic surgeries and subsequently obtaining in vivo data. However, more preclinical examinations are needed to evaluate the practicality of the novel laparoscopic grasper with two parallel jaws.

  13. 3D Thermomechanical Modeling of Rifted Margins with Coupled Surface Processes: the North West Shelf, Australia

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Beucher, R.; Morón, S.; Rey, P. F.; Salles, T.; Brocard, G. Y.; Farrington, R.; Giordani, J.; Mansour, J.

    2017-12-01

    Thermo-mechanical numerical models and analogue experiments with a layered lithosphere have emphasised the role played by the composition and thermal state of the lithosphere on the style of extension. The variation in rheological properties and the coupling between lithospheric layers promote depth-dependent extension with the potential for complex rift evolution over space and time. Local changes in the stress field due to loading / unloading of the lithosphere can perturb the syn and post-rift stability of the margins. We investigate how erosion of the margins and sedimentation within the basins integrate with the thermo-mechanical processes involved in the structural and stratigraphic evolution of the North West Shelf (NWS), one of the most productive and prospective hydrocarbon provinces in Australia. The complex structural characteristics of the NWS include large-scale extensional detachments, difference between amounts of crustal and lithospheric extension and prolonged episodes of thermal sagging after rifting episodes. It has been proposed that the succession of different extensional styles mechanisms (Cambrian detachment faulting, broadly distributed Permo-Carboniferous extension and Late Triassic to Early Cretaceous localised rift development) is best described in terms of variation in deformation response of a lithosphere that has strengthened from one extensional episode to the next. However, previous models invoking large-scale detachments fail to explain changes in extensional styles and overestimate the structural importance of relatively local detachments. Here, we hypothesize that an initially weak lithosphere would distribute deformation by ductile flow within the lower crust and that the interaction between crustal flow, thermal-evolution and sediment loading/unloading could explain some of the structural complexities recorded by the NWS. We run a series of fully coupled 3D thermo-mechanical numerical experiments that include realistic thermal and mechanical properties, as well as surface processes (erosion, sediments transport and sedimentation). This modeling approach aims to provide insights into the thermal and structural history of the NWS, and a better understanding of the complex interactions between tectonics and surface processes at rifted margins.

  14. Mechanical microencapsulation: The best technique in taste masking for the manufacturing scale - Effect of polymer encapsulation on drug targeting.

    PubMed

    Al-Kasmi, Basheer; Alsirawan, Mhd Bashir; Bashimam, Mais; El-Zein, Hind

    2017-08-28

    Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  16. Low-Frequency Carbon Recombination Lines in the Orion Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Tremblay, Chenoa D.; Jordan, Christopher H.; Cunningham, Maria; Jones, Paul A.; Hurley-Walker, Natasha

    2018-05-01

    We detail tentative detections of low-frequency carbon radio recombination lines from within the Orion molecular cloud complex observed at 99-129 MHz. These tentative detections include one alpha transition and one beta transition over three locations and are located within the diffuse regions of dust observed in the infrared at 100 μm, the Hα emission detected in the optical, and the synchrotron radiation observed in the radio. With these observations, we are able to study the radiation mechanism transition from collisionally pumped to radiatively pumped within the H ii regions within the Orion molecular cloud complex.

  17. The Surface Layer Mechanical Condition and Residual Stress Forming Model in Surface Plastic Deformation Process with the Hardened Body Effect Consideration

    NASA Astrophysics Data System (ADS)

    Mahalov, M. S.; Blumenstein, V. Yu

    2017-10-01

    The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  18. A review of numerical techniques approaching microstructures of crystalline rocks

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  19. Quantum Mechanics for Everybody: An autonomous MOOC on EdX for nonscientists

    NASA Astrophysics Data System (ADS)

    Freericks, James; Cutler, Dylan; Vieira-Barbosa, Lucas

    2017-01-01

    We have launched a MOOC for nonscientists that teaches quantum mechanics using the Feynman methodology as outlined in his QED book and in a similar book by Daniel Styer. Using a combination of videos, voice-over powerpoint animations, computer simulations and interactive tutorials, we teach the fundamentals of quantum mechanics employing a minimum of math (high school algebra, square roots, and a little trigonometry) but going into detail on a number of complex quantum ideas. We begin with the Stern-Gerlach experiment, including delayed choice and Bell's inequality variants. Then we focus on light developing the quantum theory for partial reflection and diffraction. At this point we demonstrate the complexity of quantum physics by showing how watched and unwatched two-slit experiments behave differently and how quantum particles interfere. The four week course ends with advanced topics in light where we cover the idea of an interaction free measurement, the quantum Zeno effect and indistinguishable particles via the Hong-Ou-Mandel experiment. We hope this MOOC will reach thousands of students interesting in learning quantum mechanics without any dumbing down or the need to learn complex math. It can also be used with undergraduates to help with conceptual understanding. Funded by the National Science Foundation under grants numbered PHY-1620555 and PHY-1314295 and by Georgetown University.

  20. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.

    PubMed

    Min, Kyungjin; Yoon, Hye-Jin; Matsuura, Atsushi; Kim, Yong Hwan; Lee, Hyung Ho

    2018-04-30

    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes β-deamination of L-lysine into L-pipecolic acid using β-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, μ-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD + , (ii) a ternary complex with NAD + and L-pipecolic acid, (iii) a ternary complex with NAD + and L-proline, and (iv) a ternary complex with NAD + and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida . In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD + is initially converted into NADH and then reverted back into NAD + at a late stage of the reaction.

  1. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization

    PubMed Central

    Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio

    2015-01-01

    The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640

  2. Water, hydration, and health

    USDA-ARS?s Scientific Manuscript database

    This review examines the current knowledge of water intake as it pertains to human health, including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, and the effects of variation in water intake on health and energy intake, weight, huma...

  3. Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex.

    PubMed

    Mezencev, Roman

    2015-01-01

    Since the discovery of its anticancer activity in 1970s, cisplatin and its analogs have become widely used in clinical practice, being administered to 40-80% of patients undergoing chemotherapy for solid tumors. The fascinating story of this drug continues to evolve presently, which includes advances in our understanding of complexity of molecular mechanisms involved in its anticancer activity and drug toxicity. While genomic DNA has been generally recognized as the most critical pharmacological target of cisplatin, the results reported across multiple disciplines suggest that other targets and molecular interactions are likely involved in the anticancer mode of action, drug toxicity and resistance of cancer cells to this remarkable anticancer drug. This article reviews interactions of cisplatin with non-DNA targets, including RNAs, proteins, phospholipids and carbohydrates in the context of its pharmacological activity and drug toxicity. Some of these non-DNA targets and associated mechanisms likely act in a highly concerted manner towards the biological outcome in cisplatin-treated tumors; therefore, the understanding of complexity of cisplatin interactome may open new avenues for modulation of its clinical efficacy or for designing more efficient platinum-based anticancer drugs to reproduce the success of cisplatin in the treatment of highly curable testicular germ cell tumors in its therapeutic applications to other cancers.

  4. Pathways of proton transfer in the light-driven pump bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1993-01-01

    The mechanism of proton transport in the light-driven pump bacteriorhodopsin is beginning to be understood. Light causes the all-trans to 13-cis isomerization of the retinal chromophore. This sets off a sequential and directed series of transient decreases in the pKa's of a) the retinal Schiff base, b) an extracellular proton release complex which includes asp-85, and c) a cytoplasmic proton uptake complex which includes asp-96. The timing of these pKa changes during the photoreaction cycle causes sequential proton transfers which result in the net movement of a proton across the protein, from the cytoplasmic to the extracellular surface.

  5. Towards understanding the complexity of cardiovascular oscillations: Insights from information theory.

    PubMed

    Javorka, Michal; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Lazarova, Zuzana; Wiszt, Radovan; Faes, Luca

    2018-07-01

    Cardiovascular complexity is a feature of healthy physiological regulation, which stems from the simultaneous activity of several cardiovascular reflexes and other non-reflex physiological mechanisms. It is manifested in the rich dynamics characterizing the spontaneous heart rate and blood pressure variability (HRV and BPV). The present study faces the challenge of disclosing the origin of short-term HRV and BPV from the statistical perspective offered by information theory. To dissect the physiological mechanisms giving rise to cardiovascular complexity in different conditions, measures of predictive information, information storage, information transfer and information modification were applied to the beat-to-beat variability of heart period (HP), systolic arterial pressure (SAP) and respiratory volume signal recorded non-invasively in 61 healthy young subjects at supine rest and during head-up tilt (HUT) and mental arithmetics (MA). Information decomposition enabled to assess simultaneously several expected and newly inferred physiological phenomena, including: (i) the decreased complexity of HP during HUT and the increased complexity of SAP during MA; (ii) the suppressed cardiorespiratory information transfer, related to weakened respiratory sinus arrhythmia, under both challenges; (iii) the altered balance of the information transferred along the two arms of the cardiovascular loop during HUT, with larger baroreflex involvement and smaller feedforward mechanical effects; and (iv) an increased importance of direct respiratory effects on SAP during HUT, and on both HP and SAP during MA. We demonstrate that a decomposition of the information contained in cardiovascular oscillations can reveal subtle changes in system dynamics and improve our understanding of the complexity changes during physiological challenges. Copyright © 2018. Published by Elsevier Ltd.

  6. A brief history of the most remarkable numbers e, i and γ in mathematical sciences with applications

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2015-08-01

    This paper deals with a brief history of the most remarkable Euler numbers e, i and γ in mathematical sciences. Included are many properties of the constants e, i and γ and their applications in algebra, geometry, physics, chemistry, ecology, business and industry. Special attention is given to the growth and decay phenomena in many real-world problems including stability and instability of their solutions. Some specific and modern applications of logarithms, complex numbers and complex exponential functions to electrical circuits and mechanical systems are presented with examples. Included are the use of complex numbers and complex functions in the description and analysis of chaos and fractals with the aid of modern computer technology. In addition, the phasor method is described with examples of applications in engineering science. The major focus of this paper is to provide basic information through historical approach to mathematics teaching and learning of the fundamental knowledge and skills required for students and teachers at all levels so that they can understand the concepts of mathematics, and mathematics education in science and technology.

  7. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewert, K.K.; Zidovska, A.; Ahmad, A.

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viralmore » vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.« less

  8. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Jiang, Ling-Juan; Zhang, Yan-Ping; Li, Jun-Bo

    2012-09-01

    In this work, the optimal clathration condition was investigated for the preparation of aspirin-β-cyclodextrin (Asp-β-CD) inclusion complex using design of experiment (DOE) methodology. A 3-level, 3-factor Box-Behnken design with a total of 17 experimental runs was used. The Asp-β-CD inclusion complex was prepared by saturated solution method. The influence on the embedding rate was investigated, including molar ratio of β-CD to Asp, clathration temperature and clathration time, and the optimum values of such three test variables were found to be 0.82, 49°C and 2.0 h, respectively. The embedding rate could be up to 61.19%. The formation of the bonding between -COOH group of Asp and O-H group of β-CD might play an important role in the process of clathration according to FT-IR spectra. Release kinetics of Asp from inclusion complex was studied for the evaluation of drug release mechanism and diffusion coefficients. The results showed that the drug release from matrix occurred through Fickian diffusion mechanism. The cumulative release of Asp reached only 40% over 24 h, so the inclusion complex could potentially be applied as a long-acting delivery system.

  9. Cardiac Arrhythmia: In vivo screening in the zebrafish to overcome complexity in drug discovery.

    PubMed

    Macrae, Calum A

    2010-07-01

    IMPORTANCE OF THE FIELD: Cardiac arrhythmias remain a major challenge for modern drug discovery. Clinical events are paroxysmal, often rare and may be asymptomatic until a highly morbid complication. Target selection is often based on limited information and though highly specific agents are identified in screening, the final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index and substantial toxicities. AREAS COVERED IN THIS REVIEW: Our understanding of complexity of arrhythmogenesis has grown dramatically over the last two decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in arrhythmia. This review surveys the literature on arrhythmia mechanisms from 1965 to the present day, outlines the complex biology underlying potentially each and every rhythm disturbance, and highlights the problems for rational target identification. The rationale for in vivo screening is described and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. WHAT THE READER WILL GAIN: An overview of the complex mechanisms underlying most clinical arrhythmias, and insight into the limits of ion channel conductances as drug targets. An introduction to the zebrafish as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology including in vivo screening of zebrafish genetic disease models. TAKE HOME MESSAGE: In vivo screening in faithful disease models allows the effects of drugs on integrative physiology and disease biology to be captured during the screening process, in a manner agnostic to potential drug target or targets. This systematic strategy bypasses current gaps in our understanding of disease biology, but emphasizes the importance of the rigor of the disease model.

  10. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.

    PubMed

    Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka

    2018-04-01

    Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chronic exposure to nitric oxide alters the free iron pool in endothelial cells: Role of mitochondrial respiratory complexes and heat shock proteins

    PubMed Central

    Ramachandran, Anup; Ceaser, Erin; Darley-Usmar, Victor M.

    2004-01-01

    The mechanisms of nitric oxide (NO) signaling include binding to the iron centers in soluble guanylate cyclase and cytochrome c oxidase and posttranslational modification of proteins by S-nitrosation. Low levels of NO control mitochondrial number in cells, but little is known of the impact of chronic exposure to high levels of NO on mitochondrial function in endothelial cells. The focus of this study is the interaction of NO with mitochondrial respiratory complexes in cell culture and the effect this has on iron homeostasis. We demonstrate that chronic exposure of endothelial cells to NO decreased activity and protein levels of complexes I, II, and IV, whereas citrate synthase and ATP synthase were unaffected. Inhibition of these respiratory complexes was accompanied by an increase in cellular S-nitrosothiol levels, modification of cysteines residues, and an increase in the labile iron pool. The NO-dependent increase in the free iron pool and inhibition of complex II was prevented by inhibition of mitochondrial protein synthesis, consistent with a major contribution of the organelle to iron homeostasis. In addition, inhibition of mitochondrial protein synthesis was associated with an increase in heat shock protein 60 levels, which may be an additional mechanism leading to preservation of complex II activity. PMID:14691259

  12. Regulated transport into the nucleus of herpesviridae DNA replication core proteins.

    PubMed

    Gualtiero, Alvisi; Jans, David A; Camozzi, Daria; Avanzi, Simone; Loregian, Arianna; Ripalti, Alessandro; Palù, Giorgio

    2013-09-16

    The Herpesvirdae family comprises several major human pathogens belonging to three distinct subfamilies. Their double stranded DNA genome is replicated in the nuclei of infected cells by a number of host and viral products. Among the latter the viral replication complex, whose activity is strictly required for viral replication, is composed of six different polypeptides, including a two-subunit DNA polymerase holoenzyme, a trimeric primase/helicase complex and a single stranded DNA binding protein. The study of herpesviral DNA replication machinery is extremely important, both because it provides an excellent model to understand processes related to eukaryotic DNA replication and it has important implications for the development of highly needed antiviral agents. Even though all known herpesviruses utilize very similar mechanisms for amplification of their genomes, the nuclear import of the replication complex components appears to be a heterogeneous and highly regulated process to ensure the correct spatiotemporal localization of each protein. The nuclear transport process of these enzymes is controlled by three mechanisms, typifying the main processes through which protein nuclear import is generally regulated in eukaryotic cells. These include cargo post-translational modification-based recognition by the intracellular transporters, piggy-back events allowing coordinated nuclear import of multimeric holoenzymes, and chaperone-assisted nuclear import of specific subunits. In this review we summarize these mechanisms and discuss potential implications for the development of antiviral compounds aimed at inhibiting the Herpesvirus life cycle by targeting nuclear import of the Herpesvirus DNA replicating enzymes.

  13. Classroom learning and achievement: how the complexity of classroom interaction impacts students' learning

    NASA Astrophysics Data System (ADS)

    Podschuweit, Sören; Bernholt, Sascha; Brückmann, Maja

    2016-05-01

    Background: Complexity models have provided a suitable framework in various domains to assess students' educational achievement. Complexity is often used as the analytical focus when regarding learning outcomes, i.e. when analyzing written tests or problem-centered interviews. Numerous studies reveal negative correlations between the complexity of a task and the probability of a student solving it. Purpose: Thus far, few detailed investigations explore the importance of complexity in actual classroom lessons. Moreover, the few efforts made so far revealed inconsistencies. Hence, the present study sheds light on the influence the complexity of students' and teachers' class contributions have on students' learning outcomes. Sample: Videos of 10 German 8th grade physics courses covering three consecutive lessons on two topics each (electricity, mechanics) have been analyzed. The sample includes 10 teachers and 290 students. Design and methods: Students' and teachers' verbal contributions were coded manual-based according to the level of complexity. Additionally, pre-post testing of knowledge in electricity and mechanics was applied to assess the students' learning gain. ANOVA analysis was used to characterize the influence of the complexity on the learning gain. Results: Results indicate that the mean level of complexity in classroom contributions explains a large portion of variance in post-test results on class level. Despite this overarching trend, taking classroom activities into account as well reveals even more fine-grained patterns, leading to more specific relations between the complexity in the classroom and students' achievement. Conclusions: In conclusion, we argue for more reflected teaching approaches intended to gradually increase class complexity to foster students' level of competency.

  14. Function of YY1 in Long-Distance DNA Interactions

    PubMed Central

    Atchison, Michael L.

    2014-01-01

    During B cell development, long-distance DNA interactions are needed for V(D)J somatic rearrangement of the immunoglobulin (Ig) loci to produce functional Ig genes, and for class switch recombination (CSR) needed for antibody maturation. The tissue-specificity and developmental timing of these mechanisms is a subject of active investigation. A small number of factors are implicated in controlling Ig locus long-distance interactions including Pax5, Yin Yang 1 (YY1), EZH2, IKAROS, CTCF, cohesin, and condensin proteins. Here we will focus on the role of YY1 in controlling these mechanisms. YY1 is a multifunctional transcription factor involved in transcriptional activation and repression, X chromosome inactivation, Polycomb Group (PcG) protein DNA recruitment, and recruitment of proteins required for epigenetic modifications (acetylation, deacetylation, methylation, ubiquitination, sumoylation, etc.). YY1 conditional knock-out indicated that YY1 is required for B cell development, at least in part, by controlling long-distance DNA interactions at the immunoglobulin heavy chain and Igκ loci. Our recent data show that YY1 is also required for CSR. The mechanisms implicated in YY1 control of long-distance DNA interactions include controlling non-coding antisense RNA transcripts, recruitment of PcG proteins to DNA, and interaction with complexes involved in long-distance DNA interactions including the cohesin and condensin complexes. Though common rearrangement mechanisms operate at all Ig loci, their distinct temporal activation along with the ubiquitous nature of YY1 poses challenges for determining the specific mechanisms of YY1 function in these processes, and their regulation at the tissue-specific and B cell stage-specific level. The large numbers of post-translational modifications that control YY1 functions are possible candidates for regulation. PMID:24575094

  15. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane

    PubMed Central

    Salanenka, Yuliya; Verstraeten, Inge; Löfke, Christian; Tabata, Kaori; Naramoto, Satoshi; Glanc, Matouš; Friml, Jiří

    2018-01-01

    The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses. PMID:29463731

  16. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects

    PubMed Central

    2016-01-01

    Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve. PMID:27617882

  17. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription.

    PubMed

    Portnoy, Victoria; Lin, Szu Hua Sharon; Li, Kathy H; Burlingame, Alma; Hu, Zheng-Hui; Li, Hao; Li, Long-Cheng

    2016-03-01

    Small activating RNAs (saRNAs) targeting specific promoter regions are able to stimulate gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). It is known that RNAa depends on Ago2 and is associated with epigenetic changes at the target promoters. However, the precise molecular mechanism of RNAa remains elusive. Using human CDKN1A (p21) as a model gene, we characterized the molecular nature of RNAa. We show that saRNAs guide Ago2 to and associate with target promoters. saRNA-loaded Ago2 facilitates the assembly of an RNA-induced transcriptional activation (RITA) complex, which, in addition to saRNA-Ago2 complex, includes RHA and CTR9, the latter being a component of the PAF1 complex. RITA interacts with RNA polymerase II to stimulate transcription initiation and productive elongation, accompanied by monoubiquitination of histone 2B. Our results establish the existence of a cellular RNA-guided genome-targeting and transcriptional activation mechanism and provide important new mechanistic insights into the RNAa process.

  18. Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators

    PubMed Central

    Hahn, Steven; Young, Elton T.

    2011-01-01

    Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms. PMID:22084422

  19. Performance of the Sleep-Mode Mechanism of the New IEEE 802.16m Proposal for Correlated Downlink Traffic

    NASA Astrophysics Data System (ADS)

    de Turck, Koen; de Vuyst, Stijn; Fiems, Dieter; Wittevrongel, Sabine; Bruneel, Herwig

    There is a considerable interest nowadays in making wireless telecommunication more energy-efficient. The sleep-mode mechanism in WiMAX (IEEE 802.16e) is one of such energy saving measures. Recently, Samsung proposed some modifications on the sleep-mode mechanism, scheduled to appear in the forthcoming IEEE 802.16m standard, aimed at minimizing the signaling overhead. In this work, we present a performance analysis of this proposal and clarify the differences with the standard mechanism included in IEEE 802.16e. We also propose some special algorithms aimed at reducing the computational complexity of the analysis.

  20. Research Review: The Neurobiology and Genetics of Maltreatment and Adversity

    ERIC Educational Resources Information Center

    McCrory, Eamon; De Brito, Stephane A.; Viding, Essi

    2010-01-01

    The neurobiological mechanisms by which childhood maltreatment heightens vulnerability to psychopathology remain poorly understood. It is likely that a complex interaction between environmental experiences (including poor caregiving) and an individual's genetic make-up influence neurobiological development across infancy and childhood, which in…

  1. Architecture and Robust Networks

    DTIC Science & Technology

    2011-08-18

    supercritical Hopf bifurcation). Thus at least in this model, oscillations have no direct purpose but are side effects of hard tradeoffs crucial to...The HRV tradeoffs already involve more complex mechanisms in (9) than in (1), but both models need expansion to include control of redox (and CO2

  2. Involvement of SNARE complex in the hippocampus and prefrontal cortex of offspring with depression induced by prenatal stress.

    PubMed

    Cao, Yan Jun; Wang, Qiong; Zheng, Xing Xing; Cheng, Ying; Zhang, Yan

    2018-08-01

    Prenatal stress (PS) exposure can cause depression-like behavior in offspring, and maladaptive responses including physiological and neurobiological changes. Glutamate neurotransmission is implicated in effects of PS and in antidepressant mechanisms; however, the mechanisms underlying its involvement remain unclear. In the synapse, the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for vesicular docking and neurotransmitter release. To explore effects of PS on the SNARE complex, pregnant rats were assigned to a control or PS group. Both male and female offspring in each group were used in this study. PS rats were exposed to restraint stress three times daily for 45 min on days 14-20 of pregnancy. In the PS offspring, the expression of the SNARE protein SNAP-25, vesicle-associated membrane protein (VAMP)-2, and Syntaxin 1a was significantly increased in the hippocampus and prefrontal cortex. These observations were associated with increased levels of proteins that chaperone SNARE complex formation, including Munc-18, α-synuclein, CSPα, complexin1, and complexin2. Immunoblotting of hippocampal and prefrontal cortex homogenates revealed significantly increased SNARE complex formation. vGluT1 protein expression was also significantly increased in the offspring. Additionally, PS was associated with increased mRNA expression of VAMP1, VAMP2, SNAP25, Syntaxin1a, and Syntaxin1b in the hippocampus and prefrontal cortex. Increased monomeric SNARE proteins, SNARE complex formation, vesicle-associated proteins, and vGluT1 may explain the increase in glutamate and its downstream excitotoxicity. These results support the hypothesis that glutamate release and vesicular glutamate transporters play a role in PS-induced depression-like behavior of rat offspring. Copyright © 2018. Published by Elsevier B.V.

  3. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs.

    PubMed

    Ji, Shen; Guvendiren, Murat

    2017-01-01

    There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a "bioink" to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions.

  4. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs

    PubMed Central

    Ji, Shen; Guvendiren, Murat

    2017-01-01

    There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a “bioink” to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions. PMID:28424770

  5. Neural network potential for Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ryo; Giofré, Daniele; Junge, Till; Ceriotti, Michele; Curtin, William A.

    2017-10-01

    The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly improved through engineered precipitation. To enable atomistic-level simulations of both the processing and performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive database of properties computed using first-principles density functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute, and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that are required for modeling the early stage of precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful potentials in complex alloy systems.

  6. Pain in autoimmune disorders.

    PubMed

    Mifflin, Katherine A; Kerr, Bradley J

    2017-06-01

    Most autoimmune diseases are associated with pathological pain development. Autoimmune diseases with pathological pain include complex regional pain syndrome, rheumatoid arthritis, and Guillian-Barré syndrome to name a few. The present Review explores research linking the immune system to the development of pathological pain in autoimmune diseases. Pathological pain has been linked to T-cell activation and the release of cytokines from activated microglia in the dorsal horn of the spinal cord. New research on the role of autoantibodies in autoimmunity has generated insights into potential mechanisms of pain associated with autoimmune disease. Autoantibodies may act through various mechanisms in autoimmune disorders. These include the alteration of neuronal excitability via specific antigens such as the voltage-gated potassium channel complexes or by mediating bone destruction in rheumatoid arthritis. Although more research must be done to understand better the role of autoantibodies in autoimmune disease related pain, this may be a promising area of research for new analgesic therapeutic targets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Mechanical properties of bulk graphene oxide/poly(acrylic acid)/poly(ethylenimine) ternary polyelectrolyte complex.

    PubMed

    Duan, Yipin; Wang, Chao; Zhao, Mengmeng; Vogt, Bryan D; Zacharia, Nicole S

    2018-05-30

    Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.

  8. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.

    PubMed

    Jamwal, Prashant K; Hussain, Shahid; Tsoi, Yun Ho; Ghayesh, Mergen H; Xie, Sheng Quan

    2017-05-01

    A musculoskeletal model for the ankle complex is vital in order to enhance the understanding of neuro-mechanical control of ankle motions, diagnose ankle disorders and assess subsequent treatments. Motions at the human ankle and foot, however, are complex due to simultaneous movements at the two joints namely, the ankle joint and the subtalar joint. The musculoskeletal elements at the ankle complex, such as ligaments, muscles and tendons, have intricate arrangements and exhibit transient and nonlinear behaviour. This paper develops a musculoskeletal model of the ankle complex considering the biaxial ankle structure. The model provides estimates of overall mechanical characteristics (motion and moments) of ankle complex through consideration of forces applied along ligaments and muscle-tendon units. The dynamics of the ankle complex and its surrounding ligaments and muscle-tendon units is modelled and formulated into a state space model to facilitate simulations. A graphical user interface is also developed during this research in order to include the visual anatomical information by converting it to quantitative information on coordinates. Validation of the ankle model was carried out by comparing its outputs with those published in literature as well as with experimental data obtained from an existing parallel ankle rehabilitation robot. Qualitative agreement was observed between the model and measured data for both, the passive and active ankle motions during trials in terms of displacements and moments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    PubMed

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics

    PubMed Central

    Labbé, Céline M.; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O.; Pajeva, Ilza

    2017-01-01

    Abstract AMMOS2 is an interactive web server for efficient computational refinement of protein–small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein–ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein–ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein–ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein–ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein–ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein–ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. PMID:28486703

  11. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria.

    PubMed

    Gong, Lauren; Parikh, Sunil; Rosenthal, Philip J; Greenhouse, Bryan

    2013-09-11

    Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria.

  12. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria

    PubMed Central

    2013-01-01

    Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria. PMID:24025776

  13. Computational Insights into the O2-evolving complex of photosystem II

    PubMed Central

    Sproviero, Eduardo M.; McEvoy, James P.; Gascón, José A.; Brudvig, Gary W.; Batista, Victor S.

    2009-01-01

    Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the exact configuration of the catalytic metal cluster and its ligation scheme. Computational modeling studies, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly including the influence of the surrounding protein, have proposed chemically satisfactory models of the fully ligated OEC within PSII that are maximally consistent with experimental results. The inorganic core of these models is similar to the crystallographic model upon which they were based but comprises important modifications due to structural refinement, hydration and proteinaceous ligation which improve agreement with a wide range of experimental data. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting in PSII as described by the intermediate oxidation states of the OEC. This review summarizes these recent advances in QM/MM modeling of PSII within the context of recent experimental studies. PMID:18483777

  14. Small intestinal bacterial overgrowth syndrome

    PubMed Central

    Bures, Jan; Cyrany, Jiri; Kohoutova, Darina; Förstl, Miroslav; Rejchrt, Stanislav; Kvetina, Jaroslav; Vorisek, Viktor; Kopacova, Marcela

    2010-01-01

    Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO. PMID:20572300

  15. Epidemiology of Noninvasive Ventilation in Pediatric Cardiac ICUs.

    PubMed

    Romans, Ryan A; Schwartz, Steven M; Costello, John M; Chanani, Nikhil K; Prodhan, Parthak; Gazit, Avihu Z; Smith, Andrew H; Cooper, David S; Alten, Jeffrey; Mistry, Kshitij P; Zhang, Wenying; Donohue, Janet E; Gaies, Michael

    2017-10-01

    To describe the epidemiology of noninvasive ventilation therapy for patients admitted to pediatric cardiac ICUs and to assess practice variation across hospitals. Retrospective cohort study using prospectively collected clinical registry data. Pediatric Cardiac Critical Care Consortium clinical registry. Patients admitted to cardiac ICUs at PC4 hospitals. None. We analyzed all cardiac ICU encounters that included any respiratory support from October 2013 to December 2015. Noninvasive ventilation therapy included high flow nasal cannula and positive airway pressure support. We compared patient and, when relevant, perioperative characteristics of those receiving noninvasive ventilation to all others. Subgroup analysis was performed on neonates and infants undergoing major cardiovascular surgery. To examine duration of respiratory support, we created a casemix-adjustment model and calculated adjusted mean durations of total respiratory support (mechanical ventilation + noninvasive ventilation), mechanical ventilation, and noninvasive ventilation. We compared adjusted duration of support across hospitals. The cohort included 8,940 encounters from 15 hospitals: 3,950 (44%) received noninvasive ventilation and 72% were neonates and infants. Medical encounters were more likely to include noninvasive ventilation than surgical. In surgical neonates and infants, 2,032 (55%) received postoperative noninvasive ventilation. Neonates, extracardiac anomalies, single ventricle, procedure complexity, preoperative respiratory support, mechanical ventilation duration, and postoperative disease severity were associated with noninvasive ventilation therapy (p < 0.001 for all). Across hospitals, noninvasive ventilation use ranged from 32% to 65%, and adjusted mean noninvasive ventilation duration ranged from 1 to 4 days (3-d observed mean). Duration of total adjusted respiratory support was more strongly correlated with duration of mechanical ventilation compared with noninvasive ventilation (Pearson r = 0.93 vs 0.71, respectively). Noninvasive ventilation use is common in cardiac ICUs, especially in patients admitted for medical conditions, infants, and those undergoing high complexity surgery. We observed wide variation in noninvasive ventilation use across hospitals, though the primary driver of total respiratory support time seems to be duration of mechanical ventilation.

  16. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE PAGES

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...

    2017-08-18

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  17. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  18. Two-Thumbed Robot Hand

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1989-01-01

    Robot hand includes thumblike members on left and right sides and fingerlike member at middle. Configuration of digits enables hand to adapt to variously shaped objects, grasp them robustly and reliably, and manipulate them. Reduces complexity of control mechanisms and provides kinesthetic perception of shapes of grasped objects. Mechanical hand with two thumbs and middle finger made from commercially available components. With specially designed dc motors and assemblies of gears, size of hand reduced considerably. Suited to handling objects in industrial tasks.

  19. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  20. SPACEBAR: Kinematic design by computer graphics

    NASA Technical Reports Server (NTRS)

    Ricci, R. J.

    1975-01-01

    The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.

  1. Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi

    PubMed Central

    Rodríguez-Romero, J.; Franceschetti, M.; Bueno, E.; Sesma, A.

    2015-01-01

    Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs. PMID:25514925

  2. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    PubMed

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  3. Mechanics of additively manufactured biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  5. Soluble collagen approach to a combination tannage mechanism

    USDA-ARS?s Scientific Manuscript database

    Although complex salts of Cr(III) sulfate are currently the most effective tanning agents, salts of other metals, including aluminum, have been used either alone or in combination with vegetable tannins or other organic chemicals. In the present study, the interactions of aluminum sulfate, and quebr...

  6. Soluble collagen approach to a combination tannage mechanism

    USDA-ARS?s Scientific Manuscript database

    Although complex salts of Cr(III) sulfate are currently the most effective tanning agents, salts of other metals, including aluminum, have been used either alone or in combination with vegetable tannins or other organic chemicals. In the present study, the interactions of metallic sulfates, and cond...

  7. Moving Material into Space Without Rockets.

    ERIC Educational Resources Information Center

    Cheng, R. S.; Trefil, J. S.

    1985-01-01

    In response to conventional rocket demands on fuel supplies, electromagnetic launches were developed to give payloads high velocity using a stationary energy source. Several orbital mechanics problems are solved including a simple problem (radial launch with no rotation) and a complex problem involving air resistance and gravity. (DH)

  8. ASCEM Data Brower (ASCEMDB) v0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMOSAN, ALEXANDRU

    Data management tool designed for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Distinguishing features of this gateway include: (1) handling of complex geometry data, (2) advance selection mechanism, (3) state of art rendering of spatiotemporal data records, and (4) seamless integration with a distributed workflow engine.

  9. The power of fission: yeast as a tool for understanding complex splicing.

    PubMed

    Fair, Benjamin Jung; Pleiss, Jeffrey A

    2017-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.

  10. Quantitative analysis of ribosome–mRNA complexes at different translation stages

    PubMed Central

    Shirokikh, Nikolay E.; Alkalaeva, Elena Z.; Vassilenko, Konstantin S.; Afonina, Zhanna A.; Alekhina, Olga M.; Kisselev, Lev L.; Spirin, Alexander S.

    2010-01-01

    Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture. PMID:19910372

  11. Locality for quantum systems on graphs depends on the number field

    NASA Astrophysics Data System (ADS)

    Hall, H. Tracy; Severini, Simone

    2013-07-01

    Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.

  12. Fractal mechanisms in the electrophysiology of the heart

    NASA Technical Reports Server (NTRS)

    Goldberger, A. L.

    1992-01-01

    The mathematical concept of fractals provides insights into complex anatomic branching structures that lack a characteristic (single) length scale, and certain complex physiologic processes, such as heart rate regulation, that lack a single time scale. Heart rate control is perturbed by alterations in neuro-autonomic function in a number of important clinical syndromes, including sudden cardiac death, congestive failure, cocaine intoxication, fetal distress, space sickness and physiologic aging. These conditions are associated with a loss of the normal fractal complexity of interbeat interval dynamics. Such changes, which may not be detectable using conventional statistics, can be quantified using new methods derived from "chaos theory.".

  13. Specificity and multiplicity in the recognition of individuals: implications for the evolution of social behaviour.

    PubMed

    Wiley, R H

    2013-02-01

    Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.

  14. Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Hu, Xinzhe; Zeng, Daxing; Zhou, Yulin

    2015-01-01

    The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.

  15. Mechanical Regulation of Signaling Pathways in Bone

    PubMed Central

    Thompson, William R.; Rubin, Clinton T.; Rubin, Janet

    2012-01-01

    A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength. PMID:22575727

  16. A Rich-Club Organization in Brain Ischemia Protein Interaction Network

    PubMed Central

    Alawieh, Ali; Sabra, Zahraa; Sabra, Mohammed; Tomlinson, Stephen; Zaraket, Fadi A.

    2015-01-01

    Ischemic stroke involves multiple pathophysiological mechanisms with complex interactions. Efforts to decipher those mechanisms and understand the evolution of cerebral injury is key for developing successful interventions. In an innovative approach, we use literature mining, natural language processing and systems biology tools to construct, annotate and curate a brain ischemia interactome. The curated interactome includes proteins that are deregulated after cerebral ischemia in human and experimental stroke. Network analysis of the interactome revealed a rich-club organization indicating the presence of a densely interconnected hub structure of prominent contributors to disease pathogenesis. Functional annotation of the interactome uncovered prominent pathways and highlighted the critical role of the complement and coagulation cascade in the initiation and amplification of injury starting by activation of the rich-club. We performed an in-silico screen for putative interventions that have pleiotropic effects on rich-club components and we identified estrogen as a prominent candidate. Our findings show that complex network analysis of disease related interactomes may lead to a better understanding of pathogenic mechanisms and provide cost-effective and mechanism-based discovery of candidate therapeutics. PMID:26310627

  17. Water oxidation chemistry of photosystem II.

    PubMed Central

    Vrettos, John S; Brudvig, Gary W

    2002-01-01

    The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878

  18. A new reaction pathway other than the Criegee mechanism for the ozonolysis of a cyclic unsaturated ether

    NASA Astrophysics Data System (ADS)

    Tang, Shanshan; Du, Lin; Tsona, Narcisse T.; Zhao, Hailiang; Wang, Wenxing

    2017-08-01

    Biofuels are considered to be an environmental friendly alternative to fossil fuels. Furanic compounds have been considered as second generation biofuels as they can be produced from non-food biomass. However, the atmospheric behavior of such compounds is required to evaluate their potential to be used as biofuels. The matrix isolation technique combined with infrared spectroscopy has been used to study the ozonolysis mechanism of 2,5-dihydrofuran. A new reaction pathway that is different from the widely accepted Criegee mechanism has been found. Experimental and theoretical results show the evidence of the formation of a furan-H2O3 complex through a dehydrogenation process. The complex is trapped in the argon matrix and stabilized through hydrogen bonding interaction. Meanwhile, the conventional ozonolysis intermediates were also observed, including the primary ozonide, the Criegee intermediate and the secondary ozonide. The present study highlights the cases in which the Criegee mechanism is not the dominant pathway for the reactions of cyclic alkenes with ozone. The cyclic alkenes that can form an aromatic conjugated system by the dehydrogenation process may follow the new mechanism when react with ozone in the atmosphere.

  19. Excavator Design Validation

    NASA Technical Reports Server (NTRS)

    Pholsiri, Chalongrath; English, James; Seberino, Charles; Lim, Yi-Je

    2010-01-01

    The Excavator Design Validation tool verifies excavator designs by automatically generating control systems and modeling their performance in an accurate simulation of their expected environment. Part of this software design includes interfacing with human operations that can be included in simulation-based studies and validation. This is essential for assessing productivity, versatility, and reliability. This software combines automatic control system generation from CAD (computer-aided design) models, rapid validation of complex mechanism designs, and detailed models of the environment including soil, dust, temperature, remote supervision, and communication latency to create a system of high value. Unique algorithms have been created for controlling and simulating complex robotic mechanisms automatically from just a CAD description. These algorithms are implemented as a commercial cross-platform C++ software toolkit that is configurable using the Extensible Markup Language (XML). The algorithms work with virtually any mobile robotic mechanisms using module descriptions that adhere to the XML standard. In addition, high-fidelity, real-time physics-based simulation algorithms have also been developed that include models of internal forces and the forces produced when a mechanism interacts with the outside world. This capability is combined with an innovative organization for simulation algorithms, new regolith simulation methods, and a unique control and study architecture to make powerful tools with the potential to transform the way NASA verifies and compares excavator designs. Energid's Actin software has been leveraged for this design validation. The architecture includes parametric and Monte Carlo studies tailored for validation of excavator designs and their control by remote human operators. It also includes the ability to interface with third-party software and human-input devices. Two types of simulation models have been adapted: high-fidelity discrete element models and fast analytical models. By using the first to establish parameters for the second, a system has been created that can be executed in real time, or faster than real time, on a desktop PC. This allows Monte Carlo simulations to be performed on a computer platform available to all researchers, and it allows human interaction to be included in a real-time simulation process. Metrics on excavator performance are established that work with the simulation architecture. Both static and dynamic metrics are included.

  20. Recent advances in inflammasome biology.

    PubMed

    Place, David E; Kanneganti, Thirumala-Devi

    2018-02-01

    The inflammasome is a complex of proteins that through the activity of caspase-1 and the downstream substrates gasdermin D, IL-1β, and IL-18 execute an inflammatory form of cell death termed pyroptosis. Activation of this complex often involves the adaptor protein ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. Here we discuss new regulatory mechanisms that have been identified for the canonical inflammasomes, the most recently identified NLRP9b inflammasome, and the new gasdermin family of proteins that mediate pyroptosis and other forms of regulated cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Integrative structure and functional anatomy of a nuclear pore complex

    NASA Astrophysics Data System (ADS)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  2. Integrative structure and functional anatomy of a nuclear pore complex.

    PubMed

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  3. Tactical STOL moment balance through innovative configuration technology

    NASA Technical Reports Server (NTRS)

    Eckard, G. J.; Sutton, R. C.; Poth, G. E.

    1981-01-01

    Innovative and conventional thrust vectoring moment balance mechanisms, as applied to advanced tactical fighters, are examined. The innovative mechanisms include thrust line translation, life line translation, and auxiliary power control; the conventional mechanisms under investigation are horizontal tails, canards, and variable sweep wings. These mechanisms are tested for their ability to provide negative static margins for landing approach or relocation of the vectored thrust line nearer the aircraft's center of gravity. The net pitching moment due to wing, flaps, and vectored thrust lift would then be small, making possible beneficial trim forces from small trimming devices. These innovative mechanisms are, however, possibly heavy and must be evaluated on their complexity, reliability, maintainability, and STOL capabilities. Several candidate fighter configurations are compared and evaluated.

  4. Three-Dimensional Printing of Complex Structures by Freeform Reversible Embedding of Suspended Hydrogels (FRESH)

    NASA Astrophysics Data System (ADS)

    Feinberg, Adam

    We demonstrate the additive manufacturing of complex three-dimensional (3D) structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels (FRESH), enables 3D printing of hydrated materials with an elastic modulus less than 500 kPa including alginate, collagen, hyaluronic acid and fibrin. A range of crosslinking mechanisms can be used depending on the polymer being printed, including ionic, enzymatic, pH, thermal and light based approaches. CAD models of 3D optical, computed tomography, and magnetic resonance imaging data can be 3D printed at a resolution of 100 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains are mechanically robust and recreate complex 3D internal and external anatomical architectures. Recent advances have improved the resolution and broadened the range of materials that can be FRESH 3D printed. This work was supported in part by the NIH Director's New Innovator Award (DP2HL117750) and the NSF CAREER Award (1454248).

  5. EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2015-07-01

    Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space-time) states, the original version of EPR paradox can be discussed and the correct answer can be verified based on the strong rooted complex quantum Hamilton-Jacobi theory [2-27] and as another example we can use the negative energy states, to remove the Klein's paradox without the need of any further explanations or justifications like backwardly moving electrons. Finally, comparing the two approaches, we can point out to the existence of a connection between quantum Hamiltonian dynamics, standard quantum field theory, and Krein space quantization [28-43].

  6. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response

    PubMed Central

    Shahin, Mohamed H; Johnson, Julie A

    2016-01-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. PMID:26874237

  7. Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (Apis mellifera L.)

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines regulate the proximate mechanisms underlying most behavior, including those that contribute to the overall success of complex societies. For honey bees one critical set of behaviors contributing to the welfare of a colony are involved with nest thermoregulation. Worker honey bees co...

  8. Designing for fiber composite structural durability in hygrothermomechanical environment

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    A methodology is described which can be used to design/analyze fiber composite structures subjected to complex hygrothermomechanical environments. This methodology includes composite mechanics and advanced structural analysis methods (finite element). Select examples are described to illustrate the application of the available methodology. The examples include: (1) composite progressive fracture; (2) composite design for high cycle fatigue combined with hot-wet conditions; and (3) general laminate design.

  9. Tell Me How to Do This Thing Called Design! Practical Application of Complexity Theory to Military Operations

    DTIC Science & Technology

    2011-04-08

    into how economics, information theory and computer science, psychology, sociology, evolutionary biology, physics (quantum mechanics) and cosmology ...include knowledge and definition of “self” (as “self” is part of the environment) and the shared experience and perspective of others  That...including information, entropy, quantum behavior, and cosmological progress In short I assume the above and therefore my recommendations could be

  10. Pathophysiology of hypertension in obese children: a systematic review.

    PubMed

    Wirix, A J G; Kaspers, P J; Nauta, J; Chinapaw, M J M; Kist-van Holthe, J E

    2015-10-01

    Hypertension is increasingly common in overweight and obese children. The mechanisms behind the development of hypertension in obesity are complex, and evidence is limited. In order to effectively treat obese children for hypertension, it is important to have a deeper understanding of the pathophysiology of hypertension in obese children. The present review summarizes the main factors associated with hypertension in obese children and discusses their potential role in its pathophysiology. Systematic searches were conducted in PubMed and EMBASE for articles published up to October 2014. In total, 60 relevant studies were included. The methodological quality of the included studies ranged from weak to strong. Several factors important in the development of hypertension in obese children have been suggested, including endocrine determinants, such as corticosteroids and adipokines, sympathetic nervous system activity, disturbed sodium homeostasis, as well as oxidative stress, inflammation and endothelial dysfunction. Understanding the pathophysiology of hypertension in overweight and obese children is important and could have implications for its screening and treatment. Based on solely cross-sectional observational studies, it is impossible to infer causality. Longitudinal studies of high methodological quality are needed to gain more insight into the complex mechanisms behind the development of hypertension in obese children. © 2015 World Obesity.

  11. The endocrine and paracrine control of menstruation.

    PubMed

    Henriet, Patrick; Gaide Chevronnay, Héloïse P; Marbaix, Etienne

    2012-07-25

    During the reproductive life, the human endometrium undergoes cycles of substantial remodeling including, at menstruation, a massive but delimited tissue breakdown immediately followed by scarless repair. The present review aims at summarizing the current knowledge on the endocrine and paracrine control of menstruation in the light of recent observations that undermine obsolete dogmas. Menstruation can be globally considered as a response to falling progesterone concentration. However, tissue breakdown is heterogeneous and tightly controlled in space and time by a complex network of regulators and effectors, including cytokines, chemokines, proteases and various components of an inflammatory response. Moreover, menstruation must be regarded as part of a complex and integrated mechanism of tissue remodeling including features that precede and follow tissue lysis, i.e. decidualization and immediate post-menstrual regeneration. The understanding of the regulation of menstruation is of major basic and clinical interest. Indeed, these mechanisms largely overlap with those controlling other histopathological occurrences of tissue remodeling, such as development and cancer, and inappropriate control of menstrual features is a major potential cause of two frequent endometrial pathologies (i.e. abnormal uterine bleeding and endometriosis). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Use of intravenous immunoglobulin in pediatric practice

    PubMed Central

    Zülfikar, Bülent; Koç, Başak

    2014-01-01

    In recent years, human-driven intravenous immunoglobulins (IVIG) administered intravenously have been widely used in treatment of many diseases. Intravenous immunoglobulin is obtained from human-driven plasma pools as in other plasma-driven products and IVIG preperations contain structurally and functionally intact immunoglobulin. Intravenous immunoglobulin was approved by FDA (Food and Drug Administration) in USA in 1981 for the first time and was started to be primarily used in patients with immune deficiency with hypogammaglobulinemia. The effects of intravenous immunoglobulin include complex mechanisms, but it exerts its essential action by eliminating the non-specific Fc receptors found in the mononuclear phagocytic system or by inhibiting binding of immune complexes to Fc receptors in the cells. Their areas of usage include conditions where their anti-inflammatory and immunomudulator effects are utilized in addition to replacement of deficient immunoglobulin. Although the definite indications are limited, it has been shown that it is useful in many diseases in clinical practice. Its side effects include fever, sweating, nausea, tachycardia, eczematous reactions, aseptic meningitis, renal failure and hematological-thromboembolic events. In this article, use of IVIG, its mechanisms of action, indications and side effects were discussed. PMID:26078679

  13. 3D Volumetric Strain Modelling of Eruptions at Soufrière Hills Volcano Montserrat

    NASA Astrophysics Data System (ADS)

    Young, N. K.; Gottsmann, J.

    2015-12-01

    Volumetric strain data has captured a number of Vulcanian explosions at Soufrière Hills Volcano, Montserrat, which involve the uppermost part of the magmatic system. We previously used volumetric strain data from during one of these explosions to elucidate the geometry of the shallow plumbing system and crustal mechanics at Montserrat for mechanically plausible depressurisation amplitudes. Our results from both forward and inverse 2D models found that it was necessary to incorporate a mechanically weak shallow crust and mechanically compliant halo of material around the highest part of the SHV magmatic system i.e. the conduit, in order to implement geologically realistic conditions of depressurisation and rock strength. However, this model lacks complexity that cannot be implemented in a 2D environment. Here, in the first study of its kind, we use Finite Element Analysis of volumetric strain data in a 3D domain incorporating topography and mechanical complexities as imaged by seismic and gravimetric data. Our model implements topography from a DEM covering the island and surrounding bathymetry and include the mechanically stiff extinct volcanic cores of the Silver Hills and the Centre Hills. Here we present our preliminary findings from the 3D strain modelling and the effect of the extinct volcanic cores on strain partitioning on Montserrat.

  14. Laser Doppler vibrometry measurement of the mechanical myogram

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, John W.; Sirevaag, Erik J.; Richter, Edward J.

    2013-12-01

    Contracting muscles show complex dimensional changes that include lateral expansion. Because this expansion process is intrinsically vibrational, driven by repetitive actions of multiple motor units, it can be sensed and quantified using the method of Laser Doppler Vibrometry (LDV). LDV has a number of advantages over more traditional mechanical methods based on microphones and accelerometers. The LDV mechanical myogram from a small hand muscle (the first dorsal interosseous) was studied under conditions of elastic loading applied to the tip of the abducted index finger. The LDV signal was shown to be related systematically to the level of force production, and to compare favorably with conventional methods for sensing the mechanical and electrical aspects of muscle contraction.

  15. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    NASA Technical Reports Server (NTRS)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  16. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  17. Metal complexes as DNA intercalators.

    PubMed

    Liu, Hong-Ke; Sadler, Peter J

    2011-05-17

    DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic acid synthesis in vivo, and they are now common anticancer drugs in clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with σ-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding, involving mutual interactions of functional groups held in close proximity. The biological activity of both cis- and trans-diamine Pt(II) complexes is dramatically enhanced by the addition of σ-bonded intercalators. We have explored a new class of organometallic "piano-stool" Ru(II) and Os(II) arene anticancer complexes of the type [(η(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer drug cisplatin and its analogs. The Ru-arene complexes with dual functions are more potent towards cancer cells than their nonintercalating analogs. In this Account, we focus on recent studies of dual-function organometallic Ru(II)- and Os(II)-arene complexes and the methods used to detect arene-DNA intercalation. We relate these interactions to the mechanism of anticancer activity and to structure-activity relationships. The interactions between these complexes and DNA show close similarities to those of covalent polycyclic aromatic carcinogens, especially to N7-alkylating intercalation compounds. However, Ru-arene complexes exhibit some new features. Classical intercalation and base extrusion next to the metallated base is observed for {(η(6)-biphenyl)Ru(ethylenediamine)}(2+) adducts of a 14-mer duplex, while penetrating arene intercalation occurs for adducts of the nonaromatic bulky intercalator {(η(6)-tetrahydroanthracene)Ru(ethylenediamine)}(2+) with a 6-mer duplex. The introduction of dual-function Ru-arene complexes introduces new mechanisms of antitumor activity, novel mechanisms for attack on DNA, and new concepts for developing structure- activity relationships. We hope this discussion will stimulate thoughtful and focused research on the design of anticancer chemotherapeutic agents using these unique approaches.

  18. ERP Correlates of Pitch Error Detection in Complex Tone and Voice Auditory Feedback with Missing Fundamental

    PubMed Central

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.

    2012-01-01

    Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. The absence of the fundamental induced no difference in ERP latencies. However, a right-hemisphere difference was found in the N1 amplitudes with larger responses to complex tones that included the fundamental compared to when it was missing. The P1 and N1 latencies were shorter in the left hemisphere, and the N1 and P2 amplitudes were larger bilaterally for pitch shifts in voice and complex tones compared with pure tones. These findings suggest hemispheric differences in neural encoding of pitch in sounds with missing fundamental. Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control. PMID:22386045

  19. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements

    PubMed Central

    Liu, Pengfei; Erez, Ayelet; Sreenath Nagamani, Sandesh C.; Dhar, Shweta U.; Kołodziejska, Katarzyna E.; Dharmadhikari, Avinash V.; Cooper, M. Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A.; Bacino, Carlos A.; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R.; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A.; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R.; McLean, Scott D.; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L.; Patel, Ankita; Cheung, Sau Wai; Hastings, P. J.; Stankiewicz, Paweł; Lupski, James R.; Bi, Weimin

    2011-01-01

    SUMMARY Complex genomic rearrangements (CGR) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated we observed localization and multiple copy number changes including deletions, duplications and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism’s life cycle. PMID:21925314

  20. A Crowdsourcing Framework for Medical Data Sets.

    PubMed

    Ye, Cheng; Coco, Joseph; Epishova, Anna; Hajaj, Chen; Bogardus, Henry; Novak, Laurie; Denny, Joshua; Vorobeychik, Yevgeniy; Lasko, Thomas; Malin, Bradley; Fabbri, Daniel

    2018-01-01

    Crowdsourcing services like Amazon Mechanical Turk allow researchers to ask questions to crowds of workers and quickly receive high quality labeled responses. However, crowds drawn from the general public are not suitable for labeling sensitive and complex data sets, such as medical records, due to various concerns. Major challenges in building and deploying a crowdsourcing system for medical data include, but are not limited to: managing access rights to sensitive data and ensuring data privacy controls are enforced; identifying workers with the necessary expertise to analyze complex information; and efficiently retrieving relevant information in massive data sets. In this paper, we introduce a crowdsourcing framework to support the annotation of medical data sets. We further demonstrate a workflow for crowdsourcing clinical chart reviews including (1) the design and decomposition of research questions; (2) the architecture for storing and displaying sensitive data; and (3) the development of tools to support crowd workers in quickly analyzing information from complex data sets.

  1. Numerical implementation of multiple peeling theory and its application to spider web anchorages.

    PubMed

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2015-02-06

    Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.

  2. Numerical implementation of multiple peeling theory and its application to spider web anchorages

    PubMed Central

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M.

    2015-01-01

    Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations. PMID:25657835

  3. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    PubMed

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  4. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes

    DOE PAGES

    Berman, Gennady P.; Nesterov, Alexander I.; Gurvitz, Shmuel; ...

    2016-04-30

    Here, we analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the “damaging” and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In this model, both damaging and “dissipative” charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimicmore » the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. Moreover, these equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Finally, our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.« less

  5. Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion

    NASA Astrophysics Data System (ADS)

    Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.

    2006-04-01

    It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.

  6. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  7. QuVis interactive simulations: tools to support quantum mechanics instruction

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje

    2015-04-01

    Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.

  8. Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Horta, Lucas G.

    2012-01-01

    Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.

  9. Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  10. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms

    PubMed Central

    Auld, S KJR; Tinsley, M C

    2015-01-01

    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups—from single-celled bacteria to multicellular flatworms—yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host–parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field. PMID:25227255

  11. Computational Models and Emergent Properties of Respiratory Neural Networks

    PubMed Central

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  12. Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.

    PubMed

    Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent

    2017-05-16

    Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.

  13. Biomechanics and mechanical signaling in the ovary: a systematic review.

    PubMed

    Shah, Jaimin S; Sabouni, Reem; Cayton Vaught, Kamaria C; Owen, Carter M; Albertini, David F; Segars, James H

    2018-04-24

    Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.

  14. Macromolecular Transport between the Nucleus and the Cytoplasm: Advances in Mechanism and Emerging Links to Disease

    PubMed Central

    Tran, Elizabeth J.; King, Megan C.; Corbett, Anita H.

    2014-01-01

    Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18-23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field. PMID:25116306

  15. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    PubMed Central

    Shin, David S.; Pratt, Ashley J.; Tainer, John A.

    2014-01-01

    As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine. PMID:24701133

  16. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    DOE PAGES

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; ...

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less

  17. Photofragmentation of Gas-Phase Lanthanide Cyclopentadienyl Complexes: Experimental and Time-Dependent Excited-State Molecular Dynamics

    PubMed Central

    2015-01-01

    Unimolecular gas-phase laser-photodissociation reaction mechanisms of open-shell lanthanide cyclopentadienyl complexes, Ln(Cp)3 and Ln(TMCp)3, are analyzed from experimental and computational perspectives. The most probable pathways for the photoreactions are inferred from photoionization time-of-flight mass spectrometry (PI-TOF-MS), which provides the sequence of reaction intermediates and the distribution of final products. Time-dependent excited-state molecular dynamics (TDESMD) calculations provide insight into the electronic mechanisms for the individual steps of the laser-driven photoreactions for Ln(Cp)3. Computational analysis correctly predicts several key reaction products as well as the observed branching between two reaction pathways: (1) ligand ejection and (2) ligand cracking. Simulations support our previous assertion that both reaction pathways are initiated via a ligand-to-metal charge-transfer (LMCT) process. For the more complex chemistry of the tetramethylcyclopentadienyl complexes Ln(TMCp)3, TMESMD is less tractable, but computational geometry optimization reveals the structures of intermediates deduced from PI-TOF-MS, including several classic “tuck-in” structures and products of Cp ring expansion. The results have important implications for metal–organic catalysis and laser-assisted metal–organic chemical vapor deposition (LCVD) of insulators with high dielectric constants. PMID:24910492

  18. Modeling Events in the Lower Imperial Valley Basin

    NASA Astrophysics Data System (ADS)

    Tian, X.; Wei, S.; Zhan, Z.; Fielding, E. J.; Helmberger, D. V.

    2010-12-01

    The Imperial Valley below the US-Mexican border has few seismic stations but many significant earthquakes. Many of these events, such as the recent El Mayor-Cucapah event, have complex mechanisms involving a mixture of strike-slip and normal slip patterns with now over 30 aftershocks with magnitude over 4.5. Unfortunately, many earthquake records from the Southern Imperial Valley display a great deal of complexity, ie., strong Rayleigh wave multipathing and extended codas. In short, regional recordings in the US are too complex to easily separate source properties from complex propagation. Fortunately, the Dec 30 foreshock (Mw=5.9) has excellent recordings teleseismically and regionally, and moreover is observed with InSAR. We use this simple strike-slip event to calibrate paths. In particular, we are finding record segments involving Pnl (including depth phases) and some surface waves (mostly Love waves) that appear well behaved, ie., can be approximated by synthetics from 1D local models and events modeled with the Cut-and-Paste (CAP) routine. Simple events can then be identified along with path calibration. Modeling the more complicated paths can be started with known mechanisms. We will report on both the aftershocks and historic events.

  19. Photochemical reactions of metal nitrosyl complexes. Mechanisms of NO reactions with biologically relevant metal centers

    DOE PAGES

    Ford, Peter C.

    2001-01-01

    Tmore » he discoveries that nitric oxide (a.k.a. nitrogen monoxide) serves important roles in mammalian bioregulation and immunology have stimulated intense interest in the chemistry and biochemistry of NO and derivatives such as metal nitrosyl complexes. Also of interest are strategies to deliver NO to biological targets on demand. One such strategy would be to employ a precursor which displays relatively low thermal reactivity but is photochemically active to release NO. his proposition led us to investigate laser flash and continuous photolysis kinetics of nitrosyl complexes such as the Roussin's iron-sulfur-nitrosyl cluster anions Fe 2 S 2 ( NO ) 4 2 − and Fe 4 S 3 ( NO ) 7 − and several ruthenium salen and porphyrin nitrosyls. hese include studies using metal-nitrosyl photochemistry as a vehicle for delivering NO to hypoxic cell cultures in order to sensitize γ -radiation damage. Also studied were the rates and mechanisms of NO “on” reactions with model water soluble heme compounds, the ferriheme protein met-myoglobin and various ruthenium complexes using ns laser flash photolysis techniques. An overview of these studies is presented.« less

  20. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype

    PubMed Central

    Tsuda, Takeshi; Fitzgerald, Kristi K.

    2017-01-01

    Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts. PMID:29367543

  1. A Complex 6p25 Rearrangement in a Child With Multiple Epiphyseal Dysplasia

    PubMed Central

    Bedoyan, Jirair K.; Lesperance, Marci M.; Ackley, Todd; Iyer, Ramaswamy K.; Innis, Jeffrey W.; Misra, Vinod K.

    2015-01-01

    Genomic rearrangements are increasingly recognized as important contributors to human disease. Here we report on an 11½-year-old child with myopia, Duane retraction syndrome, bilateral mixed hearing loss, skeletal anomalies including multiple epiphyseal dysplasia, and global developmental delay, and a complex 6p25 genomic rearrangement. We have employed oligonucleotide-based comparative genomic hybridization arrays (aCGH) of different resolutions (44 and 244K) as well as a 1 M single nucleotide polymorphism (SNP) array to analyze this complex rearrangement. Our analyses reveal a complex rearrangement involving a ~2.21 Mb interstitial deletion, a ~240 kb terminal deletion, and a 70–80 kb region in between these two deletions that shows maintenance of genomic copy number. The interstitial deletion contains eight known genes, including three Forkhead box containing (FOX) transcription factors (FOXQ1, FOXF2, and FOXC1). The region maintaining genomic copy number partly overlaps the dual specificity protein phosphatase 22 (DUSP22) gene. Array analyses suggest a homozygous loss of genomic material at the 5′ end of DUSP22, which was corroborated using TaqMan® copy number analysis. It is possible that this homozygous genomic loss may render both copies of DUSP22 or its products non-functional. Our analysis suggests a rearrangement mechanism distinct from a previously reported replication-based error-prone mechanism without template switching for a specific 6p25 rearrangement with a 1.22 Mb interstitial deletion. Our study demonstrates the utility and limitations of using oligonucleotide-based aCGH and SNP array technologies of increasing resolutions in order to identify complex DNA rearrangements and gene disruptions. PMID:21204225

  2. Mechanisms and pathways of growth failure in primordial dwarfism.

    PubMed

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  3. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

    PubMed

    Postnikova, G B; Shekhovtsova, E A

    2016-12-01

    In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO 2 and MbO 2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E 0 , 200-600 mV) and high stability constants, such as [Cu(phen) 2 ] 2+ , [Cu(dmphen) 2 ] 2+ , and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E 0 ≤ 100-150 mV) react with HbO 2 and MbO 2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO 2 and MbO 2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PP i proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO 2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO 2 and cytochrome b 5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO 2 and MbO 2 transformation into met-forms in the presence of small amounts of metal ions or complexes (catalysis), which, until recently, had been demonstrated only for copper compounds with intermediate redox potentials. The main contribution to the reaction rate comes from copper binding to the "inner" histidines, His97 (0.66 nm from the heme) that forms a hydrogen bond with the heme propionate COO - group, and the distal His64. The affinity of both histidines for copper is much lower than that of the surface histidines residues, and they are inaccessible for modification with chemical reagents. However, it was found recently that the high-potential Fe(3) complex, potassium ferricyanide (400 mV), at a 5 to 20% of molar protein concentration can be an efficient catalyst of MbO 2 oxidation into metMb. The catalytic process includes binding of ferrocyanide anion in the region of the His119 residue due to the presence there of a large positive local electrostatic potential and existence of a "pocket" formed by Lys16, Ala19, Asp20, and Arg118 that is sufficient to accommodate [Fe(CN) 6 ] 4- . Fast, proton-assisted reoxidation of the bound ferrocyanide by oxygen (which is required for completion of the catalytic cycle), unlike slow [Fe(CN) 6 ] 4- oxidation in solution, is provided by the optimal location of neighboring protonated His113 and His116, as it occurs in the enzyme active site.

  4. Effect of temperature on the complexation of NpO 2 + with benzoic acid: Spectrophotometric and calorimetric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yanqiu; Zhang, Zhicheng; Liu, Guokui

    The equilibrium constants of the 1:1 NpO2+/benzoate complex were determined by spectrophotometric titrations at variable temperatures (T = 283 to 343 K) and the ionic strength of 1.05 mol · kg-1. The enthalpy of complexation at T = 298 K was determined by microcalorimetric titrations. Similar to other monocarboxylates, benzoate forms a weak complex with NpO2+ and the complexation is strengthened as the temperature is increased. The complexation is endothermic and is entropy-driven. The enhancement of the complexation at elevated temperatures is primarily attributed to the increasingly larger entropy gain when the water molecules are released from the highly-ordered solvationmore » spheres of NpO2+ and benzoate to the bulk solvent where the degree of disorder is higher at higher temperatures. The spectroscopic features of the Np(V)/benzoate system, including the effect of temperature on the absorption bands, are discussed in terms of ligand field splitting and a thermal expansion mechanism.« less

  5. Characterization of Combustion Dynamics, Detection, and Prevention of an Unstable Combustion State Based on a Complex-Network Theory

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Kinugawa, Hikaru; Tsujimoto, Ryosuke; Domen, Shohei; Okuno, Yuta

    2017-04-01

    Complex-network theory has attracted considerable attention for nearly a decade, and it enables us to encompass our understanding of nonlinear dynamics in complex systems in a wide range of fields, including applied physics and mechanical, chemical, and electrical engineering. We conduct an experimental study using a pragmatic online detection methodology based on complex-network theory to prevent a limiting unstable state such as blowout in a confined turbulent combustion system. This study introduces a modified version of the natural visibility algorithm based on the idea of a visibility limit to serve as a pragmatic online detector. The average degree of the modified version of the natural visibility graph allows us to detect the onset of blowout, resulting in online prevention.

  6. A simple model clarifies the complicated relationships of complex networks

    PubMed Central

    Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi

    2014-01-01

    Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506

  7. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases.

    PubMed

    Sun, Wanqing; Liu, Quan; Leng, Jiyan; Zheng, Yang; Li, Ji

    2015-01-15

    The regulation of mammalian myocardial carbohydrate metabolism is complex; many factors such as arterial substrate and hormone levels, coronary flow, inotropic state and the nutritional status of the tissue play a role in regulating mammalian myocardial carbohydrate metabolism. The Pyruvate Dehydrogenase Complex (PDHc), a mitochondrial matrix multienzyme complex, plays an important role in energy homeostasis in the heart by providing the link between glycolysis and the tricarboxylic acid (TCA) cycle. In TCA cycle, PDHc catalyzes the conversion of pyruvate into acetyl-CoA. This review determines that there is altered cardiac glucose in various pathophysiological states consequently causing PDC to be altered. This review further summarizes evidence for the metabolism mechanism of the heart under normal and pathological conditions including ischemia, diabetes, hypertrophy and heart failure. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology.

    PubMed

    Klenkler, Bettina; Sheardown, Heather

    2004-11-01

    A number of growth factors and their associated receptors, including epidermal growth factor, transforming growth factor-beta, keratinocyte growth factor, hepatocyte growth factor, fibroblast growth factor and platelet-derived growth factor have been detected in the anterior segment of the eye. On binding to cellular receptors, these factors activate signalling cascades, which regulate functions including mitosis, differentiation, motility and apoptosis. Production of growth factors by corneal cells and their presence in the tear fluid and aqueous humour is essential for maintenance and renewal of normal tissue in the anterior eye and the prevention of undesirable immune or angiogenic reactions. Growth factors also play a vital role in corneal wound healing, mediating the proliferation of epithelial and stromal tissue and affecting the remodelling of the extracellular matrix (ECM). These functions depend on a complex interplay between growth factors of different types, the ECM, and regulatory mechanisms of the affected cells. Imbalances may lead to deficient wound healing and various ocular pathologies, including edema, neovascularization and glaucoma. Growth factors may be targeted in therapeutic ophthalmic applications, through exogenous application or selective inhibition, and may be used to elicit specific cellular responses to ophthalmic materials. A thorough understanding of the mechanism and function of growth factors and their actions in the complex environment of the anterior eye is required for these purposes. Growth factors, their function and mechanisms of action as well as the interplay between different growth factors based on recent in vitro and in vivo studies are presented.

  9. Structural elements and organization of the ancestral translational machinery

    NASA Technical Reports Server (NTRS)

    Rein, R.; Srinivasan, S.; Mcdonald, J.; Raghunathan, G.; Shibata, M.

    1987-01-01

    The molecular mechanisms of the primitive translational apparatus are discussed in the framework of present-day protein biosynthesis. The structural necessities of an early adaptor and the multipoint recognition properties of such an adaptor are investigated on the basis of structure/function relationships found in a contemporary system and a molecular model of the contemporary transpeptidation complex. A model of the tRNA(Tyr)-tyrosyl tRNA synthetase complex including the positioning of the disordered region is proposed; the model is used to illustrate the required recognition properties of the ancestor aminoacyl synthetase.

  10. Lumbo-Pelvic-Hip Complex Pain in a Competitive Basketball Player

    PubMed Central

    Reiman, Michael P.; Cox, Kara D.; Jones, Kay S.; Byrd, J. W.

    2011-01-01

    Establishing the cause of lumbo-pelvic-hip complex pain is a challenge for many clinicians. This case report describes the mechanism of injury, diagnostic process, surgical management, and rehabilitation of a female high school basketball athlete who sustained an injury when falling on her right side. Diagnostics included clinical examination, radiography of the spine and hip joint, magnetic resonance imaging arthrogram, 3-dimensional computed tomography scan, and computed tomography of the hip joint. A systematic multidisciplinary clinical approach resulted in the patient’s return to previous functional levels. PMID:23015993

  11. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    PubMed

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A Combined Kinetic and Volatility Basis Set Approach to Model Secondary Organic Aerosol from Toluene and Diesel Exhaust/Meat Cooking Mixtures

    NASA Astrophysics Data System (ADS)

    Parikh, H. M.; Carlton, A. G.; Zhang, H.; Kamens, R.; Vizuete, W.

    2011-12-01

    Secondary organic aerosol (SOA) is simulated for 6 outdoor smog chamber experiments using a SOA model based on a kinetic chemical mechanism in conjunction with a volatility basis set (VBS) approach. The experiments include toluene, a non-SOA-forming hydrocarbon mixture, diesel exhaust or meat cooking emissions and NOx, and are performed under varying conditions of relative humidity. SOA formation from toluene is modeled using a condensed kinetic aromatic mechanism that includes partitioning of lumped semi-volatile products in particle organic-phase and incorporates particle aqueous-phase chemistry to describe uptake of glyoxal and methylglyoxal. Modeling using the kinetic mechanism alone, along with primary organic aerosol (POA) from diesel exhaust (DE) /meat cooking (MC) fails to simulate the rapid SOA formation at the beginning hours of the experiments. Inclusion of a VBS approach with the kinetic mechanism to characterize the emissions and chemistry of complex mixture of intermediate volatility organic compounds (IVOCs) from DE/MC, substantially improves SOA predictions when compared with observed data. The VBS model includes photochemical aging of IVOCs and evaporation of POA after dilution. The relative contribution of SOA mass from DE/MC is as high as 95% in the morning, but substantially decreases after mid-afternoon. For high humidity experiments, aqueous-phase SOA fraction dominates the total SOA mass at the end of the day (approximately 50%). In summary, the combined kinetic and VBS approach provides a new and improved framework to semi-explicitly model SOA from VOC precursors in conjunction with a VBS approach that can be used on complex emission mixtures comprised with hundreds of individual chemical species.

  13. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  14. A New Paradigm in Modeling and Simulations of Complex Oxidation Chemistry Using a Statistical Approach

    DTIC Science & Technology

    2009-03-31

    8. This range encompasses diesel , HCCI and gas turbine engines , including cold ignition; and NOx , CO and soot pollutant formation in the lean and...equivalence ratios from 0.125 to 8. This range encompasses diesel , HCCI and gas turbine engines , including cold ignition; and NOx , CO and soot pollutant...California Institute of Technology Mechanical Engineering Department Pasadena CA 91125 i Abstract This report describes a study

  15. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  16. Exploring the Role of Intrinsic Nodal Activation on the Spread of Influence in Complex Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visweswara Sathanur, Arun; Halappanavar, Mahantesh; Shi, Yi

    In many complex networked systems such as online social networks, at any given time, activity originates at certain nodes and subsequently spreads on the network through influence. To model the spread of influence in such a scenario, we consider the problem of identification of influential entities in a complex network when nodal activation can happen through two different mechanisms. The first mode of activation is due mechanisms intrinsic to the node. The second mechanism is through the influence of connected neighbors. In this work, we present a simple probabilistic formulation that models such self-evolving systems where information diffusion occurs primarilymore » because of the intrinsic activity of users and the spread of activity occurs due to influence. We provide an algorithm to mine for the influential seeds in such a scenario by modifying the well-known influence maximization framework with the independent cascade diffusion model. We provide small motivating examples to provide an intuitive understanding of the effect of including the intrinsic activation mechanism. We sketch a proof of the submodularity of the influence function under the new formulation and demonstrate the same with larger graphs. We then show by means of additional experiments on a real-world twitter dataset how the formulation can be applied to real-world social media datasets. Finally we derive a computationally efficient centrality metric that takes into account, both the mechanisms of activation and provides for an accurate as well as computationally efficient alternative approach to the problem of identifying influencers under intrinsic activation.« less

  17. Statistical Analysis of Big Data on Pharmacogenomics

    PubMed Central

    Fan, Jianqing; Liu, Han

    2013-01-01

    This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905

  18. The Promise of Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease.

    PubMed

    Griffin, Tomás P; Martin, William Patrick; Islam, Nahidul; O'Brien, Timothy; Griffin, Matthew D

    2016-05-01

    Diabetes mellitus (DM) commonly leads to progressive chronic kidney disease despite current best medical practice. The pathogenesis of diabetic kidney disease (DKD) involves a complex network of primary and secondary mechanisms with both intra-renal and systemic components. Apart from inhibition of the renin angiotensin aldosterone system, targeting individual pathogenic mediators with drug therapy has not, thus far, been proven to have high clinical value. Stem or progenitor cell therapies offer an alternative strategy for modulating complex disease processes through suppressing multiple pathogenic pathways and promoting pro-regenerative mechanisms. Mesenchymal stem cells (MSCs) have shown particular promise based on their accessibility from adult tissues and their diverse mechanisms of action including secretion of paracrine anti-inflammatory and cyto-protective factors. In this review, the progress toward clinical translation of MSC therapy for DKD is critically evaluated. Results from animal models suggest distinct potential for systemic MSC infusion to favourably modulate DKD progression. However, only a few early phase clinical trials have been initiated and efficacy in humans remains to be proven. Key knowledge gaps and research opportunities exist in this field. These include the need to gain greater understanding of in vivo mechanism of action, to identify quantifiable biomarkers of response to therapy and to define the optimal source, dose and timing of MSC administration. Given the rising prevalence of DM and DKD worldwide, continued progress toward harnessing the inherent regenerative functions of MSCs and other progenitor cells for even a subset of those affected has potential for profound societal benefits.

  19. Intergenerational Neuroimaging of Human Brain Circuitry

    PubMed Central

    Ho, Tiffany C.; Sanders, Stephan J.; Gotlib, Ian H.; Hoeft, Fumiko

    2016-01-01

    Neuroscientists are increasingly using advanced neuroimaging methods to elucidate the intergenerational transmission of human brain circuitry. This new line of work promises to shed insight into the ontogeny of complex behavioral traits, including psychiatric disorders, and possible mechanisms of transmission. Here, we highlight recent intergenerational neuroimaging studies and provide recommendations for future work. PMID:27623194

  20. The Effects of Supplemental Sentence-Level Instruction for Fourth-Grade Students Identified as Struggling Writers

    ERIC Educational Resources Information Center

    Furey, William M.; Marcotte, Amanda M.; Wells, Craig S.; Hintze, John M.

    2017-01-01

    The Language and Writing strands of the Common Core State Standards place a heavy emphasis on sentence-level conventions including syntax/grammar and mechanics. Interventions targeting these foundational skills are necessary to support struggling writers, as poorly developed sentence construction skills inhibit more complex writing tasks. This…

  1. Modulation of integrin-linked kinase nucleo-cytoplasmic shuttling by ILKAP and CRM1.

    PubMed

    Nakrieko, Kerry-Ann; Vespa, Alisa; Mason, David; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina

    2008-07-15

    Integrin-linked kinase (ILK) plays key roles in a variety of cell functions, including cell proliferation, adhesion and migration. Within the cell, ILK localizes to multiple sites, including the cytoplasm, focal adhesion complexes that mediate cell adhesion to extracellular substrates, as well as cell-cell junctions in epidermal keratinocytes. Central to understanding ILK function is the elucidation of the mechanisms that regulate its subcellular localization. We now demonstrate that ILK is imported into the nucleus through sequences in its N-terminus, via active transport mechanisms that involve nuclear pore complexes. In addition, nuclear ILK can be rapidly exported into the cytoplasm through a CRM1-dependent pathway, and its export is enhanced by the type 2C protein phosphatase ILKAP. Nuclear localization of ILK in epidermal keratinocytes is associated with increased DNA synthesis, which is sensitive to inhibition by ILKAP. Our studies demonstrate the importance for keratinocyte proliferation of ILK regulation through changes in its subcellular localization, and establish ILKAP and CRM1 as pivotal modulators of ILK subcellular distribution and activity in these cells.

  2. The Mechanobiology of Aging

    PubMed Central

    Walston, Jeremy; Wirtz, Denis

    2016-01-01

    Aging is a complex, multifaceted process that induces a myriad of physiological changes over an extended period of time. Aging is accompanied by major biochemical and biomechanical changes at macroscopic and microscopic length scales that affect not only tissues and organs but also cells and subcellular organelles. These changes include transcriptional and epigenetic modifications; changes in energy production within mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their surrounding extracellular matrix. In addition, aging influences the ability of cells to sense changes in extracellular-matrix compliance (mechanosensation) and to transduce these changes into biochemical signals (mechanotransduction). Moreover, following a complex positive-feedback loop, aging is accompanied by changes in the composition and structure of the extracellular matrix, resulting in changes in the mechanics of connective tissues in older individuals. Consequently, these progressive dysfunctions facilitate many human pathologies and deficits that are associated with aging, including cardiovascular, musculoskeletal, and neurodegenerative disorders and diseases. Here, we critically review recent work highlighting some of the primary biophysical changes occurring in cells and tissues that accompany the aging process. PMID:26643020

  3. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    PubMed

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  4. Adsorption mechanisms and impact factors of oxytetracycline on activated sludge

    NASA Astrophysics Data System (ADS)

    Xiancai, Song; Dongfang, Liu; Lejun, Zhao

    2017-03-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.

  5. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  6. Biomechanics of plant-insect interactions.

    PubMed

    Whitney, Heather M; Federle, Walter

    2013-02-01

    Plant-insect interactions are determined by both chemical and physical mechanisms. Biomechanical factors play an important role across many ecological situations, including pollination, herbivory and plant carnivory, and have led to complex adaptations in both plants and insects. However, while mechanical factors involved in some highly specific interactions have been elucidated, more generalised effects may be widespread but are more difficult to isolate, due to the multifunctional properties of the plant surfaces and tissues where interactions occur. Novel methodologies are being developed to investigate the mechanisms of biomechanical interactions and discover to what extent adaptive structures could be exploited via biomimetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis

    PubMed Central

    Hammes, Gordon G.; Benkovic, Stephen J.; Hammes-Schiffer, Sharon

    2011-01-01

    This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, NMR, and single molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model. PMID:22029278

  8. Dynamic model of time-dependent complex networks.

    PubMed

    Hill, Scott A; Braha, Dan

    2010-10-01

    The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.

  9. Rotational 3D printing of damage-tolerant composites with programmable mechanics

    PubMed Central

    Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.

    2018-01-01

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206

  10. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.

    PubMed

    Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent

    2016-02-01

    Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    PubMed

    White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K

    2016-12-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  12. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems

    PubMed Central

    Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.

    2016-01-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060

  13. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    DOE PAGES

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; ...

    2016-01-19

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less

  14. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less

  15. Glucose adsorption to chitosan membranes increases proliferation of human chondrocyte via mammalian target of rapamycin complex 1 and sterol regulatory element-binding protein-1 signaling.

    PubMed

    Chang, Shun-Fu; Huang, Kuo-Chin; Cheng, Chin-Chang; Su, Yu-Ping; Lee, Ko-Chao; Chen, Cheng-Nan; Chang, Hsin-I

    2017-10-01

    Osteoarthritis (OA) is currently still an irreversible degenerative disease of the articular cartilage. Recent, dextrose (d-glucose) intraarticular injection prolotherapy for OA patients has been reported to benefit the chondrogenic stimulation of damaged cartilage. However, the detailed mechanism of glucose's effect on cartilage repair remains unclear. Chitosan, a naturally derived polysaccharide, has recently been investigated as a surgical or dental dressing to control breeding. Therefore, in this study, glucose was adsorbed to chitosan membranes (CTS-Glc), and the study aimed to investigate whether CTS-Glc complex membranes could regulate the proliferation of human OA chondrocytes and to explore the underlying mechanism. Human OA and SW1353 chondrocytes were used in this study. The experiments involving the transfection of cells used SW1353 chondrocytes. A specific inhibitor and siRNAs were used to investigate the mechanism underlying the CTS-Glc-regulated proliferation of human chondrocytes. We found that CTS-Glc significantly increased the proliferation of both human OA and SW1353 chondrocytes comparable to glucose- or chitosan-only stimulation. The role of mammalian target of rapamycin complex 1 (mTORC1) signaling, including mTOR, raptor, and S6k proteins, has been demonstrated in the regulation of CTS-Glc-increased human chondrocyte proliferation. mTORC1 signaling increased the expression levels of maturated SREBP-1 and FASN and then induced the expressions of cell cycle regulators, that is, cyclin D, cyclin-dependent kinase-4 and -6 in human chondrocytes. This study elucidates the detailed mechanism behind the effect of CTS-Glc complex membranes in promoting chondrocyte proliferation and proposes a possible clinical application of the CTS-Glc complex in the dextrose intraarticular injection of OA prolotherapy in the future to attenuate the pain and discomfort of OA patients. © 2017 Wiley Periodicals, Inc.

  16. Welding at the Kennedy Space Center.

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1973-01-01

    Brief description of the nature of the mechanical equipment at a space launch complex from a welding viewpoint. including an identification of the major welding applications used in the construction of this complex. The role played by welding in the ground support equipment is noted, including the welded structures and systems required in the vehicle assembly building, the mobile launchers, transporters, mobile service structure, launch pad and launch site, the propellants system, the pneumatics system, and the environmental control system. The welding processes used at the Kennedy Space Center are reviewed, and a particularly detailed account is given of the design and fabrication of the liquid hydrogen and liquid oxygen storage spheres and piping. Finally, the various methods of testing and inspecting the storage spheres are cited.

  17. A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains.

    PubMed

    Hui, David Shui Wing; Chen, Yi-Chao; Zhang, Gong; Wu, Weijie; Chen, Guanrong; Lui, John C S; Li, Yingtao

    2017-06-16

    This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.

  18. Synaptic scaffold evolution generated components of vertebrate cognitive complexity

    PubMed Central

    Nithianantharajah, J.; Komiyama, N.H.; McKechanie, A.; Johnstone, M.; Blackwood, D. H.; St Clair, D.; Emes, R.D.; van de Lagemaat, L. N.; Saksida, L.M.; Bussey, T.J.; Grant, S.G.N.

    2014-01-01

    The origins and evolution of higher cognitive functions including complex forms of learning, attention and executive functions are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 My ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in all four Dlg paralogs show simple associative learning required Dlg4, while Dlg2 and Dlg3 diversified to play opposing roles in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed Dlg2’s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 My. Dlg family mutations underlie psychiatric disorders suggesting genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness. PMID:23201973

  19. Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data

    NASA Astrophysics Data System (ADS)

    Massias, A.; Diamantis, D.; Mastorakos, E.; Goussis, D. A.

    1999-06-01

    Reduced mechanisms for methane-air and hydrogen-air combustion including NO formation have been constructed with the computational singular perturbation (CSP) method using the fully automated algorithm described by Massias et al. The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 2.11 for methane and a 71-reaction mechanism for hydrogen including NOx formation. A 10-step reduced mechanism for methane has been constructed which reproduces accurately laminar burning velocities, flame temperatures and mass fraction distributions of major species for the whole flammability range. Many steady-state species are also predicted satisfactorily. This mechanism is an improvement over the seven-step set of Massias et al, especially for rich flames, because the use of HCNO, HCN and C2H2 as major species results in a better calculation of prompt NO. The present 10-step mechanism may thus also be applicable to diffusion flames. A five-step mechanism for lean and hydrogen-rich combustion has also been constructed based on a detailed mechanism including thermal NO. This mechanism is accurate for a wide range of the equivalence ratio and for pressures as high as 40 bar. For both fuels, the CSP algorithm automatically pointed to the same steady-state species as those identified by laborious analysis or intuition in the literature and the global reactions were similar to well established previous methane-reduced mechanisms. This implies that the method is very well suited for the study of complex mechanisms for heavy hydrocarbon combustion.

  20. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics

    PubMed Central

    Cox, Robert; Plemper, Richard K.

    2015-01-01

    The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers. PMID:26029193

  1. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics.

    PubMed

    Cox, Robert; Plemper, Richard K

    2015-01-01

    The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.

  2. A model complex of a possible intermediate in the mechanism of action of peptide deformylase: first example of an (N2S)zinc(II)-formate complex.

    PubMed

    Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P

    2001-11-21

    The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.

  3. Relationship between mechanical-property and energy-absorption trends for composite tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    U.S. Army helicopters are designed to dissipate prescribed levels of crash impact kinetic energy without compromising the integrity of the fuselage. Because of the complexity of the energy-absorption process it is imperative for designers of energy-absorbing structures to develop an in-depth understanding of how and why composite structures absorb energy. A description of the crushing modes and mechanisms of energy absorption for composite tubes and beams is presented. Three primary crushing modes of composite structures including transverse shearing, lamina bending, and local buckling are described. The experimental data presented show that fiber and matrix mechanical properties and laminate stiffness and strength mechanical properties cannot reliably predict the energy-absorption response of composite tubes.

  4. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    NASA Astrophysics Data System (ADS)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  5. Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function

    PubMed Central

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-01-01

    Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479

  6. Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  7. Mathematical description of complex chemical kinetics and application to CFD modeling codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  8. Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock.

    PubMed

    Jarkovska, Dagmar; Markova, Michaela; Horak, Jan; Nalos, Lukas; Benes, Jan; Al-Obeidallah, Mahmoud; Tuma, Zdenek; Sviglerova, Jitka; Kuncova, Jitka; Matejovic, Martin; Stengl, Milan

    2018-01-01

    The complex pathogenesis of sepsis and septic shock involves myocardial depression, the pathophysiology of which, however, remains unclear. In this study, cellular mechanisms of myocardial depression were addressed in a clinically relevant, large animal (porcine) model of sepsis and septic shock. Sepsis was induced by fecal peritonitis in eight anesthetized, mechanically ventilated, and instrumented pigs of both sexes and continued for 24 h. In eight control pigs, an identical experiment but without sepsis induction was performed. In vitro analysis of cardiac function included measurements of action potentials and contractions in the right ventricle trabeculae, measurements of sarcomeric contractions, calcium transients and calcium current in isolated cardiac myocytes, and analysis of mitochondrial respiration by ultrasensitive oxygraphy. Increased values of modified sequential organ failure assessment score and serum lactate levels documented the development of sepsis/septic shock, accompanied by hyperdynamic circulation with high heart rate, increased cardiac output, peripheral vasodilation, and decreased stroke volume. In septic trabeculae, action potential duration was shortened and contraction force reduced. In septic cardiac myocytes, sarcomeric contractions, calcium transients, and L-type calcium current were all suppressed. Similar relaxation trajectory of the intracellular calcium-cell length phase-plane diagram indicated unchanged calcium responsiveness of myofilaments. Mitochondrial respiration was diminished through inhibition of Complex II and Complex IV. Defective calcium handling with reduced calcium current and transients, together with inhibition of mitochondrial respiration, appears to represent the dominant cellular mechanisms of myocardial depression in porcine septic shock.

  9. Identifying future directions for subsurface hydrocarbon migration research

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  10. Control of cell behaviour through nanovibrational stimulation: nanokicking

    NASA Astrophysics Data System (ADS)

    Robertson, Shaun N.; Campsie, Paul; Childs, Peter G.; Madsen, Fiona; Donnelly, Hannah; Henriquez, Fiona L.; Mackay, William G.; Salmerón-Sánchez, Manuel; Tsimbouri, Monica P.; Williams, Craig; Dalby, Matthew J.; Reid, Stuart

    2018-05-01

    Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or `nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  11. Control of cell behaviour through nanovibrational stimulation: nanokicking.

    PubMed

    Robertson, Shaun N; Campsie, Paul; Childs, Peter G; Madsen, Fiona; Donnelly, Hannah; Henriquez, Fiona L; Mackay, William G; Salmerón-Sánchez, Manuel; Tsimbouri, Monica P; Williams, Craig; Dalby, Matthew J; Reid, Stuart

    2018-05-28

    Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or 'nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  12. Chiral discrimination in cyclodextrin complexes of amino acid derivatives: beta-cyclodextrin/N-acetyl-L-phenylalanine and N-acetyl-D-phenylalanine complexes.

    PubMed

    Alexander, Jennifer M; Clark, Joanna L; Brett, Tom J; Stezowski, John J

    2002-04-16

    In a systematic study of molecular recognition of amino acid derivatives in solid-state beta-cyclodextrin (beta-CD) complexes, we have determined crystal structures for complexes of beta-cyclodextrin/N-acetyl-L-phenylalanine at 298 and 20 K and for N-acetyl-D-phenylalanine at 298 K. The crystal structures for the N-acetyl-L-phenylalanine complex present disordered inclusion complexes for which the distribution of guest molecules at room temperature is not resolvable; however, they can be located with considerable confidence at low temperature. In contrast, the complex with N-acetyl-D-phenylalanine is well ordered at room temperature. The latter complex presents an example of a complex in this series in which a water molecule is included deeply in the hydrophobic torus of the extended dimer host. In an effort to understand the mechanisms of molecular recognition giving rise to the dramatic differences in crystallographic order in these crystal structures, we have examined the intermolecular interactions in detail and have examined insertion of the enantiomer of the D-complex into the chiral beta-CD complex crystal lattice.

  13. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    PubMed

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  14. Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for Ubiquitin Chain Assembly

    DOE PAGES

    Brown, Nicholas G.; Watson, Edmond R.; Weissmann, Florian; ...

    2014-10-09

    Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here in this paper we show that human APC’s RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms.more » During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.« less

  15. Studies on Stress-Strain Relationships of Polymeric Materials Used in Space Applications

    NASA Technical Reports Server (NTRS)

    Jana, Sadhan C.; Freed, Alan

    2002-01-01

    A two-year research plan was undertaken in association with Polymers Branch, NASA Glenn Research Center, to carry out experimental and modeling work relating stress and strain behavior of polymeric materials, especially elastomers and vulcanized rubber. An experimental system based on MTS (Mechanical Testing and Simulation) A/T-4 test facility environment has been developed for a broader range of polymeric materials in addition to a design of laser compatible temperature control chamber for online measurements of various strains. Necessary material processing has been accomplished including rubber compounding and thermoplastic elastomer processing via injection molding. A broad suite of testing methodologies has been identified to reveal the complex non-linear mechanical behaviors of rubbery materials when subjected to complex modes of deformation. This suite of tests required the conceptualization, design and development of new specimen geometries, test fixtures, and test systems including development of a new laser based technique to measure large multi-axial deformations. Test data has been generated for some of these new fixtures and has revealed some complex coupling effects generated during multi-axial deformations. In addition, fundamental research has been conducted concerning the foundation principles of rubber thermodynamics and resulting theories of rubber elasticity. Studies have been completed on morphological properties of several thermoplastic elastomers. Finally, a series of steps have been identified to further advance the goals of NASA's ongoing effort.

  16. Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications.

    PubMed

    Dalecki, Alex G; Crawford, Cameron L; Wolschendorf, Frank

    2017-01-01

    Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper. © 2017 Elsevier Ltd. All rights reserved.

  17. Ernest Hemingway: a psychological autopsy of a suicide.

    PubMed

    Martin, Christopher D

    2006-01-01

    Much has been written about Ernest Hemingway, including discussion of his well-documented mood disorder, alcoholism, and suicide. However, a thorough biopsychosocial approach capable of integrating the various threads of the author's complex psychiatric picture has yet to be applied. Application of such a psychiatric view to the case of Ernest Hemingway in an effort toward better understanding of the author's experience with illness and the tragic outcome is the aim of this investigation. Thus, Hemingway's life is examined through a review and discussion of biographies, psychiatric literature, personal correspondence, photography, and medical records. Significant evidence exists to support the diagnoses of bipolar disorder, alcohol dependence, traumatic brain injury, and probable borderline and narcissistic personality traits. Late in life, Hemingway also developed symptoms of psychosis likely related to his underlying affective illness and superimposed alcoholism and traumatic brain injury. Hemingway utilized a variety of defense mechanisms, including self-medication with alcohol, a lifestyle of aggressive, risk-taking sportsmanship, and writing, in order to cope with the suffering caused by the complex comorbidity of his interrelated psychiatric disorders. Ultimately, Hemingway's defense mechanisms failed, overwhelmed by the burden of his complex comorbid illness, resulting in his suicide. However, despite suffering from multiple psychiatric disorders, Hemingway was able to live a vibrant life until the age of 61 and within that time contribute immortal works of fiction to the literary canon.

  18. Direct measurement of local material properties within living embryonic tissues

    NASA Astrophysics Data System (ADS)

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger

    The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.

  19. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min Wook; An, Seongpil; Song, Kyo Yong

    2015-12-28

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the matmore » fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.« less

  20. Pharmacological targets of breast cancer stem cells: a review.

    PubMed

    Pindiprolu, Sai Kiran S S; Krishnamurthy, Praveen T; Chintamaneni, Pavan Kumar

    2018-05-01

    Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.

  1. Cannabis: old medicine with new promise for neurological disorders.

    PubMed

    Carter, Gregory T; Weydt, Patrick

    2002-03-01

    Marijuana is a complex substance containing over 60 different forms of cannabinoids, the active ingredients. Cannabinoids are now known to have the capacity for neuromodulation, via direct, receptor-based mechanisms at numerous levels within the nervous system. These have therapeutic properties that may be applicable to the treatment of neurological disorders; including anti-oxidative, neuroprotective, analgesic and anti-inflammatory actions; immunomodulation, modulation of glial cells and tumor growth regulation. This article reviews the emerging research on the physiological mechanisms of endogenous and exogenous cannabinoids in the context of neurological disease.

  2. Lateral patellar dislocation: mechanism of disease, radiographic presentation, and management.

    PubMed

    Abramov, Michael; Stock, Harlan

    2013-04-01

    Lateral patellar dislocation is a common injury occurring in young active adults. The mechanism is that of twisting injury to the knee on a planted foot with valgus stress. Several predisposing factors, including femoral trochlear dysplasia, patella alta, and lateralization of the tibial tuberosity, contribute to patellar instability and lateral patellar dislocation. Magnetic resonance (MR) imaging of the knee is the modality of choice to evaluate underlying bone contusion patterns, associated soft-tissue injuries, and additional complex ligamentous and osteochondral injuries, many of which are not apparent on conventional radiographs.

  3. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  4. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  5. The Social Life of a Data Base

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte; Wales, Roxana; Clancy, Dan (Technical Monitor)

    2002-01-01

    This paper presents the complex social life of a large data base. The topics include: 1) Social Construction of Mechanisms of Memory; 2) Data Bases: The Invisible Memory Mechanism; 3) The Human in the Machine; 4) Data of the Study: A Large-Scale Problem Reporting Data Base; 5) The PRACA Study; 6) Description of PRACA; 7) PRACA and Paper; 8) Multiple Uses of PRACA; 9) The Work of PRACA; 10) Multiple Forms of Invisibility; 11) Such Systems are Everywhere; and 12) Two Morals to the Story. This paper is in viewgraph form.

  6. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression

    PubMed Central

    Lutz, Carol S.; Moreira, Alexandra

    2010-01-01

    Alternative RNA processing mechanisms, including alternative splicing and alternative polyadenylation, are increasingly recognized as important regulators of gene expression. This article will focus on what has recently been described about alternative polyadenylation in development, differentiation, and disease in higher eukaryotes. We will also describe how the evolving global methodologies for examining the cellular transcriptome, both experimental and bioinformatic, are revealing new details about the complex nature of alternative 3′ end formation, as well as interactions with other RNA-mediated and RNA processing mechanisms. PMID:21278855

  7. Precipitation in Al-Cu-Li alloys: from the kinetics of T1 phase precipitation to microstructure development in friction stir welds

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; de Geuser, F.; Decreus, B.; Malard, B.

    Al-Cu-Li based alloys are experiencing a rapid development for aerospace applications. The main hardening phase of this system (T1-Al2CuLi) forms as thin platelets (1 nm) that can reach diameters of 50 to 100 nm with remarkable stability in temperature. The nucleation, growth and thickening mechanisms of this phase are of crucial importance for the understanding of the microstructures resulting from simple to complex thermo-mechanical treatments, including friction stir welding of such alloys.

  8. [Hypertensive crisis: pathogenesis, clinic, treatment].

    PubMed

    Vertkin, A L; Topolianskiĭ, A V; Abdullaeva, A U; Alekseev, M A; Shakhmanaev, Kh A

    2013-01-01

    Contemporary data on mechanisms of development, types, and clinical picture of hypertensive crisis (HC) are presented. Algorithms of rational therapy of uncomplicated and complicated HC are considered. Appropriateness of the use in HC of antihypertensive drugs with multifactorial action is stressed. These drugs include urapidil - an antihypertensive agent with complex mechanism of action. Blocking mainly the postsynaptic 1-adrenoreceptors urapidil attenuates vasoconstrictor effect of catecholamines and decreases total peripheral resistance. Stimulation of 5HT1-receptors of medullary vasculomotor center promotes lowering of elevated vascular tone and prevents development of reflex tachycardia.

  9. [Modern approach to gait restoration in patients in the acute period of cerebral stroke].

    PubMed

    Skvortsova, V I; Ivanova, G E; Rumiantseva, N A; Staritsyn, A N; Kovrazhkina, E A; Suvorov, A Iu

    2010-01-01

    An objective of the study was to work out a complex program of gait restoration in patients with stroke using robot-driven mechanized gait trainers. The study included patients in the acute period of stroke (the mean age 59+/-10,4 years) who were not able to walk without assistance; 53 patients of the main group and 25 patients of the control group. The mean interval from the disease onset to the beginning of gait retraining sessions with mechanized gait trainers was 14+/-1,6 days depending on the adequacy of functional probes. The restoration program included everyday 30 minute sessions of exercise therapy. Patients of the main group received 20 min sessions using mechanized gait trainers Motomed Viva 2 and Gait Trainer 1 (GT1) with continuous monitoring of blood pressure and cardiac beat frequency. The number of sessions with GT1 was from 5 to 12, mean 7+/-1 sessions. After the complex restoration treatment, significant positive changes on scales of standing balance, functional categories of gait, Berg, Barthel (p< or =0.01) were observed in patients of the main group compared to controls. All patients of the main group became able to walk with a support or independently. The significant decrease (p< or =0.05) of a number of patients with disorders of proprioceptive sensitivity (from 37,7 to 9,4%) and with ataxia of the low extremities (from 37 to 11,3%) was observed in the main group, while no changes were seen in the control group. It has been concluded that the complex use of reflex kinesitherapy and robot-driven mechanotherapy in patients in the acute period of stroke allows to increase the functional activity and the level of self-service already prior to the discharge from hospital.

  10. Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making.

    PubMed

    Scholl, Jacqueline; Klein-Flügge, Miriam

    2017-09-28

    Recent research in cognitive neuroscience has begun to uncover the processes underlying increasingly complex voluntary behaviours, including learning and decision-making. Partly this success has been possible by progressing from simple experimental tasks to paradigms that incorporate more ecological features. More specifically, the premise is that to understand cognitions and brain functions relevant for real life, we need to introduce some of the ecological challenges that we have evolved to solve. This often entails an increase in task complexity, which can be managed by using computational models to help parse complex behaviours into specific component mechanisms. Here we propose that using computational models with tasks that capture ecologically relevant learning and decision-making processes may provide a critical advantage for capturing the mechanisms underlying symptoms of disorders in psychiatry. As a result, it may help develop mechanistic approaches towards diagnosis and treatment. We begin this review by mapping out the basic concepts and models of learning and decision-making. We then move on to consider specific challenges that emerge in realistic environments and describe how they can be captured by tasks. These include changes of context, uncertainty, reflexive/emotional biases, cost-benefit decision-making, and balancing exploration and exploitation. Where appropriate we highlight future or current links to psychiatry. We particularly draw examples from research on clinical depression, a disorder that greatly compromises motivated behaviours in real-life, but where simpler paradigms have yielded mixed results. Finally, we highlight several paradigms that could be used to help provide new insights into the mechanisms of psychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties.

    PubMed

    Martins, Jéssica G; de Oliveira, Ariel C; Garcia, Patrícia S; Kipper, Matt J; Martins, Alessandro F

    2018-05-15

    Processing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation. By performing the complexation at low pH, the complexes form with a high degree of intermolecular association, instead of forming by electrostatic complexation. This method avoids precipitation, and overcomes the aqueous instability typical of PT/CS complexes. After neutralization, the PEC membranes display features characteristic of a high degree of intermolecular association because of the self-assembling of polymer chains. The PT/CS ratio can be tuned to enhance the mechanical strength (σ = 39 MPa) of the membranes. These polysaccharide-based materials can demonstrate advantages over synthetic materials for technological applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM.

    PubMed

    Hauer, Florian; Gerle, Christoph; Fischer, Niels; Oshima, Atsunori; Shinzawa-Itoh, Kyoko; Shimada, Satoru; Yokoyama, Ken; Fujiyoshi, Yoshinori; Stark, Holger

    2015-09-01

    We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyer's binding change mechanism in the context of the intact enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Preclinical models for obesity research

    PubMed Central

    Barrett, Perry; Morgan, Peter J.

    2016-01-01

    ABSTRACT A multi-dimensional strategy to tackle the global obesity epidemic requires an in-depth understanding of the mechanisms that underlie this complex condition. Much of the current mechanistic knowledge has arisen from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. These experimental models mimic certain aspects of the human condition and its root causes, particularly the over-consumption of calories and unbalanced diets. As with human obesity, obesity in rodents is the result of complex gene–environment interactions. Here, we review the traditional monogenic models of obesity, their contemporary optogenetic and chemogenetic successors, and the use of dietary manipulations and meal-feeding regimes to recapitulate the complexity of human obesity. We critically appraise the strengths and weaknesses of these different models to explore the underlying mechanisms, including the neural circuits that drive behaviours such as appetite control. We also discuss the use of these models for testing and screening anti-obesity drugs, beneficial bio-actives, and nutritional strategies, with the goal of ultimately translating these findings for the treatment of human obesity. PMID:27821603

  14. [Neural pathophysiology of cancer anorexia].

    PubMed

    Sánchez-Lara, K; Sosa-Sánchez, R; Green-Renner, D; Méndez-Sánchez, N

    2011-01-01

    Approximately two thirds of cancer patients at advanced stages of the disease suffer from anorexia. Defined as the loss of the desire to eat, anorexia lower the energy intake which further exacerbates a progressive deterioration of the patient nutritional status. Malnutrition has a large impact on morbidity and mortality affecting the quality of life. Cancer anorexia etiology is multifactorial including complex interactions among the tumor, host metabolism and antineoplastic treatment. New related theories include peripheral and brain mechanisms affecting hypothalamic pathways; inducing behavioral and metabolic failure of responses to energy balance. The aim of this review is to describe actual concepts involved in the pathogenesis of cancer anorexia with special interest in brain mechanisms. Anorexia and reduced food intake are important issues in the management of cancer patients, more knowledge about pathogenic mechanism is needed to improve therapeutic options, prognosis and quality of life in cancer patients.

  15. Mechanisms and pathways of growth failure in primordial dwarfism

    PubMed Central

    Klingseisen, Anna; Jackson, Andrew P.

    2011-01-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth. PMID:21979914

  16. Distinct functions for IFT140 and IFT20 in opsin transport.

    PubMed Central

    Crouse, Jacquelin A.; Lopes, Vanda S.; SanAgustin, Jovenal T.; Keady, Brian T.; Williams, David S.; Pazour, Gregory J.

    2014-01-01

    In the vertebrate retina, light is detected by the outer segments of photoreceptor rods and cones, which are highly modified cilia. Like other cilia, outer segments have no protein synthetic capacity and depend on proteins made in the cell body for their formation and maintenance. The mechanism of transport into the outer segment is not fully understood but intraflagellar transport (IFT) is thought to be a major mechanism for moving protein from the cell body into the cilium. In the case of photoreceptor cells, the high density of receptors and the disk turnover that occurs daily necessitates much higher rates of transport than would be required in other cilia. In this work, we show that the IFT complex A protein IFT140 is required for development and maintenance of outer segments. In earlier work we found that acute deletion of Ift20 caused opsin to accumulate at the Golgi complex. In this work we find that acute deletion of Ift140 does not cause opsin to accumulate at the Golgi complex but rather it accumulates in the plasma membrane of the inner segments. This work is strong support of a model of opsin transport where IFT20 is involved in the movement from the Golgi complex to the base of the cilium. Then, once at the base, the opsin is carried through the connecting cilium by an IFT complex that includes IFT140. PMID:24619649

  17. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  18. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes.

    PubMed

    Longuinhos, R; Lúcio, A D; Chacham, H; Alexandre, S S

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag_{4}. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag_{4} or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag_{4} to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag_{4} hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  19. Introduction Wind farms in complex terrains: an introduction

    PubMed Central

    Alfredsson, P. H.; Segalini, A.

    2017-01-01

    Wind energy is one of the fastest growing sources of sustainable energy production. As more wind turbines are coming into operation, the best locations are already becoming occupied by turbines, and wind-farm developers have to look for new and still available areas—locations that may not be ideal such as complex terrain landscapes. In these locations, turbulence and wind shear are higher, and in general wind conditions are harder to predict. Also, the modelling of the wakes behind the turbines is more complicated, which makes energy-yield estimates more uncertain than under ideal conditions. This theme issue includes 10 research papers devoted to various fluid-mechanics aspects of using wind energy in complex terrains and illustrates recent progress and future developments in this important field. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265020

  20. Advancing the National and Global Knowledge Economy: The Role of Research Universities in Developing Countries

    ERIC Educational Resources Information Center

    Altbach, Philip G.

    2013-01-01

    Research universities are a central part of all academic systems. They are the key points of international contact and involvement. Research is produced, disseminated and in many cases imported. For developing countries, the mechanisms for the involvement of research universities in the global knowledge economy is complex, and includes issues of…

  1. Isolating Attention Systems: A Cognitive-Anatomical Analysis. Cognitive Science Program, Technical Report No. 86-3.

    ERIC Educational Resources Information Center

    Posner, Michael I.; And Others

    Recently, knowledge of the mechanisms of visual-spatial attention has improved due to studies employing single cell recording with alert monkeys and studies using performance analysis of neurological patients. These studies suggest that a complex neural network including parts of the posterior parietal lobe and midbrain are involved in covert…

  2. VoroTop: Voronoi cell topology visualization and analysis toolkit

    NASA Astrophysics Data System (ADS)

    Lazar, Emanuel A.

    2018-01-01

    This paper introduces a new open-source software program called VoroTop, which uses Voronoi topology to analyze local structure in atomic systems. Strengths of this approach include its abilities to analyze high-temperature systems and to characterize complex structure such as grain boundaries. This approach enables the automated analysis of systems and mechanisms previously not possible.

  3. Prelude to Oral Microbes and Chronic Diseases: Past, Present and Future

    PubMed Central

    Atanasova, Kalina R; Yilmaz, Özlem

    2015-01-01

    Associations between oral and systemic health are ancient. Oral opportunistic bacteria, particularly, Porphyromonas gingivalis and Fusobacterium nucleatum, have recently been deviated from their traditional roles and arguably ascended to central players based on their participations in complex co-dependent mechanisms of diverse systemic chronic diseases risk and pathogenesis, including cancers, rheumatoid-arthritis, and diabetes. PMID:25813714

  4. Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles

    ERIC Educational Resources Information Center

    Saviz, Camilla M.; Shakerin, Said

    2014-01-01

    Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…

  5. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    PubMed

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis applied to the second reaction path (p2) in mechanism 1 was also taken into account to assess the changes that take place in TS1-i (transition state of mechanism 1) and to perfectly characterize the mechanism described herein.

  6. Challenges in Developing Models Describing Complex Soil Systems

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Jacques, D.

    2014-12-01

    Quantitative mechanistic models that consider basic physical, mechanical, chemical, and biological processes have the potential to be powerful tools to integrate our understanding of complex soil systems, and the soil science community has often called for models that would include a large number of these diverse processes. However, once attempts have been made to develop such models, the response from the community has not always been overwhelming, especially after it discovered that these models are consequently highly complex, requiring not only a large number of parameters, not all of which can be easily (or at all) measured and/or identified, and which are often associated with large uncertainties, but also requiring from their users deep knowledge of all/most of these implemented physical, mechanical, chemical and biological processes. Real, or perceived, complexity of these models then discourages users from using them even for relatively simple applications, for which they would be perfectly adequate. Due to the nonlinear nature and chemical/biological complexity of the soil systems, it is also virtually impossible to verify these types of models analytically, raising doubts about their applicability. Code inter-comparisons, which is then likely the most suitable method to assess code capabilities and model performance, requires existence of multiple models of similar/overlapping capabilities, which may not always exist. It is thus a challenge not only to developed models describing complex soil systems, but also to persuade the soil science community in using them. As a result, complex quantitative mechanistic models are still an underutilized tool in soil science research. We will demonstrate some of the challenges discussed above on our own efforts in developing quantitative mechanistic models (such as HP1/2) for complex soil systems.

  7. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    PubMed

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.

  8. East-West paths to unconventional computing.

    PubMed

    Adamatzky, Andrew; Akl, Selim; Burgin, Mark; Calude, Cristian S; Costa, José Félix; Dehshibi, Mohammad Mahdi; Gunji, Yukio-Pegio; Konkoli, Zoran; MacLennan, Bruce; Marchal, Bruno; Margenstern, Maurice; Martínez, Genaro J; Mayne, Richard; Morita, Kenichi; Schumann, Andrew; Sergeyev, Yaroslav D; Sirakoulis, Georgios Ch; Stepney, Susan; Svozil, Karl; Zenil, Hector

    2017-12-01

    Unconventional computing is about breaking boundaries in thinking, acting and computing. Typical topics of this non-typical field include, but are not limited to physics of computation, non-classical logics, new complexity measures, novel hardware, mechanical, chemical and quantum computing. Unconventional computing encourages a new style of thinking while practical applications are obtained from uncovering and exploiting principles and mechanisms of information processing in and functional properties of, physical, chemical and living systems; in particular, efficient algorithms are developed, (almost) optimal architectures are designed and working prototypes of future computing devices are manufactured. This article includes idiosyncratic accounts of 'unconventional computing' scientists reflecting on their personal experiences, what attracted them to the field, their inspirations and discoveries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dissecting the hypothalamic pathways that underlie innate behaviors.

    PubMed

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  10. Rendezvous Integration Complexities of NASA Human Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack P.; Goodman, John L.

    2009-01-01

    Propellant-optimal trajectories, relative sensors and navigation, and docking/capture mechanisms are rendezvous disciplines that receive much attention in the technical literature. However, other areas must be considered. These include absolute navigation, maneuver targeting, attitude control, power generation, software development and verification, redundancy management, thermal control, avionics integration, robotics, communications, lighting, human factors, crew timeline, procedure development, orbital debris risk mitigation, structures, plume impingement, logistics, and in some cases extravehicular activity. While current and future spaceflight programs will introduce new technologies and operations concepts, the complexity of integrating multiple systems on multiple spacecraft will remain. The systems integration task may become more difficult as increasingly complex software is used to meet current and future automation, autonomy, and robotic operation requirements.

  11. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake

    PubMed Central

    Delgado, María J.; Cerdá-Reverter, José M.; Soengas, José L.

    2017-01-01

    The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model. PMID:28694769

  12. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  13. From synapse to nucleus and back again--communication over distance within neurons.

    PubMed

    Fainzilber, Mike; Budnik, Vivian; Segal, Rosalind A; Kreutz, Michael R

    2011-11-09

    How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.

  14. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGES

    Johs, Alexander; Whited, A. M.

    2015-07-29

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  15. Study of the interaction of deoxynivalenol with human serum albumin by spectroscopic technique and molecular modelling.

    PubMed

    Li, Yuqin; Wang, Hao; Jia, Baoxiu; Liu, Caihong; Liu, Ke; Qi, Yongxiu; Hu, Zhide

    2013-01-01

    The mechanism of interaction between deoxynivalenol (DON) and human serum albumin (HSA) was studied using spectroscopic methods including fluorescence spectra, UV-VIS, Fourier transform infrared (FT-IR) and circular dichroism (CD). The quenching mechanism was investigated in terms of the association constants, number of binding sites and basic thermodynamic parameters. The distance between the HSA donor and the acceptor DON was 2.80 nm as derived from fluorescence resonance energy transfer. The secondary structure compositions of free HSA and its DON complexes were estimated by the FT-IR spectra. Alteration of the secondary protein structure in the presence of DON was confirmed by UV-VIS and CD spectroscopy. Molecular modelling revealed that a DON-protein complex was stabilised by hydrophobic forces and hydrogen bonding. It was potentially useful for elucidating the toxigenicity of DON when combined with biomolecular function effect, transmembrane transport, toxicological testing and the other experiments.

  16. Multicellular microorganisms: laboratory versus nature.

    PubMed

    Palková, Zdena

    2004-05-01

    Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.

  17. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-07

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  18. DNA Replication Fidelity in the Mycobacterium tuberculosis Complex.

    PubMed

    Warner, Digby F; Rock, Jeremy M; Fortune, Sarah M; Mizrahi, Valerie

    2017-01-01

    Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.

  19. Geometrical modelling of textile reinforcements

    NASA Technical Reports Server (NTRS)

    Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene

    1995-01-01

    The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.

  20. Comparison and experimental validation of two potential resonant viscosity sensors in the kilohertz range

    NASA Astrophysics Data System (ADS)

    Lemaire, Etienne; Heinisch, Martin; Caillard, Benjamin; Jakoby, Bernhard; Dufour, Isabelle

    2013-08-01

    Oscillating microstructures are well established and find application in many fields. These include force sensors, e.g. AFM micro-cantilevers or accelerometers based on resonant suspended plates. This contribution presents two vibrating mechanical structures acting as force sensors in liquid media in order to measure hydrodynamic interactions. Rectangular cross section microcantilevers as well as circular cross section wires are investigated. Each structure features specific benefits, which are discussed in detail. Furthermore, their mechanical parameters and their deflection in liquids are characterized. Finally, an inverse analytical model is applied to calculate the complex viscosity near the resonant frequency for both types of structures. With this approach it is possible to determine rheological parameters in the kilohertz range in situ within a few seconds. The monitoring of the complex viscosity of yogurt during the fermentation process is used as a proof of concept to qualify at least one of the two sensors in opaque mixtures.

  1. Rotational 3D printing of damage-tolerant composites with programmable mechanics.

    PubMed

    Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A

    2018-02-06

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  2. Boron diffusion in bcc-Fe studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xianglong, Li; Ping, Wu; Ruijie, Yang; Dan, Yan; Sen, Chen; Shiping, Zhang; Ning, Chen

    2016-03-01

    The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is D0 = 1.05 × 10-7 exp (-0.75 eV/kT) m2 · s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 = 1.22 × 10-6 f1 exp (-2.27 eV/kT) m2 · s-1 and D2 ≈ 8.36 × 10-6 exp (-4.81 eV/kT) m2 · s-1, respectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments. Project supported by the National Natural Science Foundation of China (Grant No. 51276016) and the National Basic Research Program of China (Grant No. 2012CB720406).

  3. Minireview: Challenges and Opportunities in Development of PPAR Agonists

    PubMed Central

    Bortolini, Michele; Tadayyon, Moh; Bopst, Martin

    2014-01-01

    The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity. PMID:25148456

  4. A Crowdsourcing Framework for Medical Data Sets

    PubMed Central

    Ye, Cheng; Coco, Joseph; Epishova, Anna; Hajaj, Chen; Bogardus, Henry; Novak, Laurie; Denny, Joshua; Vorobeychik, Yevgeniy; Lasko, Thomas; Malin, Bradley; Fabbri, Daniel

    2018-01-01

    Crowdsourcing services like Amazon Mechanical Turk allow researchers to ask questions to crowds of workers and quickly receive high quality labeled responses. However, crowds drawn from the general public are not suitable for labeling sensitive and complex data sets, such as medical records, due to various concerns. Major challenges in building and deploying a crowdsourcing system for medical data include, but are not limited to: managing access rights to sensitive data and ensuring data privacy controls are enforced; identifying workers with the necessary expertise to analyze complex information; and efficiently retrieving relevant information in massive data sets. In this paper, we introduce a crowdsourcing framework to support the annotation of medical data sets. We further demonstrate a workflow for crowdsourcing clinical chart reviews including (1) the design and decomposition of research questions; (2) the architecture for storing and displaying sensitive data; and (3) the development of tools to support crowd workers in quickly analyzing information from complex data sets. PMID:29888085

  5. Cold-loving microbes, plants, and animals—fundamental and applied aspects

    NASA Astrophysics Data System (ADS)

    Margesin, R.; Neuner, G.; Storey, K. B.

    2007-02-01

    Microorganisms, plants, and animals have successfully colonized cold environments, which represent the majority of the biosphere on Earth. They have evolved special mechanisms to overcome the life-endangering influence of low temperature and to survive freezing. Cold adaptation includes a complex range of structural and functional adaptations at the level of all cellular constituents, such as membranes, proteins, metabolic activity, and mechanisms to avoid the destructive effect of intracellular ice formation. These strategies offer multiple biotechnological applications of cold-adapted organisms and/or their products in various fields. In this review, we describe the mechanisms of microorganisms, plants, and animals to cope with the cold and the resulting biotechnological perspectives.

  6. Regulation of platelet granule exocytosis by S-nitrosylation

    PubMed Central

    Morrell, Craig N.; Matsushita, Kenji; Chiles, Kelly; Scharpf, Robert B.; Yamakuchi, Munekazu; Mason, Rebecca J. A.; Bergmeier, Wolfgang; Mankowski, Joseph L.; Baldwin, William M.; Faraday, Nauder; Lowenstein, Charles J.

    2005-01-01

    Nitric oxide (NO) regulates platelet activation by cGMP-dependent mechanisms and by mechanisms that are not completely defined. Platelet activation includes exocytosis of platelet granules, releasing mediators that regulate interactions between platelets, leukocytes, and endothelial cells. Exocytosis is mediated in part by N-ethylmaleimide-sensitive factor (NSF), an ATPase that disassembles complexes of soluble NSF attachment protein receptors. We now demonstrate that NO inhibits exocytosis of dense granules, lysosomal granules, and α-granules from human platelets by S-nitrosylation of NSF. Platelets lacking endothelial NO synthase show increased rolling on venules, increased thrombosis in arterioles, and increased exocytosis in vivo. Regulation of exocytosis is thus a mechanism by which NO regulates thrombosis. PMID:15738422

  7. The role of gene-environment interplay in occupational and environmental diseases: current concepts and knowledge gaps.

    PubMed

    Kwo, Elizabeth; Christiani, David

    2017-03-01

    The interplay between genetic susceptibilities and environmental exposures in the pathogenesis of a variety of diseases is an area of increased scientific, epidemiologic, and social interest. Given the variation in methodologies used in the field, this review aims to create a framework to help understand occupational exposures as they currently exist and provide a foundation for future inquiries into the biological mechanisms of the gene-environment interactions. Understanding of this complex interplay will be important in the context of occupational health, given the public health concerns surrounding a variety of occupational exposures. Studies found evidence that suggest genetics influence the progression of disease postberyllium exposure through genetically encoded major histocompatibility complex, class II, DP alpha 2 (HLA-DP2)-peptide complexes as it relates to T-helper cells. This was characterized at the molecular level by the accumulation of Be-responsive CD4 T cells in the lung, which resulted in posttranslational change in the HLA-DPB1 complex. These studies provide important evidence of gene-environment association, and many provide insights into specific pathogenic mechanisms. The following includes a review of the literature regarding gene-environment associations with a focus on pulmonary diseases as they relate to the workplace.

  8. Evolution of weighted complex bus transit networks with flow

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei

    2016-02-01

    Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.

  9. From intrusive to oscillating thoughts.

    PubMed

    Peirce, Anne Griswold

    2007-10-01

    This paper focused on the possibility that intrusive thoughts (ITs) are a form of an evolutionary, adaptive, and complex strategy to prepare for and resolve stressful life events through schema formation. Intrusive thoughts have been studied in relation to individual conditions, such as traumatic stress disorder and obsessive-compulsive disorder. They have also been documented in the average person experiencing everyday stress. In many descriptions of thought intrusion, it is accompanied by thought suppression. Several theories have been put forth to describe ITs, although none provides a satisfactory explanation as to whether ITs are a normal process, a normal process gone astray, or a sign of pathology. There is also no consistent view of the role that thought suppression plays in the process. I propose that thought intrusion and thought suppression may be better understood by examining them together as a complex and adaptive mechanism capable of escalating in times of need. The ability of a biological mechanism to scale up in times of need is one hallmark of a complex and adaptive system. Other hallmarks of complexity, including self-similarity across scales, sensitivity to initial conditions, presence of feedback loops, and system oscillation, are also discussed in this article. Finally, I propose that thought intrusion and thought suppression are better described together as an oscillatory cycle.

  10. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    PubMed

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  11. ControlShell: A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo

    1994-01-01

    The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.

  12. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  13. Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds

    NASA Astrophysics Data System (ADS)

    Koledina, K. F.; Gubaidullin, I. M.

    2016-05-01

    The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.

  14. ISSOL Meeting, 7th, Barcelona, Spain, July 4-9, 1993. [Abstracts only

    NASA Technical Reports Server (NTRS)

    Ferris, James P. (Editor)

    1994-01-01

    The journal issue consists of abstracts presented at the International Society for the Study of the Origins of Life (ISSOL) conference. Topics include research on biological and chemical evolution including prebiotic evolution: cosmic and terrestrial; mechanisms of abiogenesis including synthesis and reactions of biomonomers; and analysis of cometary matter and its possible relationship to organic compounds on Earth. Theories and research on origins of ribonucleic acids (RNA), deoxyribonucleic acid (DNA), and other amino acids and complex proteins including their autocatalysis, replication, and translation are presented. Abiotic synthesis of biopolymers, mechanisms of the Genetic Code, precellular membrane systems and energetics are considered. Earth planetary evolution including early microfossils and geochemical conditions and simulations to study these conditions are discussed. The role of chirality in precellular evolution and the taxonomy and phylogeny of very simple organisms are reported. Past and future explorations in exobiology and space research directed toward study of the origins of life and solar system evolution are described.

  15. Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedraza, D.F.; Mansur, L.K.

    1985-01-01

    A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less

  16. Fluorescence-enhanced europium complexes for the assessment of renal function

    NASA Astrophysics Data System (ADS)

    Chinen, Lori K.; Galen, Karen P.; Kuan, K. T.; Dyszlewski, Mary E.; Ozaki, Hiroaki; Sawai, Hiroaki; Pandurangi, Raghootama S.; Jacobs, Frederick G.; Dorshow, Richard B.; Rajagopalan, Raghavan

    2008-02-01

    Real-time, non-invasive assessment of glomerular filtration rate (GFR) is essential not only for monitoring critically ill patients at the bedside, but also for staging and monitoring patients with chronic kidney disease. In our pursuit to develop exogenous luminescent probes for dynamic optical monitoring of GFR, we have prepared and evaluated Eu 3+ complexes of several diethylenetriamine pentaacetate (DTPA)-monoamide ligands bearing molecular "antennae" to enhance metal fluorescence via the intramolecular ligand-metal fluorescence resonance energy transfer (FRET) process. The results show that Eu-DTPA-monoamide complex 13a, which contains a quinoxanlinyl antenna, exhibits large (c.a. 2700-fold) Eu 3+ fluorescence enhancement over Eu-DTPA (4c). Indeed, complex 13a exhibits the highest fluorescent enhancement observed thus far in the DTPA-type metal complexes. The renal clearance profile of the corresponding radioactive 111In complex 13c is similar to that of 111In-DTPA, albeit 13c clears slower than 111In-DTPA. The biodistribution data indicates that 13c, and, by inference, 13a clear via a complex mechanism that includes glomerular filtration.

  17. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  18. Automatic Information Processing and High Performance Skills: Individual Differences and Mechanisms of Performance Improvement in Search-Detection and Complex Task

    DTIC Science & Technology

    1992-09-01

    abilities is fit along with the autoregressive process. Initially, the influences on search performance of within-group age and sex were included as control...Results: PerformanceLAbility Structure Measurement Model: Ability Structure The correlations between all the ability measures, age, and sex are...subsequent analyses for young adults. Age and sex were included as control variables. There was an age range of 15 years; this range is sufficiently large that

  19. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes.

    PubMed

    Srihari, Sriganesh; Yong, Chern Han; Patil, Ashwini; Wong, Limsoon

    2015-09-14

    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. The TFOS International Workshop on Contact Lens Discomfort: Report of the Subcommittee on Neurobiology

    PubMed Central

    Stapleton, Fiona; Marfurt, Carl; Golebiowski, Blanka; Rosenblatt, Mark; Bereiter, David; Begley, Carolyn; Dartt, Darlene; Gallar, Juana; Belmonte, Carlos; Hamrah, Pedram; Willcox, Mark

    2013-01-01

    This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens–related discomfort. While there is limited evidence for the mechanisms involved in contact lens–related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea. PMID:24058137

  1. A non-canonical mechanism for Crm1-export cargo complex assembly.

    PubMed

    Fischer, Ute; Schäuble, Nico; Schütz, Sabina; Altvater, Martin; Chang, Yiming; Faza, Marius Boulos; Panse, Vikram Govind

    2015-04-21

    The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export.

  2. Free Energy and Virtual Reality in Neuroscience and Psychoanalysis: A Complexity Theory of Dreaming and Mental Disorder.

    PubMed

    Hopkins, Jim

    2016-01-01

    The main concepts of the free energy (FE) neuroscience developed by Karl Friston and colleagues parallel those of Freud's Project for a Scientific Psychology. In Hobson et al. (2014) these include an innate virtual reality generator that produces the fictive prior beliefs that Freud described as the primary process. This enables Friston's account to encompass a unified treatment-a complexity theory-of the role of virtual reality in both dreaming and mental disorder. In both accounts the brain operates to minimize FE aroused by sensory impingements-including interoceptive impingements that report compliance with biological imperatives-and constructs a representation/model of the causes of impingement that enables this minimization. In Friston's account (variational) FE equals complexity minus accuracy, and is minimized by increasing accuracy and decreasing complexity. Roughly the brain (or model) increases accuracy together with complexity in waking. This is mediated by consciousness-creating active inference-by which it explains sensory impingements in terms of perceptual experiences of their causes. In sleep it reduces complexity by processes that include both synaptic pruning and consciousness/virtual reality/dreaming in REM. The consciousness-creating active inference that effects complexity-reduction in REM dreaming must operate on FE-arousing data distinct from sensory impingement. The most relevant source is remembered arousals of emotion, both recent and remote, as processed in SWS and REM on "active systems" accounts of memory consolidation/reconsolidation. Freud describes these remembered arousals as condensed in the dreamwork for use in the conscious contents of dreams, and similar condensation can be seen in symptoms. Complexity partly reflects emotional conflict and trauma. This indicates that dreams and symptoms are both produced to reduce complexity in the form of potentially adverse (traumatic or conflicting) arousals of amygdala-related emotions. Mental disorder is thus caused by computational complexity together with mechanisms like synaptic pruning that have evolved for complexity-reduction; and important features of disorder can be understood in these terms. Details of the consilience among Freudian, systems consolidation, and complexity-reduction accounts appear clearly in the analysis of a single fragment of a dream, indicating also how complexity reduction proceeds by a process resembling Bayesian model selection.

  3. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  4. Molecular insights into the function of the viral RNA silencing suppressor HCPro.

    PubMed

    Ivanov, Konstantin I; Eskelin, Katri; Bašić, Marta; De, Swarnalok; Lõhmus, Andres; Varjosalo, Markku; Mäkinen, Kristiina

    2016-01-01

    Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    PubMed Central

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  6. Peptide Fragmentation by Corona Discharge Induced Electrochemical Ionization

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2010-01-01

    Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M]+•, thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: 1. Complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; 2. Electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e− → Fe +•); 3. Radical fragmentation of the complexed compound. 4. Electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites. PMID:20869880

  7. Introduction Wind farms in complex terrains: an introduction.

    PubMed

    Alfredsson, P H; Segalini, A

    2017-04-13

    Wind energy is one of the fastest growing sources of sustainable energy production. As more wind turbines are coming into operation, the best locations are already becoming occupied by turbines, and wind-farm developers have to look for new and still available areas-locations that may not be ideal such as complex terrain landscapes. In these locations, turbulence and wind shear are higher, and in general wind conditions are harder to predict. Also, the modelling of the wakes behind the turbines is more complicated, which makes energy-yield estimates more uncertain than under ideal conditions. This theme issue includes 10 research papers devoted to various fluid-mechanics aspects of using wind energy in complex terrains and illustrates recent progress and future developments in this important field.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  8. [Dandy-Walker complex: a clinicopathologic study of 9 cases].

    PubMed

    Zhang, Xiao-bo; Gu, Yi-qun; Sun, Xiao-fei; Wang, Ying-nan; Wang, Ai-chun

    2013-12-01

    To investigate the etiology, pathogenesis, clinicopathologic characteristics, clinical prognosis and treatment of Dandy-Walker syndrome. Nine cases of Dandy-Walker syndrome were included in the study. The autopsy findings and clinical history were evaluated along with review of the literature. The causes, pathogenetic mechanism, pathologic features and prognosis of Dandy-Walker syndrome were analyzed. Among 9 Dandy-Walker syndrome cases, six patients presented with variants of Dandy-Walker complex and 3 cases had classic Dandy-Walker malformation. In addition, 4 patients presented with combined lateral ventricle expansion and multiple malformations were seen in 7 cases. Combined umbilical cord abnormality was noted in 4 patients with variant of Dandy-Walker complex and combined placental abnormality was seen in one classic Dandy-Walker syndrome. Dandy-Walker syndrome is a rare disease. In addition to complex pathogenesis with possible genetic and environmental antigenic etiologies, placental and umbilical cord abnormality may be also related to its development.

  9. [Medicine at the "edge of chaos". Life, entropy and complexity].

    PubMed

    De Vito, Eduardo L

    2016-01-01

    The aim of this paper is to help physicians and health professionals, who constantly seek to improve their knowledge for the benefit of the ill, to incorporate new conceptual and methodological tools to understand the complexity inherent to the field of medicine. This article contains notions that are unfamiliar to these professionals and are intended to foster reflection and learning. It poses the need to define life from a thermodynamic point of view, linking it closely to complex systems, nonlinear dynamics and chaotic behavior, as well as to redefine conventional physiological control mechanisms based on the concept of homeostasis, and to travel the path that starts with the search for extraterrestrial life up to exposing medicine "near the edge of chaos". Complexity transcends the biological aspects; it includes a subjective and symbolic/social dimension. Viewing disease as a heterogeneous and multi-causal phenomenon can give rise to new approaches for the sick.

  10. Smart responsive phosphorescent materials for data recording and security protection.

    PubMed

    Sun, Huibin; Liu, Shujuan; Lin, Wenpeng; Zhang, Kenneth Yin; Lv, Wen; Huang, Xiao; Huo, Fengwei; Yang, Huiran; Jenkins, Gareth; Zhao, Qiang; Huang, Wei

    2014-04-07

    Smart luminescent materials that are responsive to external stimuli have received considerable interest. Here we report ionic iridium (III) complexes simultaneously exhibiting mechanochromic, vapochromic and electrochromic phosphorescence. These complexes share the same phosphorescent iridium (III) cation with a N-H moiety in the N^N ligand and contain different anions, including hexafluorophosphate, tetrafluoroborate, iodide, bromide and chloride. The anionic counterions cause a variation in the emission colours of the complexes from yellow to green by forming hydrogen bonds with the N-H proton. The electronic effect of the N-H moiety is sensitive towards mechanical grinding, solvent vapour and electric field, resulting in mechanochromic, vapochromic and electrochromic phosphorescence. On the basis of these findings, we construct a data-recording device and demonstrate data encryption and decryption via fluorescence lifetime imaging and time-gated luminescence imaging techniques. Our results suggest that rationally designed phosphorescent complexes may be promising candidates for advanced data recording and security protection.

  11. Gas-Phase Chemistry of Trimethyl Phosphite,

    DTIC Science & Technology

    keywords include: Flowing afterglow; Trimethyl phosphite ; Reaction mechanisms; Phosphorous ; and Nucleophilic displacement....The reactions of trimethyl phosphite were investigated with a series of nucleophiles. Products, branching ratios, and reaction rate constants are...of methoxide to form a new ion-dipole complex (CH3O-(CH3O)2PZ). If an additional acidic hydrogen is available on the nucleophile, the major products

  12. Variability in onset of ECG changes indicative of ischemia after exposure to whole vs filtered diesel exhaust in hypertensive rats. Insight on mechanism?

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gases including C02, O2, N02, CO, aldehydes, benzene, and polycyclic aromatic hydrocarbons (PAHs) as well as highly respirable particulate matter. DE is a significant component of fine particulate matter (PM2.5) air pollution, which its...

  13. [Autism, epilepsy and tuberous sclerosis complex: a functional model linked to mTOR pathway].

    PubMed

    García-Peñas, Juan José; Carreras-Sááez, Inmaculada

    2013-02-22

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that results from mutations in the TSC1 or TSC2 genes and is associated with hamartoma formation in multiple organ systems. Brain disorders are the origin of more frequent and severe problems and include infantile spasms, intractable epilepsy, brain tumors, cognitive disabilities, and autism. TSC1 or TSC2 encoded proteins modulate cell function via the mTOR signaling cascade and serve as keystones in regulating cell growth and proliferation. AIM. To review the etiopathogenic mechanisms and the natural course of the association of autism and epilepsy in TSC. Both the clinical and the neuroimaging findings of TSC, including early onset epilepsy and the localization of cortical tubers in the temporal lobes, and the molecular understanding of the mTOR signaling pathway, not only involved in cell growth, but also in synaptogenesis, synaptic plasticity and neuronal functioning, have suggested a multimodal origin of autism in these patients. A greater understanding of the pathogenetic mechanisms underlying autism in TSC could help in devising targeted and potentially more effective treatment strategies. Antagonism of the mTOR pathway with rapamycin and everolimus may provide new therapeutic options for these TSC patients.

  14. Evidence of Taxa-, Clone-, and Kin-discrimination in Protists: Ecological and Evolutionary Implications.

    PubMed

    Espinosa, Avelina; Paz-Y-Miño-C, Guillermo

    2014-11-01

    Unicellular eukaryotes, or protists, are among the most ancient organisms on Earth. Protists belong to multiple taxonomic groups; they are widely distributed geographically and in all environments. Their ability to discriminate among con- and heterospecifics has been documented during the past decade. Here we discuss exemplar cases of taxa-, clone-, and possible kin-discrimination in five major lineages: Mycetozoa ( Dictyostelium , Polysphondylium ), Dikarya ( Saccharomyces ), Ciliophora ( Tetrahymena ), Apicomplexa ( Plasmodium ) and Archamoebae ( Entamoeba ). We summarize the proposed genetic mechanisms involved in discrimination-mediated aggregation (self versus different), including the csA , FLO and trg (formerly lag ) genes, and the Proliferation Activation Factors (PAFs), which facilitate clustering in some protistan taxa. We caution about the experimental challenges intrinsic to studying recognition in protists, and highlight the opportunities for exploring the ecology and evolution of complex forms of cell-cell communication, including social behavior, in a polyphyletic, still superficially understood group of organisms. Because unicellular eukaryotes are the evolutionary precursors of multicellular life, we infer that their mechanisms of taxa-, clone-, and possible kin-discrimination gave origin to the complex diversification and sophistication of traits associated with species and kin recognition in plants, fungi, invertebrates and vertebrates.

  15. Evidence of Taxa-, Clone-, and Kin-discrimination in Protists: Ecological and Evolutionary Implications

    PubMed Central

    Espinosa, Avelina; Paz-y-Miño-C, Guillermo

    2014-01-01

    Unicellular eukaryotes, or protists, are among the most ancient organisms on Earth. Protists belong to multiple taxonomic groups; they are widely distributed geographically and in all environments. Their ability to discriminate among con- and heterospecifics has been documented during the past decade. Here we discuss exemplar cases of taxa-, clone-, and possible kin-discrimination in five major lineages: Mycetozoa (Dictyostelium, Polysphondylium), Dikarya (Saccharomyces), Ciliophora (Tetrahymena), Apicomplexa (Plasmodium) and Archamoebae (Entamoeba). We summarize the proposed genetic mechanisms involved in discrimination-mediated aggregation (self versus different), including the csA, FLO and trg (formerly lag) genes, and the Proliferation Activation Factors (PAFs), which facilitate clustering in some protistan taxa. We caution about the experimental challenges intrinsic to studying recognition in protists, and highlight the opportunities for exploring the ecology and evolution of complex forms of cell-cell communication, including social behavior, in a polyphyletic, still superficially understood group of organisms. Because unicellular eukaryotes are the evolutionary precursors of multicellular life, we infer that their mechanisms of taxa-, clone-, and possible kin-discrimination gave origin to the complex diversification and sophistication of traits associated with species and kin recognition in plants, fungi, invertebrates and vertebrates. PMID:25400313

  16. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  17. The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone

    PubMed Central

    Khayat, Maan T.

    2017-01-01

    Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118

  18. Arsenic and antimony transporters in eukaryotes.

    PubMed

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  19. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    PubMed Central

    Johnstone, Timothy C.; Suntharalingam, Kogularamanan; Lippard, Stephen J.

    2016-01-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer,, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing non-classical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore non-classical platinum(II) complexes with trans geometry and with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-treat agents, and photoactivatable platinum(IV) complexes. Nanodelivery particles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also reflect our optimism that the next generation of platinum cancer drugs is about to arrive. PMID:26865551

  20. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  1. Neuropsychological mechanisms of Digit Symbol Substitution Test impairment in Asperger Disorder.

    PubMed

    Yoran-Hegesh, Roni; Kertzman, Semion; Vishne, Tali; Weizman, Abraham; Kotler, Moshe

    2009-03-31

    Our aim was to investigate the neurocognitive mechanisms recruited by adolescents with Asperger Disorder (AD), in comparison to controls, and to detect the underlying mechanisms during the complex information processing required for the performance of the Digit Symbol Substitution Test (DSST). Male adolescents (n=23; mean age 15.1+/-3.6 years) with a DSM-IV diagnosis of AD were compared with a normal male control group with similar demographic characteristics (n=43; mean age: 15.1+/-3.6 years). A computerized neurocognitive battery was administered and included: Inspection Time (IT), Finger Tapping Test (FTT), Simple Reaction Time (SRT), Choice Reaction Time (CRT), Digit Running task (DRT), Stroop test and Digit Symbol Substitution Test (DSST). Adolescents with AD performed significantly worse than controls on the DSST. This impaired DSST performance was related to cognitive mechanisms different from those employed by normal controls. Motor slowness and inability to deal with increased amounts of information affected the performance of the AD group, while shifting of attention was the limiting factor in the controls. Both groups were similarly dependent on response selection. This study demonstrated differences in performance in complex cognitive tasks between adolescents with AD and normal controls that may be related to differences in neurocognitive mechanisms underlying information processing. Future neuroimaging studies are needed to clarify the neural network involved in the differences in cognitive performance between AD subjects and normal controls.

  2. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, Emilio Xavier, E-mail: emilio@exeResearch.com; The Chem21 Group, Inc., 1780 Wilson Drive, Lake Forest, IL 60045; Hopfinger, Anton J., E-mail: hopfingr@gmail.com

    2015-10-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted frommore » the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. - Highlights: • Proposed toxicity mechanism of action for decorated nanotubes complexes • Discussion of the key molecular features for each endpoint's mechanism of action • Unique mechanisms of action for each of the six biological systems • Hypothesized mechanisms of action based on QSAR/QNAR predictive models.« less

  3. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides.

    PubMed

    Tye, Jesse W; Weng, Zhiqiang; Johns, Adam M; Incarvito, Christopher D; Hartwig, John F

    2008-07-30

    Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L 2Cu (+) cation and a CuX 2 (-) anion. A tetraalkylammonium salt of the CuX 2 (-) anion in which X = phthalimidate was also isolated. Conductivity measurements and (1)H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C-N coupling, but the ammonium salt of [Cu(phth) 2] (-) did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen) 2Cu][Cu(pyrr) 2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free radicals. These data and computed reaction barriers argue against mechanisms in which the haloarene reacts with a two-coordinate anionic copper species and mechanisms that start with electron transfer to generate a free iodoarene radical anion. Instead, these data are more consistent with mechanisms involving cleavage of the carbon-halogen bond within the coordination sphere of the metal.

  4. Long-range electron transport of ruthenium-centered multilayer films via a stepping-stone mechanism.

    PubMed

    Terada, Kei-ichi; Nakamura, Hisao; Kanaizuka, Katsuhiko; Haga, Masa-aki; Asai, Yoshihiro; Ishida, Takao

    2012-03-27

    We studied electron transport of Ru complex multilayer films, whose structure resembles redox-active complex films known in the literature to have long-range electron transport abilities. Hydrogen bond formation in terms of pH control was used to induce spontaneous growth of a Ru complex multilayer. We made a cross-check between electrochemical measurements and I-V measurements using PEDOT:PSS to eliminate the risk of pinhole contributions to the mechanism and have found small β values of 0.012-0.021 Å(-1). Our Ru complex layers exhibit long-range electron transport but with low conductance. On the basis of the results of our theoretical-experimental collaboration, we propose a modified tunneling mechanism named the "stepping-stone mechanism", where the alignment of site potentials forms a narrow band around E(F), making resonant tunneling possible. Our observations may support Tuccito et al.'s proposed mechanism. © 2012 American Chemical Society

  5. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Zhou, Feng C.; Marrs, James A.

    2013-01-01

    Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection. PMID:24961433

  6. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Zhou, Feng C; Marrs, James A

    2013-06-19

    Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  7. Evolution of caudal fin ray development and caudal fin hypural diastema complex in spotted gar, teleosts, and other neopterygian fishes.

    PubMed

    Desvignes, Thomas; Carey, Andrew; Postlethwait, John H

    2018-06-01

    The caudal fin of actinopterygians transitioned from a heterocercal dorsoventrally asymmetrical fin to a homocercal externally symmetrical fin in teleosts through poorly understood evolutionary developmental mechanisms. We studied the caudal skeleton of major living actinopterygian lineages, including polypteriformes, acipenseriformes, Holostei (gars and bowfin), and teleosts, compared with reports of extinct neopterygians and basal teleosteans. We focused on the hypural diastema complex, which includes (1) a gap between hypurals 2 and 3, that (2) separates two plates of connective tissue at (3) the branching of caudal vasculature; these features had been considered as a shared, derived trait of teleosts, a synapomorphy. These studies revealed that gars and teleosts share all three features of the hypural diastema complex. Absence of a complex with these features from bowfin, fossil Holostei, and stem Teleostei argues in favor of repetitive, independent emergence in several neopterygian and basal Teleostei lineages, or less likely, many independent losses. We further observed that, in gars and teleosts, the earliest developing lepidotrichia align with the horizontal adult body axis, thus participating in external symmetry. These results suggest that the hypural diastema complex in teleosts and gars represents a homoplasy among neopterygians and that it emerged repeatedly by parallel evolution due to shared inherited underlying genetic and developmental programs (latent homology). Because the hypural diastema complex exists in gars with heterocercal tails, this complex is independent of homocercality. Developmental Dynamics 247:832-853, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Sodium channel blockade with QRS widening after an escitalopram overdose.

    PubMed

    Schreffler, Susan M; Marraffa, Jeanna M; Stork, Christine M; Mackey, Jennifer

    2013-09-01

    Escitalopram is rarely associated with prolongation of the QTc interval; however, there are no reported cases of QRS complex widening associated with escitalopram overdose. We report a case of a patient who presented with both QRS complex widening and QTc interval prolongation after an escitalopram overdose. A 16-year-old girl presented to the emergency department after ingestion of escitalopram, tramadol/acetaminophen, and hydrocodone/acetaminophen. Laboratory results were significant for 4-hour acetaminophen 21.1 μg/mL. Serum electrolytes including potassium, magnesium, and calcium were all normal. Initial electrocardiogram (ECG) revealed a widened QRS with an incomplete right bundle branch pattern. After administration of 100-mEq sodium bicarbonate, a repeat ECG revealed narrowing of the QRS complex and a prolonged QTc interval. Magnesium sulfate 2 g intravenous and sodium bicarbonate drip were initiated. A repeat ECG, 1 hour after the second, revealed normalization of the QRS complex and QTc interval. Prolongation of the QTc interval is an expected effect of escitalopram. Both escitalopram and citalopram are metabolized to the cardiotoxic metabolite S-didesmethylcitalopram and didesmethylcitalopram, respectively, which have been implicated in numerous cardiac abnormalities including widening of the QRS complex. Although never previously described with escitalopram, this mechanism provides a reasonable explanation for the QRS complex widening and incomplete right bundle branch block that occurred in our patient. Both QRS complex widening and QTc interval prolongation should be monitored in cases of escitalopram and citalopram overdoses.

  9. Prevalence and proposed mechanisms of chronic low back pain in baseball: part i

    PubMed Central

    Wasser, Joseph G.; Zaremski, Jason L.; Herman, Daniel C.; Vincent, Heather K.

    2017-01-01

    The prevalence of low back pain (LBP) among active baseball players ranges between 3 and 15%. The execution of baseball-specific manoeuvres, such as pitching or batting, may be related to the onset of LBP. These baseball motions are complex and require appropriate activation of the core musculature to produce a well-timed motion with forces minimized at the extremities. The spine, core and back musculature are involved with acceleration and deceleration of rotational motions. This narrative review synopsizes the available evidence of the prevalence of and mechanical factors underlying LBP in the baseball population. Possible mechanical mechanisms linking baseball play to LBP include aberrant motion, improper timing, high lumbar stress due to mechanical loading and lumbopelvic strength deficits. Potential clinical implications relating to these possible mechanical mechanisms will also be highlighted. The state of the evidence suggests that there are deficits in understanding the role of baseball motion and playing history in the development of spine conditions. PMID:28128007

  10. Prevalence and proposed mechanisms of chronic low back pain in baseball: part i.

    PubMed

    Wasser, Joseph G; Zaremski, Jason L; Herman, Daniel C; Vincent, Heather K

    2017-01-01

    The prevalence of low back pain (LBP) among active baseball players ranges between 3 and 15%. The execution of baseball-specific manoeuvres, such as pitching or batting, may be related to the onset of LBP. These baseball motions are complex and require appropriate activation of the core musculature to produce a well-timed motion with forces minimized at the extremities. The spine, core and back musculature are involved with acceleration and deceleration of rotational motions. This narrative review synopsizes the available evidence of the prevalence of and mechanical factors underlying LBP in the baseball population. Possible mechanical mechanisms linking baseball play to LBP include aberrant motion, improper timing, high lumbar stress due to mechanical loading and lumbopelvic strength deficits. Potential clinical implications relating to these possible mechanical mechanisms will also be highlighted. The state of the evidence suggests that there are deficits in understanding the role of baseball motion and playing history in the development of spine conditions.

  11. Transition Metal Intercalators as Anticancer Agents—Recent Advances

    PubMed Central

    Deo, Krishant M.; Pages, Benjamin J.; Ang, Dale L.; Gordon, Christopher P.; Aldrich-Wright, Janice R.

    2016-01-01

    The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active. PMID:27809241

  12. An asymmetrically localized Staufen2-dependent RNA complex regulates maintenance of mammalian neural stem cells.

    PubMed

    Vessey, John P; Amadei, Gianluca; Burns, Sarah E; Kiebler, Michael A; Kaplan, David R; Miller, Freda D

    2012-10-05

    The cellular mechanisms that regulate self-renewal versus differentiation of mammalian somatic tissue stem cells are still largely unknown. Here, we asked whether an RNA complex regulates this process in mammalian neural stem cells. We show that the RNA-binding protein Staufen2 (Stau2) is apically localized in radial glial precursors of the embryonic cortex, where it forms a complex with other RNA granule proteins including Pumilio2 (Pum2) and DDX1, and the mRNAs for β-actin and mammalian prospero, prox1. Perturbation of this complex by functional knockdown of Stau2, Pum2, or DDX1 causes premature differentiation of radial glial precursors into neurons and mislocalization and misexpression of prox1 mRNA. Thus, a Stau2- and Pum2-dependent RNA complex directly regulates localization and, potentially, expression of target mRNAs like prox1 in mammalian neural stem cells, and in so doing regulates the balance of stem cell maintenance versus differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    PubMed

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  14. Regulation of gamma-Secretase in Alzheimer's Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter

    2007-02-07

    The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less

  15. Mobility and Position Error Analysis of a Complex Planar Mechanism with Redundant Constraints

    NASA Astrophysics Data System (ADS)

    Sun, Qipeng; Li, Gangyan

    2018-03-01

    Nowadays mechanisms with redundant constraints have been created and attracted much attention for their merits. The mechanism of the redundant constraints in a mechanical system is analyzed in this paper. A analysis method of Planar Linkage with a repetitive structure is proposed to get the number and type of constraints. According to the difference of applications and constraint characteristics, the redundant constraints are divided into the theoretical planar redundant constraints and the space-planar redundant constraints. And the calculation formula for the number of redundant constraints and type of judging method are carried out. And a complex mechanism with redundant constraints is analyzed of the influence about redundant constraints on mechanical performance. With the combination of theoretical derivation and simulation research, a mechanism analysis method is put forward about the position error of complex mechanism with redundant constraints. It points out the direction on how to eliminate or reduce the influence of redundant constraints.

  16. Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X-ray Wavelengths.

    PubMed

    Ross, Matthew; Andersen, Amity; Fox, Zachary W; Zhang, Yu; Hong, Kiryong; Lee, Jae-Hyuk; Cordones, Amy; March, Anne Marie; Doumy, Gilles; Southworth, Stephen H; Marcus, Matthew A; Schoenlein, Robert W; Mukamel, Shaul; Govind, Niranjan; Khalil, Munira

    2018-05-17

    We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.

  17. Physical Therapy in the Treatment of Central Pain Mechanisms for Female Sexual Pain.

    PubMed

    Vandyken, Carolyn; Hilton, Sandra

    2017-01-01

    The complexity of female sexual pain requires an interdisciplinary approach. Physical therapists trained in pelvic health conditions are well positioned to be active members of an interdisciplinary team addressing the assessment and treatment of female sexual pain. Changes within physical therapy practice in the last ten years have resulted in significant utilization of pelvic floor muscle relaxation and manual therapy techniques to address a variety of pelvic pain conditions, including female sexual pain. However, sexual pain is a complex issue giving credence to the necessity of addressing all of the drivers of the pain experience- biological, psychological and social. This review aims to reconcile current pain science with a plan for integrating a biopsychosocial approach into the evaluation and subsequent treatment for female sexual pain for physical therapists. A literature review of the important components of skilled physical therapy interventions is presented including the physical examination, pain biology education, cognitive behavioral influences in treatment design, motivational interviewing as an adjunct to empathetic practice, and the integration of non-threatening movement and mindfulness into treatment. A single case study is used to demonstrate the biopsychosocial framework utilized in this approach. Appropriate measures for assessing psychosocial factors are readily available and inform a reasoned approach for physical therapy design that addresses both peripheral and central pain mechanisms. Decades of research support the integration of a biopsychosocial approach in the treatment of complex pain, including female sexual pain. It is reasonable for physical therapists to utilize evidence based strategies such as CBT, pain biology education, Mindfulness Based Stress Reduction (MBSR), yoga and imagery based exercises to address the biopsychosocial components of female sexual pain. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  18. Hypnotherapy of a pain disorder: a clinical case study.

    PubMed

    Artimon, Henrieta Mihaela

    2015-01-01

    Hypnotherapy's effectiveness in improving and controlling chronic pain of various etiologies has been demonstrated by studies; the mechanism by which hypnosis does this is more complex than a simple induction of muscle relaxation. This study reveals, in addition to this mechanism, a deeper dimension of hypnotherapy from the vantage of a patient with a medical-surgical background, diagnosed with a pain disorder and major severe depressive disorder in addition to incurable painful symptoms, through treatment associated with hypnoanalysis. Following psychotherapy, which included some elements of cognitive-behavioral therapy, a complete remission of the anxious-depressive mood and the painful symptoms was achieved.

  19. Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting

    DOE PAGES

    Hodge, N. E.; Ferencz, R. M.; Vignes, R. M.

    2016-05-30

    Selective laser melting (SLM) is an additive manufacturing process in which multiple, successive layers of metal powders are heated via laser in order to build a part. Modeling of SLM requires consideration of the complex interaction between heat transfer and solid mechanics. Here, the present work describes the authors initial efforts to validate their first generation model. In particular, the comparison of model-generated solid mechanics results, including both deformation and stresses, is presented. Additionally, results of various perturbations of the process parameters and modeling strategies are discussed.

  20. The Next Wave of Influenza Drugs.

    PubMed

    Shaw, Megan L

    2017-10-13

    Options for influenza therapy are currently limited to one class of drug, the neuraminidase inhibitors. Amidst concerns about drug resistance, much effort has been placed on the discovery of new drugs with distinct targets and mechanisms of action, with great success. There are now several candidates in late stage development which include small molecules targeting the three subunits of the viral polymerase complex and monoclonal antibodies targeting the hemagglutinin, as well as host-directed therapies. The availability of drugs with diverse mechanisms now opens the door to exploring combination therapies for influenza, and the range of administration routes presents more opportunities for treating hospitalized patients.

  1. Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement

    PubMed Central

    Willis, Nicholas A.; Rass, Emilie; Scully, Ralph

    2015-01-01

    Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise. PMID:26726318

  2. Performance assessment techniques for Doppler radar physiological sensors.

    PubMed

    Hafner, Noah; Lubecke, Victor

    2009-01-01

    This paper presents a technique for assessing the performance of continuous wave Doppler radar systems for physiological sensing. The technique includes an artificial target for testing physiological sensing radar systems with motion analogous to human heart movement and software algorithms leveraging the capabilities of this target to simply test radar system performance. The mechanical target provides simple to complex patterns of motion that are stable and repeatable. Details of radar system performance can be assessed and the effects of configuration changes that might not appear with a human target can be observed when using this mechanical target.

  3. Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system

    NASA Astrophysics Data System (ADS)

    Long, Yoann; Charbouillot, Tiffany; Brigante, Marcello; Mailhot, Gilles; Delort, Anne-Marie; Chaumerliac, Nadine; Deguillaume, Laurent

    2013-10-01

    Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2rad /O2rad - and HOrad ) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations.

  4. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.

    PubMed

    Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G

    2013-08-01

    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.

  5. Mechanisms of Geomagnetic Field Influence on Gene Expression Using Influenza as a Model System: Basics of Physical Epidemiology

    PubMed Central

    Zaporozhan, Valeriy; Ponomarenko, Andriy

    2010-01-01

    Recent studies demonstrate distinct changes in gene expression in cells exposed to a weak magnetic field (MF). Mechanisms of this phenomenon are not understood yet. We propose that proteins of the Cryptochrome family (CRY) are “epigenetic sensors” of the MF fluctuations, i.e., magnetic field-sensitive part of the epigenetic controlling mechanism. It was shown that CRY represses activity of the major circadian transcriptional complex CLOCK/BMAL1. At the same time, function of CRY, is apparently highly responsive to weak MF because of radical pairs that periodically arise in the functionally active site of CRY and mediate the radical pair mechanism of magnetoreception. It is known that the circadian complex influences function of every organ and tissue, including modulation of both NF-κB- and glucocorticoids- dependent signaling pathways. Thus, MFs and solar cycles-dependent geomagnetic field fluctuations are capable of altering expression of genes related to function of NF-κB, hormones and other biological regulators. Notably, NF-κB, along with its significant role in immune response, also participates in differential regulation of influenza virus RNA synthesis. Presented data suggests that in the case of global application (example—geomagnetic field), MF-mediated regulation may have epidemiological and other consequences. PMID:20617011

  6. A Cryo-Electron Microscopy Study Identifies the Complete H16.V5 Epitope and Reveals Global Conformational Changes Initiated by Binding of the Neutralizing Antibody Fragment

    PubMed Central

    Lee, Hyunwook; Brendle, Sarah A.; Bywaters, Stephanie M.; Guan, Jian; Ashley, Robert E.; Yoder, Joshua D.; Makhov, Alexander M.; Conway, James F.; Christensen, Neil D.

    2014-01-01

    ABSTRACT Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid–Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called “invading-arm” structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites. IMPORTANCE Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and “invading-arm” structures. This study advances the understanding of the neutralization mechanism used by H16.V5. PMID:25392224

  7. The roles of cohesins in mitosis, meiosis, and human health and disease

    PubMed Central

    Brooker, Amanda S.; Berkowitz, Karen M.

    2015-01-01

    Summary Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multi-protein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events, as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review will serve as a guide for the current knowledge of cohesins. PMID:24906316

  8. Modification of feeding circuits in the evolution of social behavior.

    PubMed

    Fischer, Eva K; O'Connell, Lauren A

    2017-01-01

    Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification. © 2017. Published by The Company of Biologists Ltd.

  9. How Soluble GARP Enhances TGFβ Activation.

    PubMed

    Fridrich, Sven; Hahn, Susanne A; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter

    2016-01-01

    GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo.

  10. Methods of erection of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Nadezhda; Oleinik, Pavel

    2018-03-01

    The article contains the factors determining the choice of methods for organizing the construction and production of construction and installation work for the construction of high-rise buildings. There are also indicated specific features of their underground parts, characterized by powerful slab-pile foundations, large volumes of earthworks, reinforced bases and foundations for assembly cranes. The work cycle is considered when using reinforced concrete, steel and combined skeletons of high-rise buildings; the areas of application of flow, separate and complex methods are being disclosed. The main conditions for the erection of high-rise buildings and their components are singled out: the choice of formwork systems, delivery and lifting of concrete mixes, installation of reinforcement, the formation of lifting and transporting and auxiliary equipment. The article prescribes the reserves of reduction in the duration of construction due to the creation of: complex mechanized technologies for the efficient construction of foundations in various soil conditions, including in the heaving, swelling, hindered, subsidence, bulk, water-saturated forms; complex mechanized technologies for the erection of monolithic reinforced concrete structures, taking into account the winter conditions of production and the use of mobile concrete-laying complexes and new generation machines; modular formwork systems, distinguished by their versatility, ease, simplicity in operation suitable for complex high-rise construction; more perfect methodology and the development of a set of progressive organizational and technological solutions that ensure a rational relationship between the processes of production and their maximum overlap in time and space.

  11. Multi-functional regulation of 4E-BP gene expression by the Ccr4-Not complex.

    PubMed

    Okada, Hirokazu; Schittenhelm, Ralf B; Straessle, Anna; Hafen, Ernst

    2015-01-01

    The mechanistic target of rapamycin (mTOR) signaling pathway is highly conserved from yeast to humans. It senses various environmental cues to regulate cellular growth and homeostasis. Deregulation of the pathway has been implicated in many pathological conditions including cancer. Phosphorylation cascades through the pathway have been extensively studied but not much is known about the regulation of gene expression of the pathway components. Here, we report that the mRNA level of eukaryotic translation initiation factor (eIF) subunit 4E-binding protein (4E-BP) gene, one of the key mTOR signaling components, is regulated by the highly conserved Ccr4-Not complex. RNAi knockdown of Not1, a putative scaffold protein of this protein complex, increases the mRNA level of 4E-BP in Drosophila Kc cells. Examination of the gene expression mechanism using reporter swap constructs reveals that Not1 depletion increases reporter mRNAs with the 3'UTR of 4E-BP gene, but decreases the ones with the 4E-BP promoter region, suggesting that Ccr4-Not complex regulates both degradation and transcription of 4E-BP mRNA. These results indicate that the Ccr4-Not complex controls expression of a single gene at multiple levels and adjusts the magnitude of the total effect. Thus, our study reveals a novel regulatory mechanism of a key component of the mTOR signaling pathway at the level of gene expression.

  12. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.

  13. Molecular mechanism of transcription inhibition by phage T7 gp2 protein.

    PubMed

    Mekler, Vladimir; Minakhin, Leonid; Sheppard, Carol; Wigneshweraraj, Sivaramesh; Severinov, Konstantin

    2011-11-11

    Escherichia coli T7 bacteriophage gp2 protein is a potent inhibitor of host RNA polymerase (RNAP). gp2 inhibits formation of open promoter complex by binding to the β' jaw, an RNAP domain that interacts with downstream promoter DNA. Here, we used an engineered promoter with an optimized sequence to obtain and characterize a specific promoter complex containing RNAP and gp2. In this complex, localized melting of promoter DNA is initiated but does not propagate to include the point of the transcription start. As a result, the complex is transcriptionally inactive. Using a highly sensitive RNAP beacon assay, we performed quantitative real-time measurements of specific binding of the RNAP-gp2 complex to promoter DNA and various promoter fragments. In this way, the effect of gp2 on RNAP interaction with promoters was dissected. As expected, gp2 greatly decreased RNAP affinity to downstream promoter duplex. However, gp2 also inhibited RNAP binding to promoter fragments that lacked downstream promoter DNA that interacts with the β' jaw. The inhibition was caused by gp2-mediated decrease of the RNAP binding affinity to template and non-template strand segments of the transcription bubble downstream of the -10 promoter element. The inhibition of RNAP interactions with single-stranded segments of the transcription bubble by gp2 is a novel effect, which may occur via allosteric mechanism that is set in motion by the gp2 binding to the β' jaw. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods

    PubMed Central

    Du, Xing; Li, Yi; Xia, Yuan-Ling; Ai, Shi-Meng; Liang, Jing; Sang, Peng; Ji, Xing-Lai; Liu, Shu-Qun

    2016-01-01

    Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed. PMID:26821017

  15. Mechanisms of antibiotic resistance in Staphylococcus aureus.

    PubMed

    Pantosti, Annalisa; Sanchini, Andrea; Monaco, Monica

    2007-06-01

    Staphylococcus aureus can exemplify better than any other human pathogen the adaptive evolution of bacteria in the antibiotic era, as it has demonstrated a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin and methicillin, until the most recent, linezolid and daptomycin. Resistance mechanisms include enzymatic inactivation of the antibiotic (penicillinase and aminoglycoside-modification enzymes), alteration of the target with decreased affinity for the antibiotic (notable examples being penicillin-binding protein 2a of methicillin-resistant S. aureus and D-Ala-D-Lac of peptidoglycan precursors of vancomycin-resistant strains), trapping of the antibiotic (for vancomycin and possibly daptomycin) and efflux pumps (fluoroquinolones and tetracycline). Complex genetic arrays (staphylococcal chromosomal cassette mec elements or the vanA operon) have been acquired by S. aureus through horizontal gene transfer, while resistance to other antibiotics, including some of the most recent ones (e.g., fluoroquinolones, linezolid and daptomycin) have developed through spontaneous mutations and positive selection. Detection of the resistance mechanisms and their genetic basis is an important support to antibiotic susceptibility surveillance in S. aureus.

  16. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  17. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    PubMed

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  19. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).

    PubMed

    Brockman, Kathryne S; Kizhakkedathu, Jayachandran N; Santerre, J Paul

    2017-01-15

    Biomaterial blood compatibility is a complex process that involves four key pathways, including the coagulation cascade, the complement system, platelets, and leukocytes. While many studies have addressed the initial contact of blood with homopolymeric (e.g. Teflon) or simple copolymeric (e.g. Dacron) biomaterials, relatively less attention has been given to investigating blood coagulation with respect to complex copolymeric systems containing well defined and diverse function. The current study sought to assess the hemocompatibility of a complex polyurethane (PU) containing a unique combination of polar, hydrophobic, and ionic domains (D-PHI). This included a whole blood (WB) study, followed by tests on the intrinsic and extrinsic coagulation pathways, complement activation, platelet activation, and an assessment of the effect of leukocytes on platelet-biomaterial interactions. A small increase in blood clot formation was observed on D-PHI in WB; however, there was no significant increase in clotting via the intrinsic coagulation cascade. No significant increase in platelet adhesion and only a very slight increase in platelet activation were observed in comparison to albumin-coated substrates (negative control). D-PHI showed mild complement activation and increased initiation of the extrinsic pathway of coagulation, along with the observation that leukocytes were important in mediating platelet-biomaterial interactions. It is proposed that complement is responsible for activating coagulation by inciting leukocytes to generate tissue factor (TF), which causes extrinsic pathway activation. This low level of blood clotting on D-PHI's surface may be necessary for the beneficial wound healing of vascular constructs that has been previously reported for this material. Understanding the hemocompatibility of devices intended for blood-contacting applications is important for predicting device failure. Hemocompatibility is a complex parameter (affected by at least four different mechanisms) that measures the level of thrombus generation and immune system activation resulting from blood-biomaterial contact. The complexity of hemocompatibility implies that homopolymers are unlikely to solve the clotting challenges that face most biomaterials. Diversity in surface chemistry (containing hydrophobic, ionic, and polar domains) obtained from engineered polyurethanes can lead to favourable interactions with blood. The current research considered the effect of a highly functionalized polyurethane biomaterial on all four mechanisms in order to provide a comprehensive in vitro measure of the hemocompatibility of this unique material and the important mechanisms at play. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Origin and initiation mechanisms of neuroblastoma.

    PubMed

    Tsubota, Shoma; Kadomatsu, Kenji

    2018-05-01

    Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.

  1. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    NASA Astrophysics Data System (ADS)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron donor under Fe(III)-reducing conditions. In summary, this study shows that increasing concentrations of OM in OM-mineral complexes determines microbial Fe(III) reduction rates and shapes the microbial community structure involved in the reductive dissolution of ferrihydrite. Similarities observed between the complex Fe(III)-reducing microbial consortia and the model Fe(III)-reducer S. oneidensis MR-1 suggest electron-shuttling mechanisms dominate in OM-rich environments, including soils, sediments, and fens, where natural OM interacts with Fe(III) oxides during mineral formation.

  2. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots

    PubMed Central

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps, leg damage adaptations, as well as climbing over high obstacles. Furthermore, we demonstrate that the newly developed recurrent network based approach to online forward models outperforms the adaptive neuron forward models, which have hitherto been the state of the art, to model a subset of similar walking behaviors in walking robots. PMID:26441629

  3. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity.

    PubMed

    Naranmandura, Hua; Xu, Shi; Sawata, Takashi; Hao, Wen Hui; Liu, Huan; Bu, Na; Ogra, Yasumitsu; Lou, Yi Jia; Suzuki, Noriyuki

    2011-07-18

    Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity. © 2011 American Chemical Society

  4. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  5. Atrial Fibrillation: Mechanisms, Therapeutics, and Future Directions

    PubMed Central

    Pellman, Jason; Sheikh, Farah

    2017-01-01

    Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting 1% to 2% of the general population. It is characterized by rapid and disorganized atrial activation leading to impaired atrial function, which can be diagnosed on an EKG by lack of a P-wave and irregular QRS complexes. AF is associated with increased morbidity and mortality and is a risk factor for embolic stroke and worsening heart failure. Current research on AF support and explore the hypothesis that initiation and maintenance of AF require pathophysiological remodeling of the atria, either specifically as in lone AF or secondary to other heart disease as in heart failure-associated AF. Remodeling in AF can be grouped into three categories that include: (i) electrical remodeling, which includes modulation of L-type Ca2+ current, various K+ currents and gap junction function; (ii) structural remodeling, which includes changes in tissues properties, size, and ultrastructure; and (iii) autonomic remodeling, including altered sympathovagal activity and hyperinnervation. Electrical, structural, and autonomic remodeling all contribute to creating an AF-prone substrate which is able to produce AF-associated electrical phenomena including a rapidly firing focus, complex multiple reentrant circuit or rotors. Although various remodeling events occur in AF, current AF therapies focus on ventricular rate and rhythm control strategies using pharmacotherapy and surgical interventions. Recent progress in the field has started to focus on the underlying substrate that drives and maintains AF (termed upstream therapies); however, much work is needed in this area. Here, we review current knowledge of AF mechanisms, therapies, and new areas of investigation. PMID:25880508

  6. A non-canonical mechanism for Crm1-export cargo complex assembly

    PubMed Central

    Fischer, Ute; Schäuble, Nico; Schütz, Sabina; Altvater, Martin; Chang, Yiming; Boulos Faza, Marius; Panse, Vikram Govind

    2015-01-01

    The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export. DOI: http://dx.doi.org/10.7554/eLife.05745.001 PMID:25895666

  7. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP)more » with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  8. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  9. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE PAGES

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao; ...

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  10. Using Full Genomic Information to Predict Disease: Breaking Down the Barriers Between Complex and Mendelian Diseases.

    PubMed

    Jordan, Daniel M; Do, Ron

    2018-04-11

    While sequence-based genetic tests have long been available for specific loci, especially for Mendelian disease, the rapidly falling costs of genome-wide genotyping arrays, whole-exome sequencing, and whole-genome sequencing are moving us toward a future where full genomic information might inform the prognosis and treatment of a variety of diseases, including complex disease. Similarly, the availability of large populations with full genomic information has enabled new insights about the etiology and genetic architecture of complex disease. Insights from the latest generation of genomic studies suggest that our categorization of diseases as complex may conceal a wide spectrum of genetic architectures and causal mechanisms that ranges from Mendelian forms of complex disease to complex regulatory structures underlying Mendelian disease. Here, we review these insights, along with advances in the prediction of disease risk and outcomes from full genomic information. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 19 is August 31, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  11. Topology and Oligomerization of Mono- and Oligomeric Proteins Regulate Their Half-Lives in the Cell.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2018-06-05

    To find additional structural constraints (besides disordered segments) that regulate protein half-life in the cell, we herein assess the influence of native topology of monomeric and sequestration of oligomeric proteins into multimeric complexes in yeast, human, and mouse. Native topology acts as a molecular marker of globular protein's mechanical resistance and consequently captures their half-life variations on genome scale. Sequestration into multimeric complexes elongates oligomeric protein half-life in the cell, presumably by burying ubiquitinoylation sites and disordered segments required for proteasomal recognition. The latter effect is stronger for proteins associated with multiple complexes and for those binding early during complex self-assembly, including proteins that oligomerize with large proportions of surface buried. After gene duplication, diversification of topology and sequestration into non-identical sets of complexes alter half-lives of paralogous proteins during the course of evolution. Thus, native topology and sequestration into multimeric complexes reflect designing principles of proteins to regulate their half-lives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.

    PubMed

    Madl, Christopher M; Heilshorn, Sarah C

    2018-06-04

    Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.

  13. [The Stigma-discrimination Complex Associated With Mental Disorder as a Risk Factor for Suicide].

    PubMed

    Campo-Arias, Adalberto; Herazo, Edwin

    2015-01-01

    The concept stigma-discrimination complex associated with mental disorder (SDCAMD) is proposed to encompass the terms used in the attribution theory: stigma, stereotype, prejudice and discrimination. SDCAMD is one of the most frequent disorders worldwide. Internalized and perceived SDCAMD may explain a number of suicide cases. To update the factors that may explain the association between SDCAMD and suicide, and postulate possible underlying mechanisms. Articles were identified in MEDLINE using the descriptors for "stigma", "mental disorders" and "suicide" or "suicide rate". Articles published between January 2000 and June 2014 were included. Reviews and case studies were not considered. The two included studies showed that stigma increased the risk of suicidal behaviors. It was evident that people who meet criteria for mental disorder and reported high self-stigma made a greater number of suicide attempts, and countries with high stigma in the general population have a higher suicide rate. It was considered that the relationship between SDCAMD and suicide is established by a set of interrelated mechanisms. A "direct" mechanism involving perceived stigma and is configured as a barrier to access mental health services, and an "indirect" mechanism involving the self-stigma, which increases the vulnerability to depressive episodes and repeated self-injurious behaviors that ultimately end in suicide. The SDCAMD impacts negatively on the quality of life of people who meet criteria for mental disorders, and accounts for a significant number of suicides. One way is related to the perceived stigma that is configured as a barrier to access mental health services and, the second one includes repeated self-injurious behaviors that reduce self-esteem and increases perceived stress. Further research is required to increase the knowledge of this association. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  14. Bio-chemo-mechanical models of vascular mechanics

    PubMed Central

    Kim, Jungsil; Wagenseil, Jessica E.

    2014-01-01

    Models of vascular mechanics are necessary to predict the response of an artery under a variety of loads, for complex geometries, and in pathological adaptation. Classic constitutive models for arteries are phenomenological and the fitted parameters are not associated with physical components of the wall. Recently, microstructurally-linked models have been developed that associate structural information about the wall components with tissue-level mechanics. Microstructurally-linked models are useful for correlating changes in specific components with pathological outcomes, so that targeted treatments may be developed to prevent or reverse the physical changes. However, most treatments, and many causes, of vascular disease have chemical components. Chemical signaling within cells, between cells, and between cells and matrix constituents affects the biology and mechanics of the arterial wall in the short- and long-term. Hence, bio-chemo-mechanical models that include chemical signaling are critical for robust models of vascular mechanics. This review summarizes bio-mechanical and bio-chemo-mechanical models with a focus on large elastic arteries. We provide applications of these models and challenges for future work. PMID:25465618

  15. Rapid diversification and secondary sympatry in Australo-Pacific kingfishers (Aves: Alcedinidae: Todiramphus)

    PubMed Central

    Andersen, Michael J.; Shult, Hannah T.; Cibois, Alice; Thibault, Jean-Claude; Filardi, Christopher E.; Moyle, Robert G.

    2015-01-01

    Todiramphus chloris is the most widely distributed of the Pacific's ‘great speciators’. Its 50 subspecies constitute a species complex that is distributed over 16 000 km from the Red Sea to Polynesia. We present, to our knowledge, the first comprehensive molecular phylogeny of this enigmatic radiation of kingfishers. Ten Pacific Todiramphus species are embedded within the T. chloris complex, rendering it paraphyletic. Among these is a radiation of five species from the remote islands of Eastern Polynesian, as well as the widespread migratory taxon, Todiramphus sanctus. Our results offer strong support that Pacific Todiramphus, including T. chloris, underwent an extensive range expansion and diversification less than 1 Ma. Multiple instances of secondary sympatry have accumulated in this group, despite its recent origin, including on Australia and oceanic islands in Palau, Vanuatu and the Solomon Islands. Significant ecomorphological and behavioural differences exist between secondarily sympatric lineages, which suggest that pre-mating isolating mechanisms were achieved rapidly during diversification. We found evidence for complex biogeographic patterns, including a novel phylogeographic break in the eastern Solomon Islands that separates a Northern Melanesian clade from Polynesian taxa. In light of our results, we discuss systematic relationships of Todiramphus and propose an updated taxonomy. This paper contributes to our understanding of avian diversification and assembly on islands, and to the systematics of a classically polytypic species complex. PMID:26064600

  16. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    PubMed

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-08-24

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.

  17. Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century

    ERIC Educational Resources Information Center

    Newton, Paul K.

    2017-01-01

    The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…

  18. A calcium-driven mechanochemical model for prediction of force generation in smooth muscle.

    PubMed

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A

    2010-12-01

    A new model for the mechanochemical response of smooth muscle is presented. The focus is on the response of the actin-myosin complex and on the related generation of force (or stress). The chemical (kinetic) model describes the cross-bridge interactions with the thin filament in which the calcium-dependent myosin phosphorylation is the only regulatory mechanism. The new mechanical model is based on Hill's three-component model and it includes one internal state variable that describes the contraction/relaxation of the contractile units. It is characterized by a strain-energy function and an evolution law incorporating only a few material parameters with clear physical meaning. The proposed model satisfies the second law of thermodynamics. The results of the combined coupled model are broadly consistent with isometric and isotonic experiments on smooth muscle tissue. The simulations suggest that the matrix in which the actin-myosin complex is embedded does have a viscous property. It is straightforward for implementation into a finite element program in order to solve more complex boundary-value problems such as the control of short-term changes in lumen diameter of arteries due to mechanochemical signals.

  19. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin.

    PubMed

    Feinstein, Timothy N; Yui, Naofumi; Webber, Matthew J; Wehbi, Vanessa L; Stevenson, Hilary P; King, J Darwin; Hallows, Kenneth R; Brown, Dennis; Bouley, Richard; Vilardaga, Jean-Pierre

    2013-09-27

    The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na(+) transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel "noncanonical" regulatory pathway for GPCR activation and response termination, via the sequential action of β-arrestin and the retromer complex.

  20. Fast social-like learning of complex behaviors based on motor motifs.

    PubMed

    Calvo Tapia, Carlos; Tyukin, Ivan Y; Makarov, Valeri A

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n-1)! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n-1) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  1. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling

    PubMed Central

    Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W.; Asmann, Yan W.; Thompson, E. Aubrey

    2017-01-01

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. PMID:28877994

  2. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Qiaozhen; Kim, Dong Hyun; Dereli, Ihsan

    Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed “closure motifs”. The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain–closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet. We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 “poremore » loops”, which then unfold MAD2 in the presence of ATP. N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain–closure motif complexes by TRIP13.« less

  3. Journey into Bone Models: A Review

    PubMed Central

    Scheinpflug, Julia; Pfeiffenberger, Moritz; Damerau, Alexandra; Schwarz, Franziska; Textor, Martin; Lang, Annemarie

    2018-01-01

    Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed. PMID:29748516

  4. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    PubMed

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling.

    PubMed

    Kourtidis, Antonis; Necela, Brian; Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W; Asmann, Yan W; Thompson, E Aubrey; Anastasiadis, Panos Z

    2017-10-02

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. © 2017 Kourtidis et al.

  6. Journey into Bone Models: A Review.

    PubMed

    Scheinpflug, Julia; Pfeiffenberger, Moritz; Damerau, Alexandra; Schwarz, Franziska; Textor, Martin; Lang, Annemarie; Schulze, Frank

    2018-05-10

    Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed.

  7. Fast social-like learning of complex behaviors based on motor motifs

    NASA Astrophysics Data System (ADS)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  8. Stability and Unimolecular Reactivity of Palladate(II) Complexes [Ln PdR3 ]- (L=Phosphine, R=Organyl, n=0 and 1).

    PubMed

    Kolter, Marlene; Koszinowski, Konrad

    2016-10-24

    The reduction of Pd II precatalysts to catalytically active Pd 0 species is a key step in many palladium-mediated cross-coupling reactions. Besides phosphines, the stoichiometrically used organometallic reagents can afford this reduction, but do so in a poorly understood way. To elucidate the mechanism of this reaction, we have treated solutions of Pd(OAc) 2 and a phosphine ligand L in tetrahydrofuran with RMgCl (R=Ph, Bn, Bu) as well as other organometallic reagents. Analysis of these model systems by electrospray- ionization mass spectrometry found palladate(II) complexes [L n PdR 3 ] - (n=0 and 1), thus pointing to the occurrence of transmetallation reactions. Upon gas-phase fragmentation, the [L n PdR 3 ] - anions preferentially underwent a reductive elimination to yield Pd 0 species. The sequence of the transmetallation and reductive elimination, thus, constitutes a feasible mechanism for the reduction of the Pd(OAc) 2 precatalyst. Other species of interest observed include the Pd IV complex [PdBn 5 ] - , which did not fragment via a reductive elimination but lost BnH instead. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mechanisms for the Reduction of Actinides and Tc(VII) in Geobacter sulfurreducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, Jonathan R.

    2004-06-01

    The mechanism of the reduction of U(VI) and Cr(VI) has now been studied in detail. Cr(VI) is reduced by one-electron transfer reactions to Cr(III), via a cell-bound Cr(V) intermediate identified by EPR spectroscopy. Studies with a cytochrome c7 mutant demonstrate that the electron transfer chain includes this protein which may be the terminal reductase for Cr(VI). Potential mechanisms of inhibition of Cr(III) precipitation, involving complex formation with organic acids commonly used as electron donors for metal reduction in the subsurface have also been identified. We have also initiated a collaboration with computational chemists led by Prof Ian Hillier in Manchester,more » to model metal binding to cytochrome c7, and subsequent electron transfer from the enzyme to the metal quantum mechanically.« less

  10. Measurements in Quantum Mechanics and von NEUMANN's Model

    NASA Astrophysics Data System (ADS)

    Mello, Pier A.; Johansen, Lars M.

    2010-12-01

    Many textbooks on Quantum Mechanics are not very precise as to the meaning of making a measurement: as a consequence, they frequently make assertions which are not based on a dynamical description of the measurement process. A model proposed by von Neumann allows a dynamical description of measurement in Quantum Mechanics, including the measuring instrument in the formalism. In this article we apply von Neumann's model to illustrate the measurement of an observable by means of a measuring instrument and show how various results, which are sometimens postulated without a dynamical basis, actually emerge. We also investigate the more complex, intriguing and fundamental problem of two successive measurements in Quantum Mechanics, extending von Neumann's model to two measuring instruments. We present a description which allows obtaining, in a unified way, various results that have been given in the literature.

  11. Nature and Nurture of Human Pain

    PubMed Central

    2013-01-01

    Humans are very different when it comes to pain. Some get painful piercings and tattoos; others can not stand even a flu shot. Interindividual variability is one of the main characteristics of human pain on every level including the processing of nociceptive impulses at the periphery, modification of pain signal in the central nervous system, perception of pain, and response to analgesic strategies. As for many other complex behaviors, the sources of this variability come from both nurture (environment) and nature (genes). Here, I will discuss how these factors contribute to human pain separately and via interplay and how epigenetic mechanisms add to the complexity of their effects. PMID:24278778

  12. Editorial [Special issue on software defined networks and infrastructures, network function virtualisation, autonomous systems and network management

    DOE PAGES

    Biswas, Amitava; Liu, Chen; Monga, Inder; ...

    2016-01-01

    For last few years, there has been a tremendous growth in data traffic due to high adoption rate of mobile devices and cloud computing. Internet of things (IoT) will stimulate even further growth. This is increasing scale and complexity of telecom/internet service provider (SP) and enterprise data centre (DC) compute and network infrastructures. As a result, managing these large network-compute converged infrastructures is becoming complex and cumbersome. To cope up, network and DC operators are trying to automate network and system operations, administrations and management (OAM) functions. OAM includes all non-functional mechanisms which keep the network running.

  13. Spintronic characteristics of self-assembled neurotransmitter acetylcholine molecular complexes enable quantum information processing in neural networks and brain

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas

    2016-09-01

    Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.

  14. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer.

    PubMed

    Abdel-Hafiz, Hany A

    2017-07-06

    Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.

  15. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G

    2015-05-15

    A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cell Cycle Regulators Guide Mitochondrial Activity in Radiation-Induced Adaptive Response

    PubMed Central

    Alexandrou, Aris T.

    2014-01-01

    Abstract Significance: There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. Recent Advances: Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. Critical Issues: The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. Future Directions: Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk. Antioxid. Redox Signal. 20, 1463–1480. PMID:24180340

  17. Multispecies, Integrative GWAS for Focal Segmental Glomerulosclerosis

    DTIC Science & Technology

    2017-09-01

    is a frequent cause of end-stage renal disease (ESRD. We investigated the genetic basis of FSGS and recruited a heterogeneous population of...understanding the complex genetic mechanisms of FSGS. 15. SUBJECT TERMS FSGS, MCD, GWAS, CNV  16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT uu...disease (MCD). Using a variety of statistical and genetic approaches, including genome wide association analysis and rare copy number variations (CNVs

  18. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.

    PubMed

    Burton, T M W; Vaidyanathan, R; Burgess, S C; Turton, A J; Melhuish, C

    2011-01-01

    This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion. A computer aided design environment is used to allow the exoskeleton to be rapidly customized to the hand dimensions of a specific patient. Trials comparing the kinematic model to observed data of hand movement show the model to be capable of mapping thumb and finger joint flexion angles during grasping motions. Simulations show the exoskeleton to be capable of reproducing the complex motion of the thumb to oppose the fingers during cylindrical and pinch grip motions. © 2011 IEEE

  19. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.

    PubMed

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A

    2015-09-22

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.

  20. Piezo proteins are pore-forming subunits of mechanically activated channels.

    PubMed

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-02-19

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  1. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes

    PubMed Central

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane–nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design. PMID:26372959

  2. Genetic Forms of Epilepsies and other Paroxysmal Disorders

    PubMed Central

    Olson, Heather E.; Poduri, Annapurna; Pearl, Phillip L.

    2016-01-01

    Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including Tuberous Sclerosis Complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of singe gene causes or susceptibility factors associated with several epilepsy syndromes, including the early onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look towards the future of epilepsy genetics. PMID:25192505

  3. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  4. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    PubMed

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  5. A review of mechanisms and modelling procedures for landslide tsunamis

    NASA Astrophysics Data System (ADS)

    Løvholt, Finn; Harbitz, Carl B.; Glimsdal, Sylfest

    2017-04-01

    Landslides, including volcano flank collapses or volcanically induced flows, constitute the second-most important cause of tsunamis after earthquakes. Compared to earthquakes, landslides are more diverse with respect to how they generation tsunamis. Here, we give an overview over the main tsunami generation mechanisms for landslide tsunamis. In the presentation, a mix of results using analytical models, numerical models, laboratory experiments, and case studies are used to illustrate the diversity, but also to point out some common characteristics. Different numerical modelling techniques for the landslide evolution, and the tsunami generation and propagation, as well as the effect of frequency dispersion, are also briefly discussed. Basic tsunami generation mechanisms for different types of landslides, including large submarine translational landslide, to impulsive submarine slumps, and violent subaerial landslides and volcano flank collapses, are reviewed. The importance of the landslide kinematics is given attention, including the interplay between landslide acceleration, landslide velocity to depth ratio (Froude number) and dimensions. Using numerical simulations, we demonstrate how landslide deformation and retrogressive failure development influence tsunamigenesis. Generation mechanisms for subaerial landslides, are reviewed by means of scaling relations from laboratory experiments and numerical modelling. Finally, it is demonstrated how the different degree of complexity in the landslide tsunamigenesis needs to be reflected by increased sophistication in numerical models.

  6. a Study of Dynamic Powder Consolidation Based on a Particle-Level Mathematical Model.

    NASA Astrophysics Data System (ADS)

    Williamson, Richard L.

    A mathematical model is developed to investigate the effects of large amplitude shock waves on powder materials during dynamic consolidation. The model is constructed at the particle level, focusing on a region containing a few powder particles and the surrounding interstices. The general equations of continuum mechanics are solved over this region, using initial and boundary conditions appropriate for the consolidation process. Closure of the equation system is obtained using an analytical equation of state; relations are included to account for solid to liquid phase changes. An elastic, perfectly-plastic constitutive law, specifically modified to describe material behavior at high-strain-rates, is applied to the solid materials. To reduce complexity, the model is restricted to two dimensions, therefore individual particles are approximated as infinitely long cylinders rather than spheres. The equation system is solved using standard finite-difference numerical techniques. It is demonstrated that for typical consolidation conditions, energy diffusion mechanisms are insignificant during the rapid densification phase of consolidation. Using type 304 stainless steel powder material, the particle-level model is used to investigate the mechanisms responsible for particle surface heating and metallurgical bonding during consolidation. It is demonstrated that energy deposition near particle surfaces results both from rapid particle deformation during interstitial filling and large localized impacts occurring at the final instant of interstitial closure; particle interior regions remain at sufficiently low temperatures to avoid microstructural modification. Nonuniform metallurgical bonding is predicted around the particle periphery, ranging from complete fusion to mechanical abutment. Simulation results are used to investigate the detailed wave propagation phenomena at the particle level, providing an improved understanding of this complex behavior. A variety of parametric studies are conducted including investigations of the effects of stress wave amplitude and rise time, the role of interstitial gases during consolidation, and various geometric aspects including the importance of initial void fraction. The model is applied to a metal matrix composite system to investigate the consolidation of mixtures of differing materials; results of a two-dimensional experiment are included. Available experimental data are compared with simulation results. In general, very good agreement between simulation results and data is obtained.

  7. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation

    PubMed Central

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph

    2015-01-01

    ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686

  8. Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Shah, Masaud; Choi, Sangdun

    2015-01-01

    TLR4 in complex with MD2 senses the presence of lipid A (LA) and initiates a signaling cascade that curb the infection. This complex is evolutionarily conserved and can initiate the immune system in response to a variety of LAs. In this study, molecular dynamics simulation (25 ns) was performed to elucidate the differential behavior of TLR4/MD2 complex in response to Rhodobacter sphaeroides lipid A (RsLA). Penta-acyl chain-containing RsLA is at the verge of agonist (6 acyl-chains) and antagonist (4 acyl-chains) structure, and activates the TLR4 pathway in horses and hamsters, while inhibiting in humans and murine. In the time-evolved coordinates, the promising factors that dictated the differential response included the local and global mobility pattern of complexes, solvent-accessible surface area of ligand, and surface charge distributions of TLR4 and MD2. We showed that the GlcN1-GlcN2 backbone acquires agonist (3FXI)-like configurations in horses and hamsters, while acquiring antagonist (2E59)-like configurations in humans and murine systems. Moreover, analysis of F126 behavior in the MD2 F126 loop (amino acids 123-129) and loop EF (81-89) suggested that certain sequence variations also contribute to species-specific response. This study underlines the TLR4 signaling mechanism and provides new therapeutic opportunities.

  9. "Scientific roots" of dualism in neuroscience.

    PubMed

    Arshavsky, Yuri I

    2006-07-01

    Although the dualistic concept is unpopular among neuroscientists involved in experimental studies of the brain, neurophysiological literature is full of covert dualistic statements on the possibility of understanding neural mechanisms of human consciousness. Particularly, the covert dualistic attitude is exhibited in the unwillingness to discuss neural mechanisms of consciousness, leaving the problem of consciousness to psychologists and philosophers. This covert dualism seems to be rooted in the main paradigm of neuroscience that suggests that cognitive functions, such as language production and comprehension, face recognition, declarative memory, emotions, etc., are performed by neural networks consisting of simple elements. I argue that neural networks of any complexity consisting of neurons whose function is limited to the generation of electrical potentials and the transmission of signals to other neurons are hardly capable of producing human mental activity, including consciousness. Based on results obtained in physiological, morphological, clinical, and genetic studies of cognitive functions (mainly linguistic ones), I advocate the hypothesis that the performance of cognitive functions is based on complex cooperative activity of "complex" neurons that are carriers of "elementary cognition." The uniqueness of human cognitive functions, which has a genetic basis, is determined by the specificity of genes expressed by these "complex" neurons. The main goal of the review is to show that the identification of the genes implicated in cognitive functions and the understanding of a functional role of their products is a possible way to overcome covert dualism in neuroscience.

  10. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  11. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    ERIC Educational Resources Information Center

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  12. Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.

    PubMed

    Abe, Koichiro; Yu, Philipp

    2009-02-01

    One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.

  13. Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation.

    PubMed

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-03-05

    Efficient removal and separation of chemicals from the environment has become a vital issue from a biological and environmental point of view. Currently, adsorptive removal/separation is one of the most promising approaches for cleaning purposes. Selective adsorption/removal of various sulfur- and nitrogen-containing compounds, olefins, and π-electron-rich gases via π-complex formation between an adsorbent and adsorbate molecules is very competitive. Porous metal-organic framework (MOF) materials are very promising in the adsorption/separation of various liquids and gases owing to their distinct characteristics. This review summarizes the literature on the adsorptive removal/separation of various π-electron-rich compounds mainly from fuel and gases using MOF materials containing metal ions that are active for π-complexation. Details of the π-complexation, including mechanism, pros/cons, applications, and efficient ways to form the complex, are discussed systematically. For in-depth understanding, molecular orbital calculations regarding charge transfer between the π-complexing species are also explained in a separate section. From this review, readers will gain an understanding of π-complexation for adsorption and separation, especially with MOFs, to develop new insight for future research. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum.

    PubMed

    Gonzalez-Vogel, Alvaro; Eyzaguirre, Jaime; Oleas, Gabriela; Callegari, Eduardo; Navarrete, Mario

    2011-01-01

    Proteins secreted by filamentous fungi play key roles in different aspects of their biology. The fungus Penicillium purpurogenum, used as a model organism, is able to degrade hemicelluloses and pectins by secreting a variety of enzymes to the culture medium. This work shows that these enzymes interact with each other to form high molecular weight, catalytically active complexes. By using a proteomics approach, we were able to identify several protein complexes in the secretome of this fungus. The expression and assembly of these complexes depend on the carbon source used and display molecular masses ranging from 300 to 700 kDa. These complexes are composed of a variety of enzymes, including arabinofuranosidases, acetyl xylan esterases, feruloyl esterases, β-glucosidases and xylanases. The protein-protein interactions in these multienzyme complexes were confirmed by coimmunoprecipitation assays. One of the complexes was purified from sugar beet pulp cultures and the subunits identified by tandem mass spectrometry. A better understanding of the biological significance of these kinds of interactions will help in the comprehension of the degradation mechanisms used by fungi and may be of special interest to the biotechnology industry.

  15. Combat Wound Initiative program.

    PubMed

    Stojadinovic, Alexander; Elster, Eric; Potter, Benjamin K; Davis, Thomas A; Tadaki, Doug K; Brown, Trevor S; Ahlers, Stephen; Attinger, Christopher E; Andersen, Romney C; Burris, David; Centeno, Jose; Champion, Hunter; Crumbley, David R; Denobile, John; Duga, Michael; Dunne, James R; Eberhardt, John; Ennis, William J; Forsberg, Jonathan A; Hawksworth, Jason; Helling, Thomas S; Lazarus, Gerald S; Milner, Stephen M; Mullick, Florabel G; Owner, Christopher R; Pasquina, Paul F; Patel, Chirag R; Peoples, George E; Nissan, Aviram; Ring, Michael; Sandberg, Glenn D; Schaden, Wolfgang; Schultz, Gregory S; Scofield, Tom; Shawen, Scott B; Sheppard, Forest R; Stannard, James P; Weina, Peter J; Zenilman, Jonathan M

    2010-07-01

    The Combat Wound Initiative (CWI) program is a collaborative, multidisciplinary, and interservice public-private partnership that provides personalized, state-of-the-art, and complex wound care via targeted clinical and translational research. The CWI uses a bench-to-bedside approach to translational research, including the rapid development of a human extracorporeal shock wave therapy (ESWT) study in complex wounds after establishing the potential efficacy, biologic mechanisms, and safety of this treatment modality in a murine model. Additional clinical trials include the prospective use of clinical data, serum and wound biomarkers, and wound gene expression profiles to predict wound healing/failure and additional clinical patient outcomes following combat-related trauma. These clinical research data are analyzed using machine-based learning algorithms to develop predictive treatment models to guide clinical decision-making. Future CWI directions include additional clinical trials and study centers and the refinement and deployment of our genetically driven, personalized medicine initiative to provide patient-specific care across multiple medical disciplines, with an emphasis on combat casualty care.

  16. How actin network dynamics control the onset of actin-based motility

    PubMed Central

    Kawska, Agnieszka; Carvalho, Kévin; Manzi, John; Boujemaa-Paterski, Rajaa; Blanchoin, Laurent; Martiel, Jean-Louis; Sykes, Cécile

    2012-01-01

    Cells use their dynamic actin network to control their mechanics and motility. These networks are made of branched actin filaments generated by the Arp2/3 complex. Here we study under which conditions the microscopic organization of branched actin networks builds up a sufficient stress to trigger sustained motility. In our experimental setup, dynamic actin networks or “gels” are grown on a hard bead in a controlled minimal protein system containing actin monomers, profilin, the Arp2/3 complex and capping protein. We vary protein concentrations and follow experimentally and through simulations the shape and mechanical properties of the actin gel growing around beads. Actin gel morphology is controlled by elementary steps including “primer” contact, growth of the network, entanglement, mechanical interaction and force production. We show that varying the biochemical orchestration of these steps can lead to the loss of network cohesion and the lack of effective force production. We propose a predictive phase diagram of actin gel fate as a function of protein concentrations. This work unveils how, in growing actin networks, a tight biochemical and physical coupling smoothens initial primer-caused heterogeneities and governs force buildup and cell motility. PMID:22908255

  17. Space-time dynamics of Stem Cell Niches: a unified approach for Plants.

    PubMed

    Pérez, Maria Del Carmen; López, Alejandro; Padilla, Pablo

    2013-06-01

    Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.

  18. Space-time dynamics of stem cell niches: a unified approach for plants.

    PubMed

    Pérez, Maria del Carmen; López, Alejandro; Padilla, Pablo

    2013-04-02

    Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.

  19. The Cellular Building Blocks of Breathing

    PubMed Central

    Ramirez, J.M.; Doi, A.; Garcia, A.J.; Elsen, F.P.; Koch, H.; Wei, A.D.

    2013-01-01

    Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of “inspiring behaviors” such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general. PMID:23720262

  20. Stress, epigenetics, and alcoholism.

    PubMed

    Moonat, Sachin; Pandey, Subhash C

    2012-01-01

    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.

  1. Mechanical Signaling for Bone Modeling and Remodeling

    PubMed Central

    Robling, Alexander G.; Turner, Charles H.

    2012-01-01

    Proper development of the skeleton in utero and during growth requires mechanical stimulation. Loading results in adaptive changes in bone that strengthen bone structure. Bone’s adaptive response is regulated by the ability of resident bone cells to perceive and translate mechanical energy into a cascade of structural and biochemical changes within the cells — a process known as mechanotransduction. Mechanotransduction pathways are among the most anabolic in bone, and consequently, there is great interest in elucidating how mechanical loading produces its observed effects, including increased bone formation, reduced bone loss, changes in bone cell differentiation and lifespan, among others. A molecular understanding of these processes is developing, and with it comes a profound new insight into the biology of bone. In this article, we review the nature of the physical stimulus to which bone cells mount an adaptive response, including the identity of the sensor cells, their attributes and physical environment, and putative mechanoreceptors they express. Particular attention is allotted to the focal adhesion and Wnt signaling, in light of their emerging role in bone mechanotransduction. The cellular mechanisms for increased bone loss during disuse, and reduced bone loss during loading are considered. Finally, we summarize the published data on bone cell accommodation, whereby bone cells stop responding to mechanical signaling events. Collectively, these data highlight the complex yet finely orchestrated process of mechanically regulated bone homeostasis. PMID:19817708

  2. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    PubMed

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains

    DOE PAGES

    Guo, Emily Z.; Xu, Zhaohui

    2015-02-05

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). In this paper, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed thatmore » IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. Finally, these observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.« less

  4. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  5. The ω-3 polyunsaturated fatty acids prevented colitis-associated carcinogenesis through blocking dissociation of β-catenin complex, inhibiting COX-2 through repressing NF-κB, and inducing 15-prostaglandin dehydrogenase

    PubMed Central

    Han, Young-Min; Jeong, Migyeung; Park, Jong-Min; Kim, Mi-Young; Go, Eun-Jin; Cha, Ji Young; Kim, Kyung Jo; Hahm, Ki Baik

    2016-01-01

    Numerous studies have demonstrated that diets containing an increased ratio of ω-6 : ω-3 polyunsaturated fatty acids (PUFAs) are a risk factor for colon cancer and might affect tumorigenesis. Therefore, dietary ω-3 PUFA administration may be a preventive strategy against colon cancer. Until now, the exact molecular mechanisms and required dietary doses of ω-3 PUFAs for cancer prevention were unknown. In this study, we explored the anti-tumorigenic mechanisms of ω-3 PUFAs against a colitis-associated cancer (CAC) model. Through in vitro cell models involving docosahexaenoic acid (DHA) administration, down-regulation of survivin and Bcl-2, and up-regulation of Bax, accompanied by blockage of β-catenin complex dissociation, the main mechanisms responsible for DHA-induced apoptosis in HCT116 cells were determined. Results included significant reduction in azoxymethane-initiated, dextran sodium sulfate-promoted CACs, as well as significant preservation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and significant inhibition of Cyclooxyganase-2 (COX-2) and Prostaglandin E2(P < 0.01). Additional mechanisms and significant induction of apoptosis in both tumor and non-tumor tissues were also noted in fat-1 transgenic (TG) mice. The lipid profiles of colon tissues measured in all specimens revealed that intake greater than 3 g ω-3 PUFA/60 kg of body weight showed tissue levels similar to those seen in fat-1 TG mice, preventing cancer. Our study concluded that COX-2 inhibition, 15-PGDH preservation, apoptosis induction, and blockage of β-catenin complex dissociation contributed to the anti-tumorigenesis effect of ω-3 PUFAs, and an intake higher than 3g ω-3 PUFAs/60 kg of body weight can assist in CAC prevention. PMID:27566583

  6. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  7. Critical elements in the development of cell therapy potency assays for ischemic conditions.

    PubMed

    Porat, Yael; Abraham, Eytan; Karnieli, Ohad; Nahum, Sagi; Woda, Juliana; Zylberberg, Claudia

    2015-07-01

    A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Astrobiological phase transition: towards resolution of Fermi's paradox.

    PubMed

    Cirković, Milan M; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi's paradox or the "Great Silence" problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are gamma-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the "Great Silence", it is not supportive of the "contact pessimist" position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  9. Nursing home director of nursing leadership style and director of nursing-sensitive survey deficiencies.

    PubMed

    McKinney, Selina H; Corazzini, Kirsten; Anderson, Ruth A; Sloane, Richard; Castle, Nicholas G

    2016-01-01

    Nursing homes are becoming increasingly complex clinical environments because of rising resident acuity and expansion of postacute services within a context of historically poor quality performance. Discrete quality markers have been linked to director of nursing (DON) leadership behaviors. However, the impact of DON leadership across all measured areas of DON jurisdiction has not been tested using comprehensive domains of quality deficiencies. The aim of this study was to examine the effects of DON leadership style including behaviors that facilitate the exchange of information between diverse people on care quality domains through the lens of complexity science. Three thousand six hundred nine DONs completed leadership and intent-to-quit surveys. Quality markers that were deemed DON sensitive included all facility survey deficiencies in the domains of resident behaviors/facility practices, quality of life, nursing services, and quality of care. Logistic regression procedures estimated associations between variables. The odds of deficiencies for all DON sensitive survey domains were lower in facilities where DONs practiced complexity leadership including more staff input and shared decisional authority. DON quit intentions were aligned with higher odds of facility deficiencies across all domains. Results supported the hypotheses that DONs using complexity leadership approaches by interacting more freely with staff, discussing resident issues, and sharing decision making produced better care outcomes from every DON sensitive metric assessed by Centers for Medicare and Medicaid Services. The mechanism linking poor quality with high DON quit intentions is an area for future research. Encouraging DON use of complexity leadership approaches has the potential to improve a broad swath of quality outcomes.

  10. Dystrophin Is Required for the Normal Function of the Cardio-Protective KATP Channel in Cardiomyocytes

    PubMed Central

    Graciotti, Laura; Becker, Jodi; Granata, Anna Luisa; Procopio, Antonio Domenico; Tessarollo, Lino; Fulgenzi, Gianluca

    2011-01-01

    Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients. PMID:22066028

  11. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis.

    PubMed

    Huang, Wenmin; Li, Dunhai; Liu, Yongding

    2014-09-01

    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.

  12. Technological complexity and the global dispersal of modern humans.

    PubMed

    Hoffecker, John F; Hoffecker, Ian T

    2017-11-01

    Anatomically modern humans (Homo sapiens) dispersed out of Africa roughly 120,000 years ago and again after 75,000 years ago. The early dispersal was geographically restricted to the Arabian Peninsula, Levant, and possibly parts of southern Asia. The later dispersal was ultimately global in scope, including areas not previously occupied by Homo. One explanation for the contrast between the two out-of-Africa dispersals is that the modern humans who expanded into Eurasia 120,000 years ago lacked the functionally and structurally complex technology of recent hunter-gatherers. This technology, which includes, for example, mechanical projectiles, snares and traps, and sewn clothing, provides not only expanded dietary breadth and increased rates of foraging efficiency and success in places where plant and animal productivity is low, but protection from cold weather in places where winter temperatures are low. The absence of complex technology before 75,000 years ago also may explain why modern humans in the Levant did not develop sedentary settlements and agriculture 120,000 years ago (i.e., during the Last Interglacial). © 2017 Wiley Periodicals, Inc.

  13. Mechanisms of atherosclerosis and cardiovascular disease in antiphospholipid syndrome and systemic lupus erythematosus. New therapeutic approaches.

    PubMed

    Lopez-Pedrera, Chary; Aguirre-Zamorano, M Ángeles; Pérez-Sánchez, Carlos

    2017-08-22

    Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are 2 highly related autoimmune-rheumatic diseases associated with an increased risk of developing cardiovascular (CV) diseases. Despite the great progresses made in understanding the pathological mechanisms leading to CV diseases in those pathologies, there is still the unmet need to improve long term prognosis. CV diseases in SLE and APS is thought to happen as the result of a complex interaction between traditional CV risk factors, immune deregulation and disease activity, including the synergic effect of cytokines, chemokines, adipokines, proteases, autoantibodies, adhesion receptors, oxidative stress and a plethora of intracellular signalling molecules. Genomic and epigenomic analyses have further allowed the identification of specific signatures explaining the proathero-thrombotic profiles of APS and SLE patients. This review examines the complex role of these heterogeneous factors, and analyses new therapeutic approaches under study to reduce the CV risk in these autoimmune disorders. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. Bulk measurements of messy chemistries are needed for a theory of the origins of life

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas; Virgo, Nathaniel; Chandru, Kuhan; Scharf, Caleb; Mamajanov, Irena

    2017-11-01

    A feature of many of the chemical systems plausibly involved in the origins of terrestrial life is that they are complex and messy-producing a wide range of compounds via a wide range of mechanisms. However, the fundamental behaviour of such systems is currently not well understood; we do not have the tools to make statistical predictions about such complex chemical networks. This is, in part, due to a lack of quantitative data from which such a theory could be built; specifically, functional measurements of messy chemical systems. Here, we propose that the pantheon of experimental approaches to the origins of life should be expanded to include the study of `functional measurements'-the direct study of bulk properties of chemical systems and their interactions with other compounds, the formation of structures and other behaviours, even in cases where the precise composition and mechanisms are unknown. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  15. Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

    DOE PAGES

    Taylor, Christopher D.

    2012-01-01

    Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies ofmore » the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.« less

  16. Arenavirus Budding: A Common Pathway with Mechanistic Differences

    PubMed Central

    Wolff, Svenja; Ebihara, Hideki; Groseth, Allison

    2013-01-01

    The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement. PMID:23435234

  17. Kinetics and Mechanism of Mammalian Mitochondrial Ribosome Assembly.

    PubMed

    Bogenhagen, Daniel F; Ostermeyer-Fay, Anne G; Haley, John D; Garcia-Diaz, Miguel

    2018-02-13

    Mammalian mtDNA encodes only 13 proteins, all essential components of respiratory complexes, synthesized by mitochondrial ribosomes. Mitoribosomes contain greatly truncated RNAs transcribed from mtDNA, including a structural tRNA in place of 5S RNA as a scaffold for binding 82 nucleus-encoded proteins, mitoribosomal proteins (MRPs). Cryoelectron microscopy (cryo-EM) studies have determined the structure of the mitoribosome, but its mechanism of assembly is unknown. Our SILAC pulse-labeling experiments determine the rates of mitochondrial import of MRPs and their assembly into intact mitoribosomes, providing a basis for distinguishing MRPs that bind at early and late stages in mitoribosome assembly to generate a working model for mitoribosome assembly. Mitoribosome assembly is a slow process initiated at the mtDNA nucleoid driven by excess synthesis of individual MRPs. MRPs that are tightly associated in the structure frequently join the complex in a coordinated manner. Clinically significant MRP mutations reported to date affect proteins that bind early on during assembly. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks

    PubMed Central

    Miao, Yingbo; Zhang, Liangcai; Wang, Yang; Feng, Rennan; Yang, Lei; Zhang, Shihua; Jiang, Yongshuai; Liu, Guiyou

    2014-01-01

    Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM. PMID:25243143

  19. Pathogenesis and pharmacologic treatment of obesity: the role of energy regulatory mechanism.

    PubMed

    Manulu, Mangatas S M; Sutanegara, I N Dwi

    2006-01-01

    Obesity has become a worldwide public health problem affecting millions of people. This is a chronic, stigmatized, and costly disease, rarely curable and is increasing in prevalence to a point today where we define obesity as an epidemic disease that not only in developed but also on developing countries. The pathogenesis of obesity is largely unknown, especially about energy regulatory mechanism that involved wide area of neuroendocrinology that is very interesting but very complex and makes internists "refuse" to learn. Obesity occurs through a longstanding imbalance between energy intake and energy expenditure, influenced by a complex biologic system that regulates appetite and adiposity. Obesity influences the pathogenesis of hypertension, type 2 diabetes, dyslipidemia, kidney, heart, and cerebrovascular disease. It is very wise for every internist to learn the pathogenesis and treatment of this worldwide diseases. Until now, the available treatments, including drugs, are palliative and are effective only while the treatment is being actively used; and besides so many side effects reported.

  20. Evolution of AF6-RAS association and its implications in mixed-lineage leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Matthew J.; Ottoni, Elizabeth; Ishiyama, Noboru

    Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding ofmore » MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.« less

Top