Sample records for complex metabolic network

  1. Artificial intelligence techniques for colorectal cancer drug metabolism: ontology and complex network.

    PubMed

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Rabuñal, Juan R; Pita-Fernández, Salvador; Macenlle, Ramiro; Castro-Alvariño, Javier; López-Roses, Leopoldo; Ulla, José L; Martínez-Calvo, Antonio V; Vázquez, Santiago; Pereira, Javier; Porto-Pazos, Ana B; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R

    2010-05-01

    Colorectal cancer is one of the most frequent types of cancer in the world and generates important social impact. The understanding of the specific metabolism of this disease and the transformations of the specific drugs will allow finding effective prevention, diagnosis and treatment of the colorectal cancer. All the terms that describe the drug metabolism contribute to the construction of ontology in order to help scientists to link the correlated information and to find the most useful data about this topic. The molecular components involved in this metabolism are included in complex network such as metabolic pathways in order to describe all the molecular interactions in the colorectal cancer. The graphical method of processing biological information such as graphs and complex networks leads to the numerical characterization of the colorectal cancer drug metabolic network by using invariant values named topological indices. Thus, this method can help scientists to study the most important elements in the metabolic pathways and the dynamics of the networks during mutations, denaturation or evolution for any type of disease. This review presents the last studies regarding ontology and complex networks of the colorectal cancer drug metabolism and a basic topology characterization of the drug metabolic process sub-ontology from the Gene Ontology.

  2. A hierarchical model of metabolic machinery based on the kcore decomposition of plant metabolic networks.

    PubMed

    Filho, Humberto A; Machicao, Jeaneth; Bruno, Odemir M

    2018-01-01

    Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology.

  3. A hierarchical model of metabolic machinery based on the kcore decomposition of plant metabolic networks

    PubMed Central

    Filho, Humberto A.; Machicao, Jeaneth

    2018-01-01

    Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology. PMID:29734359

  4. Combinatorial complexity of pathway analysis in metabolic networks.

    PubMed

    Klamt, Steffen; Stelling, Jörg

    2002-01-01

    Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.

  5. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber.

    PubMed

    Koch, Ina; Junker, Björn H; Heiner, Monika

    2005-04-01

    Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.

  6. Attractor Metabolic Networks

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Pelta, David A.; Veguillas, Juan

    2013-01-01

    Background The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. Methodology/Principal Findings In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. Conclusions/Significance We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed. PMID:23554883

  7. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The large-scale organization of metabolic networks

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L.

    2000-10-01

    In a cell or microorganism, the processes that generate mass, energy, information transfer and cell-fate specification are seamlessly integrated through a complex network of cellular constituents and reactions. However, despite the key role of these networks in sustaining cellular functions, their large-scale structure is essentially unknown. Here we present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life. We show that, despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems. This may indicate that metabolic organization is not only identical for all living organisms, but also complies with the design principles of robust and error-tolerant scale-free networks, and may represent a common blueprint for the large-scale organization of interactions among all cellular constituents.

  9. Maneuvering in the Complex Path from Genotype to Phenotype

    NASA Astrophysics Data System (ADS)

    Strohman, Richard

    2002-04-01

    Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.

  10. Exploring metabolic pathways in genome-scale networks via generating flux modes.

    PubMed

    Rezola, A; de Figueiredo, L F; Brock, M; Pey, J; Podhorski, A; Wittmann, C; Schuster, S; Bockmayr, A; Planes, F J

    2011-02-15

    The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach. The source code in C++ is available upon request.

  11. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome.

    PubMed

    Wolff, Sara M; Ellison, Melinda J; Hao, Yue; Cockrum, Rebecca R; Austin, Kathy J; Baraboo, Michael; Burch, Katherine; Lee, Hyuk Jin; Maurer, Taylor; Patil, Rocky; Ravelo, Andrea; Taxis, Tasia M; Truong, Huan; Lamberson, William R; Cammack, Kristi M; Conant, Gavin C

    2017-06-08

    Grazing mammals rely on their ruminal microbial symbionts to convert plant structural biomass into metabolites they can assimilate. To explore how this complex metabolic system adapts to the host animal's diet, we inferred a microbiome-level metabolic network from shotgun metagenomic data. Using comparative genomics, we then linked this microbial network to that of the host animal using a set of interface metabolites likely to be transferred to the host. When the host sheep were fed a grain-based diet, the induced microbial metabolic network showed several critical differences from those seen on the evolved forage-based diet. Grain-based (e.g., concentrate) diets tend to be dominated by a smaller set of reactions that employ metabolites that are nearer in network space to the host's metabolism. In addition, these reactions are more central in the network and employ substrates with shorter carbon backbones. Despite this apparent lower complexity, the concentrate-associated metabolic networks are actually more dissimilar from each other than are those of forage-fed animals. Because both groups of animals were initially fed on a forage diet, we propose that the diet switch drove the appearance of a number of different microbial networks, including a degenerate network characterized by an inefficient use of dietary nutrients. We used network simulations to show that such disparate networks are not an unexpected result of a diet shift. We argue that network approaches, particularly those that link the microbial network with that of the host, illuminate aspects of the structure of the microbiome not seen from a strictly taxonomic perspective. In particular, different diets induce predictable and significant differences in the enzymes used by the microbiome. Nonetheless, there are clearly a number of microbiomes of differing structure that show similar functional properties. Changes such as a diet shift uncover more of this type of diversity.

  12. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.

    PubMed

    Rezvan, Abolfazl; Marashi, Sayed-Amir; Eslahchi, Changiz

    2014-10-01

    A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.

  13. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0

    PubMed Central

    Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-01-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850

  14. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    PubMed

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  15. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    DOE PAGES

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  16. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  17. Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks.

    PubMed

    Schryer, David W; Peterson, Pearu; Paalme, Toomas; Vendelin, Marko

    2009-04-17

    Isotope labeling is one of the few methods of revealing the in vivo bidirectionality and compartmentalization of metabolic fluxes within metabolic networks. We argue that a shift from steady state to dynamic isotopomer analysis is required to deal with these cellular complexities and provide a review of dynamic studies of compartmentalized energy fluxes in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex metabolic behaviour on a molecular level is prerequisite for the intelligent design of genetically modified organisms able to realize their potential of revolutionizing food, energy, and pharmaceutical production. We describe techniques to explore the bidirectionality and compartmentalization of metabolic fluxes using information contained in the isotopic transient, and discuss the integration of kinetic models with MFA. The flux parameters of an example metabolic network were optimized to examine the compartmentalization of metabolites and and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state respiratory growth.

  18. Microbial metabolic networks in a complex electrogenic biofilm recovered from a stimulus-induced metatranscriptomics approach

    PubMed Central

    Ishii, Shun’ichi; Suzuki, Shino; Tenney, Aaron; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Bretschger, Orianna

    2015-01-01

    Microorganisms almost always exist as mixed communities in nature. While the significance of microbial community activities is well appreciated, a thorough understanding about how microbial communities respond to environmental perturbations has not yet been achieved. Here we have used a combination of metagenomic, genome binning, and stimulus-induced metatranscriptomic approaches to estimate the metabolic network and stimuli-induced metabolic switches existing in a complex microbial biofilm that was producing electrical current via extracellular electron transfer (EET) to a solid electrode surface. Two stimuli were employed: to increase EET and to stop EET. An analysis of cell activity marker genes after stimuli exposure revealed that only two strains within eleven binned genomes had strong transcriptional responses to increased EET rates, with one responding positively and the other responding negatively. Potential metabolic switches between eleven dominant members were mainly observed for acetate, hydrogen, and ethanol metabolisms. These results have enabled the estimation of a multi-species metabolic network and the associated short-term responses to EET stimuli that induce changes to metabolic flow and cooperative or competitive microbial interactions. This systematic meta-omics approach represents a next step towards understanding complex microbial roles within a community and how community members respond to specific environmental stimuli. PMID:26443302

  19. The Correlation Fractal Dimension of Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Liu, Zhenzhen; Wang, Mogei

    2013-05-01

    The fractality of complex networks is studied by estimating the correlation dimensions of the networks. Comparing with the previous algorithms of estimating the box dimension, our algorithm achieves a significant reduction in time complexity. For four benchmark cases tested, that is, the Escherichia coli (E. Coli) metabolic network, the Homo sapiens protein interaction network (H. Sapiens PIN), the Saccharomyces cerevisiae protein interaction network (S. Cerevisiae PIN) and the World Wide Web (WWW), experiments are provided to demonstrate the validity of our algorithm.

  20. Computational Tools for Metabolic Engineering

    PubMed Central

    Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.

    2012-01-01

    A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572

  1. Study on Incompatibility of Traditional Chinese Medicine: Evidence from Formula Network, Chemical Space, and Metabolism Room

    PubMed Central

    Zhang, Xiao-Dong; Wu, Hong-Ying; Jin, Jin; Yu, Guang-Yun; He, Xin; Wang, Hao; Shen, Xiu; Zhou, Ze-Wei; Liu, Pei-Xun; Fan, Sai-Jun

    2013-01-01

    A traditional Chinese medicine (TCM) formula network including 362 TCM formulas was built by using complex network methodologies. The properties of this network were analyzed including network diameter, average distance, clustering coefficient, and average degree. Meanwhile, we built a TCM chemical space and a TCM metabolism room under the theory of chemical space. The properties of chemical space and metabolism room were calculated and analyzed. The properties of the medicine pairs in “eighteen antagonisms and nineteen mutual inhibitors,” an ancient rule for TCM incompatibility, were studied based on the TCM formula network, chemical space, and metabolism room. The results showed that the properties of these incompatible medicine pairs are different from those of the other TCM based on the analysis of the TCM formula network, chemical space, and metabolism room. The lines of evidence derived from our work demonstrated that the ancient rule of TCM incompatibility, “eighteen antagonisms and nineteen mutual inhibitors,” is probably scientifically based. PMID:24369478

  2. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the networkmore » reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.« less

  3. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.

    PubMed

    Wang, Zhuo; Danziger, Samuel A; Heavner, Benjamin D; Ma, Shuyi; Smith, Jennifer J; Li, Song; Herricks, Thurston; Simeonidis, Evangelos; Baliga, Nitin S; Aitchison, John D; Price, Nathan D

    2017-05-01

    Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

  4. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    PubMed Central

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  5. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    PubMed

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.

  6. Atmospheric reaction systems as null-models to identify structural traces of evolution in metabolism.

    PubMed

    Holme, Petter; Huss, Mikael; Lee, Sang Hoon

    2011-05-06

    The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.

  7. Complex networks analysis of obstructive nephropathy data

    NASA Astrophysics Data System (ADS)

    Zanin, M.; Boccaletti, S.

    2011-09-01

    Congenital obstructive nephropathy (ON) is one of the most frequent and complex diseases affecting children, characterized by an abnormal flux of the urine, due to a partial or complete obstruction of the urinary tract; as a consequence, urine may accumulate in the kidney and disturb the normal operation of the organ. Despite important advances, pathological mechanisms are not yet fully understood. In this contribution, the topology of complex networks, based on vectors of features of control and ON subjects, is related with the severity of the pathology. Nodes in these networks represent genetic and metabolic profiles, while connections between them indicate an abnormal relation between their expressions. Resulting topologies allow discriminating ON subjects and detecting which genetic or metabolic elements are responsible for the malfunction.

  8. Parallelization of Nullspace Algorithm for the computation of metabolic pathways

    PubMed Central

    Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel

    2011-01-01

    Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581

  9. Metabolic Pathways and Networks Associated with Tobacco Use in Military Personnel

    PubMed Central

    Jones, Dean P.; Walker, Douglas I.; Uppal, Karan; Rohrbeck, Patricia; Mallon, Timothy M.; Go, Young-Mi

    2016-01-01

    Objective Use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Methods Four hundred de-identified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or non-users according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Results Eighty individuals were classified as tobacco users compared to 320 non-users based on cotinine levels ≥10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Conclusions Tobacco use has complex metabolic effects which must be considered in evaluation of deployment-associated environmental exposures in military personnel. PMID:27501098

  10. Metabolic Pathways and Networks Associated With Tobacco Use in Military Personnel.

    PubMed

    Jones, Dean P; Walker, Douglas I; Uppal, Karan; Rohrbeck, Patricia; Mallon, Col Timothy M; Go, Young-Mi

    2016-08-01

    The aim of this study is to use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Four hundred deidentified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or nonusers according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Eighty individuals were classified as tobacco users compared with 320 nonusers on the basis of cotinine levels at least 10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid, and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Tobacco use has complex metabolic effects that must be considered in evaluation of deployment-associated environmental exposures in military personnel.

  11. The connectivity structure, giant strong component and centrality of metabolic networks.

    PubMed

    Ma, Hong-Wu; Zeng, An-Ping

    2003-07-22

    Structural and functional analysis of genome-based large-scale metabolic networks is important for understanding the design principles and regulation of the metabolism at a system level. The metabolic network is conventionally considered to be highly integrated and very complex. A rational reduction of the metabolic network to its core structure and a deeper understanding of its functional modules are important. In this work, we show that the metabolites in a metabolic network are far from fully connected. A connectivity structure consisting of four major subsets of metabolites and reactions, i.e. a fully connected sub-network, a substrate subset, a product subset and an isolated subset is found to exist in metabolic networks of 65 fully sequenced organisms. The largest fully connected part of a metabolic network, called 'the giant strong component (GSC)', represents the most complicated part and the core of the network and has the feature of scale-free networks. The average path length of the whole network is primarily determined by that of the GSC. For most of the organisms, GSC normally contains less than one-third of the nodes of the network. This connectivity structure is very similar to the 'bow-tie' structure of World Wide Web. Our results indicate that the bow-tie structure may be common for large-scale directed networks. More importantly, the uncovered structure feature makes a structural and functional analysis of large-scale metabolic network more amenable. As shown in this work, comparing the closeness centrality of the nodes in the GSC can identify the most central metabolites of a metabolic network. To quantitatively characterize the overall connection structure of the GSC we introduced the term 'overall closeness centralization index (OCCI)'. OCCI correlates well with the average path length of the GSC and is a useful parameter for a system-level comparison of metabolic networks of different organisms. http://genome.gbf.de/bioinformatics/

  12. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.

    PubMed

    Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto

    2014-01-27

    The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order k(th) (W(k)). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the W(k)(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated W(k)(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation).

  13. Metabolic networks in motion: 13C-based flux analysis

    PubMed Central

    Sauer, Uwe

    2006-01-01

    Many properties of complex networks cannot be understood from monitoring the components—not even when comprehensively monitoring all protein or metabolite concentrations—unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism. PMID:17102807

  14. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  15. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    PubMed Central

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  16. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE PAGES

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-11-21

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  17. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.

    PubMed

    Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2016-11-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  19. Steady states and stability in metabolic networks without regulation.

    PubMed

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological relevance we illustrate the results on the examples of the TCA cycle, the mevalonate pathway and the Calvin cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Network motif frequency vectors reveal evolving metabolic network organisation.

    PubMed

    Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia

    2015-01-01

    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

  1. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  2. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.

    PubMed

    Kolwicz, Stephen C; Purohit, Suneet; Tian, Rong

    2013-08-16

    The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.

  3. Cardiac Metabolism and Its Interactions with Contraction, Growth, and Survival of the Cardiomyocte

    PubMed Central

    Kolwicz, Stephen C.; Purohit, Suneet; Tian, Rong

    2013-01-01

    The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP producing and non-ATP producing end-points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies employed as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed. PMID:23948585

  4. Mathematical methods to analysis of topology, functional variability and evolution of metabolic systems based on different decomposition concepts.

    PubMed

    Mrabet, Yassine; Semmar, Nabil

    2010-05-01

    Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.

  5. Control of fluxes in metabolic networks

    PubMed Central

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-01-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  6. Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Casey, John R.

    Marine microbial communities influence global biogeochemical cycles by coupling the transduction of free energy to the transformation of Earth's essential bio-elements: H, C, N, O, P, and S. The web of interactions between these processes is extraordinarily complex, though fundamental physical and thermodynamic principles should describe its dynamics. In this collection of 5 studies, aspects of the complexity of marine microbial metabolism and physiology were investigated as they interact with biogeochemical cycles and direct the flow of energy within the Station ALOHA surface layer microbial community. In Chapter 1, and at the broadest level of complexity discussed, a method to relate cell size to metabolic activity was developed to evaluate allometric power laws at fine scales within picoplankton populations. Although size was predictive of metabolic rates, within-population power laws deviated from the broader size spectrum, suggesting metabolic diversity as a key determinant of microbial activity. In Chapter 2, a set of guidelines was proposed by which organic substrates are selected and utilized by the heterotrophic community based on their nitrogen content, carbon content, and energy content. A hierarchical experimental design suggested that the heterotrophic microbial community prefers high nitrogen content but low energy density substrates, while carbon content was not important. In Chapter 3, a closer look at the light-dependent dynamics of growth on a single organic substrate, glycolate, suggested that growth yields were improved by photoheterotrophy. The remaining chapters were based on the development of a genome-scale metabolic network reconstruction of the cyanobacterium Prochlorococcus to probe its metabolic capabilities and quantify metabolic fluxes. Findings described in Chapter 4 pointed to evolution of the Prochlorococcus metabolic network to optimize growth at low phosphate concentrations. Finally, in Chapter 5 and at the finest scale of complexity, a method was developed to predict hourly changes in both physiology and metabolic fluxes in Prochlorococcus by incorporating gene expression time-series data within the metabolic network model. Growth rates predicted by this method more closely matched experimental data, and diel changes in elemental composition and the energy content of biomass were predicted. Collectively, these studies identify and quantify the potential impact of variations in metabolic and physiological traits on the melee of microbial community interactions.

  7. Integration of Plant Metabolomics Data with Metabolic Networks: Progresses and Challenges.

    PubMed

    Töpfer, Nadine; Seaver, Samuel M D; Aharoni, Asaph

    2018-01-01

    In the last decade, plant genome-scale modeling has developed rapidly and modeling efforts have advanced from representing metabolic behavior of plant heterotrophic cell suspensions to studying the complex interplay of cell types, tissues, and organs. A crucial driving force for such developments is the availability and integration of "omics" data (e.g., transcriptomics, proteomics, and metabolomics) which enable the reconstruction, extraction, and application of context-specific metabolic networks. In this chapter, we demonstrate a workflow to integrate gas chromatography coupled to mass spectrometry (GC-MS)-based metabolomics data of tomato fruit pericarp (flesh) tissue, at five developmental stages, with a genome-scale reconstruction of tomato metabolism. This method allows for the extraction of context-specific networks reflecting changing activities of metabolic pathways throughout fruit development and maturation.

  8. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis

    PubMed Central

    Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T.; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun

    2017-01-01

    A system-level framework of complex microbe–microbe and host–microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut. PMID:28585563

  9. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis.

    PubMed

    Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun

    2017-06-06

    A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.

  10. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A General Map of Iron Metabolism and Tissue-specific Subnetworks

    PubMed Central

    Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.

    2009-01-01

    Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358

  12. Global dynamic optimization approach to predict activation in metabolic pathways.

    PubMed

    de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R

    2014-01-06

    During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.

  13. Metabolism and evolution: A comparative study of reconstructed genome-level metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2008-03-01

    The availability of high-quality annotations of sequenced genomes has made it possible to generate organism-specific comprehensive maps of cellular metabolism. Currently, more than twenty such metabolic reconstructions are publicly available, with the majority focused on bacteria. A typical metabolic reconstruction for a bacterium results in a complex network containing hundreds of metabolites (nodes) and reactions (links), while some even contain more than a thousand. The constrain-based optimization approach of flux-balance analysis (FBA) is used to investigate the functional characteristics of such large-scale metabolic networks, making it possible to estimate an organism's growth behavior in a wide variety of nutrient environments, as well as its robustness to gene loss. We have recently completed the genome-level metabolic reconstruction of Yersinia pseudotuberculosis, as well as the three Yersinia pestis biovars Antiqua, Mediaevalis, and Orientalis. While Y. pseudotuberculosis typically only causes fever and abdominal pain that can mimic appendicitis, the evolutionary closely related Y. pestis strains are the aetiological agents of the bubonic plague. In this presentation, I will discuss our results and conclusions from a comparative study on the evolution of metabolic function in the four Yersiniae networks using FBA and related techniques, and I will give particular focus to the interplay between metabolic network topology and evolutionary flexibility.

  14. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    PubMed

    Fernandez-de-Cossio-Diaz, Jorge; Leon, Kalet; Mulet, Roberto

    2017-11-01

    In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  15. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures

    PubMed Central

    Leon, Kalet; Mulet, Roberto

    2017-01-01

    In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced. PMID:29131817

  16. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.

    PubMed

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-05-17

    Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.

  17. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    PubMed Central

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701

  18. ChloroKB: A Web Application for the Integration of Knowledge Related to Chloroplast Metabolic Network1[OPEN

    PubMed Central

    Gloaguen, Pauline; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves

    2017-01-01

    Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis (Arabidopsis thaliana) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. PMID:28442501

  19. Metabolic network flux analysis for engineering plant systems.

    PubMed

    Shachar-Hill, Yair

    2013-04-01

    Metabolic network flux analysis (NFA) tools have proven themselves to be powerful aids to metabolic engineering of microbes by providing quantitative insights into the flows of material and energy through cellular systems. The development and application of NFA tools to plant systems has advanced in recent years and are yielding significant insights and testable predictions. Plants present substantial opportunities for the practical application of NFA but they also pose serious challenges related to the complexity of plant metabolic networks and to deficiencies in our knowledge of their structure and regulation. By considering the tools available and selected examples, this article attempts to assess where and how NFA is most likely to have a real impact on plant biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network

    USDA-ARS?s Scientific Manuscript database

    Photorespiration is an important high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed loop that recycles carbon to fuel the Calvin cycle. However, the photorespiratory cycle is known to interact with several primary metabolic path...

  1. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets.

    PubMed

    Koch, Ina; Nöthen, Joachim; Schleiff, Enrico

    2017-01-01

    Motivation: Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem. Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana . We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs. Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the fixed carbon to nearly all parts of the network, especially to the citric acid cycle. There is a close cooperation of important metabolic pathways, e.g., the de novo synthesis of uridine-5-monophosphate, the γ-aminobutyric acid shunt, and the urea cycle. The presented approach extends the established methods for a feasible interpretation of biological network models, in particular of large and complex models.

  2. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets

    PubMed Central

    Koch, Ina; Nöthen, Joachim; Schleiff, Enrico

    2017-01-01

    Motivation: Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem. Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs. Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the fixed carbon to nearly all parts of the network, especially to the citric acid cycle. There is a close cooperation of important metabolic pathways, e.g., the de novo synthesis of uridine-5-monophosphate, the γ-aminobutyric acid shunt, and the urea cycle. The presented approach extends the established methods for a feasible interpretation of biological network models, in particular of large and complex models. PMID:28713420

  3. The regulatory software of cellular metabolism.

    PubMed

    Segrè, Daniel

    2004-06-01

    Understanding the regulation of metabolic pathways in the cell is like unraveling the 'software' that is running on the 'hardware' of the metabolic network. Transcriptional regulation of enzymes is an important component of this software. A recent systematic analysis of metabolic gene-expression data in Saccharomyces cerevisiae reveals a complex modular organization of co-expressed genes, which could increase our ability to understand and engineer cellular metabolic functions.

  4. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    PubMed Central

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  5. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks

    PubMed Central

    Hoppe, Andreas; Hoffmann, Sabrina; Holzhütter, Hermann-Georg

    2007-01-01

    Background In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions. Results To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of Escherichia coli (931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state. Conclusion Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered. PMID:17543097

  6. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions

    PubMed Central

    Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira

    2016-01-01

    γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation. PMID:27517904

  7. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions.

    PubMed

    Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira

    2016-08-09

    γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.

  8. Metabolic networks evolve towards states of maximum entropy production.

    PubMed

    Unrean, Pornkamol; Srienc, Friedrich

    2011-11-01

    A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A systems biology approach toward understanding seed composition in soybean.

    PubMed

    Li, Ling; Hur, Manhoi; Lee, Joon-Yong; Zhou, Wenxu; Song, Zhihong; Ransom, Nick; Demirkale, Cumhur Yusuf; Nettleton, Dan; Westgate, Mark; Arendsee, Zebulun; Iyer, Vidya; Shanks, Jackie; Nikolau, Basil; Wurtele, Eve Syrkin

    2015-01-01

    The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.

  10. Control of fluxes in metabolic networks.

    PubMed

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-07-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. © 2016 Basler et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    PubMed Central

    Zhang, Ai-Di; Dai, Shao-Xing; Huang, Jing-Fei

    2013-01-01

    With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases. PMID:24222897

  12. ChloroKB: A Web Application for the Integration of Knowledge Related to Chloroplast Metabolic Network.

    PubMed

    Gloaguen, Pauline; Bournais, Sylvain; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Tardif, Marianne; Kuntz, Marcel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves; Curien, Gilles

    2017-06-01

    Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis ( Arabidopsis thaliana ) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.

    PubMed

    Lezon, Timothy R; Banavar, Jayanth R; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V

    2006-12-12

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.

  14. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph.

    PubMed

    Ma, Hong-Wu; Zhao, Xue-Ming; Yuan, Ying-Jin; Zeng, An-Ping

    2004-08-12

    Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the same subset are really functionally related. The rational decomposition of metabolic networks, and subsequent studies of the subsets, make it more amenable to understand the inherent organization and functionality of metabolic networks at the modular level. http://genome.gbf.de/bioinformatics/

  15. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    PubMed

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  16. Modeling cancer metabolism on a genome scale

    PubMed Central

    Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan

    2015-01-01

    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. PMID:26130389

  17. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies.

    PubMed

    Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N

    2003-08-01

    Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.

  18. Exploring complex networks.

    PubMed

    Strogatz, S H

    2001-03-08

    The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

  19. METscout: a pathfinder exploring the landscape of metabolites, enzymes and transporters.

    PubMed

    Geffers, Lars; Tetzlaff, Benjamin; Cui, Xiao; Yan, Jun; Eichele, Gregor

    2013-01-01

    METscout (http://metscout.mpg.de) brings together metabolism and gene expression landscapes. It is a MySQL relational database linking biochemical pathway information with 3D patterns of gene expression determined by robotic in situ hybridization in the E14.5 mouse embryo. The sites of expression of ∼1500 metabolic enzymes and of ∼350 solute carriers (SLCs) were included and are accessible as single cell resolution images and in the form of semi-quantitative image abstractions. METscout provides several graphical web-interfaces allowing navigation through complex anatomical and metabolic information. Specifically, the database shows where in the organism each of the many metabolic reactions take place and where SLCs transport metabolites. To link enzymatic reactions and transport, the KEGG metabolic reaction network was extended to include metabolite transport. This network in conjunction with spatial expression pattern of the network genes allows for a tracing of metabolic reactions and transport processes across the entire body of the embryo.

  20. Networks in Cell Biology

    NASA Astrophysics Data System (ADS)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  1. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns

    PubMed Central

    Lezon, Timothy R.; Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V.

    2006-01-01

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. PMID:17138668

  2. Experimental determination of group flux control coefficients in metabolic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmentalmore » perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.« less

  3. SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.

    PubMed

    Katsuragi, Tetsuo; Ono, Naoaki; Yasumoto, Keiichi; Altaf-Ul-Amin, Md; Hirai, Masami Y; Sriyudthsak, Kansuporn; Sawada, Yuji; Yamashita, Yui; Chiba, Yukako; Onouchi, Hitoshi; Fujiwara, Toru; Naito, Satoshi; Shiraishi, Fumihide; Kanaya, Shigehiko

    2013-05-01

    Metabolomics analysis tools can provide quantitative information on the concentration of metabolites in an organism. In this paper, we propose the minimum pathway model generator tool for simulating the dynamics of metabolite concentrations (SS-mPMG) and a tool for parameter estimation by genetic algorithm (SS-GA). SS-mPMG can extract a subsystem of the metabolic network from the genome-scale pathway maps to reduce the complexity of the simulation model and automatically construct a dynamic simulator to evaluate the experimentally observed behavior of metabolites. Using this tool, we show that stochastic simulation can reproduce experimentally observed dynamics of amino acid biosynthesis in Arabidopsis thaliana. In this simulation, SS-mPMG extracts the metabolic network subsystem from published databases. The parameters needed for the simulation are determined using a genetic algorithm to fit the simulation results to the experimental data. We expect that SS-mPMG and SS-GA will help researchers to create relevant metabolic networks and carry out simulations of metabolic reactions derived from metabolomics data.

  4. Nutritional habits, lifestyle, and genetic predisposition in cardiovascular and metabolic traits in Turkish population.

    PubMed

    Karaca, Sefayet; Erge, Sema; Cesuroglu, Tomris; Polimanti, Renato

    2016-06-01

    Cardiovascular and metabolic traits (CMT) are influenced by complex interactive processes including diet, lifestyle, and genetic predisposition. The present study investigated the interactions of these risk factors in relation to CMTs in the Turkish population. We applied bootstrap agglomerative hierarchical clustering and Bayesian network learning algorithms to identify the causative relationships among genes involved in different biological mechanisms (i.e., lipid metabolism, hormone metabolism, cellular detoxification, aging, and energy metabolism), lifestyle (i.e., physical activity, smoking behavior, and metropolitan residency), anthropometric traits (i.e., body mass index, body fat ratio, and waist-to-hip ratio), and dietary habits (i.e., daily intakes of macro- and micronutrients) in relation to CMTs (i.e., health conditions and blood parameters). We identified significant correlations between dietary habits (soybean and vitamin B12 intakes) and different cardiometabolic diseases that were confirmed by the Bayesian network-learning algorithm. Genetic factors contributed to these disease risks also through the pleiotropy of some genetic variants (i.e., F5 rs6025 and MTR rs180508). However, we also observed that certain genetic associations are indirect since they are due to the causative relationships among the CMTs (e.g., APOC3 rs5128 is associated with low-density lipoproteins cholesterol and, by extension, total cholesterol). Our study applied a novel approach to integrate various sources of information and dissect the complex interactive processes related to CMTs. Our data indicated that complex causative networks are present: causative relationships exist among CMTs and are affected by genetic factors (with pleiotropic and non-pleiotropic effects) and dietary habits. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures.

    PubMed

    Rejc, Živa; Magdevska, Lidija; Tršelič, Tilen; Osolin, Timotej; Vodopivec, Rok; Mraz, Jakob; Pavliha, Eva; Zimic, Nikolaj; Cvitanović, Tanja; Rozman, Damjana; Moškon, Miha; Mraz, Miha

    2017-09-01

    Genome-scale metabolic models (GEMs) have become increasingly important in recent years. Currently, GEMs are the most accurate in silico representation of the genotype-phenotype link. They allow us to study complex networks from the systems perspective. Their application may drastically reduce the amount of experimental and clinical work, improve diagnostic tools and increase our understanding of complex biological phenomena. GEMs have also demonstrated high potential for the optimisation of bio-based production of recombinant proteins. Herein, we review the basic concepts, methods, resources and software tools used for the reconstruction and application of GEMs. We overview the evolution of the modelling efforts devoted to the metabolism of Chinese Hamster Ovary (CHO) cells. We present a case study on CHO cell metabolism under different amino acid depletions. This leads us to the identification of the most influential as well as essential amino acids in selected CHO cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Exhaustive Analysis of a Genotype Space Comprising 1015 Central Carbon Metabolisms Reveals an Organization Conducive to Metabolic Innovation

    PubMed Central

    Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas

    2015-01-01

    All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 1015 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 109 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation. PMID:26252881

  7. Second Law of Thermodynamics Applied to Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Nigam, R.; Liang, S.

    2003-01-01

    We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.

  8. Multi-equilibrium property of metabolic networks: SSI module.

    PubMed

    Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan

    2011-06-20

    Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.

  9. Multi-equilibrium property of metabolic networks: SSI module

    PubMed Central

    2011-01-01

    Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polettini, M., E-mail: matteo.polettini@uni.lu; Wachtel, A., E-mail: artur.wachtel@uni.lu; Esposito, M., E-mail: massimilano.esposito@uni.lu

    We study the effect of intrinsic noise on the thermodynamic balance of complex chemical networks subtending cellular metabolism and gene regulation. A topological network property called deficiency, known to determine the possibility of complex behavior such as multistability and oscillations, is shown to also characterize the entropic balance. In particular, when deficiency is zero the average stochastic dissipation rate equals that of the corresponding deterministic model, where correlations are disregarded. In fact, dissipation can be reduced by the effect of noise, as occurs in a toy model of metabolism that we employ to illustrate our findings. This phenomenon highlights thatmore » there is a close interplay between deficiency and the activation of new dissipative pathways at low molecule numbers.« less

  11. Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kourosh Salehi-Ashtiani; Jason A. Papin

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnectedmore » metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and can be readily expanded to other microbial systems as well as higher plants and animals.« less

  12. Aerobic metabolism underlies complexity and capacity

    PubMed Central

    Koch, Lauren G; Britton, Steven L

    2008-01-01

    The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307

  13. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming.

    PubMed

    Tang, Hong-Wen; Hu, Yanhui; Chen, Chiao-Lin; Xia, Baolong; Zirin, Jonathan; Yuan, Min; Asara, John M; Rabinow, Leonard; Perrimon, Norbert

    2018-05-01

    Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    PubMed

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  15. Design Constraints on a Synthetic Metabolism

    PubMed Central

    Bilgin, Tugce; Wagner, Andreas

    2012-01-01

    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design. PMID:22768162

  16. A next generation multiscale view of inborn errors of metabolism

    PubMed Central

    Argmann, Carmen A.; Houten, Sander M.; Zhu, Jun; Schadt, Eric E.

    2015-01-01

    Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this. PMID:26712461

  17. Theoretical Basis for Dynamic Label Propagation in Stationary Metabolic Networks under Step and Periodic Inputs

    PubMed Central

    Sokol, Serguei; Portais, Jean-Charles

    2015-01-01

    The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites. PMID:26641860

  18. On Functional Module Detection in Metabolic Networks

    PubMed Central

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  19. Metabolic Compartmentation – A System Level Property of Muscle Cells

    PubMed Central

    Saks, Valdur; Beraud, Nathalie; Wallimann, Theo

    2008-01-01

    Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick's equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed. PMID:19325782

  20. Knowledge representation in metabolic pathway databases.

    PubMed

    Stobbe, Miranda D; Jansen, Gerbert A; Moerland, Perry D; van Kampen, Antoine H C

    2014-05-01

    The accurate representation of all aspects of a metabolic network in a structured format, such that it can be used for a wide variety of computational analyses, is a challenge faced by a growing number of researchers. Analysis of five major metabolic pathway databases reveals that each database has made widely different choices to address this challenge, including how to deal with knowledge that is uncertain or missing. In concise overviews, we show how concepts such as compartments, enzymatic complexes and the direction of reactions are represented in each database. Importantly, also concepts which a database does not represent are described. Which aspects of the metabolic network need to be available in a structured format and to what detail differs per application. For example, for in silico phenotype prediction, a detailed representation of gene-protein-reaction relations and the compartmentalization of the network is essential. Our analysis also shows that current databases are still limited in capturing all details of the biology of the metabolic network, further illustrated with a detailed analysis of three metabolic processes. Finally, we conclude that the conceptual differences between the databases, which make knowledge exchange and integration a challenge, have not been resolved, so far, by the exchange formats in which knowledge representation is standardized.

  1. Integrated network analysis and effective tools in plant systems biology

    PubMed Central

    Fukushima, Atsushi; Kanaya, Shigehiko; Nishida, Kozo

    2014-01-01

    One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms. PMID:25408696

  2. Error and attack tolerance of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Jeong, Hawoong; Barabási, Albert-László

    2000-07-01

    Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network. Complex communication networks display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web, the Internet, social networks and cells. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

  3. Exhaustive identification of steady state cycles in large stoichiometric networks

    PubMed Central

    Wright, Jeremiah; Wagner, Andreas

    2008-01-01

    Background Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. Results We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. Conclusion The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable. PMID:18616835

  4. Coevolution of metabolic networks and membranes: the scenario of progressive sequestration.

    PubMed

    Szathmáry, Eörs

    2007-10-29

    Many regard metabolism as one of the central phenomena (or criteria) of life. Yet, the earliest infrabiological systems may have been devoid of metabolism: such systems would have been extreme heterotrophs. We do not know what level of complexity is attainable for chemical systems without enzymatic aid. Lack of template-instructed enzymatic catalysis may put a ceiling on complexity owing to inevitable spontaneous decay and wear and tear of chemodynamical machines. Views on the origin of metabolism critically depend on the assumptions concerning the sites of synthesis and consumption of organic compounds. If these sites are different, non-enzymatic origin of autotrophy is excluded. Whether autotrophy is secondary or not, it seems that protocell boundaries may have become more selective with time, concurrent with the enzymatization of the metabolic network. Primary heterotrophy and autotrophy imply pathway innovation and retention, respectively. The idea of metabolism-membrane coevolution leads to a scenario of progressive sequestration of the emerging living system from its exterior milieu. Comparative data on current protein enzymes may shed some light on such a primeval process by analogy, since two main ideas about enzymatization (the retroevolution and the patchwork scenarios) may not necessarily be mutually exclusive and the earliest enzymatic system may have used ribozymes rather than proteins.

  5. Metabolic capability and in situ activity of microorganisms in an oil reservoir.

    PubMed

    Liu, Yi-Fan; Galzerani, Daniela Domingos; Mbadinga, Serge Maurice; Zaramela, Livia S; Gu, Ji-Dong; Mu, Bo-Zhong; Zengler, Karsten

    2018-01-05

    Microorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy. Here, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery. Our data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.

  6. Construction and simulation of the Bradyrhizobium diazoefficiens USDA110 metabolic network: a comparison between free-living and symbiotic states.

    PubMed

    Yang, Yi; Hu, Xiao-Pan; Ma, Bin-Guang

    2017-02-28

    Bradyrhizobium diazoefficiens is a rhizobium able to convert atmospheric nitrogen into ammonium by establishing mutualistic symbiosis with soybean. It has been recognized as an important parent strain for microbial agents and is widely applied in agricultural and environmental fields. In order to study the metabolic properties of symbiotic nitrogen fixation and the differences between a free-living cell and a symbiotic bacteroid, a genome-scale metabolic network of B. diazoefficiens USDA110 was constructed and analyzed. The metabolic network, iYY1101, contains 1031 reactions, 661 metabolites, and 1101 genes in total. Metabolic models reflecting free-living and symbiotic states were determined by defining the corresponding objective functions and substrate input sets, and were further constrained by high-throughput transcriptomic and proteomic data. Constraint-based flux analysis was used to compare the metabolic capacities and the effects on the metabolic targets of genes and reactions between the two physiological states. The results showed that a free-living rhizobium possesses a steady state flux distribution for sustaining a complex supply of biomass precursors while a symbiotic bacteroid maintains a relatively condensed one adapted to nitrogen-fixation. Our metabolic models may serve as a promising platform for better understanding the symbiotic nitrogen fixation of this species.

  7. Analysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation

    PubMed Central

    Ofaim, Shany; Ofek-Lalzar, Maya; Sela, Noa; Jinag, Jiandong; Kashi, Yechezkel; Minz, Dror; Freilich, Shiri

    2017-01-01

    Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions) are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions). This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants – wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil), corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level) predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial communities. Understanding community-level metabolism is an essential step toward the manipulation and optimization of microbial function. Here, we introduce an analysis framework addressing three key challenges of such data: producing quantified links between taxonomy and function; contextualizing discrete functions into communal networks; and simulating environmental impact on community performances. New technologies will soon provide a high-coverage description of biotic and a-biotic aspects of complex microbial communities such as these found in gut and soil. This framework was designed to allow the integration of high-throughput metabolomic and metagenomic data toward tackling the intricate associations between community structure, community function, and metabolic inputs. PMID:28878756

  8. YANA – a software tool for analyzing flux modes, gene-expression and enzyme activities

    PubMed Central

    Schwarz, Roland; Musch, Patrick; von Kamp, Axel; Engels, Bernd; Schirmer, Heiner; Schuster, Stefan; Dandekar, Thomas

    2005-01-01

    Background A number of algorithms for steady state analysis of metabolic networks have been developed over the years. Of these, Elementary Mode Analysis (EMA) has proven especially useful. Despite its low user-friendliness, METATOOL as a reliable high-performance implementation of the algorithm has been the instrument of choice up to now. As reported here, the analysis of metabolic networks has been improved by an editor and analyzer of metabolic flux modes. Analysis routines for expression levels and the most central, well connected metabolites and their metabolic connections are of particular interest. Results YANA features a platform-independent, dedicated toolbox for metabolic networks with a graphical user interface to calculate (integrating METATOOL), edit (including support for the SBML format), visualize, centralize, and compare elementary flux modes. Further, YANA calculates expected flux distributions for a given Elementary Mode (EM) activity pattern and vice versa. Moreover, a dissection algorithm, a centralization algorithm, and an average diameter routine can be used to simplify and analyze complex networks. Proteomics or gene expression data give a rough indication of some individual enzyme activities, whereas the complete flux distribution in the network is often not known. As such data are noisy, YANA features a fast evolutionary algorithm (EA) for the prediction of EM activities with minimum error, including alerts for inconsistent experimental data. We offer the possibility to include further known constraints (e.g. growth constraints) in the EA calculation process. The redox metabolism around glutathione reductase serves as an illustration example. All software and documentation are available for download at . Conclusion A graphical toolbox and an editor for METATOOL as well as a series of additional routines for metabolic network analyses constitute a new user-friendly software for such efforts. PMID:15929789

  9. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    PubMed

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  10. Networks within networks: The neuronal control of breathing

    PubMed Central

    Garcia, Alfredo J.; Zanella, Sebastien; Koch, Henner; Doi, Atsushi; Ramirez, Jan-Marino

    2013-01-01

    Breathing emerges through complex network interactions involving neurons distributed throughout the nervous system. The respiratory rhythm generating network is composed of micro networks functioning within larger networks to generate distinct rhythms and patterns that characterize breathing. The pre-Bötzinger complex, a rhythm generating network located within the ventrolateral medulla assumes a core function without which respiratory rhythm generation and breathing cease altogether. It contains subnetworks with distinct synaptic and intrinsic membrane properties that give rise to different types of respiratory rhythmic activities including eupneic, sigh, and gasping activities. While critical aspects of these rhythmic activities are preserved when isolated in in vitro preparations, the pre-Bötzinger complex functions in the behaving animal as part of a larger network that receives important inputs from areas such as the pons and parafacial nucleus. The respiratory network is also an integrator of modulatory and sensory inputs that imbue the network with the important ability to adapt to changes in the behavioral, metabolic, and developmental conditions of the organism. This review summarizes our current understanding of these interactions and relates the emerging concepts to insights gained in other rhythm generating networks. PMID:21333801

  11. Metabolic Reprogramming and Oncogenesis: One Hallmark, Many Organelles.

    PubMed

    Costa, A S H; Frezza, C

    2017-01-01

    The process of tumorigenesis can be described by a series of molecular features, among which alteration of cellular metabolism has recently emerged. This metabolic rewiring fulfills the energy and biosynthetic demands of fast proliferating cancer cells and amplifies their metabolic repertoire to survive and proliferate in the poorly oxygenated and nutrient-deprived tumor microenvironment. During the last decade, the complex reprogramming of cancer cell metabolism has been widely investigated, revealing cancer-specific metabolic alterations. These include dysregulation of glucose and glutamine metabolism, alterations of lipid synthesis and oxidation, and a complex rewiring of mitochondrial function. However, mitochondria are not the only metabolically active organelles within the cell, and other organelles, including lysosomes, peroxisomes, and endoplasmic reticulum, harbor components of the metabolic network. Of note, dysregulation of the function of these organelles is increasingly recognized in cancer cells. However, to what extent these organelles contribute to the metabolic reprogramming of cancer is not fully understood. In this review, we describe the main metabolic functions of these organelles and provide insights into how they communicate to orchestrate a coordinated metabolic reprogramming during transformation. © 2017 Elsevier Inc. All rights reserved.

  12. Revealing the hidden language of complex networks.

    PubMed

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-04-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists.

  13. A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions

    PubMed Central

    2013-01-01

    Background Metabolomics has become increasingly popular in the study of disease phenotypes and molecular pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells; this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that are associated with normoxic or hypoxic oxygen environments. Results Correlation analysis has revealed statistically significant connections between metabolites, where differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network (EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen. This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen. Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not previously linked, or less well recognised, with respect to hypoxia before. Lactate fermentation is one of the key themes discussed in the field of hypoxia; however, malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate, which are connected by a single pathway, may provide a more significant marker of hypoxia in cancer. Conclusions Metabolic networks generated for each cell line were compared to identify conserved metabolite pathway responses to low oxygen environments. Furthermore, we believe this methodology will have general application within metabolomics. PMID:24153255

  14. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    PubMed

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  15. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes.

    PubMed

    Väremo, Leif; Scheele, Camilla; Broholm, Christa; Mardinoglu, Adil; Kampf, Caroline; Asplund, Anna; Nookaew, Intawat; Uhlén, Mathias; Pedersen, Bente Klarlund; Nielsen, Jens

    2015-05-12

    Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the downregulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Expression level, cellular compartment and metabolic network position all influence the average selective constraint on mammalian enzymes

    PubMed Central

    2011-01-01

    Background A gene's position in regulatory, protein interaction or metabolic networks can be predictive of the strength of purifying selection acting on it, but these relationships are neither universal nor invariably strong. Following work in bacteria, fungi and invertebrate animals, we explore the relationship between selective constraint and metabolic function in mammals. Results We measure the association between selective constraint, estimated by the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, and several, primarily metabolic, measures of gene function. We find significant differences between the selective constraints acting on enzyme-coding genes from different cellular compartments, with the nucleus showing higher constraint than genes from either the cytoplasm or the mitochondria. Among metabolic genes, the centrality of an enzyme in the metabolic network is significantly correlated with Ka/Ks. In contrast to yeasts, gene expression magnitude does not appear to be the primary predictor of selective constraint in these organisms. Conclusions Our results imply that the relationship between selective constraint and enzyme centrality is complex: the strength of selective constraint acting on mammalian genes is quite variable and does not appear to exclusively follow patterns seen in other organisms. PMID:21470417

  17. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    PubMed

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  18. Brain Metabolic Changes in Rats following Acoustic Trauma

    PubMed Central

    He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F.; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen

    2017-01-01

    Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive “tinnitus-causing” network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine metabolic pathway. Our results provide the first metabolomics evidence that acoustic trauma can induce changes in multiple metabolic pathways. This pilot study also suggests that the metabolomic approach has the potential to identify acoustic trauma-specific metabolic shifts in future studies where metabolic changes are correlated with the animal's tinnitus status. PMID:28392756

  19. Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions

    PubMed Central

    2014-01-01

    Background Plant secondary metabolites are critical to various biological processes. However, the regulations of these metabolites are complex because of regulatory rewiring or crosstalk. To unveil how regulatory behaviors on secondary metabolism reshape biological processes, we constructed and analyzed a dynamic regulatory network of secondary metabolic pathways in Arabidopsis. Results The dynamic regulatory network was constructed through integrating co-expressed gene pairs and regulatory interactions. Regulatory interactions were either predicted by conserved transcription factor binding sites (TFBSs) or proved by experiments. We found that integrating two data (co-expression and predicted regulatory interactions) enhanced the number of highly confident regulatory interactions by over 10% compared with using single data. The dynamic changes of regulatory network systematically manifested regulatory rewiring to explain the mechanism of regulation, such as in terpenoids metabolism, the regulatory crosstalk of RAV1 (AT1G13260) and ATHB1 (AT3G01470) on HMG1 (hydroxymethylglutaryl-CoA reductase, AT1G76490); and regulation of RAV1 on epoxysqualene biosynthesis and sterol biosynthesis. Besides, we investigated regulatory rewiring with expression, network topology and upstream signaling pathways. Regulatory rewiring was revealed by the variability of genes’ expression: pathway genes and transcription factors (TFs) were significantly differentially expressed under different conditions (such as terpenoids biosynthetic genes in tissue experiments and E2F/DP family members in genotype experiments). Both network topology and signaling pathways supported regulatory rewiring. For example, we discovered correlation among the numbers of pathway genes, TFs and network topology: one-gene pathways (such as δ-carotene biosynthesis) were regulated by a fewer TFs, and were not critical to metabolic network because of their low degrees in topology. Upstream signaling pathways of 50 TFs were identified to comprehend the underlying mechanism of TFs’ regulatory rewiring. Conclusion Overall, this dynamic regulatory network largely improves the understanding of perplexed regulatory rewiring in secondary metabolism in Arabidopsis. PMID:24993737

  20. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    PubMed Central

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  1. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    PubMed

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  2. Towards systems metabolic engineering of microorganisms for amino acid production.

    PubMed

    Park, Jin Hwan; Lee, Sang Yup

    2008-10-01

    Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.

  3. Web-based metabolic network visualization with a zooming user interface

    PubMed Central

    2011-01-01

    Background Displaying complex metabolic-map diagrams, for Web browsers, and allowing users to interact with them for querying and overlaying expression data over them is challenging. Description We present a Web-based metabolic-map diagram, which can be interactively explored by the user, called the Cellular Overview. The main characteristic of this application is the zooming user interface enabling the user to focus on appropriate granularities of the network at will. Various searching commands are available to visually highlight sets of reactions, pathways, enzymes, metabolites, and so on. Expression data from single or multiple experiments can be overlaid on the diagram, which we call the Omics Viewer capability. The application provides Web services to highlight the diagram and to invoke the Omics Viewer. This application is entirely written in JavaScript for the client browsers and connect to a Pathway Tools Web server to retrieve data and diagrams. It uses the OpenLayers library to display tiled diagrams. Conclusions This new online tool is capable of displaying large and complex metabolic-map diagrams in a very interactive manner. This application is available as part of the Pathway Tools software that powers multiple metabolic databases including Biocyc.org: The Cellular Overview is accessible under the Tools menu. PMID:21595965

  4. Regulation of yeast central metabolism by enzyme phosphorylation

    PubMed Central

    Oliveira, Ana Paula; Ludwig, Christina; Picotti, Paola; Kogadeeva, Maria; Aebersold, Ruedi; Sauer, Uwe

    2012-01-01

    As a frequent post-translational modification, protein phosphorylation regulates many cellular processes. Although several hundred phosphorylation sites have been mapped to metabolic enzymes in Saccharomyces cerevisiae, functionality was demonstrated for few of them. Here, we describe a novel approach to identify in vivo functionality of enzyme phosphorylation by combining flux analysis with proteomics and phosphoproteomics. Focusing on the network of 204 enzymes that constitute the yeast central carbon and amino-acid metabolism, we combined protein and phosphoprotein levels to identify 35 enzymes that change their degree of phosphorylation during growth under five conditions. Correlations between previously determined intracellular fluxes and phosphoprotein abundances provided first functional evidence for five novel phosphoregulated enzymes in this network, adding to nine known phosphoenzymes. For the pyruvate dehydrogenase complex E1 α subunit Pda1 and the newly identified phosphoregulated glycerol-3-phosphate dehydrogenase Gpd1 and phosphofructose-1-kinase complex β subunit Pfk2, we then validated functionality of specific phosphosites through absolute peptide quantification by targeted mass spectrometry, metabolomics and physiological flux analysis in mutants with genetically removed phosphosites. These results demonstrate the role of phosphorylation in controlling the metabolic flux realised by these three enzymes. PMID:23149688

  5. Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series.

    PubMed

    Dumas, Marc-Emmanuel; Domange, Céline; Calderari, Sophie; Martínez, Andrea Rodríguez; Ayala, Rafael; Wilder, Steven P; Suárez-Zamorano, Nicolas; Collins, Stephan C; Wallis, Robert H; Gu, Quan; Wang, Yulan; Hue, Christophe; Otto, Georg W; Argoud, Karène; Navratil, Vincent; Mitchell, Steve C; Lindon, John C; Holmes, Elaine; Cazier, Jean-Baptiste; Nicholson, Jeremy K; Gauguier, Dominique

    2016-09-30

    The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. We used systematic metabotyping by 1 H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.

  6. Metabolomic Analysis in Brain Research: Opportunities and Challenges

    PubMed Central

    Vasilopoulou, Catherine G.; Margarity, Marigoula; Klapa, Maria I.

    2016-01-01

    Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results. PMID:27252656

  7. Complex systems dynamics in aging: new evidence, continuing questions.

    PubMed

    Cohen, Alan A

    2016-02-01

    There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.

  8. Detecting breakdown points in metabolic networks.

    PubMed

    Tagore, Somnath; De, Rajat K

    2011-12-14

    A complex network of biochemical reactions present in an organism generates various biological moieties necessary for its survival. It is seen that biological systems are robust to genetic and environmental changes at all levels of organization. Functions of various organisms are sustained against mutational changes by using alternative pathways. It is also seen that if any one of the paths for production of the same metabolite is hampered, an alternate path tries to overcome this defect and helps in combating the damage. Certain physical, chemical or genetic change in any of the precursor substrate of a biochemical reaction may damage the production of the ultimate product. We employ a quantitative approach for simulating this phenomena of causing a physical change in the biochemical reactions by performing external perturbations to 12 metabolic pathways under carbohydrate metabolism in Saccharomyces cerevisae as well as 14 metabolic pathways under carbohydrate metabolism in Homo sapiens. Here, we investigate the relationship between structure and degree of compatibility of metabolites against external perturbations, i.e., robustness. Robustness can also be further used to identify the extent to which a metabolic pathway can resist a mutation event. Biological networks with a certain connectivity distribution may be very resilient to a particular attack but not to another. The goal of this work is to determine the exact boundary of network breakdown due to both random and targeted attack, thereby analyzing its robustness. We also find that compared to various non-standard models, metabolic networks are exceptionally robust. Here, we report the use of a 'Resilience-based' score for enumerating the concept of 'network-breakdown'. We also use this approach for analyzing metabolite essentiality providing insight into cellular robustness that can be further used for future drug development. We have investigated the behavior of metabolic pathways under carbohydrate metabolism in S. cerevisae and H. sapiens against random and targeted attack. Both random as well as targeted resilience were calculated by formulating a measure, that we termed as 'Resilience score'. Datasets of metabolites were collected for 12 metabolic pathways belonging to carbohydrate metabolism in S. cerevisae and 14 metabolic pathways belonging to carbohydrate metabolism in H. sapiens from Kyoto Encyclopedia for Genes and Genomes (KEGG). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Genetic and environmental pathways to complex diseases.

    PubMed

    Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J

    2009-05-05

    Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.

  10. Revealing networks from dynamics: an introduction

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Casadiego, Jose

    2014-08-01

    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

  11. Monte-Carlo Modeling of the Central Carbon Metabolism of Lactococcus lactis: Insights into Metabolic Regulation

    PubMed Central

    Murabito, Ettore; Verma, Malkhey; Bekker, Martijn; Bellomo, Domenico; Westerhoff, Hans V.; Teusink, Bas; Steuer, Ralf

    2014-01-01

    Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models. PMID:25268481

  12. Use of CellNetAnalyzer in biotechnology and metabolic engineering.

    PubMed

    von Kamp, Axel; Thiele, Sven; Hädicke, Oliver; Klamt, Steffen

    2017-11-10

    Mathematical models of the cellular metabolism have become an essential tool for the optimization of biotechnological processes. They help to obtain a systemic understanding of the metabolic processes in the used microorganisms and to find suitable genetic modifications maximizing the production performance. In particular, methods of stoichiometric and constraint-based modeling are frequently used in the context of metabolic and bioprocess engineering. Since metabolic networks can be complex and comprise hundreds or even thousands of metabolites and reactions, dedicated software tools are required for an efficient analysis. One such software suite is CellNetAnalyzer, a MATLAB package providing, among others, various methods for analyzing stoichiometric and constraint-based metabolic models. CellNetAnalyzer can be used via command-line based operations or via a graphical user interface with embedded network visualizations. Herein we will present key functionalities of CellNetAnalyzer for applications in biotechnology and metabolic engineering and thereby review constraint-based modeling techniques such as metabolic flux analysis, flux balance analysis, flux variability analysis, metabolic pathway analysis (elementary flux modes) and methods for computational strain design. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Revealing the Hidden Language of Complex Networks

    PubMed Central

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-01-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists. PMID:24686408

  14. Exploring network operations for data and information networks

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming

    2017-01-01

    Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.

  15. GSA-PCA: gene set generation by principal component analysis of the Laplacian matrix of a metabolic network

    PubMed Central

    2012-01-01

    Background Gene Set Analysis (GSA) has proven to be a useful approach to microarray analysis. However, most of the method development for GSA has focused on the statistical tests to be used rather than on the generation of sets that will be tested. Existing methods of set generation are often overly simplistic. The creation of sets from individual pathways (in isolation) is a poor reflection of the complexity of the underlying metabolic network. We have developed a novel approach to set generation via the use of Principal Component Analysis of the Laplacian matrix of a metabolic network. We have analysed a relatively simple data set to show the difference in results between our method and the current state-of-the-art pathway-based sets. Results The sets generated with this method are semi-exhaustive and capture much of the topological complexity of the metabolic network. The semi-exhaustive nature of this method has also allowed us to design a hypergeometric enrichment test to determine which genes are likely responsible for set significance. We show that our method finds significant aspects of biology that would be missed (i.e. false negatives) and addresses the false positive rates found with the use of simple pathway-based sets. Conclusions The set generation step for GSA is often neglected but is a crucial part of the analysis as it defines the full context for the analysis. As such, set generation methods should be robust and yield as complete a representation of the extant biological knowledge as possible. The method reported here achieves this goal and is demonstrably superior to previous set analysis methods. PMID:22876834

  16. Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Martínez-Montes, Eduardo

    2013-01-01

    This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356

  17. Mimoza: web-based semantic zooming and navigation in metabolic networks.

    PubMed

    Zhukova, Anna; Sherman, David J

    2015-02-26

    The complexity of genome-scale metabolic models makes them quite difficult for human users to read, since they contain thousands of reactions that must be included for accurate computer simulation. Interestingly, hidden similarities between groups of reactions can be discovered, and generalized to reveal higher-level patterns. The web-based navigation system Mimoza allows a human expert to explore metabolic network models in a semantically zoomable manner: The most general view represents the compartments of the model; the next view shows the generalized versions of reactions and metabolites in each compartment; and the most detailed view represents the initial network with the generalization-based layout (where similar metabolites and reactions are placed next to each other). It allows a human expert to grasp the general structure of the network and analyze it in a top-down manner Mimoza can be installed standalone, or used on-line at http://mimoza.bordeaux.inria.fr/ , or installed in a Galaxy server for use in workflows. Mimoza views can be embedded in web pages, or downloaded as COMBINE archives.

  18. Structured plant metabolomics for the simultaneous exploration of multiple factors.

    PubMed

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-11-17

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.

  19. Sensitivity and network topology in chemical reaction systems

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Mochizuki, Atsushi

    2017-08-01

    In living cells, biochemical reactions are catalyzed by specific enzymes and connect to one another by sharing substrates and products, forming complex networks. In our previous studies, we established a framework determining the responses to enzyme perturbations only from network topology, and then proved a theorem, called the law of localization, explaining response patterns in terms of network topology. In this paper, we generalize these results to reaction networks with conserved concentrations, which allows us to study any reaction system. We also propose network characteristics quantifying robustness. We compare E. coli metabolic network with randomly rewired networks, and find that the robustness of the E. coli network is significantly higher than that of the random networks.

  20. Unveiling network-based functional features through integration of gene expression into protein networks.

    PubMed

    Jalili, Mahdi; Gebhardt, Tom; Wolkenhauer, Olaf; Salehzadeh-Yazdi, Ali

    2018-06-01

    Decoding health and disease phenotypes is one of the fundamental objectives in biomedicine. Whereas high-throughput omics approaches are available, it is evident that any single omics approach might not be adequate to capture the complexity of phenotypes. Therefore, integrated multi-omics approaches have been used to unravel genotype-phenotype relationships such as global regulatory mechanisms and complex metabolic networks in different eukaryotic organisms. Some of the progress and challenges associated with integrated omics studies have been reviewed previously in comprehensive studies. In this work, we highlight and review the progress, challenges and advantages associated with emerging approaches, integrating gene expression and protein-protein interaction networks to unravel network-based functional features. This includes identifying disease related genes, gene prioritization, clustering protein interactions, developing the modules, extract active subnetworks and static protein complexes or dynamic/temporal protein complexes. We also discuss how these approaches contribute to our understanding of the biology of complex traits and diseases. This article is part of a Special Issue entitled: Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients.

    PubMed

    Li, Rui; Ma, Tao; Gu, Jin; Liang, Xujun; Li, Shao

    2013-01-01

    Cold Syndrome and Hot Syndrome are thousand-year-old key therapeutic concepts in traditional Chinese medicine (TCM), which depict the loss of body homeostasis. However, the scientific basis of TCM Syndrome remains unclear due to limitations of current reductionist approaches. Here, we established a network balance model to evaluate the imbalanced network underlying TCM Syndrome and find potential biomarkers. By implementing this approach and investigating a group of chronic superficial gastritis (CSG) and chronic atrophic gastritis (CAG) patients, we found that with leptin as a biomarker, Cold Syndrome patients experience low levels of energy metabolism, while the CCL2/MCP1 biomarker indicated that immune regulation is intensified in Hot Syndrome patients. Such a metabolism-immune imbalanced network is consistent during the course from CSG to CAG. This work provides a new way to understand TCM Syndrome scientifically, which in turn benefits the personalized medicine in terms of the ancient medicine and complex biological systems.

  2. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective

    PubMed Central

    Gu, Shuo

    2017-01-01

    With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed. PMID:28690664

  3. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective.

    PubMed

    Gu, Shuo; Pei, Jianfeng

    2017-01-01

    With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.

  4. Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

    PubMed Central

    Xue, Liang-Jiao; Zhang, Jing-Jing; Xue, Hong-Wei

    2012-01-01

    Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed. PMID:22363552

  5. COBRApy: COnstraints-Based Reconstruction and Analysis for Python.

    PubMed

    Ebrahim, Ali; Lerman, Joshua A; Palsson, Bernhard O; Hyduke, Daniel R

    2013-08-08

    COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes. The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however, it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an integration framework for the multiomics data used in systems biology. The openCOBRA Project is a community effort to promote constraints-based research through the distribution of freely available software. Here, we describe COBRA for Python (COBRApy), a Python package that provides support for basic COBRA methods. COBRApy is designed in an object-oriented fashion that facilitates the representation of the complex biological processes of metabolism and gene expression. COBRApy does not require MATLAB to function; however, it includes an interface to the COBRA Toolbox for MATLAB to facilitate use of legacy codes. For improved performance, COBRApy includes parallel processing support for computationally intensive processes. COBRApy is an object-oriented framework designed to meet the computational challenges associated with the next generation of stoichiometric constraint-based models and high-density omics data sets. http://opencobra.sourceforge.net/

  6. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    PubMed

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4.

  7. Network-level fossil of a phosphate-free biosphere

    NASA Astrophysics Data System (ADS)

    Goldford, J.; Hartman, H.; Smith, T. F.; Segre, D.

    2017-12-01

    The emergence of a metabolism capable of sustaining cellular life on early Earth is a major unresolved enigma. Such a transition from prebiotic chemistry to an organized biochemical network seemingly required the concurrent availability of multiple molecular components. One of these components, phosphate, carries several essential functions in present-day metabolism, most notably energy transduction through ATP. However, the ubiquity of phosphate in living systems today stands in sharp contrast with its poor geochemical availability, prompting previous efforts to search for plausible prebiotic sources. The alternative, intriguing possibility is that primitive life did not require phosphate. Here we explore this possibility by determining the feasibility and functional potential of a phosphate-independent metabolism amongst the set of all known biochemical reactions in the biosphere. Surprisingly, we identified a cryptic phosphate-independent core metabolism that can be generated from simple sets of compounds thought to be available on early Earth. This network can support the biosynthesis of a broad category of key biomolecules. The enzymes contained in this network display a striking enrichment for dependence on iron-sulfur and transition metal coenzymes, a fundamental cornerstone of early biochemistry. We furthermore show that phosphate-independent precursors of present-day cofactors could have helped overcome thermodynamic energy barriers, enabling the production of a rich set of biomolecules, including 15 out of the 20 amino acids, vitamins, pentoses and nucleobases. Altogether, our results suggest that present-day biochemical networks may contain vestiges of a very ancient past, and that a complex thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.

  8. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion.

    PubMed

    Vanwonterghem, Inka; Jensen, Paul D; Rabaey, Korneel; Tyson, Gene W

    2016-09-01

    Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Hypoxia induces a HIF-1α dependent signaling cascade to make a complex metabolic switch in SGBS-adipocytes☆

    PubMed Central

    Leiherer, Andreas; Geiger, Kathrin; Muendlein, Axel; Drexel, Heinz

    2014-01-01

    To elucidate the complex impact of hypoxia on adipose tissue, resulting in biased metabolism, insulin resistance and finally diabetes we used mature adipocytes derived from a Simpson-Golabi-Behmel syndrome patient for microarray analysis. We found a significantly increased transcription rate of genes involved in glycolysis and a striking association between the pattern of upregulated genes and disease biomarkers for diabetes mellitus and insulin resistance. Although their upregulation turned out to be HIF-1α-dependent, we identified further transcription factors mainly AP-1 components to play also an important role in hypoxia response. Analyzing the regulatory network of mentioned transcription factors and glycolysis targets we revealed a clear hint for directing glycolysis to glutathione and glycogen synthesis. This metabolic switch in adipocytes enables the cell to prevent oxidative damage in the short term but might induce lipogenesis and establish systemic metabolic disorders in the long run. PMID:24275182

  10. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  11. A bacterial quercetin oxidoreductase QuoA-mediated perturbation in the phenylpropanoid metabolic network increases lignification with a concomitant decrease in phenolamides in Arabidopsis

    PubMed Central

    Swarup, Sanjay

    2013-01-01

    Metabolic perturbations by a gain-of-function approach provide a means to alter steady states of metabolites and query network properties, while keeping enzyme complexes intact. A combination of genetic and targeted metabolomics approach was used to understand the network properties of phenylpropanoid secondary metabolism pathways. A novel quercetin oxidoreductase, QuoA, from Pseudomonas putida, which converts quercetin to naringenin, thus effectively reversing the biosynthesis of quercetin through a de novo pathway, was expressed in Arabidopsis thaliana. QuoA transgenic lines selected for low, medium, and high expression levels of QuoA RNA had corresponding levels of QuoA activity and hypocotyl coloration resulting from increased anthocyanin accumulation. Stems of all three QuoA lines had increased tensile strength resulting from increased lignification. Sixteen metabolic intermediates from anthocyanin, lignin, and shikimate pathways had increased accumulation, of which 11 paralleled QuoA expression levels in the transgenic lines. The concomitant upregulation of the above pathways was explained by a significant downregulation of the phenolamide pathway and its precursor, spermidine. In a tt6 mutant line, lignifications as well as levels of the lignin pathway metabolites were much lower than those of QuoA transgenic lines. Unlike QuoA lines, phenolamides and spermidine were not affected in the tt6 line. Taken together, these results suggest that phenolamide pathway plays a major role in directing metabolic intermediates into the lignin pathway. Metabolic perturbations were accompanied by downregulation of five genes associated with branch-point enzymes and upregulation of their corresponding products. These results suggest that gene–metabolite pairs are likely to be co-ordinately regulated at critical branch points. Thus, these perturbations by a gain-of-function approach have uncovered novel properties of the phenylpropanoid metabolic network. PMID:24085580

  12. Uncoupling Protein 2 and Metabolic Diseases

    PubMed Central

    Sreedhar, Annapoorna; Zhao, Yunfeng

    2017-01-01

    Mitochondria are fascinating organelles involved in various cellular-metabolic activities that are integral for mammalian development. Although they perform diverse, yet interconnected functions, mitochondria are remarkably regulated by complex signaling networks. Therefore, it is not surprising that mitochondrial dysfunction is involved in plethora of diseases, including neurodegenerative and metabolic disorders. One of the many factors that lead to mitochondrial-associated metabolic diseases is the uncoupling protein-2, a family of mitochondrial anion proteins present in the inner mitochondrial membrane. Since their discovery, uncoupling proteins have attracted considerable attention due to their involvement in mitochondrial-mediated oxidative stress and energy metabolism. This review attempts to provide a summary of recent developments in the field of uncoupling protein 2 relating to mitochondrial associated metabolic diseases. PMID:28351676

  13. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  14. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  15. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    PubMed Central

    Beatty, Perrin H.; Klein, Matthias S.; Fischer, Jeffrey J.; Lewis, Ian A.; Muench, Douglas G.; Good, Allen G.

    2016-01-01

    A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields. PMID:27735856

  16. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato

    PubMed Central

    Kumari, Alka; Ray, Kamalika; Sadhna, Sadhna; Pandey, Arun Kumar; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2017-01-01

    Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones. PMID:28481937

  17. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.

    PubMed

    Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum

    2007-09-15

    The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.

  18. Kinetic modeling of cell metabolism for microbial production.

    PubMed

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Impact of the Carbon and Nitrogen Supply on Relationships and Connectivity between Metabolism and Biomass in a Broad Panel of Arabidopsis Accessions1[W][OA

    PubMed Central

    Sulpice, Ronan; Nikoloski, Zoran; Tschoep, Hendrik; Antonio, Carla; Kleessen, Sabrina; Larhlimi, Abdelhalim; Selbig, Joachim; Ishihara, Hirofumi; Gibon, Yves; Fernie, Alisdair R.; Stitt, Mark

    2013-01-01

    Natural genetic diversity provides a powerful tool to study the complex interrelationship between metabolism and growth. Profiling of metabolic traits combined with network-based and statistical analyses allow the comparison of conditions and identification of sets of traits that predict biomass. However, it often remains unclear why a particular set of metabolites is linked with biomass and to what extent the predictive model is applicable beyond a particular growth condition. A panel of 97 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions was grown in near-optimal carbon and nitrogen supply, restricted carbon supply, and restricted nitrogen supply and analyzed for biomass and 54 metabolic traits. Correlation-based metabolic networks were generated from the genotype-dependent variation in each condition to reveal sets of metabolites that show coordinated changes across accessions. The networks were largely specific for a single growth condition. Partial least squares regression from metabolic traits allowed prediction of biomass within and, slightly more weakly, across conditions (cross-validated Pearson correlations in the range of 0.27–0.58 and 0.21–0.51 and P values in the range of <0.001–<0.13 and <0.001–<0.023, respectively). Metabolic traits that correlate with growth or have a high weighting in the partial least squares regression were mainly condition specific and often related to the resource that restricts growth under that condition. Linear mixed-model analysis using the combined metabolic traits from all growth conditions as an input indicated that inclusion of random effects for the conditions improves predictions of biomass. Thus, robust prediction of biomass across a range of conditions requires condition-specific measurement of metabolic traits to take account of environment-dependent changes of the underlying networks. PMID:23515278

  20. The Bio-Logic and machinery of plant morphogenesis.

    PubMed

    Niklas, Karl J

    2003-04-01

    Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.

  1. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes

    USGS Publications Warehouse

    Dugan, Hilary; Woolway, R. Iestyn; Santoso, Arianto; Corman, Jessica; Jaimes, Aline; Nodine, Emily; Patil, Vijay; Zwart, Jacob A.; Brentrup, Jennifer A.; Hetherington, Amy; Oliver, Samantha K.; Read, Jordan S.; Winters, Kirsten; Hanson, Paul; Read, Emily; Winslow, Luke; Weathers, Kathleen

    2016-01-01

    Ecosystem metabolism and the contribution of carbon dioxide from lakes to the atmosphere can be estimated from free-water gas measurements through the use of mass balance models, which rely on a gas transfer coefficient (k) to model gas exchange with the atmosphere. Theoretical and empirically based models of krange in complexity from wind-driven power functions to complex surface renewal models; however, model choice is rarely considered in most studies of lake metabolism. This study used high-frequency data from 15 lakes provided by the Global Lake Ecological Observatory Network (GLEON) to study how model choice of kinfluenced estimates of lake metabolism and gas exchange with the atmosphere. We tested 6 models of k on lakes chosen to span broad gradients in surface area and trophic states; a metabolism model was then fit to all 6 outputs of k data. We found that hourly values for k were substantially different between models and, at an annual scale, resulted in significantly different estimates of lake metabolism and gas exchange with the atmosphere.

  2. Stable isotope-resolved metabolomics and applications for drug development

    PubMed Central

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  3. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    PubMed

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  4. iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states.

    PubMed

    Bordbar, Aarash; Jamshidi, Neema; Palsson, Bernhard O

    2011-07-12

    The development of high-throughput technologies capable of whole cell measurements of genes, proteins, and metabolites has led to the emergence of systems biology. Integrated analysis of the resulting omic data sets has proved to be hard to achieve. Metabolic network reconstructions enable complex relationships amongst molecular components to be represented formally in a biologically relevant manner while respecting physical constraints. In silico models derived from such reconstructions can then be queried or interrogated through mathematical simulations. Proteomic profiling studies of the mature human erythrocyte have shown more proteins present related to metabolic function than previously thought; however the significance and the causal consequences of these findings have not been explored. Erythrocyte proteomic data was used to reconstruct the most expansive description of erythrocyte metabolism to date, following extensive manual curation, assessment of the literature, and functional testing. The reconstruction contains 281 enzymes representing functions from glycolysis to cofactor and amino acid metabolism. Such a comprehensive view of erythrocyte metabolism implicates the erythrocyte as a potential biomarker for different diseases as well as a 'cell-based' drug-screening tool. The analysis shows that 94 erythrocyte enzymes are implicated in morbid single nucleotide polymorphisms, representing 142 pathologies. In addition, over 230 FDA-approved and experimental pharmaceuticals have enzymatic targets in the erythrocyte. The advancement of proteomic technologies and increased generation of high-throughput proteomic data have created the need for a means to analyze these data in a coherent manner. Network reconstructions provide a systematic means to integrate and analyze proteomic data in a biologically meaning manner. Analysis of the red cell proteome has revealed an unexpected level of complexity in the functional capabilities of human erythrocyte metabolism.

  5. Inborn errors of metabolism and the human interactome: a systems medicine approach.

    PubMed

    Woidy, Mathias; Muntau, Ania C; Gersting, Søren W

    2018-02-05

    The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.

  6. Metabolic networks are almost nonfractal: a comprehensive evaluation.

    PubMed

    Takemoto, Kazuhiro

    2014-08-01

    Network self-similarity or fractality are widely accepted as an important topological property of metabolic networks; however, recent studies cast doubt on the reality of self-similarity in the networks. Therefore, we perform a comprehensive evaluation of metabolic network fractality using a box-covering method with an earlier version and the latest version of metabolic networks and demonstrate that the latest metabolic networks are almost self-dissimilar, while the earlier ones are fractal, as reported in a number of previous studies. This result may be because the networks were randomized because of an increase in network density due to database updates, suggesting that the previously observed network fractality was due to a lack of available data on metabolic reactions. This finding may not entirely discount the importance of self-similarity of metabolic networks. Rather, it highlights the need for a more suitable definition of network fractality and a more careful examination of self-similarity of metabolic networks.

  7. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides.

    PubMed

    Luis, Ana S; Briggs, Jonathon; Zhang, Xiaoyang; Farnell, Benjamin; Ndeh, Didier; Labourel, Aurore; Baslé, Arnaud; Cartmell, Alan; Terrapon, Nicolas; Stott, Katherine; Lowe, Elisabeth C; McLean, Richard; Shearer, Kaitlyn; Schückel, Julia; Venditto, Immacolata; Ralet, Marie-Christine; Henrissat, Bernard; Martens, Eric C; Mosimann, Steven C; Abbott, D Wade; Gilbert, Harry J

    2018-02-01

    The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.

  8. Networks in cognitive science.

    PubMed

    Baronchelli, Andrea; Ferrer-i-Cancho, Ramon; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H

    2013-07-01

    Networks of interconnected nodes have long played a key role in Cognitive Science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions, and collaborations among scientists. Today, the inclusion of network theory into Cognitive Sciences, and the expansion of complex-systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the Cognitive Sciences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants

    PubMed Central

    Hill, Camilla Beate; Czauderna, Tobias; Klapperstück, Matthias; Roessner, Ute; Schreiber, Falk

    2015-01-01

    Life on earth depends on dynamic chemical transformations that enable cellular functions, including electron transfer reactions, as well as synthesis and degradation of biomolecules. Biochemical reactions are coordinated in metabolic pathways that interact in a complex way to allow adequate regulation. Biotechnology, food, biofuel, agricultural, and pharmaceutical industries are highly interested in metabolic engineering as an enabling technology of synthetic biology to exploit cells for the controlled production of metabolites of interest. These approaches have only recently been extended to plants due to their greater metabolic complexity (such as primary and secondary metabolism) and highly compartmentalized cellular structures and functions (including plant-specific organelles) compared with bacteria and other microorganisms. Technological advances in analytical instrumentation in combination with advances in data analysis and modeling have opened up new approaches to engineer plant metabolic pathways and allow the impact of modifications to be predicted more accurately. In this article, we review challenges in the integration and analysis of large-scale metabolic data, present an overview of current bioinformatics methods for the modeling and visualization of metabolic networks, and discuss approaches for interfacing bioinformatics approaches with metabolic models of cellular processes and flux distributions in order to predict phenotypes derived from specific genetic modifications or subjected to different environmental conditions. PMID:26557642

  10. The complex interplay between mitochondrial dynamics and cardiac metabolism

    PubMed Central

    Parra, Valentina; Verdejo, Hugo; del Campo, Andrea; Pennanen, Christian; Kuzmicic, Jovan; Iglewski, Myriam; Hill, Joseph A.; Rothermel, Beverly A.

    2012-01-01

    Mitochondria are highly dynamic organelles, capable of undergoing constant fission and fusion events, forming networks. These dynamic events allow the transmission of chemical and physical messengers and the exchange of metabolites within the cell. In this article we review the signaling mechanisms controlling mitochondrial fission and fusion, and its relationship with cell bioenergetics, especially in the heart. Furthermore we also discuss how defects in mitochondrial dynamics might be involved in the pathogenesis of metabolic cardiac diseases. PMID:21258852

  11. The compositional and evolutionary logic of metabolism

    NASA Astrophysics Data System (ADS)

    Braakman, Rogier; Smith, Eric

    2013-02-01

    Metabolism is built on a foundation of organic chemistry, and employs structures and interactions at many scales. Despite these sources of complexity, metabolism also displays striking and robust regularities in the forms of modularity and hierarchy, which may be described compactly in terms of relatively few principles of composition. These regularities render metabolic architecture comprehensible as a system, and also suggests the order in which layers of that system came into existence. In addition metabolism also serves as a foundational layer in other hierarchies, up to at least the levels of cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, motivates us to interpret metabolism as a source of causation or constraint on many forms of organization in the biosphere. Many of the forms of modularity and hierarchy exhibited by metabolism are readily interpreted as stages in the emergence of catalytic control by living systems over organic chemistry, sometimes recapitulating or incorporating geochemical mechanisms. We identify as modules, either subsets of chemicals and reactions, or subsets of functions, that are re-used in many contexts with a conserved internal structure. At the small molecule substrate level, module boundaries are often associated with the most complex reaction mechanisms, catalyzed by highly conserved enzymes. Cofactors form a biosynthetically and functionally distinctive control layer over the small-molecule substrate. The most complex members among the cofactors are often associated with the reactions at module boundaries in the substrate networks, while simpler cofactors participate in widely generalized reactions. The highly tuned chemical structures of cofactors (sometimes exploiting distinctive properties of the elements of the periodic table) thereby act as ‘keys’ that incorporate classes of organic reactions within biochemistry. Module boundaries provide the interfaces where change is concentrated, when we catalogue extant diversity of metabolic phenotypes. The same modules that organize the compositional diversity of metabolism are argued, with many explicit examples, to have governed long-term evolution. Early evolution of core metabolism, and especially of carbon-fixation, appears to have required very few innovations, and to have used few rules of composition of conserved modules, to produce adaptations to simple chemical or energetic differences of environment without diverse solutions and without historical contingency. We demonstrate these features of metabolism at each of several levels of hierarchy, beginning with the small-molecule metabolic substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.

  12. BiNA: A Visual Analytics Tool for Biological Network Data

    PubMed Central

    Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael

    2014-01-01

    Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056

  13. Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients

    PubMed Central

    Li, Rui; Ma, Tao; Gu, Jin; Liang, Xujun; Li, Shao

    2013-01-01

    Cold Syndrome and Hot Syndrome are thousand-year-old key therapeutic concepts in traditional Chinese medicine (TCM), which depict the loss of body homeostasis. However, the scientific basis of TCM Syndrome remains unclear due to limitations of current reductionist approaches. Here, we established a network balance model to evaluate the imbalanced network underlying TCM Syndrome and find potential biomarkers. By implementing this approach and investigating a group of chronic superficial gastritis (CSG) and chronic atrophic gastritis (CAG) patients, we found that with leptin as a biomarker, Cold Syndrome patients experience low levels of energy metabolism, while the CCL2/MCP1 biomarker indicated that immune regulation is intensified in Hot Syndrome patients. Such a metabolism-immune imbalanced network is consistent during the course from CSG to CAG. This work provides a new way to understand TCM Syndrome scientifically, which in turn benefits the personalized medicine in terms of the ancient medicine and complex biological systems. PMID:23529020

  14. Integrated regulatory network reveals novel candidate regulators in the development of negative energy balance in cattle.

    PubMed

    Mozduri, Z; Bakhtiarizadeh, M R; Salehi, A

    2018-06-01

    Negative energy balance (NEB) is an altered metabolic state in modern high-yielding dairy cows. This metabolic state occurs in the early postpartum period when energy demands for milk production and maintenance exceed that of energy intake. Negative energy balance or poor adaptation to this metabolic state has important effects on the liver and can lead to metabolic disorders and reduced fertility. The roles of regulatory factors, including transcription factors (TFs) and micro RNAs (miRNAs) have often been separately studied for evaluating of NEB. However, adaptive response to NEB is controlled by complex gene networks and still not fully understood. In this study, we aimed to discover the integrated gene regulatory networks involved in NEB development in liver tissue. We downloaded data sets including mRNA and miRNA expression profiles related to three and four cows with severe and moderate NEB, respectively. Our method integrated two independent types of information: module inference network by TFs, miRNAs and mRNA expression profiles (RNA-seq data) and computational target predictions. In total, 176 modules were predicted by using gene expression data and 64 miRNAs and 63 TFs were assigned to these modules. By using our integrated computational approach, we identified 13 TF-module and 19 miRNA-module interactions. Most of these modules were associated with liver metabolic processes as well as immune and stress responses, which might play crucial roles in NEB development. Literature survey results also showed that several regulators and gene targets have already been characterized as important factors in liver metabolic processes. These results provided novel insights into regulatory mechanisms at the TF and miRNA levels during NEB. In addition, the method described in this study seems to be applicable to construct integrated regulatory networks for different diseases or disorders.

  15. Light-energy conversion in engineered microorganisms.

    PubMed

    Johnson, Ethan T; Schmidt-Dannert, Claudia

    2008-12-01

    Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.

  16. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  17. The topology of metabolic isotope labeling networks.

    PubMed

    Weitzel, Michael; Wiechert, Wolfgang; Nöh, Katharina

    2007-08-29

    Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs) and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global topological analysis of ILNs allows to comprehensively describe and understand the general patterns of label flow in complex networks. This is an invaluable tool for the structural design of new experiments and the interpretation of measured data.

  18. MetSigDis: a manually curated resource for the metabolic signatures of diseases.

    PubMed

    Cheng, Liang; Yang, Haixiu; Zhao, Hengqiang; Pei, Xiaoya; Shi, Hongbo; Sun, Jie; Zhang, Yunpeng; Wang, Zhenzhen; Zhou, Meng

    2017-08-22

    Complex diseases cannot be understood only on the basis of single gene, single mRNA transcript or single protein but the effect of their collaborations. The combination consequence in molecular level can be captured by the alterations of metabolites. With the rapidly developing of biomedical instruments and analytical platforms, a large number of metabolite signatures of complex diseases were identified and documented in the literature. Biologists' hardship in the face of this large amount of papers recorded metabolic signatures of experiments' results calls for an automated data repository. Therefore, we developed MetSigDis aiming to provide a comprehensive resource of metabolite alterations in various diseases. MetSigDis is freely available at http://www.bio-annotation.cn/MetSigDis/. By reviewing hundreds of publications, we collected 6849 curated relationships between 2420 metabolites and 129 diseases across eight species involving Homo sapiens and model organisms. All of these relationships were used in constructing a metabolite disease network (MDN). This network displayed scale-free characteristics according to the degree distribution (power-law distribution with R2 = 0.909), and the subnetwork of MDN for interesting diseases and their related metabolites can be visualized in the Web. The common alterations of metabolites reflect the metabolic similarity of diseases, which is measured using Jaccard index. We observed that metabolite-based similar diseases are inclined to share semantic associations of Disease Ontology. A human disease network was then built, where a node represents a disease, and an edge indicates similarity of pair-wise diseases. The network validated the observation that linked diseases based on metabolites should have more overlapped genes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571

  20. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    PubMed

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  1. Hypoxia induces a HIF-1α dependent signaling cascade to make a complex metabolic switch in SGBS-adipocytes.

    PubMed

    Leiherer, Andreas; Geiger, Kathrin; Muendlein, Axel; Drexel, Heinz

    2014-03-05

    To elucidate the complex impact of hypoxia on adipose tissue, resulting in biased metabolism, insulin resistance and finally diabetes we used mature adipocytes derived from a Simpson-Golabi-Behmel syndrome patient for microarray analysis. We found a significantly increased transcription rate of genes involved in glycolysis and a striking association between the pattern of upregulated genes and disease biomarkers for diabetes mellitus and insulin resistance. Although their upregulation turned out to be HIF-1α-dependent, we identified further transcription factors mainly AP-1 components to play also an important role in hypoxia response. Analyzing the regulatory network of mentioned transcription factors and glycolysis targets we revealed a clear hint for directing glycolysis to glutathione and glycogen synthesis. This metabolic switch in adipocytes enables the cell to prevent oxidative damage in the short term but might induce lipogenesis and establish systemic metabolic disorders in the long run. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Evolution of the Max and Mlx networks in animals.

    PubMed

    McFerrin, Lisa G; Atchley, William R

    2011-01-01

    Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.

  3. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  4. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum

    PubMed Central

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-01-01

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881

  5. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model

    PubMed Central

    Bao, Yongbo; Liu, Xiao; Zhang, Weiwei; Cao, Jianping; Li, Wei; Li, Chenghua; Lin, Zhihua

    2016-01-01

    Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue. Proteomic analysis showed that oxidative stress, calcium-binding and sulfur-compound metabolism proteins were key factors responding to Cd challenge. A knowledge-based network regulation model was constructed with both metabolic and proteomic data. The model suggests that Cd stimulation mainly inhibits a core regulation network that is associated with histone function, ribosome processing and tight junctions, with the hub proteins actin, gamma 1 and Calmodulin 1. Moreover, myosin complex inhibition causes abnormal tight junctions and is linked to the irregular synthesis of amino acids. For the first time, this study provides insight into the proteomic and metabolomic changes caused by Cd in the blood clam T. granosa and suggests a potential toxicological pathway for Cd. PMID:27760991

  6. Hippocampus and serum metabolomic studies to explore the regulation of Chaihu-Shu-Gan-San on metabolic network disturbances of rats exposed to chronic variable stress.

    PubMed

    Su, Zhi-heng; Jia, Hong-mei; Zhang, Hong-wu; Feng, Yu-Fei; An, Lei; Zou, Zhong-mei

    2014-03-04

    Chaihu-Shu-Gan-San (CSGS), a traditional Chinese medicine formula, has been effectively used for the treatment of depression. However, studies of its anti-depressive mechanism are challenging, due to the complex pathophysiology of depression, and complexity of CSGS with multiple constituents acting on different receptors. In the present work, metabolomic studies of biochemical changes in the hippocampus and serum of chronic variable stress (CVS)-induced depression rats after treatment with CSGS were performed using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Partial least squares-discriminate analysis indicated that the metabolic perturbation induced by CVS was reduced by treatment with CSGS. A total of twenty-six metabolites (16 from the hippocampus and 10 from serum) were considered as potential biomarkers involved in the development of depression. Among them, 11 were first reported to have potential relevance in the pathogenesis of depression, and 25 may correlate to the regulation of CSGS treatment on depression. The results combined with a previous study indicated that CSGS mediated synergistically abnormalities of the metabolic network, composed of energy metabolism, synthesis of neurotransmitters, tryptophan, phospholipids, fatty acid and bile acid metabolism, bone loss and liver detoxification, which may be helpful for understanding its mechanism of action. Furthermore, the extracellular signal-regulated kinase (ERK) signal pathway, involved in the neuronal protective mechanism of depression related to energy metabolism, was investigated by western blot analysis. The results showed that CSGS reversed disruptions of BDNF, ERK1/2 and pERK1/2 in CVS rats, which provides the first evidence that the ERK signal system may be one of the targets related to the antidepressant action of CSGS.

  7. BioLayout(Java): versatile network visualisation of structural and functional relationships.

    PubMed

    Goldovsky, Leon; Cases, Ildefonso; Enright, Anton J; Ouzounis, Christos A

    2005-01-01

    Visualisation of biological networks is becoming a common task for the analysis of high-throughput data. These networks correspond to a wide variety of biological relationships, such as sequence similarity, metabolic pathways, gene regulatory cascades and protein interactions. We present a general approach for the representation and analysis of networks of variable type, size and complexity. The application is based on the original BioLayout program (C-language implementation of the Fruchterman-Rheingold layout algorithm), entirely re-written in Java to guarantee portability across platforms. BioLayout(Java) provides broader functionality, various analysis techniques, extensions for better visualisation and a new user interface. Examples of analysis of biological networks using BioLayout(Java) are presented.

  8. On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer

    PubMed Central

    Penkert, Judith; Ripperger, Tim; Schieck, Maximilian; Schlegelberger, Brigitte; Steinemann, Doris; Illig, Thomas

    2016-01-01

    Altered metabolism in tumor cells has been a focus of cancer research for as long as a century but has remained controversial and vague due to an inhomogeneous overall picture. Accumulating genomic, metabolomic, and lastly panomic data as well as bioenergetics studies of the past few years enable a more comprehensive, systems-biologic approach promoting deeper insight into tumor biology and challenging hitherto existing models of cancer bioenergetics. Presenting a compendium on breast cancer-specific metabolome analyses performed thus far, we review and compile currently known aspects of breast cancer biology into a comprehensive network, elucidating previously dissonant issues of cancer metabolism. As such, some of the aspects critically discussed in this review include the dynamic interplay or metabolic coupling between cancer (stem) cells and cancer-associated fibroblasts, the intratumoral and intertumoral heterogeneity and plasticity of cancer cell metabolism, the existence of distinct metabolic tumor compartments in need of separate yet simultaneous therapeutic targeting, the reliance of cancer cells on oxidative metabolism and mitochondrial power, and the role of pro-inflammatory, pro-tumorigenic stromal conditioning. Comprising complex breast cancer signaling networks as well as combined metabolomic and genomic data, we address metabolic consequences of mutations in tumor suppressor genes and evaluate their contribution to breast cancer predisposition in a germline setting, reasoning for distinct personalized preventive and therapeutic measures. The review closes with a discussion on central root mechanisms of tumor cell metabolism and rate-limiting steps thereof, introducing essential strategies for therapeutic targeting. PMID:27590516

  9. The 'wired' universe of organic chemistry.

    PubMed

    Grzybowski, Bartosz A; Bishop, Kyle J M; Kowalczyk, Bartlomiej; Wilmer, Christopher E

    2009-04-01

    The millions of reactions performed and compounds synthesized by organic chemists over the past two centuries connect to form a network larger than the metabolic networks of higher organisms and rivalling the complexity of the World Wide Web. Despite its apparent randomness, the network of chemistry has a well-defined, modular architecture. The network evolves in time according to trends that have not changed since the inception of the discipline, and thus project into chemistry's future. Analysis of organic chemistry using the tools of network theory enables the identification of most 'central' organic molecules, and for the prediction of which and how many molecules will be made in the future. Statistical analyses based on network connectivity are useful in optimizing parallel syntheses, in estimating chemical reactivity, and more.

  10. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    PubMed

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  11. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture.

    PubMed

    Caetano-Anollés, Gustavo; Kim, Hee Shin; Mittenthal, Jay E

    2007-05-29

    Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.

  12. 3D TOCSY-HSQC NMR for metabolic flux analysis using non-uniform sampling

    DOE PAGES

    Reardon, Patrick N.; Marean-Reardon, Carrie L.; Bukovec, Melanie A.; ...

    2016-02-05

    13C-Metabolic Flux Analysis ( 13C-MFA) is rapidly being recognized as the authoritative method for determining fluxes through metabolic networks. Site-specific 13C enrichment information obtained using NMR spectroscopy is a valuable input for 13C-MFA experiments. Chemical shift overlaps in the 1D or 2D NMR experiments typically used for 13C-MFA frequently hinder assignment and quantitation of site-specific 13C enrichment. Here we propose the use of a 3D TOCSY-HSQC experiment for 13C-MFA. We employ Non-Uniform Sampling (NUS) to reduce the acquisition time of the experiment to a few hours, making it practical for use in 13C-MFA experiments. Our data show that the NUSmore » experiment is linear and quantitative. Identification of metabolites in complex mixtures, such as a biomass hydrolysate, is simplified by virtue of the 13C chemical shift obtained in the experiment. In addition, the experiment reports 13C-labeling information that reveals the position specific labeling of subsets of isotopomers. As a result, the information provided by this technique will enable more accurate estimation of metabolic fluxes in larger metabolic networks.« less

  13. Capturing the essence of a metabolic network: a flux balance analysis approach.

    PubMed

    Murabito, Ettore; Simeonidis, Evangelos; Smallbone, Kieran; Swinton, Jonathan

    2009-10-07

    As genome-scale metabolic reconstructions emerge, tools to manage their size and complexity will be increasingly important. Flux balance analysis (FBA) is a constraint-based approach widely used to study the metabolic capabilities of cellular or subcellular systems. FBA problems are highly underdetermined and many different phenotypes can satisfy any set of constraints through which the metabolic system is represented. Two of the main concerns in FBA are exploring the space of solutions for a given metabolic network and finding a specific phenotype which is representative for a given task such as maximal growth rate. Here, we introduce a recursive algorithm suitable for overcoming both of these concerns. The method proposed is able to find the alternate optimal patterns of active reactions of an FBA problem and identify the minimal subnetwork able to perform a specific task as optimally as the whole. Our method represents an alternative to and an extension of other approaches conceived for exploring the space of solutions of an FBA problem. It may also be particularly helpful in defining a scaffold of reactions upon which to build up a dynamic model, when the important pathways of the system have not yet been well-defined.

  14. Networks of energetic and metabolic interactions define dynamics in microbial communities.

    PubMed

    Embree, Mallory; Liu, Joanne K; Al-Bassam, Mahmoud M; Zengler, Karsten

    2015-12-15

    Microorganisms form diverse communities that have a profound impact on the environment and human health. Recent technological advances have enabled elucidation of community diversity at high resolution. Investigation of microbial communities has revealed that they often contain multiple members with complementing and seemingly redundant metabolic capabilities. An understanding of the communal impacts of redundant metabolic capabilities is currently lacking; specifically, it is not known whether metabolic redundancy will foster competition or motivate cooperation. By investigating methanogenic populations, we identified the multidimensional interspecies interactions that define composition and dynamics within syntrophic communities that play a key role in the global carbon cycle. Species-specific genomes were extracted from metagenomic data using differential coverage binning. We used metabolic modeling leveraging metatranscriptomic information to reveal and quantify a complex intertwined system of syntrophic relationships. Our results show that amino acid auxotrophies create additional interdependencies that define community composition and control carbon and energy flux through the system while simultaneously contributing to overall community robustness. Strategic use of antimicrobials further reinforces this intricate interspecies network. Collectively, our study reveals the multidimensional interactions in syntrophic communities that promote high species richness and bolster community stability during environmental perturbations.

  15. Folate-genetics and colorectal neoplasia: What we know and need to know next

    USDA-ARS?s Scientific Manuscript database

    The metabolism of folate involves a complex network of polymorphic enzymes that may explain a proportion of the risk associated with colorectal neoplasia. Over 60 observational studies primarily in non-Hispanic White populations have been conducted on selected genetic variants in specific genes, MTH...

  16. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective

    PubMed Central

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism and its optimal growth. Finally, through our in silico knockout analysis, we could identify possible therapeutic targets that provide experimentally testable hypotheses. PMID:26367006

  17. The molecular origins of specificity in the assembly of a multienzyme complex.

    PubMed

    Frank, René A W; Pratap, J Venkatesh; Pei, Xue Y; Perham, Richard N; Luisi, Ben F

    2005-08-01

    The pyruvate dehydrogenase (PDH) multienzyme complex is central to oxidative metabolism. We present the first crystal structure of a complex between pyruvate decarboxylase (E1) and the peripheral subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2). The interface is dominated by a "charge zipper" of networked salt bridges. Remarkably, the PSBD uses essentially the same zipper to alternately recognize the dihydrolipoyl dehydrogenase (E3) component of the PDH assembly. The PSBD achieves this dual recognition largely through the addition of a network of interfacial water molecules unique to the E1-PSBD complex. These structural comparisons illuminate our observations that the formation of this water-rich E1-E2 interface is largely enthalpy driven, whereas that of the E3-PSBD complex (from which water is excluded) is entropy driven. Interfacial water molecules thus diversify surface complementarity and contribute to avidity, enthalpically. Additionally, the E1-PSBD structure provides insight into the organization and active site coupling within the approximately 9 MDa PDH complex.

  18. Environmental versatility promotes modularity in genome-scale metabolic networks.

    PubMed

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization.

  19. The microbial nitrogen-cycling network.

    PubMed

    Kuypers, Marcel M M; Marchant, Hannah K; Kartal, Boran

    2018-05-01

    Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.

  20. Exploring mitochondrial evolution and metabolism organization principles by comparative analysis of metabolic networks.

    PubMed

    Chang, Xiao; Wang, Zhuo; Hao, Pei; Li, Yuan-Yuan; Li, Yi-Xue

    2010-06-01

    The endosymbiotic theory proposed that mitochondrial genomes are derived from an alpha-proteobacterium-like endosymbiont, which was concluded from sequence analysis. We rebuilt the metabolic networks of mitochondria and 22 relative species, and studied the evolution of mitochondrial metabolism at the level of enzyme content and network topology. Our phylogenetic results based on network alignment and motif identification supported the endosymbiotic theory from the point of view of systems biology for the first time. It was found that the mitochondrial metabolic network were much more compact than the relative species, probably related to the higher efficiency of oxidative phosphorylation of the specialized organelle, and the network is highly clustered around the TCA cycle. Moreover, the mitochondrial metabolic network exhibited high functional specificity to the modules. This work provided insight to the understanding of mitochondria evolution, and the organization principle of mitochondrial metabolic network at the network level. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Multi-omic network-based interrogation of rat liver metabolism following gastric bypass surgery featuring SWATH proteomics.

    PubMed

    Sridharan, Gautham Vivek; D'Alessandro, Matthew; Bale, Shyam Sundhar; Bhagat, Vicky; Gagnon, Hugo; Asara, John M; Uygun, Korkut; Yarmush, Martin L; Saeidi, Nima

    2017-09-01

    Morbidly obese patients often elect for Roux-en-Y gastric bypass (RYGB), a form of bariatric surgery that triggers a remarkable 30% reduction in excess body weight and reversal of insulin resistance for those who are type II diabetic. A more complete understanding of the underlying molecular mechanisms that drive the complex metabolic reprogramming post-RYGB could lead to innovative non-invasive therapeutics that mimic the beneficial effects of the surgery, namely weight loss, achievement of glycemic control, or reversal of non-alcoholic steatohepatitis (NASH). To facilitate these discoveries, we hereby demonstrate the first multi-omic interrogation of a rodent RYGB model to reveal tissue-specific pathway modules implicated in the control of body weight regulation and energy homeostasis. In this study, we focus on and evaluate liver metabolism three months following RYGB in rats using both SWATH proteomics, a burgeoning label free approach using high resolution mass spectrometry to quantify protein levels in biological samples, as well as MRM metabolomics. The SWATH analysis enabled the quantification of 1378 proteins in liver tissue extracts, of which we report the significant down-regulation of Thrsp and Acot13 in RYGB as putative targets of lipid metabolism for weight loss. Furthermore, we develop a computational graph-based metabolic network module detection algorithm for the discovery of non-canonical pathways, or sub-networks, enriched with significantly elevated or depleted metabolites and proteins in RYGB-treated rat livers. The analysis revealed a network connection between the depleted protein Baat and the depleted metabolite taurine, corroborating the clinical observation that taurine-conjugated bile acid levels are perturbed post-RYGB.

  2. redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models

    PubMed Central

    Ataman, Meric

    2017-01-01

    Genome-scale metabolic reconstructions have proven to be valuable resources in enhancing our understanding of metabolic networks as they encapsulate all known metabolic capabilities of the organisms from genes to proteins to their functions. However the complexity of these large metabolic networks often hinders their utility in various practical applications. Although reduced models are commonly used for modeling and in integrating experimental data, they are often inconsistent across different studies and laboratories due to different criteria and detail, which can compromise transferability of the findings and also integration of experimental data from different groups. In this study, we have developed a systematic semi-automatic approach to reduce genome-scale models into core models in a consistent and logical manner focusing on the central metabolism or subsystems of interest. The method minimizes the loss of information using an approach that combines graph-based search and optimization methods. The resulting core models are shown to be able to capture key properties of the genome-scale models and preserve consistency in terms of biomass and by-product yields, flux and concentration variability and gene essentiality. The development of these “consistently-reduced” models will help to clarify and facilitate integration of different experimental data to draw new understanding that can be directly extendable to genome-scale models. PMID:28727725

  3. Modelling microbial metabolic rewiring during growth in a complex medium.

    PubMed

    Fondi, Marco; Bosi, Emanuele; Presta, Luana; Natoli, Diletta; Fani, Renato

    2016-11-24

    In their natural environment, bacteria face a wide range of environmental conditions that change over time and that impose continuous rearrangements at all the cellular levels (e.g. gene expression, metabolism). When facing a nutritionally rich environment, for example, microbes first use the preferred compound(s) and only later start metabolizing the other one(s). A systemic re-organization of the overall microbial metabolic network in response to a variation in the composition/concentration of the surrounding nutrients has been suggested, although the range and the entity of such modifications in organisms other than a few model microbes has been scarcely described up to now. We used multi-step constraint-based metabolic modelling to simulate the growth in a complex medium over several time steps of the Antarctic model organism Pseudoalteromonas haloplanktis TAC125. As each of these phases is characterized by a specific set of amino acids to be used as carbon and energy source our modelling framework describes the major consequences of nutrients switching at the system level. The model predicts that a deep metabolic reprogramming might be required to achieve optimal biomass production in different stages of growth (different medium composition), with at least half of the cellular metabolic network involved (more than 50% of the metabolic genes). Additionally, we show that our modelling framework is able to capture metabolic functional association and/or common regulatory features of the genes embedded in our reconstruction (e.g. the presence of common regulatory motifs). Finally, to explore the possibility of a sub-optimal biomass objective function (i.e. that cells use resources in alternative metabolic processes at the expense of optimal growth) we have implemented a MOMA-based approach (called nutritional-MOMA) and compared the outcomes with those obtained with Flux Balance Analysis (FBA). Growth simulations under this scenario revealed the deep impact of choosing among alternative objective functions on the resulting predictions of fluxes distribution. Here we provide a time-resolved, systems-level scheme of PhTAC125 metabolic re-wiring as a consequence of carbon source switching in a nutritionally complex medium. Our analyses suggest the presence of a potential efficient metabolic reprogramming machinery to continuously and promptly adapt to this nutritionally changing environment, consistent with adaptation to fast growth in a fairly, but probably inconstant and highly competitive, environment. Also, we show i) how functional partnership and co-regulation features can be predicted by integrating multi-step constraint-based metabolic modelling with fed-batch growth data and ii) that performing simulations under a sub-optimal objective function may lead to different flux distributions in respect to canonical FBA.

  4. Growing knowledge of the mTOR signaling network.

    PubMed

    Huang, Kezhen; Fingar, Diane C

    2014-12-01

    The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental signals and translates these cues into appropriate cellular responses. mTOR forms the catalytic core of at least two functionally distinct signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes anabolic cellular metabolism in response to growth factors, nutrients, and energy and functions as a master controller of cell growth. While significantly less well understood than mTORC1, mTORC2 responds to growth factors and controls cell metabolism, cell survival, and the organization of the actin cytoskeleton. mTOR plays critical roles in cellular processes related to tumorigenesis, metabolism, immune function, and aging. Consequently, aberrant mTOR signaling contributes to myriad disease states, and physicians employ mTORC1 inhibitors (rapamycin and analogs) for several pathological conditions. The clinical utility of mTOR inhibition underscores the important role of mTOR in organismal physiology. Here we review our growing knowledge of cellular mTOR regulation by diverse upstream signals (e.g. growth factors; amino acids; energy) and how mTORC1 integrates these signals to effect appropriate downstream signaling, with a greater emphasis on mTORC1 over mTORC2. We highlight dynamic subcellular localization of mTORC1 and associated factors as an important mechanism for control of mTORC1 activity and function. We will cover major cellular functions controlled by mTORC1 broadly. While significant advances have been made in the last decade regarding the regulation and function of mTOR within complex cell signaling networks, many important findings remain to be discovered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation.

    PubMed

    Chng, Wen-Bin Alfred; Koch, Rafael; Li, Xiaoxue; Kondo, Shu; Nagoshi, Emi; Lemaitre, Bruno

    2017-01-01

    Animals rely on complex signaling network to mobilize its energy stores during starvation. We have previously shown that the sugar-responsive TGFβ/Activin pathway, activated through the TGFβ ligand Dawdle, plays a central role in shaping the post-prandial digestive competence in the Drosophila midgut. Nevertheless, little is known about the TGFβ/Activin signaling in sugar metabolism beyond the midgut. Here, we address the importance of Dawdle (Daw) after carbohydrate ingestion. We found that Daw expression is coupled to dietary glucose through the evolutionarily conserved Mio-Mlx transcriptional complex. In addition, Daw activates the TGFβ/Activin signaling in neuronal populations to regulate triglyceride and glycogen catabolism and energy homeostasis. Loss of those neurons depleted metabolic reserves and rendered flies susceptible to starvation.

  6. Metabolic brain networks in aging and preclinical Alzheimer's disease.

    PubMed

    Arnemann, Katelyn L; Stöber, Franziska; Narayan, Sharada; Rabinovici, Gil D; Jagust, William J

    2018-01-01

    Metabolic brain networks can provide insight into the network processes underlying progression from healthy aging to Alzheimer's disease. We explore the effect of two Alzheimer's disease risk factors, amyloid-β and ApoE ε4 genotype, on metabolic brain networks in cognitively normal older adults (N = 64, ages 69-89) compared to young adults (N = 17, ages 20-30) and patients with Alzheimer's disease (N = 22, ages 69-89). Subjects underwent MRI and PET imaging of metabolism (FDG) and amyloid-β (PIB). Normal older adults were divided into four subgroups based on amyloid-β and ApoE genotype. Metabolic brain networks were constructed cross-sectionally by computing pairwise correlations of metabolism across subjects within each group for 80 regions of interest. We found widespread elevated metabolic correlations and desegregation of metabolic brain networks in normal aging compared to youth and Alzheimer's disease, suggesting that normal aging leads to widespread loss of independent metabolic function across the brain. Amyloid-β and the combination of ApoE ε4 led to less extensive elevated metabolic correlations compared to other normal older adults, as well as a metabolic brain network more similar to youth and Alzheimer's disease. This could reflect early progression towards Alzheimer's disease in these individuals. Altered metabolic brain networks of older adults and those at the highest risk for progression to Alzheimer's disease open up novel lines of inquiry into the metabolic and network processes that underlie normal aging and Alzheimer's disease.

  7. Beyond topology: coevolution of structure and flux in metabolic networks.

    PubMed

    Morrison, E S; Badyaev, A V

    2017-10-01

    Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals' metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage-bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among-individual variation in flux occurred in networks with the strongest among-compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  8. An integrated cell-free metabolic platform for protein production and synthetic biology

    PubMed Central

    Jewett, Michael C; Calhoun, Kara A; Voloshin, Alexei; Wuu, Jessica J; Swartz, James R

    2008-01-01

    Cell-free systems offer a unique platform for expanding the capabilities of natural biological systems for useful purposes, i.e. synthetic biology. They reduce complexity, remove structural barriers, and do not require the maintenance of cell viability. Cell-free systems, however, have been limited by their inability to co-activate multiple biochemical networks in a single integrated platform. Here, we report the assessment of biochemical reactions in an Escherichia coli cell-free platform designed to activate natural metabolism, the Cytomim system. We reveal that central catabolism, oxidative phosphorylation, and protein synthesis can be co-activated in a single reaction system. Never before have these complex systems been shown to be simultaneously activated without living cells. The Cytomim system therefore promises to provide the metabolic foundation for diverse ab initio cell-free synthetic biology projects. In addition, we describe an improved Cytomim system with enhanced protein synthesis yields (up to 1200 mg/l in 2 h) and lower costs to facilitate production of protein therapeutics and biochemicals that are difficult to make in vivo because of their toxicity, complexity, or unusual cofactor requirements. PMID:18854819

  9. Energy and time determine scaling in biological and computer designs

    PubMed Central

    Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-01-01

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy–time minimization principle may govern the design of many complex systems that process energy, materials and information. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431524

  10. Energy and time determine scaling in biological and computer designs.

    PubMed

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).

  11. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    PubMed

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  12. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

    NASA Astrophysics Data System (ADS)

    Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.

    2017-03-01

    Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.

  13. MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model

    USDA-ARS?s Scientific Manuscript database

    Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per annum. Because disease susceptibility is a multi-factorial complex phenotype, a multi-omic integrative biology approach is required to dissect the multilayer...

  14. Network-induced oscillatory behavior in material flow networks and irregular business cycles

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units—and linear chains of these units—behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  15. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.

    PubMed

    Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M

    2017-11-01

    Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.

  16. Randomizing Genome-Scale Metabolic Networks

    PubMed Central

    Samal, Areejit; Martin, Olivier C.

    2011-01-01

    Networks coming from protein-protein interactions, transcriptional regulation, signaling, or metabolism may appear to have “unusual” properties. To quantify this, it is appropriate to randomize the network and test the hypothesis that the network is not statistically different from expected in a motivated ensemble. However, when dealing with metabolic networks, the randomization of the network using edge exchange generates fictitious reactions that are biochemically meaningless. Here we provide several natural ensembles of randomized metabolic networks. A first constraint is to use valid biochemical reactions. Further constraints correspond to imposing appropriate functional constraints. We explain how to perform these randomizations with the help of Markov Chain Monte Carlo (MCMC) and show that they allow one to approach the properties of biological metabolic networks. The implication of the present work is that the observed global structural properties of real metabolic networks are likely to be the consequence of simple biochemical and functional constraints. PMID:21779409

  17. MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model.

    PubMed

    Lawless, Nathan; Reinhardt, Timothy A; Bryan, Kenneth; Baker, Mike; Pesch, Bruce; Zimmerman, Duane; Zuelke, Kurt; Sonstegard, Tad; O'Farrelly, Cliona; Lippolis, John D; Lynn, David J

    2014-01-27

    Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per year. Because disease susceptibility is a multifactorial complex phenotype, an integrative biology approach is required to dissect the molecular networks involved. Here, we report such an approach using next-generation sequencing combined with advanced network and pathway biology methods to simultaneously profile mRNA and miRNA expression at multiple time points (0, 12, 24, 36 and 48 hr) in milk and blood FACS-isolated CD14(+) monocytes from animals infected in vivo with Streptococcus uberis. More than 3700 differentially expressed (DE) genes were identified in milk-isolated monocytes (MIMs), a key immune cell recruited to the site of infection during mastitis. Upregulated genes were significantly enriched for inflammatory pathways, whereas downregulated genes were enriched for nonglycolytic metabolic pathways. Monocyte transcriptional changes in the blood, however, were more subtle but highlighted the impact of this infection systemically. Genes upregulated in blood-isolated monocytes (BIMs) showed a significant association with interferon and chemokine signaling. Furthermore, 26 miRNAs were DE in MIMs and three were DE in BIMs. Pathway analysis revealed that predicted targets of downregulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E-8), particularly TLR signaling, whereas upregulated miRNAs preferentially targeted genes involved in metabolism. We conclude that during S. uberis infection miRNAs are key amplifiers of monocyte inflammatory response networks and repressors of several metabolic pathways. Copyright © 2014 Lawless et al.

  18. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast

    PubMed Central

    Rossouw, Debra; Næs, Tormod; Bauer, Florian F

    2008-01-01

    Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of biotechnological relevance. PMID:18990252

  19. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism.

    PubMed

    Nemenman, Ilya; Escola, G Sean; Hlavacek, William S; Unkefer, Pat J; Unkefer, Clifford J; Wall, Michael E

    2007-12-01

    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We use ARACNE, a mainstream algorithm for reverse engineering of transcriptional regulatory networks from gene expression data, to predict metabolic interactions from these data sets. We find that the performance of ARACNE on metabolic data is comparable to that on gene expression data.

  20. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    PubMed

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  1. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD.

    PubMed

    Li, He; Li, Xin; Smerin, Stanley E; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks - one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  2. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    PubMed

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  3. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  4. Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom

    DOE PAGES

    Levering, Jennifer; Broddrick, Jared; Dupont, Christopher L.; ...

    2016-05-06

    Diatoms are eukaryotic microalgae that contain genes from various sources, including bacteria and the secondary endosymbiotic host. Due to this unique combination of genes, diatoms are taxonomically and functionally distinct from other algae and vascular plants and confer novel metabolic capabilities. Based on the genome annotation, we performed a genome-scale metabolic network reconstruction for the marine diatom Phaeodactylum tricornutum. Due to their endosymbiotic origin, diatoms possess a complex chloroplast structure which complicates the prediction of subcellular protein localization. Based on previous work we implemented a pipeline that exploits a series of bioinformatics tools to predict protein localization. The manually curatedmore » reconstructed metabolic network iLB1027_lipid accounts for 1,027 genes associated with 4,456 reactions and 2,172 metabolites distributed across six compartments. To constrain the genome-scale model, we determined the organism specific biomass composition in terms of lipids, carbohydrates, and proteins using Fourier transform infrared spectrometry. Our simulations indicate the presence of a yet unknown glutamine-ornithine shunt that could be used to transfer reducing equivalents generated by photosynthesis to the mitochondria. Furthermore, the model reflects the known biochemical composition of P. tricornutum in defined culture conditions and enables metabolic engineering strategies to improve the use of P. tricornutum for biotechnological applications.« less

  5. Using metagenomic and metatranscriptomic observations to test a thermodynamic-based model of community metabolic expression over time and space

    NASA Astrophysics Data System (ADS)

    Vallino, J. J.; Huber, J. A.

    2016-02-01

    Marine biogeochemistry is orchestrated by a complex and dynamic community of microorganisms that attempt to maximize their own fecundity through a combination of competition and cooperation. At a systems level, the community can be described as a distributed metabolic network, where different species contribute their own unique set of metabolic capabilities. Our current project attempts to understand the governing principles that describe amplification or attenuation of metabolic pathways within the network through a combination of modeling and metagenomic, metatranscriptomic and biogeochemical observations. We will describe and present results from our thermodynamic-based model that determines optimal pathway expression from available resources based on the principle of maximum entropy production (MEP); that is, based on the hypothesis that non-equilibrium systems organize to maximize energy dissipation. The MEP model currently predicts metabolic pathway expression over time, and one spatial dimension. Model predictions will be compared to biogeochemical observations and gene presence and expression from samples collected over time and space from a costal meromictic basin (Siders Pond) located in Falmouth MA, US. Siders Pond permanent stratification, caused by occasional seawater intrusion, results in steep chemoclines and redox gradients, which supports both aerobic and anaerobic phototrophs as well as sulfur, Fe and Mn redox cycles. The diversity of metabolic capability and expression we have observed over depth makes it an ideal system to test our thermodynamic-based model.

  6. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism

    PubMed Central

    den Besten, Gijs; van Eunen, Karen; Groen, Albert K.; Venema, Koen; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2013-01-01

    Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism. PMID:23821742

  7. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity

    PubMed Central

    Taxis, Tasia M.; Wolff, Sara; Gregg, Sarah J.; Minton, Nicholas O.; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D.; Taylor, Jeremy F.; Kerley, Monty S.; Pires, J. Chris; Lamberson, William R.; Conant, Gavin C.

    2015-01-01

    By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. PMID:26420832

  8. Involvement of Fumarase C and NADH Oxidase in Metabolic Adaptation of Pseudomonas fluorescens Cells Evoked by Aluminum and Gallium Toxicity▿

    PubMed Central

    Chenier, Daniel; Beriault, Robin; Mailloux, Ryan; Baquie, Mathurin; Abramia, Gia; Lemire, Joseph; Appanna, Vasu

    2008-01-01

    Iron (Fe) is a critical element in all aerobic organisms as it participates in a variety of metabolic networks. In this study, aluminum (Al) and gallium (Ga), two Fe mimetics, severely impeded the ability of the soil microbe Pseudomonas fluorescens to perform oxidative phosphorylation. This was achieved by disrupting the activity and expression of complexes I, II, and IV. These toxic metals also inactivated aconitase (ACN) and fumarase A (FUM A), two tricarboxylic acid cycle enzymes dependent on Fe for their catalytic activity, while FUM C, an Fe-independent enzyme, displayed an increase in activity and expression under these stressed situations. Furthermore, in the Al- and Ga-exposed cells, the activity and expression of an H2O-forming NADH oxidase were markedly increased. The incubation of the Al- and Ga-challenged cells in an Fe-containing medium led to the recovery of the affected enzymatic activities. Taken together, these data provide novel insights into how environmental pollutants such as Al and Ga interfere with cellular Fe metabolism and also illustrate the ability of Pseudomonas fluorescens to modulate metabolic networks to combat this situation. PMID:18469122

  9. Neonatal ghrelin programs development of hypothalamic feeding circuits

    PubMed Central

    Steculorum, Sophie M.; Collden, Gustav; Coupe, Berengere; Croizier, Sophie; Lockie, Sarah; Andrews, Zane B.; Jarosch, Florian; Klussmann, Sven; Bouret, Sebastien G.

    2015-01-01

    A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation. PMID:25607843

  10. Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.

    PubMed

    Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut

    2017-11-13

    Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.

  11. Modeling cellular compartmentation in one-carbon metabolism

    PubMed Central

    Scotti, Marco; Stella, Lorenzo; Shearer, Emily J.; Stover, Patrick J.

    2015-01-01

    Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable. PMID:23408533

  12. Metabolomics and Diabetes: Analytical and Computational Approaches

    PubMed Central

    Sas, Kelli M.; Karnovsky, Alla; Michailidis, George

    2015-01-01

    Diabetes is characterized by altered metabolism of key molecules and regulatory pathways. The phenotypic expression of diabetes and associated complications encompasses complex interactions between genetic, environmental, and tissue-specific factors that require an integrated understanding of perturbations in the network of genes, proteins, and metabolites. Metabolomics attempts to systematically identify and quantitate small molecule metabolites from biological systems. The recent rapid development of a variety of analytical platforms based on mass spectrometry and nuclear magnetic resonance have enabled identification of complex metabolic phenotypes. Continued development of bioinformatics and analytical strategies has facilitated the discovery of causal links in understanding the pathophysiology of diabetes and its complications. Here, we summarize the metabolomics workflow, including analytical, statistical, and computational tools, highlight recent applications of metabolomics in diabetes research, and discuss the challenges in the field. PMID:25713200

  13. Modulators of Nucleoside Metabolism in the Therapy of Brain Diseases

    PubMed Central

    Boison, Detlev

    2010-01-01

    Nucleoside receptors are known to be important targets for a variety of brain diseases. However, the therapeutic modulation of their endogenous agonists by inhibitors of nucleoside metabolism represents an alternative therapeutic strategy that has gained increasing attention in recent years. Deficiency in endogenous nucleosides, in particular of adenosine, may causally be linked to a variety of neurological diseases and neuropsychiatric conditions ranging from epilepsy and chronic pain to schizophrenia. Consequently, augmentation of nucleoside function by inhibiting their metabolism appears to be a rational therapeutic strategy with distinct advantages: (i) in contrast to specific receptor modulation, the increase (or decrease) of the amount of a nucleoside will affect several signal transduction pathways simultaneously and therefore have the unique potential to modify complex neurochemical networks; (ii) by acting on the network level, inhibitors of nucleoside metabolism are highly suited to fine-tune, restore, or amplify physiological functions of nucleosides; (iii) therefore inhibitors of nucleoside metabolism have promise for the “soft and smart” therapy of neurological diseases with the added advantage of reduced systemic side effects. This review will first highlight the role of nucleoside function and dysfunction in physiological and pathophysiological situations with a particular emphasis on the anticonvulsant, neuroprotective, and antinociceptive roles of adenosine. The second part of this review will cover pharmacological approaches to use inhibitors of nucleoside metabolism, with a special emphasis on adenosine kinase, the key regulator of endogenous adenosine. Finally, novel gene-based therapeutic strategies to inhibit nucleoside metabolism and focal treatment approaches will be discussed. PMID:21401494

  14. Inferring general relations between network characteristics from specific network ensembles.

    PubMed

    Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan

    2012-01-01

    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

  15. Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks.

    PubMed

    Bardoscia, Marco; Marsili, Matteo; Samal, Areejit

    2015-07-01

    System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular environments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov chain Monte Carlo (MCMC) sampling based on flux balance analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.

  16. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems.

    PubMed

    Smith, Robert W; van Rosmalen, Rik P; Martins Dos Santos, Vitor A P; Fleck, Christian

    2018-06-19

    Models of metabolism are often used in biotechnology and pharmaceutical research to identify drug targets or increase the direct production of valuable compounds. Due to the complexity of large metabolic systems, a number of conclusions have been drawn using mathematical methods with simplifying assumptions. For example, constraint-based models describe changes of internal concentrations that occur much quicker than alterations in cell physiology. Thus, metabolite concentrations and reaction fluxes are fixed to constant values. This greatly reduces the mathematical complexity, while providing a reasonably good description of the system in steady state. However, without a large number of constraints, many different flux sets can describe the optimal model and we obtain no information on how metabolite levels dynamically change. Thus, to accurately determine what is taking place within the cell, finer quality data and more detailed models need to be constructed. In this paper we present a computational framework, DMPy, that uses a network scheme as input to automatically search for kinetic rates and produce a mathematical model that describes temporal changes of metabolite fluxes. The parameter search utilises several online databases to find measured reaction parameters. From this, we take advantage of previous modelling efforts, such as Parameter Balancing, to produce an initial mathematical model of a metabolic pathway. We analyse the effect of parameter uncertainty on model dynamics and test how recent flux-based model reduction techniques alter system properties. To our knowledge this is the first time such analysis has been performed on large models of metabolism. Our results highlight that good estimates of at least 80% of the reaction rates are required to accurately model metabolic systems. Furthermore, reducing the size of the model by grouping reactions together based on fluxes alters the resulting system dynamics. The presented pipeline automates the modelling process for large metabolic networks. From this, users can simulate their pathway of interest and obtain a better understanding of how altering conditions influences cellular dynamics. By testing the effects of different parameterisations we are also able to provide suggestions to help construct more accurate models of complete metabolic systems in the future.

  17. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    PubMed

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  18. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks

    PubMed Central

    Grierson, Claire S.

    2018-01-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941

  19. Gender Differences of Brain Glucose Metabolic Networks Revealed by FDG-PET: Evidence from a Large Cohort of 400 Young Adults

    PubMed Central

    Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Background Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. Materials and Methods FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25∼45 years, mean age±SD: 40.9±3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Results Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. Conclusion This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients. PMID:24358312

  20. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults.

    PubMed

    Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.

  1. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    PubMed

    Dong, Yongbin; Wang, Qilei; Zhang, Long; Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  2. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn

    PubMed Central

    Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize. PMID:26587848

  3. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism

    PubMed Central

    Chang, Roger L; Ghamsari, Lila; Manichaikul, Ani; Hom, Erik F Y; Balaji, Santhanam; Fu, Weiqi; Shen, Yun; Hao, Tong; Palsson, Bernhard Ø; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2011-01-01

    Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. PMID:21811229

  4. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks.

    PubMed

    Ruppin, Eytan; Papin, Jason A; de Figueiredo, Luis F; Schuster, Stefan

    2010-08-01

    With the advent of modern omics technologies, it has become feasible to reconstruct (quasi-) whole-cell metabolic networks and characterize them in more and more detail. Computer simulations of the dynamic behavior of such networks are difficult due to a lack of kinetic data and to computational limitations. In contrast, network analysis based on appropriate constraints such as the steady-state condition (constraint-based analysis) is feasible and allows one to derive conclusions about the system's metabolic capabilities. Here, we review methods for the reconstruction of metabolic networks, modeling techniques such as flux balance analysis and elementary flux modes and current progress in their development and applications. Game-theoretical methods for studying metabolic networks are discussed as well. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Thermodynamic Constraints Improve Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2017-08-08

    In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of reactions is thermodynamically constrained in modern metabolic networks. The reversibility constraints follow from heuristic thermodynamic poise approximations that take anticipated cellular metabolite concentration ranges into account. Because constraints reduce the feasible space, draft metabolic network reconstructions may need more extensive reconciliation, and a larger number of genes may become essential. Notwithstanding ubiquitous application, the effect of reversibility constraints on the predictive capabilities of metabolic networks has not been investigated in detail. Instead, work has focused on the implementation and validation of the thermodynamic poise calculation itself. With the advance of fast linear programming-based network reconciliation, the effects of reversibility constraints on network reconciliation and gene essentiality predictions have become feasible and are the subject of this study. Networks with thermodynamically informed reversibility constraints outperformed gene essentiality predictions compared to networks that were constrained with randomly shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as thermodynamically constrained networks, but predicted substantially fewer essential genes. Networks that were reconciled with sequence similarity data and strongly enforced reversibility constraints outperformed all other networks. We conclude that metabolic network analysis confirmed the validity of the thermodynamic constraints, and that thermodynamic poise information is actionable during network reconciliation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Phenotypic integration emerges from aposematism and scale in poison frogs

    PubMed Central

    Santos, Juan C.; Cannatella, David C.

    2011-01-01

    Complex phenotypes can be modeled as networks of component traits connected by genetic, developmental, or functional interactions. Aposematism, which has evolved multiple times in poison frogs (Dendrobatidae), links a warning signal to a chemical defense against predators. Other traits are involved in this complex phenotype. Most aposematic poison frogs are ant specialists, from which they sequester defensive alkaloids. We found that aposematic species have greater aerobic capacity, also related to diet specialization. To characterize the aposematic trait network more fully, we analyzed phylogenetic correlations among its hypothesized components: conspicuousness, chemical defense, diet specialization, body mass, active and resting metabolic rates, and aerobic scope. Conspicuous coloration was correlated with all components except resting metabolism. Structural equation modeling on the basis of trait correlations recovered “aposematism” as one of two latent variables in an integrated phenotypic network, the other being scaling with body mass and physiology (“scale”). Chemical defense and diet specialization were uniquely tied to aposematism whereas conspicuousness was related to scale. The phylogenetic distribution of the aposematic syndrome suggests two scenarios for its evolution: (i) chemical defense and conspicuousness preceded greater aerobic capacity, which supports the increased resource-gathering abilities required of ant–mite diet specialization; and (ii) assuming that prey are patchy, diet specialization and greater aerobic capacity evolved in tandem, and both traits subsequently facilitated the evolution of aposematism. PMID:21444790

  7. Evolving Concepts and Translational Relevance of Enteroendocrine Cell Biology.

    PubMed

    Drucker, Daniel J

    2016-03-01

    Classical enteroenteroendocrine cell (EEC) biology evolved historically from identification of scattered hormone-producing endocrine cells within the epithelial mucosa of the stomach, small and large intestine. Purification of functional EEC hormones from intestinal extracts, coupled with molecular cloning of cDNAs and genes expressed within EECs has greatly expanded the complexity of EEC endocrinology, with implications for understanding the contribution of EECs to disease pathophysiology. Pubmed searches identified manuscripts highlighting new concepts illuminating the molecular biology, classification and functional role(s) of EECs and their hormonal products. Molecular interrogation of EECs has been transformed over the past decade, raising multiple new questions that challenge historical concepts of EEC biology. Evidence for evolution of the EEC from a unihormonal cell type with classical endocrine actions, to a complex plurihormonal dynamic cell with pleiotropic interactive functional networks within the gastrointestinal mucosa is critically assessed. We discuss gaps in understanding how EECs sense and respond to nutrients, cytokines, toxins, pathogens, the microbiota, and the microbial metabolome, and highlight the expanding translational relevance of EECs in the pathophysiology and therapy of metabolic and inflammatory disorders. The EEC system represents the largest specialized endocrine network in human physiology, integrating environmental and nutrient cues, enabling neural and hormonal control of metabolic homeostasis. Updating EEC classification systems will enable more accurate comparative analyses of EEC subpopulations and endocrine networks in multiple regions of the gastrointestinal tract.

  8. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity.

    PubMed

    Taxis, Tasia M; Wolff, Sara; Gregg, Sarah J; Minton, Nicholas O; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D; Taylor, Jeremy F; Kerley, Monty S; Pires, J Chris; Lamberson, William R; Conant, Gavin C

    2015-11-16

    By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. A new network representation of the metabolism to detect chemical transformation modules.

    PubMed

    Sorokina, Maria; Medigue, Claudine; Vallenet, David

    2015-11-14

    Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.

  10. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review

    PubMed Central

    Csermely, Peter; Korcsmáros, Tamás; Kiss, Huba J.M.; London, Gábor; Nussinov, Ruth

    2013-01-01

    Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only gives a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The “central hit strategy” selectively targets central node/edges of the flexible networks of infectious agents or cancer cells to kill them. The “network influence strategy” works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach. PMID:23384594

  11. Towards the understanding of network information processing in biology

    NASA Astrophysics Data System (ADS)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  12. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    PubMed

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  13. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis

    PubMed Central

    Smeekens, Sanne P.; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L.; Joosten, Leo A. B.; Ardavín, Carlos; Netea, Mihai G.

    2017-01-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. PMID:28922415

  14. Metabolism in Fungal Pathogenesis

    PubMed Central

    Ene, Iuliana V.; Brunke, Sascha; Brown, Alistair J.P.; Hube, Bernhard

    2014-01-01

    Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host–fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies. PMID:25190251

  15. Metabolic function of the CTRP family of hormones

    PubMed Central

    Seldin, Marcus M.; Tan, Stefanie Y.; Wong, G. William

    2013-01-01

    Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of fifteen secreted proteins, the C1q/TNF-related proteins (CTRP1–15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis. PMID:23963681

  16. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    PubMed Central

    Prigent, Sylvain; Frioux, Clémence; Dittami, Simon M.; Larhlimi, Abdelhalim; Collet, Guillaume; Gutknecht, Fabien; Got, Jeanne; Eveillard, Damien; Bourdon, Jérémie; Plewniak, Frédéric; Tonon, Thierry; Siegel, Anne

    2017-01-01

    Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system. PMID:28129330

  17. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.

    PubMed

    Prigent, Sylvain; Frioux, Clémence; Dittami, Simon M; Thiele, Sven; Larhlimi, Abdelhalim; Collet, Guillaume; Gutknecht, Fabien; Got, Jeanne; Eveillard, Damien; Bourdon, Jérémie; Plewniak, Frédéric; Tonon, Thierry; Siegel, Anne

    2017-01-01

    Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system.

  18. Functional Alignment of Metabolic Networks.

    PubMed

    Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded

    2016-05-01

    Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.

  19. Metabolic pathway resources at MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    Two maize metabolic networks are available at MaizeGDB: MaizeCyc (http://maizecyc.maizegdb.org, also at Gramene) and CornCyc (http://corncyc.maizegdb.org, also at the Plant Metabolic Network). MaizeCyc was developed by Gramene, and CornCyc by the Plant Metabolic Network, both in collaboration with M...

  20. Connecting Metabolic Pathways: Sigma Factors in Streptomyces spp.

    PubMed Central

    Sun, Di; Liu, Cong; Zhu, Jingrong; Liu, Weijie

    2017-01-01

    The gram-positive filamentous bacterium Streptomyces is one of the largest resources for bioactive metabolites, particularly antibiotics. Antibiotic production and other metabolic processes are tightly regulated at the transcriptional level. Sigma (σ) factors are components of bacterial RNA polymerases that determine promoter specificity. In Streptomyces, σ factors also play essential roles in signal transduction and in regulatory networks, thereby assisting in their survival in complex environments. However, our current understanding of σ factors in Streptomyces is still limited. In this mini-review, we demonstrate the roles of Streptomyces σ factors, illustrating that these serve as linkers of different metabolic pathways. Further investigations on σ factors may improve our knowledge of Streptomyces physiology and benefit exploitation of Streptomyces resources. PMID:29312231

  1. Metabolic immune restraints: implications for anticancer vaccines.

    PubMed

    Mocellin, Simone

    2010-01-01

    Metabolic immune restraints belong to a highly complex network of molecular mechanisms underlying the failure of naturally occurring and therapeutically induced immune responses against cancer. In the light of the disappointing results yielded so far with anticancer vaccines in the clinical setting, the dissection of the cascade of molecular events leading to tumor immune escape appears the most promising way to develop more effective immunotherapeutic strategies. Here we review the significant advances recently made in the understanding of the tumor-specific metabolic features that contribute to keep malignant cells from being recognized and destroyed by immune effectors. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits and thus to enhance the effectiveness of anticancer vaccines.

  2. Mathematical Modeling of the Origins of Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2006-01-01

    The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.

  3. Polymorphisms for ghrelin with consequences on satiety and metabolic alterations.

    PubMed

    Perret, Jason; De Vriese, Carine; Delporte, Christine

    2014-07-01

    To understand the current trend of ghrelin genetic variations on the control of satiety, eating behaviours, obesity, and metabolic alterations, and its development over the last 18 months. Several polymorphisms of the ghrelin gene, its receptor gene and ghrelin's acylating enzyme, ghrelin O-acyl transferase, have been identified and studied over the last decade in relation to control of satiety, obesity, eating behaviours, metabolic syndrome, glucose homeostasis, and type 2 diabetes. However, the effects described are either small or nonsignificant and often subjected to contradictory conclusions between studies. In the last 18 months, several of these areas of investigations have been revisited under more controlled conditions or have been subjected to meta-analysis. The effects of ghrelin gene polymorphism, is a complex area of investigation, due to ghrelin's interplay with a host of various factors part of an integrative network. However, taken together, results suggest that there are no or nonsignificant effects of the common genetic variants. A better understanding of the network, probably by a systems biology type approach, will be necessary to assign the exact role played by gene polymorphism of the component of the ghrelin axis.

  4. Combined transcriptome and metabolome analyses of metformin effects reveal novel links between metabolic networks in steroidogenic systems.

    PubMed

    Udhane, Sameer S; Legeza, Balazs; Marti, Nesa; Hertig, Damian; Diserens, Gaëlle; Nuoffer, Jean-Marc; Vermathen, Peter; Flück, Christa E

    2017-08-17

    Metformin is an antidiabetic drug, which inhibits mitochondrial respiratory-chain-complex I and thereby seems to affect the cellular metabolism in many ways. It is also used for the treatment of the polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. In addition, metformin possesses antineoplastic properties. Although metformin promotes insulin-sensitivity and ameliorates reproductive abnormalities in PCOS, its exact mechanisms of action remain elusive. Therefore, we studied the transcriptome and the metabolome of metformin in human adrenal H295R cells. Microarray analysis revealed changes in 693 genes after metformin treatment. Using high resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS-NMR), we determined 38 intracellular metabolites. With bioinformatic tools we created an integrated pathway analysis to understand different intracellular processes targeted by metformin. Combined metabolomics and transcriptomics data analysis showed that metformin affects a broad range of cellular processes centered on the mitochondrium. Data confirmed several known effects of metformin on glucose and androgen metabolism, which had been identified in clinical and basic studies previously. But more importantly, novel links between the energy metabolism, sex steroid biosynthesis, the cell cycle and the immune system were identified. These omics studies shed light on a complex interplay between metabolic pathways in steroidogenic systems.

  5. Foraging theory predicts predator-prey energy fluxes.

    PubMed

    Brose, U; Ehnes, R B; Rall, B C; Vucic-Pestic, O; Berlow, E L; Scheu, S

    2008-09-01

    1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.

  6. Toward the automated generation of genome-scale metabolic networks in the SEED.

    PubMed

    DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron

    2007-04-26

    Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the stage for the automated generation of substantially complete metabolic networks for over 400 complete genome sequences currently in the SEED. With each genome that is processed using our tools, the database of common components grows to cover more of the diversity of metabolic pathways. This increases the likelihood that components of reaction networks for subsequently processed genomes can be retrieved from the database, rather than assembled and verified manually.

  7. Functional Proteomics Identifies Acinus L as a Direct Insulin- and Amino Acid-Dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Substrate*

    PubMed Central

    Schwarz, Jennifer Jasmin; Wiese, Heike; Tölle, Regine Charlotte; Zarei, Mostafa; Dengjel, Jörn; Warscheid, Bettina; Thedieck, Kathrin

    2015-01-01

    The serine/threonine kinase mammalian target of rapamycin (mTOR) governs growth, metabolism, and aging in response to insulin and amino acids (aa), and is often activated in metabolic disorders and cancer. Much is known about the regulatory signaling network that encompasses mTOR, but surprisingly few direct mTOR substrates have been established to date. To tackle this gap in our knowledge, we took advantage of a combined quantitative phosphoproteomic and interactomic strategy. We analyzed the insulin- and aa-responsive phosphoproteome upon inhibition of the mTOR complex 1 (mTORC1) component raptor, and investigated in parallel the interactome of endogenous mTOR. By overlaying these two datasets, we identified acinus L as a potential novel mTORC1 target. We confirmed acinus L as a direct mTORC1 substrate by co-immunoprecipitation and MS-enhanced kinase assays. Our study delineates a triple proteomics strategy of combined phosphoproteomics, interactomics, and MS-enhanced kinase assays for the de novo-identification of mTOR network components, and provides a rich source of potential novel mTOR interactors and targets for future investigation. PMID:25907765

  8. Dynamics and thermodynamics of open chemical networks

    NASA Astrophysics Data System (ADS)

    Esposito, Massimiliano

    Open chemical networks (OCN) are large sets of coupled chemical reactions where some of the species are chemostated (i.e. continuously restored from the environment). Cell metabolism is a notable example of OCN. Two results will be presented. First, dissipation in OCN operating in nonequilibrium steady-states strongly depends on the network topology (algebraic properties of the stoichiometric matrix). An application to oligosaccharides exchange dynamics performed by so-called D-enzymes will be provided. Second, at low concentration the dissipation of OCN is in general inaccurately predicted by deterministic dynamics (i.e. nonlinear rate equations for the species concentrations). In this case a description in terms of the chemical master equation is necessary. A notable exception is provided by so-called deficiency zero networks, i.e. chemical networks with no hidden cycles present in the graph of reactant complexes.

  9. Exploring metabolic pathway disruption in the subchronic phencyclidine model of schizophrenia with the Generalized Singular Value Decomposition

    PubMed Central

    2011-01-01

    Background The quantification of experimentally-induced alterations in biological pathways remains a major challenge in systems biology. One example of this is the quantitative characterization of alterations in defined, established metabolic pathways from complex metabolomic data. At present, the disruption of a given metabolic pathway is inferred from metabolomic data by observing an alteration in the level of one or more individual metabolites present within that pathway. Not only is this approach open to subjectivity, as metabolites participate in multiple pathways, but it also ignores useful information available through the pairwise correlations between metabolites. This extra information may be incorporated using a higher-level approach that looks for alterations between a pair of correlation networks. In this way experimentally-induced alterations in metabolic pathways can be quantitatively defined by characterizing group differences in metabolite clustering. Taking this approach increases the objectivity of interpreting alterations in metabolic pathways from metabolomic data. Results We present and justify a new technique for comparing pairs of networks--in our case these networks are based on the same set of nodes and there are two distinct types of weighted edges. The algorithm is based on the Generalized Singular Value Decomposition (GSVD), which may be regarded as an extension of Principle Components Analysis to the case of two data sets. We show how the GSVD can be interpreted as a technique for reordering the two networks in order to reveal clusters that are exclusive to only one. Here we apply this algorithm to a new set of metabolomic data from the prefrontal cortex (PFC) of a translational model relevant to schizophrenia, rats treated subchronically with the N-methyl-D-Aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). This provides us with a means to quantify which predefined metabolic pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolite pathway database) were altered in the PFC of PCP-treated rats. Several significant changes were discovered, notably: 1) neuroactive ligands active at glutamate and GABA receptors are disrupted in the PFC of PCP-treated animals, 2) glutamate dysfunction in these animals was not limited to compromised glutamatergic neurotransmission but also involves the disruption of metabolic pathways linked to glutamate; and 3) a specific series of purine reactions Xanthine ← Hypoxyanthine ↔ Inosine ← IMP → adenylosuccinate is also disrupted in the PFC of PCP-treated animals. Conclusions Network reordering via the GSVD provides a means to discover statistically validated differences in clustering between a pair of networks. In practice this analytical approach, when applied to metabolomic data, allows us to quantify the alterations in metabolic pathways between two experimental groups. With this new computational technique we identified metabolic pathway alterations that are consistent with known results. Furthermore, we discovered disruption in a novel series of purine reactions that may contribute to the PFC dysfunction and cognitive deficits seen in schizophrenia. PMID:21575198

  10. Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.

    PubMed

    Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø

    2003-10-07

    The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.

  11. Identification of functional differences in metabolic networks using comparative genomics and constraint-based models.

    PubMed

    Hamilton, Joshua J; Reed, Jennifer L

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.

  12. Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    PubMed Central

    Hamilton, Joshua J.; Reed, Jennifer L.

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here. PMID:22666308

  13. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.

    PubMed

    Angelovici, Ruthie; Fait, Aaron; Zhu, Xiaohong; Szymanski, Jedrzej; Feldmesser, Ester; Fernie, Alisdair R; Galili, Gad

    2009-12-01

    In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.

  14. Small-worldness and gender differences of large scale brain metabolic covariance networks in young adults: a FDG PET study of 400 subjects.

    PubMed

    Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming

    2015-02-01

    Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation.

    PubMed

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; Ng, Patrick; Khraiwesh, Basel; Jaiswal, Ashish; Jijakli, Kenan; Koussa, Joseph; Nelson, David R; Cai, Hong; Yang, Xinping; Chang, Roger L; Papin, Jason; Yu, Haiyuan; Balaji, Santhanam; Salehi-Ashtiani, Kourosh

    2016-07-19

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolic network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. The defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.

  16. Biological network extraction from scientific literature: state of the art and challenges.

    PubMed

    Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich

    2014-09-01

    Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. A Day in the Life of the Suwannee River: Lagrangian Sampling of Process Rates Along the River Continuum

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Hensley, R. T.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    A key organizing idea in stream ecology is the river continuum concept (RCC) which makes testable predictions about network-scale variation in metabolic and community attributes. Using high resolution (ca. 0.1 Hz) Lagrangian sampling of a wide suite of solutes - including nitrate, fDOM, dissolved oyxgen and specific conductance, we sampled the river continuum from headwaters to the sea in the Suwannee River (Florida, USA). We specifically sought to test two predictions that follow from the RCC: first, that changes in metabolism and hydraulics lead to progressive reduction in total N retention but greater diel variation with increasing stream order; and second, that variation in metabolic and nutrient processing rates is larger across stream orders than between low order streams. In addition to providing a novel test of theory, these measurements enabled new insights into the evolution of water quality through a complex landscape, in part because main-stem profiles were obtained for both high and historically low flow conditions. We observed strong evidence of metabolism and nutrient retention at low flow. Both the rate of uptake velocity and the mass retention per unit area declined with increasing stream order, and declined dramatically at high flow. Clear evidence for time varying retention (i.e., diel variation) was observed at low flow, but was masked or absent at high flow. In this geologically complex river - with alluvial, spring-fed, and blackwater headwater streams - variation across low-order streams was large, suggesting the presence of many river continuua across the network. This application of longitudinal sampling and inference underscores the utility of changing reference frames to draw new insights, but also highlights some of the challenges that need to be considered and, where possible, controlled.

  18. Systems biology in hepatology: approaches and applications.

    PubMed

    Mardinoglu, Adil; Boren, Jan; Smith, Ulf; Uhlen, Mathias; Nielsen, Jens

    2018-06-01

    Detailed insights into the biological functions of the liver and an understanding of its crosstalk with other human tissues and the gut microbiota can be used to develop novel strategies for the prevention and treatment of liver-associated diseases, including fatty liver disease, cirrhosis, hepatocellular carcinoma and type 2 diabetes mellitus. Biological network models, including metabolic, transcriptional regulatory, protein-protein interaction, signalling and co-expression networks, can provide a scaffold for studying the biological pathways operating in the liver in connection with disease development in a systematic manner. Here, we review studies in which biological network models were used to integrate multiomics data to advance our understanding of the pathophysiological responses of complex liver diseases. We also discuss how this mechanistic approach can contribute to the discovery of potential biomarkers and novel drug targets, which might lead to the design of targeted and improved treatment strategies. Finally, we present a roadmap for the successful integration of models of the liver and other human tissues with the gut microbiota to simulate whole-body metabolic functions in health and disease.

  19. Text mining for metabolic pathways, signaling cascades, and protein networks.

    PubMed

    Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso

    2005-05-10

    The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.

  20. Fluxes through plant metabolic networks: measurements, predictions, insights and challenges.

    PubMed

    Kruger, Nicholas J; Ratcliffe, R George

    2015-01-01

    Although the flows of material through metabolic networks are central to cell function, they are not easy to measure other than at the level of inputs and outputs. This is particularly true in plant cells, where the network spans multiple subcellular compartments and where the network may function either heterotrophically or photoautotrophically. For many years, kinetic modelling of pathways provided the only method for describing the operation of fragments of the network. However, more recently, it has become possible to map the fluxes in central carbon metabolism using the stable isotope labelling techniques of metabolic flux analysis (MFA), and to predict intracellular fluxes using constraints-based modelling procedures such as flux balance analysis (FBA). These approaches were originally developed for the analysis of microbial metabolism, but over the last decade, they have been adapted for the more demanding analysis of plant metabolic networks. Here, the principal features of MFA and FBA as applied to plants are outlined, followed by a discussion of the insights that have been gained into plant metabolic networks through the application of these time-consuming and non-trivial methods. The discussion focuses on how a system-wide view of plant metabolism has increased our understanding of network structure, metabolic perturbations and the provision of reducing power and energy for cell function. Current methodological challenges that limit the scope of plant MFA are discussed and particular emphasis is placed on the importance of developing methods for cell-specific MFA.

  1. Principal network analysis: identification of subnetworks representing major dynamics using gene expression data

    PubMed Central

    Kim, Yongsoo; Kim, Taek-Kyun; Kim, Yungu; Yoo, Jiho; You, Sungyong; Lee, Inyoul; Carlson, George; Hood, Leroy; Choi, Seungjin; Hwang, Daehee

    2011-01-01

    Motivation: Systems biology attempts to describe complex systems behaviors in terms of dynamic operations of biological networks. However, there is lack of tools that can effectively decode complex network dynamics over multiple conditions. Results: We present principal network analysis (PNA) that can automatically capture major dynamic activation patterns over multiple conditions and then generate protein and metabolic subnetworks for the captured patterns. We first demonstrated the utility of this method by applying it to a synthetic dataset. The results showed that PNA correctly captured the subnetworks representing dynamics in the data. We further applied PNA to two time-course gene expression profiles collected from (i) MCF7 cells after treatments of HRG at multiple doses and (ii) brain samples of four strains of mice infected with two prion strains. The resulting subnetworks and their interactions revealed network dynamics associated with HRG dose-dependent regulation of cell proliferation and differentiation and early PrPSc accumulation during prion infection. Availability: The web-based software is available at: http://sbm.postech.ac.kr/pna. Contact: dhhwang@postech.ac.kr; seungjin@postech.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21193522

  2. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  3. LeishCyc: a guide to building a metabolic pathway database and visualization of metabolomic data.

    PubMed

    Saunders, Eleanor C; MacRae, James I; Naderer, Thomas; Ng, Milica; McConville, Malcolm J; Likić, Vladimir A

    2012-01-01

    The complexity of the metabolic networks in even the simplest organisms has raised new challenges in organizing metabolic information. To address this, specialized computer frameworks have been developed to capture, manage, and visualize metabolic knowledge. The leading databases of metabolic information are those organized under the umbrella of the BioCyc project, which consists of the reference database MetaCyc, and a number of pathway/genome databases (PGDBs) each focussed on a specific organism. A number of PGDBs have been developed for bacterial, fungal, and protozoan pathogens, greatly facilitating dissection of the metabolic potential of these organisms and the identification of new drug targets. Leishmania are protozoan parasites belonging to the family Trypanosomatidae that cause a broad spectrum of diseases in humans. In this work we use the LeishCyc database, the BioCyc database for Leishmania major, to describe how to build a BioCyc database from genomic sequences and associated annotations. By using metabolomic data generated in our group, we show how such databases can be utilized to elucidate specific changes in parasite metabolism.

  4. Achieving optimal growth: lessons from simple metabolic modules

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Chen, Thomas; Wingreen, Ned

    2009-03-01

    Metabolism is a universal property of living organisms. While the metabolic network itself has been well characterized, the logic of its regulation remains largely mysterious. Recent work has shown that growth rates of microorganisms, including the bacterium Escherichia coli, correlate well with optimal growth rates predicted by flux-balance analysis (FBA), a constraint-based computational method. How difficult is it for cells to achieve optimal growth? Our analysis of representative metabolic modules drawn from real metabolism shows that, in all cases, simple feedback inhibition allows nearly optimal growth. Indeed, product-feedback inhibition is found in every biosynthetic pathway and constitutes about 80% of metabolic regulation. However, we find that product-feedback systems designed to approach optimal growth necessarily produce large pool sizes of metabolites, with potentially detrimental effects on cells via toxicity and osmotic imbalance. Interestingly, the sizes of metabolite pools can be strongly restricted if the feedback inhibition is ultrasensitive (i.e. with high Hill coefficient). The need for ultrasensitive mechanisms to limit pool sizes may therefore explain some of the ubiquitous, puzzling complexity found in metabolic feedback regulation at both the transcriptional and post-transcriptional levels.

  5. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    PubMed

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  6. Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    PubMed Central

    Toubiana, David; Semel, Yaniv; Tohge, Takayuki; Beleggia, Romina; Cattivelli, Luigi; Rosental, Leah; Nikoloski, Zoran; Zamir, Dani; Fernie, Alisdair R.; Fait, Aaron

    2012-01-01

    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping. PMID:22479206

  7. Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network1[OPEN

    PubMed Central

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J.; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S.; Rhee, Seung Y.

    2015-01-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes. PMID:25670818

  8. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture

    PubMed Central

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-01-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method – microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. PMID:28192772

  9. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.

    PubMed

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-04-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    PubMed

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  11. FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks.

    PubMed

    Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying

    2018-01-01

    The metabolism of individual organisms and biological communities can be viewed as a network of metabolites connected to each other through chemical reactions. In metabolic networks, chemical reactions transform reactants into products, thereby transferring elements between these metabolites. Knowledge of how elements are transferred through reactant/product pairs allows for the identification of primary compound connections through a metabolic network. However, such information is not readily available and is often challenging to obtain for large reaction databases or genome-scale metabolic models. In this study, a new algorithm was developed for automatically predicting the element-transferring reactant/product pairs using the limited information available in the standard representation of metabolic networks. The algorithm demonstrated high efficiency in analyzing large datasets and provided accurate predictions when benchmarked with manually curated data. Applying the algorithm to the visualization of metabolic networks highlighted pathways of primary reactant/product connections and provided an organized view of element-transferring biochemical transformations. The algorithm was implemented as a new function in the open source software package PSAMM in the release v0.30 (https://zhanglab.github.io/psamm/).

  12. A toolbox model of evolution of metabolic pathways on networks of arbitrary topology.

    PubMed

    Pang, Tin Yau; Maslov, Sergei

    2011-05-01

    In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger "universal" network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of "small-world" topology, real-life metabolic networks are characterized by a broad distribution of pathway lengths and sizes of metabolic regulons in regulatory networks.

  13. A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS

    PubMed Central

    Zhao, Yanni; Zhao, Jieyu; Zhao, Chunxia; Zhou, Huina; Li, Yanli; Zhang, Junjie; Li, Lili; Hu, Chunxiu; Li, Wenzheng; Peng, Xiaojun; Lu, Xin; Lin, Fucheng; Xu, Guowang

    2015-01-01

    Ecological conditions and developmental senescence significantly affect the physiological metabolism of plants, yet relatively little is known about the influence of geographical location on dynamic changes in plant leaves during growth. Pseudotargeted gas chromatography-selected ion monitoring-mass spectrometry and capillary electrophoresis-mass spectrometry were used to investigate a time course of the metabolic responses of tobacco leaves to geographical location. Principal component analysis revealed obvious metabolic discrimination between growing districts relative to cultivars. A complex carbon and nitrogen metabolic network was modulated by environmental factors during growth. When the Xuchang and Dali Districts in China were compared, the results indicated that higher rates of photosynthesis, photorespiration and respiration were utilized in Xuchang District to generate the energy and carbon skeletons needed for the biosynthesis of nitrogen-containing metabolites. The increased abundance of defense-associated metabolites generated from the shikimate-phenylpropanoid pathway in Xuchang relative to Dali was implicated in protection against stress. PMID:26549189

  14. A spectroscopic approach toward depression diagnosis: local metabolism meets functional connectivity.

    PubMed

    Demenescu, Liliana Ramona; Colic, Lejla; Li, Meng; Safron, Adam; Biswal, B; Metzger, Coraline Danielle; Li, Shijia; Walter, Martin

    2017-03-01

    Abnormal anterior insula (AI) response and functional connectivity (FC) is associated with depression. In addition to clinical features, such as severity, AI FC and its metabolism further predicted therapeutic response. Abnormal FC between anterior cingulate and AI covaried with reduced glutamate level within cingulate cortex. Recently, deficient glial glutamate conversion was found in AI in major depression disorder (MDD). We therefore postulate a local glutamatergic mechanism in insula cortex of depressive patients, which is correlated with symptoms severity and itself influences AI's network connectivity in MDD. Twenty-five MDD patients and 25 healthy controls (HC) matched on age and sex underwent resting state functional magnetic resonance imaging and magnetic resonance spectroscopy scans. To determine the role of local glutamate-glutamine complex (Glx) ratio on whole brain AI FC, we conducted regression analysis with Glx relative to creatine (Cr) ratio as factor of interest and age, sex, and voxel tissue composition as nuisance factors. We found that in MDD, but not in HC, AI Glx/Cr ratio correlated positively with AI FC to right supramarginal gyrus and negatively with AI FC toward left occipital cortex (p < 0.05 family wise error). AI Glx/Cr level was negatively correlated with HAMD score (p < 0.05) in MDD patients. We showed that the local AI ratio of glutamatergic-creatine metabolism is an underlying candidate subserving functional network disintegration of insula toward low level and supramodal integration areas, in MDD. While causality cannot directly be inferred from such correlation, our finding helps to define a multilevel network of response-predicting regions based on local metabolism and connectivity strength.

  15. A network property necessary for concentration robustness

    NASA Astrophysics Data System (ADS)

    Eloundou-Mbebi, Jeanne M. O.; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran

    2016-10-01

    Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications.

  16. A network property necessary for concentration robustness.

    PubMed

    Eloundou-Mbebi, Jeanne M O; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran

    2016-10-19

    Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications.

  17. A network property necessary for concentration robustness

    PubMed Central

    Eloundou-Mbebi, Jeanne M. O.; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran

    2016-01-01

    Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications. PMID:27759015

  18. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  19. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less

  20. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation

    DOE PAGES

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; ...

    2016-06-14

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less

  1. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  2. Controllability and observability analysis for vertex domination centrality in directed networks

    PubMed Central

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  3. Inference and Prediction of Metabolic Network Fluxes

    PubMed Central

    Nikoloski, Zoran; Perez-Storey, Richard; Sweetlove, Lee J.

    2015-01-01

    In this Update, we cover the basic principles of the estimation and prediction of the rates of the many interconnected biochemical reactions that constitute plant metabolic networks. This includes metabolic flux analysis approaches that utilize the rates or patterns of redistribution of stable isotopes of carbon and other atoms to estimate fluxes, as well as constraints-based optimization approaches such as flux balance analysis. Some of the major insights that have been gained from analysis of fluxes in plants are discussed, including the functioning of metabolic pathways in a network context, the robustness of the metabolic phenotype, the importance of cell maintenance costs, and the mechanisms that enable energy and redox balancing at steady state. We also discuss methodologies to exploit 'omic data sets for the construction of tissue-specific metabolic network models and to constrain the range of permissible fluxes in such models. Finally, we consider the future directions and challenges faced by the field of metabolic network flux phenotyping. PMID:26392262

  4. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.

    PubMed

    Keller, Markus A; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V; Griffin, Julian L; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.

  5. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  6. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades.

    PubMed

    Minteer, Shelley D

    2016-05-01

    Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015. Published by Elsevier B.V.

  7. SSB as an organizer/mobilizer of genome maintenance complexes

    PubMed Central

    Shereda, Robert D.; Kozlov, Alexander G.; Lohman, Timothy M.; Cox, Michael M.; Keck, James L.

    2008-01-01

    When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems. PMID:18937104

  8. Leveraging Modeling Approaches: Reaction Networks and Rules

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349

  9. Leveraging modeling approaches: reaction networks and rules.

    PubMed

    Blinov, Michael L; Moraru, Ion I

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.

  10. Topics in Complexity: From Physical to Life Science Systems

    NASA Astrophysics Data System (ADS)

    Charry, Pedro David Manrique

    Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.

  11. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  12. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks

    PubMed Central

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568

  13. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    PubMed

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  14. Effect of resistant and digestible rice starches on human cytokine and lactate metabolic networks in serum.

    PubMed

    Wang, Huisong; Pang, Guangchang

    2017-05-01

    Resistant starch generated after treating ordinary starch is of great significance to human health in the countries with overnutrition. However, its functional evaluation in the human body has been rarely reported. By determining the lactate metabolic flux, 12 serum enzymes expression level and 38 serum cytokines in healthy volunteers, the variation in cytokine network and lactate metabolic network in serum were investigated to compare the mechanism of the physiological effects between the two starches. The results indicated that compared with digestible starch, resistant starch had anti-inflammatory effects, increased anabolism, and decreased catabolism. Further, the intercellular communication networks including cytokine and lactate metabolic networks were mapped out. The relationship suggested that resistant starch might affect and control the secretion of cytokines to regulate lactate metabolic network in the body, promoting the development of immunometabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The driving regulators of the connectivity protein network of brain malignancies

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Wildburger, Norelle C.; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    An important problem in modern therapeutics at the proteomic level remains to identify therapeutic targets in a plentitude of high-throughput data from experiments relevant to a variety of diseases. This paper presents the application of novel modern control concepts, such as pinning controllability and observability applied to the glioma cancer stem cells (GSCs) protein graph network with known and novel association to glioblastoma (GBM). The theoretical frameworks provides us with the minimal number of "driver nodes", which are necessary, and their location to determine the full control over the obtained graph network in order to provide a change in the network's dynamics from an initial state (disease) to a desired state (non-disease). The achieved results will provide biochemists with techniques to identify more metabolic regions and biological pathways for complex diseases, to design and test novel therapeutic solutions.

  16. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model

    PubMed Central

    Martin, François-Pierre J; Dumas, Marc-Emmanuel; Wang, Yulan; Legido-Quigley, Cristina; Yap, Ivan K S; Tang, Huiru; Zirah, Séverine; Murphy, Gerard M; Cloarec, Olivier; Lindon, John C; Sprenger, Norbert; Fay, Laurent B; Kochhar, Sunil; van Bladeren, Peter; Holmes, Elaine; Nicholson, Jeremy K

    2007-01-01

    Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level. PMID:17515922

  17. VRML metabolic network visualizer.

    PubMed

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  18. BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities

    PubMed Central

    Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.

    2014-01-01

    Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host's nutrient-based mechanism for bacterial partner selection. PMID:25412107

  19. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network.

    PubMed

    Waliszewski, P; Molski, M; Konarski, J

    1998-06-01

    A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.

  20. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  1. Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods

    PubMed Central

    2014-01-01

    Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614

  2. PENDISC: a simple method for constructing a mathematical model from time-series data of metabolite concentrations.

    PubMed

    Sriyudthsak, Kansuporn; Iwata, Michio; Hirai, Masami Yokota; Shiraishi, Fumihide

    2014-06-01

    The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.

  3. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism

    PubMed Central

    Bordbar, Aarash; Palsson, Bernhard O.

    2016-01-01

    Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein’s structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism. PMID:27467583

  4. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism.

    PubMed

    Mih, Nathan; Brunk, Elizabeth; Bordbar, Aarash; Palsson, Bernhard O

    2016-07-01

    Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.

  5. Metabolic gene regulation in a dynamically changing environment.

    PubMed

    Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff

    2008-08-28

    Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment.

  6. Decreased Metabolism in the Posterior Medial Network with Concomitantly Increased Metabolism in the Anterior Temporal Network During Transient Global Amnesia.

    PubMed

    Yi, SangHak; Park, Young Ho; Jang, Jae-Won; Lim, Jae-Sung; Chun, In Kook; Kim, SangYun

    2018-05-01

    Perturbation of corticohippocampal circuits is a key step in the pathogenesis of transient global amnesia. We evaluated the spatial distribution of altered cerebral metabolism to determine the location of the corticohippocampal circuits perturbed during the acute stage of transient global amnesia. A consecutive series of 12 patients with transient global amnesia who underwent 18 F-fluorodeoxyglucose positron emission tomography within 3 days after symptom onset was identified. We used statistical parametric mapping with two contrasts to identify regions of decreased and increased brain metabolism in transient global amnesia patients compared with 25 age-matched controls. Transient global amnesia patients showed hypometabolic clusters in the left temporal and bilateral parieto-occipital regions that belong to the posterior medial network as well as, hypermetabolic clusters in the bilateral inferior frontal regions that belong to the anterior temporal network. The posterior medial and anterior temporal networks are the two main corticohippocampal circuits involved in memory-guided behavior. Decreased metabolism in the posterior medial network might explain the impairment of episodic memory observed during the acute stage of transient global amnesia. Concomitant increased metabolism within the anterior temporal network might occur as a compensatory mechanism.

  7. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    PubMed

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  8. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  9. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    PubMed

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  10. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.

    PubMed

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.

  11. Increments and Duplication Events of Enzymes and Transcription Factors Influence Metabolic and Regulatory Diversity in Prokaryotes

    PubMed Central

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780

  12. Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information

    PubMed Central

    2013-01-01

    Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484

  13. [Metabolomics research of medicinal plants].

    PubMed

    Duan, Li-Xin; Dai, Yun-Tao; Sun, Chao; Chen, Shi-Lin

    2016-11-01

    Metabolomics is the comprehensively study of chemical processes involving small molecule metabolites. It is an important part of systems biology, and is widely applied in complex traditional Chinese medicine(TCM)system. Metabolites biosynthesized by medicinal plants are the effective basis for TCM. Metabolomics studies of medicinal plants will usher in a new period of vigorous development with the implementation of Herb Genome Program and the development of TCM synthetic biology. This manuscript introduces the recent research progresses of metabolomics technology and the main research contents of metabolomics studies for medicinal plants, including identification and quality evaluation for medicinal plants, cultivars breeding, stress resistance, metabolic pathways, metabolic network, metabolic engineering and synthetic biology researches. The integration of genomics, transcriptomics and metabolomics approaches will finally lay foundation for breeding of medicinal plants, R&D, quality and safety evaluation of innovative drug. Copyright© by the Chinese Pharmaceutical Association.

  14. Metabolic control of female puberty: potential therapeutic targets.

    PubMed

    Castellano, Juan M; Tena-Sempere, Manuel

    2016-10-01

    The onset of puberty in females is highly sensitive to the nutritional status and the amount of energy reserves of the organism. This metabolic information is sensed and transmitted to hypothalamic GnRH neurons, considered to be ultimately responsible for triggering puberty through the coordinated action of different peripheral hormones, central neurotransmitters, and molecular mediators. This article will review and discuss (i) the relevant actions of the adipose hormone leptin, as a stimulatory/permissive signal, and the gut hormone ghrelin, as an inhibitory factor, in the metabolic control of female puberty; (ii) the crucial role of the hypothalamic kisspeptin neurons, recently emerged as essential gatekeepers of puberty, in transmitting this metabolic information to GnRH neurons; and (iii) the potential involvement of key cellular energy sensors, such as mTOR, as molecular mediators in this setting. The thorough characterization of the physiological roles of the above elements in the metabolic control of female puberty, along with the discovery of novel factors, pathways, and mechanisms involved, will promote our understanding of the complex networks connecting metabolism and puberty and, ultimately, will aid in the design of target-specific treatments for female pubertal disorders linked to conditions of metabolic stress.

  15. Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry.

    PubMed

    Snider, Justin M; Snider, Ashley J; Obeid, Lina M; Luberto, Chiara; Hannun, Yusuf A

    2018-06-01

    Sphingolipids constitute a dynamic metabolic network that interconnects several bioactive molecules, including ceramide (Cer), sphingosine (Sph), Sph 1-phosphate, and Cer 1-phosphate. The interconversion of these metabolites is controlled by a cohort of at least 40 enzymes, many of which respond to endogenous or exogenous stimuli. Typical probing of the sphingolipid pathway relies on sphingolipid mass levels or determination of the activity of individual enzymes. Either approach is unable to provide a complete analysis of flux through sphingolipid metabolism, which, given the interconnectivity of the sphingolipid pathway, is critical information to identify nodes of regulation. Here, we present a one-step in situ assay that comprehensively probes the flux through de novo sphingolipid synthesis, post serine palmitoyltransferase, by monitoring the incorporation and metabolism of the 17 carbon dihydrosphingosine precursor with LC/MS. Pulse labeling and analysis of precursor metabolism identified sequential well-defined phases of sphingolipid synthesis, corresponding to the activity of different enzymes in the pathway, further confirmed by the use of specific inhibitors and modulators of sphingolipid metabolism. This work establishes precursor pulse labeling as a practical tool for comprehensively studying metabolic flux through de novo sphingolipid synthesis and complex sphingolipid generation.

  16. Bridging the gap between fluxomics and industrial biotechnology.

    PubMed

    Feng, Xueyang; Page, Lawrence; Rubens, Jacob; Chircus, Lauren; Colletti, Peter; Pakrasi, Himadri B; Tang, Yinjie J

    2010-01-01

    Metabolic flux analysis is a vital tool used to determine the ultimate output of cellular metabolism and thus detect biotechnologically relevant bottlenecks in productivity. ¹³C-based metabolic flux analysis (¹³C-MFA) and flux balance analysis (FBA) have many potential applications in biotechnology. However, noteworthy hurdles in fluxomics study are still present. First, several technical difficulties in both ¹³C-MFA and FBA severely limit the scope of fluxomics findings and the applicability of obtained metabolic information. Second, the complexity of metabolic regulation poses a great challenge for precise prediction and analysis of metabolic networks, as there are gaps between fluxomics results and other omics studies. Third, despite identified metabolic bottlenecks or sources of host stress from product synthesis, it remains difficult to overcome inherent metabolic robustness or to efficiently import and express nonnative pathways. Fourth, product yields often decrease as the number of enzymatic steps increases. Such decrease in yield may not be caused by rate-limiting enzymes, but rather is accumulated through each enzymatic reaction. Fifth, a high-throughput fluxomics tool hasnot been developed for characterizing nonmodel microorganisms and maximizing their application in industrial biotechnology. Refining fluxomics tools and understanding these obstacles will improve our ability to engineer highly efficient metabolic pathways in microbial hosts.

  17. Metabolic network modeling with model organisms.

    PubMed

    Yilmaz, L Safak; Walhout, Albertha Jm

    2017-02-01

    Flux balance analysis (FBA) with genome-scale metabolic network models (GSMNM) allows systems level predictions of metabolism in a variety of organisms. Different types of predictions with different accuracy levels can be made depending on the applied experimental constraints ranging from measurement of exchange fluxes to the integration of gene expression data. Metabolic network modeling with model organisms has pioneered method development in this field. In addition, model organism GSMNMs are useful for basic understanding of metabolism, and in the case of animal models, for the study of metabolic human diseases. Here, we discuss GSMNMs of most highly used model organisms with the emphasis on recent reconstructions. Published by Elsevier Ltd.

  18. Metabolic network modeling with model organisms

    PubMed Central

    Yilmaz, L. Safak; Walhout, Albertha J.M.

    2017-01-01

    Flux balance analysis (FBA) with genome-scale metabolic network models (GSMNM) allows systems level predictions of metabolism in a variety of organisms. Different types of predictions with different accuracy levels can be made depending on the applied experimental constraints ranging from measurement of exchange fluxes to the integration of gene expression data. Metabolic network modeling with model organisms has pioneered method development in this field. In addition, model organism GSMNMs are useful for basic understanding of metabolism, and in the case of animal models, for the study of metabolic human diseases. Here, we discuss GSMNMs of most highly used model organisms with the emphasis on recent reconstructions. PMID:28088694

  19. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery☆

    PubMed Central

    Kell, Douglas B.; Goodacre, Royston

    2014-01-01

    Metabolism represents the ‘sharp end’ of systems biology, because changes in metabolite concentrations are necessarily amplified relative to changes in the transcriptome, proteome and enzyme activities, which can be modulated by drugs. To understand such behaviour, we therefore need (and increasingly have) reliable consensus (community) models of the human metabolic network that include the important transporters. Small molecule ‘drug’ transporters are in fact metabolite transporters, because drugs bear structural similarities to metabolites known from the network reconstructions and from measurements of the metabolome. Recon2 represents the present state-of-the-art human metabolic network reconstruction; it can predict inter alia: (i) the effects of inborn errors of metabolism; (ii) which metabolites are exometabolites, and (iii) how metabolism varies between tissues and cellular compartments. However, even these qualitative network models are not yet complete. As our understanding improves so do we recognise more clearly the need for a systems (poly)pharmacology. PMID:23892182

  20. Emerging Roles for the Lysosome in Lipid Metabolism.

    PubMed

    Thelen, Ashley M; Zoncu, Roberto

    2017-11-01

    Precise regulation of lipid biosynthesis, transport, and storage is key to the homeostasis of cells and organisms. Cells rely on a sophisticated but poorly understood network of vesicular and nonvesicular transport mechanisms to ensure efficient delivery of lipids to target organelles. The lysosome stands at the crossroads of this network due to its ability to process and sort exogenous and endogenous lipids. The lipid-sorting function of the lysosome is intimately connected to its recently discovered role as a metabolic command-and-control center, which relays multiple nutrient cues to the master growth regulator, mechanistic target of rapamycin complex (mTORC)1 kinase. In turn, mTORC1 potently drives anabolic processes, including de novo lipid synthesis, while inhibiting lipid catabolism. Here, we describe the dual role of the lysosome in lipid transport and biogenesis, and we discuss how integration of these two processes may play important roles both in normal physiology and in disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network

    PubMed Central

    Widhalm, Joshua R.; Gutensohn, Michael; Yoo, Heejin; Adebesin, Funmilayo; Qian, Yichun; Guo, Longyun; Jaini, Rohit; Lynch, Joseph H.; McCoy, Rachel M.; Shreve, Jacob T.; Thimmapuram, Jyothi; Rhodes, David; Morgan, John A.; Dudareva, Natalia

    2015-01-01

    In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles, as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network. PMID:26356302

  2. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widhalm, Joshua R.; Gutensohn, Michael; Yoo, Heejin

    In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles,more » as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network.« less

  3. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network

    DOE PAGES

    Widhalm, Joshua R.; Gutensohn, Michael; Yoo, Heejin; ...

    2015-09-10

    In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles,more » as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network.« less

  4. Redesigning metabolism based on orthogonality principles

    PubMed Central

    Pandit, Aditya Vikram; Srinivasan, Shyam; Mahadevan, Radhakrishnan

    2017-01-01

    Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering. PMID:28555623

  5. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)

    PubMed Central

    Lamming, Dudley W.; Demirkan, Gokhan; Boylan, Joan M.; Mihaylova, Maria M.; Peng, Tao; Ferreira, Jonathan; Neretti, Nicola; Salomon, Arthur; Sabatini, David M.; Gruppuso, Philip A.

    2014-01-01

    The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.—Lamming, D. W., Demirkan, G., Boylan, J. M., Mihaylova, M. M., Peng, T., Ferreira, J., Neretti, N., Salomon, A., Sabatini, D. M., Gruppuso, P. A. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). PMID:24072782

  6. Conversion of KEGG metabolic pathways to SBGN maps including automatic layout

    PubMed Central

    2013-01-01

    Background Biologists make frequent use of databases containing large and complex biological networks. One popular database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) which uses its own graphical representation and manual layout for pathways. While some general drawing conventions exist for biological networks, arbitrary graphical representations are very common. Recently, a new standard has been established for displaying biological processes, the Systems Biology Graphical Notation (SBGN), which aims to unify the look of such maps. Ideally, online repositories such as KEGG would automatically provide networks in a variety of notations including SBGN. Unfortunately, this is non‐trivial, since converting between notations may add, remove or otherwise alter map elements so that the existing layout cannot be simply reused. Results Here we describe a methodology for automatic translation of KEGG metabolic pathways into the SBGN format. We infer important properties of the KEGG layout and treat these as layout constraints that are maintained during the conversion to SBGN maps. Conclusions This allows for the drawing and layout conventions of SBGN to be followed while creating maps that are still recognizably the original KEGG pathways. This article details the steps in this process and provides examples of the final result. PMID:23953132

  7. Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO 2 Levels

    DOE PAGES

    Levering, Jennifer; Dupont, Christopher L.; Allen, Andrew E.; ...

    2017-02-14

    Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and sharedmore » metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism.« less

  8. Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO 2 Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levering, Jennifer; Dupont, Christopher L.; Allen, Andrew E.

    Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and sharedmore » metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism.« less

  9. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    PubMed

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  10. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Pérez, María Esther; Crespo, José L.

    2017-01-01

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae. PMID:28704927

  11. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis

    PubMed Central

    Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM

    2014-01-01

    Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953

  12. The emergence of overlapping scale-free genetic architecture in digital organisms.

    PubMed

    Gerlee, P; Lundh, T

    2008-01-01

    We have studied the evolution of genetic architecture in digital organisms and found that the gene overlap follows a scale-free distribution, which is commonly found in metabolic networks of many organisms. Our results show that the slope of the scale-free distribution depends on the mutation rate and that the gene development is driven by expansion of already existing genes, which is in direct correspondence to the preferential growth algorithm that gives rise to scale-free networks. To further validate our results we have constructed a simple model of gene development, which recapitulates the results from the evolutionary process and shows that the mutation rate affects the tendency of genes to cluster. In addition we could relate the slope of the scale-free distribution to the genetic complexity of the organisms and show that a high mutation rate gives rise to a more complex genetic architecture.

  13. Phylogeny of metabolic networks: a spectral graph theoretical approach.

    PubMed

    Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony

    2015-10-01

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

  14. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.

  15. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124

  16. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study

    PubMed Central

    An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients. PMID:27832148

  17. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study.

    PubMed

    Fang, Lei; Yao, Zhijun; An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients.

  18. Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics.

    PubMed

    Nielsen, Inger Ødum; Maeda, Kenji; Bilgin, Mesut

    2017-01-01

    The emerging field of lipidomics presents the systems biology approach to identify and quantify the full lipid repertoire of cells, tissues, and organisms. The importance of the lipidome is demonstrated by a number of biological studies on dysregulation of lipid metabolism in human diseases such as cancer, diabetes, and neurodegenerative diseases. Exploring changes and regulations in the huge networks of lipids and their metabolic pathways requires a lipidomics methodology: Advanced mass spectrometry that resolves the complexity of the lipidome. Here, we report a comprehensive protocol of quantitative shotgun lipidomics that enables identification and quantification of hundreds of molecular lipid species, covering a wide range of lipid classes, extracted from cultured mammalian cells.

  19. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification.

    PubMed

    Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J

    2015-08-20

    Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.

  20. Therapeutic synthetic gene networks.

    PubMed

    Karlsson, Maria; Weber, Wilfried

    2012-10-01

    The field of synthetic biology is rapidly expanding and has over the past years evolved from the development of simple gene networks to complex treatment-oriented circuits. The reprogramming of cell fate with open-loop or closed-loop synthetic control circuits along with biologically implemented logical functions have fostered applications spanning over a wide range of disciplines, including artificial insemination, personalized medicine and the treatment of cancer and metabolic disorders. In this review we describe several applications of interactive gene networks, a synthetic biology-based approach for future gene therapy, as well as the utilization of synthetic gene circuits as blueprints for the design of stimuli-responsive biohybrid materials. The recent progress in synthetic biology, including the rewiring of biosensing devices with the body's endogenous network as well as novel therapeutic approaches originating from interdisciplinary work, generates numerous opportunities for future biomedical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  2. Interconnectivity of human cellular metabolism and disease prevalence

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2010-12-01

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease-gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery.

  3. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverifiedmore » reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.« less

  4. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    PubMed Central

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates. PMID:25540776

  5. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    PubMed

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  6. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    PubMed Central

    Martín-Jiménez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; González, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework to elucidate how astrocytes modulate human brain metabolic states during normal conditions and in neurodegenerative diseases. We performed a Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network with the purpose of elucidating a significant portion of the metabolic map of the astrocyte. This is the first global high-quality, manually curated metabolic reconstruction network of a human astrocyte. It includes 5,007 metabolites and 5,659 reactions distributed among 8 cell compartments, (extracellular, cytoplasm, mitochondria, endoplasmic reticle, Golgi apparatus, lysosome, peroxisome and nucleus). Using the reconstructed network, the metabolic capabilities of human astrocytes were calculated and compared both in normal and ischemic conditions. We identified reactions activated in these two states, which can be useful for understanding the astrocytic pathways that are affected during brain disease. Additionally, we also showed that the obtained flux distributions in the model, are in accordance with literature-based findings. Up to date, this is the most complete representation of the human astrocyte in terms of inclusion of genes, proteins, reactions and metabolic pathways, being a useful guide for in-silico analysis of several metabolic behaviors of the astrocyte during normal and pathologic states. PMID:28243200

  7. FunCoup 3.0: database of genome-wide functional coupling networks

    PubMed Central

    Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L. L.

    2014-01-01

    We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction. PMID:24185702

  8. FunCoup 3.0: database of genome-wide functional coupling networks.

    PubMed

    Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L L

    2014-01-01

    We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction.

  9. Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.

    PubMed

    Iwata, Michio; Miyawaki-Kuwakado, Atsuko; Yoshida, Erika; Komori, Soichiro; Shiraishi, Fumihide

    2018-02-02

    In a mathematical model, estimation of parameters from time-series data of metabolic concentrations in cells is a challenging task. However, it seems that a promising approach for such estimation has not yet been established. Biochemical Systems Theory (BST) is a powerful methodology to construct a power-law type model for a given metabolic reaction system and to then characterize it efficiently. In this paper, we discuss the use of an S-system root-finding method (S-system method) to estimate parameters from time-series data of metabolite concentrations. We demonstrate that the S-system method is superior to the Newton-Raphson method in terms of the convergence region and iteration number. We also investigate the usefulness of a translocation technique and a complex-step differentiation method toward the practical application of the S-system method. The results indicate that the S-system method is useful to construct mathematical models for a variety of metabolic reaction networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae.

    PubMed

    Du, Yang; Cheng, Wang; Li, Wei-Fang

    2012-08-01

    Iron homeostasis plays a crucial role in growth and division of cells in all kingdoms of life. Although yeast iron metabolism has been extensively studied, little is known about the molecular mechanism of response to surplus iron. In this study, expression profiling of Saccharomyces cerevisiae in the presence of surplus iron revealed a dual effect at 1 and 4 h. A cluster of stress-responsive genes was upregulated via activation of the stress-resistance transcription factor Msn4, which indicated the stress effect of surplus iron on yeast metabolism. Genes involved in aerobic metabolism and several anabolic pathways are also upregulated in iron-surplus conditions, which could significantly accelerate yeast growth. This dual effect suggested that surplus iron might participate in a more complex metabolic network, in addition to serving as a stress inducer. These findings contribute to our understanding of the global response of yeast to the fluctuating availability of iron in the environment.

  11. Metabolic GARD: Replicating Catalytic Network of Lipid-Anchored Metabolites

    NASA Astrophysics Data System (ADS)

    Lancet, D.; Zidovetzki, R.; Shenhav, B.; Markovitch, O.

    2017-07-01

    We propose a computer-simulated M-GARD model, with mutually catalytic metabolic network of amphiphiles. It can show compositional reproduction of both bilayer and lumen content of lipid vesicles, thus joining metabolism, compartment and replication.

  12. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    PubMed

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  13. The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing

    PubMed Central

    Bartok, Osnat; Teesalu, Mari; Ashwall-Fluss, Reut; Pandey, Varun; Hanan, Mor; Rovenko, Bohdana M; Poukkula, Minna; Havula, Essi; Moussaieff, Arieh; Vodala, Sadanand; Nahmias, Yaakov; Kadener, Sebastian; Hietakangas, Ville

    2015-01-01

    Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns. PMID:25916830

  14. Metabolic interactions and dynamics in microbial communities

    NASA Astrophysics Data System (ADS)

    Segre', Daniel

    Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.

  15. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    PubMed

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  16. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata.

    PubMed

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata , identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata , with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata , as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

  17. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata

    PubMed Central

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature. PMID:29719546

  18. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP.

    PubMed

    Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S

    2006-07-01

    Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.

  19. Impact of environmental inputs on reverse-engineering approach to network structures.

    PubMed

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  20. Methods of information geometry in computational system biology (consistency between chemical and biological evolution).

    PubMed

    Astakhov, Vadim

    2009-01-01

    Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.

  1. Modeling Central Carbon Metabolic Processes in Soil Microbial Communities: Comparing Measured With Modeled

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Fairbanks, D.; Miller, E.; Salpas, E.; Hagerty, S.

    2013-12-01

    Understanding the mechanisms regulating C cycling is hindered by our inability to directly observe and measure the biochemical processes of glycolysis, pentose phosphate pathway, and TCA cycle in intact and complex microbial communities. Position-specific 13C labeled metabolic tracer probing is proposed as a new way to study microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the quantification of C fluxes through the central C metabolic network processes (Dijkstra et al 2011a,b). We determined the 13CO2 production from U-13C, 1-13C, 2-13C, 3-13C, 4-13C, 5-13C, and 6-13C labeled glucose and 1-13C and 2,3-13C pyruvate in parallel incubations in three soils along an elevation gradient. Qualitative and quantitative interpretation of the results indicate a high pentose phosphate pathway activity in soils. Agreement between modeled and measured CO2 production rates for the six C-atoms of 13C-labeled glucose indicate that the metabolic model used is appropriate for soil community processes, but that improvements can be made. These labeling and modeling techniques may improve our ability to analyze the biochemistry and (eco)physiology of intact microbial communities. Dijkstra, P., Blankinship, J.C., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011a. Probing C flux patterns of soil microbial metabolic networks using parallel position-specific tracer labeling. Soil Biology & Biochemistry 43, 126-132. Dijkstra, P., Dalder, J.J., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011b. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biology & Biochemistry 43, 1848-1857.

  2. Path finding methods accounting for stoichiometry in metabolic networks

    PubMed Central

    2011-01-01

    Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks. PMID:21619601

  3. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.

    PubMed

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis.

  4. Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism.

    PubMed

    Nägele, Thomas; Henkel, Sebastian; Hörmiller, Imke; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael; Heyer, Arnd G

    2010-05-01

    A mathematical model representing metabolite interconversions in the central carbohydrate metabolism of Arabidopsis (Arabidopsis thaliana) was developed to simulate the diurnal dynamics of primary carbon metabolism in a photosynthetically active plant leaf. The model groups enzymatic steps of central carbohydrate metabolism into blocks of interconverting reactions that link easily measurable quantities like CO(2) exchange and quasi-steady-state levels of soluble sugars and starch. When metabolite levels that fluctuate over diurnal cycles are used as a basic condition for simulation, turnover rates for the interconverting reactions can be calculated that approximate measured metabolite dynamics and yield kinetic parameters of interconverting reactions. We used experimental data for Arabidopsis wild-type plants, accession Columbia, and a mutant defective in vacuolar invertase, AtbetaFruct4, as input data. Reducing invertase activity to mutant levels in the wild-type model led to a correct prediction of increased sucrose levels. However, additional changes were needed to correctly simulate levels of hexoses and sugar phosphates, indicating that invertase knockout causes subsequent changes in other enzymatic parameters. Reduction of invertase activity caused a decline in photosynthesis and export of reduced carbon to associated metabolic pathways and sink organs (e.g. roots), which is in agreement with the reported contribution of vacuolar invertase to sink strength. According to model parameters, there is a role for invertase in leaves, where futile cycling of sucrose appears to have a buffering effect on the pools of sucrose, hexoses, and sugar phosphates. Our data demonstrate that modeling complex metabolic pathways is a useful tool to study the significance of single enzyme activities in complex, nonintuitive networks.

  5. Structuring evolution: biochemical networks and metabolic diversification in birds.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  6. Co-expression network analysis identified six hub genes in association with metastasis risk and prognosis in hepatocellular carcinoma

    PubMed Central

    Feng, Juerong; Zhou, Rui; Chang, Ying; Liu, Jing; Zhao, Qiu

    2017-01-01

    Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, and its carcinogenesis and progression are influenced by a complex network of gene interactions. A weighted gene co-expression network was constructed to identify gene modules associated with the clinical traits in HCC (n = 214). Among the 13 modules, high correlation was only found between the red module and metastasis risk (classified by the HCC metastasis gene signature) (R2 = −0.74). Moreover, in the red module, 34 network hub genes for metastasis risk were identified, six of which (ABAT, AGXT, ALDH6A1, CYP4A11, DAO and EHHADH) were also hub nodes in the protein-protein interaction network of the module genes. Thus, a total of six hub genes were identified. In validation, all hub genes showed a negative correlation with the four-stage HCC progression (P for trend < 0.05) in the test set. Furthermore, in the training set, HCC samples with any hub gene lowly expressed demonstrated a higher recurrence rate and poorer survival rate (hazard ratios with 95% confidence intervals > 1). RNA-sequencing data of 142 HCC samples showed consistent results in the prognosis. Gene set enrichment analysis (GSEA) demonstrated that in the samples with any hub gene highly expressed, a total of 24 functional gene sets were enriched, most of which focused on amino acid metabolism and oxidation. In conclusion, co-expression network analysis identified six hub genes in association with HCC metastasis risk and prognosis, which might improve the prognosis by influencing amino acid metabolism and oxidation. PMID:28430663

  7. NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems.

    PubMed

    Schmidt, Matthew C; Rocha, Andrea M; Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R; Samatova, Nagiza F

    2012-01-01

    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS.

  8. NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems

    PubMed Central

    Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R.; Samatova, Nagiza F.

    2012-01-01

    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS. PMID:22589706

  9. Definitions of Complexity are Notoriously Difficult

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    Definitions of complexity are notoriously difficult if not impossible at all. A good working hypothesis might be: Everything is complex that is not simple. This is precisely the way in which we define nonlinear behavior. Things appear complex for different reasons: i) Complexity may result from lack of insight, ii) complexity may result from lack of methods, and (iii) complexity may be inherent to the system. The best known example for i) is celestial mechanics: The highly complex Pythagorean epicycles become obsolete by the introduction of Newton's law of universal gravitation. To give an example for ii), pattern formation and deterministic chaos became not really understandable before extensive computer simulations became possible. Cellular metabolism may serve as an example for iii) and is caused by the enormous complexity of biochemical reaction networks with up to one hundred individual reaction fluxes. Nevertheless, only few fluxes are dominant in the sense that using Pareto optimal values for them provides near optimal values for all the others...

  10. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products. PMID:20735852

  11. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  12. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  13. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  14. Modelling the effects of cerebral microvasculature morphology on oxygen transport.

    PubMed

    Park, Chang Sub; Payne, Stephen J

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating cerebrovascular diseases. Copyright © 2015. Published by Elsevier Ltd.

  15. Expanding the informational chemistries of life: peptide/RNA networks

    NASA Astrophysics Data System (ADS)

    Taran, Olga; Chen, Chenrui; Omosun, Tolulope O.; Hsieh, Ming-Chien; Rha, Allisandra; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-11-01

    The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  16. Requiring collaboration: Hippocampal-prefrontal networks needed in spatial working memory and ageing. A multivariate analysis approach.

    PubMed

    Zancada-Menendez, C; Alvarez-Suarez, P; Sampedro-Piquero, P; Cuesta, M; Begega, A

    2017-04-01

    Ageing is characterized by a decline in the processes of retention and storage of spatial information. We have examined the behavioural performance of adult rats (3months old) and aged rats (18months old) in a spatial complex task (delayed match to sample). The spatial task was performed in the Morris water maze and consisted of three sessions per day over a period of three consecutive days. Each session consisted of two trials (one sample and retention) and inter-session intervals of 5min. Behavioural results showed that the spatial task was difficult for middle aged group. This worse execution could be associated with impairments of processing speed and spatial information retention. We examined the changes in the neuronal metabolic activity of different brain regions through cytochrome C oxidase histochemistry. Then, we performed MANOVA and Discriminant Function Analyses to determine the functional profile of the brain networks that are involved in the spatial learning of the adult and middle-aged groups. This multivariate analysis showed two principal functional networks that necessarily participate in this spatial learning. The first network was composed of the supramammillary nucleus, medial mammillary nucleus, CA3, and CA1. The second one included the anterior cingulate, prelimbic, and infralimbic areas of the prefrontal cortex, dentate gyrus, and amygdala complex (basolateral l and central subregions). There was a reduction in the hippocampal-supramammilar network in both learning groups, whilst there was an overactivation in the executive network, especially in the aged group. This response could be due to a higher requirement of the executive control in a complex spatial memory task in older animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism.

    PubMed

    Karlstädt, Anja; Fliegner, Daniela; Kararigas, Georgios; Ruderisch, Hugo Sanchez; Regitz-Zagrosek, Vera; Holzhütter, Hermann-Georg

    2012-08-29

    Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  18. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.

    PubMed

    Vivek-Ananth, R P; Samal, Areejit

    2016-09-01

    A major goal of systems biology is to build predictive computational models of cellular metabolism. Availability of complete genome sequences and wealth of legacy biochemical information has led to the reconstruction of genome-scale metabolic networks in the last 15 years for several organisms across the three domains of life. Due to paucity of information on kinetic parameters associated with metabolic reactions, the constraint-based modelling approach, flux balance analysis (FBA), has proved to be a vital alternative to investigate the capabilities of reconstructed metabolic networks. In parallel, advent of high-throughput technologies has led to the generation of massive amounts of omics data on transcriptional regulation comprising mRNA transcript levels and genome-wide binding profile of transcriptional regulators. A frontier area in metabolic systems biology has been the development of methods to integrate the available transcriptional regulatory information into constraint-based models of reconstructed metabolic networks in order to increase the predictive capabilities of computational models and understand the regulation of cellular metabolism. Here, we review the existing methods to integrate transcriptional regulatory information into constraint-based models of metabolic networks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    PubMed

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  20. A new graph-based method for pairwise global network alignment

    PubMed Central

    Klau, Gunnar W

    2009-01-01

    Background In addition to component-based comparative approaches, network alignments provide the means to study conserved network topology such as common pathways and more complex network motifs. Yet, unlike in classical sequence alignment, the comparison of networks becomes computationally more challenging, as most meaningful assumptions instantly lead to NP-hard problems. Most previous algorithmic work on network alignments is heuristic in nature. Results We introduce the graph-based maximum structural matching formulation for pairwise global network alignment. We relate the formulation to previous work and prove NP-hardness of the problem. Based on the new formulation we build upon recent results in computational structural biology and present a novel Lagrangian relaxation approach that, in combination with a branch-and-bound method, computes provably optimal network alignments. The Lagrangian algorithm alone is a powerful heuristic method, which produces solutions that are often near-optimal and – unlike those computed by pure heuristics – come with a quality guarantee. Conclusion Computational experiments on the alignment of protein-protein interaction networks and on the classification of metabolic subnetworks demonstrate that the new method is reasonably fast and has advantages over pure heuristics. Our software tool is freely available as part of the LISA library. PMID:19208162

  1. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    NASA Astrophysics Data System (ADS)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  2. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mathematical modelling of clostridial acetone-butanol-ethanol fermentation.

    PubMed

    Millat, Thomas; Winzer, Klaus

    2017-03-01

    Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the 'evolution' of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.

  4. Glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) metabolism computational network analysis between chimpanzee and human left cerebrum.

    PubMed

    Sun, Lingjun; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Lin, Hong

    2011-12-01

    We identified significantly higher expression of the genes glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) from human left cerebrums versus chimpanzees. Yet the distinct low- and high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism networks between chimpanzee and human left cerebrum remain to be elucidated. Here, we constructed low- and high-expression activated and inhibited upstream and downstream AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network between chimpanzee and human left cerebrum in GEO data set by gene regulatory network inference method based on linear programming and decomposition procedure, under covering AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 pathway and matching metabolism enrichment analysis by CapitalBio MAS 3.0 integration of public databases, including Gene Ontology, KEGG, BioCarta, GenMapp, Intact, UniGene, OMIM, etc. Our results show that the AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network has more activated and less inhibited molecules in chimpanzee, but less activated and more inhibited in the human left cerebrum. We inferred stronger carbohydrate, glutathione and proteoglycan metabolism, ATPase activity, but weaker base excision repair, arachidonic acid and drug metabolism as a result of inducing cell growth in low-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of chimpanzee left cerebrum; whereas stronger lipid metabolism, amino acid catabolism, DNA repair but weaker inflammatory response, cell proliferation, glutathione and carbohydrate metabolism as a result of inducing cell differentiation in high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of human left cerebrum. Our inferences are consistent with recent reports and computational activation and inhibition gene number patterns, respectively.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C. Liao

    This project is a collaboration with F. R. Tabita of Ohio State. Our major goal is to understand the factors and regulatory mechanisms that influence hydrogen production. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Our part of the project was to develop a modeling technique to investigate the metabolic network in connection to hydrogen production and regulation. Organisms must balance the pathways that generate and consume reducing powermore » in order to maintain redox homeostasis to achieve growth. Maintaining this homeostasis in the nonsulfur purple photosynthetic bacteria is a complex feat with many avenues that can lead to balance, as these organisms possess versatile metabolic capabilities including anoxygenic photosynthesis, aerobic or anaerobic respiration, and fermentation. Growth is achieved by using H{sub 2} as an electron donor and CO{sub 2} as a carbon source during photoautotrophic and chemoautotrophic growth, where CO{sub 2} is fixed via the Calvin-Benson-Bassham (CBB) cycle. Photoheterotrophic growth can also occur when alternative organic carbon compounds are utilized as both the carbon source and electron donor. Regardless of the growth mode, excess reducing equivalents generated as a result of oxidative processes, must be transferred to terminal electron acceptors, thus insuring that redox homeostasis is maintained in the cell. Possible terminal acceptors include O{sub 2}, CO{sub 2}, organic carbon, or various oxyanions. Cells possess regulatory mechanisms to balance the activity of the pathways which supply energy, such as photosynthesis, and those that consume energy, such as CO{sub 2} assimilation or N{sub 2} fixation. The major route for CO{sub 2} assimilation is the CBB reductive pentose phosphate pathway, whose key enzyme is ribulose 1,5-biphosphate carboxylase/oxygenase (RubisCO). In addition to providing virtually all cellular carbon during autotrophic metabolism, RubisCO-mediated CO{sub 2} assimilation is also very important for nonsulfur purple photosynthetic bacteria under photoheterotrophic growth conditions since CO{sub 2} becomes the major electron sink under these conditions. In this work, Ensemble Modeling (EM) was developed to examine the behavior of CBB-compromised RubisCO knockout mutant strains of the nonsulfur purple photosynthetic bacterium Rhodobacter sphaeroides. Mathematical models of metabolism can be a great aid in studying the effects of large perturbations to the system, such as the inactivation of RubisCO. Due to the complex and highly-interconnected nature of these networks, it is not a trivial process to understand what the effect of perturbations to the metabolic network will be, or vice versa, what enzymatic perturbations are necessary to yield a desired effect. Flux distribution is controlled by multiple enzymes in the network, often indirectly linked to the pathways of interest. Further, depending on the state of the cell and the environmental conditions, the effect of a perturbation may center around how it effects the carbon flow in the network, the balancing of cofactors, or both. Thus, it is desirable to develop mathematical models to describe, understand, and predict network behavior. Through the development of such models, one may gain the ability to generate a set of testable hypotheses for system behavior.« less

  6. Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence

    DTIC Science & Technology

    2016-08-01

    Award Number: TITLE: Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence PRINCIPAL INVESTIGATOR: COL (Ret) Marina N...2016 2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 29 Sep 2011 – 31 May 2016 4. TITLE AND SUBTITLE "Metabolic Networks Integrative Cardiac Health...ABSTRACT The Integrative Cardiac Health Project (ICHP) aims to lead the way in Cardiovascular Disease (CVD) Prevention by conducting novel research

  7. Transcriptional regulatory networks controlling woolliness in peach in response to preharvest gibberellin application and cold storage.

    PubMed

    Pegoraro, Camila; Tadiello, Alice; Girardi, César L; Chaves, Fábio C; Quecini, Vera; de Oliveira, Antonio Costa; Trainotti, Livio; Rombaldi, Cesar Valmor

    2015-11-18

    Postharvest fruit conservation relies on low temperatures and manipulations of hormone metabolism to maintain sensory properties. Peaches are susceptible to chilling injuries, such as 'woolliness' that is caused by juice loss leading to a 'wooly' fruit texture. Application of gibberellic acid at the initial stages of pit hardening impairs woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcriptional profiling to investigate the effects of gibberellic acid application and cold storage on harvested peaches. Approximately half of the investigated genes exhibited significant differential expression in response to the treatments. Cellular and developmental process gene ontologies were overrepresented among the differentially regulated genes, whereas sequences in cell death and immune response categories were underrepresented. Gene set enrichment demonstrated a predominant role of cold storage in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone responses exhibited a more complex transcriptional response, indicating an extensive network of crosstalk between hormone signaling and low temperatures. Time course transcriptional analyses demonstrate the large contribution of gene expression regulation on the biochemical changes leading to woolliness in peach. Overall, our results provide insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach and suggest that hormone mediated reprogramming previous to pit hardening affects the onset of chilling injuries.

  8. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch

    PubMed Central

    Lohse, Matthew B.; Ene, Iuliana V.; Craik, Veronica B.; Hernday, Aaron D.; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J.; Johnson, Alexander D.

    2016-01-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named “white” and “opaque,” each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white–opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white–opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white–opaque switching to cellular physiology. PMID:27280690

  9. Dissection of combinatorial control by the Met4 transcriptional complex.

    PubMed

    Lee, Traci A; Jorgensen, Paul; Bognar, Andrew L; Peyraud, Caroline; Thomas, Dominique; Tyers, Mike

    2010-02-01

    Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinatorial system, we systematically deleted each category of cofactor(s) and analyzed Met4-activated transcription on a genome-wide scale. We defined a core regulon for Met4, consisting of 45 target genes. Deletion of both Met31 and Met32 eliminated activation of the core regulon, whereas loss of Met28 or Cbf1 interfered with only a subset of targets that map to distinct sectors of the sulfur metabolic network. These transcriptional dependencies roughly correlated with the presence of Cbf1 promoter motifs. Quantitative analysis of in vivo promoter binding properties indicated varying levels of cooperativity and interdependency exists between members of this combinatorial system. Cbf1 was the only cofactor to remain fully bound to target promoters under all conditions, whereas other factors exhibited different degrees of regulated binding in a promoter-specific fashion. Taken together, Met4 cofactors use a variety of mechanisms to allow differential transcription of target genes in response to various cues.

  10. Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections.

    PubMed

    Tam, Vincent C

    2013-10-31

    Bioactive lipid mediators play crucial roles in promoting the induction and resolution of inflammation. Eicosanoids and other related unsaturated fatty acids have long been known to induce inflammation. These signaling molecules can modulate the circulatory system and stimulate immune cell infiltration into the site of infection. Recently, DHA- and EPA-derived metabolites have been discovered to promote the resolution of inflammation, an active process. Not only do these molecules stop the further infiltration of immune cells, they prompt non-phlogistic phagocytosis of apoptotic neutrophils, stimulating the tissue to return to homeostasis. After the rapid release of lipid precursors from the plasma membrane upon stimulation, families of enzymes in a complex network metabolize them to produce a large array of lipid metabolites. With current advances in mass spectrometry, the entire lipidome can be accurately quantified to assess the immune response upon microbial infection. In this review, we discuss the various lipid metabolism pathways in the context of the immune response to microbial pathogens, as well as their complex network interactions. With the advancement of mass spectrometry, these approaches have also been used to characterize the lipid mediator response of macrophages and neutrophils upon immune stimulation in vitro. Lastly, we describe the recent efforts to apply systems biology approaches to dissect the role of lipid mediators during bacterial and viral infections in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis.

    PubMed

    He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan

    2017-03-01

    The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality

    DOE PAGES

    Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.; ...

    2015-03-27

    Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less

  13. Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.

    Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less

  14. 3DScapeCS: application of three dimensional, parallel, dynamic network visualization in Cytoscape

    PubMed Central

    2013-01-01

    Background The exponential growth of gigantic biological data from various sources, such as protein-protein interaction (PPI), genome sequences scaffolding, Mass spectrometry (MS) molecular networking and metabolic flux, demands an efficient way for better visualization and interpretation beyond the conventional, two-dimensional visualization tools. Results We developed a 3D Cytoscape Client/Server (3DScapeCS) plugin, which adopted Cytoscape in interpreting different types of data, and UbiGraph for three-dimensional visualization. The extra dimension is useful in accommodating, visualizing, and distinguishing large-scale networks with multiple crossed connections in five case studies. Conclusions Evaluation on several experimental data using 3DScapeCS and its special features, including multilevel graph layout, time-course data animation, and parallel visualization has proven its usefulness in visualizing complex data and help to make insightful conclusions. PMID:24225050

  15. Metabolic and hemodynamic events following changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings

    PubMed Central

    Mangia, Silvia; Giove, Federico; Tkáč, Ivan; Logothetis, Nikos K.; Henry, Pierre-Gilles; Olman, Cheryl A.; Maraviglia, Bruno; Di Salle, Francesco; Uğurbil, Kâmil

    2009-01-01

    Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the non-invasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal micro-circuitry which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by 1H MRS, 13C MRS and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission, will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI. PMID:19002199

  16. The AMPK β2 subunit is required for energy homeostasis during metabolic stress.

    PubMed

    Dasgupta, Biplab; Ju, Jeong Sun; Sasaki, Yo; Liu, Xiaona; Jung, Su-Ryun; Higashida, Kazuhiko; Lindquist, Diana; Milbrandt, Jeffrey

    2012-07-01

    AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory β2 subunit of AMPK in systemic energy metabolism, we characterized β2 subunit-deficient mice. Using these mutant mice, we demonstrated that the β2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The β2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, β2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from β2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the β2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.

  17. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    PubMed Central

    Kuang, Meihua Christina; Hutchins, Paul D; Russell, Jason D; Coon, Joshua J; Hittinger, Chris Todd

    2016-01-01

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation. DOI: http://dx.doi.org/10.7554/eLife.19027.001 PMID:27690225

  18. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    PubMed

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  19. Maturation of metabolic connectivity of the adolescent rat brain

    PubMed Central

    Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2015-01-01

    Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency. DOI: http://dx.doi.org/10.7554/eLife.11571.001 PMID:26613413

  20. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    PubMed

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  1. Genetic Interaction Is Associated with Lower Metabolic Connectivity and Memory Impairment in Clinically Mild Alzheimer's Disease.

    PubMed

    Chang, Ya-Ting; Huang, Chi-Wei; Huang, Shu-Hua; Hsu, Shih-Wei; Chang, Wen-Neng; Lee, Jun-Jun; Chang, Chiung-Chih

    2018-06-08

    Metabolic connectivity as revealed by [18F] fluorodeoxyglucose positron emission tomography reflects neuronal connectivity. The aim of this study was to investigate the genetic impact on metabolic connectivity in default mode subnetworks and its clinical-pathological relationships in patients with Alzheimer's disease. We separately investigated the modulation of two default mode subnetworks, as identified with independent component analysis, by comparing APOE-ε4 carriers to non-carriers with Alzheimer's disease. We further analyzed the interaction effects of APOE (APOE-ε4 carriers versus non-carriers) with PICALM (rs3851179-GG versus rs3851179-A-allele carriers) on episodic memory deficits, reduction in cerebral metabolic rate for glucose, and decreased metabolic connectivity in default mode subnetworks. The metabolic connectivity in the ventral default mode network was positively correlated with episodic memory scores (β= 0.441, p< 0.001). The APOE-ε4 carriers had significantly lower metabolic connectivity in the ventral default mode network than the APOE-ε4 carriers (t(96)= -2.233, P= 0.028). There was an effect of the APOE-PICALM (rs3851179) interactions on reduced cerebral metabolic rate for glucose in regions of ventral default mode network (p< 0.001), and on memory deficits (F3,93= 5.568, p= 0.020). This study identified that PICALM may modulates memory deficits, reduced cerebral metabolic rate for glucose, and decreased metabolic connectivity in the ventral default mode network in APOE-ε4 carriers. [18F] fluorodeoxyglucose positron emission tomography-based metabolic connectivity may serve a useful tool to elucidate the neural networks underlying clinical-pathological relationships in Alzheimer's disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Quantitative petri net model of gene regulated metabolic networks in the cell.

    PubMed

    Chen, Ming; Hofestädt, Ralf

    2011-01-01

    A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.

  3. Chemical Approaches to Probe Metabolic Networks

    PubMed Central

    Medina-Cleghorn, Daniel; Nomura, Daniel K.

    2013-01-01

    One of the more provocative realizations that have come out of the genome sequencing projects is that organisms possess a large number of uncharacterized or poorly characterized enzymes. This finding belies the commonly held notion that our knowledge of cell metabolism is nearly complete, underscoring the vast landscape of unannotated metabolic and signaling networks that operate under normal physiological conditions, let alone in disease states where metabolic networks may be rewired, dysregulated, or altered to drive disease progression. Consequently, the functional annotation of enzymatic pathways represents a grand challenge for researchers in the post-genomic era. This review will highlight the chemical technologies that have been successfully used to characterize metabolism, and put forth some of the challenges we face as we expand our map of metabolic pathways. PMID:23296751

  4. Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks.

    PubMed

    Laniau, Julie; Frioux, Clémence; Nicolas, Jacques; Baroukh, Caroline; Cortes, Maria-Paz; Got, Jeanne; Trottier, Camille; Eveillard, Damien; Siegel, Anne

    2017-01-01

    The emergence of functions in biological systems is a long-standing issue that can now be addressed at the cell level with the emergence of high throughput technologies for genome sequencing and phenotyping. The reconstruction of complete metabolic networks for various organisms is a key outcome of the analysis of these data, giving access to a global view of cell functioning. The analysis of metabolic networks may be carried out by simply considering the architecture of the reaction network or by taking into account the stoichiometry of reactions. In both approaches, this analysis is generally centered on the outcome of the network and considers all metabolic compounds to be equivalent in this respect. As in the case of genes and reactions, about which the concept of essentiality has been developed, it seems, however, that some metabolites play crucial roles in system responses, due to the cell structure or the internal wiring of the metabolic network. We propose a classification of metabolic compounds according to their capacity to influence the activation of targeted functions (generally the growth phenotype) in a cell. We generalize the concept of essentiality to metabolites and introduce the concept of the phenotypic essential metabolite (PEM) which influences the growth phenotype according to sustainability, producibility or optimal-efficiency criteria. We have developed and made available a tool, Conquests , which implements a method combining graph-based and flux-based analysis, two approaches that are usually considered separately. The identification of PEMs is made effective by using a logical programming approach. The exhaustive study of phenotypic essential metabolites in six genome-scale metabolic models suggests that the combination and the comparison of graph, stoichiometry and optimal flux-based criteria allows some features of the metabolic network functionality to be deciphered by focusing on a small number of compounds. By considering the best combination of both graph-based and flux-based techniques, the Conquests python package advocates for a broader use of these compounds both to facilitate network curation and to promote a precise understanding of metabolic phenotype.

  5. Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks

    PubMed Central

    Frioux, Clémence; Nicolas, Jacques; Baroukh, Caroline; Cortes, Maria-Paz; Got, Jeanne; Trottier, Camille; Eveillard, Damien

    2017-01-01

    Background The emergence of functions in biological systems is a long-standing issue that can now be addressed at the cell level with the emergence of high throughput technologies for genome sequencing and phenotyping. The reconstruction of complete metabolic networks for various organisms is a key outcome of the analysis of these data, giving access to a global view of cell functioning. The analysis of metabolic networks may be carried out by simply considering the architecture of the reaction network or by taking into account the stoichiometry of reactions. In both approaches, this analysis is generally centered on the outcome of the network and considers all metabolic compounds to be equivalent in this respect. As in the case of genes and reactions, about which the concept of essentiality has been developed, it seems, however, that some metabolites play crucial roles in system responses, due to the cell structure or the internal wiring of the metabolic network. Results We propose a classification of metabolic compounds according to their capacity to influence the activation of targeted functions (generally the growth phenotype) in a cell. We generalize the concept of essentiality to metabolites and introduce the concept of the phenotypic essential metabolite (PEM) which influences the growth phenotype according to sustainability, producibility or optimal-efficiency criteria. We have developed and made available a tool, Conquests, which implements a method combining graph-based and flux-based analysis, two approaches that are usually considered separately. The identification of PEMs is made effective by using a logical programming approach. Conclusion The exhaustive study of phenotypic essential metabolites in six genome-scale metabolic models suggests that the combination and the comparison of graph, stoichiometry and optimal flux-based criteria allows some features of the metabolic network functionality to be deciphered by focusing on a small number of compounds. By considering the best combination of both graph-based and flux-based techniques, the Conquests python package advocates for a broader use of these compounds both to facilitate network curation and to promote a precise understanding of metabolic phenotype. PMID:29038751

  6. Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence

    DTIC Science & Technology

    2016-04-01

    2.6; P = 0.001) among all variables, as the most significant predictor of abnormal CIMT, thus increasing risk for CVD. Conclusions: The Integrative ...1 Award Number: W81XWH-11-2-0227 TITLE: "Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence." PRINCIPAL...April 2016 2. REPORT TYPE ANNUAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE "Metabolic Networks Integrative Cardiac Health Project (ICHP

  7. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  8. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE PAGES

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; ...

    2017-01-17

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  9. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing.

    PubMed

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; Fierro, Ana C; Mansfield, Shawn D; Davis, Mark F; Gjersing, Erica; Tuskan, Gerald A; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen; Myburg, Alexander A

    2017-01-31

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.

  10. Challenges and Opportunities of Long-Term Continuous Stream Metabolism Measurements at the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Goodman, K. J.; Lunch, C. K.; Baxter, C.; Hall, R.; Holtgrieve, G. W.; Roberts, B. J.; Marcarelli, A. M.; Tank, J. L.

    2013-12-01

    Recent advances in dissolved oxygen sensing and modeling have made continuous measurements of whole-stream metabolism relatively easy to make, allowing ecologists to quantify and evaluate stream ecosystem health at expanded temporal and spatial scales. Long-term monitoring of continuous stream metabolism will enable a better understanding of the integrated and complex effects of anthropogenic change (e.g., land-use, climate, atmospheric deposition, invasive species, etc.) on stream ecosystem function. In addition to their value in the particular streams measured, information derived from long-term data will improve the ability to extrapolate from shorter-term data. With the need to better understand drivers and responses of whole-stream metabolism come difficulties in interpreting the results. Long-term trends will encompass physical changes in stream morphology and flow regime (e.g., variable flow conditions and changes in channel structure) combined with changes in biota. Additionally long-term data sets will require an organized database structure, careful quantification of errors and uncertainties, as well as propagation of error as a result of the calculation of metabolism metrics. Parsing of continuous data and the choice of modeling approaches can also have a large influence on results and on error estimation. The two main modeling challenges include 1) obtaining unbiased, low-error daily estimates of gross primary production (GPP) and ecosystem respiration (ER), and 2) interpreting GPP and ER measurements over extended time periods. The National Ecological Observatory Network (NEON), in partnership with academic and government scientists, has begun to tackle several of these challenges as it prepares for the collection and calculation of 30 years of continuous whole-stream metabolism data. NEON is a national-scale research platform that will use consistent procedures and protocols to standardize measurements across the United States, providing long-term, high-quality, open-access data from a connected network to address large-scale change. NEON infrastructure will support 36 aquatic sites across 19 ecoclimatic domains. Sites include core sites, which remain for 30 years, and relocatable sites, which move to capture regional gradients. NEON will measure continuous whole-stream metabolism in conjunction with aquatic, terrestrial and airborne observations, allowing researchers to link stream ecosystem function with landscape and climatic drivers encompassing short to long time periods (i.e., decades).

  11. Resource constrained flux balance analysis predicts selective pressure on the global structure of metabolic networks.

    PubMed

    Abedpour, Nima; Kollmann, Markus

    2015-11-23

    A universal feature of metabolic networks is their hourglass or bow-tie structure on cellular level. This architecture reflects the conversion of multiple input nutrients into multiple biomass components via a small set of precursor metabolites. However, it is yet unclear to what extent this structural feature is the result of natural selection. We extend flux balance analysis to account for limited cellular resources. Using this model, optimal structure of metabolic networks can be calculated for different environmental conditions. We observe a significant structural reshaping of metabolic networks for a toy-network and E. coli core metabolism if we increase the share of invested resources for switching between different nutrient conditions. Here, hub nodes emerge and the optimal network structure becomes bow-tie-like as a consequence of limited cellular resource constraint. We confirm this theoretical finding by comparing the reconstructed metabolic networks of bacterial species with respect to their lifestyle. We show that bow-tie structure can give a system-level fitness advantage to organisms that live in highly competitive and fluctuating environments. Here, limitation of cellular resources can lead to an efficiency-flexibility tradeoff where it pays off for the organism to shorten catabolic pathways if they are frequently activated and deactivated. As a consequence, generalists that shuttle between diverse environmental conditions should have a more predominant bow-tie structure than specialists that visit just a few isomorphic habitats during their life cycle.

  12. A general model for metabolic scaling in self-similar asymmetric networks

    PubMed Central

    Savage, Van M.; Enquist, Brian J.

    2017-01-01

    How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE) model argues that these two principles (space-filling and energy minimization) are (i) general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii) can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber’s Law can still be attained within many asymmetric networks. PMID:28319153

  13. A general model for metabolic scaling in self-similar asymmetric networks.

    PubMed

    Brummer, Alexander Byers; Savage, Van M; Enquist, Brian J

    2017-03-01

    How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE) model argues that these two principles (space-filling and energy minimization) are (i) general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii) can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  14. A global approach to analysis and interpretation of metabolic data for plant natural product discovery.

    PubMed

    Hur, Manhoi; Campbell, Alexis Ann; Almeida-de-Macedo, Marcia; Li, Ling; Ransom, Nick; Jose, Adarsh; Crispin, Matt; Nikolau, Basil J; Wurtele, Eve Syrkin

    2013-04-01

    Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publicly available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these datasets with transcriptomic data to create hypotheses concerning specialized metabolisms that generate the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software.

  15. A global approach to analysis and interpretation of metabolic data for plant natural product discovery†

    PubMed Central

    Hur, Manhoi; Campbell, Alexis Ann; Almeida-de-Macedo, Marcia; Li, Ling; Ransom, Nick; Jose, Adarsh; Crispin, Matt; Nikolau, Basil J.

    2013-01-01

    Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publically available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these dataset with transcriptomic data to create hypotheses concerning specialized metabolism that generates the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software. PMID:23447050

  16. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    PubMed

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  17. Systems biology-based approaches toward understanding drought tolerance in food crops.

    PubMed

    Jogaiah, Sudisha; Govind, Sharathchandra Ramsandra; Tran, Lam-Son Phan

    2013-03-01

    Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.

  18. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    PubMed

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  19. Modeling metabolism and stage-specific growth of Plasmodium falciparum HB3 during the intraerythrocytic developmental cycle.

    PubMed

    Fang, Xin; Reifman, Jaques; Wallqvist, Anders

    2014-10-01

    The human malaria parasite Plasmodium falciparum goes through a complex life cycle, including a roughly 48-hour-long intraerythrocytic developmental cycle (IDC) in human red blood cells. A better understanding of the metabolic processes required during the asexual blood-stage reproduction will enhance our basic knowledge of P. falciparum and help identify critical metabolic reactions and pathways associated with blood-stage malaria. We developed a metabolic network model that mechanistically links time-dependent gene expression, metabolism, and stage-specific growth, allowing us to predict the metabolic fluxes, the biomass production rates, and the timing of production of the different biomass components during the IDC. We predicted time- and stage-specific production of precursors and macromolecules for P. falciparum (strain HB3), allowing us to link specific metabolites to specific physiological functions. For example, we hypothesized that coenzyme A might be involved in late-IDC DNA replication and cell division. Moreover, the predicted ATP metabolism indicated that energy was mainly produced from glycolysis and utilized for non-metabolic processes. Finally, we used the model to classify the entire tricarboxylic acid cycle into segments, each with a distinct function, such as superoxide detoxification, glutamate/glutamine processing, and metabolism of fumarate as a byproduct of purine biosynthesis. By capturing the normal metabolic and growth progression in P. falciparum during the IDC, our model provides a starting point for further elucidation of strain-specific metabolic activity, host-parasite interactions, stress-induced metabolic responses, and metabolic responses to antimalarial drugs and drug candidates.

  20. The Glymphatic Pathway.

    PubMed

    Benveniste, Helene; Lee, Hedok; Volkow, Nora D

    2017-01-01

    The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.

  1. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.

    PubMed

    Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto

    2012-01-21

    Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction: Metabolic networks (72.3%), Parasite-Host networks (93.3%), CoCoMac brain cortex co-activation network (89.6%), NW Spain fasciolosis spreading network (97.2%), Spanish financial law network (89.9%) and World trade network for Intelligent & Active Food Packaging (92.8%). In order to seek these models, we studied an average of 55,388 pairs of nodes in each model and a total of 332,326 pairs of nodes in all models. Finally, this method was used to solve a more complicated problem. A model was developed to score the connectivity quality in the Drug-Target network of US FDA approved drugs. In this last model the θ(k) values were calculated for three types of molecular networks representing different levels of organization: drug molecular graphs (atom-atom bonds), protein residue networks (amino acid interactions), and drug-target network (compound-protein binding). The overall accuracy of this model was 76.3%. This work opens a new door to the computational reevaluation of network connectivity quality (collation) for complex systems in molecular, biomedical, technological, and legal-social sciences as well as in world trade and industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    PubMed

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  3. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. Tomore » alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.« less

  4. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory.

    PubMed

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-05-15

    Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA).

  5. Untargeted metabolomics studies employing NMR and LC-MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis.

    PubMed

    Hamerly, Timothy; Tripet, Brian P; Tigges, Michelle; Giannone, Richard J; Wurch, Louie; Hettich, Robert L; Podar, Mircea; Copié, Valerie; Bothner, Brian

    2015-08-01

    Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC-MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans , including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans 's consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans . Combining LC-MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites.

  6. Untargeted metabolomics studies employing NMR and LC-MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis

    PubMed Central

    Hamerly, Timothy; Tripet, Brian P.; Tigges, Michelle; Giannone, Richard J.; Wurch, Louie; Hettich, Robert L.; Podar, Mircea; Copié, Valerie; Bothner, Brian

    2014-01-01

    Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC-MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans, including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans’s consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans. Combining LC-MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites. PMID:26273237

  7. Optimal network alignment with graphlet degree vectors.

    PubMed

    Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Przulj, Natasa

    2010-06-30

    Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.

  8. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    PubMed

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  9. Attacking a Nexus of the Oncogenic Circuitry by Reversing Aberrant eIF4F-Mediated Translation

    PubMed Central

    Bitterman, Peter B.; Polunovsky, Vitaly A.

    2012-01-01

    Notwithstanding their genetic complexity, different cancers share a core group of perturbed pathways converging upon a few regulatory nodes that link the intracellular signaling network with the basic metabolic machinery. The clear implication of this view for cancer therapy is that instead of targeting individual genetic alterations one-by-one, the next generation of cancer therapeutics will target critical hubs in the cancer network. One such hub is the translation initiation complex eIF4F, which integrates several cancer-related pathways into a self-amplifying signaling system. When hyperactivated by apical oncogenic signals, the eIF4F-driven translational apparatus selectively switches the translational repertoire of a cell towards malignancy. This central integrative role of pathologically activated eIF4F has motivated the development of small molecule inhibitors to correct its function. A genome-wide, systems-level means to objectively evaluate the pharmacological response to therapeutics targeting eIF4F remains an unmet challenge. PMID:22572598

  10. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network.

    PubMed

    McConnell, Michael J; Moran, John V; Abyzov, Alexej; Akbarian, Schahram; Bae, Taejeong; Cortes-Ciriano, Isidro; Erwin, Jennifer A; Fasching, Liana; Flasch, Diane A; Freed, Donald; Ganz, Javier; Jaffe, Andrew E; Kwan, Kenneth Y; Kwon, Minseok; Lodato, Michael A; Mills, Ryan E; Paquola, Apua C M; Rodin, Rachel E; Rosenbluh, Chaggai; Sestan, Nenad; Sherman, Maxwell A; Shin, Joo Heon; Song, Saera; Straub, Richard E; Thorpe, Jeremy; Weinberger, Daniel R; Urban, Alexander E; Zhou, Bo; Gage, Fred H; Lehner, Thomas; Senthil, Geetha; Walsh, Christopher A; Chess, Andrew; Courchesne, Eric; Gleeson, Joseph G; Kidd, Jeffrey M; Park, Peter J; Pevsner, Jonathan; Vaccarino, Flora M

    2017-04-28

    Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders. Copyright © 2017, American Association for the Advancement of Science.

  11. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    DOE PAGES

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less

  12. Exposure to cigarette smoke disturbs adipokines secretion causing intercellular damage and insulin resistance in high fructose diet-induced metabolic disorder mice.

    PubMed

    Kim, Sanghwa; Lee, Ah Young; Kim, Hyeon-Jeong; Hong, Seong-Ho; Go, Ryeo-Eun; Choi, Kyung-Chul; Kang, Kyung-Sun; Cho, Myung-Haing

    2017-12-16

    A large amount of fructose intake along with smoking is associated with increased incidence of diseases linked to metabolic syndrome. More research is necessary to understand the complex mechanism that ultimately results in metabolic syndrome and the effect, if any, of high fructose dietary intake and smoking on individual health. In this study, we investigated changes in ER-Golgi network and disturbance to secretion of adipokines induced by cigarette smoking (CS) and excess fructose intake and their contribution to the disruption of metabolic homeostasis. We used high fructose-induced metabolic disorder mice model by feeding them with high fructose diet for 8 weeks. For CS exposure experiment, these mice were exposed to CS for 28 days according to OECD guideline 412. Our results clearly showed that the immune system was suppressed and ER stress was induced in mice with exposure to CS and fed with high fructose. Furthermore, their concentrations of adipokines including leptin and adiponectin were aberrant. Such alteration in secretion of adipokines could cause insulin resistance which may lead to the development of type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes

    PubMed Central

    Kim, Young-Mo; Schmidt, Brian J.; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage Kaiser, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. PMID:23559334

  14. Recon2Neo4j: applying graph database technologies for managing comprehensive genome-scale networks.

    PubMed

    Balaur, Irina; Mazein, Alexander; Saqi, Mansoor; Lysenko, Artem; Rawlings, Christopher J; Auffray, Charles

    2017-04-01

    The goal of this work is to offer a computational framework for exploring data from the Recon2 human metabolic reconstruction model. Advanced user access features have been developed using the Neo4j graph database technology and this paper describes key features such as efficient management of the network data, examples of the network querying for addressing particular tasks, and how query results are converted back to the Systems Biology Markup Language (SBML) standard format. The Neo4j-based metabolic framework facilitates exploration of highly connected and comprehensive human metabolic data and identification of metabolic subnetworks of interest. A Java-based parser component has been developed to convert query results (available in the JSON format) into SBML and SIF formats in order to facilitate further results exploration, enhancement or network sharing. The Neo4j-based metabolic framework is freely available from: https://diseaseknowledgebase.etriks.org/metabolic/browser/ . The java code files developed for this work are available from the following url: https://github.com/ibalaur/MetabolicFramework . ibalaur@eisbm.org. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Recon2Neo4j: applying graph database technologies for managing comprehensive genome-scale networks

    PubMed Central

    Mazein, Alexander; Saqi, Mansoor; Lysenko, Artem; Rawlings, Christopher J.; Auffray, Charles

    2017-01-01

    Abstract Summary: The goal of this work is to offer a computational framework for exploring data from the Recon2 human metabolic reconstruction model. Advanced user access features have been developed using the Neo4j graph database technology and this paper describes key features such as efficient management of the network data, examples of the network querying for addressing particular tasks, and how query results are converted back to the Systems Biology Markup Language (SBML) standard format. The Neo4j-based metabolic framework facilitates exploration of highly connected and comprehensive human metabolic data and identification of metabolic subnetworks of interest. A Java-based parser component has been developed to convert query results (available in the JSON format) into SBML and SIF formats in order to facilitate further results exploration, enhancement or network sharing. Availability and Implementation: The Neo4j-based metabolic framework is freely available from: https://diseaseknowledgebase.etriks.org/metabolic/browser/. The java code files developed for this work are available from the following url: https://github.com/ibalaur/MetabolicFramework. Contact: ibalaur@eisbm.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27993779

  16. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks

    PubMed Central

    Kun, Ádám; Papp, Balázs; Szathmáry, Eörs

    2008-01-01

    Background If chemical A is necessary for the synthesis of more chemical A, then A has the power of replication (such systems are known as autocatalytic systems). We provide the first systems-level analysis searching for small-molecular autocatalytic components in the metabolisms of diverse organisms, including an inferred minimal metabolism. Results We find that intermediary metabolism is invariably autocatalytic for ATP. Furthermore, we provide evidence for the existence of additional, organism-specific autocatalytic metabolites in the forms of coenzymes (NAD+, coenzyme A, tetrahydrofolate, quinones) and sugars. Although the enzymatic reactions of a number of autocatalytic cycles are present in most of the studied organisms, they display obligatorily autocatalytic behavior in a few networks only, hence demonstrating the need for a systems-level approach to identify metabolic replicators embedded in large networks. Conclusion Metabolic replicators are apparently common and potentially both universal and ancestral: without their presence, kick-starting metabolic networks is impossible, even if all enzymes and genes are present in the same cell. Identification of metabolic replicators is also important for attempts to create synthetic cells, as some of these autocatalytic molecules will presumably be needed to be added to the system as, by definition, the system cannot synthesize them without their initial presence. PMID:18331628

  17. Recent development and biomedical applications of probabilistic Boolean networks

    PubMed Central

    2013-01-01

    Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered. A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed. A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. PMID:23815817

  18. Network-Based Approaches in Drug Discovery and Early Development

    PubMed Central

    Harrold, JM; Ramanathan, M; Mager, DE

    2015-01-01

    Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802

  19. Influence of anesthesia on cerebral blood flow, cerebral metabolic rate, and brain functional connectivity.

    PubMed

    Bonhomme, Vincent; Boveroux, Pierre; Hans, Pol; Brichant, Jean François; Vanhaudenhuyse, Audrey; Boly, Melanie; Laureys, Steven

    2011-10-01

    To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and anesthesia-induced alteration of consciousness. Cerebral cortex is the primary target of the hypnotic effect of anesthetic agents, and higher-order association areas are more sensitive to this effect than lower-order processing regions. Increasing concentration of anesthetic agents progressively attenuates connectivity in the consciousness networks, while connectivity in lower-order sensory and motor networks is preserved. Alteration of thalamic sub-cortical regulation could compromise the cortical integration of information despite preserved thalamic activation by external stimuli. At concentrations producing unresponsiveness, the activity of consciousness networks becomes anticorrelated with thalamic activity, while connectivity in lower-order sensory networks persists, although with cross-modal interaction alterations. Accumulating evidence suggests that hypnotic anesthetic agents disrupt large-scale cerebral connectivity. This would result in an inability of the brain to generate and integrate information, while external sensory information is still processed at a lower order of complexity.

  20. Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry

    PubMed Central

    Haase, Steven B.; Wittenberg, Curt

    2014-01-01

    Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls. PMID:24395825

  1. Systems metabolic engineering of Escherichia coli for L-threonine production.

    PubMed

    Lee, Kwang Ho; Park, Jin Hwan; Kim, Tae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2007-01-01

    Amino-acid producers have traditionally been developed by repeated random mutagenesis owing to the difficulty in rationally engineering the complex and highly regulated metabolic network. Here, we report the development of the genetically defined L-threonine overproducing Escherichia coli strain by systems metabolic engineering. Feedback inhibitions of aspartokinase I and III (encoded by thrA and lysC, respectively) and transcriptional attenuation regulations (located in thrL) were removed. Pathways for Thr degradation were removed by deleting tdh and mutating ilvA. The metA and lysA genes were deleted to make more precursors available for Thr biosynthesis. Further target genes to be engineered were identified by transcriptome profiling combined with in silico flux response analysis, and their expression levels were manipulated accordingly. The final engineered E. coli strain was able to produce Thr with a high yield of 0.393 g per gram of glucose, and 82.4 g/l Thr by fed-batch culture. The systems metabolic engineering strategy reported here may be broadly employed for developing genetically defined organisms for the efficient production of various bioproducts.

  2. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    PubMed Central

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  3. The study on serum and urine of renal interstitial fibrosis rats induced by unilateral ureteral obstruction based on metabonomics and network analysis methods.

    PubMed

    Xiang, Zheng; Sun, Hao; Cai, Xiaojun; Chen, Dahui

    2016-04-01

    Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of "gene-protein-metabolite."

  4. SuperTarget goes quantitative: update on drug–target interactions

    PubMed Central

    Hecker, Nikolai; Ahmed, Jessica; von Eichborn, Joachim; Dunkel, Mathias; Macha, Karel; Eckert, Andreas; Gilson, Michael K.; Bourne, Philip E.; Preissner, Robert

    2012-01-01

    There are at least two good reasons for the on-going interest in drug–target interactions: first, drug-effects can only be fully understood by considering a complex network of interactions to multiple targets (so-called off-target effects) including metabolic and signaling pathways; second, it is crucial to consider drug-target-pathway relations for the identification of novel targets for drug development. To address this on-going need, we have developed a web-based data warehouse named SuperTarget, which integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present, the updated database contains >6000 target proteins, which are annotated with >330 000 relations to 196 000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range. SuperTarget is available at http://bioinformatics.charite.de/supertarget. PMID:22067455

  5. Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.

    PubMed

    Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N

    2017-01-01

    The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.

  6. Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation

    PubMed Central

    Prüß, Birgit M.; Verma, Karan; Samanta, Priyankar; Sule, Preeti; Kumar, Sunil; Wu, Jianfei; Christianson, David; Horne, Shelley M.; Stafslien, Shane J.; Wolfe, Alan J.; Denton, Anne

    2010-01-01

    Biofilms are communities of bacteria whose formation on surfaces requires a large portion of the bacteria’s transcriptional network. To identify environmental conditions and transcriptional regulators that contribute to sensing these conditions, we used a high-throughput approach to monitor biofilm biomass produced by an isogenic set of Escherichia coli K-12 strains grown under combinations of environmental conditions. Of the environmental combinationsd, growth in tryptic soy broth at 37°C supported the most biofilm production. To analyze the complex relationships between the diverse cell surface organelles, transcriptional regulators, and metabolic enzymes represented by the tested mutant set, we used a novel vector-item pattern-mining algorithm. The algorithm related biofilm amounts to the functional annotations of each mutated protein. The pattern with the best statistical significance was the gene ontology ‘pyruvate catabolic process,’ which is associated with enzymes of acetate metabolism. Phenotype microarray experiments illustrated that carbon sources that are metabolized to acetyl-coenzyme A, acetyl phosphate, and acetate are particularly supportive of biofilm formation. Scanning electron microscopy revealed structural differences between mutants that lack acetate metabolism enzymes and their parent and confirmed the quantitative differences. We conclude that acetate metabolism functions as a metabolic sensor, transmitting changes in environmental conditions to biofilm biomass and structure. PMID:20559621

  7. Pharmacogenetics of Vascular Risk Factors in Alzheimer’s Disease

    PubMed Central

    Cacabelos, Ramón; Meyyazhagan, Arun; Carril, Juan C.; Cacabelos, Pablo; Teijido, Óscar

    2018-01-01

    Alzheimer’s disease (AD) is a polygenic/complex disorder in which genomic, epigenomic, cerebrovascular, metabolic, and environmental factors converge to define a progressive neurodegenerative phenotype. Pharmacogenetics is a major determinant of therapeutic outcome in AD. Different categories of genes are potentially involved in the pharmacogenetic network responsible for drug efficacy and safety, including pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes. However, most drugs exert pleiotropic effects that are promiscuously regulated for different gene products. Only 20% of the Caucasian population are extensive metabolizers for tetragenic haplotypes integrating CYP2D6-CYP2C19-CYP2C9-CYP3A4/5 variants. Patients harboring CYP-related poor (PM) and/or ultra-rapid (UM) geno-phenotypes display more irregular profiles in drug metabolism than extensive (EM) or intermediate (IM) metabolizers. Among 111 pentagenic (APOE-APOB-APOC3-CETP-LPL) haplotypes associated with lipid metabolism, carriers of the H26 haplotype (23-TT-CG-AG-CC) exhibit the lowest cholesterol levels, and patients with the H104 haplotype (44-CC-CC-AA-CC) are severely hypercholesterolemic. Furthermore, APOE, NOS3, ACE, AGT, and CYP variants influence the therapeutic response to hypotensive drugs in AD patients with hypertension. Consequently, the implementation of pharmacogenetic procedures may optimize therapeutics in AD patients under polypharmacy regimes for the treatment of concomitant vascular disorders. PMID:29301387

  8. Pharmacogenetics of Vascular Risk Factors in Alzheimer's Disease.

    PubMed

    Cacabelos, Ramón; Meyyazhagan, Arun; Carril, Juan C; Cacabelos, Pablo; Teijido, Óscar

    2018-01-03

    Alzheimer's disease (AD) is a polygenic/complex disorder in which genomic, epigenomic, cerebrovascular, metabolic, and environmental factors converge to define a progressive neurodegenerative phenotype. Pharmacogenetics is a major determinant of therapeutic outcome in AD. Different categories of genes are potentially involved in the pharmacogenetic network responsible for drug efficacy and safety, including pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes. However, most drugs exert pleiotropic effects that are promiscuously regulated for different gene products. Only 20% of the Caucasian population are extensive metabolizers for tetragenic haplotypes integrating CYP2D6-CYP2C19-CYP2C9-CYP3A4/5 variants. Patients harboring CYP-related poor (PM) and/or ultra-rapid (UM) geno-phenotypes display more irregular profiles in drug metabolism than extensive (EM) or intermediate (IM) metabolizers. Among 111 pentagenic ( APOE-APOB-APOC3-CETP-LPL ) haplotypes associated with lipid metabolism, carriers of the H26 haplotype (23-TT-CG-AG-CC) exhibit the lowest cholesterol levels, and patients with the H104 haplotype (44-CC-CC-AA-CC) are severely hypercholesterolemic. Furthermore, APOE , NOS3 , ACE , AGT , and CYP variants influence the therapeutic response to hypotensive drugs in AD patients with hypertension. Consequently, the implementation of pharmacogenetic procedures may optimize therapeutics in AD patients under polypharmacy regimes for the treatment of concomitant vascular disorders.

  9. Multi-Dimensional Scaling based grouping of known complexes and intelligent protein complex detection.

    PubMed

    Rehman, Zia Ur; Idris, Adnan; Khan, Asifullah

    2018-06-01

    Protein-Protein Interactions (PPI) play a vital role in cellular processes and are formed because of thousands of interactions among proteins. Advancements in proteomics technologies have resulted in huge PPI datasets that need to be systematically analyzed. Protein complexes are the locally dense regions in PPI networks, which extend important role in metabolic pathways and gene regulation. In this work, a novel two-phase protein complex detection and grouping mechanism is proposed. In the first phase, topological and biological features are extracted for each complex, and prediction performance is investigated using Bagging based Ensemble classifier (PCD-BEns). Performance evaluation through cross validation shows improvement in comparison to CDIP, MCode, CFinder and PLSMC methods Second phase employs Multi-Dimensional Scaling (MDS) for the grouping of known complexes by exploring inter complex relations. It is experimentally observed that the combination of topological and biological features in the proposed approach has greatly enhanced prediction performance for protein complex detection, which may help to understand various biological processes, whereas application of MDS based exploration may assist in grouping potentially similar complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Distinct Functional Networks Associated with Improvement of Affective Symptoms and Cognitive Function During Citalopram Treatment in Geriatric Depression

    PubMed Central

    Diaconescu, Andreea Oliviana; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; McIntosh, Anthony Randal; Smith, Gwenn S.

    2010-01-01

    Variability in the affective and cognitive symptom response to antidepressant treatment has been observed in geriatric depression. The underlying neural circuitry is poorly understood. The current study evaluated the cerebral glucose metabolic effects of citalopram treatment and applied multivariate, functional connectivity analyses to identify brain networks associated with improvements in affective symptoms and cognitive function. Sixteen geriatric depressed patients underwent resting Positron Emission Tomography (PET) studies of cerebral glucose metabolism and assessment of affective symptoms and cognitive function before and after eight weeks of selective serotonin reuptake inhibitor treatment (citalopram). Voxel-wise analyses of the normalized glucose metabolic data showed decreased cerebral metabolism during citalopram treatment in the anterior cingulate gyrus, middle temporal gyrus, precuneus, amygdala, and parahippocampal gyrus. Increased metabolism was observed in the putamen, occipital cortex and cerebellum. Functional connectivity analyses revealed two networks which were uniquely associated with improvement of affective symptoms and cognitive function during treatment. A subcortical-limbic-frontal network was associated with improvement in affect (depression and anxiety), while a medial temporal-parietal-frontal network was associated with improvement in cognition (immediate verbal learning/memory and verbal fluency). The regions that comprise the cognitive network overlap with the regions that are affected in Alzheimer’s dementia. Thus, alterations in specific brain networks associated with improvement of affective symptoms and cognitive function are observed during citalopram treatment in geriatric depression. PMID:20886575

  11. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191

  12. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.

  13. Integrating data from biological experiments into metabolic networks with the DBE information system.

    PubMed

    Borisjuk, Ljudmilla; Hajirezaei, Mohammad-Reza; Klukas, Christian; Rolletschek, Hardy; Schreiber, Falk

    2005-01-01

    Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.

  14. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    PubMed

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  15. Mass Conservation and Inference of Metabolic Networks from High-Throughput Mass Spectrometry Data

    PubMed Central

    Bandaru, Pradeep; Bansal, Mukesh

    2011-01-01

    Abstract We present a step towards the metabolome-wide computational inference of cellular metabolic reaction networks from metabolic profiling data, such as mass spectrometry. The reconstruction is based on identification of irreducible statistical interactions among the metabolite activities using the ARACNE reverse-engineering algorithm and on constraining possible metabolic transformations to satisfy the conservation of mass. The resulting algorithms are validated on synthetic data from an abridged computational model of Escherichia coli metabolism. Precision rates upwards of 50% are routinely observed for identification of full metabolic reactions, and recalls upwards of 20% are also seen. PMID:21314454

  16. Regulation of Primary Metabolism in Response to Low Oxygen Availability as Revealed by Carbon and Nitrogen Isotope Redistribution.

    PubMed

    António, Carla; Päpke, Carola; Rocha, Marcio; Diab, Houssein; Limami, Anis M; Obata, Toshihiro; Fernie, Alisdair R; van Dongen, Joost T

    2016-01-01

    Based on enzyme activity assays and metabolic responses to waterlogging of the legume Lotus japonicus, it was previously suggested that, during hypoxia, the tricarboxylic acid cycle switches to a noncyclic operation mode. Hypotheses were postulated to explain the alternative metabolic pathways involved, but as yet, a direct analysis of the relative redistribution of label through the corresponding pathways was not made. Here, we describe the use of stable isotope-labeling experiments for studying metabolism under hypoxia using wild-type roots of the crop legume soybean (Glycine max). [(13)C]Pyruvate labeling was performed to compare metabolism through the tricarboxylic acid cycle, fermentation, alanine metabolism, and the γ-aminobutyric acid shunt, while [(13)C]glutamate and [(15)N]ammonium labeling were performed to address the metabolism via glutamate to succinate. Following these labelings, the time course for the redistribution of the (13)C/(15)N label throughout the metabolic network was evaluated with gas chromatography-time of flight-mass spectrometry. Our combined labeling data suggest the inhibition of the tricarboxylic acid cycle enzyme succinate dehydrogenase, also known as complex II of the mitochondrial electron transport chain, providing support for the bifurcation of the cycle and the down-regulation of the rate of respiration measured during hypoxic stress. Moreover, up-regulation of the γ-aminobutyric acid shunt and alanine metabolism explained the accumulation of succinate and alanine during hypoxia. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  18. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism.

    PubMed

    Ke, Tao; Yu, Jingyin; Dong, Caihua; Mao, Han; Hua, Wei; Liu, Shengyi

    2015-01-21

    Oil crop seeds are important sources of fatty acids (FAs) for human and animal nutrition. Despite their importance, there is a lack of an essential bioinformatics resource on gene transcription of oil crops from a comparative perspective. In this study, we developed ocsESTdb, the first database of expressed sequence tag (EST) information on seeds of four large-scale oil crops with an emphasis on global metabolic networks and oil accumulation metabolism that target the involved unigenes. A total of 248,522 ESTs and 106,835 unigenes were collected from the cDNA libraries of rapeseed (Brassica napus), soybean (Glycine max), sesame (Sesamum indicum) and peanut (Arachis hypogaea). These unigenes were annotated by a sequence similarity search against databases including TAIR, NR protein database, Gene Ontology, COG, Swiss-Prot, TrEMBL and Kyoto Encyclopedia of Genes and Genomes (KEGG). Five genome-scale metabolic networks that contain different numbers of metabolites and gene-enzyme reaction-association entries were analysed and constructed using Cytoscape and yEd programs. Details of unigene entries, deduced amino acid sequences and putative annotation are available from our database to browse, search and download. Intuitive and graphical representations of EST/unigene sequences, functional annotations, metabolic pathways and metabolic networks are also available. ocsESTdb will be updated regularly and can be freely accessed at http://ocri-genomics.org/ocsESTdb/ . ocsESTdb may serve as a valuable and unique resource for comparative analysis of acyl lipid synthesis and metabolism in oilseed plants. It also may provide vital insights into improving oil content in seeds of oil crop species by transcriptional reconstruction of the metabolic network.

  19. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    PubMed Central

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  20. Topological analysis of metabolic networks based on petri net theory.

    PubMed

    Zevedei-Oancea, Ionela; Schuster, Stefan

    2011-01-01

    Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

  1. Topological analysis of metabolic networks based on Petri net theory.

    PubMed

    Zevedei-Oancea, Ionela; Schuster, Stefan

    2003-01-01

    Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

  2. Dissecting metabolic behavior of lipid over-producing strain of Mucor circinelloides through genome-scale metabolic network and multi-level data integration.

    PubMed

    Vongsangnak, Wanwipa; Kingkaw, Amornthep; Yang, Junhuan; Song, Yuanda; Laoteng, Kobkul

    2018-09-05

    Lipid accumulation is an important cellular process of oleaginous microorganisms. To dissect metabolic behavior of oleaginous Zygomycetes, the lipid over-producing strain, Mucor circinelloides WJ11, was subjected for omics-scale analysis. The genome annotation was improved and used for construction of genome-scale metabolic network of WJ11 strain. Then, the quality of the metabolic network was enhanced by incorporating gene and protein expression data. In addition to the known oleaginous genes, our results showed a number of newly identified unique genes of WJ11 strain, which involved in central carbon metabolism, lipid, amino acid and nitrogen metabolisms. The systematic compilations indicated the additional metabolic routes with the involvement in supplying precursors (acetyl-CoA, NADPH and fatty acyl substrate) for fatty acid and lipid biosynthesis. Interestingly, amino acid metabolism played a substantial role in responsive mechanism of the fungal cells to nutrient imbalance circumstance through lipogenesis as the finding of reporter metabolites (l-methionine, l-glutamate, l-aspartate, l-asparagine and l-glutamine) at lipid-accumulating stage. The cooperative function of certain lipid-degrading enzymes at the particular growth stage was elucidated by integrating the metabolic networks with gene expression data. The unique feature of carotenoid biosynthetic route in WJ11 strain was also identified by protein domain analysis. Taken together, there were cross-functional metabolisms in regulating lipid biosynthesis and retaining high level of cellular lipids in the representative of lipid over-producing strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. RNA-Sequencing Reveals Biological Networks during Table Grapevine (‘Fujiminori’) Fruit Development

    PubMed Central

    Shangguan, Lingfei; Mu, Qian; Fang, Xiang; Zhang, Kekun; Jia, Haifeng; Li, Xiaoying; Bao, Yiqun; Fang, Jinggui

    2017-01-01

    Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. ‘Fujiminori’ is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in ‘Fujiminori’ fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3’H and F3’5’H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits. PMID:28118385

  4. ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis.

    PubMed

    Pitkänen, Esa; Akerlund, Arto; Rantanen, Ari; Jouhten, Paula; Ukkonen, Esko

    2008-08-25

    ReMatch is a web-based, user-friendly tool that constructs stoichiometric network models for metabolic flux analysis, integrating user-developed models into a database collected from several comprehensive metabolic data resources, including KEGG, MetaCyc and CheBI. Particularly, ReMatch augments the metabolic reactions of the model with carbon mappings to facilitate (13)C metabolic flux analysis. The construction of a network model consisting of biochemical reactions is the first step in most metabolic modelling tasks. This model construction can be a tedious task as the required information is usually scattered to many separate databases whose interoperability is suboptimal, due to the heterogeneous naming conventions of metabolites in different databases. Another, particularly severe data integration problem is faced in (13)C metabolic flux analysis, where the mappings of carbon atoms from substrates into products in the model are required. ReMatch has been developed to solve the above data integration problems. First, ReMatch matches the imported user-developed model against the internal ReMatch database while considering a comprehensive metabolite name thesaurus. This, together with wild card support, allows the user to specify the model quickly without having to look the names up manually. Second, ReMatch is able to augment reactions of the model with carbon mappings, obtained either from the internal database or given by the user with an easy-touse tool. The constructed models can be exported into 13C-FLUX and SBML file formats. Further, a stoichiometric matrix and visualizations of the network model can be generated. The constructed models of metabolic networks can be optionally made available to the other users of ReMatch. Thus, ReMatch provides a common repository for metabolic network models with carbon mappings for the needs of metabolic flux analysis community. ReMatch is freely available for academic use at http://www.cs.helsinki.fi/group/sysfys/software/rematch/.

  5. Data-driven integration of genome-scale regulatory and metabolic network models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less

  6. Data-driven integration of genome-scale regulatory and metabolic network models

    DOE PAGES

    Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...

    2015-05-05

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less

  7. An objective function exploiting suboptimal solutions in metabolic networks

    PubMed Central

    2013-01-01

    Background Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power. Results We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation. Conclusion Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network. PMID:24088221

  8. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    NASA Astrophysics Data System (ADS)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  9. Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies.

    PubMed

    Vanrolleghem, P A; de Jong-Gubbels, P; van Gulik, W M; Pronk, J T; van Dijken, J P; Heijnen, S

    1996-01-01

    Setting up a metabolic network model for respiratory growth of Saccharomyces cerevisiae requires the estimation of only two (energetic) stoichiometric parameters: (1) the operational PO ratio and (2) a growth-related maintenance factor k. It is shown, both theoretically and practically, how chemostat cultivations with different mixtures of two substrates allow unique values to be given to these unknowns of the proposed metabolic model. For the yeast and model considered, an effective PO ratio of 1.09 mol of ATP/mol of O (95% confidence interval 1.07-1.11) and a k factor of 0.415 mol of ATP/C-mol of biomass (0.385-0.445) were obtained from biomass substrate yield data on glucose/ethanol mixtures. Symbolic manipulation software proved very valuable in this study as it supported the proof of theoretical identifiability and significantly reduced the necessary computations for parameter estimation. In the transition from 100% glucose to 100% ethanol in the feed, four metabolic regimes occur. Switching between these regimes is determined by cessation of an irreversible reaction and initiation of an alternative reaction. Metabolic network predictions of these metabolic switches compared well with activity measurements of key enzymes. As a second validation of the network, the biomass yield of S. cerevisiae on acetate was also compared to the network prediction. An excellent agreement was found for a network in which acetate transport was modeled with a proton symport, while passive diffusion of acetate gave significantly higher yield predictions.

  10. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts.

    PubMed

    Vannini, Candida; Carpentieri, Andrea; Salvioli, Alessandra; Novero, Mara; Marsoni, Milena; Testa, Lorenzo; de Pinto, Maria Concetta; Amoresano, Angela; Ortolani, Francesca; Bracale, Marcella; Bonfante, Paola

    2016-07-01

    Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis

    PubMed Central

    Li, Siming; Mi, Lin; Yu, Lei; Yu, Qi; Liu, Tongyu; Wang, Guo-Xiao; Zhao, Xu-Yun; Wu, Jun

    2017-01-01

    Brown and beige adipocytes convert chemical energy into heat through uncoupled respiration to defend against cold stress. Beyond thermogenesis, brown and beige fats engage other metabolic tissues via secreted factors to influence systemic energy metabolism. How the protein and long noncoding RNA (lncRNA) regulatory networks act in concert to regulate key aspects of thermogenic adipocyte biology remains largely unknown. Here we developed a genome-wide functional screen to interrogate the transcription factors and cofactors in thermogenic gene activation and identified zinc finger and BTB domain-containing 7b (Zbtb7b) as a potent driver of brown fat development and thermogenesis and cold-induced beige fat formation. Zbtb7b is required for activation of the thermogenic gene program in brown and beige adipocytes. Genetic ablation of Zbtb7b impaired cold-induced transcriptional remodeling in brown fat, rendering mice sensitive to cold temperature, and diminished browning of inguinal white fat. Proteomic analysis revealed a mechanistic link between Zbtb7b and the lncRNA regulatory pathway through which Zbtb7b recruits the brown fat lncRNA 1 (Blnc1)/heterogeneous nuclear ribonucleoprotein U (hnRNPU) ribonucleoprotein complex to activate thermogenic gene expression in adipocytes. These findings illustrate the emerging concept of a protein–lncRNA regulatory network in the control of adipose tissue biology and energy metabolism. PMID:28784777

  12. Microbial diversity and metabolic networks in acid mine drainage habitats

    PubMed Central

    Méndez-García, Celia; Peláez, Ana I.; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V.; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far. PMID:26074887

  13. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    PubMed

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  15. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  16. Mathematical modeling of physiological systems: an essential tool for discovery.

    PubMed

    Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J

    2014-08-28

    Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch.

    PubMed

    Lohse, Matthew B; Ene, Iuliana V; Craik, Veronica B; Hernday, Aaron D; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J; Johnson, Alexander D

    2016-08-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology. Copyright © 2016 by the Genetics Society of America.

  18. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming

    PubMed Central

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-01-01

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  19. Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas fluorescens

    PubMed Central

    Gallie, Jenna; Libby, Eric; Bertels, Frederic; Remigi, Philippe; Jendresen, Christian B.; Ferguson, Gayle C.; Desprat, Nicolas; Buffing, Marieke F.; Sauer, Uwe; Beaumont, Hubertus J. E.; Martinussen, Jan; Kilstrup, Mogens; Rainey, Paul B.

    2015-01-01

    Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution. PMID:25763575

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Noise effect in metabolic networks

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Yan; Xie, Zheng-Wei; Chen, Tong; Ouyang, Qi

    2009-12-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.

Top