Science.gov

Sample records for complex mg-ni-la-co-h phases

  1. Griffiths phases on complex networks.

    PubMed

    Muñoz, Miguel A; Juhász, Róbert; Castellano, Claudio; Odor, Géza

    2010-09-17

    Quenched disorder is known to play a relevant role in dynamical processes and phase transitions. Its effects on the dynamics of complex networks have hardly been studied. Aimed at filling this gap, we analyze the contact process, i.e., the simplest propagation model, with quenched disorder on complex networks. We find Griffiths phases and other rare-region effects, leading rather generically to anomalously slow (algebraic, logarithmic, …) relaxation, on Erdos-Rényi networks. Similar effects are predicted to exist for other topologies with a finite percolation threshold. More surprisingly, we find that Griffiths phases can also emerge in the absence of quenched disorder, as a consequence of topological heterogeneity in networks with finite topological dimension. These results have a broad spectrum of implications for propagation phenomena and other dynamical processes on networks.

  2. Phase distribution in complex geometry conduits

    SciTech Connect

    Lahey, R.T. Jr.; Lopez de Bertodano, M.; Jones, O.C. Jr.

    1992-12-31

    Some of the most important and challenging problems in two-phase flow today have to do with the understanding and prediction of multidimensional phenomena, in particular, lateral phase distribution in both simple and complex geometry conduits. A prior review paper summarized the state-of-the-art in the understanding of phase distribution phenomena, and the ability to perform mechanistic multidimensional predictions. The purpose of this paper is to update that review, with particular emphasis on complex geometry conduit predictive capabilities.

  3. Phase transitions in Pareto optimal complex networks

    NASA Astrophysics Data System (ADS)

    Seoane, Luís F.; Solé, Ricard

    2015-09-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.

  4. Phase equilibria for complex fluid mixtures

    SciTech Connect

    Prausnitz, J.M.

    1983-04-01

    After defining complex mixtures, attention is given to the canonical procedure used for the thermodynamics of fluid mixtures: first, we establish a suitable, idealized reference system and then we establish a perturbation (or excess function) which corrects the idealized system for real behavior. For complex mixtures containing identified components (e.g. alcohols, ketones, water) discussion is directed at possible techniques for extending to complex mixtures our conventional experience with reference systems and perturbations for simple mixtures. Possible extensions include generalization of the quasi-chemical approximation (local compositions) and superposition of chemical equilibria (association and solvation) on a physical equation of state. For complex mixtures containing unidentified components (e.g. coal-derived fluids), a possible experimental method is suggested for characterization; conventional procedures can then be used to calculate phase equilibria using the concept of pseudocomponents whose properties are given by the characterization data. Finally, as an alternative to the pseudocomponent method, a brief introduction is given to phase-equilibrium calculations using continuous thermodynamics.

  5. Interfacial tension of polyelectrolyte complex coacervate phases.

    SciTech Connect

    Qin, Jian; Priftis, Dimitrios; Farina, R; Perry, Sarah L.; Leon, Lorraine F.; Whitmer, Jonathan; Hoffmann, Kyle; Tirrell, Matthew; de Pablo, Juan J.

    2014-06-01

    We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye-Huckel treatment for electrostatic interactions with the Cahn-Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N-3/2(eta/eta(c)-1)(3/2) near the critical point of the demixing transition, and that it scales as eta(1/2) far away from it, where N is the chain length and eta measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration psi as N-1/4(1-psi/psi(c))(3/2) near the critical salt concentration psi(c). Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.

  6. Phase transitions in complex network dynamics

    NASA Astrophysics Data System (ADS)

    Squires, Shane

    Two phase transitions in complex networks are analyzed. The first of these is a percolation transition, in which the network develops a macroscopic connected component as edges are added to it. Recent work has shown that if edges are added "competitively" to an undirected network, the onset of percolation is abrupt or "explosive." A new variant of explosive percolation is introduced here for directed networks, whose critical behavior is explored using numerical simulations and finite-size scaling theory. This process is also characterized by a very rapid percolation transition, but it is not as sudden as in undirected networks. The second phase transition considered here is the emergence of instability in Boolean networks, a class of dynamical systems that are widely used to model gene regulation. The dynamics, which are determined by the network topology and a set of update rules, may be either stable or unstable, meaning that small perturbations to the state of the network either die out or grow to become macroscopic. Here, this transition is analytically mapped onto a well-studied percolation problem, which can be used to predict the average steady-state distance between perturbed and unperturbed trajectories. This map applies to specific Boolean networks with few restrictions on network topology, but can only be applied to two commonly used types of update rules. Finally, a method is introduced for predicting the stability of Boolean networks with a much broader range of update rules. The network is assumed to have a given complex topology, subject only to a locally tree-like condition, and the update rules may be correlated with topological features of the network. While past work has addressed the separate effects of topology and update rules on stability, the present results are the first widely applicable approach to studying how these effects interact. Numerical simulations agree with the theory and show that such correlations between topology and update

  7. Thermoelectric Properties of Complex Zintl Phases

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey

    2008-03-01

    Complex Zintl phases make ideal thermoelectric materials because they can exhibit the necessary ``electron-crystal, phonon-glass'' properties required for high thermoelectric efficiency. Complex crystal structures can lead to high thermoelectric figure of merit (zT) by having extraordinarily low lattice thermal conductivity. A recent example is the discovery that Yb14MnSb11, a complex Zintl compound, has twice the zT as the SiGe based material currently in use at NASA. The high temperature (300K - 1300K) electronic properties of Yb14MnSb11 can be understood using models for heavily doped semiconductors. The free hole concentration, confirmed by Hall effect measurements, is set by the electron counting rules of Zintl and the valence of the transition metal (Mn^+2). Substitution of nonmagnetic Zn^+2 for the magnetic Mn^+2 reduces the spin-disorder scattering and leads to increased zT (10%). The reduction of spin-disorder scattering is consistent with the picture of Yb14MnSb11 as an underscreened Kondo lattice as derived from low temperature measurements. The hole concentration can be reduced by the substitution of Al^+3 for Mn^+2, which leads to an increase in the Seebeck coefficient and electrical resistivity consistent with models for degenerate semiconductors. This leads to further improvements (about 25%) in zT and a reduction in the temperature where the zT peaks. The peak in zT is due to the onset of minority carrier conduction and can be correlated with reduction in Seebeck coefficient, increase in electrical conductivity and increase in thermal conductivity due to bipolar thermal conduction.

  8. Solution of a Complex Least Squares Problem with Constrained Phase.

    PubMed

    Bydder, Mark

    2010-12-30

    The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.

  9. Complex phase tracing method for fringe pattern analysis.

    PubMed

    Kozłowski, J; Serra, G

    1999-04-10

    We present what we believe to be a novel complex phase tracing method for fringe pattern analysis related to the phase-locked loop idea. The image with deformed complex fringes is analyzed with lexicographic scansion that leads directly to the investigated phase without unwrapping. Robustness of the procedure is ensured by the delay mechanism in the process of calculating the reference value. A numerical model and examples of application of the presented method are given.

  10. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  11. Complexities of One-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Ciccioli, Andrea; Glasser, Leslie

    2011-01-01

    For most materials, the solid at and near the triple-point temperature is denser than the liquid with which it is in equilibrium. However, for water and certain other materials, the densities of the phases are reversed, with the solid being less dense. The profound consequences for the appearance of the "pVT" diagram of one-component materials…

  12. Complexities of One-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Ciccioli, Andrea; Glasser, Leslie

    2011-01-01

    For most materials, the solid at and near the triple-point temperature is denser than the liquid with which it is in equilibrium. However, for water and certain other materials, the densities of the phases are reversed, with the solid being less dense. The profound consequences for the appearance of the "pVT" diagram of one-component materials…

  13. Determining computational complexity from characteristic `phase transitions'

    NASA Astrophysics Data System (ADS)

    Monasson, Rémi; Zecchina, Riccardo; Kirkpatrick, Scott; Selman, Bart; Troyansky, Lidror

    1999-07-01

    Non-deterministic polynomial time (commonly termed `NP-complete') problems are relevant to many computational tasks of practical interest-such as the `travelling salesman problem'-but are difficult to solve: the computing time grows exponentially with problem size in the worst case. It has recently been shown that these problems exhibit `phase boundaries', across which dramatic changes occur in the computational difficulty and solution character-the problems become easier to solve away from the boundary. Here we report an analytic solution and experimental investigation of the phase transition in K -satisfiability, an archetypal NP-complete problem. Depending on the input parameters, the computing time may grow exponentially or polynomially with problem size; in the former case, we observe a discontinuous transition, whereas in the latter case a continuous (second-order) transition is found. The nature of these transitions may explain the differing computational costs, and suggests directions for improving the efficiency of search algorithms. Similar types of transition should occur in other combinatorial problems and in glassy or granular materials, thereby strengthening the link between computational models and properties of physical systems.

  14. Dual-phase evolution in complex adaptive systems

    PubMed Central

    Paperin, Greg; Green, David G.; Sadedin, Suzanne

    2011-01-01

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle. PMID:21247947

  15. A Complex Solar Coronal Jet with Two Phases

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Su, Jiangtao; Deng, Yuanyong; Priest, E. R.

    2017-05-01

    Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.

  16. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  17. Chirality-selected phase behaviour in ionic polypeptide complexes

    NASA Astrophysics Data System (ADS)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.

  18. Chirality-selected phase behaviour in ionic polypeptide complexes

    PubMed Central

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  19. Chirality-selected phase behaviour in ionic polypeptide complexes

    SciTech Connect

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, III, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.

  20. Laser beam complex amplitude measurement by phase diversity.

    PubMed

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  1. Phase transitions in the complex plane of physical parameters

    PubMed Central

    Wei, Bo-Bo; Chen, Shao-Wen; Po, Hoi-Chun; Liu, Ren-Bao

    2014-01-01

    At low temperature, a thermodynamic system undergoes a phase transition when a physical parameter passes through a singularity point of the free energy. This corresponds to the formation of a new order. At high temperature, thermal fluctuations destroy the order. Correspondingly, the free energy is a smooth function of the physical parameter and singularities only occur at complex values of the parameter. Since a complex valued parameter is unphysical, no phase transitions are expected when the physical parameter is varied. Here we show that the quantum evolution of a system, initially in thermal equilibrium and driven by a designed interaction, is equivalent to the partition function of a complex parameter. Therefore, we can access the complex singularity points of thermodynamic functions and observe phase transitions even at high temperature. We further show that such phase transitions in the complex plane are related to topological properties of the renormalization group flows of the complex parameters. This result makes it possible to study thermodynamics in the complex plane of physical parameters. PMID:24902497

  2. Gel phase formation in dilute triblock copolyelectrolyte complexes

    PubMed Central

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-01-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics. PMID:28230046

  3. Gel phase formation in dilute triblock copolyelectrolyte complexes.

    PubMed

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E; Goldfeld, David J; Mao, Jun; Heller, William T; Prabhu, Vivek M; de Pablo, Juan J; Tirrell, Matthew V

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  4. Gel phase formation in dilute triblock copolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  5. Psychophysical estimates of cochlear phase response: masking by harmonic complexes.

    PubMed

    Lentz, J J; Leek, M R

    2001-12-01

    Harmonic complexes with identical component frequencies and amplitudes but different phase spectra may be differentially effective as maskers. Such harmonic waveforms, constructed with positive or negative Schroeder phases, have similar envelopes and identical long-term power spectra, but the positive Schroeder-phase waveform is typically a less effective masker than the negative Schroeder-phase waveform. These masking differences have been attributed to an interaction between the masker phase spectrum and the phase characteristic of the basilar membrane. To explore this relationship, the gradient of stimulus phase change across masker bandwidth was varied by systematically altering the Schroeder-phase algorithm. Observers detected a signal tone added in-phase to a single component of a masker whose frequencies ranged from 200 to 5000 Hz, with a fundamental frequency of 100 Hz. For signal frequencies of 1000-4000 Hz, differences in masking across the harmonic complexes could be as large as 5-10 dB for phase gradients changing by only 10%. The phase gradient that resulted in a minimum amount of masking varied with signal frequency, with low frequencies masked least effectively by stimuli with rapidly changing component phases and high frequencies masked by stimuli with more shallow phase gradients. A gammachirp filter was implemented to model these results, predicting the qualitative changes in curvature of the phase-byfrequency function estimated from the empirical data: In some cases, small modifications to the gammachirp filter produced better quantitative predictions of curvature changes across frequency, but this filter, as implemented here, was unable to accurately represent all the data.

  6. Sparsity assisted phase retrieval of complex valued objects

    NASA Astrophysics Data System (ADS)

    Gaur, Charu; Khare, Kedar

    2016-04-01

    Iterative phase retrieval of complex valued objects (phase objects) suffers from twin image problem due to the presence of features of image and its complex conjugate in the recovered solution. The twin-image problem becomes more severe when object support is centro-symmetric. In this paper, we demonstrate that by modifying standard Hybrid-Input output (HIO) algorithm using an adaptive sparsity enhancement step, the twin-image problem can be addressed successfully even when the object support is centro-symmetric. Adaptive sparsity enhanced algorithm and numerical simulation for binary as well as gray scale phase objects are presented. The high quality phase recovery results presented here show the effectiveness of adaptive sparsity enhanced algorithm.

  7. Phase Synchronization in Coupled Complex Systems - From Neuroscience to Climate

    NASA Astrophysics Data System (ADS)

    Kurths, Juergen

    2001-03-01

    The phenomenon of phase synchronization, especially in weakly coupled complex systems will be explained. Next it will be discussed how to identify epochs of phase synchronization in noisy data. In the second part I will demonstrate the potential of this approach for some examples from natural systems; in particular for brain and muscle activity of Parkinsonian patients, cardio-respiratory interactions in humans and rats and for a chaotically forced climate system.

  8. Phase transition of light on complex quantum networks.

    PubMed

    Halu, Arda; Garnerone, Silvano; Vezzani, Alessandro; Bianconi, Ginestra

    2013-02-01

    Recent advances in quantum optics and atomic physics allow for an unprecedented level of control over light-matter interactions, which can be exploited to investigate new physical phenomena. In this work we are interested in the role played by the topology of quantum networks describing coupled optical cavities and local atomic degrees of freedom. In particular, using a mean-field approximation, we study the phase diagram of the Jaynes-Cummings-Hubbard model on complex networks topologies, and we characterize the transition between a Mott-like phase of localized polaritons and a superfluid phase. We found that, for complex topologies, the phase diagram is nontrivial and well defined in the thermodynamic limit only if the hopping coefficient scales like the inverse of the maximal eigenvalue of the adjacency matrix of the network. Furthermore we provide numerical evidences that, for some complex network topologies, this scaling implies an asymptotically vanishing hopping coefficient in the limit of large network sizes. The latter result suggests the interesting possibility of observing quantum phase transitions of light on complex quantum networks even with very small couplings between the optical cavities.

  9. Phase-retrieval ghost imaging of complex-valued objects

    SciTech Connect

    Gong Wenlin; Han Shensheng

    2010-08-15

    An imaging approach, based on ghost imaging, is reported to recover a pure-phase object or a complex-valued object. Our analytical results, which are backed up by numerical simulations, demonstrate that both the complex-valued object and its amplitude-dependent part can be separately and nonlocally reconstructed using this approach. Both effects influencing the quality of reconstructed images and methods to further improve the imaging quality are also discussed.

  10. Slow cross-symmetry phase relaxation in complex collisions

    SciTech Connect

    Benet, L.; Chadderton, L. T.; Kun, S. Yu.; Vorov, O. K.; Wang, Q.

    2008-05-15

    We discuss the effect of slow phase relaxation and the spin off-diagonal S-matrix correlations on the cross-section energy oscillations and the time evolution of the highly excited intermediate systems formed in complex collisions. Such deformed intermediate complexes with strongly overlapping resonances can be formed in heavy-ion collisions, bimolecular chemical reactions, and atomic cluster collisions. The effects of quasiperiodic energy dependence of the cross sections, coherent rotation of the hyperdeformed {approx_equal}(3 : 1) intermediate complex, Schroedinger cat states, and quantum-classical transition are studied for {sup 24}Mg + {sup 28}Si heavy-ion scattering.

  11. Slow cross-symmetry phase relaxation in complex collisions

    NASA Astrophysics Data System (ADS)

    Benet, L.; Chadderton, L. T.; Kun, S. Yu.; Vorov, O. K.; Wang, Q.

    2008-05-01

    We discuss the effect of slow phase relaxation and the spin off-diagonal S-matrix correlations on the cross-section energy oscillations and the time evolution of the highly excited intermediate systems formed in complex collisions. Such deformed intermediate complexes with strongly overlapping resonances can be formed in heavy-ion collisions, bimolecular chemical reactions, and atomic cluster collisions. The effects of quasiperiodic energy dependence of the cross sections, coherent rotation of the hyperdeformed ≃(3 : 1) intermediate complex, Schrödinger cat states, and quantum-classical transition are studied for 24Mg + 28Si heavy-ion scattering.

  12. Methods of restoring spatial phase distribution of complex optical fields

    NASA Astrophysics Data System (ADS)

    Gorsky, M. P.; Ryabyi, P. A.; Angelsky, P. O.

    2016-09-01

    The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. It is shown that intensity distribution smoothing and bicubic spline simulation allow to bring much closer the solution of the phase problem of localization speckle-field special points.

  13. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    SciTech Connect

    Song, Wentao; Leung, Kevin; Shao, Qian; Gaskell, Karen J.; Reutt-Robey, Janice E.

    2016-09-15

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF)2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF)2, through the saturation monolayer limit, in which these two chemical species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF)2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.

  14. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    SciTech Connect

    Song, Wentao; Leung, Kevin; Shao, Qian; Gaskell, Karen J.; Reutt-Robey, Janice E.

    2016-09-15

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF)2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF)2, through the saturation monolayer limit, in which these two chemical species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF)2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.

  15. Mass Spectrometry of Protein-Ligand Complexes: Enhanced Gas Phase Stability of Ribonuclease-Nucleotide Complexes

    PubMed Central

    Yin, Sheng; Xie, Yongming; Loo, Joseph A.

    2008-01-01

    Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS). Ligand binding stoichiometry can be determined easily by the ESI-MS method. The ability to detect noncovalent protein-ligand complexes depends, however, on the stability of the complexes in the gas phase environment. Solution binding affinities may or may not be accurate predictors of their stability in vacuo. Complexes composed of cytidine nucleotides bound to ribonuclease A (RNase A) and ribonuclease S (RNase S) were detected by ESI-MS and were further analyzed by MS/MS. RNase A and RNase S share similar structures and biological activity. Subtilisin-cleavage of RNase A yields an S-peptide and an S-protein; the S-peptide and S-protein interact through hydrophobic interactions with a solution binding constant in the nanomolar range to generate an active RNase S. Cytidine nucleotides bind to the ribonucleases through electrostatic interactions with a solution binding constant in the micromolar range. Collisionally activated dissociation (CAD) of the 1:1 RNase A-CDP and CTP complexes yields cleavage of the covalent phosphate bonds of the nucleotide ligands, releasing CMP from the complex. CAD of the RNase S-CDP and CTP complexes dissociates the S-peptide from the remaining S-protein/nucleotide complex; further dissociation of the S-protein/nucleotide complex fragments a covalent phosphate bond of the nucleotide with subsequent release of CMP. Despite a solution binding constant favoring the S-protein/S-peptide complex, CDP/CTP remains electrostatically bound to the S-protein in the gas phase dissociation experiment. This study highlights the intrinsic stability of electrostatic interactions in the gas phase and the significant differences in solution and gas phase stabilities of noncovalent complexes that can result. PMID:18565758

  16. DNA-Cationic Lipid Complexes: Lamellar and Inverted Hexagonal Phases

    NASA Astrophysics Data System (ADS)

    Koltover, I.; Salditt, T.; Raedler, J.; Safinya, C.

    1998-03-01

    Cationic lipid-DNA (CL-DNA) complexes can be efficient non-viral vectors for gene therapy. However, it is not known why transfection rates vary widely for complexes with different lipid compositions. We have discovered a transition between two distinct liquid crystalline (LC) structures of the complex by varying the lipid composition: a lamellar structure ( J. Raedler, I. Koltover, T. Salditt, C. Safinya, Science 275, 810 (1997)) and a novel LC phase with DNA double-strands surrounded by lipid monolayers arranged on a regular hexagonal lattice. The CL-DNA complexes with the two structures interact differently with giant negatively charged liposomes, which represent the simplest model of cellular membranes. We demonstrate the generality of the lamellar-hexagonal transformation by observing it in complexes of cationic lipid with two other negatively charged biopolymers - polyglutamic acid (PGA), a model polypeptide and poly-thymine (polyT), a model single-stranded oligo-nucleotide. We identify the interactions leading to the transformations between the two complex phases for the three different polyelectrolytes. Supported by NSF DMR-9624091 and a Los Alamos CULAR grant No.STB/UC:95-146.

  17. Thermorheologically complex behavior of multi-phase viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Brinson, L. C.; Knauss, W. G.

    T HE DYNAMIC correspondence principle of viscoelasticity is used to study the nature of time-temperature behavior of multi-phase composites by means of finite element computation. The composite considered contains viscoelastic inclusions embedded in a viscoelastic matrix. Each phase of the composite is considered to be thermorheologically simple, but the resulting mechanical properties of the composite are thermorheologically complex. The deviation of the composite moduli from thermorheologically simple behavior of the matrix material is shown to occur at frequencies and temperatures where the glass-to-rubber transition of the included phases are reached. Properties of a styrene-butadiene-styrene (SBS) block copolymer are investigated based on the individual phase properties of polystyrene and polybutadiene. To achieve congruence of the results with experimental data, it is necessary to consider a transition phase of properties "intermediate" to those of polystyrene and polybutadiene. Using accurate physical information on the individual phase properties and on the interphase region, it is possible to predict properties of multiphase composites. Although detailed a priori knowledge of such an interphase is usually lacking, it is shown that the computational procedure presented here together with an extended range of test frequencies will aid in estimating the properties of the phase in question.

  18. Phase coexistence and competing interactions in complex oxides

    NASA Astrophysics Data System (ADS)

    Park, Soon Yong

    A significant progress in the materials physics research of the past decades, has been associated with the emerging paradigm of naturally or artificially fabricated heterogeneous structures/phases of complex materials with distinct physical phases, in which various physical degrees of freedoms are intricately coupled and charge carriers are strongly interacting. The heterogeneous structures/phases can be associated with various architectures and length-scales. For example, in the intrinsic multiferroics, magnetism and ferroelectricity are intricately mixed in atomic length-scales, but they coexist with much larger length scales such as micro-meters in the composite multiferroics. The recent investigation has revealed that the interplay between magnetism and ferroelectricity can be significant in magnetically-driven multiferroics where magnetic orders with broken inversion symmetry induce ferroelectric lattice distortions through exchange-striction. Herein, we focus on three systems with the coexistence of distinct physical phases: (1) an intrinsic multiferroic of a S = 1/2 chain cuprate, (2) a composite multiferroic fabricated by utilizing chemical/structural phase separation, and (3) a heterogeneous mixture where antiferromagnetic-insulating and high TC superconducting phases coexist. These novel systems reveal unprecedented physical properties and phenomena due to the presence of physical distinct phases in spatial proximity.

  19. Uv Spectroscopy on Gas Phase Cu(I)-BIPYRIDYL Complexes

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Christopher, Casey; Weber, J. Mathias

    2015-06-01

    Transition metal complexes with bipyridine ligands are of great interest in metal-organic chemistry, since they are prototypes for many applications in photochemistry and homogeneous catalysis. Under-coordinated bipyridyl complexes are elusive species in the condensed phase, and the ligand-induced changes in electronic structure are of fundamental interest. We present UV photodissociation spectra of mass-selected monocationic copper(I)-bipyridyl complexes [bpy-Cu-L]+ with different ligands (L = H2O, D2, N2, MeOH, Cl). Complexes were prepared via electrospray ionization of copper/bipyridine solutions followed by accumulation and buffer gas cooling in a cryogenic Paul trap. In addition, we show spectra of similar species based on copper oxide, [bpy-CuO-L]+.

  20. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  1. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    DOE PAGES

    Song, Wentao; Leung, Kevin; Shao, Qian; ...

    2016-09-15

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF)2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF)2, through the saturation monolayer limit, in which these two chemical species phasemore » separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF)2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less

  2. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes.

    PubMed

    Cao, Shiwei; Wang, Yang; Qin, Zhi; Fan, Fangli; Haba, Hiromitsu; Komori, Yukiko; Wu, Xiaolei; Tan, Cunmin; Zhang, Xin

    2016-01-07

    Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls.

  3. Gas-phase chemistry of technetium carbonyl complexes.

    PubMed

    Wang, Yang; Qin, Zhi; Fan, Fang-Li; Haba, Hiromitsu; Komori, Yukiko; Cao, Shi-Wei; Wu, Xiao-Lei; Tan, Cun-Min

    2015-05-28

    Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied.

  4. Complex direct comb spectroscopy with a virtually imaged phased array.

    PubMed

    Scholten, Sarah K; Anstie, James D; Hébert, Nicolas Bourbeau; White, Richard T; Genest, Jérôme; Luiten, Andre N

    2016-03-15

    We demonstrate a simple interferometric technique to directly measure the complex optical transmittance over a large spectral range using a frequency-comb spectrometer based on a virtually imaged phased array. A Michelson interferometer encodes the phase deviations induced by a sample contained in one of its arms into an interferogram image. When combined with an additional image taken from each arm separately, along with a frequency-calibration image, this allows full reconstruction of the sample's optical transfer function. We demonstrate the technique with a vapor cell containing H13C14N, producing transmittance and phase spectra spanning 2.9 THz (∼23  nm) with ∼1 GHz resolution.

  5. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  6. Complex PTSD and phased treatment in refugees: a debate piece

    PubMed Central

    ter Heide, F. Jackie June; Mooren, Trudy M.; Kleber, Rolf J.

    2016-01-01

    Background Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD). Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused treatment. This recommendation has contributed to a clinical practice of delaying or waiving trauma-focused treatment in refugees with PTSD. Objective The aim of this debate piece is to defend two theses: (1) that complex trauma leads to complex PTSD in a minority of refugees only and (2) that trauma-focused treatment should be offered to all refugees who seek treatment for PTSD. Methods The first thesis is defended by comparing data on the prevalence of complex PTSD in refugees to those in other trauma-exposed populations, using studies derived from a systematic review. The second thesis is defended using conclusions of systematic reviews and a meta-analysis of the efficacy of psychotherapeutic treatment in refugees. Results Research shows that refugees are more likely to meet a regular PTSD diagnosis or no diagnosis than a complex PTSD diagnosis and that prevalence of complex PTSD in refugees is relatively low compared to that in survivors of childhood trauma. Effect sizes for trauma-focused treatment in refugees, especially narrative exposure therapy (NET) and culturally adapted cognitive-behaviour therapy (CA-CBT), have consistently been found to be high. Conclusions Complex PTSD in refugees should not be assumed to be present on the basis of complex traumatic experiences but should be carefully diagnosed using a validated interview. In line with treatment guidelines for PTSD, a course of trauma-focused treatment should be offered to all refugees seeking treatment for PTSD, including asylum seekers. PMID:26886486

  7. Complex PTSD and phased treatment in refugees: a debate piece.

    PubMed

    Ter Heide, F Jackie June; Mooren, Trudy M; Kleber, Rolf J

    2016-01-01

    Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD). Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused treatment. This recommendation has contributed to a clinical practice of delaying or waiving trauma-focused treatment in refugees with PTSD. The aim of this debate piece is to defend two theses: (1) that complex trauma leads to complex PTSD in a minority of refugees only and (2) that trauma-focused treatment should be offered to all refugees who seek treatment for PTSD. The first thesis is defended by comparing data on the prevalence of complex PTSD in refugees to those in other trauma-exposed populations, using studies derived from a systematic review. The second thesis is defended using conclusions of systematic reviews and a meta-analysis of the efficacy of psychotherapeutic treatment in refugees. Research shows that refugees are more likely to meet a regular PTSD diagnosis or no diagnosis than a complex PTSD diagnosis and that prevalence of complex PTSD in refugees is relatively low compared to that in survivors of childhood trauma. Effect sizes for trauma-focused treatment in refugees, especially narrative exposure therapy (NET) and culturally adapted cognitive-behaviour therapy (CA-CBT), have consistently been found to be high. Complex PTSD in refugees should not be assumed to be present on the basis of complex traumatic experiences but should be carefully diagnosed using a validated interview. In line with treatment guidelines for PTSD, a course of trauma-focused treatment should be offered to all refugees seeking treatment for PTSD, including asylum seekers.

  8. Experimental Determination of Gas Phase Thermodynamic Properties of Bimolecular Complexes

    NASA Astrophysics Data System (ADS)

    Hansen, Anne S.; Maroun, Zeina; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2016-06-01

    Accurate determination of the atmospheric abundance of hydrogen bound bimolecular complexes is necessary, as hydrogen bonds are partly responsible for the formation and growth of aerosol particles. The abundance of a complex is related to the Gibbs free energy of complex formation (Δ G), which is often obtained from quantum chemical calculations that rely on calculated values of the enthalpy (Δ H) and entropy (Δ S) of complex formation. However, calculations of Δ H and in particular Δ S are associated with large uncertainties, and accurate experimental values are therefore crucial for theoretical benchmarking studies. Infrared measurements of gas phase hydrogen bound complexes were performed in the 300 to 373 K range, and lead to a purely experimental determination of Δ H using the van't Hoff equation. Equilibrium constants were determined by combining an experimental and calculated OH-stretching intensity, from which values of Δ G and hence Δ S could be determined. Thus we can determine Δ G, Δ H and Δ S for a bimolecular complex. We find that in the 300 to 373 K temperature range the determined Δ H and Δ S values are independent of temperature.

  9. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  10. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  11. Using lanthanoid complexes to phase large macromolecular assemblies.

    PubMed

    Talon, Romain; Kahn, Richard; Durá, M Asunción; Maury, Olivier; Vellieux, Frédéric M D; Franzetti, Bruno; Girard, Eric

    2011-01-01

    Lanthanoid ions exhibit extremely large anomalous X-ray scattering at their L(III) absorption edge. They are thus well suited for anomalous diffraction experiments. A novel class of lanthanoid complexes has been developed that combines the physical properties of lanthanoid atoms with functional chemical groups that allow non-covalent binding to proteins. Two structures of large multimeric proteins have already been determined by using such complexes. Here the use of the luminescent europium tris-dipicolinate complex [Eu(DPA)(3)](3-) to solve the low-resolution structure of a 444 kDa homododecameric aminopeptidase, called PhTET1-12s from the archaea Pyrococcus horikoshii, is reported. Surprisingly, considering the low resolution of the data, the experimental electron density map is very well defined. Experimental phases obtained by using the lanthanoid complex lead to maps displaying particular structural features usually observed in higher-resolution maps. Such complexes open a new way for solving the structure of large molecular assemblies, even with low-resolution data.

  12. Collective Atomic Displacements during Complex Phase Boundary Migration in Solid-Solid Phase Transformations.

    PubMed

    Duncan, Juliana; Harjunmaa, Ari; Terrell, Rye; Drautz, Ralf; Henkelman, Graeme; Rogal, Jutta

    2016-01-22

    The A15 to bcc phase transition is simulated at the atomic scale based on an interatomic potential for molybdenum. The migration of the phase boundary proceeds via long-range collective displacements of entire groups of atoms across the interface. To capture the kinetics of these complex atomic rearrangements over extended time scales we use the adaptive kinetic Monte Carlo approach. An effective barrier of 0.5 eV is determined for the formation of each new bcc layer. This barrier is not associated with any particular atomistic process that governs the dynamics of the phase boundary migration. Instead, the effective layer transformation barrier represents a collective property of the complex potential energy surface.

  13. Generalizing the Boltzmann equation in complex phase space

    NASA Astrophysics Data System (ADS)

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014), 10.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015), 10.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.

  14. Generalizing the Boltzmann equation in complex phase space.

    PubMed

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.

  15. Quantum trajectories in complex phase space: multidimensional barrier transmission.

    PubMed

    Wyatt, Robert E; Rowland, Brad A

    2007-07-28

    The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined.

  16. Topological phases in complex oxide interfaces and heterostructures

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory A.

    2013-03-01

    In this talk we highlight recent theoretical work from our group aimed at identifying complex oxide interfaces and heterostructures that are expected to support topological phases, namely the Z2 time-reversal invariant topological insulator and the zero magnetic field Chern insulator, or quantum anomalous Hall state. We focus on two particular systems: (1) Perovskites of the form ABO3 and (2) Pyrochlores of the form A2B2O7 where A is usually a rare earth element and B is a transition metal element. One of our main results is that thin film growth along the [111] direction is favorable for the realization of topological phases in experiment. We lay out the most important film properties that appear to favor topological phases and discuss the different physics associated with realizing topological phases in 3d, 4d, and the heaviest 5d-based transition metal oxide systems. Key open questions and experimental challenges are presented, as well as the potential advantages that oxide systems offer over the Bi-based topological insulator material class in device applications. Work done in collaboration with Andreas Ruegg, Xiang Hu, Chandrima Mitra, and Alex Demkov. We gratefully acknowledge financial support from grants ARO W911NF-09-1-0527 and NSF DMR-0955778.

  17. Control of complex components with Smart Flexible Phased Arrays.

    PubMed

    Casula, O; Poidevin, C; Cattiaux, G; Dumas, Ph

    2006-12-22

    The inspection is mainly performed in contact with ultrasonic wedge transducers; However, the shape cannot fit the changing geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam.... Flexible phased arrays have been developed to fit the complex profile and improve such controls. The radiating surface is composed with independent piezoelectric elements mechanically assembled and a profilometer, embedded in the transducer, measures the local distortion. The computed shape is used by an algorithm to compute in real-time the adapted delay laws compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviors of these probes.

  18. Artificial neural networks using complex numbers and phase encoded weights.

    PubMed

    Michel, Howard E; Awwal, Abdul Ahad S

    2010-04-01

    The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons.

  19. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    PubMed Central

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  20. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-06-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows.

  1. Structural Phase Diagrams for Dendrimer:DNA Complexes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Pfohl, T.; Martin, A.; Safinya, C. R.

    2002-03-01

    Polypropylene imine (PPI) dendrimers become positively charged in aqueous solution and are consequently a useful tool for packaging DNA in gene delivery applications. Studies of PPI and DNA help to improve the efficiency of DNA delivery as well as model more complex biological systems such as histones. PPI is synthesized in a stepwise manner, and at each step the product is referred to as a generation (G1 through G5). We show structural phase diagrams based on synchrotron x-ray diffraction as a function of PPI/DNA charge ratio (P/D). At lower generations PPI bundling with DNA is similar to DNA condensation caused by small multivalent salts such as spermidine. Remarkably, for G4 and G5 distinct structural transitions are seen with increasing P/D. In particular, G4:DNA complexes show a salt-like bundling at low P/D, followed by both square and hexagonal lattices with addition of PPI. Optical microscopy and supporting size and charge measurements will also be shown. Funding provided by NIH GM59288 and NSF DMR-9972246.

  2. Strain rate behaviour of multi-phase and complex-phase steels for automotive applications

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Singha, M. K.; Gupta, N. K.

    2012-08-01

    A combined study on the mechanical behaviour of multi-phase 800 high yield strength steel (MP800HY) and complex-phase 800 steel (CP800) is carried out under tensile loads in the strain rate range from 0.001s-1 to 750s-1. Quasi-static (0.001s-1) tests are performed on electromechanical machine, whereas, medium (5s-1 and 25s-1) and high strain rate (250s-1, 500s-1 and 750s-1) experiments are conducted on hydro-pneumatic machine (HPM) and modified Hopkinson bar (MHB) setup respectively. The thermal softening behaviors of the materials are investigated at quasi-static condition and the materials' m-parameters of the existing Johnson-Cook model are imposed in authors' previous work. Thereafter, the predicted flow stress by Johnson-Cook model has been compared with the experimental results.

  3. Vertical blind phase search for low-complexity carrier phase recovery of offset-QAM Nyquist WDM transmission

    NASA Astrophysics Data System (ADS)

    Lu, Jianing; Fu, Songnian; Tang, Haoyuan; Xiang, Meng; Tang, Ming; Liu, Deming

    2017-01-01

    Low complexity carrier phase recovery (CPR) scheme based on vertical blind phase search (V-BPS) for M-ary offset quadrature amplitude modulation (OQAM) is proposed and numerically verified. After investigating the constellations of both even and odd samples with respect to the phase noise, we identify that the CPR can be realized by measuring the verticality of constellation with respect to different test phase angles. Then measurement without multiplication in the complex plane is found with low complexity. Furthermore, a two-stage configuration is put forward to further reduce the computational complexity (CC). Compared with our recently proposed modified blind phase search (M-BPS) algorithm, the proposed algorithm shows comparable tolerance of phase noise, but reduces the CC by a factor of 3.81 (or 3.05) in the form of multipliers (or adders), taking the CPR of 16-OQAM into account.

  4. A phased approach to enable hybrid simulation of complex structures

    NASA Astrophysics Data System (ADS)

    Spencer, Billie F.; Chang, Chia-Ming; Frankie, Thomas M.; Kuchma, Daniel A.; Silva, Pedro F.; Abdelnaby, Adel E.

    2014-08-01

    Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation, critical parts of a structure are physically tested, while the remaining portions of the system are concurrently simulated computationally, typically using a finite element model. This combination is realized through a numerical time-integration scheme, which allows for investigation of full system-level responses of a structure in a cost-effective manner. However, conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example, the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules (e.g., loading controllers, data acquisition systems, simulation coordinator). These problems can cause the simulation to stop suddenly, and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity large-scale hybrid simulation. In this approach, a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing, mature hybrid simulation framework, which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation (MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation (NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example, in which three piers are

  5. Phase transitions in the quadratic contact process on complex networks

    NASA Astrophysics Data System (ADS)

    Varghese, Chris; Durrett, Rick

    2013-06-01

    The quadratic contact process (QCP) is a natural extension of the well-studied linear contact process where infected (1) individuals infect susceptible (0) neighbors at rate λ and infected individuals recover (10) at rate 1. In the QCP, a combination of two 1's is required to effect a 01 change. We extend the study of the QCP, which so far has been limited to lattices, to complex networks. We define two versions of the QCP: vertex-centered (VQCP) and edge-centered (EQCP) with birth events 1-0-11-1-1 and 1-1-01-1-1, respectively, where “-” represents an edge. We investigate the effects of network topology by considering the QCP on random regular, Erdős-Rényi, and power-law random graphs. We perform mean-field calculations as well as simulations to find the steady-state fraction of occupied vertices as a function of the birth rate. We find that on the random regular and Erdős-Rényi graphs, there is a discontinuous phase transition with a region of bistability, whereas on the heavy-tailed power-law graph, the transition is continuous. The critical birth rate is found to be positive in the former but zero in the latter.

  6. Phase Transitions in the Quadratic Contact Process on Complex Networks

    NASA Astrophysics Data System (ADS)

    Varghese, Chris; Durrett, Rick

    2013-03-01

    The quadratic contact process (QCP) is a natural extension of the well studied linear contact process where a single infected (1) individual can infect a susceptible (0) neighbor and infected individuals are allowed to recover (1 --> 0). In the QCP, a combination of two 1's is required to effect a 0 --> 1 change. We extend the study of the QCP, which so far has been limited to lattices, to complex networks as a model for the change in a population via sexual reproduction and death. We define two versions of the QCP - vertex centered (VQCP) and edge centered (EQCP) with birth events 1 - 0 - 1 --> 1 - 1 - 1 and 1 - 1 - 0 --> 1 - 1 - 1 respectively, where ` -' represents an edge. We investigate the effects of network topology by considering the QCP on regular, Erdős-Rényi and power law random graphs. We perform mean field calculations as well as simulations to find the steady state fraction of occupied vertices as a function of the birth rate. We find that on the homogeneous graphs (regular and Erdős-Rényi) there is a discontinuous phase transition with a region of bistability, whereas on the heavy tailed power law graph, the transition is continuous. The critical birth rate is found to be positive in the former but zero in the latter.

  7. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    PubMed Central

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-01-01

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707

  8. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    PubMed

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  9. Phase effects on the perceived elevation of complex tones

    PubMed Central

    Hartmann, William M.; Best, Virginia; Leung, Johahn; Carlile, Simon

    2010-01-01

    Free-field source localization experiments with 30 source locations, symmetrically distributed in azimuth, elevation, and front-back location, were performed with periodic tones having different phase relationships among their components. Although the amplitude spectra were the same for these different kinds of stimuli, the tones with certain phase relationships were successfully localized while the tones with other phases led to large elevation errors and front-back reversals, normally growing with stimulus level. The results show that it is not enough to have a smooth, broadband, long-term signal spectrum for successful sagittal-plane localization. Instead, temporal factors are important. A model calculation investigates the idea that the tonotopic details that mediate localization need to be simultaneously, or almost simultaneously, accessible in the auditory system in order to achieve normal elevation perception. A qualitative model based on lateral inhibition seems capable in principle of accounting for both the phase effects and level effects. PMID:21117755

  10. Complex motion of a vehicle through a series of signals controlled by power-law phase

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  11. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  12. Seeing spots: complex phase behavior in simple membranes.

    PubMed

    Veatch, Sarah L; Keller, Sarah L

    2005-12-30

    Liquid domains in model lipid bilayers are frequently studied as models of raft domains in cell plasma membranes. Micron-scale liquid domains are easily produced in vesicles composed of ternary mixtures of a high melting temperature lipid, a low melting temperature lipid, and cholesterol. Here, we describe the rich phase behavior observed in binary and ternary systems. We then discuss experimental challenges inherent in mapping phase diagrams of even simple lipid systems. For example, miscibility behavior varies with lipid type, lipid ratio, lipid oxidation, and level of impurity. Liquid domains are often circular, but can become noncircular when membranes are near critical points. Finally, we reflect on applications of phase diagrams in model systems to rafts in cell membranes.

  13. Pixelated phase computer holograms for the accurate encoding of scalar complex fields.

    PubMed

    Arrizón, Victor; Ruiz, Ulises; Carrada, Rosibel; González, Luis A

    2007-11-01

    We discuss a class of phase computer-generated holograms for the encoding of arbitrary scalar complex fields. We describe two holograms of this class that allow high quality reconstruction of the encoded field, even if they are implemented with a low-resolution pixelated phase modulator. In addition, we show that one of these holograms can be appropriately implemented with a phase modulator limited by a reduced phase depth.

  14. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  15. Toward complex visibilities using optical interferometry: multiwavelength phase referencing

    NASA Astrophysics Data System (ADS)

    Pauls, Thomas A.; Schmitt, Henrique R.; Tycner, Christopher; Armstrong, J. Thomas; Benson, James A.; Clark, James H.; Gilbreath, G. Charmaine; Hindsley, Robert B.; Hutter, Donald J.; Jorgensen, Anders M.

    2006-06-01

    We report on experiments in multi-wavelength phase referencing using the Navy Prototype Optical Interferometer (NPOI). In these experiments we use the unique capability of the NPOI to simultaneously observe 16 spectral channels covering 512-850 nm on multiple baselines simultaneously. We present observations of the well-known Be star ζ Tauri using custom filters which allow us to isolate the Hα line in a single spectral channel while the other channels observe the stellar continuum. Since the central star is unresolved, we can use the data in the continuum channels to calibrate the spectral line data. Using the phase information recovered in this way, it is possible for the first time to use standard techniques to construct simple images of the line-emitting region around the star.

  16. Onset of chaotic phase synchronization in complex networks of coupled heterogeneous oscillators.

    PubMed

    Ricci, Francesco; Tonelli, Roberto; Huang, Liang; Lai, Ying-Cheng

    2012-08-01

    Existing studies on network synchronization focused on complex networks possessing either identical or nonidentical but simple nodal dynamics. We consider networks of both complex topologies and heterogeneous but chaotic oscillators, and investigate the onset of global phase synchronization. Based on a heuristic analysis and by developing an efficient numerical procedure to detect the onset of phase synchronization, we uncover a general scaling law, revealing that chaotic phase synchronization can be facilitated by making the network more densely connected. Our methodology can find applications in probing the fundamental network dynamics in realistic situations, where both complex topology and complicated, heterogeneous nodal dynamics are expected.

  17. Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems.

    PubMed

    Gao, Yuliang; Lau, Alan Pak Tao; Yan, Shuangyi; Lu, Chao

    2011-10-24

    A low-complexity feed-forward carrier phase estimation (CPE) technique is presented for dual-polarization (DP)-16-QAM transmission systems. By combining QPSK partitioning, maximum likelihood (ML) detection and phase offset estimation between signals in different polarizations, simulation and experimental results for a 200 Gb/s DP-16-QAM system demonstrate similar linewidth tolerance to the best feed-forward CPE reported to date while the computational complexity is at least three times lower compared with other simplified feed-forward CPE techniques.

  18. Effect of "phase change" complex on postoperative adhesion prevention.

    PubMed

    Li, Xiao-Dong; Xia, Dong-Lin; Shen, Ling-Ling; He, Hong; Chen, Chao; Wang, Yu-Fei; Chen, Yan-Pei; Guo, Ling-Yan; Gu, Hai-Ying

    2016-05-01

    Postsurgical peritoneal adhesion is a major clinical problem. Numerous anti-adhesion products have been studied, but none could be easily used to provide a physical barrier. In this study, we developed a "phase change" anti-adhesion barrier for reducing peritoneal adhesion by cross-linked copolymerization of O-carboxymethyl chitosan (CMC) and CaCl2 and addition of cyclosporin A (CsA). The CMC-CaCl2-CsA compound was characterized by equilibrium swelling rate, weight loss, releasing effect, and coagulation test, and its biosafety was characterized by acute oral toxicity, hemolysis, and cytotoxicity. Intestinal adhesion model was applied on 64 Sprague-Dawley rats, which received CMC, CMC-CaCl2, or CMC-CaCl2-CsA treatment. At postoperative days 7 and 14, the rats were euthanized, and adhesions were graded by an investigator blinded to the treatment groups, using a predetermined adhesion scoring system. The cecum and adhesion tissue were stained with hematoxylin and eosin and antibodies for matrix metalloproteinase-9 and TIMP-1 for further histopathologic examination. The phase change anti-adhesive material exhibited effective blood clotting and were nontoxic in clotting experiments and acute toxicity test. The degradation rate could be adjusted using phosphate-buffered solution with varying pH. Adhesions were significantly reduced in the CMC-CaCl2-CsA treatment group compared with the control group (P < 0.001). Expression of matrix metalloproteinase-9 was stronger in CMC-CaCl2-CsA treatment group at 7 days after surgery. "Phase-change" adhesive can undergo changes after application, and it inhibits the formation of abdominal adhesions after surgery. The material is convenient for using by surgeons and provides an effective tool for intestinal adhesion prevention. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Experimental phase synchronization detection in non-phase coherent chaotic systems by using the discrete complex wavelet approach

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.

    2017-08-01

    Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.

  20. Statistical energy analysis of complex structures, phase 2

    NASA Technical Reports Server (NTRS)

    Trudell, R. W.; Yano, L. I.

    1980-01-01

    A method for estimating the structural vibration properties of complex systems in high frequency environments was investigated. The structure analyzed was the Materials Experiment Assembly, (MEA), which is a portion of the OST-2A payload for the space transportation system. Statistical energy analysis (SEA) techniques were used to model the structure and predict the structural element response to acoustic excitation. A comparison of the intial response predictions and measured acoustic test data is presented. The conclusions indicate that: the SEA predicted the response of primary structure to acoustic excitation over a wide range of frequencies; and the contribution of mechanically induced random vibration to the total MEA is not significant.

  1. The Hume-Rothery Rules for Structurally Complex Alloy Phases

    NASA Astrophysics Data System (ADS)

    Mizutani, Uichiro

    The underlying physics behind the Hume-Rothery rules, which have earned great reputations over the past century in the field of materials science in designing new alloys, is reviewed. The discussion is developed following several key themes: (a) what is the critical depth and width of the pseudo-gap to stabilize a complex metallic alloy?, (b) what does the Hume-Rothery stabilization mechanism mean?, (c) the existence of FsBz-induced and orbital hybridization-induced pseudo-gaps, (d) the need of distinguishing two different electron concentrations e/a and VEC, (e) are most quasicrystals really scaled in terms of e/a and stabilized via the FsBz-induced pseudo-gap mechanism? The answer is "no".

  2. MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR COMPLEX FLUIDS

    SciTech Connect

    Athanassios Z. Panagiotopoulos

    2009-09-09

    The general area of this project was the development and application of novel molecular simulation methods for prediction of thermodynamic and structural properties of complex polymeric, surfactant and ionic fluids. Over this project period, we have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong or long-range interactions in these systems and have generated data for well-defined mod-els that can be used to test theories and compare to experimental data. Overall, 42 archival papers and many invited and contributed presentations and lectures have been based on work supported by this project. 6 PhD, 1 M.S. and 2 postdoctoral students have been associated with this work, as listed in the body of the report.

  3. Topological phase transition of a fractal spin system: The relevance of the network complexity

    NASA Astrophysics Data System (ADS)

    Torres, Felipe; Rogan, José; Kiwi, Miguel; Valdivia, Juan Alejandro

    2016-05-01

    A new type of collective excitations, due to the topology of a complex random network that can be characterized by a fractal dimension DF, is investigated. We show analytically that these excitations generate phase transitions due to the non-periodic topology of the DF > 1 complex network. An Ising system, with long range interactions, is studied in detail to support the claim. The analytic treatment is possible because the evaluation of the partition function can be decomposed into closed factor loops, in spite of the architectural complexity. The removal of the infrared divergences leads to an unconventional phase transition, with spin correlations that are robust against thermal fluctuations.

  4. The phase delay and its complex time: From stationary states up to wave packets

    SciTech Connect

    Grossel, Ph.

    2013-03-15

    Complex time is often invoked about tunneling effect where the classical phase delay is completed with a crucial filter effect. Usually the complex times are obtained by considering the flux-flux correlation function, but this can be obtained by a very simple approach using the search of the maximum of the generalized complex phase function, including the amplitude of the wave function. Various aspects of the phase delay are presented in the case of wave packets impinging on simple or resonant quantum barriers. Formal links with the classical mechanics give birth to quasi-trajectories of the quantum particle, totally compatible with the quantum mechanics. - Highlights: Black-Right-Pointing-Pointer The stationary phase method is extended in including the variations of the spectra. Black-Right-Pointing-Pointer The complex phase delay leads to a complex trajectory inside and out-side the barrier. Black-Right-Pointing-Pointer Examples of quasi-trajectories are given in case of different quantum barriers. Black-Right-Pointing-Pointer Phase delays are specified for resonant tunneling or above-barrier wave-packets. Black-Right-Pointing-Pointer The coherence between the quasi-trajectories and quantum mechanics is shown.

  5. Complex metallic surface phases in the Al/Cu(111) system: An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Gaudry, E.; Deniozou, T.; Ledieu, J.; de Weerd, M. C.; Belmonte, T.; Dubois, J. M.; Fournée, V.

    2009-11-01

    The growth of complex intermetallics as surface alloys is investigated by annealing Al thin films deposited on Cu(111) substrate in ultrahigh vacuum. Already at room temperature, the large lattice mismatch between Al and Cu results in interfacial intermixing. Upon annealing, various phases are formed by diffusion depending on the thickness of the Al films and the annealing temperature. The surface structures are characterized by scanning tunneling microscopy, low-energy electron diffraction, and x-ray photoelectron spectroscopy. Three different superlattice phases are identified as well as the complex Hume-Rothery γ-Al4Cu9 phase. The epitaxial relationships between the surface phases and the Cu(111) substrate are determined. We further investigate the electronic structure of the γ phase by density functional calculations. Experimental valence bands are compared to calculated density of states and simulated STM images are used to identify possible bulk planes appearing as surface termination.

  6. The use of imagery in phase 1 treatment of clients with complex dissociative disorders

    PubMed Central

    van der Hart, Onno

    2012-01-01

    The “standard of care” for clients with complex dissociative disorders and other complex trauma-related disorders is phase-oriented treatment. Within this frame, therapeutic progress can be enhanced by the use of imagery-based therapeutic techniques. In this article, the emphasis is on their application in phase 1 treatment, stabilization, symptom reduction, and skills training, but attention is also paid to applications in phase 2 and phase 3 treatment. Many of the existing imagery techniques are geared toward clients becoming more able to function in a more adaptive way in daily life, which, however, requires the involvement of various dissociative parts of the personality. Such collaborative involvement is also essential in the later treatment phases. Therefore, understanding the dissociative nature of these disorders is helpful in the judicious application of these techniques. PMID:22893843

  7. Numerical estimation of the total phase shift in complex spectral OCT in vivo imaging

    NASA Astrophysics Data System (ADS)

    Cyganek, Marta; Wojtkowski, Maciej; Targowski, Piotr; Kowalczyk, Andrzej

    2004-07-01

    Complex Spectral Optical Tomography (CSOCT) in comparison to ordinary SOCT produces images free of parasitic mirror terms which results in double extension of the measurement range. This technique, however, requires the exact knowledge about the values of the introduced phase shifts in consecutive measurements. Involuntary object movements, which shift the phase from one measurement to another are always present in in vivo experiments. This introduces residual ghosts in cross-sectional images. Here we present a new method of data analysis, which allows determining the real phase shifts introduced during the measurement, and which helps to reduce the ghost effect. Two-dimensional cross-sectional in vivo images of human eye and skin obtained with the aid of this improved complex spectral OCT technique are shown. The method is free of polychromatic phase error originating from the wavelength dependence of the phase shift introduced by the reference mirror translation.

  8. Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases

    PubMed Central

    Sato, Hisako; Yamagishi, Akihiko

    2009-01-01

    The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959

  9. Probing the energetics of dissociation of carbonic anhydrase-ligand complexes in the gas phase.

    PubMed Central

    Gao, J; Wu, Q; Carbeck, J; Lei, Q P; Smith, R D; Whitesides, G M

    1999-01-01

    This paper describes the use of electrospray ionization-Fourier transform ion cyclotron mass spectrometry (ESI-FTICR-MS) to study the relative stabilities of noncovalent complexes of carbonic anhydrase II (CAII, EC 4.2.1.1) and benzenesulfonamide inhibitors in the gas phase. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) was used to determine the energetics of dissociation of these CAII-sulfonamide complexes in the gas phase. When two molecules of a benzenesulfonamide (1) were bound simultaneously to one molecule of CAII, one of them was found to exhibit significantly weaker binding (DeltaE50 = 0.4 V, where E50 is defined as the amplitude of sustained off-resonance irradiation when 50% of the protein-ligand complexes are dissociated). In solution, the benzenesulfonamide group coordinates as an anion to a Zn(II) ion bound at the active site of the enzyme. The gas phase stability of the complex with the weakly bound inhibitor was the same as that of the inhibitor complexed with apoCAII (i.e., CAII with the Zn(II) ion removed from the binding site). These results indicate that specific interactions between the sulfonamide group on the inhibitor and the Zn(II) ion on CAII were preserved in the gas phase. Experiments also showed a higher gas phase stability for the complex of para-NO2-benzenesulfonamide-CAII than that for ortho-NO2-benzenesulfonamide-CAII complex. This result further suggests that steric interactions of the inhibitors with the binding pocket of CAII parallel those in solution. Overall, these results are consistent with the hypothesis that CAII retains, at least partially, the structure of its binding pocket in the gas phase on the time scale (seconds to minutes) of the ESI-FTICR measurements. PMID:10354450

  10. Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide

    PubMed Central

    2013-01-01

    Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709

  11. A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Cao, Ye; Tong, Zheng-rong; Yang, Jing-peng

    2017-01-01

    A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and radio-frequency (RF) phase modulation sidebands. By controlling the FD-OP, the frequency response of the filter can be tuned in the full free spectral range ( FSR) without changing the shape and the FSR of the frequency response. The results show that the center frequency of the notch filter can be continuously tuned from 17.582 GHz to 29.311 GHz with FSR of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.

  12. Defect-mediated spatial complexity and chaos in a phase-conjugate resonator

    NASA Technical Reports Server (NTRS)

    Indebetouw, Guy; Liu, Siuying R.

    1992-01-01

    We have studied the spatiotemporal dynamics of a phase-conjugate resonator. The cavity Fresnel number is used to vary the degree of transverse confinement of the system. The generation and subsequent motion of the phase defects in the wave front are seen to mediate the system's dynamics. The number of defects and the complexity of their motion increases as the confinement is relaxed, leading the system through a sequence of bifurcations and eventually to chaos.

  13. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    NASA Astrophysics Data System (ADS)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  14. Synthesis of complex oxide phases by using of low hydrated niobium and tantalum hydroxides

    SciTech Connect

    Drobot, D.; Nikishina, E.; Lebedeva, E.; Novoselov, A. Yoshikawa, A.

    2008-05-06

    Promising method of complex oxide phases synthesis by using low hydrated hydroxides of niobium and tantalum (Nb,Ta)O{sub x}(OH){sub 5-x}.mH{sub 2}O precursors of high reactivity and sorption ability was developed. Precursors, intermediate products of synthesis and target materials were studied by thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Sorption process of magnesium and lead cations by niobium low hydrated hydroxide from acetic solution allows obtaining PbMg{sub 1/3}Nb{sub 2/3}O{sub 3} complex perovskite without any secondary phase.

  15. Phase-lag synchronization analysis in complex systems with directed inter-relations

    NASA Astrophysics Data System (ADS)

    Martins, V. S. G.; Rodrigues, A. C.; Cerdeira, H. A.; Machado, B. S.

    2016-02-01

    In this work, we proposed a novel way to estimate phase-lag synchronization in coupled systems. This approach was applied into two systems: a directed-coupled Rössler-Lorenz system and a network of Izhikevich neurons. For the former case, the phase-lag synchronization revealed an increase in complexity for the Lorenz subsystem components, when the coupling is activated. The opposite behavior was observed when the Izhikevich network were organized in a hierarchical way. Our results point out to emergent synchronism related to causal interactions in coupled complex systems.

  16. Perfluoro-alcohol-induced complex coacervates of polyelectrolyte-surfactant mixtures: phase behavior and analysis.

    PubMed

    Nejati, Mahboubeh M; Khaledi, Morteza G

    2015-05-26

    Perfluorinated alcohols and acids such as hexafluoroisopropanol (HFIP), trifluoroethanol, trifluoroacetic acid, pentafluoropropionic acid, and heptafluorobutyric acid induce coacervation and phase separation in aqueous solutions of a wide variety of individual and mixed amphiphiles [ Khaledi Langmuir 2013 , 29 , 2458 ]. This paper focuses on HFIP-induced complex coacervate formation in the mixtures of anionic polyelectrolytes, such as sodium salt of poly(methacrylic acid) (PMA) or poly(acrylic acid) (PAA) and cationic surfactants of alkyltrimethylammonium bromides. In purely aqueous media and over a wide concentration range, mixtures of PMA and CTAB form the catanionic complex (CTA(+)PM(-)) that is insoluble in water (white precipitate). Upon addition of a small percentage of HFIP, the mixture goes through phase transition and formation of two distinctly clear liquid phases. The phase diagram for the HFIP-PMA-CTAB coacervate system was studied. The coacervate volume was determined as a function of system variables such as charge ratio as well as total and individual concentrations of the system components. These results, combined with the chemical composition analysis of the separated aqueous top-phase and coacervate bottom-phase, shed light on the coacervation mechanism. The results suggest that exchange of counterions and ion-pair formation play critical roles in the coacervation process. This process facilitated by HFIP through solvation of the head groups and dehydration of the hydrophobic moieties of the catanionic complex. Because of the presence of HFIP, coacervation occurs over a wide range of concentrations and charge ratios of the oppositely charged polyelectrolyte and surfactant.

  17. Ratioed scatter diagrams - An erotetic method for phase identification on complex surfaces using scanning Auger microscopy

    NASA Technical Reports Server (NTRS)

    Browning, R.

    1984-01-01

    By ratioing multiple Auger intensities and plotting a two-dimensional occupational scatter diagram while digitally scanning across an area, the number and elemental association of surface phases can be determined. This can prove a useful tool in scanning Auger microscopic analysis of complex materials. The technique is illustrated by results from an anomalous region on the reaction zone of a SiC/Ti-6Al-4V metal matrix composite material. The anomalous region is shown to be a single phase associated with sulphur and phosphorus impurities. Imaging of a selected phase from the ratioed scatter diagram is possible and may be a useful technique for presenting multiple scanning Auger images.

  18. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  19. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  20. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    SciTech Connect

    Kumar, Nitesh; Raman, N.; Sundaresan, A.

    2013-12-15

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel–thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS{sub 2} nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni{sub 3}S{sub 2} (800 °C) are formed. NiS{sub 2} nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni{sub 3}S{sub 2} nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS{sub 2} and NiS are semiconductors whereas Ni{sub 3}S{sub 2} is a metal. - Graphical abstract: Pure phases of NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} have been obtained by thermal decomposition of nickel–thiourea complex wherein, NiS{sub 2} nanoparticles exhibit remarkable exchange bias effect at 2 K. - Highlights: • NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} nanoparticles are obtained by thermal decomposition of nickel–thiourea complex at different temperatures. • As the temperature is increased, nickel sulphide phase with lesser sulphur content is obtained. • NiS{sub 2} nanoparticles show good exchange bias property which can be explained by antiferromagnetic core and ferromagnetic shell model. • NiS{sub 2} and NiS are semiconducting while Ni{sub 3}S{sub 2} shows metallic behavior.

  1. Vibrational spectra of discrete UO22+ halide complexes in the gas phase

    SciTech Connect

    Gary S. Groenewold; Michael J. van Stipdonk; Wibe A. de Jong; Jos Oomens; Garold L. Gresham

    2010-11-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions, that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition [UO2(X)(ACO)3]+ (X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric v3 UO2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter the binding in the complex. The v3 peak in the spectrum of the F-containing complex was ~ 10 cm-1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to the blue was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the v1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes were conducted by measuring the v3 UO2 frequencies of [UO2X3]-, where X = Cl-, Br- and I-. The trifluoro complex could not be photodissociated. In these negatively charged complexes, the UO2 v3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that dissociation

  2. Surface estimation methods with phased-arrays for adaptive ultrasonic imaging in complex components

    NASA Astrophysics Data System (ADS)

    Robert, S.; Calmon, P.; Calvo, M.; Le Jeune, L.; Iakovleva, E.

    2015-03-01

    Immersion ultrasonic testing of structures with complex geometries may be significantly improved by using phased-arrays and specific adaptive algorithms that allow to image flaws under a complex and unknown interface. In this context, this paper presents a comparative study of different Surface Estimation Methods (SEM) available in the CIVA software and used for adaptive imaging. These methods are based either on time-of-flight measurements or on image processing. We also introduce a generalized adaptive method where flaws may be fully imaged with half-skip modes. In this method, both the surface and the back-wall of a complex structure are estimated before imaging flaws.

  3. Cobalt pivalate complex as a catalyst for liquid phase oxidation of n-hexane

    NASA Astrophysics Data System (ADS)

    Moskovskaya, I. F.; Maerle, A. A.; Shvydkiy, N. V.; Romanovsky, B. V.; Ivanova, I. I.

    2015-09-01

    Catalytic properties of cobalt(II) pivalate complex as both individual and supported on mesoporous molecular sieves Si-KIT-6, Al-KIT-6, and Ce-KIT-6 were investigated in liquid-phase oxidation of n-hexane with molecular oxygen. This complex was shown to be an active and selective catalyst for the oxidation of n-C6H14 into C1-C4 carboxylic acids. The activity of Co(II) pivalate remains practically unchanged on heterogenizing the complex on molecular sieve supports. At the same time, its selectivity and resistance towards an oxidative degradation are slightly increased.

  4. Parasitoid Complex of the Gypsy Moth (Lymantria dispar) in the Increase-phase Populations in Korea

    USDA-ARS?s Scientific Manuscript database

    The species composition of the parasitoid complex and the degree of parasitism by each species were analyzed for gypsy moth (Lymantria dispar) populations in the increasing phase. Total of 7,826 mid-late instar larvae and pupae were collected and reared from two collection sites in Gangwon Province,...

  5. Phase Transitions in Development of Writing Fluency from a Complex Dynamic Systems Perspective

    ERIC Educational Resources Information Center

    Baba, Kyoko; Nitta, Ryo

    2014-01-01

    This study explored patterns in L2 writing development by focusing on one of the linguistic features of texts (fluency) from a complex dynamic systems perspective. It investigated whether two English-as-a-foreign-language university students would experience discontinuous change (phase transition) in their writing fluency through repetition of a…

  6. Phase Transitions in Development of Writing Fluency from a Complex Dynamic Systems Perspective

    ERIC Educational Resources Information Center

    Baba, Kyoko; Nitta, Ryo

    2014-01-01

    This study explored patterns in L2 writing development by focusing on one of the linguistic features of texts (fluency) from a complex dynamic systems perspective. It investigated whether two English-as-a-foreign-language university students would experience discontinuous change (phase transition) in their writing fluency through repetition of a…

  7. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes.

    PubMed

    Malcho, Phillip; Garcia-Suarez, Eduardo J; Mentzel, Uffe Vie; Engelbrekt, Christian; Riisager, Anders

    2014-12-14

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic and aliphatic aldehydes achieving excellent results in terms of both conversion and selectivity.

  8. Electrical, magnetic, and thermal properties of the δ-FeZn10 complex intermetallic phase

    NASA Astrophysics Data System (ADS)

    Jazbec, S.; Koželj, P.; Vrtnik, S.; Jagličić, Z.; Popčević, P.; Ivkov, J.; Stanić, D.; Smontara, A.; Feuerbacher, M.; Dolinšek, J.

    2012-08-01

    We report the electrical, magnetic, and thermal properties of the δ-FeZn10 phase in the zinc-rich domain of the Fe-Zn system. The δ-FeZn10 phase possesses high structural complexity typical of complex metallic alloys: a giant unit cell comprising 556 atoms, polyhedral atomic order with icosahedrally coordinated environments, fractionally occupied lattice sites, and statistically disordered atomic clusters that introduce intrinsic disorder into the structure. Structural disorder results in suppression of the electrical and heat transport phenomena, making δ-FeZn10 a poor electrical and thermal conductor. Structural complexity results in a complex electronic structure that is reflected in the opposite signs of the thermoelectric power and the Hall coefficient. The δ-FeZn10 phase is paramagnetic down to the lowest investigated temperature of 2 K with a significant interspin coupling of antiferromagnetic type. Specific heat indicates the formation of short-range-ordered spin clusters at low temperatures, very likely a precursor of a phase transition to a collective magnetic state that would take place below 2 K. The magnetoresistance of δ-FeZn10 is sizeable, amounting to 1.5% at 2 K in a 9-T field. The electrical resistivity exhibits a maximum at about 220 K, and its temperature dependence could be explained by the theory of slow charge carriers, applicable to metallic systems with weak dispersion of the electronic bands, where the electron motion changes from ballistic to diffusive upon heating.

  9. Complex dark-field contrast in grating-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Tang, Xiangyang

    2015-03-01

    Without assuming that the sub-pixel microstructures of an object to be imaged distribute in space randomly, we investigate the influence of the object's microstructures on grating-based x-ray phase contrast imaging. Our theoretical analysis and 3D computer simulation study based on the paraxial Fresnel-Kirchhoff theory show that the existing dark-field contrast can be generalized into a complex dark-field contrast in a way such that its imaginary part quantifies the effect of the object's sub-pixel microstructures on the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues to be imaged at high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. In comparison to the existing dark-field contrast, the imaginary part of complex dark-field contrast exhibits significantly stronger selectivity on the shape of the object's sub-pixel microstructures. Thus the x-ray imaging corresponding to the imaginary part of complex dark-field contrast can provide additional and complementary information to that corresponding to the attenuation contrast, phase contrast and the existing dark-field contrast.

  10. On the phase diagram of reentrant condensation in polyelectrolyte-liposome complexation

    NASA Astrophysics Data System (ADS)

    Sennato, S.; Bordi, F.; Cametti, C.

    2004-09-01

    Complexation of polyions with oppositely charged spherical liposomes has been investigated by means of dynamic light scattering measurements and a well-defined reentrant condensation has been observed. The phase diagram of charge inversion, recently derived [T. T. Nguyen and B. I. Shklovskii, J. Chem. Phys. 115, 7298 (2001)] for the complexation of DNA with charged spherical macroions, has been employed in order to define the boundaries of the region where polyion-liposome complexes begin to condense, forming larger aggregates, and where aggregates dissolve again, towards isolated polyion-coated-liposome complexes. A reasonable good agreement is observed in the case of complexes formed by negatively charged polyacrylate sodium salt polyions and liposomes built up by cationic lipids (dioleoyltrimethylammoniumpropane), in an extended liposome concentration range.

  11. Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator.

    PubMed

    Park, Sungjae; Roh, Jinyoung; Kim, Soobin; Park, Juseong; Kang, Hoon; Hahn, Joonku; Jeon, Youngjin; Park, Shinwoong; Kim, Hwi

    2017-02-20

    The complex modulation characteristics of a light field through an amplitude-phase double-layer spatial light modulator are analyzed based on the wave-optic numerical model, and the structural conditions for the optimal double-layer complex modulation structure are investigated. The relationships of interlayer distance, pixel size, and complex light modulation performance are analyzed. The main finding of this study is that the optimal interlayer distance for the double-layer structure can be found at the Talbot effect condition. For validating the practical usefulness of our findings, a high quality reconstruction of the complex computer-generated holograms and the robustness of the angular tolerance of the complex modulation at the Talbot interlayer distance are numerically demonstrated.

  12. Full range complex spectral domain optical coherence tomography without additional phase shifters

    PubMed Central

    Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K.

    2010-01-01

    We demonstrate a new full range complex spectral domain optical coherence tomography (FRC SD-OCT) method. Other than FRC SD-OCT systems reported in literature, which employed devices such as electro-/acousto optic modulators or piezo-driven mirrors providing the phase modulations necessary for retrieval of the complex-valued signal, the system presented works without any additional phase shifting device. The required phase shift is introduced by the galvanometer scanner used for transversally scanning the sample beam. By means of a slight displacement of the probe beam with respect to the scanning mirror’s pivot axis, the sample arm length and thus the phase is continuously modulated as the beam is scanned in lateral direction. From such modulated spectral data, the complex-valued data yielding a twofold increase of accessible depth range can be calculated using an algorithm based on the Hilbert transform. To demonstrate the performance of our method quantitative measurements of the suppression of mirror images as a function of induced phase shift were performed. In order to validate the FRC SD-OCT technique for high-speed imaging of biological tissue, we present full-range images of the human anterior chamber in vivo. PMID:19550607

  13. Three-phase hollow fiber liquid-phase microextraction of organophosphorous nerve agent degradation products from complex samples.

    PubMed

    Desoubries, Charlotte; Chapuis-Hugon, Florence; Bossée, Anne; Pichon, Valérie

    2012-07-01

    Degradation products of chemical warfare agents are considered as important environmental and biological markers of chemical attacks. Alkyl methylphosphonic acids (AMPAs), resulting from the fast hydrolysis of nerve agents, such as sarin and soman, and the methylphosphonic acid (MPA), final degradation product of AMPAs, were determined from complex matrices by using an emergent and miniaturized extraction technique, the hollow fiber liquid-phase microextraction (HF-LPME), before their analysis by liquid chromatography coupled to mass spectrometry (LC-MS). After studying different conditions of separation in the reversed phase LC-MS analysis, the sample treatment method was set up. The three-phase HF-LPME was carried out by using a porous polypropylene (PP) hollow fiber impregnated with 1-octanol that separates the donor and acceptor aqueous media. Various extraction parameters were evaluated such as the volume of the sample, the effect of the pH and the salt addition to the sample, the pH of the acceptor phase, the extraction temperature, the stirring speed of the sample, the immersion time in the organic solvent and the time of extraction. The optimum conditions were applied to the determination of MPA and five AMPAs in real samples, such as surface waters and urine. Compounds were extracted from a 3 mL acidified sample into only 6 μL of alkaline water without any other pretreatment of the complex matrices. Enrichment factors (EFs) higher than 170 were obtained for three less polar AMPAs. Limits of quantification (LOQs) in the 0.013-5.3 ng mL(-1) range were obtained after microextraction of AMPAs from river water and in the range of 0.056-4.8 ng mL(-1) from urine samples with RSD values between 1 and 9%. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Two-phase flow in complex geometries: A diffuse domain approach

    PubMed Central

    Aland, S.; Voigt, A.

    2011-01-01

    We present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. We combine the diffuse domain method for solving PDEs in complex geometries with the diffuse-interface (phase-field) method for simulating multiphase flows. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. The method is straightforward to implement using standard software packages; we use adaptive finite elements here. We present numerical examples demonstrating the effectiveness of the algorithm. We simulate multiphase flow in a driven cavity on an extended domain and find very good agreement with results obtained by solving the equations and boundary conditions in the original domain. We then consider successively more complex geometries and simulate a droplet sliding down a rippled ramp in 2D and 3D, a droplet flowing through a Y-junction in a microfluidic network and finally chaotic mixing in a droplet flowing through a winding, serpentine channel. The latter example actually incorporates two different diffuse domains: one describes the evolving droplet where mixing occurs while the other describes the channel. PMID:21918638

  15. From time series to complex networks: The phase space coarse graining

    NASA Astrophysics Data System (ADS)

    Wang, Minggang; Tian, Lixin

    2016-11-01

    In this paper, we present a simple and fast computational method, the phase space coarse graining algorithm that converts a time series into a directed and weighted complex network. The constructed directed and weighted complex network inherits several properties of the series in its structure. Thereby, periodic series convert into regular networks, and random series do so into random networks. Moreover, chaotic series convert into scale-free networks. It is shown that the phase space coarse graining algorithm allows us to distinguish, identify and describe in detail various time series. Finally, we apply the phase space coarse graining algorithm to the practical observations series, international gasoline regular spot price series and identify its dynamic characteristics.

  16. Complex Observation in Electron Microscopy. II. Direct Visualization of Phases and Amplitudes of Exit Wave Functions

    NASA Astrophysics Data System (ADS)

    Danev, Radostin; Nagayama, Kuniaki

    2001-03-01

    We report microscopic observation of complex waves emitted from objects. Two images sequentially detected at the image plane with two transmission electron microscopic (TEM) methods, the conventional and the phase-contrasted, are numerically combined to reproduce complex wave functions, which are holding complete optical information. The long lasting issue in conventional TEM that the contrast and the resolution of images are difficult to be simultaneously optimized was settled with the complex wave functions. The aberration-corrected phase images of ferritin (at 400 kV) and TMV (at 100 kV) did show an extraordinary high contrast free from image distortion without sacrificing the resolution compared with that obtained by conventional TEM.

  17. Low-noise multiple watermarks technology based on complex double random phase encoding method

    NASA Astrophysics Data System (ADS)

    Zheng, Jihong; Lu, Rongwen; Sun, Liujie; Zhuang, Songlin

    2010-11-01

    Based on double random phase encoding method (DRPE), watermarking technology may provide a stable and robust method to protect the copyright of the printing. However, due to its linear character, DRPE exist the serious safety risk when it is attacked. In this paper, a complex coding method, which means adding the chaotic encryption based on logistic mapping before the DRPE coding, is provided and simulated. The results testify the complex method will provide better security protection for the watermarking. Furthermore, a low-noise multiple watermarking is studied, which means embedding multiple watermarks into one host printing and decrypt them with corresponding phase keys individually. The Digital simulation and mathematic analysis show that with the same total embedding weight factor, multiply watermarking will improve signal noise ratio (SNR) of the output printing image significantly. The complex multiply watermark method may provide a robust, stability, reliability copyright protection with higher quality printing image.

  18. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    NASA Astrophysics Data System (ADS)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  19. Gas-phase and solution-phase polymerization of epoxides by Cr(salen) complexes: evidence for a dinuclear cationic mechanism.

    PubMed

    Schön, Eva; Zhang, Xiangyang; Zhou, Zhiping; Chisholm, Malcolm H; Chen, Peter

    2004-11-15

    The gas-phase reactions of a series of mass-selected mononuclear and dinuclear Cr(salen) complexes with propylene oxide suggest that the enhanced reactivity of the dinuclear complexes in gas-phase and in solution may derive from a dicationic mechanism in which the alkoxide chain is mu(2)-coordinated to two Lewis acidic metal centers. The double coordination is proposed to suppress backbiting, and hence chain-transfer in the gas-phase homopolymerization of epoxides.

  20. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  1. Nonlinear light behaviors near phase transition in non-parity-time-symmetric complex waveguides.

    PubMed

    Nixon, Sean; Yang, Jianke

    2016-06-15

    Many classes of non-parity-time (PT)-symmetric waveguides with arbitrary gain and loss distributions still possess all-real linear spectrum or exhibit phase transition. In this Letter, nonlinear light behaviors in these complex waveguides are probed analytically near a phase transition. Using multi-scale perturbation methods, a nonlinear ordinary differential equation (ODE) is derived for the light's amplitude evolution. This ODE predicts that a single class of these non-PT-symmetric waveguides supports soliton families and amplitude-oscillating solutions both above and below linear phase transition, in close analogy with PT-symmetric systems. For the other classes of waveguides, the light's intensity always amplifies under the effect of nonlinearity, even if the waveguide is below the linear phase transition. These analytical predictions are confirmed by direct computations of the full system.

  2. Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering.

    PubMed

    Jurna, Martin; Garbacik, Erik T; Korterik, Jeroen P; Herek, Jennifer L; Otto, Cees; Offerhaus, Herman L

    2010-09-15

    In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant response can be determined, and the nonresonant background rejected, by extracting the imaginary component of the complex response, enhancing the sensitivity of CARS measurements. Second, selectivity is increased via determination of the phase and amplitude, allowing separation of individual molecular components of a sample even when their vibrational bands overlap. Here, using vibrational phase contrast CARS (VPC-CARS), we demonstrate enhanced sensitivity in quantitative measurements of ethanol/methanol mixtures and increased selectivity in a heterogeneous mixture of plastics and water. This powerful technique opens a wide range of possibilities for studies of complicated systems where overlapping resonances limit standard methodologies.

  3. Retention and selectivity of teicoplanin stationary phases after copper complexation and isotopic exchange.

    PubMed

    Berthod, A; Valleix, A; Tizon, V; Leonce, E; Caussignac, C; Armstrong, D W

    2001-11-15

    Teicoplanin is a macrocyclic glycopeptide that is highly effective as a chiral selector for LC enantiomeric separations. Two possible interaction paths were investigated and related to solute retention and selectivity: (1) interactions with the only teicoplanin amine group and (2) role of hydrogen bonding interactions. Mobile phases containing 0.5 and 5 mM copper ions were used to try to block the amine group. In the presence of copper ions, it was found that the teicoplanin stationary phase has a decreased ability to separate most underivatized racemic amino acids. However, it maintained its ability to separate enantiomers that were not alpha-amino acids. It is established that there is little copper-teicoplanin complex formation. The effect of Cu2+ on the enantioseparation of some alpha-amino acids appears to be due to the fact that these solutes are good bidentate ligands and form complexes with copper ions in the mobile phase. Isotopic exchange with deuterium oxide was performed using acetonitrile-heavy water mobile phases. It was found that the retention times of all amino acids were lower with deuterated mobile phases. The retention times of polar or apolar molecules without amine groups were higher with deuterated mobiles phases. In all cases, the enantioselectivity factors were unaffected by the deuterium exchange. It is proposed that the electrostatic interactions are decreased in the deuterated mobile phases and the solute-accessible stationary-phase volume is somewhat swollen by deuterium oxide. The balance of these effects is a decrease in the amino acid retention times and an increase in the apolar solute retention time. The enantioselectivity factors of all of the molecules remain unchanged because all of the interactions are changed equally. We propose a new global quality criterion (the E factor) for comparing and evaluating enantiomeric separations.

  4. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    SciTech Connect

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  5. Formation and Fragmentation Chemistry of Tripositive Ln(TMGA)3 3+ Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Chen, Xiuting; Li, Qingnuan; Gong, Yu

    2017-08-01

    Electrospray ionization (ESI) of LnCl3 (Ln = La-Lu except Pm) and TMGA (tetramethyl glutaramide) mixtures resulted in the formation of gas-phase Ln(TMGA)3 3+ complexes, where tripositive lanthanide cation was coordinated by three neutral TMGA ligands. Collision induced dissociation (CID) was employed to investigate the fragmentation chemistry of these tripositive complexes. Ln(TMGA)2(TMGA- 45)3+ resulting from Ccarbonyl-N bond cleavage of TMGA and hydrogen transfer is the major CID product for all Ln(TMGA)3 3+ except Eu(TMGA)3 3+ which predominantly forms divalent EuII(TMGA)2 2+ complex via loss of TMGA+. Analogous YbII(TMGA)2 2+ and SmII(TMGA)2 2+ complexes arising from charge reduction were also observed, in competition with the formation of charge conserving YbIII(TMGA)(TMGA-H)2+ and SmIII(TMGA)(TMGA-H)2+ products. The yield of these charge reducing products follows their reduction potentials in condensed phase. In addition to Ln(TMGA)3 3+, tripositive ions such as Ln(TMGA)4 3+ and Ln(TMGA)2 3+ were experimentally identified as well. While the former was observed along with Ln(TMGA)3 3+ during ESI, the latter was observed upon CID of Ln(TMGA)3 3+, suggesting two TMGA molecules can stabilize Ln3+ in the gas phase.

  6. Gas-phase IR spectra of intact [alpha]-helical coiled coil protein complexes

    NASA Astrophysics Data System (ADS)

    Pagel, Kevin; Kupser, Peter; Bierau, Frauke; Polfer, Nicolas C.; Steill, Jeffrey D.; Oomens, Jos; Meijer, Gerard; Koksch, Beate; von Helden, Gert

    2009-06-01

    Electrospray ionization (ESI) is the softest ionization method that is currently available and it is widely accepted, that ESI generated ions of proteins and protein assemblies at certain conditions retain characteristic aspects of their solution-state conformation. ESI mass spectrometry (MS) therefore evolved as a useful tool to obtain information on composition, stoichiometry, and dynamics of non-covalently associated protein complexes. While tertiary structure information of proteins can be obtained from ion mobility spectrometry (IMS), only a few techniques yield direct information on the secondary structure of gas-phase peptides and proteins. We present here the mid-IR spectroscopic secondary structural analysis of three de novo designed [alpha]-helical coiled coil model peptides and their non-covalently associated complexes in the gas-phase. The conformational stability of such coiled coil peptides in solution is primarily driven by aggregation. Isolated monomers usually remain unfolded. Two of the investigated peptides were designed to assemble into stable [alpha]-helical complexes in acidic solution, while the third one remains monomeric and unfolded at these conditions. Monomer ions of all three peptides show comparable photodissociation IR spectra and therefore suggest an unfolded conformation in the gas phase. In contrast, considerable CO stretch (amide-I) and N-H bend (amide-II) band shifts have been observed for the dimers which is consistent with an elevated H-bond content. These findings provide evidence that at least a fraction of the condensed phase [alpha]-helical structure is retained in the gas-phase coiled coil complexes.

  7. Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature.

    PubMed

    Anvari, Mohammad; Pan, Cheol-Ho; Yoon, Won-Byong; Chung, Donghwa

    2015-08-01

    The rheological and structural characteristics of fish gelatin (FG)-gum arabic (GA) complex coacervate phase, separated from an aqueous mixture of 1% FG and 1% GA at pH 3.5, were investigated as influenced by phase separation temperature. Decreasing the phase separation temperature from 40 to 10 °C lead to: (1) the formation of a coacervate phase with a larger volume fraction and higher biopolymer concentrations, which is more viscous, more structural resistant at low shear rates, more shear-thinning at high shear rates, and more condensed in microstructure, (2) a solid-like elastic behavior of the phase separated at 10 °C at a high oscillatory frequency, (3) the increase in gelling and melting temperatures of the coacervate phase (3.7-3.9 °C and 6.2-6.9 °C, respectively), (4) the formation of a more rigid and thermo-stable coacervate gel. The coacervate phase is regarded as a homogeneously networked biopolymer matrix dispersed with water vacuoles and its gel as a weak physical gel reinforced by FG-GA attractive electrostatic interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Phase behavior and rheological properties of polyamine-rich complexes for direct-write assembly.

    PubMed

    Xu, Mingjie; Lewis, Jennifer A

    2007-12-04

    Polyamine-rich complexes are developed for microscale patterning of planar and 3-D structures by direct ink writing. The complexes are formed by mixing poly(allylamine) hydrochloride and poly(acrylic acid) sodium salt in water in a nonstoichiometric ratio. Their phase behavior, rheological properties, and coagulation behavior in alcohol-water reservoirs are characterized. Direct comparisons are made between these complexes, which are based on mixtures of linear polyelectrolytes, and prior observations of complexes composed of linear and highly branched chains. [Gratson, G. M.; Xu, M.; Lewis, J. A. Nature 2004, 428, 386. Gratson, G. M.; Lewis, J. A. Langmuir 2005, 21, 457-464.] The optimal polyamine-rich ink and reservoir compositions are identified for direct-write assembly of wavy, gradient, and 3-D microperiodic architectures.

  9. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers.

    PubMed

    Tang, Ping; Qiu, Feng; Zhang, Hongdong; Yang, Yuliang

    2004-03-01

    Using a real space implementation of the self-consistent field theory for the polymeric system, we explore microphases of ABC linear triblock copolymers. For the sake of numerical tractability, the calculation is carried out in a two-dimensional (2D) space. Seven microphases are found to be stable for the ABC triblock copolymer in 2D, which include lamellae, hexagonal lattice, core-shell hexagonal lattice, tetragonal lattice, lamellae with beads inside, lamellae with beads at the interface, and hexagonal phase with beads at the interface. By systematically varying the composition, triangle phase diagrams are constructed for four classes of typical triblock polymers in terms of the relative strengths of the interaction energies between different species. In general, when both volume fractions and interaction energies of the three species are comparable, lamellar phases are found to be the most stable. While one of the volume fractions is large, core-shell hexagonal or tetragonal phases can be formed, depending on which of the blocks dominates. Furthermore, more complex morphologies, such as lamellae with beads inside, lamellae with beads at the interface, and hexagonal phases with beads at the interface compete for stability with lamellae structures, as the interaction energies between distinct blocks become asymmetric. Our study provides guidance for the design of microstructures in complex block copolymers.

  10. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Raman, N.; Sundaresan, A.

    2013-12-01

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel-thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS2 nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni3S2 (800 °C) are formed. NiS2 nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni3S2 nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS2 and NiS are semiconductors whereas Ni3S2 is a metal.

  11. Influence of Ionic Complexes on Phase Behavior of Polystyrene-b-poly(methyl methacrylate) Copolymers

    SciTech Connect

    Wang,J.; Chen, W.; Roy, C.; Sievert, J.; Russell, T.

    2008-01-01

    The influence of ionic complexes on phase behavior of PS-b-PMMA copolymers over a wide range of molecular weights and PS volume fractions was investigated by small-angle X-ray scattering (SAXS), grazing incidence small-angle X-ray scattering (GISAXS), transmission electron microscopy (TEM), and neutron reflectivity (NR). The disorder-to-order transition (DOT) in both symmetric and asymmetric copolymers indicates that the overall Flory-Huggins segmental interaction parameter, eff, between polystyrene (PS) and poly(methyl methacrylate) (PMMA) blocks with lithium-PMMA complexes is increased compared to that of the neat copolymers. This enhanced eff further results in an order-to-order transition (OOT), from spheres to cylinders, and an increase in the ordering and spacing of microdomains. Moreover, transitional metal ionic complexes, such as copper-PMMA complexes, are found to have the similar influence on phase behavior of PS-b-PMMA copolymers. The formation of ionic complexes in the copolymers not only offers a parameter to tune the degree of microphase separation of PS-b-PMMA copolymers but also provides a way to fabricate multifunctional materials.

  12. Complex phase synchronization in epileptic seizures: Evidence for a devil's staircase

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, J. L.; Garcia Dominguez, L.; Wennberg, R.

    2007-01-01

    We describe multifrequency phase synchronization in epileptic seizures. Using magnetoencephalographic recordings from three patients suffering generalized seizures, the evidence is presented that, in addition to the commonly studied 1:1 frequency locking, there exists complex multifrequency coordination that, in some cases, follows a classical “devil’s staircase.” Within the limitations of observing this phenomenon in a clinical experimental setting, these observations reveal that in pathological brain activity, complex frequency locking can be found similar to that identified in certain pathological cardiac re-entrant arrhythmias. This may suggest the existence of similar re-entrant mechanisms active in cerebral neocortex during epileptic seizures.

  13. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    PubMed

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition.

  14. Phase modulation of thermotropic liquid crystals of tetra-n-alkylammonium polyoxometalate ionic complexes.

    PubMed

    Jiang, Yunxia; Liu, Shuxia; Zhang, Jing; Wu, Lixin

    2013-06-07

    A series of composition analogous polyoxometalate-based ionic complexes are synthesized and studied, with a focus on the correlation between their mesomorphic behavior and their chemical structure. Generally, these polarizable rigid polyoxoanion clusters decorated with hydrophobic flexible alkyl chains have demonstrated a propensity to form thermotropic liquid-crystalline (LC) phases. Characterized by differential scanning calorimetry (DSC), polarized optical microscopy (PM), and X-ray diffraction (XRD), two of the four investigated complexes tend to form thermodynamically stable mesophases. Longer alkyl chains have been found to form mesophases, and the alkyl chain length of the quaternary ammonium cations influences both the occurrence and type of mesophase exhibited.

  15. Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase.

    PubMed

    Zhou, Mowei; Wysocki, Vicki H

    2014-04-15

    The quaternary structures of proteins are both important and of interest to chemists, because many proteins exist as complexes in vivo, and probing these structures allows us to better understand their biological functions. Conventional structural biology methods such as X-ray crystallography and nuclear magnetic resonance provide high-resolution information on the structures of protein complexes and are the gold standards in the field. However, other emerging biophysical methods that only provide low-resolution data (e.g. stoichiometry and subunit connectivity) on the structures of the protein complexes are also becoming more important to scientists. Mass spectrometry is one of these approaches that provide lower than atomic structural resolution, but the approach is higher throughput and provides not only better mass information than other techniques but also stoichiometry and topology. Fragile noncovalent interactions within the protein complexes can be preserved in the gas phase of MS under gentle ionization and transfer conditions. Scientists can measure the masses of the complexes with high confidence to reveal the stoichiometry and composition of the proteins. What makes mass spectrometry an even more powerful method is that researchers can further isolate the protein complexes and activate them in the gas phase to release subunits for more structural information. The caveat is that, upon gas-phase activation, the released subunits need to faithfully reflect the native topology so that useful information on the proteins can be extracted from mass spectrometry experiments. Unfortunately, many proteins tend to favor unfolding upon collision with neutral gas (the most common activation method in mass spectrometers). Therefore, this typically results in limited insights on the quaternary structure of the precursor without further manipulation of other experimental factors. Scientists have observed, however, that valuable structural information can be obtained

  16. Enantiomeric separations of ruthenium (II) polypyridyl complexes using HPLC with cyclofructan chiral stationary phases.

    PubMed

    Shu, Yang; Breitbach, Zachary S; Dissanayake, Milan K; Perera, Sirantha; Aslan, Joseph M; Alatrash, Nagham; MacDonnell, Frederick M; Armstrong, Daniel W

    2015-01-01

    The enantiomeric separation of 21 ruthenium (II) polypyridyl complexes was achieved with a novel class of cyclofructan-based chiral stationary phases (CSPs) in the polar organic mode. Aromatic derivatives on the chiral selectors proved to be essential for enantioselectivity. The R-napthylethyl carbamate functionalized cyclofructan 6 (LARIHC CF6-RN) column proved to be the most effective overall, while the dimethylphenyl carbamate cyclofructan 7 (LARIHC CF7-DMP) showed complementary selectivity. A combination of acid and base additives was necessary for optimal separations. The retention factor vs. acetonitrile/methanol ratio plot showed a U-shaped retention curve, indicating that different interactions take place at different polar organic solvent compositions. The separation results indicated that π-π interactions, steric effects, and hydrogen bonding contribute to the enantiomeric separation of ruthenium (II) polypyridyl complexes with cyclofructan chiral stationary phases in the polar organic mode.

  17. Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion

    NASA Astrophysics Data System (ADS)

    Bueno, Jesus; Bona-Casas, Carles; Bazilevs, Yuri; Gomez, Hector

    2015-06-01

    There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid-structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.

  18. Phase locking route behind complex periodic windows in a forced oscillator.

    PubMed

    Jan, Hengtai; Tsai, Kuo-Ting; Kuo, Li-wei

    2013-09-01

    Chaotic systems have complex reactions against an external driving force; even in cases with low-dimension oscillators, the routes to synchronization are diverse. We proposed a stroboscope-based method for analyzing driven chaotic systems in their phase space. According to two statistic quantities generated from time series, we could realize the system state and the driving behavior simultaneously. We demonstrated our method in a driven bi-stable system, which showed complex period windows under a proper driving force. With increasing periodic driving force, a route from interior periodic oscillation to phase synchronization through the chaos state could be found. Periodic windows could also be identified and the circumstances under which they occurred distinguished. Statistical results were supported by conditional Lyapunov exponent analysis to show the power in analyzing the unknown time series.

  19. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation

    NASA Astrophysics Data System (ADS)

    Pawar, Nisha; Bohidar, H. B.

    2010-09-01

    Liquid-liquid phase separation leading to complex coacervation in a ternary system (oppositely charged polyion and macroion in a solvent) is discussed within the framework of a statistical thermodynamics model. The polyion and the macroion in the ternary system interact to form soluble aggregates (complexes) in the solvent, which undergoes liquid-liquid phase separation. Four necessary conditions are shown to drive the phase separation: (i) (σ23)3r/Φ23c≥((64)/(9α2))(χ23Φ3)2 , (ii) r≥[(64(χ23Φ3)2)/(9α2σ233)]1/2 , (iii) χ23≥((2χ231-1))/(Φ23cΦ3) , and (iv) (σ23)2/I≥(8)/(3α)(2χ231-1) (where σ23 is the surface charge on the complex formed due to binding of the polyelectrolyte and macroion, Φ23c is the critical volume fraction of the complex, χ23 is the Flory interaction parameter between polyelectrolyte and macroion, χ231 is the same between solvent and the complex, Φ3 is the volume fraction of the macroions, I is the ionic strength of the solution, α is electrostatic interaction parameter and r is typically of the order of molecular weight of the polyions). It has been shown that coacervation always requires a hydrated medium. In the case of a colloidal macroion and polyelectrolyte coacervation, molecular weight of polyelectrolyte must satisfy the condition r≥103Da to exhibit liquid-liquid phase separation. This model has been successfully applied to study the coacervation phenomenon observed in aqueous Laponite (macroion)-gelatin (polyion) system where it was found that the coacervate volume fraction, δΦ23˜χ2312 (where δΦ23 is the volume fraction of coacervates formed during phase separation). The free energy and entropy of this process have been evaluated, and a free-energy landscape has been drawn for this system that maps the pathway leading to phase separation.

  20. Description and control of dissociation channels in gas-phase protein complexes

    NASA Astrophysics Data System (ADS)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  1. Sham feeding disrupts phase III of the duodenal migrating motor complex in humans.

    PubMed

    Pouderoux, P; Veyrac, M; Michel, H

    1995-09-01

    The role of the vagus nerve in the control of the intestinal migrating motor complex (MMC) is unclear. This study aimed to evaluate the effect of physiological vagal stimulation with sham feeding on phase III of the MMC. Antroduodenal motility was recorded in six healthy volunteers. The first phase III was used as a control, and sham feeding was performed during the second phase III. The MMC was disrupted within 1.5 +/- 0.4 min of sham feeding and its duration was shorter than the control phase III. Phase III propagation was inhibited in all subjects, most of them exhibiting no propagation beyond the third duodenal recording site. During sham feeding, the antrum exhibited transient phasic contractions in five out of six subjects. The duodenal motility index recorded for up to 30 min after the onset of the sham feeding was unchanged in five out of six subjects. We conclude that sham feeding consistently interrupted phase III of the duodenal MMC and induced antral contractions, but failed to provoke significant motor events in the duodenum.

  2. Complex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme.

    PubMed

    Min, Wei; Jiang, Liang; Xie, X Sunney

    2010-05-03

    Enzyme molecules are dynamic entities with stochastic fluctuation in both protein conformation and enzymatic activity. However, such a notion of fluctuating enzymes, best characterized by recent single-molecule experiments, was not considered in the classic Michaelis-Menten (MM) kinetic scheme. Here we incorporate the fluctuation concept into the reversible MM scheme, and solve analytically all the possible kinetics (i.e., substrate concentration dependent enzymatic velocity) for a minimal model of fluctuating enzymes. Such a minimal model is found to display a variety of distinct kinetic behaviors (phases) in addition to the classic MM kinetics; excess substrate inhibition, sigmoidal kinetics, and concave biphasic kinetics. We find that all these kinetic phases are interrelated and unified under the framework of fluctuating enzymes and can be adequately described by a phase diagram that consists of two master parameters. Functionally, substrate inhibition, sigmoidal kinetics, and convex biphasic phases exhibit positive cooperativity, whereas concave biphasic phases display negative cooperativity. Remarkably, all these complex kinetics are produced by fluctuating enzymes with single substrate binding site, but the two conformations are, therefore, fundamentally different from the classic MWC and KNF models that require multiple subunit or binding sites. This model also suggests that, for a given enzyme/substrate pair, the non-MM behaviors could undergo transitions among different kinetic phases induced by varying product concentrations, owing to the fundamental Haldane symmetry in the reversible MM scheme.

  3. Phase transitions via selective elemental vacancy engineering in complex oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Sang A.; Jeong, Hoidong; Woo, Sungmin; Hwang, Jae-Yeol; Choi, Si-Young; Kim, Sung-Dae; Choi, Minseok; Roh, Seulki; Yu, Hosung; Hwang, Jungseek; Kim, Sung Wng; Choi, Woo Seok

    2016-04-01

    Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.

  4. Phase transitions via selective elemental vacancy engineering in complex oxide thin films

    PubMed Central

    Lee, Sang A.; Jeong, Hoidong; Woo, Sungmin; Hwang, Jae-Yeol; Choi, Si-Young; Kim, Sung-Dae; Choi, Minseok; Roh, Seulki; Yu, Hosung; Hwang, Jungseek; Kim, Sung Wng; Choi, Woo Seok

    2016-01-01

    Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films. PMID:27033718

  5. Structure and phase equilibria of mixtures of the complex salt hexadecyltrimethylammonium polymethacrylate, water and different oils.

    PubMed

    Bernardes, Juliana Silva; Loh, Watson

    2008-02-15

    This work reports on phase diagrams for mixtures of a complex salt formed by a cationic surfactant and an oppositely charged polyelectrolyte, hexadecyltrimethylammonium polymethacrylate, in binary mixtures with water and in ternary mixtures containing water and organic solvents of different polarity ('oils'): decanol, octanol, p-xylene and cyclohexane. The liquid crystalline structures formed were identified by small angle X-ray scattering measurements, which also provided information about changes in the size of the aggregates as a function of the system composition. These results are analysed in comparison with others previously reported [Bernardes et al., J. Phys. Chem. B 110 (2006) 10332-10340] for the analog complex formed with polyacrylate and, in general, reveal that the presence of an extra methylene group in the polymer chain does not produce significant changes in the complex phase diagrams nor in the structure of the liquid crystalline phases formed. Additionally, the obtained results confirm once more the approach used to analyze these kinds of systems formed by polymer and oppositely charged surfactant.

  6. Infrared study and phase transformation of the new lithium-diphenyl carbazide complex (LiDPC)

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.; Abdel Aziz, N. R.

    2015-07-01

    A complete IR investigation (400-4000 cm-1) of orthorhombic, amorphous DPC and crystalline LiDPC (at room temperature and 80 °C) is performed and new results are reported. Introducing lithium ions into diphenyl carbazide C13H14N4O forms a completely new complex associated with new properties. The IR spectroscopic analysis includes measurements and interpretation of the IR spectral band shape, intensities, and frequencies of the internal modes of vibrations. The principle modes of vibrations of amorphous DPC found to be 3445 cm-1, 3292 cm-1, 3052 cm-1, 1670 cm-1, 1602 cm-1, 1495 cm-1, 1305 cm-1, 1254 cm-1, 974 cm-1, and 577 cm-1 correspond to normal vibrations of Nsbnd H, Csbnd H, Nsbnd N, Cdbnd O and monosubstituted benzene. A marked change could be recorded for these modes of vibrations in the presence of Li+ ions. The results strongly confirm the formation of a metal-organic complex. Anomalous spectroscopic changes could be recorded in LiDPC spectra. A proposed Li+ position in LiDPC complex is proposed. X-ray diffraction analysis is used to find out the crystal structure and parameters of LiDPC complex. The results obtained show triclinic crystal structure with a = 5.6929 Å, b = 7.6378 Å, c = 17.8739 Å, α = 119.176°, β = 63.322°, γ = 85.378°. The results reveal the presence of an order-disorder phase transition in LiDPC complex at 60 °C. The transformation process is monitored by clear variations in the spectral shape, band intensities and new eight different modes appeared in the high temperature disordered phase. An energy model is suggested for the interpretation of such phase transition process.

  7. Simple expressions for performance parameters of complex filters, with applications to super-Gaussian phase filters.

    PubMed

    Ledesma, Silvia; Campos, Juan; Escalera, Juan Carlos; Yzuel, María J

    2004-05-01

    To study the three-dimensional (3-D) behavior produced by complex filters, we have extended the expressions for the axial and the transverse gain to the case in which the best image plane is not near the paraxial focus. Super-Gaussian phase filters are proposed to control the 3-D image response of an optical system. Super-Gaussian phase filters depend on several parameters that modify the shape of the phase filter, producing tunable control of the 3-D response of the optical system. The filters are capable of producing a wide range of optical effects: transverse superresolution with high depth of focus, 3-D superresolution, and transverse apodization with different axial responses.

  8. Gas-phase reactivity of [Ca(formamide)](2+) complex: an example of different dynamical behaviours.

    PubMed

    Martin-Somer, Ana; Spezia, Riccardo; Yáñez, Manuel

    2017-04-28

    In the present contribution, we have summarized our recent work on the comprehension of [Ca(formamide)](2+) complex gas-phase unimolecular dissociation. By using different theoretical approaches, we were able to revise the original (and typical for such kind of problems) understanding given in terms of stationary points on the potential energy surface, which did not provide a satisfactory explanation of the experimentally observed reactivity. In particular, we point out how non-statistical and non-intrinsic reaction coordinate mechanisms are of fundamental importance.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  9. Phase effects in masking by harmonic complexes: detection of bands of speech-shaped noise.

    PubMed

    Deroche, Mickael L D; Culling, John F; Chatterjee, Monita

    2014-11-01

    When phase relationships between partials of a complex masker produce highly modulated temporal envelopes on the basilar membrane, listeners may detect speech information from temporal dips in the within-channel masker envelopes. This source of masking release (MR) is however located in regions of unresolved masker partials and it is unclear how much of the speech information in these regions is really needed for intelligibility. Also, other sources of MR such as glimpsing in between resolved masker partials may provide sufficient information from regions that disregard phase relationships. This study simplified the problem of speech recognition to a masked detection task. Target bands of speech-shaped noise were restricted to frequency regions containing either only resolved or only unresolved masker partials, as a function of masker phase relationships (sine or random), masker fundamental frequency (F0) (50, 100, or 200 Hz), and masker spectral profile (flat-spectrum or speech-shaped). Although masker phase effects could be observed in unresolved regions at F0s of 50 and 100 Hz, it was only at 50-Hz F0 that detection thresholds were ever lower in unresolved than in resolved regions, suggesting little role of envelope modulations for harmonic complexes with F0s in the human voice range and at moderate level.

  10. Structure and phase behavior of the poly(ethylene oxide)-thiourea complex prepared by electrospinning.

    PubMed

    Liu, Yang; Antaya, Hélène; Pellerin, Christian

    2010-02-25

    Electrospinning was used for the first time to prepare nanofibers of the host/guest complex between poly(ethylene oxide) (PEO) and thiourea. It is shown by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) that the stoichiometry of the complex is (EO)(12)-(thiourea)(8), settling a series of conflicting values in literature reports. The complex crystallizes in a monoclinic unit cell with a = 9.15 A, b = 18.88 A, c = 8.25 A, and beta = 92.35 degrees. On the basis of WAXD, infrared spectroscopy, and polarized Raman scattering measurements, it is proposed that the complex adopts a layered structure in which alternating PEO and thiourea layers are stabilized by intermolecular hydrogen bonds. This structure is highly reminiscent of that of the beta complex between PEO and urea. A phase diagram was determined and shows that the complex melts incongruently at 110 degrees C to form a peritectic liquid and crystals of pure thiourea. The nanofibers of the PEO-thiourea present a very large molecular orientation with a (c) value of 0.76, among the largest reported for electrospun materials.

  11. Wavelength modulation-based method for interference phase detection with reduced optical complexity

    NASA Astrophysics Data System (ADS)

    Řeřucha, Šimon; Šarbort, Martin; Buchta, Zdeněk.; Mikel, Bretislav; Šmíd, Radek; Čížek, Martin; Jedlička, Petr; Řerucha, Jan; Lazar, Josef; Číp, Ondřej

    2013-04-01

    Although the laser interferometry represents the most precise class of techniques in the field of precise measurement of geometrical quantities, its wide use in measurement systems is still accompanied by many unresolved challenges. One of these challenges is the complexity of underlying optical systems. We present a novel approach to the interference phase detection - fringe subdivision - in the homodyne laser interferometry that aims at reduction of the optical complexity while the resolution is preserved. Our method employs a series of computational steps to infer a pair of signals in quadrature that allows to determine the interference phase with a sub-nanometre resolution from an interference signal from a non-polarising interferometer sampled by a single photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. The method was experimentally evaluated on a Michelson interferometer-based free-space setup and its performance has been compared to a traditional homodyne detection method. The results indicate the method is a feasible al­ ternative for the traditional homodyne detection since it performs with comparable accuracy (< 0.5nm standard deviation), especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden, for instance in multi-axis measurement systems or laser diode based systems.

  12. Vibrational Spectra of Discrete UO₂²⁺ Halide Complexes in the Gas Phase

    SciTech Connect

    Groenewold, G S; Van Stipdonk, Michael J; Oomens, Jos; De Jong, Wibe A; Gresham, Garold L; Mcilwain, Michael

    2010-11-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition [UO₂(X)(ACO)₃]+ (where X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric ν₃ UO₂ frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo-octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter its binding in the complex. The ν₃ peak in the spectrum of the F-containing complex was 9 cm-1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to higher wavenumber was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the ν1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes [UO₂X₃]- (where X = Cl-, Br- and I-) compared the ν₃ UO₂ modes versus halide, and showed that the ν₃ values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that [UO

  13. Gas phase hydrogen/deuterium exchange of arginine and arginine dipeptides complexed with alkali metals.

    PubMed

    Mertens, Laura A; Marzluff, Elaine M

    2011-08-25

    The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed. © 2011 American Chemical Society

  14. Single-exposure phase-shifting digital holography using a random-complex-amplitude encoded reference wave.

    PubMed

    Imbe, Masatoshi; Nomura, Takanori

    2013-01-01

    The improved single-exposure phase-shifting digital holography using a random-phase reference wave is proposed. The algorithm for obtaining a complex amplitude of an object wave is improved. In the proposed algorithm, the reference wave is treated as not a random-phase but a random-complex amplitude. Therefore, the algorithm uses proper amplitude information of the reference wave. Both numerical simulations and experimental results are given to confirm the effectiveness of the proposed algorithm.

  15. Laser Spectroscopic Study of Cold Gas-Phase Host-Guest Complexes of Crown Ethers.

    PubMed

    Ebata, Takayuki; Inokuchi, Yoshiya

    2016-06-01

    The structure, molecular recognition, and inclusion effect on the photophysics of guest species are investigated for neutral and ionic cold host-guest complexes of crown ethers (CEs) in the gas phase. Here, the cold neutral host-guest complexes are produced by a supersonic expansion technique and the cold ionic complexes are generated by the combination of electrospray ionization (ESI) and a cryogenically cooled ion trap. The host species are 3n-crown-n (3nCn; n = 4, 5, 6, 8) and (di)benzo-3n-crown-n ((D)B3nCn; n = 4, 5, 6, 8). For neutral guests, we have chosen water and aromatic molecules, such as phenol and benzenediols, and as ionic species we have chosen alkali-metal ions (M(+) ). The electronic spectra and isomer-specific vibrational spectra for the complexes are observed with various laser spectroscopic methods: laser-induced fluorescence (LIF); ultraviolet-ultraviolet hole-burning (UV-UV HB); and IR-UV double resonance (IR-UV DR) spectroscopy. The obtained spectra are analyzed with the aid of quantum chemical calculations. We will discuss how the host and guest species change their flexible structures for forming best-fit stable complexes (induced fitting) and what kinds of interactions are operating for the stabilization of the complexes. For the alkali metal ion•CE complexes, we investigate the solvation effect by attaching water molecules. In addition to the ground-state stabilization problem, we will show that the complexation leads to a drastic effect on the excited-state electronic structure and dynamics of the guest species, which we call a "cage-like effect".

  16. Problem of phase transitions and thermodynamic stability in complex (dusty, colloid etc) plasmas

    NASA Astrophysics Data System (ADS)

    Martynova, I. A.; Iosilevskiy, I. L.

    2016-11-01

    Features of the first-order phase transitions in complex (dusty, colloid etc) plasma are under discussion. The basis for consideration is the well-known phase diagram of dusty plasma as a Debye system from Hamaguchi et al (1997 Phys. Rev. E 92 4671) in Γ-κ plane (Γ is a Coulomb non-ideality parameter, κ is a screening parameter). The initial Γ -κ phase diagram from Hamaguchi et al (1997 Phys. Rev. E 92 4671) is converted in standard thermodynamic variables in temperature-density planes. Here 2-component electroneutral systems of macro- and microions (+Z, -1) and (-Z, +1) are considered as thermodynamically equilibrium ensembles of classical Coulomb particles. An extensive area for negative compressibility of the system was revealed at the phase diagram in a fluid state of the initial Debye system when one considers the system as equilibrium two-component electroneutral mixture of macro- and microions (+Z, -1) (or (-Z, +1)) under equations of state from Hamaguchi et al (1997 Phys. Rev. E 92 4671) and Khrapak et al (2014 Phys. Rev. E 89 023102). This means thermodynamic instability of the simplified Debye system in this domain. Non-linear screening and an unavoidable existence of additional phase transitions of gas-liquid and gas-crystal type are proposed as hypothetical resolution of discussed thermodynamic instability problem.

  17. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  18. Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model.

    PubMed

    Audus, Debra J; Gopez, Jeffrey D; Krogstad, Daniel V; Lynd, Nathaniel A; Kramer, Edward J; Hawker, Craig J; Fredrickson, Glenn H

    2015-02-14

    Nanostructured, responsive hydrogels formed due to electrostatic interactions have promise for applications such as drug delivery and tissue mimics. These physically cross-linked hydrogels are composed of an aqueous solution of oppositely charged triblocks with charged end-blocks and neutral, hydrophilic mid-blocks. Due to their electrostatic interactions, the end-blocks microphase separate and form physical cross-links that are bridged by the mid-blocks. The structure of this system was determined using a new, efficient embedded fluctuation (EF) model in conjunction with self-consistent field theory. The calculations using the EF model were validated against unapproximated field-theoretic simulations with complex Langevin sampling and were found consistent with small angle X-ray scattering (SAXS) measurements on an experimental system. Using both the EF model and SAXS, phase diagrams were generated as a function of end-block fraction and polymer concentration. Several structures were observed including a body-centered cubic sphere phase, a hexagonally packed cylinder phase, and a lamellar phase. Finally, the EF model was used to explore how parameters that directly relate to polymer chemistry can be tuned to modify the resulting phase diagram, which is of practical interest for the development of new hydrogels.

  19. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    NASA Astrophysics Data System (ADS)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  20. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes.

    PubMed

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (U(VI)O2(2+)) coordinated by formate or acetate ligands. Anionic complexes containing U(VI)O2(2+) and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [U(VI)O2(O)(H)](-). Cationic species ultimately dissociate to make [U(VI)O2(OH)](+). Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to U(V)O2(+). Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [U(V)O2(O)](-). Loss of CH4 occurs by an intra-complex H(+) transfer process that leaves U(V)O2(+) coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [U(V)O2(O)](-). Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2. Graphical Abstract ᅟ.

  1. Design of phase-only, binary phase-only, and complex ternary matched filters with increased signal-to-noise ratios for colored noise

    NASA Technical Reports Server (NTRS)

    Kumar, B. V. K. V.; Juday, Richard D.

    1991-01-01

    An algorithm is provided for treating nonwhite additive noise in determining regions of support for phase-only filters, binary phase-only filters, and complex ternary matched filters. It is analytically shown to be optimal in the signal-to-noise ratio sense. It extends earlier research that assumed white noise.

  2. Design of phase-only, binary phase-only, and complex ternary matched filters with increased signal-to-noise ratios for colored noise

    NASA Technical Reports Server (NTRS)

    Kumar, B. V. K. V.; Juday, Richard D.

    1991-01-01

    An algorithm is provided for treating nonwhite additive noise in determining regions of support for phase-only filters, binary phase-only filters, and complex ternary matched filters. It is analytically shown to be optimal in the signal-to-noise ratio sense. It extends earlier research that assumed white noise.

  3. Prestack depth migration for complex 2D structure using phase-screen propagators

    SciTech Connect

    Roberts, P.; Huang, Lian-Jie; Burch, C.; Fehler, M.; Hildebrand, S.

    1997-11-01

    We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4 CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.

  4. Significance of chamber pressure to complex multi-phase physics in jet engine fuel injection processes

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer; Oefelein, Joseph

    2014-11-01

    Injection processes in jet engines at chamber pressures in excess of the thermodynamic critical pressure of the liquid fuel are not well understood. Under some conditions, a distinct two-phase interface may not exist anymore which eliminates the presence of classical spray atomization phenomena. A comprehensive model for jet engine fuel injections is derived to quantify the conditions under which the interfacial dynamics transition to diffusion-dominated mixing processes without surface tension. At certain conditions, the model shows two-phase interfaces with substantially increased thicknesses and distinctively reduced mean free paths in comparison to ambient pressure conditions. Then, the underlying assumptions of a distinct two-phase interface do not apply anymore and the interface along with its surface tension is shown to deteriorate as it broadens substantially. As a consequence of this physical complexity, the conceptual view of spray atomization and evaporation as an appropriate model for jet engine injection processes is, contrary to conventional wisdom, questionable at certain operating conditions. Instead, a Large Eddy Simulation using a dense-fluid approximation is applied which takes the complex thermo-physics of real-fluid behavior into account.

  5. Two-Dimensional Gas-Phase Separations Coupled to Mass Spectrometry for Analysis of Complex Mixtures

    PubMed Central

    Tang, Keqi; Li, Fumin; Shvartsburg, Alexandre A.; Strittmatter, Eric F.; Smith*, Richard D.

    2007-01-01

    Ion mobility spectrometry (IMS) has been explored for decades, and its versatility in separation and identification of gas-phase ions is well established. Recently, field asymmetric waveform IMS (FAIMS) has been gaining acceptance in similar applications. Coupled to mass spectrometry (MS), both IMS and FAIMS have shown the potential for broad utility in proteomics and other biological analyses. A major attraction of these separations is extremely high speed, exceeding that of condensed-phase alternatives by orders of magnitude. However, modest separation peak capacities have limited the utility of FAIMS and IMS for analyses of complex mixtures. We report 2-D gas-phase separations that join FAIMS to IMS, in conjunction with high-resolution and accuracy time-of-flight MS. Implementation of FAIMS/IMS and IMS/MS interfaces using electrodynamic ion funnels greatly improves sensitivity. Evaluation of FAIMS/IMS/TOF performance for a protein mixture tryptic digest reveals high orthogonality between FAIMS and IMS dimensions, and hence the benefit of FAIMS filtering prior to IMS/MS. The effective peak capacities in analyses of tryptic peptides are ~500 for FAIMS/IMS separations and ~106 for 3-D FAIMS/IMS/MS, providing a potential platform for ultrahigh-throughput analyses of complex mixtures. PMID:16194103

  6. Gas-phase concentration, purification, and identification of whole proteins from complex mixtures.

    PubMed

    Reid, Gavin E; Shang, Hao; Hogan, Jason M; Lee, Gil U; McLuckey, Scott A

    2002-06-26

    Five proteins present in a relatively complex mixture derived from a whole cell lysate fraction of E. coli have been concentrated, purified, and dissociated in the gas phase, using a quadrupole ion trap mass spectrometer. Concentration of intact protein ions was effected using gas-phase ion/ion proton-transfer reactions in conjunction with mass-to-charge dependent ion "parking" to accumulate protein ions initially dispersed over a range of charge states into a single lower charge state. Sequential ion isolation events interspersed with additional ion parking ion/ion reaction periods were used to "charge-state purify" the protein ion of interest. Five of the most abundant protein components present in the mixture were subjected to this concentration/purification procedure and then dissociated by collisional activation of their intact multiply charged precursor ions. Four of the five proteins were subsequently identified by matching the uninterpreted product ion spectra against a partially annotated protein sequence database, coupled with a novel scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential cleavage sites. The identification of these proteins illustrates the potential of this "top-down" protein identification approach to reduce the reliance on condensed-phase chemistries and extensive separations for complex protein mixture analysis.

  7. Algebrodynamics over complex space and phase extension of the Minkowski geometry

    SciTech Connect

    Kassandrov, V. V.

    2009-05-15

    First principles should predetermine physical geometry and dynamics both together. In the 'algebrodynamics' they follow solely from the properties of biquaternion algebra B and the analysis over B. We briefly present the algebrodynamics over Minkowski background based on a nonlinear generalization to B of the Cauchi-Riemann analyticity conditions. Further, we consider the effective real geometry uniquely resulting from the structure of B multiplication and found it to be of the Minkowski type, with an additional phase invariant. Then we pass to study the primordial dynamics that takes place in the complex B space and brings into consideration a number of remarkable structures: an ensemble of identical correlated matter pre-elements ('duplicons'), caustic-like signals (interaction carriers), a concept of random complex time resulting in irreversibility of physical time at macrolevel, etc. In partucular, the concept of 'dimerous electron' naturally arises in the framework of complex algebrodynamics and, together with the above-mentioned phase invariant, allows for a novel approach to explanation of quantum interference phenomena alternative to recently accepted wave-particle dualism paradigm.

  8. Phase IV implementation studies. The forgotten finale to the complex intervention methodology framework.

    PubMed

    Pinnock, Hilary; Epiphaniou, Eleni; Taylor, Stephanie J C

    2014-02-01

    The complex intervention methodology framework defines the iterative process for developing and evaluating complex interventions in healthcare, but advice on implementation research was not included until the 2008 update. Our recent systematic review of implementation studies identified significant problems with reporting standards, including inconsistent terminology and crucial information that was missing or unclear. Introduction of reporting checklists has standardized the reporting of randomized controlled trials and other types of studies, and there is a need for similar guidance for reporting implementation studies. Key standards might include an explicit evidence base from a randomized controlled trial or guideline recommendation; recruitment to the clinical service, not the research; at least some outcomes at the population level using routinely collected data; and a description of the setting and the process of implementing the service. The complex intervention framework currently illustrates a cycle of development and evaluation, which includes implementation as a final step. We propose that the research underpinning implementation should be visualized as a second interrelated cycle. Just as the "phase III cycle" includes the iterative steps of development and piloting, a similar process may be needed to translate the intervention into a practical service that can be tested in a phase IV implementation study.

  9. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides

    SciTech Connect

    Abdur, Rob; Gerlits, Oksana O.; Gan, Jianhua; Jiang, Jiansheng; Salon, Jozef; Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Weber, Irene T.; Huang, Zhen

    2014-02-01

    Selenium-derivatized oligonucleotides may facilitate phase determination and high-resolution structure determination for protein–nucleic acid crystallography. The Se atom-specific mutagenesis (SAM) strategy may also enhance the study of nuclease catalysis. The crystal structures of protein–nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein–nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H–RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.

  10. Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields.

    PubMed

    Shibukawa, Atsushi; Okamoto, Atsushi; Takabayashi, Masanori; Tomita, Akihisa

    2014-02-24

    We propose a spatial cross modulation method using a random diffuser and a phase-only spatial light modulator (SLM), by which arbitrary complex-amplitude fields can be generated with higher spatial resolution and diffraction efficiency than off-axis and double-phase computer-generated holograms. Our method encodes the original complex object as a phase-only diffusion image by scattering the complex object using a random diffuser. In addition, all incoming light to the SLM is consumed for a single diffraction order, making a diffraction efficiency of more than 90% possible. This method can be applied for holographic data storage, three-dimensional displays, and other such applications.

  11. Detecting critical state before phase transition of complex systems by hidden Markov model

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.

  12. Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach

    NASA Astrophysics Data System (ADS)

    Martinez-Torres, Cristina; Laperrousaz, Bastien; Berguiga, Lotfi; Boyer-Provera, Elise; Elezgaray, Juan; Nicolini, Franck E.; Maguer-Satta, Veronique; Arneodo, Alain; Argoul, Françoise

    2015-09-01

    The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries based on their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia.

  13. Colloidal TiO2 nanocrystals prepared from peroxotitanium complex solutions: phase evolution from different precursors.

    PubMed

    Seok, Sang Il; Vithal, Muga; Chang, Jeong Ah

    2010-06-01

    We report the preparation of nanocrystalline anatase and rutile TiO(2) from aqueous peroxotitanium complex (PTC) solutions and their characterization by powder X-ray diffraction (XRD), infrared spectroscopy, and Raman spectroscopy. The phase evolution of TiO(2) prepared using PTC derived from different precursors, i.e., TiCl(4) and titanium tetraisopropoxide (TTIP), is related to the nature of the intermediate steps. Phase-pure nanoanatase was formed in PTC solution derived from TiCl(4), while a mixture of minor anatase and dominant rutile were prepared from PTC when TTIP was used as precursor. On the other hand, in the case of calcining PTC powders in air, a pure anatase phase of TiO(2) was obtained, regardless of the precursor used. Thus, the formation and attachment of hydrated TiO(6) units or TiO(2)·xH(2)O under a different environment, especially pH, plays a critical role in determining the phase during the crystallization of TiO(2).

  14. Determination of hexitols by reversed phase liquid chromatography using on-line complexation with molybdate ion.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2017-03-15

    A new approach is proposed to determine three hexitols (mannitol, sorbitol and dulcitol) by reversed phase liquid chromatography and ultraviolet detection. When molybdate ion is added to the mobile phase, it forms complexes with hexitols that can be separated on a reversed phase C30 column and detected by UV absorption at 247 nm. The mobile phase (pH 3.1) consisted of 0.1 mM disodium molybdate and 1 mM phosphoric acid. Other sugar alcohols, such as erythritol and xylitol, and glucose could not be detected under these conditions. The quantification limits of the examined three hexitols calculated at S/N = 10 were 0.001 mM and the detector response was linear in the range 0.001-0.3 mM. The method successfully measured these hexitols in candy samples, and the results obtained by the proposed method agreed well with those obtained by enzymatic methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface

    NASA Astrophysics Data System (ADS)

    Först, M.; Beyerlein, K. R.; Mankowsky, R.; Hu, W.; Mattoni, G.; Catalano, S.; Gibert, M.; Yefanov, O.; Clark, J. N.; Frano, A.; Glownia, J. M.; Chollet, M.; Lemke, H.; Moser, B.; Collins, S. P.; Dhesi, S. S.; Caviglia, A. D.; Triscone, J.-M.; Cavalleri, A.

    2017-01-01

    Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We measure the dynamics of the lattice and that of the charge disproportionation in NdNiO3 , when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO3 substrate. We find that charge redistribution propagates at supersonic speeds from the interface into the NdNiO3 film, followed by a sonic lattice wave. When combined with measurements of magnetic disordering and of the metal-insulator transition, these results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces.

  16. The steady-state phase distribution of the motor switch complex model of Halobacterium salinarum.

    PubMed

    del Rosario, Ricardo C H; Diener, Francine; Diener, Marc; Oesterhelt, Dieter

    2009-12-01

    Steady-state analysis is performed on the kinetic model for the switch complex of the flagellar motor of Halobacterium salinarum (Nutsch et al.). The existence and uniqueness of a positive steady-state of the system is established and it is demonstrated why the steady-state is centered around the competent phase, a state of the motor in which it is able to respond to light stimuli. It is also demonstrated why the steady-state shifts to the refractory phase when the steady-state value of the response regulator CheYP increases. This work is one aspect of modeling in systems biology wherein the mathematical properties of a model are established.

  17. Exact calculations of phase and membrane equilibria for complex fluids by Monte Carlo simulation

    SciTech Connect

    Panagiotopoulos, A.Z.

    1990-08-28

    The general objective of this project is the investigation of phase equilibria for complex fluids using a novel methodology, Monte Carlo simulation in the Gibbs ensemble. The methodology enables the direct determination of the properties of two coexisting fluid phases (e.g. a liquid at equilibrium with its vapor) from a single computer experiment, and is applicable to multicomponent systems with arbitrary equilibrium constraints imposed. The specific goals of this work are to adapt the Gibbs technique to (a) highly asymmetric mixtures with large differences in size and potential energies of interaction (b) chain molecules and (c) ionic systems. Significant progress has been made in all three areas. In this paper, we will briefly describe the progress made in each area, using the same numbering scheme for the tasks as in the original proposal.

  18. Determinants of Gas-Phase Disassembly Behavior in Homodimeric Protein Complexes with Related yet Divergent Structures

    PubMed Central

    Dodds, Eric D.; Blackwell, Anne E.; Jones, Christopher M.; Holso, Katie L.; O’Brien, Dawne J.; Cordes, Matthew H. J.; Wysocki, Vicki H.

    2011-01-01

    The overall structure of a protein-protein complex reflects an intricate arrangement of non-covalent interactions. While intramolecular interactions confer secondary and tertiary structure to individual subunits, intermolecular interactions lead to quaternary structure - the ordered aggregation of separate polypeptide chains into multi-subunit assemblies. The specific ensemble of non-covalent contacts dictates the stability of subunit folds, enforces protein-protein binding specificity, and determines multimer stability. Consequently, non-covalent architecture is likely to play a role in the gas-phase dissociation of these assemblies during tandem mass spectrometry (MS/MS). To further advance the applicability of MS/MS to analytical problems in structural biology, a better understanding of the interplay between the structures and fragmentation behaviors of non-covalent protein complexes is essential. The present work constitutes a systematic study of model protein homodimers (bacteriophage N15 Cro; bacteriophage λ Cro; bacteriophage P22 Arc) with related but divergent structures, both in terms of subunit folds and protein-protein interfaces. Because each of these dimers has a well-characterized structure (solution and / or crystal structure), specific non-covalent features could be correlated with gas-phase disassembly patterns as studied by collision-induced dissociation, surface-induced dissociation, and ion mobility. Of the several respects in which the dimers differed in structure, the presence or absence of intermolecular electrostatic contacts exerted the most significant influence on the gas-phase dissociation behavior. This is attributed to the well-known enhancement of ionic interactions in the absence of bulk solvent. Because salt bridges are general contributors to both intermolecular and intramolecular stability in protein complexes, these observations are broadly applicable to aid in the interpretation or prediction of dissociation spectra for non

  19. Phase-oriented treatment of structural dissociation in complex traumatization: overcoming trauma-related phobias.

    PubMed

    Steele, Kathy; van der Hart, Onno; Nijenhuis, Ellert R S

    2005-01-01

    The theory of structural dissociation of the personality proposes that patients with complex trauma-related disorders are characterized by a division of their personality into different prototypical parts, each with its own psychobiological underpinnings. As one or more apparently normal parts (ANPs), patients have a propensity toward engaging in evolutionary prepared action systems for adaptation to daily living to guide their actions. Two or more emotional parts (EPs) are fixated in traumatic experience. As EPs, patients predominantly engage action systems related to physical defense and attachment cry. ANP and EP are insufficiently integrated, but interact and share a number of dispositions of the personality (e.g., speaking). All parts are stuck in maladaptive action tendencies that maintain dissociation, including a range of phobias, which is a major focus of this article. Phase-oriented treatment helps patients gradually develop adaptive mental and behavioral actions, thus overcoming their phobias and structural dissociation. Phase 1, symptom reduction and stabilization, is geared toward overcoming phobias of mental contents, dissociative parts, and attachment and attachment loss with the therapist. Phase 2, treatment of traumatic memories, is directed toward overcoming the phobia of traumatic memories, and phobias related to insecure attachment to the perpetrator(s), particularly in EPs. In Phase 3, integration and rehabilitation, treatment is focused on overcoming phobias of normal life, healthy risk-taking and change, and intimacy. To the degree that the theory of structural dissociation serves as an integrative heuristic for treatment, it should be compatible with other theories that guide effective treatment of patients with complex dissociative disorders.

  20. Homogeneous superconducting phase in TiN film: A complex impedance study

    NASA Astrophysics Data System (ADS)

    Diener, P.; Schellevis, H.; Baselmans, J. J. A.

    2012-12-01

    The low frequency complex impedance of a high resistivity 92 μ Ω cm and 100 nm thick TiN superconducting film has been measured via the transmission of several high sensitivity GHz microresonators, down to TC/50. The temperature dependence of the kinetic inductance follows closely BCS local electrodynamics, with one well defined superconducting gap. This evidences the recovery of a homogeneous superconducting phase in TiN far from the disorder and composition driven transitions. Additionally, we observe a linearity between resonator quality factor and frequency temperature changes, which can be described by a two fluid model.

  1. Do DC-Chol/DOPE-DNA complexes really form an inverted hexagonal phase?

    NASA Astrophysics Data System (ADS)

    Caracciolo, Giulio; Caminiti, Ruggero

    2005-08-01

    Using synchrotron small angle X-ray scattering and energy dispersive X-ray diffraction, we have found that cationic liposomes made of the monovalent cationic lipid, 3-[ N-( N, N-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) and the neutral lipid dioleoylphosphatidylethanolamine (DOPE) condense DNA molecules forming complexes (DC-Chol/DOPE-DNA) which are not assembled in an inverted hexagonal structure as recently reported, but, conversely, form a well-ordered lamellar liquid-crystalline phase with distinct regimes of DNA packing density.

  2. Exogenous and endogenous market crashes as phase transitions in complex financial systems

    NASA Astrophysics Data System (ADS)

    Fry, J. M.

    2012-12-01

    In this paper we provide a unifying framework for a set of seemingly disparate models for exogenous and endogenous shocks in complex financial systems. Markets operate by balancing intrinsic levels of risk and return. This remains true even in the midst of transitory exogenous and endogenous shocks. Changes in market regime (bearish to bullish and bullish to bearish) can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. The resulting models refine the empirical analysis in a number of previous papers.

  3. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE PAGES

    Cheng, G.; Choi, K. S.; Hu, X.; ...

    2017-04-05

    Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  4. Gas phase computational studies on the competition between nitrile and water ligands in uranyl complexes.

    PubMed

    Schoendorff, George; de Jong, Wibe A; Gordon, Mark S; Windus, Theresa L

    2010-08-26

    The gas phase formation of uranyl dicationic complexes containing water and nitrile (acetonitrile, propionitrile, and benzonitrile) ligands, [UO(2)(H(2)O)(m)(RCN)(n)](2+), has been studied using density functional theory with a relativistic effective core potential to account for scalar relativistic effects on uranium. It is shown that nitrile addition is favored over the addition of water ligands. Decomposition of these complexes to [UO(2)OH(H(2)O)(m)(RCN)(n)](+) by the loss of either H(3)O(+) or (RCN + H)(+) is also examined. It is found that this reaction is competitive with the ligand addition when the coordination sphere of uranyl is unsaturated. Additionally, this reaction is influenced by the size of the nitrile ligand with reactions involving acetonitrile being the most prevalent. Finally, ligand addition to the monocation shows trends similar to that of the dication with energetic differences being smaller for the addition to the monocation.

  5. Complex-basis-function treatment of photoionization in the random-phase approximation

    SciTech Connect

    Yabushita, S.; McCurdy, C.W.; Rescigno, T.N.

    1987-10-01

    Complex-basis-function techniques are used to implement the equations of the random-phase approximation (RPA) in matrix form. This approach allows the direct extraction of total photoionization cross sections from a finite series of (complex) transition energies and oscillator strengths. The RPA is an effective means for including electron correlation effects on the photoionization of closed-shell atoms and molecules. The procedure demonstrated here provides a rigorous way of solving the RPA equations for continuum photoabsorption without resorting to numerical integration. The results of calculations on He and N/sub 2/ are presented. Correlation effects are found to significantly influence the threshold behavior of the N/sub 2/ photoionization cross sections.

  6. A Mass Spectrometry and DFT study of pyrithione complexes with transition metals in the gas phase.

    PubMed

    Butler, Matias; Cabrera, Gabriela M

    2017-07-24

    2-mercaptopyridine N-oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas-phase complexes formed between pyrithione and Manganese (II), Cobalt (II), Nickel (II), Copper (II) and Zinc (II) were investigated by infusion in the electrospray source of a quadrupole-time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10 H8 MN2 O2 S2 ](2+) ([M(PTO)2 ](+•) or [M(DPTO)](+•) ), where DPTO is dipyrithione, 2,2'-dithiobis(pyridine N-oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n ](2+) . Generation of [M(PTO)2 ](+•) / [M(DPTO)](+•) could be traced by CID of [M(DPTO)2 ](2+) , by observation of the sequential losses of a charged (PTO(+) ) and a radical (PTO(•) ) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2 ](+•) / [M(DPTO)](+•) were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2 ](+•) / [M(DPTO)](+•) whether the ligands are two deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas-phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox-active ligand in the complexes, since redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system. This article is protected by copyright. All rights reserved.

  7. Driving force for a nonequilibrium phase transition in three-dimensional complex plasmas

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, D. I.

    2017-03-01

    An example of the non-equilibrium phase transition is the formation of lanes when one kind of particle is driven against the other. According to experimental observation, lane formation in binary complex plasmas occurs when the smaller particles are driven through the stationary dust cloud of the larger particles. We calculate the driving force acting on a probe particle that finds itself in a quiescent cloud of particles in complex plasma of the low-pressure radio frequency discharge under microgravity conditions. It is shown that the nonzero driving force is a result of the dependence of the ion mean free path on the particle number density. If this effect is properly included in the model of similar complex plasmas, then one arrives at the driving force that changes its sign at the point where the probe and the dust particles have equal radii. If the probe is smaller than the dust particle, then the driving force is directed toward the discharge center and vice versa, in accordance with the experiment. The obtained results can serve as the ansatz for future investigation of the lane formation in complex plasmas.

  8. Fluid-structure interaction of complex bodies in two-phase flows on locally refined grids

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Shen, Lian; Sotiropoulos, Fotis

    2016-11-01

    Many real-life flow problems in engineering applications involve fluid-structure interaction (FSI) of arbitrarily complex geometries interacting with free surface flows. Despite the recent significant computational advances, conventional numerical methods are inefficient to resolve the prevailing complex dynamics due to the inherent large disparity of spatial and temporal scales that emerge in the air/water phases of the flow and around rigid bodies. To this end, the new generation 3D, unsteady, unstructured Cartesian incompressible flow solver, developed at the Saint Anthony Falls Laboratory (SAFL), is integrated with a FSI immersed boundary method and is coupled with the level-set formulation. The predictive capabilities of our method to simulate non-linear free surface phenomena, with low computational cost, are significantly improved by locally refining the computational grid in the vicinity of solid boundaries and around the free surface interface. We simulate three-dimensional complex flows involving complex rigid bodies interacting with a free surface both with prescribed body motion and coupled FSI and we investigate breaking wave events. In all the cases, very good agreement with benchmark data is found. This material is based upon work supported by the National Science Foundation (CBET-1509071).

  9. Spectral and thermal studies of solid-phase thermochromism of Co(II) double metal complexes

    NASA Astrophysics Data System (ADS)

    AL-Sha'alan, Noura H.

    2007-09-01

    Tetrahedral solid state structures of the blue potassium tris(aryloxo)cobaltate(II)-tetrahydrofurane complexes of the formula KCo(OAr) 3·2thf (OAr = o-chloro-, o-bromo-, m-chloro-, p-bromo, 2,6-dichloro-, 2,4-dichloro- or 2,4-dimethylphenoxide) undergo solid-phase thermal tetrahedral to octahedral transformation accompanied by change in their colours from blue to rose (one-step thermochromism). Magnetic moments, electronic and infrared spectral studies supported these results. Thermal treatment of theses complexes leads to the loss of the crystallized thf molecule yielding also blue tetrahedral complexes. However, further heating leads to the loss of the coordinated thf molecule and the formation of rose octahedral trimeric products. TG-DTA results showed that the, two solvated thf molecules were eliminated in two steps. Mass spectral studies and IR intensity measurements confirmed the trimeric behaviour of the rose octahedral geometry of thermal products. Conductance measurements of solutions of these complexes in thf indicated that they behave as non-electrolytes.

  10. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    SciTech Connect

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  11. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    PubMed

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  12. Characterization of mitotane (o,p'-DDD)--cyclodextrin inclusion complexes: phase-solubility method and NMR.

    PubMed

    Alfonsi, R; Attivi, D; Astier, A; Socha, M; Morice, S; Gibaud, S

    2013-05-01

    Mitotane (o,p'-dichlorodimethyl dichloroethane [o,p'-DDD]) is used for the treatment of adrenocortical cancer and occasionally Cushing's syndrome. This drug is very poorly soluble in water, and following oral administration, approximately 60% of the dose is recovered in the feces unaltered. The preparation of a soluble formulation (i.e. by complexation with cyclodextrins) with improved bioavailability is the aim of this work. The inclusion of mitotane in methyl-ß-cyclodextrins was studied using both phase-solubility methods and NMR experiments. To elucidate the inclusion mechanism, o,p'-DDD was compared to its regioisomer (i.e. p,p'-DDD). It was demonstrated that two dimethyl-ß-cyclodextrins (DMßCD) can complex with the aromatic rings. From the phase-solubility diagrams, we observe that both cases are very different: K(1:1) is between 37 000 and 85 000 mol.l(-1), whereas K(1:2) is between 5.3 and 32 mol.l(-1). The NMR experiments confirmed the inclusion but it also gave an insight into the kinetics of the dissociation: the ortho-chloro moiety is in slow exchange on the NMR time scale, whereas the para-chloro moiety is in fast exchange rate. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  14. Antimicrobial Activity from Colistin-Heparin Lamellar-Phase Complexes for the Coating of Biomedical Devices.

    PubMed

    Tangso, Kristian J; C D da Cunha, Paulo Henrique; Spicer, Patrick; Li, Jian; Boyd, Ben J

    2016-11-16

    Infections arising in hospitalized patients, particularly those who have undergone surgery and are reliant on receiving treatment through biomedical devices, continue to be a rising concern. It is well-known that aqueous mixtures of oppositely charged surfactant and polymer molecules can self-assemble to form liquid crystalline structures, primarily via electrostatically driven interactions that have demonstrated great potential as tailored-release nanomaterials. Colistin is a re-emerging antibiotic used against multidrug-resistant Gram-negative bacteria. Its amphiphilic structure allows it to form micellar aggregates in solution. Thus, the aim of this study was to determine whether structured complexes form between colistin and negatively charged biopolymers, such as the highly sulfated anticoagulant, heparin. Cross-polarized light microscopy and synchrotron small-angle X-ray scattering were employed to visualize the appearance of birefringent structures and identify liquid crystalline structures, respectively, formed across the interface between solutions of colistin and heparin. A lamellar phase with a lattice parameter of ∼40 Å was formed upon contact between the oppositely charged solutions of colistin and heparin. In addition, in vitro release studies showed a slow release of colistin from the lamellar-phase gel complexes into the bulk media, and disk diffusion bioassays revealed antimicrobial activity against Pseudomonas aeruginosa. This system provides a novel, cost-effective, and simple approach to reducing the risk of infections by potentially applying the formulation as a coating for biomedical implants or tubing.

  15. Evolution of phase and morphology of titanium dioxide induced from peroxo titanate complex aqueous solution.

    PubMed

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2010-01-01

    We demonstrate the growth of anatase TiO2 in nanospheres and rutile TiO2 in nanorods, by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of hydrogen peroxide at 100 degrees C using sol-gel method. X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and surface area measurement techniques are used to characterize the phase and shape developments of TiO2 obtained from peroxo titanate complex in an aqueous solution at 100 degrees C. Peroxo titanate complexes were prepared by a reaction of titanium hydroxide, formed by hydrolysis of titanium tetraisopropoxide (TTIP), and different amounts of hydrogen peroxide (H2O2). TEM and XRD investigations reveal that the size of spheres (anatase) and rods (rutile) are about 8 nm (diameter) and about 13 x 29 nm approximately 20 x 75 nm (width x length) respectively. The influence of molar ratio of H2O2/TTIP on the phase and morphology of TiO2 is presented. A mixture of anatase spheres and short rutile rods are formed at low H2O2/TTIP ratio while predominantly rutile a quit long rods are formed at higher H2O2/TTIP ratio.

  16. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O

  17. Vibrational Spectroscopy of Mass Selected [UO2(ligand)n]2+ Complexes in the Gas Phase

    SciTech Connect

    Gary S. Groenewold; Anita Gianotto; Michael Vanstipdonk; Kevin C. Cossel; David T. Moore,; Nick Polfer; Jos Oomens

    2006-03-01

    The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the O=U=O stretch, and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric O=U=O stretching frequency was measured at 1017 cm-1 for [UO2(CH3COCH3)2]2+, and was systematically red shifted to 1000 and 988 cm-1 by the addition of a third and fourth acetone ligands, respectively, which was consistent with more donation of electron density to the uranium center in complexes with higher coordination number. The experimental measurements were in good agreement with values generated computationally using LDA, B3LYP, and ZORA-PW91 approaches. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from 2 to 4, and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes although the magnitude of the red shift in the uranyl frequency upon addition more acetonitrile ligands was smaller than for acetone, consistent with the more modest nucleophilic nature of acetonitrile. This conclusion was amplified by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3 to 6 cm-1.

  18. Absorption enhancement of adefovir dipivoxil by incorporating MCT and ethyl oleate complex oil phase in emulsion

    PubMed Central

    Li, Ping; Yu, Hong-zhen; Zhang, Xin-xin; Gan, Li; Zhu, Chun-liu; Gan, Yong

    2010-01-01

    Aim: To improve the oral absorption of adefovir dipivoxil (ADV) by employing MCT and the esterase inhibitor ethyl oleate (EO) as a complex oil phase in emulsion. Methods: EO was used as the esterase inhibitor, and its inhibitory effect on esterase activity was assessed in rat intestinal homogenates. ADV emulsions with or without EO were prepared. The emulsions' protective effect against intestinal metabolism was evaluated in rat luminal contents, ex vivo, as well as in vivo. Results: The IC50 of EO in intestinal mucosal homogenates was 2.2 mg/mL. The emulsions exhibited significant protective effects in rat luminal contents compared to a simple suspension (98.7%, 96.3%, 95.7% vs 74.7%, P<0.01). The permeability calculated from the emulsion containing EO was significantly different (11.4×10−6 vs 7.4/8.0×10−6, P<0.05) from the simple suspension or the emulsion without EO in an ex vivo assay. A bioavailability study in vivo revealed that emulsions containing both EO and MCT as a complex oil phase demonstrated 1.6- and 1.5-fold enhancements in area under the curve (AUC0–12) values (5358 vs 3386/3618, P<0.05), respectively, when compared with emulsions containing EO or MCT as a single oil phase. Conclusion: Heterotic lipid formulations (emulsions) with an esterase inhibitor (ie, EO) may be useful in protecting ester prodrugs from intestinal metabolism and increasing their oral bioavailability. PMID:20562905

  19. Solid-state NMR analysis of a complex crystalline phase of ronacaleret hydrochloride.

    PubMed

    Vogt, Frederick G; Williams, Glenn R; Strohmeier, Mark; Johnson, Matthew N; Copley, Royston C B

    2014-08-28

    A crystalline phase of the pharmaceutical compound ronacaleret hydrochloride is studied by solid-state nuclear magnetic resonance (SSNMR) spectroscopy and single-crystal X-ray diffraction. The crystal structure is determined to contain two independent cationic molecules and chloride anions in the asymmetric unit, which combine with the covalent structure of the molecule to yield complex SSNMR spectra. Experimental approaches based on dipolar correlation, chemical shift tensor analysis, and quadrupolar interaction analysis are employed to obtain detailed information about this phase. Density functional theory (DFT) calculations are used to predict chemical shielding and electric field gradient (EFG) parameters for comparison with experiment. (1)H SSNMR experiments performed at 16.4 T using magic-angle spinning (MAS) and homonuclear dipolar decoupling provide information about hydrogen bonding and molecular connectivity that can be related to the crystal structure. (19)F and (13)C assignments for the Z' = 2 structure are obtained using DFT calculations, (19)F homonuclear dipolar correlation, and (13)C-(19)F heteronuclear dipolar correlation experiments. (35)Cl MAS experiments at 16.4 T observe two chlorine sites that are assigned using calculated chemical shielding and EFG parameters. SSNMR dipolar correlation experiments are used to extract (1)H-(13)C, (1)H-(15)N, (1)H-(19)F, (13)C-(19)F, and (1)H-(35)Cl through-space connectivity information for many positions of interest. The results allow for the evaluation of the performance of a suite of SSNMR experiments and computational approaches as applied to a complex but typical pharmaceutical solid phase.

  20. Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes

    NASA Astrophysics Data System (ADS)

    Kalaiarasi, S.; Jose, M.

    2017-08-01

    TiO2 nanostructures were successfully prepared via hydrothermal technique using water-soluble complexes. The phase, functional groups, and morphological analysis of the synthesized nanostructures were characterized using powdered X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analyses, respectively. Impedance spectroscopy was applied to investigate the dielectric behavior of nanostructured TiO2 at anatase phase. The average grain size of polymorphic anatase phase TiO2 NPs was found to be 18 nm using Debye-Scherrer equation. More significantly, synthesized nanostructures ensure predominant dielectric constant at Curie temperature, with less dielectric loss 0.026 (1 kHz) and constant chemical capacitance (67 pF). In addition, it was inferred that maximum activation energy (0.5 eV) was encountered at mid frequency region and subsequently, the dielectric relaxation behavior was investigated through dielectric modulus formulation. These results indicate that the synthesized nanoparticles can be an efficient candidate for applications in microelectronics when operated at mid frequency region at 100 °C.

  1. Structural evolution of polyelectrolyte-complex-core micelles and ordered-phase bulk materials

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew; Krogstad, Daniel; Kramer, Edward

    2015-03-01

    The kinetics of formation and structural evolution of novel polyelectrolyte complex materials formed by the assembly of water-soluble di- and tri-block copolymers, with one neutral block and one block either cationic or anionic, have been investigated. The mechanism and speed of the assembly process, and the organization of these domains, were probed using dynamic mechanical spectroscopy and small angle X-ray scattering (SAXS). SAXS revealed that the equilibrium morphologies of both the di-block copolymer and the tri-block copolymer materials were generally qualitatively the same with some apparent quantitative differences in phase boundaries, possibly attributable to lack of full equilibration. Slow kinetics and difficulties in reaching equilibrium phase structures, especially in tri-block materials, is a principal message of this article. Detailed analysis of the SAXS data revealed that the tri-block copolymer materials formed ordered phases via a nucleation and growth pathway and that the addition of small amounts (~20%) of corresponding di-block copolymers increased the rate of structure formation and enhanced several key physical properties. This work was supported by the U.S. Department of Energy Office of Science Program in Basic Energy Sciences, Materials Sciences and Engineering Division.

  2. Information and linearity of time-domain complex demodulated amplitude and phase data in shallow water.

    PubMed

    Sarkar, Jit; Cornuelle, Bruce D; Kuperman, W A

    2011-09-01

    Wave-theoretic ocean acoustic propagation modeling is used to derive the sensitivity of pressure, and complex demodulated amplitude and phase, at a receiver to the sound speed of the medium using the Born-Fréchet derivative. Although the procedure can be applied for pressure as a function of frequency instead of time, the time domain has advantages in practical problems, as linearity and signal-to-noise are more easily assigned in the time domain. The linearity and information content of these sensitivity kernels is explored for an example of a 3-4 kHz broadband pulse transmission in a 1 km shallow water Pekeris waveguide. Full-wave observations (pressure as a function of time) are seen to be too nonlinear for use in most practical cases, whereas envelope and phase data have a wider range of validity and provide complementary information. These results are used in simulated inversions with a more realistic sound speed profile, comparing the performance of amplitude and phase observations. © 2011 Acoustical Society of America

  3. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis

    PubMed Central

    2015-01-01

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the “structure elucidation problem”: the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS’s utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 104 molecules/bead and sequencing allowed for elucidation of each compound’s synthetic history. We applied DESPS to the combinatorial synthesis of a 75 645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and

  4. Accelerated discovery of two crystal structure types in a complex inorganic phase field

    NASA Astrophysics Data System (ADS)

    Collins, C.; Dyer, M. S.; Pitcher, M. J.; Whitehead, G. F. S.; Zanella, M.; Mandal, P.; Claridge, J. B.; Darling, G. R.; Rosseinsky, M. J.

    2017-06-01

    The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios. Computational methods have been developed to guide synthesis by predicting structures at specific compositions and predicting compositions for known crystal structures, with notable successes. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them.

  5. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR

  6. Investigating gas phase dissociation pathways of crosslinked peptides : application to protein complex determination.

    SciTech Connect

    Young, Malin M.; Gaucher, Sara P.; Hadi, Masood Z.

    2005-02-01

    Chemical crosslinking is an important tool for probing protein structure and protein-protein interactions. The approach usually involves crosslinking of specific amino acids within a folded protein or protein complex, enzymatic digestion of the crosslinked protein(s), and identification of the resulting crosslinked peptides by liquid chromatography/mass spectrometry (LC/MS). In this manner, distance constraints are obtained for residues that must be in close proximity to one another in the native structure or complex. As the complexity of the system under study increases, for example, a large multi-protein complex, simply measuring the mass of a crosslinked species will not always be sufficient to determine the identity of the crosslinked peptides. In such a case, tandem mass spectrometry (MS/MS) could provide the required information if the data can be properly interpreted. In MS/MS, a species of interest is isolated in the gas phase and allowed to undergo collision induced dissociation (CID). Because the gas-phase dissociation pathways of peptides have been well studied, methods are established for determining peptide sequence by MS/MS. However, although crosslinked peptides dissociate through some of the same pathways as isolated peptides, the additional dissociation pathways available to the former have not been studied in detail. Software such as MS2Assign has been written to assist in the interpretation of MS/MS from crosslinked peptide species, but it would be greatly enhanced by a more thorough understanding of how these species dissociate. We are thus systematically investigating the dissociation pathways open to crosslinked peptide species. A series of polyalanine and polyglycine model peptides have been synthesized containing one or two lysine residues to generate defined inter- and intra-molecular crosslinked species, respectively. Each peptide contains 11 total residues, and one arginine residue is present at the carboxy terminus to mimic species

  7. Realist complex intervention science: Applying realist principles across all phases of the Medical Research Council framework for developing and evaluating complex interventions

    PubMed Central

    Fletcher, Adam; Jamal, Farah; Moore, Graham; Evans, Rhiannon E.; Murphy, Simon; Bonell, Chris

    2016-01-01

    The integration of realist evaluation principles within randomised controlled trials (‘realist RCTs’) enables evaluations of complex interventions to answer questions about what works, for whom and under what circumstances. This allows evaluators to better develop and refine mid-level programme theories. However, this is only one phase in the process of developing and evaluating complex interventions. We describe and exemplify how social scientists can integrate realist principles across all phases of the Medical Research Council framework. Intervention development, modelling, and feasibility and pilot studies need to theorise the contextual conditions necessary for intervention mechanisms to be activated. Where interventions are scaled up and translated into routine practice, realist principles also have much to offer in facilitating knowledge about longer-term sustainability, benefits and harms. Integrating a realist approach across all phases of complex intervention science is vital for considering the feasibility and likely effects of interventions for different localities and population subgroups. PMID:27478401

  8. Gas phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide.

    PubMed

    Gong, Yu; de Jong, Wibe A; Gibson, John K

    2015-05-13

    Activation of the oxo bond of uranyl, UO2(2+), was achieved by collision induced dissociation (CID) of UO2(N3)Cl2(-) in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2(-) was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2(-) resulted in the loss of N2 to form UO(NO)Cl2(-), in which the "inert" uranyl oxo bond has been activated. Formation of UO2Cl2(-) via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2(-) complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2(-) complex shows that the side-on bonded NO moiety can be considered as NO(3-), suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2(-) to form UO(NO)Cl2(-) and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2(-) and UO2Cl2(-). The observation of UO2Cl2(-) during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  9. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2– in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2– was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2– resulted in the loss of N2 to form UO(NO)Cl2–, in which the “inert” uranyl oxo bond has been activated. Formation of UO2Cl2– via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2– complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2– complex shows that the side-on bonded NO moiety can be considered as NO3–, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2– to form UO(NO)Cl2– and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2– and UO2Cl2–. The observation of UO2Cl2– during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  10. Using reversed phase high performance liquid chromatography to study the complexation of anthocyanins with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Deineka, L. A.

    2014-06-01

    It is shown by means of reversed phase high performance liquid chromatography (RP HPLC) with mobile phases containing additions of β-cyclodextrin that 5-glucosides of cyanidin and pelargonidin form stronger inclusion complexes than 3-glucosides; this is explained by the steric interference of the glucoside radical.

  11. Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

    PubMed Central

    Bouyer, Daniel; Roudier, Francois; Heese, Maren; Andersen, Ellen D.; Gey, Delphine; Nowack, Moritz K.; Goodrich, Justin; Renou, Jean-Pierre; Grini, Paul E.; Colot, Vincent; Schnittger, Arp

    2011-01-01

    Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. PMID:21423668

  12. The earliest phases of high-mass star formation: the NGC 6334-NGC 6357 complex

    NASA Astrophysics Data System (ADS)

    Russeil, D.; Zavagno, A.; Motte, F.; Schneider, N.; Bontemps, S.; Walsh, A. J.

    2010-06-01

    Context. Our knowledge of high-mass star formation has been mainly based on follow-up studies of bright sources found by IRAS, and has thus been incomplete for its earliest phases, which are inconspicuous at infrared wavelengths. With a new generation of powerful bolometer arrays, unbiased large-scale surveys of nearby high-mass star-forming complexes now search for the high-mass analog of low-mass cores and class 0 protostars. Aims: Following the pioneering study of Cygnus X, we investigate the star-forming region NGC 6334-NGC 6357 (~1.7 kpc). Methods: We study the complex NGC 6334-NGC 6357 in an homogeneous way following the previous work of Motte and collaborators. We used the same method to extract the densest cores which are the most likely sites for high-mass star formation. We analyzed the SIMBA/SEST 1.2 mm data presented in Munoz and coworkers, which covers all high-column density areas (A v ≥ 15 mag) of the NGC 6334-NGC 6357 complex and extracted dense cores following the method used for Cygnus X. We constrain the properties of the most massive dense cores (M > 100 M_⊙) using new molecular line observations (as SiO, N2H+,H13CO+, HCO+ (1-0) and CH3CN) with Mopra and a complete cross-correlation with infrared databases (MSX, GLIMPSE, MIPSGAL) and literature. Results: We extracted 163 massive dense cores of which 16 are more massive than 200 M_⊙. These high-mass dense cores have a typical FWHM size of 0.37 pc, an average mass of M ~ 600 M_⊙, and a volume-averaged density of ~ 1.5 × 105 cm-3. Among these massive dense cores, 6 are good candidates for hosting high-mass infrared-quiet protostars, 9 cores are classified as high-luminosity infrared protostars, and we find only one high-mass starless clump (~0.3 pc, ~ 4 × 104 cm-3) that is gravitationally bound. Conclusions: Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it provides a statistical estimate of the lifetime of massive

  13. Molecular orbital studies of gas-phase interactions between complex molecules.

    PubMed

    Gaudreault, Roger; Whitehead, M A; van de Ven, Theo G M

    2006-03-16

    Describing interactions among large molecules theoretically is a challenging task. As an example, we investigated gas-phase interactions between a linear nonionic oligomer and various model compounds (cofactors), which have been reported to associate experimentally, using PM3 semiempirical molecular orbital theory. As oligomer, we studied the hexamer of poly(ethylene oxide) (PEO), and as cofactors, we studied corilagin and related compounds containing phenolic groups (R-OH). These systems are of interest because they are models for PEO/cofactor flocculation systems, used in industrial applications. The PM3 delocalized molecular orbitals (DLMO) describe the bonding between (PEO)6 and cofactors, and some of them cover the complete complex. The DLMOs which cover the traditionally considered hydrogen bonds R-OH...O or R-CH...O show a distinct "pinch", a decrease of the electron density, between the H...O atoms. Calculations of Gibbs free energy, entropy, and enthalpy show that the PEO/cofactor complexes do not form at room temperature, because the loss of entropy exceeds the increase in enthalpy. The change in enthalpy is linearly related to the change in entropy for the different complexes. Even though bond lengths, bond angles, DLMOs, and electron densities for the PEO/cofactor complexes are consistent with the definition of hydrogen bonds, the number of intermolecular R-OH...O and R-CH...O bonds does not correlate with the enthalpy of association, indicating that the bonding mechanism for these systems is the sum of many small contributions of many delocalized orbitals.

  14. An HPLC chromatographic framework to analyze the β-cyclodextrin/solute complexation mechanism using a carbon nanotube stationary phase.

    PubMed

    Aljhni, Rania; Andre, Claire; Lethier, Lydie; Guillaume, Yves Claude

    2015-11-01

    A carbon nanotube (CNT) stationary phase was used for the first time to study the β-cyclodextrin (β-CD) solute complexation mechanism using high performance liquid chromatography (HPLC). For this, the β-CD was added at various concentrations in the mobile phase and the effect of column temperature was studied on both the retention of a series of aniline and benzoic acid derivatives with the CNT stationary phase and their complexation mechanism with β-CD. A decrease in the solute retention factor was observed for all the studied molecules without change in the retention order. The apparent formation constant KF of the inclusion complex β-CD/solute was determined at various temperatures. Our results showed that the interaction of β-CD with both the mobile phase and the stationary phase interfered in the complex formation. The enthalpy and entropy of the complex formation (ΔHF and ΔSF) between the solute molecule and CD were determined using a thermodynamic approach. Negative enthalpies and entropies indicated that the inclusion process of the studied molecule in the CD cavity was enthalpically driven and that the hydrogen bonds between carboxylic or aniline groups and the functional groups on the β-CD rim play an important role in the complex formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Complex semiclassical analysis of the Loschmidt amplitude and dynamical quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Suzuki, Sei; Takahashi, Kazutaka

    2017-05-01

    We propose a computational method of the Loschmidt amplitude in a generic spin system on the basis of the complex semiclassical analysis on the spin-coherent state path integral. We demonstrate how the dynamical transitions emerge in the time evolution of the Loschmidt amplitude for the infinite-range transverse Ising model with a longitudinal field, exposed by a quantum quench of the transverse field Γ from ∞ or zero. For both initial conditions, we obtain the dynamical phase diagrams that show the presence or absence of the dynamical transition in the plane of transverse field after a quantum quench and the longitudinal field. The results of semiclassical analysis are verified by numerical experiments. Experimental observation of our findings on the dynamical transition is also discussed.

  16. Identification of the dimethylamine-trimethylamine complex in the gas phase.

    PubMed

    Du, Lin; Lane, Joseph R; Kjaergaard, Henrik G

    2012-05-14

    We have identified the dimethylamine-trimethylamine complex (DMA-TMA) at room temperature in the gas phase. The Fourier transform infrared (FTIR) spectrum of DMA-TMA in the NH-stretching fundamental region was obtained by spectral subtraction of spectra of each monomer. Explicitly correlated coupled cluster calculations were used to determine the minimum energy structure and interaction energy of DMA-TMA. Frequencies and intensities of NH-stretching transitions were also calculated at this level of theory with an anharmonic oscillator local mode model. The fundamental NH-stretching intensity in DMA-TMA is calculated to be approximately 700 times larger than that of the DMA monomer. The measured and calculated intensity is used to determine a room temperature equilibrium constant of DMA-TMA of 1.7 × 10(-3) atm(-1) at 298 K.

  17. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    PubMed

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  18. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    PubMed Central

    Castelli, Christian; Losa, Gabriele A.

    2001-01-01

    Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187) for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD) values indicating that their plasma membranes were less rough (lower FD) than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD) occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process. PMID:11790854

  19. Gas Phase Chemistry and Molecular Complexity: How Far Do They Go?

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia

    2016-07-01

    The accumulation of organic molecules of increasing complexity is believed to be an important step toward the emergence of life. But how massive organic synthesis could occur in primitive Earth, i.e. a water-dominated environment, is a matter of debate. Two alternative theories have been suggested so far: endogenous and exogenous synthesis. In the first theory, the synthesis of simple organic molecules having a strong prebiotic potential (simple prebiotic molecules SPMs, such as H2CO, HCN, HC3N, NH2CHO) occurred directly on our planet starting from simple parent molecules of the atmosphere, liquid water and various energy sources. Miller's experiment was a milestone in this theory, but it was later recognized that the complexity of a planet cannot be reproduced in a single laboratory experiment. Some SPMs have been identified in the N2-dominated atmosphere of Titan (a massive moon of Saturn), which is believed to be reminiscent of the primitive terrestrial atmosphere. As such, the atmosphere of Titan represents a planetary scale laboratory for the comprehension of SPM formation in an environment close enough to primitive Earth and is the current frontier in the endogenous theory exploration. In the exogenous theory, SPMs came from space, the carriers being comets, asteroids and meteorites. The rationale behind this suggestion is that plenty of SPMs have been observed in interstellar clouds (ISCs), including star-forming regions, and in small bodies like comets, asteroids and meteorites. Therefore, the basic idea is that SPMs were formed in the solar nebula, preserved during the early phases of the Solar System formation in the body of comets/asteroids/meteorites and finally delivered to Earth by cometary and meteoritic falls. In this contribution, the status of our knowledge on how SPMs can be formed in the gas phase, either in the primitive terrestrial atmosphere or in the cold nebula from which the Solar System originated, will be presented. Particular attention

  20. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  1. A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives

    PubMed Central

    Robertson, Michael P.; Scott, William G.

    2008-01-01

    The crystallographic phase problem [Muirhead & Perutz (1963 ▶), Nature (London), 199, 633–638] remains the single major impediment to obtaining a three-dimensional structure of a macromolecule once suitable crystals have been obtained. Recently, it was found that it was possible to solve the structure of a 142-nucleotide L1 ligase ribozyme heterodimer that possesses no noncrystallographic symmetry without heavy-atom derivatives, anomalous scattering atoms or other modifications and without a model of the tertiary structure of the ribozyme [Robertson & Scott (2007 ▶), Science, 315, 1549–1553]. Using idealized known RNA secondary-structural fragments such as A-form helices and GNRA tetraloops in an iterative molecular-replacement procedure, it was possible to obtain an estimated phase set that, when subjected to solvent flattening, yielded an interpretable electron-density map with minimized model bias, allowing the tertiary structure of the ribozyme to be solved. This approach has also proven successful with other ribozymes, structured RNAs and RNA–protein complexes. PMID:18566509

  2. Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface

    DOE PAGES

    Först, M.; Beyerlein, K. R.; Mankowsky, R.; ...

    2017-01-09

    Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We also measure the dynamics of the lattice and that of the charge disproportionation in NdNiO 3 , when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO 3 substrate. We findmore » that charge redistribution propagates at supersonic speeds from the interface into the NdNiO 3 film, followed by a sonic lattice wave. Our results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces, when combined with measurements of magnetic disordering and of the metal-insulator transition.« less

  3. Stochastic production phase design for an open pit mining complex with multiple processing streams

    NASA Astrophysics Data System (ADS)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  4. Natural history of chronic hepatitis B: phases in a complex relationship.

    PubMed

    Croagh, Catherine M N; Lubel, John S

    2014-08-14

    Chronic hepatitis B (CHB) is a condition of global prevalence and its sequelae include cirrhosis and hepatocellular carcinoma. The natural history of CHB is a complex interplay of virological, environmental and host factors. The dynamic relationship between the virus and host evolves over the duration of the infection and different phases of the disease have been observed and described. These have been conceptualized in terms of the state of balance between the host immune system and the hepatitis B virus and have been given the labels immune tolerant, immune clearance, immune control and immune escape although other nomenclature is also used. Host factors, such as age at infection, determine progression to chronicity. Virological factors including hepatitis B viral load, mutations and genotype also have an impact on the adverse outcomes of the infection, as do hepatotoxic cofactors such as alcohol. Our understanding of the natural history of CHB has evolved significantly over the past few decades and characterizing the phase of disease of CHB remains an integral part of managing this virus in the clinic.

  5. Complex Organic Molecules Formation in Space Through Gas Phase Reactions: A Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2017-02-01

    Chemistry in the interstellar medium (ISM) is capable of producing complex organic molecules (COMs) of great importance to astrobiology. Gas phase and grain surface chemistry almost certainly both contribute to COM formation. Amino acids as building blocks of proteins are some of the most interesting COMs. The simplest one, glycine, has been characterized in meteorites and comets and, its conclusive detection in the ISM seems to be highly plausible. In this work, we analyze the gas phase reaction of glycine and {{{CH}}5}+ to establish the role of this process in the formation of alanine or other COMs in the ISM. Formation of protonated α- and β-alanine in spite of being exothermic processes is not viable under interstellar conditions because the different paths leading to these isomers present net activation energies. Nevertheless, glycine can evolve to protonated 1-imide-2, 2-propanediol, protonated amino acetone, protonated hydroxyacetone, and protonated propionic acid. However, formation of acetic acid and protonated methylamine is also a favorable process and therefore will be a competitive channel with the evolution of glycine to COMs.

  6. Complex magnetic phases in non-centrosymmetric heavy fermion CeCoGe3

    NASA Astrophysics Data System (ADS)

    Wu, Shan; Stock, Chris; Petrovic, Cedomir; Rodriguez-Rivera, J. A.; Broholm, Collin

    The non-centrosymmetric nature of the tetragonal heavy fermion system CeCoGe3 has attracted much interest in the high pressure superconducting state of the material. We have explored the related ambient pressure magnetism using neutron scattering. There are three successive phase transitions at TN 1 ~ 21 K , TN 2 ~ 12 K and TN 3 ~ 8 K. The upper transition greatly enhances the susceptibility and there are meta-magnetic transitions in the lower T phases. We confirmed the previously determined AFM spin structure for TN 2 < T complex commensurate structure that can be described as intertwined antiferromagnetic segments. We also report inelastic magnetic neutron scattering, which is dominated by the periodicity of the chemical cell rather than the magnetic unit cell. The work at IQM was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DEFG02-08ER46544.

  7. Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Li, Jun; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2017-07-01

    The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase.

  8. Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Li, Jun; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2017-10-01

    The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. [Figure not available: see fulltext.

  9. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes.

    PubMed

    Zhang, Jingqing; Landry, Markita P; Barone, Paul W; Kim, Jong-Ho; Lin, Shangchao; Ulissi, Zachary W; Lin, Dahua; Mu, Bin; Boghossian, Ardemis A; Hilmer, Andrew J; Rwei, Alina; Hinckley, Allison C; Kruss, Sebastian; Shandell, Mia A; Nair, Nitish; Blake, Steven; Şen, Fatih; Şen, Selda; Croy, Robert G; Li, Deyu; Yum, Kyungsuk; Ahn, Jin-Ho; Jin, Hong; Heller, Daniel A; Essigmann, John M; Blankschtein, Daniel; Strano, Michael S

    2013-12-01

    Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages.

  10. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Jingqing; Landry, Markita P.; Barone, Paul W.; Kim, Jong-Ho; Lin, Shangchao; Ulissi, Zachary W.; Lin, Dahua; Mu, Bin; Boghossian, Ardemis A.; Hilmer, Andrew J.; Rwei, Alina; Hinckley, Allison C.; Kruss, Sebastian; Shandell, Mia A.; Nair, Nitish; Blake, Steven; Şen, Fatih; Şen, Selda; Croy, Robert G.; Li, Deyu; Yum, Kyungsuk; Ahn, Jin-Ho; Jin, Hong; Heller, Daniel A.; Essigmann, John M.; Blankschtein, Daniel; Strano, Michael S.

    2013-12-01

    Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages.

  11. Variable-frequency complex demodulation technique for extracting amplitude and phase information

    SciTech Connect

    Gasquet, H.; Wootton, A.J.

    1997-01-01

    We present a variable-frequency variant of the complex demodulation technique. Complex demodulation is the digital equivalent of heterodyne detection, in which the input signal is multiplied by a carrier oscillation {l_brace}exp({minus}i{omega}{sub m}t){r_brace} of modulation frequency {omega}{sub m} and then low-pass filtered. The time-dependent amplitude and relative phase can then be computed from the filtered demodulate. This technique fails when the frequency of oscillation differs from the modulation frequency by more than the cutoff frequency of the low-pass filter. We modified the standard technique by computing iteratively a time-dependent modulation frequency {l_brace}{omega}{sub m}(t){r_brace} that tracks the signal frequency to within {plus_minus}0.1{percent} of the Nyquist frequency. This small difference frequency allows the use of very narrow filter bandwidths for the study of narrow-band oscillations with improved signal-to-noise ratio. We apply this analysis tool to Mirnov oscillations measured by a magnetic probe and show the time variation of the amplitude of the fundamental and harmonic frequencies during a plasma current ramp down. Future work will involve the application of this technique to ECE measurements. {copyright} {ital 1997 American Institute of Physics.}

  12. Stability and isomerization of complexes formed by metal ions and cytosine isomers in aqueous phase.

    PubMed

    Ai, Hongqi; Liu, Jingjing; Chan, Kwaichow

    2013-08-01

    We present a systematic study of the stability of the formation of complexes produced by four metal ions (M(+/2+)) and 14 cytosine isomers (Cn). This work predicts theoretically that predominant product complexes are associated with higher-energy C4M(+/2+) and C5M(+/2+) rather than the most stable C1M(+/2+). The prediction resolves successfully several experimental facts puzzling two research groups. Meanwhile, in-depth studies further reveal that direct isomerization of C1↔C4 is almost impossible, and also that the isomerization induced by either metalation or hydration, or by a combination of the two unfavorable. It is the single water molecule locating between the H1(-N1) and O2 of the cytosine that plays the dual roles of being a bridge and an activator that consequently improves the isomerization greatly. Moreover, the cooperation of divalent metal ion and such a monohydration actually leads to an energy-free C1←C4 isomerization in the gas phase. Henceforth, we are able to propose schemes inhibiting the free C1←C4 isomerization, based purely on extended hydration at the divalent metal ion.

  13. Variational regularization of complex deautoconvolution and phase retrieval in ultrashort laser pulse characterization

    NASA Astrophysics Data System (ADS)

    Anzengruber, Stephan W.; Bürger, Steven; Hofmann, Bernd; Steinmeyer, Günter

    2016-03-01

    The SD-SPIDER method for the characterization of ultrashort laser pulses requires the solution of a nonlinear integral equation of autoconvolution type with a device-based kernel function. Taking into account the analytical background of a variational regularization approach for solving the corresponding ill-posed operator equation formulated in complex-valued L2-spaces over finite real intervals, we suggest and evaluate numerical procedures using NURBS and the TIGRA method for calculating the regularized solutions in a stable manner. In this context, besides the complex deautoconvolution problem with noisy but full data, a phase retrieval problem is introduced which adapts to the experimental state of the art in laser optics. For the treatment of this problem facet, which is formulated as a tensor product operator equation, we derive the well-posedness of variational regularization methods. Case studies with synthetic and real optical data show the capability of the implemented approach as well as its limitations due to measurement deficits.

  14. Phase-contrast versus off-axis illumination: is a more complex microscope always more powerful?

    PubMed

    Hostounský, Zdenek; Pelc, Radek

    2007-06-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical microscopy are demonstrated. The results obtained under phase contrast (a rather sophisticated method, 1953 Nobel Prize to Zernike) and off-axis illumination (a very simple method) are compared. The off-axis illumination setup is capable of delivering noticeably better microscopic images of these two particular specimens, yet it can be easily assembled in a laboratory classroom. The outcome of such a demonstration is expected to be the realization on the part of the students that one needs to carefully choose the apparatus to address a given biological problem, with the "bottom line" being that a more complex one may not necessarily yield better results. An attempt to explain this "paradox" is presented, in the particular case presented here, partly from the physiology of vision perspective (the shape-from-shading problem). The overall aim of the present article is to induce in students critical thinking about the capabilities of a laboratory equipment in general and about data interpretation.

  15. Complex Transformations between Bicontinuous Cubic and Cylinder Phases in a Polystyrene-block-Poly(ethylene oxide) Diblock Copolymer

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Sun, Lu; Ge, Qing; Quirk, Roderic P.; Cheng, Stephen Z. D.; Hsiao, Benjamin S.; Sics, Igors; Avila-Orta, Carlos

    2004-03-01

    Complex phase transformations between bicontinuous cubic and hexagonal cylinder (Hex) phases in a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer were investigated using small angle X-ray scattering (SAXS), transmission electron microscope (TEM), rheology, and polarized light microscope (PLM). The sample exhibited a typical double gyroid (G) phase, together with a minority plumbers nightmare (P) phase which was only ˜6 vol.% as calculated from the SAXS scattering intensities for each phase. These two bicontinuous cubic phases had the same unit cell dimensions. Under a large-amplitude reciprocating shear, the bicontinuous cubic sample transformed into a single-crystal Hex phase. Annealing this sample at 150 ^oC for 40 min, the Hex phase partially transformed into well-oriented G and P twin structures, as evidenced by two-dimensional synchrotron SAXS experiments. Epitaxial phase transformation relationships between the Hex/G and Hex/P phases were identified. The phase transformations were further confirmed by rheology study and PLM observations. The P phase was metastable with respect to the G phase, and it disappeared when the sample was heated above the order-disorder transition temperature and annealed at 150 ^oC. The mechanism of the Hex arrow G transformation was investigated by TEM. Generally, in a hexagonal cell, three cylinders evolved into left-handed helices, while the other three formed right-handed helices. An intermediate five-fold junction was speculated to facilitate the phase transformation. The Hex -> G phase transformation was observed to follow a nucleation and growth mechanism, and the phase transition zone was less than one unit cell.

  16. Investigation of drug-cyclodextrin complexes by a phase-distribution method: some theoretical and practical considerations.

    PubMed

    Másson, Már; Sigurdardóttir, Birna Vigdís; Matthíasson, Kristján; Loftsson, Thorsteinn

    2005-08-01

    The purpose of the study was to evaluate an octanol-water phase distribution method for investigation of drug/cyclodextrin (D/CD) complexes and to compare stability constant values obtained by this method to values obtained by the phase solubility method. A general equation for determination of 1 : 1 D/CD complex stability constant (K1 : 1) from the slope of a phase-distribution diagram (a diagram of the reciprocal of the apparent partition coefficient vs. the total CD concentration) was derived. The equation accounted for the possible inclusion of the organic solvent in the CD cavity and the gradual saturation of the CD binding with increasing concentration of the guest compound. This method was used to determine K1 : 1 for 2-hydroxypropyl-beta-cyclodextrin (HPbetaCD) complexes of hydrocortisone, prednisolone, diazepam, beta-estradiol and diethylstilbestrol. These values were comparable to K1 : 1 values determined by the phase-solubility method. The phase-distribution method could also be applied to determine stability constants for the neutral and ionic forms of the weakly acidic drugs, naproxen and triclosan and the weakly basic drug lidocaine. The phase-distribution method is a very versatile and fast method and has the advantage, compared to the phase-solubility method, that it only requires very small drug samples. Thus, this method would be suitable for screening of new drug candidates.

  17. Conformation Transformation Determined by Different Self-Assembled Phases in a DNA Complex with Cationic Polyhedral Oligomeric Silsesquioxane Lipid

    SciTech Connect

    Cui,L.; Chen, D.; Zhu, L.

    2008-01-01

    In this work, a novel cube-shaped cationic lipid based on the imidazolium salt of polyhedral oligomeric silsesquioxane (POSS) was complexed with double-stranded DNA. Because of the negative spontaneous curvature of the cationic POSS imidazolium lipid, an inverted hexagonal phase resulted above the melting point of POSS crystals. Depending on the competition between the crystallization of POSS molecules and the negative spontaneous curvature of cationic POSS imidazolium lipids, different self-assembled phase morphologies were obtained. A lamellar phase was obtained when the POSS crystallization was relatively slow. When the POSS crystallization was fast, an inverted hexagonal phase was obtained with POSS lamellar crystals grown in the interstitials of DNA cylinders. On the basis of a circular dichroism study, double-stranded DNA adopted the B-form helical conformation in the inverted hexagonal phase, whereas the helical conformation was largely destroyed in the lamellar phase.

  18. Dissociation of Multisubunit Protein-Ligand Complexes in the Gas Phase. Evidence for Ligand Migration

    NASA Astrophysics Data System (ADS)

    Zhang, Yixuan; Deng, Lu; Kitova, Elena N.; Klassen, John S.

    2013-10-01

    -ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.

  19. Bond Activation by Metal-Carbene Complexes in the Gas Phase.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-03-15

    "Bare" metal-carbene complexes, when generated in the gas phase and exposed to thermal reactions under (near) single-collision conditions, exhibit rather unique reactivities in addition to the well-known metathesis and cyclopropanation processes. For example, at room temperature the unligated [AuCH2](+) complex brings about efficient C-C coupling with methane to produce C2Hx (x = 4, 6), and the couple [TaCH2](+)/CO2 gives rise to the generation of the acetic acid equivalent CH2═C═O. Entirely unprecedented is the thermal extrusion of a carbon atom from halobenzenes (X = F, Cl, Br, I) by [MCH2](+) (M = La, Hf, Ta, W, Re, Os) and its coupling with the methylene ligand to deliver C2H2 and [M(X)(C5H5)](+). Among the many noteworthy C-N bond-forming processes, the formation of CH3NH2 from [RhCH2](+)/NH3, the generation of CH2═NH2(+) from [MCH2](+)/NH3 (M = Pt, Au), and the production of [PtCH═NH2](+) from [PtCH2](+)/NH3 are of particular interest. The latter species are likely to be involved as intermediates in the platinum-mediated large-scale production of HCN from CH4/NH3 (the DEGUSSA process). In this context, a few examples are presented that point to the operation of co-operative effects even at a molecular level. For instance, in the coupling of CH4 with NH3 by the heteronuclear clusters [MPt](+) (M = coinage metal), platinum is crucial for the activation of methane, while the coinage metal M controls the branching ratio between the C-N bond-forming step and unwanted soot formation. For most of the gas-phase reactions described in this Account, detailed mechanistic insight has been derived from extensive computational work in conjunction with time-honored labeling and advanced mass-spectrometry-based experiments, and often a coherent description of the experimental findings has been achieved. As for some transition metals, in particular those from the third row, the metal-carbene complexes can be formed directly from methane, coupling of the so

  20. Low-abundant protein extraction from complex protein sample using a novel continuous aqueous two-phase systems device.

    PubMed

    Vázquez-Villegas, Patricia; Espitia-Saloma, Edith; Rito-Palomares, Marco; Aguilar, Oscar

    2013-01-01

    The present work describes the application of a novel continuous aqueous two-phase system prototype for the recovery of biomolecules. The prototype is an alternative platform for protein recovery and α-amylase from soybean extracts was used as a model system. The system was selected as an example of low-abundant protein present in complex mixtures. Compared with batch systems, continuous operation in this prototype seems to increase partition coefficient with higher recovery efficiencies. Processing time is reduced at least three times in the continuous system when compared to batch mode, while hold up (volumetric quantity of the opposing phase in a determined phase sample) decreases with decreasing phases flow. Furthermore, similar partition coefficient (Kp > 4) with a higher top phase enzyme recovery (81%) is also obtained in this system probably due to better contact surface between phases, compared with that obtained in batch (79%). A continuous aqueous two-phase system process with purification factor 40-fold higher than batch experiments was achieved. These preliminary results exhibit the potential of continuous systems for the recovery of low-abundant proteins from complex mixtures. The promising performance of this prototype can raise the attention of the industry for the adoption of aqueous two-phase system processes.

  1. Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids

    NASA Astrophysics Data System (ADS)

    Bymaster, Adam

    Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any

  2. Phase-equilibrium modelling of blueschists from the Vestgötabreen Complex (SW Svalbard)

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej; Lorenz, Henning; Kozub, Gabriela

    2014-05-01

    In Svalbard Archipelago, blueschists are known from Motalafjella area (Oscar II Land). They belong to the Vestgötabreen Complex, which is divided into a Lower (LU) and Upper Unit (UU). The former is composed of high pressure-low temperature (HP-LT) metasediments. The latter consists mainly of blueschists and eclogites. Various radiometric dating yielded an age of c. 470 Ma for the HP-LT metamorphism in the Motalafjella area. The pressure-temperature (P-T) conditions for carpholite-bearing schists from LU have been estimated to c. 16 kbar and 330-450°C (Agard et al., 2005), whereas eclogites from UU indicate peak conditions of 18-24 kbar and 580-640°C (Hirajima et al., 1988). During the fieldwork in 2011, blueschists were also discovered at the western coast of Nordenskiöld Land. They form isolated bodies enclosed within metasedimentary units, but their tectonic position is still under debate. Preliminary P-T estimates indicate peak pressure conditions of c. 17 kbar and 480°C (Kośmińska et al., in revision). The age of metamorphism is unknown, however P-T conditions as well as metamorphic assemblage suggest that the blueschists from Nordenskiöld Land may be an equivalent of these in the Vestgötabreen Complex. Samples of blueschists from UU have been collected on Skipperryggen. They consist mainly of glaucophane, garnet, white micas (phengite and paragonite), rutile, lawsonite and chlorite. The garnet typically forms euhedral to subhedral porphyroblasts which contain voluminous inclusions. Its composition varies from Alm63Prp13Grs22Sps2 in the cores to Alm60Prp19Grs20Sps1 in the rims. The change in chemical zoning is rather gradual. The garnet shows bowl-shaped pyrope profiles and opposite almandine trends. The P-T conditions were estimated using phase equilibrium modeling. Preliminary modeling in the NCKFMMnASHTO system yields peak pressure conditions at c. 20 kbar and 520°C. The estimated P-T conditions for the blueschists from Skipperryggen are in

  3. Solid Phase Biosensors for Arsenic or Cadmium Composed of A trans Factor and cis Element Complex

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Kawakami, Yasunari; Ueda, Shunsaku; Maeda, Isamu

    2011-01-01

    The presence of toxic metals in drinking water has hazardous effects on human health. This study was conducted to develop GFP-based-metal-binding biosensors for on-site assay of toxic metal ions. GFP-tagged ArsR and CadC proteins bound to a cis element, and lost the capability of binding to it in their As- and Cd-binding conformational states, respectively. Water samples containing toxic metals were incubated on a complex of GFP-tagged ArsR or CadC and cis element which was immobilized on a solid surface. Metal concentrations were quantified with fluorescence intensity of the metal-binding states released from the cis element. Fluorescence intensity obtained with the assay significantly increased with increasing concentrations of toxic metals. Detection limits of 1 μg/L for Cd(II) and 5 μg/L for As(III) in purified water and 10 µg/L for Cd(II) and As(III) in tap water and bottled mineral water were achieved by measurement with a battery-powered portable fluorometer after 15-min and 30-min incubation, respectively. A complex of freeze dried GFP-tagged ArsR or CadC binding to cis element was stable at 4 °C and responded to 5 μg/L As(III) or Cd(II). The solid phase biosensors are sensitive, less time-consuming, portable, and could offer a protocol for on-site evaluation of the toxic metals in drinking water. PMID:22346629

  4. Complexation of diazaperylene and bisisoquinoline with transition metal ions in the gas phase studied by electrospray ionization mass spectrometry.

    PubMed

    Starke, Ines; Kammer, Stefan; Grunwald, Nicolas; Schilde, Uwe; Holdt, Hans-Jürgen; Kleinpeter, Erich

    2008-01-01

    The complex formation of the ligands 1,12-diazaperylene (dap), 1,1'-bisisoquinoline (bis), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) with transition metal ions (M = Fe, Co, Ni, Cu, Zn, Ru, Os, Re, Pd, Pt, Ag and Cd) in the gas phase has been studied by electrospray ionization mass spectrometry. With the exception of Ru, Os, Fe, Ni and Cu, singly charged complexes [MLn](+) (n = 1,2) were observed. The complexes of dap and bis with Ru, Os, Fe and Ni ions, and the mixed ligand complexes with bpy and phen, are preferably of the doubly charged type [ML3]2+. In addition, collision-induced dissociation (CID) measurements were employed to evaluate the relative stabilities of these complexes. The CID experiments of mixed-ligand complexes which contain both dap and phen or dap and bpy exhibit preferential elimination of bpy, indicating that bpy is a weaker ligand than phen and dap.

  5. L-lysine-L-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions

    SciTech Connect

    Debrus, S.; Marchewka, M.K. . E-mail: mkm@int.pan.wroc.pl; Baran, J.; Drozd, M.; Czopnik, R.; Pietraszko, A.; Ratajczak, H.

    2005-09-15

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between L-lysine and L-tartaric acid is reported. The structure was solved in two temperatures (320 and 260 K) showing incommensurate phase between them. Room-temperature powder infrared and Raman measurements for the L-lysine-L-tartaric acid molecular complex (1:1) were carried out. DSC measurements on powder samples indicate two phase transitions points at about 295, 300 and 293, 300 K, for heating and cooling, respectively, with noticeable temperature interval between them. Second harmonic generation efficiency d {sub eff}=0.35 d {sub eff} (KDP)

  6. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    PubMed Central

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  7. Metal-ligand redox reactions in gas-phase quaternary peptide-metal complexes by electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vaisar, T.; Gatlin, C. L.; Turecek, F.

    1997-03-01

    The dipeptides Phe-Leu, Leu-Phe, Leu-Ala, and Ala-Leu form quaternary complexes of the type [Cu(II)(peptide - 2H+M)bpy]+ in the gas phase when electrosprayed in the presence of Cu(II) salts, 2.2'-bipyridyl (bpy), and an alkali hydroxide (MOH). The gas-phase complexes decarboxylate on collisional activation at low ion kinetic energies. The resulting ions undergo unusual eliminations of neutral Na, K, and Rb, which depend on the peptide structure. The ionization energy of the decarboxylated Phe-Leu-Cu-bpy complex was bracketed at 4.2 eV. Other collision-induced dissociations also depend on the alkali metal ion and the peptide structure. Ab initio calculations on a model system are reported and used to discuss the electronic properties of the peptide complexes.

  8. High-speed full range complex Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry

    NASA Astrophysics Data System (ADS)

    Bu, Peng; Wang, Xiangzhao; Sasaki, Osami; Wei, Xunbin

    2007-11-01

    High-speed full-range complex Fourier domain optical coherence tomography (FDOCT) using sinusoidal phase-modulating interferometry is proposed. A high-rate two-dimensional (2-D) CCD camera is used to record time-sequential sinusoidally phase-modulated 2-D spectral interferograms, from which the complex 2-D spectral interferograms corresponding to each frame of the 2-D CCD camera are extracted by Fourier transform method. By taking inverse Fourier transform of the complex spectral interferograms, full-range B-scan images free of the complex conjugate ambiguity as well as dc and autocorrelation noises are obtained at intervals of the frame period of the 2-D CCD camera. Time-sequential cross-sectional imaging of human skin ex vivo with the proposed method is demonstrated.

  9. Stacking of Short DNA Induces the Gyroid Cubic-to-Inverted Hexagonal Phase Transition in Lipid–DNA Complexes

    PubMed Central

    Leal, Cecília; Ewert, Kai K.; Bouxsein, Nathan F.; Shirazi, Rahau S.; Li, Youli; Safinya, Cyrus R.

    2012-01-01

    Lyotropic phases of amphiphiles are a prototypical example of self-assemblies. Their structure is generally determined by amphiphile shape and their phase transitions are primarily governed by composition. In this paper, we demonstrate a new paradigm for membrane shape control where the electrostatic coupling of charged membranes to short DNA (sDNA), with tunable temperature-dependent end-to-end stacking interactions, enables switching between the inverted gyroid cubic structure (QIIG) and the inverted hexagonal phase (HIIC). We investigated the structural shape transitions induced in the QIIG phase upon complexation with a series of sDNAs (5, 11, 24, and 48 bp) with three types of end structure (“sticky” adenine (A)–thymine (T) (dAdT) overhangs, no overhang (blunt), and “nonsticky” dTdT overhangs) using synchrotron small-angle X-ray scattering. Very short 5 bp sDNA with dAdT overhangs and blunt ends induce coexistence of the QIIG and the HIIC phase, with the fraction of QIIG increasing with temperature. Phase coexistence for blunt 5 bp sDNA is observed from 27 °C to about 65 °C, where the HIIC phase disappears and the temperature dependence of the lattice spacing of the QIIG phase indicates that the sDNA duplexes melt into single strands. The only other sDNA for which melting is observed is 5 bp sDNA with dTdT overhangs, which forms the QIIG phase throughout the studied range of temperature (27 °C to 85.2 °C). The longer 11 bp sDNA forms coexisting QIIG and HIIC phases (with the fraction of QIIG again increasing with temperature) only for “nonsticky” dTdT overhangs, while dAdT overhangs and blunt ends exclusively template the HIIC phase. For 24 and 48 bp sDNAs the HIIC phase replaces the QIIG phase at all investigated temperatures, independent of sDNA end structure. Our work demonstrates how the combined effects of sDNA length and end structure (which determine the temperature-dependent stacking length) tune the phase behavior of the complexes

  10. Demonstration of Heterogeneous Parahydrogen Induced Polarization Using Hyperpolarized Agent Migration from Dissolved Rh(I) Complex to Gas Phase

    PubMed Central

    2015-01-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C=C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene 1H NMR signals observed in situ were enhanced by a factor of approximately 10 000 at a static field of 47.5 mT. High-resolution 1H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time. PMID:24918975

  11. Demonstration of heterogeneous parahydrogen induced polarization using hyperpolarized agent migration from dissolved Rh(I) complex to gas phase.

    PubMed

    Kovtunov, Kirill V; Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Koptyug, Igor V; Chekmenev, Eduard Y

    2014-07-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.

  12. Characterization of Horizontal Gas-Liquid Two-Phase Flow Using Markov Model-Based Complex Network

    NASA Astrophysics Data System (ADS)

    Hu, Li-Dan; Jin, Ning-De; Gao, Zhong-Ke

    2013-05-01

    Horizontal gas-liquid two-phase flow widely exists in many physical systems and chemical engineering processes. Compared with vertical upward gas-liquid two-phase flow, investigations on dynamic behavior underlying horizontal gas-liquid flows are quite limited. Complex network provides a powerful framework for time series analysis of complex dynamical systems. We use a network generation method based on Markov transition probability to infer directed weighted complex networks from signals measured from horizontal gas-liquid two-phase flow experiment and find that the networks corresponding to different flow patterns exhibit different network structure. To investigate the dynamic characteristics of horizontal gas-liquid flows, we construct a number of complex networks under different flow conditions, and explore the network indices for each constructed network. In addition, we investigate the sample entropy of different flow patterns. Our results suggest that the network statistic can well represent the complexity in the transition among different flow patterns and further allows characterizing the interface fluctuation behavior in horizontal gas-liquid two-phase flow.

  13. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    ERIC Educational Resources Information Center

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  14. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    ERIC Educational Resources Information Center

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  15. Solid- and solution phase transformations in novel hybrid iodoplumbate derivatives templated by solvated yttrium complexes.

    PubMed

    Mishra, Shashank; Jeanneau, Erwann; Daniele, Stéphane; Ledoux, Gilles; Swamy, Prakash N

    2008-10-20

    Solvated yttrium iodide precursors [Y(L)8]I3 [L = dimethylformamide (DMF) or dimethylsulfoxide (DMSO)], prepared in situ by stirring YI3(Pr(i)OH)4 in DMF/DMSO, react with 3 equiv of PbI2 in the presence of NH4I to give novel hybrid derivatives based on either a one-dimensional (1D) straight chain, [Y(DMF)8][Pb3(mu-I)9](1infinity) x DMF (1), or discrete pentanuclear iodoplumbates, [Y(DMSO)8]2[(DMSO)2Pb5(mu3-I)2(mu-I)8I6] (2a). The complex 2a and a closely related [Y(DMSO)8][Y(DMSO)7(DMF)][(DMSO)2Pb5(mu3-I)2(mu-I)8I6] (2b) were obtained in good yield by solution phase transformation of 1 in DMSO under slight different conditions. Derivatives 1 and 2 also undergo unique solid-state transformation in a confined environment of paratone to give 1D polymers based on zigzag iodoplumbate chains; crystals of 1 transform into [Y(DMF)6(H2O)2][Pb3(mu3-I)(mu-I)7I](1infinity) (3) via an exchange reaction, whereas those of 2a and 2b are converted into [Y(DMSO)7][Pb3(mu3-I)(mu-I)7I](1infinity) (4) via a decomposition pathway. The trifurcate H-bonding between water ligands on yttrium cation and iodide of the iodoplumbate anion plays a pivotal role in transforming the straight 1D polymeric Pb-I chain of 1 into a zigzag chain in 3. The thermogravimetry-differential thermal analysis studies indicate that complexes with DMF ligands are thermally more stable than those with DMSO ones, the mixed DMF-H2O ligand complex 3 being the most stable one because of the presence of strong H-bonding. Diffuse-reflectance UV-visible spectral analyses of 1-4 show an optical band gap in the 1.86-2.54 eV range, indicating these derivatives as potential semiconductors. In contrast to non-emissive 3 and 4, derivatives 1, 2a, and 2b show remarkable luminescent emission with peak maxima at 703 nm, assigned as an iodine 5p-lead 6s to lead 6p charge transfer (XM-M-CT).

  16. POD evaluation using simulation: A phased array UT case on a complex geometry part

    NASA Astrophysics Data System (ADS)

    Dominguez, Nicolas; Reverdy, Frederic; Jenson, Frederic

    2014-02-01

    The use of Probability of Detection (POD) for NDT performances demonstration is a key link in products lifecycle management. The POD approach is to apply the given NDT procedure on a series of known flaws to estimate the probability to detect with respect to the flaw size. A POD is relevant if and only if NDT operations are carried out within the range of variability authorized by the procedure. Such experimental campaigns require collection of large enough datasets to cover the range of variability with sufficient occurrences to build a reliable POD statistics, leading to expensive costs to get POD curves. In the last decade research activities have been led in the USA with the MAPOD group and later in Europe with the SISTAE and PICASSO projects based on the idea to use models and simulation tools to feed POD estimations. This paper proposes an example of application of POD using simulation on the inspection procedure of a complex -full 3D- geometry part using phased arrays ultrasonic testing. It illustrates the methodology and the associated tools developed in the CIVA software. The paper finally provides elements of further progress in the domain.

  17. The influence of simple and complex loading on structure changes in two-phase titanium alloy

    SciTech Connect

    Bylja, O.I.; Vasin, R.A.; Muravlev, A.V.; Chistjakov, P.V.; Ermachenko, A.G.; Karavaeva, M.V.

    1997-04-15

    Titanium alloys are widely used in modern engineering. The ensuring of property of articles and designs during their service is one of the most important problems. It is known that mechanical properties of metals and alloys are determined by their microstructure, formed in a process of thermomechanical treatment according to a history of strain and conditions of a thermal effect. The processing of the required properties of an alloy is an important and difficult task. Its decision assumes comprehensive study of the alloy strain history and determination of an effect of a complex loading that takes place almost in any real technological process. However, as a rule, investigations devoted to this question consider only results of uniaxial loading. This paper presents the results of experimental studies of the influence of a deformation path on changes in globular and lamellar structures of the two-phase titanium alloy Ti-6.5Al-3.5Mo-1.6Zr-0.27Si.

  18. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory

    SciTech Connect

    Rutkowski, Philip X; Michelini, Maria C.; Bray, Travis H.; Russo, Nino; Marcalo, Joaquim; Gibson, John K.

    2011-02-11

    Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX{sub 2}{sup +} and YbX(OH){sup +} (X = OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations - kinetics and extent of hydration - are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.

  19. Hiding phase-quantized biometrics: a case of steganography for reduced-complexity correlation filter classifiers

    NASA Astrophysics Data System (ADS)

    Hennings, Pablo; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-03-01

    This paper introduces an application of steganography for hiding cancelable biometric data based on quad-phase correlation filter classification. The proposed technique can perform two tasks: (1) embed an encrypted (cancelable) template for biometric recognition into a host image or (2) embed the biometric data required for remote (or later) classification, such as embedding a transformed face image into the host image, so that it can be transmitted for remote authentication or stored for later use. The novel approach is that we will encode quantized Fourier domain information of the template (or biometric) in the spatial representation of the host image. More importantly we show that we only need 2 bits per pixel in the frequency domain to represent the filter and biometric, making it compact and ideal for application of data hiding. To preserve the template (or biometric) from vulnerabilities to successful attacks, we encrypt the filter or biometric image by convolving it with a random kernel which essentially produces an image in the spatial domain which looks like white noise, so essentially both the frequency and spatial representations will have no visible exploitable structure. We also present results on reduced complexity correlation filter classification performance when using biometric images recovered from stego-images.

  20. Supersaturation-limited and Unlimited Phase Transitions Compete to Produce the Pathway Complexity in Amyloid Fibrillation.

    PubMed

    Adachi, Masayuki; So, Masatomo; Sakurai, Kazumasa; Kardos, József; Goto, Yuji

    2015-07-17

    Although amyloid fibrils and amorphous aggregates are two types of aggregates formed by denatured proteins, their relationship currently remains unclear. We used β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, to clarify the mechanism by which proteins form either amyloid fibrils or amorphous aggregates. When ultrasonication was used to accelerate the spontaneous fibrillation of β2m at pH 2.0, the effects observed depended on ultrasonic power; although stronger ultrasonic power effectively accelerated fibrillation, excessively strong ultrasonic power decreased the amount of fibrils formed, as monitored by thioflavin T fluorescence. An analysis of the products formed indicated that excessively strong ultrasonic power generated fibrillar aggregates that retained β-structures but without high efficiency as seeds. On the other hand, when the spontaneous fibrillation of β2m was induced at higher concentrations of NaCl at pH 2.0 with stirring, amorphous aggregates became more dominant than amyloid fibrils. These apparent complexities in fibrillation were explained comprehensively by a competitive mechanism in which supersaturation-limited reactions competed with supersaturation-unlimited reactions. We link the kinetics of protein aggregation and a conformational phase diagram, in which supersaturation played important roles. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Supersaturation-limited and Unlimited Phase Transitions Compete to Produce the Pathway Complexity in Amyloid Fibrillation*

    PubMed Central

    Adachi, Masayuki; So, Masatomo; Sakurai, Kazumasa; Kardos, József; Goto, Yuji

    2015-01-01

    Although amyloid fibrils and amorphous aggregates are two types of aggregates formed by denatured proteins, their relationship currently remains unclear. We used β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, to clarify the mechanism by which proteins form either amyloid fibrils or amorphous aggregates. When ultrasonication was used to accelerate the spontaneous fibrillation of β2m at pH 2.0, the effects observed depended on ultrasonic power; although stronger ultrasonic power effectively accelerated fibrillation, excessively strong ultrasonic power decreased the amount of fibrils formed, as monitored by thioflavin T fluorescence. An analysis of the products formed indicated that excessively strong ultrasonic power generated fibrillar aggregates that retained β-structures but without high efficiency as seeds. On the other hand, when the spontaneous fibrillation of β2m was induced at higher concentrations of NaCl at pH 2.0 with stirring, amorphous aggregates became more dominant than amyloid fibrils. These apparent complexities in fibrillation were explained comprehensively by a competitive mechanism in which supersaturation-limited reactions competed with supersaturation-unlimited reactions. We link the kinetics of protein aggregation and a conformational phase diagram, in which supersaturation played important roles. PMID:26063798

  2. Complex biphase nature of the superconducting dome of the FeSe phase diagram

    NASA Astrophysics Data System (ADS)

    Svitlyk, V.; Raba, M.; Dmitriev, V.; Rodière, P.; Toulemonde, P.; Chernyshov, D.; Mezouar, M.

    2017-07-01

    Single crystal synchrotron x-ray diffraction as a function of temperature and pressure has revealed a complex biphase mixture in superconducting FeSe. Based on our experimental results, we construct a phase diagram where structural behavior and superconducting properties of FeSe are found to be correlated. We show that below 6 GPa, where pressure promotes the superconducting critical temperature, the FeSe structure is composed of two-dimensional layers of edge-shared FeS e4 tetrahedra, while above 6 GPa, the superconductivity is strongly suppressed on formation of a new orthorhombic polymorph characterized by a three-dimensional network of face sharing FeS e6 octahedra. Therefore, changes in topology and connectivity of the FeSe structure are found to be detrimental to superconductivity. The previously controversial crystal structure of the high-pressure polymorph of FeSe was unambiguously determined in the present paper. High-pressure FeSe adopts an orthorhombic MnP-type structure (Pnma) which corresponds to a slightly distorted hexagonal NiAs-type arrangement (P 63/m m c ). The structural transformation from the low- to high-pressure FeSe polymorph is first order in nature and is manifested as antiparallel displacements within the Fe and Se sublattices.

  3. Hybridization of phase retrieval and off-axis digital holography for high resolution imaging of complex shape objects

    NASA Astrophysics Data System (ADS)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2017-05-01

    In this paper, a hybrid method of phase retrieval and off-axis digital holography is proposed for imaging of the complex shape objects. Off-axis digital hologram and in-line hologram are recorded. The approximate phase distributions in the recording plane and object plane are obtained by constrained optimization approach from the off-axis hologram, and they are used as the initial value and the constraints in the phase retrieval for eliminating the twin image of in-line holography. Numerical simulations and optical experiments were carried out to validate the proposed method.

  4. Design of adaptive digital filters for phase extraction in complex fringe patterns obtained using the Ronchi test

    NASA Astrophysics Data System (ADS)

    Caum, Jesus; Arasa, Josep; Royo, Santiago; Ares, Miguel

    2012-05-01

    A powerful technique is presented for processing complex fringe patterns with high noise levels and arbitrary distributions of spatial frequencies, which can successfully extract the phase information. Artifacts that arise from phase extraction in local filtering approaches are avoided by using a simple design and implementation strategy for the adaptive filter, based on the theory of digital filter design used in electronics, and applied to pixel rows (or columns) in the fringe-pattern. The filter designed in this manner is then applied to phase extraction in an experimental fringe pattern measured in a digital Ronchi test setup using a Carré phase-shifting procedure. The filtering strategy has a very low computational cost and allows phase extraction in noisy ronchigrams regardless their spatial frequency distribution, provided the fringes are still visible.

  5. Membrane attack complex of complement: distribution of subunits between the hydrocarbon phase of target membranes and water.

    PubMed Central

    Podack, E R; Stoffel, W; Esser, A F; Müller-Eberhard, H J

    1981-01-01

    Membrane destruction by complement is effected by the membrane attack complex (MAC) which is the dimer of a fusion product of the complement proteins C5b, C6, C7, C8, and C9. Phospholipid bilayer vesicles were used as target membranes for the MAC and its intermediate complexes. The subunits of these membrane-bound complexes were explored as to their relative exposure to the hydrocarbon phase of the lipid bilayer and to water surrounding the lipid vesicles. Protein exposed to the aqueous phase was labeled with 125I; protein exposed to the hydrocarbon phase was labeled by using tritiated azido phospholipids and irradiation. Analysis of the membrane-bound MAC showed that subunits C5b, C8 beta, and C9 were exposed to the aqueous phase. The subunits C8 alpha-gamma and C9 were primarily in contact with the hydrocarbon phase. C6 and C7 were little exposed to either phase, suggesting that these proteins are inaccessible within the MAC. Analysis of the intermediate complexes showed that C5b was the subunit most exposed to water in membrane-bound C5b-7, and C5b and C8 beta were the water-exposed subunits in C5b-8. Subunit exposure to the hydrocarbon phase of the lipid bilayer changed during MAC assembly. Whereas all three subunits of C5b-7 carried the phospholipid photolabel; most of the label was bound to the C8 subunit in C5b-8 and to C9 in the MAC. It is proposed that contact with the hydrocarbon core of membranes is established by C5b-7 through each of its subunits, by C5b-8 through C8, and by the MAC through C8 and, particularly, C9. PMID:6270682

  6. Verification of correctness of using real part of complex root as Rayleigh-wave phase velocity with synthetic data

    NASA Astrophysics Data System (ADS)

    Pan, Yudi; Xia, Jianghai; Zeng, Chong

    2013-01-01

    High-frequency (≥ 2 Hz) Rayleigh-wave phase velocities have been utilized to determine shear-wave velocities in near-surface geophysics since the early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the earth model contains a low-velocity half-space, however, some roots of the dispersion equation turn out to be complex numbers, which makes phase velocities disappear at some frequencies. When encountering this situation, the common practice is to append an additional high velocity layer as the half-space to the model to make the roots real or use the real parts of complex roots as Rayleigh-wave phase velocities. The correctness of the first method has been verified. The correctness of the second method, however, remains to be unproved. We use synthetic data generated by numerical modeling of the wave equation to verify the correctness of the second method. In this paper, we firstly discuss the reasons that only complex numbers of the dispersion equation exist at some frequencies when an earth model contains a low velocity half-space. Then we discuss how the nearest offset affects a synthetic model and recommend an optimal nearest offset in generating synthetic data that are close to real-world situations. Several synthetic models are used to verify correctness of using real parts of complex roots as Rayleigh-wave phase velocities when an earth model contains a low velocity layer as the half-space.

  7. Phase-based treatment of a complex severely mentally ill case involving complex posttraumatic stress disorder and psychosis related to Dandy Walker syndrome.

    PubMed

    Mauritz, Maria W; van de Sande, Roland; Goossens, Peter J J; van Achterberg, Theo; Draijer, Nel

    2014-01-01

    For patients with comorbid complex posttraumatic stress disorder (PTSD) and psychotic disorder, trauma-focused therapy may be difficult to endure. Phase-based treatment including (a) stabilization, (b) trauma-focused therapy, and (c) integration of personality with recovery of connection appears to be the treatment of choice. The objective of this article is to describe and evaluate the therapeutic process of a single case from a holistic perspective. We present a case report of a 47-year-old woman treated for severe complex PTSD resulting from repeated sexual and physical abuse in early childhood and moderate psychotic symptoms stemming from Dandy Walker Syndrome with hydrocephalus. The patient was treated with quetiapine (600-1,000 mg) and citalopram (40 mg). Stabilization consisted of intensive psychiatric nursing care in the home and stabilizing group treatment for complex PTSD. After stabilization, the following symptom domains showed improvement: self-regulation, self-esteem, assertiveness, avoidance of social activities, and negative cognitions. However, intrusions and arousal persisted and were therefore subsequently treated with prolonged imaginary exposure that also included narrative writing assignments and a final closing ritual. This intensive multidisciplinary, phase-based approach proved effective: All symptoms of complex PTSD were in full remission. Social integration and recovery were promoted with the reduction of polypharmacy and the provision of social skills training and lifestyle training. The present case shows a phase-based treatment approach with multidisciplinary collaborative care to be effective for the treatment of a case of complex PTSD with comorbid psychotic disorder stemming from severe neurological impairment. Replication of this promising approach is therefore called for.

  8. The study of large biopolymer complexes in solution and the gas phase using electrospray ionization-FTICR mass spectrometry

    SciTech Connect

    Smith, R.D.; Lei, Q.P.; Wu, Qinyuan; Hofstadler, A.

    1997-12-31

    Electrospray ionization (ESI) can transfer large biopolymers and many noncovalently bound complexes into the gas phase and to preserve specific noncovalent biomolecular associations for subsequent mass spectrometric analysis. Although a number of details of the ESI process remain a subject of debate, it is now incontestable that many weak associations can survive transfer to the gas phase and are stable for periods of at least seconds. In this presentation, the application of ESI-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry methods for the study of large biopolymers and their noncovalent complexes will be described. It will also be shown that competitive binding studies can be used to quickly establish relative binding affinities in solution, allowing combinatorial libraries to be rapidly screened. After measurements of the intact complex, dissociation studies can be conducted to probe the structure of the individual constituents of complexes. Studies comparing the relative stabilities of protein-ligand complexes in solution and desolvated in the gas phase will also be presented, and discussed from both fundamental and analytical perspectives.

  9. Implementation of a complex multi-phase equation of state for cerium and its correlation with experiment

    SciTech Connect

    Cherne, Frank J; Jensen, Brian J; Elkin, Vyacheslav M

    2009-01-01

    The complexity of cerium combined with its interesting material properties makes it a desirable material to examine dynamically. Characteristics such as the softening of the material before the phase change, low pressure solid-solid phase change, predicted low pressure melt boundary, and the solid-solid critical point add complexity to the construction of its equation of state. Currently, we are incorporating a feedback loop between a theoretical understanding of the material and an experimental understanding. Using a model equation of state for cerium we compare calculated wave profiles with experimental wave profiles for a number of front surface impact (cerium impacting a plated window) experiments. Using the calculated release isentrope we predict the temperature of the observed rarefaction shock. These experiments showed that the release state occurs at different magnitudes, thus allowing us to infer where dynamic {gamma} - {alpha} phase boundary is.

  10. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting

    PubMed Central

    Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun

    2017-01-01

    Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm−2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec−1. Moreover, we achieve 10 mA cm−2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2. PMID:28485395

  11. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting

    NASA Astrophysics Data System (ADS)

    Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun

    2017-05-01

    Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm-2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec-1. Moreover, we achieve 10 mA cm-2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2.

  12. Duality in Phase Space and Complex Dynamics of an Integrated Pest Management Network Model

    NASA Astrophysics Data System (ADS)

    Yuan, Baoyin; Tang, Sanyi; Cheke, Robert A.

    Fragmented habitat patches between which plants and animals can disperse can be modeled as networks with varying degrees of connectivity. A predator-prey model with network structures is proposed for integrated pest management (IPM) with impulsive control actions. The model was analyzed using numerical methods to investigate how factors such as the impulsive period, the releasing constant of natural enemies and the mode of connections between the patches affect pest outbreak patterns and the success or failure of pest control. The concept of the cluster as defined by Holland and Hastings is used to describe variations in results ranging from global synchrony when all patches have identical fluctuations to n-cluster solutions with all patches having different dynamics. Heterogeneity in the initial densities of either pest or natural enemy generally resulted in a variety of cluster oscillations. Surprisingly, if n > 1, the clusters fall into two groups one with low amplitude fluctuations and the other with high amplitude fluctuations (i.e. duality in phase space), implying that control actions radically alter the system's characteristics by inducing duality and more complex dynamics. When the impulsive period is small enough, i.e. the control strategy is undertaken frequently, the pest can be eradicated. As the period increases, the pest's dynamics shift from a steady state to become chaotic with periodic windows and more multicluster oscillations arise for heterogenous initial density distributions. Period-doubling bifurcation and periodic halving cascades occur as the releasing constant of the natural enemy increases. For the same ecological system with five differently connected networks, as the randomness of the connectedness increases, the transient duration becomes smaller and the probability of multicluster oscillations appearing becomes higher.

  13. Pseudotachylyte in the Tananao Metamorphic Complex, Taiwan: Occurrence and dynamic phase changes of fossil earthquakes

    NASA Astrophysics Data System (ADS)

    Chu, Hao-Tsu; Hwang, Shyh-Lung; Shen, Pouyan; Yui, Tzen-Fu

    2012-12-01

    Pseudotachylyte veins and cataclasites were studied in the mylonitized granitic gneiss of the Tananao Metamorphic Complex at Hoping, Eastern Taiwan. The aphanitic pseudotachylyte veins vary in thickness, ranging from millimeters to about 1 cm. Field and optical microscopic observations show that such pseudotachylyte veins cut across cataclasites, which, in turn, transect the mylonitized granitic gneiss. Scanning electron microscopic images also show that both the pseudotachylyte veins and the cataclasites have been metasomatized by a K-rich fluid, resulting in the replacement of Na-plagioclase by K-feldspar (veins). Analytical electron microscopic observations reveal further details of physical and chemical changes (mainly fragmentation, dislocations, cleaving-healing with inclusions and relic voids, and retention of high-temperature albite) of quartz and feldspar in crushed grains. Pseudotachylytes occur as dark veins having a higher content of chlorite-biotite, clinozoisite-epidote and titanite fragments than cataclasites. These veins, coupled with hematite/jarosite-Fe-rich amorphous shell/carbonaceous material, indicate that crushing, healing/sintering, and inhomogeneous melt/fluid infiltration involving incipient and intermediate/high temperature melt patches, before and/or contemporaneous with the metasomatic K-rich fluid, prevailed in a coupled or sequential manner in the faulting event to form nonequilibrium phase assemblage. The chlorite-biotite, carbonaceous material and other nanoscale minerals could be vulnerable in future earthquakes under the influence of water. The timing of the formation of these pseudotachylyte veins should be later than the area's age of mylonitization of granitic gneiss of approximately 4.1-3.0 Ma (Wang et al., 1998). The formation of pseudotachylytes registers the fossil earthquakes during early stages in the exhumation history of the uplifting Taiwan Mountain belt since the Plio-Pleistocene Arc-Continent collision.

  14. Symptom complexes at the earliest phases of rheumatoid arthritis: a synthesis of the qualitative literature.

    PubMed

    Stack, Rebecca J; Sahni, Melanie; Mallen, Christian D; Raza, Karim

    2013-12-01

    Understanding the features and patterns of symptoms that characterize the earliest stages of rheumatoid arthritis (RA) is of considerable importance if patients are to be identified and started on treatment early. However, little is known about the characteristics of symptoms at the onset of a disease that eventually progresses to RA. A systematic review of qualitative peer-reviewed publications was conducted to identify the earliest symptoms associated with the onset of RA. A total of 1,736 abstracts were searched to identify relevant publications. Twenty-six publications were identified, assessed for quality, and subjected to analysis informed by thematic and grounded theory frameworks. Several interacting themes describing the early symptoms of RA were identified, including swelling, pain and tenderness, stiffness, fatigue and weakness, and the emotional impact of symptoms. For each symptom, different and evolving intensities were described; in some cases, patterns of symptom onset and symptom complexes at the onset of RA were highlighted. Importantly, this review has emphasized major deficiencies in the literature. None of the studies reviewed originally aimed to explore symptoms at RA onset (often discussions about symptom onset were secondary to the study's primary aim). Also, many of the articles identified sampled people diagnosed with RA many years previously, making their recollection of symptoms at onset less reliable. In order for clinicians to fully understand the earliest phases of disease, the nature of symptoms at onset needs to be understood. The current work represents a useful starting point, but this area needs further qualitative investigation, followed by quantitative explorations of symptom clusters and their associated features. © 2013 The Authors. Arthritis Care & Research is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  15. Study on photoacoustic phase spectrum of rare earth complex: Pr(HFA) 3·2H 2O

    NASA Astrophysics Data System (ADS)

    Qinglu, Mao; Qingde, Su; Guiwen, Zhao

    1996-06-01

    The β-diketone rare earth complex: Pr(HFA) 3·2H 2O was synthesized and its amplitude and phase photoacoustic spectra in the range of 300-700 nm were reported. It was observed that the phase angle depends variously on the relaxation time τ and the optical absorption coefficient β with the incident light wavelength λ. A model of a homogeneous powder sample containing multiple optical absorption bands based on the Mandelis work was introduced to interpret the phase spectrum. It is shown that this model is very suitable for explaining the phase data associated with the π-π∗ transition and tf-tf transitions of the title complex. The phase angle ψ is mainly related to τ for the π-π∗ transition while it is determined by β for the tf-tf transition at relatively low chopping frequencies. Furthermore, the dependence of amplitude and phase information on the chopping frequency was also investigated.

  16. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  17. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action.

    PubMed

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  18. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action

    NASA Astrophysics Data System (ADS)

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  19. Impact of phase on collision between vortex solitons in three-dimensional cubic-quintic complex Ginzburg-Landau equation.

    PubMed

    Liu, Bin; Liu, Yun-Feng; He, Xing-Dao

    2014-10-20

    We present a systematic analysis for three generic collisional outcomes between stable dissipative vortices with intrinsic vorticity S = 0, 1, or 2 upon variation of relative phase in the three-dimensional (3D) cubic-quintic complex Ginzburg-Landau equation. The first type outcome is merger of the vortices into a single one, of which velocity can be effectively controlled by relative phase. With the increase of the collision momentum, the following is creation of an extra vortex, and its velocity also increases with growth of relative phase. However, at largest collision momentum, the variety of relative phase cannot change the third type collisional outcomes, quasielastic interaction. In addition, the dynamic range of the outcome of creating an extra vortex decreases with the reduction of cubic-gain. The above features have potential applications in optical switching and logic gates based on interaction of optical solitons.

  20. Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry.

    PubMed

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F; Rand, Kasper D

    2016-02-02

    Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution conditions. Lysozyme ions bound by an oligosaccharide incorporated less deuterium than the unbound ion. Similarly, trypsin ions showed reduced deuterium uptake when bound by the peptide ligand vasopressin. Our results are in good agreement with crystal structures of the native protein complexes, and illustrate that gas-phase HDX-MS can provide a sensitive and simple approach to measure the number of heteroatom-bound non-amide side-chain hydrogens involved in the binding interface of biologically relevant protein complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Observation of quantum interference as a function of Berry's phase in a complex Hadamard optical network.

    PubMed

    Laing, Anthony; Lawson, Thomas; López, Enrique Martín; O'Brien, Jeremy L

    2012-06-29

    Emerging models of quantum computation driven by multiphoton quantum interference, while not universal, may offer an exponential advantage over classical computers for certain problems. Implementing these circuits via geometric phase gates could mitigate requirements for error correction to achieve fault tolerance while retaining their relative physical simplicity. We report an experiment in which a geometric phase is embedded in an optical network with no closed loops, enabling quantum interference between two photons as a function of the phase.

  2. Controlling the phase structures of polymer/surfactant complexes by changing macromolecular architecture and adding n-alcohols.

    PubMed

    Percebom, Ana Maria; Loh, Watson

    2016-03-15

    Phase behavior of complex salts formed by a cationic surfactant and different ethoxylated polyions was investigated in water and with addition of two n-alcohols of different chain lengths: n-butanol and n-decanol. The polyion possesses a main chain of methacrylic acid randomly grafted with oligo(ethylene oxide) chains. Strong electrostatic interaction between the anionic main chain and the cationic surfactant hexadecyltrimethylammonium (C16TA) leads to the formation of C16TAP(MA-MAEO(n)) x:y complex salts. Modifications in polyion structure, such as changes in the proportion of grafted comonomers and in the side chain length caused differences in the overall balance of interactions with water and n-alcohols, altering the complex salt solubility and, consequently, the formed liquid-crystalline structures. The role of n-decanol as a cosurfactant was verified, but the hydrophilic side chains expanded the capacity of the formed liquid crystalline phases to incorporate water. Additionally, a novel structure, probably cubic bicontinuous (Pn3m), was observed coexisting with lamellar phases at low water concentration. Because n-butanol is known for being a good solvent for poly(ethylene oxide), these side chains intensified the role of this short chain n-alcohol as cosolvent for C16TAP(MA-MAEO(n)) x:y complex salts, favoring the formation of disordered solutions, including a bicontinuous microemulsion.

  3. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  4. Preparation and characterizations of solid/aqueous phases inclusion complex of 2,4-dinitroaniline with β-cyclodextrin.

    PubMed

    Stalin, Thambusamy; Srinivasan, Krishnan; Sivakumar, Krishnamoorthy; Radhakrishnan, S

    2014-07-17

    The formation of host-guest inclusion complex of 2,4-dinitroaniline (2,4-DNA) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase were studied by UV-visible spectrophotometer and electrochemical method (Cyclic Voltammetry, CV). The prototropic behaviors of 2,4-DNA with and without β-CD was studied by spectrophotometrically. The binding constant of the inclusion complex at 303K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) were also calculated. The inclusion complex formation between β-CD and 2,4-DNA was confirmed by (1)H NMR, 2D ROESY NMR, FT-IR, XRD and SEM analysis. The 2,4-DNA:β-CD inclusion complex was obtained by molecular docking studies and it was good correlation with the results obtained through experimental methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Prototype results of a phase-shifting interferometer capable of measuring the complex index and profile of a test surface

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Barrett, Harrison H.

    2002-09-01

    Results are presented from a prototype phase-shifting interferometer capable of measuring both the real and the imaginary part of the complex index of refraction and the surface profile of a test surface. The three parameters of interest are extracted from the measured data by maximum-likelihood estimation theory. The performance of the system is quantitatively assessed with Cramer-Rao lower bounds. The results are shown to be strongly dependent on the quantization of the interferograms from the 8-bit CCD camera, the incident electric field amplitude, and the relative amplitude and phase difference of each polarized component through each arm of the interferometer.

  6. Passage of TBP-uranyl complexes from aqueous-organic interface to the organic phase: insights from molecular dynamics simulation.

    PubMed

    Sahu, Pooja; Ali, Sk Musharaf; Shenoy, Kalasanka Trivikram

    2016-08-24

    The present study reports molecular dynamics simulations for biphasic systems comprising tributyl phosphate (TBP) in dodecane and uranyl nitrate in the aqueous phase, which are key chemical species in the well-known Pu-U extraction (PUREX) process. An attempt has been made to understand the nature of interface and mechanism of 'TBP associated uranyl' crossing under neutral and acidic conditions. Results show that the solvent density undergoes large fluctuation near the interface depending on the nature of the aqueous-organic phase. The study provides compelling evidence of experimentally observed reorganization of interfacial complexes at the interface and their structural reformation during extraction. It has been observed that the surface active nature of TBP and their interfacial coverage is modulated by the nature of incorporated solute species and their location with respect to the interface. Also, the TBP structuring near the interface is destroyed when an acidic interface is considered rather than a neutral one which favors the uranyl extraction. With an acidic interface, the water humidity of organic phase was observed to be increased in the experiments. Furthermore, the acid/water solubility in the organic phase was observed to be influenced by selection of acid models and their concentration. Simulations with high acid concentration show water pocket formation in the organic phase. However, in the case of dissociated ions or a mixture of both, no such water pool is observed and the extracted water remains dispersed in the organic phase, having the tendency to be replaced by HNO3 because of preferred TBP·HNO3 complexation over TBP·H2O. Most remarkably, the present study makes evident the TBP-induced charge redistribution of uranyl complexes during migration from the interface to the bulk organic phase, which contributes to drive uranyl complexes such as UO2·NO3·4TBP, UO2·5TBP and UO2·NO3·3TBP·HNO3 in the organic phase, and this was reestablished by

  7. Aryl-phenyl scrambling in intermediate organopalladium complexes: a gas-phase study of the Mizoroki-Heck reaction.

    PubMed

    Fiebig, Lukas; Schlörer, Nils; Schmalz, Hans-Günther; Schäfer, Mathias

    2014-04-22

    The intramolecular aryl-phenyl scrambling reaction within palladium-DPPP-aryl complex (DPPP=1,3-bis(diphenylphosphino)propane) ions was analyzed by state-of-the-art tandem MS, including gas-phase ion/molecule reactions. The Mizoroki-Heck cross-coupling reaction was performed in the gas phase, and the intrinsic reactivity of important intermediates could be examined. Moreover, linear free-energy correlations were applied, and a mechanism for the scrambling reaction proceeding via phosphonium cations was assumed.

  8. Divalent and trivalent gas-phase coordination complexes of californium: evaluating the stability of Cf(ii).

    PubMed

    Dau, Phuong D; Shuh, David K; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J; Gibson, John K

    2016-08-02

    The divalent oxidation state is increasingly stable relative to the trivalent state for the later actinide elements, with californium the first actinide to exhibit divalent chemistry under moderate conditions. Although there is evidence for divalent Cf in solution and solid compounds, there are no reports of discrete complexes in which Cf(II) is coordinated by anionic ligands. Described here is the divalent Cf methanesulfinate coordination complex, Cf(II)(CH3SO2)3(-), prepared in the gas phase by reductive elimination of CH3SO2 from Cf(III)(CH3SO2)4(-). Comparison with synthesis of the corresponding Sm and Cm complexes reveals reduction of Cf(III) and Sm(III), and no evidence for reduction of Cm(III). This reflects the comparative 3+/2+ reduction potentials: Cf(3+) (-1.60 V) ≈ Sm(3+) (-1.55 V) ≫ Cm(3+) (-3.7 V). Association of O2 to the divalent complexes is attributed to formation of superoxides, with recovery of the trivalent oxidation state. The new gas-phase chemistry of californium, now the heaviest element to have been studied in this manner, provides evidence for Cf(II) coordination complexes and similar chemistry of Cf and Sm.

  9. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies.

    PubMed

    Adedoyin, A; Bernardo, J F; Swenson, C E; Bolsack, L E; Horwith, G; DeWit, S; Kelly, E; Klasterksy, J; Sculier, J P; DeValeriola, D; Anaissie, E; Lopez-Berestein, G; Llanos-Cuentas, A; Boyle, A; Branch, R A

    1997-10-01

    Amphotericin B (AmB) has been the most effective systemic antifungal agent, but its use is limited by the dose-limiting toxicity of the conventional micellar dispersion formulation (Fungizone). New formulations with better and improved safety profiles are being developed and include ABELCET (formerly ABLC), but their dispositions have not been well characterized; hence, the reason for their improved profiles remains unclear. This report details the pharmacokinetics of ABELCET examined in various pharmacokinetic and efficacy studies by using whole-blood measurements of AmB concentration performed by high-pressure liquid chromatography. The data indicated that the disposition of AmB after administration of ABELCET is different from that after administration of Fungizone, with a faster clearance and a larger volume of distribution. It exhibits complex and nonlinear pharmacokinetics with wide interindividual variability, extensive distribution, and low clearance. The pharmacokinetics were unusual. Clearance and volume of distribution were increased with dose, peak and trough concentrations after multiple dosings increased less than proportionately with dose, steady state appeared to have been attained in 2 to 3 days, despite an estimated half-life of up to 5 days, and there was no evidence of significant accumulation in the blood. The data are internally consistent, even though they were gathered under different conditions and circumstances. The pharmacokinetics of ABELCET suggest that lower concentrations in blood due to higher clearance and greater distribution may be responsible for its improved toxicity profile compared to those of conventional formulations.

  10. New chelating reagents for preconcentration, separation, determination of metal complexes by high performance liquid chromatography and solid phase extraction

    SciTech Connect

    Qian, Yan wen.

    1991-12-03

    A general scheme is outlined for rapid determination of metal cations by complexation and subsequent HPLC separation. The synthesis and general properties are described for several new thiohydrazone chelating reagents. Solubility considerations suggest that the metal complexes have a positive charge. Excellent chromatographic separations are obtained for mixtures of up to seven metal complexes. Addition of a positively charged additive to the eluent is shown to have a significant effect on both the retention times and sharpness of the chromatographic peaks. Separation of the metal complexes on resins with a permanent charge is also shown to be feasible. Two new hydrazone reagents have been synthesized and characterized. Trace metal ions in aqueous solution are complexed by one of the hydrazones and the resulting metal complexes are solid phase extracted onto a mini cation-exchange or polymeric column. The uptake of metal complexes is complete and the elution step is fast and complete. The quantitative recoveries of metal ions determined by both spectrophotometric method and ICP-MS are very satisfactory and agree with each other.

  11. New chelating reagents for preconcentration, separation, determination of metal complexes by high performance liquid chromatography and solid phase extraction

    SciTech Connect

    Qian, Yan wen

    1991-12-03

    A general scheme is outlined for rapid determination of metal cations by complexation and subsequent HPLC separation. The synthesis and general properties are described for several new thiohydrazone chelating reagents. Solubility considerations suggest that the metal complexes have a positive charge. Excellent chromatographic separations are obtained for mixtures of up to seven metal complexes. Addition of a positively charged additive to the eluent is shown to have a significant effect on both the retention times and sharpness of the chromatographic peaks. Separation of the metal complexes on resins with a permanent charge is also shown to be feasible. Two new hydrazone reagents have been synthesized and characterized. Trace metal ions in aqueous solution are complexed by one of the hydrazones and the resulting metal complexes are solid phase extracted onto a mini cation-exchange or polymeric column. The uptake of metal complexes is complete and the elution step is fast and complete. The quantitative recoveries of metal ions determined by both spectrophotometric method and ICP-MS are very satisfactory and agree with each other.

  12. β-diketone-cobalt complexes inhibit DNA synthesis and induce S-phase arrest in rat C6 glioma cells.

    PubMed

    Zhang, Kaizhi; Zhao, Xingli; Liu, Junzhi; Fang, Xiangyang; Wang, Xuepeng; Wang, Xiaohong; Li, Rui

    2014-03-01

    β-diketone-cobalt complexes, a family of newly synthesized non-platinum metal compounds, exhibit potential antitumor activity; however, the antitumor mechanism is unclear. The current study investigated the mechanism by which β-diketone-cobalt complexes inhibit rat C6 glioma cell proliferation. It was found that β-diketone-cobalt complexes suppress rat C6 glioma cell viability in a dose-dependent manner (3.125-100 μg/ml). In rat C6 glioma cells, the IC50 value of β-diketone-cobalt complexes was 24.7±3.395 μg/ml and the IC10 value was 4.37±1.53 μg/ml, indicating a strong inhibitory effect. Further investigation suggested that β-diketone-cobalt complexes inhibit rat C6 glioma cell proliferation, which is associated with S-phase arrest and DNA synthesis inhibition. During this process, β-diketone-cobalt complexes decreased cyclin A expression and increased cyclin E and p21 expression. In addition, β-diketone-cobalt complexes exhibit a stronger antitumor capability than the antineoplastic agent, 5-fluorouracil.

  13. Low-complexity feed-forward carrier phase estimation for M-ary QAM based on phase search acceleration by quadratic approximation.

    PubMed

    Xiang, Meng; Fu, Songnian; Deng, Lei; Tang, Ming; Shum, Perry; Liu, Deming

    2015-07-27

    Blind phase search (BPS) algorithm for M-QAM has excellent tolerance to laser linewidth at the expense of rather high computation complexity (CC). Here, we first theoretically obtain the quadratic relationship between the test angle and corresponding distance matric during the BPS implementation. Afterwards, we propose a carrier phase estimation (CPE) based on a two-stage BPS with quadratic approximation (QA). Instead of searching the phase blindly with fixed step-size for the BPS algorithm, QA can significantly accelerate the speed of phase searching. As a result, a group factor of 2.96/3.05, 4.55/4.67 and 2.27/2.3 (in the form of multipliers/adders) reduction of CC is achieved for 16QAM, 64QAM and 256QAM, respectively, in comparison with the traditional BPS scheme. Meanwhile, a guideline for determining the summing filter block length is put forward during performance optimization. Under the condition of optimum filter block length, our proposed scheme shows similar performance as traditional BPS scheme. At 1 dB required E(S)/N(0) penalty @ BER = 10(-2), our proposed CPE scheme can tolerate a times symbol duration productΔf⋅T(S) of 1.7 × 10(-4), 6 × 10(-5) and 1.5 × 10(-5) for 16/64/256-QAM, respectively.

  14. Phase Studies of Model Biomembranes: Complex Behavior of DSPC/DOPC/Cholesterol

    PubMed Central

    Zhao, Jiang; Wu, Jing; Heberle, Frederick A.; Mills, Thalia T.; Klawitter, Paul; Huang, Grace; Costanza, Greg; Feigenson, Gerald W.

    2009-01-01

    We have undertaken a series of experiments to examine the behavior of individual components of cell membranes. Here we report an initial stage of these experiments, in which the properties of a chemically simple lipid mixture are carefully mapped onto a phase diagram. Four different experimental methods were used to establish the phase behavior of the 3-component mixture DSPC/DOPC/chol: (1) confocal fluorescence microscopy observation of giant unilamellar vesicles, GUVs; (2) FRET from perylene to C20:0-DiI; (3) fluorescence of dilute dyes C18:2-DiO and C20:0-DiI; and (4) wide angle x-ray diffraction. This particular 3-component mixture was chosen, in part, for a high level of immiscibility of the components in order to facilitate solving the phase behavior at all compositions. At 23 °C, a large fraction of the possible compositions for this mixture give rise to a solid phase. A region of 3-phase coexistence of {Lα + Lβ + Lo} was detected and defined based on a combination of fluorescence microscopy of GUVs, FRET, and dilute C20:0-DiI fluorescence. At very low cholesterol concentrations, the solid phase is the tilted-chain phase Lβ′. Most of the phase boundaries have been determined to within a few percent of the composition. Measurements of the perturbations of the boundaries of this accurate phase diagram could serve as a means to understand the behaviors of a range of added lipids and proteins. PMID:17825247

  15. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence

    PubMed Central

    2014-01-01

    Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle. PMID:25379053

  16. Development of phased array techniques to improve characterization of defect located in a component of complex geometry.

    PubMed

    Mahaut, Steve; Roy, Olivier; Beroni, Claude; Rotter, Bernhard

    2002-05-01

    Ultrasonic inspection of complex geometry components has to cope with different problems: limited access of the area assumed to be insonified, beam misorientation and distortions, loss of sensitivity. Those harmful effects can lead to inspection performance degradations, especially in terms of defect detection and characterization. Phased array techniques may be used to overcome such difficulties, as they can provide an optimal mastering of the ultrasonic beam radiated through the inspected component. This paper presents some applications of phased array inspections carried out by the French Atomic Energy Commission (CEA) and the French Company of Electricity (EDF) in the framework of R&D studies. Inspections of components with varying profile (of planar and cylindrical parts, misalignment and local depression), and containing artificial reflectors have been carried out with pulse echo immersion techniques, using standard and phased arrays transducers. Optimal delay laws have been applied to preserve the beam characteristics in spite of the varying profile geometry encountered as the phased array transducer was moved over the component. Those delay laws allow to efficiently compensate the beam distortions generated by the profile geometry. They were computed using a specific model and compared to experimental delays obtained using through transmission tests. Experimental and simulation results showed that the defect detection and characterization performances were greatly enhanced using phased array techniques. In the presented examples, with standard transducers, defects located below the irregular parts of the specimen were partially detected, in accurately located or even missed, whereas phased array inspections enabled to detect and locate all of these defects.

  17. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity.

    PubMed

    Albertin, Warren; Zimmer, Adrien; Miot-Sertier, Cécile; Bernard, Margaux; Coulon, Joana; Moine, Virginie; Colonna-Ceccaldi, Benoit; Bely, Marina; Marullo, Philippe; Masneuf-Pomarede, Isabelle

    2017-09-14

    Non-Saccharomyces (NS) species that are either naturally present in grape must or added in mixed fermentation with S. cerevisiae may impact the wine's chemical composition and sensory properties. NS yeasts are prevailing during prefermentation and early stages of alcoholic fermentation. However, obtaining the correct balance between S. cerevisiae and NS species is still a critical issue: if S. cerevisiae outcompetes the non-Saccharomyces, it may minimize their impact, while conversely if NS take over S. cerevisiae, it may result in stuck or sluggish fermentations. Here, we propose an original strategy to promote the non-Saccharomyces consortium during the prefermentation stage while securing fermentation completion: the use of a long lag phase S. cerevisiae. Various fermentations in a Sauvignon Blanc with near isogenic S. cerevisiae displaying short or long lag phase were compared. Fermentations were performed with or without a consortium of five non-Saccharomyces yeasts (Hanseniaspora uvarum, Candida zemplinina, Metschnikowia spp., Torulaspora delbrueckii, and Pichia kluyveri), mimicking the composition of natural NS community in grape must. The sensorial analysis highlighted the positive impact of the long lag phase on the wine fruitiness and complexity. Surprisingly, the presence of NS modified only marginally the wine composition but significantly impacted the lag phase of S. cerevisiae. The underlying mechanisms are still unclear, but it is the first time that a study suggests that the wine composition can be affected by the lag phase duration per se. Further experiments should address the suitability of the use of long lag phase S. cerevisiae in winemaking.

  18. Agent-based spin model for financial markets on complex networks: Emergence of two-phase phenomena

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Kim, Hong-Joo; Yook, Soon-Hyung

    2008-09-01

    We study a microscopic model for financial markets on complex networks, motivated by the dynamics of agents and their structure of interaction. The model consists of interacting agents (spins) with local ferromagnetic coupling and global antiferromagnetic coupling. In order to incorporate more realistic situations, we also introduce an external field which changes in time. From numerical simulations, we find that the model shows two-phase phenomena. When the local ferromagnetic interaction is balanced with the global antiferromagnetic interaction, the resulting return distribution satisfies a power law having a single peak at zero values of return, which corresponds to the market equilibrium phase. On the other hand, if local ferromagnetic interaction is dominant, then the return distribution becomes double peaked at nonzero values of return, which characterizes the out-of-equilibrium phase. On random networks, the crossover between two phases comes from the competition between two different interactions. However, on scale-free networks, not only the competition between the different interactions but also the heterogeneity of underlying topology causes the two-phase phenomena. Possible relationships between the critical phenomena of spin system and the two-phase phenomena are discussed.

  19. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler.

    PubMed

    Shaffer, Christopher J; Andrikopoulos, Prokopis C; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific (13)C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)(+) ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H](+) ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase. Graphical Abstract ᅟ.

  20. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides

    DTIC Science & Technology

    2014-08-01

    Std. Z39.18 Final Report Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms. Dendrimers Eduardo Arias...to pack and also the presence of a polar group. Figure 4. Summary of phase behavior. DENDRIMERS New Denrimers. The synthesis...purification and some spectral characteristics of the new dendrimers shown in Fig 5 were reported in AFOSR FA9550-11-1-0169, May, 2013. Further

  1. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  2. Heptavalent Neptunium in a Gas-Phase Complex: (Np(VII)O3(+))(NO3(-))2.

    PubMed

    Dau, Phuong D; Maurice, Rémi; Renault, Eric; Gibson, John K

    2016-10-03

    A central goal of chemistry is to achieve ultimate oxidation states, including in gas-phase complexes with no condensed phase perturbations. In the case of the actinide elements, the highest established oxidation states are labile Pu(VII) and somewhat more stable Np(VII). We have synthesized and characterized gas-phase AnO3(NO3)2(-) complexes for An = U, Np, and Pu by endothermic NO2 elimination from AnO2(NO3)3(-). It was previously demonstrated that the PuO3(+) core of PuO3(NO3)2(-) has a Pu-O(•) radical bond such that the oxidation state is Pu(VI); it follows that in UO3(NO3)2(-) it is the stable U(VI) oxidation state. On the basis of the relatively more facile synthesis of NpO3(NO3)2(-), a Np(VII) oxidation state is inferred. This interpretation is substantiated by reactivity of the three complexes: NO2 spontaneously adds to UO3(NO3)2(-) and PuO3(NO3)2(-) but not to NpO3(NO3)2(-). This unreactive character is attributed to a Np(VII)O3(+) core with three stable Np═O bonds, this in contrast to reactive U-O(•) and Pu-O(•) radical bonds. The computed structures and reaction energies for the three AnO3(NO3)2(-) support the conclusion that the oxidation states are U(VI), Np(VII), and Pu(VI). The results establish the extreme Np(VII) oxidation state in a gas-phase complex, and demonstrate the inherently greater stability of Np(VII) versus Pu(VII).

  3. Interface-specific x-ray phase retrieval tomography of complex biological organs

    NASA Astrophysics Data System (ADS)

    Beltran, M. A.; Paganin, D. M.; Siu, K. K. W.; Fouras, A.; Hooper, S. B.; Reser, D. H.; Kitchen, M. J.

    2011-12-01

    We demonstrate interface-specific propagation-based x-ray phase retrieval tomography of the thorax and brain of small animals. Our method utilizes a single propagation-based x-ray phase-contrast image per projection, under the assumptions of (i) partially coherent paraxial radiation, (ii) a static object whose refractive indices take on one of a series of distinct values at each point in space and (iii) the projection approximation. For the biological samples used here, there was a 9-200 fold improvement in the signal-to-noise ratio of the phase-retrieved tomograms over the conventional attenuation-contrast signal. The ability to 'digitally dissect' a biological specimen, using only a single phase-contrast image per projection, will be useful for low-dose high-spatial-resolution biomedical imaging of form and biological function in both healthy and diseased tissue.

  4. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Donner, Reik V.; Thiel, Marco; Kurths, Jürgen

    2016-02-01

    Recurrence in the phase space of complex systems is a well-studied phenomenon, which has provided deep insights into the nonlinear dynamics of such systems. For dissipative systems, characteristics based on recurrence plots have recently attracted much interest for discriminating qualitatively different types of dynamics in terms of measures of complexity, dynamical invariants, or even structural characteristics of the underlying attractor's geometry in phase space. Here, we demonstrate that the latter approach also provides a corresponding distinction between different co-existing dynamical regimes of the standard map, a paradigmatic example of a low-dimensional conservative system. Specifically, we show that the recently developed approach of recurrence network analysis provides potentially useful geometric characteristics distinguishing between regular and chaotic orbits. We find that chaotic orbits in an intermittent laminar phase (commonly referred to as sticky orbits) have a distinct geometric structure possibly differing in a subtle way from those of regular orbits, which is highlighted by different recurrence network properties obtained from relatively short time series. Thus, this approach can help discriminating regular orbits from laminar phases of chaotic ones, which presents a persistent challenge to many existing chaos detection techniques.

  5. Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model

    NASA Astrophysics Data System (ADS)

    Har-Shemesh, Omri; Quax, Rick; Hoekstra, Alfons G.; Sloot, Peter M. A.

    2016-04-01

    The Fisher-Rao metric from information geometry is related to phase transition phenomena in classical statistical mechanics. Several studies propose to extend the use of information geometry to study more general phase transitions in complex systems. However, it is unclear whether the Fisher-Rao metric does indeed detect these more general transitions, especially in the absence of a statistical model. In this paper we study the transitions between patterns in the Gray-Scott reaction-diffusion model using Fisher information. We describe the system by a probability density function that represents the size distribution of blobs in the patterns and compute its Fisher information with respect to changing the two rate parameters of the underlying model. We estimate the distribution non-parametrically so that we do not assume any statistical model. The resulting Fisher map can be interpreted as a phase-map of the different patterns. Lines with high Fisher information can be considered as boundaries between regions of parameter space where patterns with similar characteristics appear. These lines of high Fisher information can be interpreted as phase transitions between complex patterns.

  6. Multiplicity fluctuation and phase transition in high-energy collision — A chaos-based study with complex network perspective

    NASA Astrophysics Data System (ADS)

    Bhaduri, Susmita; Ghosh, Dipak

    2016-12-01

    Multiplicity fluctuation provides enough information concerning the dynamics of particle production process and even signature of phase transition from hadronic to QGP phase expected in ultrarelativistic nuclear collision. Numerous analyses reported on the fluctuation pattern of pions have been studied from theoretical and phenomenological approaches. Also the fractal properties have been explored to characterize quantitative degree of fluctuation. The present work reports a study of pion fluctuation from a radically different perspective, using science of complexity. For this we have taken two different interactions — one hadron-nucleus and other nucleus-nucleus, namely π--AgBr (350 GeV) and 32S-AgBr (200 AGeV). We have analyzed both data in the light of complex network analysis, viz. visibility graph method. The data reveal that power of the scale-freeness in visibility graph (PSVG), a quantitative parameter related to Hurst exponent, may provide information on the degree of fluctuation. Further, in a recent work, it was shown that phase transition can also be studied using the same methodology. Based on the result of the present study we further propose to use this methodology, where critical phenomena are to be assessed — even in case of pion fluctuation, for obtaining the QGP like phase transition.

  7. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.

    PubMed

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2015-05-20

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Based on this, to benefit from both the structuring properties of starch and also lower digestibility of the inclusion complexes, the objective of this study is the formation of amylose-LPC inclusion complexes while developing a firm network providing the desired functional properties in a starchy system. To investigate the influence of amylose-LPC complex formation at different stages of starch gelation on the viscosity behavior of wheat starch, 3% (w/w) LPC was added at three different points of the viscosity profile, obtained by rapid visco analyzer (RVA). LPC addition at all points affected the gelation behavior of wheat starch as compared with the reference. LPC addition at half-peak and peak of the viscosity profile resulted in a viscosity increase during cooling. Measuring the dynamic rheological properties of the freshly prepared gelatinized samples showed a decrease of storage modulus (G') and loss modulus (G") in the presence of LPC. During storage, in the presence of LPC, a lower elasticity was observed which indicates a lower rate of amylose retrogradation due to complexation with LPC.

  8. Ligand field photofragmentation spectroscopy of [Ag(L)N]2+ complexes in the gas phase: experiment and theory.

    PubMed

    Guan, Jingang; Puskar, Ljiljana; Esplugas, Ricardo O; Cox, Hazel; Stace, Anthony J

    2007-08-14

    Experiments have been undertaken to record photofragmentation spectra from a series of [Ag(L)N]2+ complexes in the gas phase. Spectra have been obtained for silver(II) complexed with the ligands (L): acetone, 2-pentanone, methyl-vinyl ketone, pyridine, and 4-methyl pyridine (4-picoline) with N in the range of 4-7. A second series of experiments using 1,1,1,3-fluoroacetone, acetonitrile, and CO2 as ligands failed to show any evidence of photofragmentation. Interpretation of the experimental data has come from time-dependent density functional theory (TDDFT), which very successfully accounts for trends in the spectra in terms of subtle differences in the properties of the ligands. Taking a sample of three ligands, acetone, pyridine, and acetonitrile, the calculations show all the spectral transitions to involve ligand-to-metal charge transfer, and that wavelength differences (or lack of spectra) arise from small changes in the energies of the molecular orbitals concerned. The calculations account for an absence in the spectra of any effects due to Jahn-Teller distortion, and they also reveal structural differences between complexes where the coordinating atom is either oxygen or nitrogen that have implications for the stability of silver(II) compounds. Where possible, comparisons have also been made with the physical properties of condensed phase silver(II) complexes.

  9. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  10. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Thornton, Katsuyo; Coltrin, Michael E.; Han, Jung

    2015-05-21

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  11. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE PAGES

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; ...

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  12. Intramolecular Halogen Atom Coordinated H Transfer via Ion-Neutral Complex in the Gas Phase Dissociation of Protonated Dichlorvos Derivatives

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Cheng, Shuai

    2017-10-01

    Intramolecular halogen atom coordinated H transfer reaction in the gas phase dissociation of protonated dichlorvos derivatives has been explored by electrospray ionization tandem mass spectrometry. Upon collisional activation, protonated dichlorvos underwent dissociation reaction via cleavage of the P-O bond to give reactive ion-neutral complex (INC) intermediate, [dimethoxylphosphinoylium + dichloroacetaldehyde]. Besides direct dissociation of the complex, intramolecular chlorine atom coordinated H transfer reaction within the complex takes place, leading to the formation of protonated dimethyl chlorophosphate. To investigate the fragmentation mechanism, deuterium-labeled experiments and several other halogen-substituted (Br and F) analogs of dichlorvos were prepared and evaluated, which display a similar intramolecular halogen transfer. Density functional theory (DFT)-based calculations were performed and the computational results also support the mechanism. [Figure not available: see fulltext.

  13. Intramolecular Halogen Atom Coordinated H Transfer via Ion-Neutral Complex in the Gas Phase Dissociation of Protonated Dichlorvos Derivatives

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Cheng, Shuai

    2017-07-01

    Intramolecular halogen atom coordinated H transfer reaction in the gas phase dissociation of protonated dichlorvos derivatives has been explored by electrospray ionization tandem mass spectrometry. Upon collisional activation, protonated dichlorvos underwent dissociation reaction via cleavage of the P-O bond to give reactive ion-neutral complex (INC) intermediate, [dimethoxylphosphinoylium + dichloroacetaldehyde]. Besides direct dissociation of the complex, intramolecular chlorine atom coordinated H transfer reaction within the complex takes place, leading to the formation of protonated dimethyl chlorophosphate. To investigate the fragmentation mechanism, deuterium-labeled experiments and several other halogen-substituted (Br and F) analogs of dichlorvos were prepared and evaluated, which display a similar intramolecular halogen transfer. Density functional theory (DFT)-based calculations were performed and the computational results also support the mechanism.

  14. New Pathways for the Formation of Complex Organics and Prebiotic Synthesis in the Gas Phase

    NASA Astrophysics Data System (ADS)

    El-Shall, M. S.

    2010-04-01

    We study the formation mechanisms of complex organics that are present in interstellar clouds. The reaction of acetylene ion with water produces vinyl alcohol while the reaction of benzene ion with acetylene produces naphthalene-type ion.

  15. Surface complexation reaction for phase transfer of hydrophobic quantum dot from nonpolar to polar medium.

    PubMed

    Bhandari, Satyapriya; Roy, Shilaj; Pramanik, Sabyasachi; Chattopadhyay, Arun

    2014-09-09

    Chemical reaction between oleate-capped Zn(x)Cd(1-x)S quantum dots (Qdots) and 8-hydroxyquinoline (HQ) led to formation of a surface complex, which was accompanied by transfer of hydrophobic Qdots from nonpolar (hexane) to polar (water) medium with high efficiency. The stability of the complex on the surface was achieved via involvement of dangling sulfide bonds. Moreover, the transferred hydrophilic Qdots--herein called as quantum dot complex (QDC)--exhibited new and superior optical properties in comparison to bare inorganic complexes with retention of the dimension and core structure of the Qdots. Finally, the new and superior optical properties of water-soluble QDC make them potentially useful for biological--in addition to light emitting device (LED)--applications.

  16. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  17. Controlling dissociation channels of gas-phase protein complexes using charge manipulation.

    PubMed

    Fegan, Sarah K; Thachuk, Mark

    2014-05-01

    Coarse-grained simulations with charge hopping were performed for a positively charged tetrameric transthyretin (TTR) protein complex with a total charge of +20. Charges were allowed to move among basic amino acid sites as well as N-termini. Charge distributions and radii of gyration were calculated for complexes simulated at two temperatures, 300 and 600 K, under different scenarios. One scenario treated the complex in its normal state allowing charge to move to any basic site. Another scenario blocked protonation of all the N-termini except one. A final scenario used the complex in its normal state but added a basic-site containing tether (charge tag) near the N-terminus of one chain. The differences in monomer unfolding and charging were monitored in all three scenarios and compared. The simulation results show the importance of the N-terminus in leading the unfolding of the monomer units; a process that follows a zipper-like mechanism. Overall, experimentally modifying the complex by adding a tether or blocking the protonation of N-termini may give the potential for controlling the unraveling and subsequent dissociation of protein complexes.

  18. The gas-phase hydrogen bond complexes between formic acid with hydroxyl radical: a theoretical study.

    PubMed

    Torrent-Sucarrat, Miquel; Anglada, Josep M

    2004-02-20

    We report a theoretical study on seven radical hydrogen bond complexes between syn-HCOOH and OH and eight radical hydrogen bond complexes between anti-HCOOH and OH, that have been carried out by using the B3LYP, MP2, QCISD, and CCSD(T) theoretical approaches with the 6-311 + G(2df,2p) basis set. In all cases, the bonding features were analysed using the atoms in molecules (AIM) theory by Bader and the natural bond orbital (NBO) partition scheme by Weinhold et al. We have found twelve complexes having a single hydrogen bond and three complexes presenting a cyclic structure with multiple bonds, pointing out the existence of a cooperative effect. One of them presents a bound O...O interaction producing a stabilisation effect. The stability of these complexes has been calculated to be in the -0.81 and -5.96 kcal mol-1 range and their possible implication in the HCOOH plus OH reaction is also discussed. Finally, we also report the computed harmonic vibrational frequencies of the two O-H stretching modes and the HOC out-of-plane wagging mode, along with the frequency red-shifts originated by the complex formation and the corresponding computed intensity ratio relative to the monomers.

  19. The complexity of consenting to clinical research in phase I pediatric cancer studies.

    PubMed

    Schechter, Tal; Grant, Ronald

    2015-02-01

    The principal aim of phase I studies is to define the recommended dosing of drugs for phase II studies through assessment of drug pharmacokinetics and observation of the drug's toxicity profile. In the setting of pediatric oncology, the use of an experimental drug in phase I study is offered when prognosis is poor. Thus, phase I oncology studies are not given to patients with a primary purpose of an intent to cure. They may offer little to no treatment benefit and carry a potential toxic effect. They may offer other benefits such as improved quality of life and relief of pain, however. Three parties are involved in the informed consent process: the parents, patients, and physicians. Families report hope as the main cause for enrollment. Physicians focus on providing information so families can decide about participation. Physicians also try to maintain hope despite understanding the nature of the disease. This makes the informed consent complicated for all parties involved in the process. The purpose of this review is to discuss the aims of phase I studies in pediatric oncology and to convey the ethical challenges that patients, parents, and physicians are facing when discussing informed consent with potential study participants.

  20. Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles.

    PubMed

    Uversky, Vladimir N

    2017-01-01

    It is clear now that eukaryotic cells contain numerous membrane-less organelles, many of which are formed in response to changes in the cellular environment. Being typically liquid in nature, many of these organelles can be described as products of the reversible and highly controlled liquid-liquid phase transitions in biological systems. Many of these membrane-less organelles are complex coacervates containing (almost invariantly) intrinsically disordered proteins and often nucleic acids. It seems that the lack of stable structure in major proteinaceous constituents of these organelles is crucial for the formation of phase-separated droplets. This review considers several biologically relevant liquid-liquid phase transitions, introduces some general features attributed to intrinsically disordered proteins, represents several illustrative examples of intrinsic disorder-based phase separation, and provides some reasons for the abundance of intrinsically disordered proteins in organelles formed as a result of biological liquid-liquid phase transitions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  2. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  3. Using correlation functions to describe complex multi-phase porous media structures

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Sizonenko, Timofey; Korost, Dmitry; Gerke, Kirill

    2017-04-01

    Multi-scale flow and transport modelling relies on multi-scale image/property fusion techniques. Previusly we have rigorously addressed binary porous media description and stochastic reconstruction problems. However, numerous porous media have more than two, usually solids and pores, phases, e.g., clays, organic, heavy minerals and such. In this contribution we develop efficient approaches to utilize correlation functions to describe such muti-phase soil and rock structures using large sets of cluster, linear and probability functions, including cross-correlations. The approach is tested on numerous 3D images, which were segmented into 3 and more relevant phases. It is shown that multi-phase correlation functions are potentially a very powerful tool to describe any type of porous media at hand and this study also provides a basis for multi-phase stochastic reconstruction techniques, necessary for multi-phase image fusion to obtain large 3D images of hierarchical porous media based on, for example, macro and micro X-ray tomography scans and FIB/BIB-SEM and SEM. References: 1) Karsanina, M.V., Gerke, K.M., Skvortsova, E.B. and Mallants, D. (2015) Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE 10(5), e0126515. 2) Gerke, K. M., & Karsanina, M. V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters),111(5), 56002. 3) Gerke, K. M., Karsanina, M. V., Vasilyev, R. V., & Mallants, D. (2014). Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters), 106(6), 66002. 4) Gerke, K.M., Karsanina, M. V, Mallants, D., 2015. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock. Sci. Rep. 5, 15880. doi:10.1038/srep15880

  4. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  5. Volta phase plate cryo-EM of the small protein complex Prx3

    NASA Astrophysics Data System (ADS)

    Khoshouei, Maryam; Radjainia, Mazdak; Phillips, Amy J.; Gerrard, Juliet A.; Mitra, Alok K.; Plitzko, Jürgen M.; Baumeister, Wolfgang; Danev, Radostin

    2016-01-01

    Cryo-EM of large, macromolecular assemblies has seen a significant increase in the numbers of high-resolution structures since the arrival of direct electron detectors. However, sub-nanometre resolution cryo-EM structures are rare compared with crystal structure depositions, particularly for relatively small particles (<400 kDa). Here we demonstrate the benefits of Volta phase plates for single-particle analysis by time-efficient cryo-EM structure determination of 257 kDa human peroxiredoxin-3 dodecamers at 4.4 Å resolution. The Volta phase plate improves the applicability of cryo-EM for small molecules and accelerates structure determination.

  6. Complex phase behavior of a fluid in slits with semipermeable walls modified with tethered chains.

    PubMed

    Borówko, M; Patrykiejew, A; Rżysko, W; Sokołowski, S; Ilnytskyi, J

    2011-01-28

    We study the phase behavior of a two-component fluid in a pore with the walls modified by tethered chains. The walls are completely permeable for one component of the fluid and completely impenetrable for the second component. The fluid is perfectly mixed in a bulk phase. We have found that depending on the details of the model the fluid undergoes capillary condensation inside the pore and wetting and layering transitions at the outer walls. Moreover, we have found transitions connected with the change of symmetry of the distribution of chains and fluid inside the pore.

  7. A biologically motivated neural network for phase extraction from complex sounds.

    PubMed

    Borst, Marcus; Langner, Gerald; Palm, Günther

    2004-02-01

    We demonstrate that natural acoustic signals like speech or music contain synchronous phase information across multiple frequency bands and show how to extract this information using a spiking neural network. This network model is motivated by common neurophysiological findings in the auditory brainstem and midbrain of several species. A computer simulation of the model was tested by applying spoken vowels and organ pipe tones. As expected, spikes occurred synchronously in the activated frequency bands. This phase information may be used for sound separation with one microphone or sound localization with two microphones.

  8. "Sounds of Intent", Phase 2: Gauging the Music Development of Children with Complex Needs

    ERIC Educational Resources Information Center

    Ockelford, A.; Welch, G.; Jewell-Gore, L.; Cheng, E.; Vogiatzoglou, A.; Himonides, E.

    2011-01-01

    This article reports the latest phase of research in the "Sounds of intent" project, which is seeking, as a long-term goal, to map musical development in children and young people with severe, or profound and multiple learning difficulties (SLD or PMLD). Previous exploratory work had resulted in a framework of six putative…

  9. "Sounds of Intent", Phase 2: Gauging the Music Development of Children with Complex Needs

    ERIC Educational Resources Information Center

    Ockelford, A.; Welch, G.; Jewell-Gore, L.; Cheng, E.; Vogiatzoglou, A.; Himonides, E.

    2011-01-01

    This article reports the latest phase of research in the "Sounds of intent" project, which is seeking, as a long-term goal, to map musical development in children and young people with severe, or profound and multiple learning difficulties (SLD or PMLD). Previous exploratory work had resulted in a framework of six putative…

  10. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  11. Calibration of the complex matrix effects on the sampling of polycyclic aromatic hydrocarbons in milk samples using solid phase microextraction.

    PubMed

    Lin, Wei; Wei, Songbo; Jiang, Ruifen; Zhu, Fang; Ouyang, Gangfeng

    2016-08-24

    Solid phase microextraction (SPME), a simple, fast and promising sampling technique, has been widely used for complex sample analysis. However, complex matrices could modify the absorption property of coatings as well as the uptake kinetics of analytes, eventually biasing the quantification results. In the current study, we demonstrated the feasibility of a developed calibration method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in complex milk samples. Effects of the complex matrices on the SPME sampling process and the sampling conditions were investigated. Results showed that short exposure time (pre-equilibrium SPME, PE-SPME) could increase the lifetime of coatings, and the complex matrices in milk samples could significantly influence the sampling kinetics of SPME. In addition, the optimized sampling time, temperature and dilution factor for PAHs were 10 min, 85 °C and 20, respectively. The obtained LODs and LOQs of all the PAHs were 0.1-0.8 ng/mL and 1.4-4.7 ng/mL, respectively. Furthermore, the accuracy of the proposed PE-SPME method for milk sampling was validated by the recoveries of the studied compounds in two concentration levels, which ranged from 75% to 110% for all the compounds. Finally, the proposed method was applied to the screening of PAHs in milk samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Electronic Spectra of TRIS(2,2'-BIPYRIDINE)-METAL Complex Ions in Gas Phase

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Smith, James E. T.; Weber, J. Mathias

    2016-06-01

    Tris(bpy)-metal complexes (bpy = 2,2'-bipyridine) and their derivatives are important systems in metal-organic chemistry. While tris(bpy)-ruthenium, Ru(bpy)32+, has been extensively studied, less attention has been paid to analogous complexes involving first row transition metals. Here we report the electronic spectra of a series of dicationic tris(bpy) chelates with different transition metals, measured by photodisscociation spectroscopy of cryogenically prepared ions. We focus our attention on the π-π* transitions in the UV region of the spectrum.

  13. A comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries

    NASA Astrophysics Data System (ADS)

    Tauriello, Gerardo; Koumoutsakos, Petros

    2015-02-01

    We present a comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries embedded using simple Cartesian meshes. The two methods have been widely employed to solve partial differential equations in complex and moving geometries for applications ranging from solid and fluid mechanics to biology and geophysics. Their popularity is largely due to their discretization on Cartesian meshes thus avoiding the need to create body-fitted grids. At the same time, there are questions regarding their accuracy and it appears that the use of each one is confined by disciplinary boundaries. Here, we compare penalization and phase field methods to handle problems with Neumann and Robin boundary conditions. We discuss extensions for Dirichlet boundary conditions and in turn compare with methods that have been explicitly designed to handle Dirichlet boundary conditions. The accuracy of all methods is analyzed using one and two dimensional benchmark problems such as the flow induced by an oscillating wall and by a cylinder performing rotary oscillations. This comparative study provides information to decide which methods to consider for a given application and their incorporation in broader computational frameworks. We demonstrate that phase field methods are more accurate than penalization methods on problems with Neumann boundary conditions and we present an error analysis explaining this result.

  14. Segregation of receptor-ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness

    NASA Astrophysics Data System (ADS)

    Różycki, B.; Lipowsky, R.; Weikl, T. R.

    2010-09-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is probably caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, which bind to the T-cell receptor (TCR) and the receptor LFA1 in the cell membrane, the coexistence of domains of the TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a quite narrow ratio of ligand concentrations. In this paper, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps us to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.

  15. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    SciTech Connect

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  16. Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?

    ERIC Educational Resources Information Center

    Hostounsky, Zdenek; Pelc, Radek

    2007-01-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…

  17. Multi-Level Modeling of Complex Socio-Technical Systems - Phase 1

    DTIC Science & Technology

    2013-06-06

    system analysis and ethics . He was recognized for his then radical concept of incorporating ethical values into operating systems (Churchman, 1971...Organizational Cybernetics Complexity Theory Postmodern Systems Thinking Table 2. Systems Approaches (Jackson, 2003) Table 3 contrasts methodologies and...Consensus Goodness Criterion Efficient Effective Ethical Theory-Practice Mediation Decisionistic Technocratic Pragmatistic Key Disciplines Decision

  18. First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides

    SciTech Connect

    Chou, Mei-Yin

    2014-09-29

    Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

  19. Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?

    ERIC Educational Resources Information Center

    Hostounsky, Zdenek; Pelc, Radek

    2007-01-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…

  20. Phase Retrieval from Modulus Using Homeomorphic Signal Processing and the Complex Cepstrum: An Algorithm for Lightning Protection Systems

    SciTech Connect

    Clark, G A

    2004-06-08

    In general, the Phase Retrieval from Modulus problem is very difficult. In this report, we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction. We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is: Given measurements of only the modulus {vert_bar}H(k){vert_bar} (no phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable, causal time domain signal h(n), compute a minimum phase reconstruction {cflx h}(n) of the signal. Then compute the phase of {cflx h}(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The development of the algorithm is quite involved, but the final algorithm and its implementation are very simple. This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the building to compute impulse responses and transfer functions that describe the amount of lightning energy that will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach to phase retrieval that can be used for programmatic needs. This report presents a brief tutorial description of the mathematical problem and the derivation of the phase retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions of the algorithm. We see that for

  1. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks

    PubMed Central

    Jeon, Seokwoo; Park, Jang-Ung; Cirelli, Ray; Yang, Shu; Heitzman, Carla E.; Braun, Paul V.; Kenis, Paul J. A.; Rogers, John A.

    2004-01-01

    High-resolution, conformable phase masks provide a means to fabricate, in an experimentally simple manner, classes of 3D nanostructures that are technologically important but difficult to generate in other ways. In this approach, light passing through a phase mask that has features of relief comparable in dimension to the wavelength generates a 3D distribution of intensity that exposes a photopolymer film throughout its thickness. Developing this polymer yields a structure in the geometry of the intensity distribution, with feature sizes as small as 50 nm. Rigorous coupled-wave analysis reveals the fundamental aspects of the optics associated with this method; a broad-range 3D nanostructures patterned with it demonstrates its technical capabilities. A nanoporous filter element built inside a microfluidic channel represents one example of the many types of functional devices that can be constructed. PMID:15314211

  2. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  3. Phase stability-induced complex rheological behaviour of galactomannan and maltodextrin mixtures.

    PubMed

    Tha Goh, Kelvin Kim; Mei Wee, May Sui; Hemar, Yacine

    2013-04-25

    The aim of this investigation was to characterize and explain the rheological behaviour observed for mixed solutions of maltodextrin and galactomannans. When 1% w/w guar gum was mixed with 3% w/w low DE maltodextrin (DE 1 or DE 2), the viscosity at low shear rates (~0.1 to 10 s(-1)) decreased by approximately a decade, and exhibited Newtonian behaviour. At intermediate shear rates (~10 to 50 s(-1)), shear thickening was observed, followed by shear thinning at higher rates. The magnitude of these effects increased with increasing concentration and increasing molecular weight (i.e. decreasing DE) of maltodextrin. The underlying mechanism was investigated by studying the stability, rheology and microstructure of the mixtures. The reduction in viscosity at low shear rates is attributed to partial segregation of the more viscous component, guar gum, into a dispersed phase; shear thickening can then be explained by phase inversion under shear, giving a dispersed phase rich in maltodextrin surrounded by a continuous matrix consisting predominantly of guar gum.

  4. Is the formation of cationic lipid-DNA complexes a thermodynamically driven phenomenon? Structure and phase behavior of DC-Chol/DNA complexes say not

    NASA Astrophysics Data System (ADS)

    Caracciolo, Giulio; Pozzi, Daniela; Caminiti, Ruggero

    2006-07-01

    The currently accepted mechanism of formation of cationic lipid-DNA complexes (lipoplexes) relies on the basic assumption that equilibrium structure of lipoplexes is regulated by thermodynamics. The main consequence is that neutral lipoplexes are one phase whereas positively (or negatively) charged ones coexist with excess lipid (or excess DNA). The authors report a small angle x-ray diffraction study on the structure of lipoplexes made of the cationic lipid 3β-[N-(N ,N-dimethylaminoethane)-carbamoyl]cholesterol and calf thymus Na-DNA. Here the authors show that positively charged lipoplexes can coexist with unbound DNA and they claim that steric size effects are definitely important to determine the equilibrium structure of lipoplexes.

  5. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: Explanation based on fundamental hypothesis of three-phase theory

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  6. Effects of phase I complex decongestive physiotherapy on physical functions and depression levels in breast cancer related lymph edema.

    PubMed

    Atalay, Orçin Telli; Özkir, Anıl; Çalik, Bilge Başakçi; Baskan, Emre; Taşkin, Harun

    2015-03-01

    [Purpose] Breast cancer-related upper extremity lymph edema is known to cause physical, functional and psychological impairments in women after modified radical mastectomy. The aim of this study was to investigate the effects of phase I Complex Decongestive Physiotherapy (CDP) on physical functions and depression levels in women with breast cancer-related upper extremity lymph edema. [Subjects and Methods] Fifty-eight subjects with breast cancer-related upper extremity lymph edema were the subjects of this study. The arm circumference, shoulder range of motion (ROM), muscle strength and depression levels of the subjects were assessed before and after phase I CDP treatment. [Results] After phase I CDP, there was a statistically significant reduction in circumference measurements at all levels of the affected arm. There was not any statistically significant difference in muscle strength after CDP. The shoulder ROM improved after treatment. There was a significant reduction in the Beck Depression Inventory score. A significant positive correlation was found between depression levels and circumference measurement. [Conclusion] Based on the results we suggest that by reducing limb volume, beside improving physical functions, phase I CDP can affect psychological status, especially depression which is very common in women with breast cancer-related upper extremity lymph edema.

  7. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: explanation based on fundamental hypothesis of three-phase theory.

    PubMed

    Kerner, Boris S

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  8. Phase-transfer-catalyzed asymmetric S(N)Ar reaction of α-amino acid derivatives with arene chromium complexes.

    PubMed

    Shirakawa, Seiji; Yamamoto, Kenichiro; Maruoka, Keiji

    2015-01-12

    Although phase-transfer-catalyzed asymmetric S(N)Ar reactions provide unique contribution to the catalytic asymmetric α-arylations of carbonyl compounds to produce biologically active α-aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron-withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric S(N)Ar reactions of α-amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron-donating substituents. The arylation was efficiently promoted by binaphthyl-modified chiral phase-transfer catalysts to give the corresponding α,α-disubstituted α-amino acids containing various aromatic substituents with high enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A solid-phase fluorescent biosensor for the determination of phenolic compounds and peroxides in samples with complex matrices.

    PubMed

    Rodionov, P V; Veselova, I A; Shekhovtsova, T N

    2014-02-01

    A solid-phase fluorescent biosensor for the determination of phenolic compounds (simple substituted phenols and catecholamines) and peroxides has been developed. The biosensor has a simple construction and the analytical signal is measured directly in a biosensitive layer {peroxidase-chitosan} on the sensor surface. This approach allowed analyzing samples with complex matrices (including water-insoluble samples and nontransparent solutions) without their preliminary pretreatment. Two novel fluorescent indicator reactions for the determination of the above-mentioned analytes in wide concentration ranges (from nmol l(-1) to mm l(-1)) which provided an analytical signal registration on a solid phase were proposed. The developed sensor was applied successfully for the analysis of urine, cosmetics, pharmaceuticals preparations, etc.

  10. Confocal raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media.

    PubMed

    Kreiner-Møller, A; Stracke, F; Zimmermann, H

    2013-01-01

    Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.

  11. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  12. Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels.

    PubMed

    Woodward, Andrew M; Rowland, Jem J; Kell, Douglas B

    2004-06-01

    Image registration describes the process of manipulating a distorted version of an image such that its pixels overlay the equivalent pixels in a clean, master or reference image. The need for it has assumed particular prominence in the analysis of images of electrophoretic gels used in the analysis of protein expression levels in living cells, but also has fundamental applications in most other areas of image analysis. Much of the positional information of a data feature is carried in the phase of a complex transform, so a complex transform allows explicit specification of the phase, and hence of the position of features in the image. Registration of a test gel to a reference gel is achieved by using a multiresolution movement map derived from the phase of a complex wavelet transform (the Q-shift wavelet transform) to dictate the warping directly via movement of the nodes of a Delaunay-triangulated mesh of points. This warping map is then applied to the original untransformed image such that the absolute magnitude of the spots remains unchanged. The technique is general to any type of image. Results are presented for a simple computer simulated gel, a simple real gel registration between similar "clean" gels with local warping vectors distributed about one main direction, a hard problem between a reference gel and a "dirty" test gel with multi-directional warping vectors and many artifacts, and some typical gels of present interest in post-genomic biology. The method compares favourably with others, since it is computationally rapid, effective and entirely automatic.

  13. Gas Phase Computational Studies on the Competition Between Nitrile and Water Ligands in Uranyl Complexes

    SciTech Connect

    Schoendorff, George E.; De Jong, Wibe A.; Gordon, Mark S.; Windus, Theresa L.

    2010-08-26

    The formation of uranyl dicationic complexes containing water and nitrile (acetonitrile, propionitrile, and benzonitrile) ligands, [UO2(H2O)n(RCN)m]2+, has been studied using density functional theory (DFT) with a relativistic effective core potential (RECP) to account for scalar relativistic effects on uranium. It is shown that nitrile addition is favored over the addition of water ligands. Decomposition of these complexes to [UO2OH(H2O)n(RCN)m]+ by the loss of either H3O+ or (RCN+H)+ is also examined. It is found that this reaction occurs when the coordination sphere of uranyl is unsaturated. Additionally, this reaction is influenced by the size of the nitrile ligand with reactions involving acetonitrile being the most prevalent.

  14. The critical phase for visual control of human walking over complex terrain

    PubMed Central

    Matthis, Jonathan Samir; Barton, Sean L.; Fajen, Brett R.

    2017-01-01

    To walk efficiently over complex terrain, humans must use vision to tailor their gait to the upcoming ground surface without interfering with the exploitation of passive mechanical forces. We propose that walkers use visual information to initialize the mechanical state of the body before the beginning of each step so the resulting ballistic trajectory of the walker’s center-of-mass will facilitate stepping on target footholds. Using a precision stepping task and synchronizing target visibility to the gait cycle, we empirically validated two predictions derived from this strategy: (1) Walkers must have information about upcoming footholds during the second half of the preceding step, and (2) foot placement is guided by information about the position of the target foothold relative to the preceding base of support. We conclude that active and passive modes of control work synergistically to allow walkers to negotiate complex terrain with efficiency, stability, and precision. PMID:28739912

  15. Azaporphine guest-host complexes in solution and gas-phase: evidence for partially filled nanoprisms and exchange reactions.

    PubMed

    Weis, Patrick; Schwarz, Ulrike; Hennrich, Frank; Wagner, Danny; Bräse, Stefan; Kappes, Manfred

    2014-04-07

    Supramolecular guest-host complexes comprising various azaporphines stacked in a coordination nanoprism consisting of tris(4-pyridyl)triazines as panels, 1,4-bis(pyridyl)benzenes as pillars and (en)Pd as hinges were synthesized according to the procedure of Fujita and coworkers and characterized as ions in the gas-phase by high-resolution electrospray ionization mass spectrometry and collision induced dissociation as well as in solution by analytical ultracentrifugation. Apart from fully filled nanoprisms we have also prepared and observed partially filled as well as empty congeners in aqueous solutions. Upon mixing room temperature solutions of two types of nanoprisms, we observe that azaporphine guest exchange reactions occur on a timescale of minutes, indicating that the formation of the guest-host complexes is reversible.

  16. Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity1[OPEN

    PubMed Central

    Charra-Vaskou, Katline

    2017-01-01

    During winter, trees have to cope with harsh conditions, including extreme freeze-thaw stress. This study focused on ice nucleation and propagation, related water shifts and xylem cavitation, as well as cell damage and was based on in situ monitoring of xylem (thermocouples) and surface temperatures (infrared imaging), ultrasonic emissions, and dendrometer analysis. Field experiments during late winter on Picea abies growing at the alpine timberline revealed three distinct freezing patterns: (1) from the top of the tree toward the base, (2) from thin branches toward the main stem’s top and base, and (3) from the base toward the top. Infrared imaging showed freezing within branches from their base toward distal parts. Such complex freezing causes dynamic and heterogenous patterns in water potential and probably in cavitation. This study highlights the interaction between environmental conditions upon freezing and thawing and demonstrates the enormous complexity of freezing processes in trees. Diameter shrinkage, which indicated water fluxes within the stem, and acoustic emission analysis, which indicated cavitation events near the ice front upon freezing, were both related to minimum temperature and, upon thawing, related to vapor pressure deficit and soil temperature. These complex patterns, emphasizing the common mechanisms between frost and drought stress, shed new light on winter tree physiology. PMID:28242655

  17. Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity.

    PubMed

    Charrier, Guillaume; Nolf, Markus; Leitinger, Georg; Charra-Vaskou, Katline; Losso, Adriano; Tappeiner, Ulrike; Améglio, Thierry; Mayr, Stefan

    2017-04-01

    During winter, trees have to cope with harsh conditions, including extreme freeze-thaw stress. This study focused on ice nucleation and propagation, related water shifts and xylem cavitation, as well as cell damage and was based on in situ monitoring of xylem (thermocouples) and surface temperatures (infrared imaging), ultrasonic emissions, and dendrometer analysis. Field experiments during late winter on Picea abies growing at the alpine timberline revealed three distinct freezing patterns: (1) from the top of the tree toward the base, (2) from thin branches toward the main stem's top and base, and (3) from the base toward the top. Infrared imaging showed freezing within branches from their base toward distal parts. Such complex freezing causes dynamic and heterogenous patterns in water potential and probably in cavitation. This study highlights the interaction between environmental conditions upon freezing and thawing and demonstrates the enormous complexity of freezing processes in trees. Diameter shrinkage, which indicated water fluxes within the stem, and acoustic emission analysis, which indicated cavitation events near the ice front upon freezing, were both related to minimum temperature and, upon thawing, related to vapor pressure deficit and soil temperature. These complex patterns, emphasizing the common mechanisms between frost and drought stress, shed new light on winter tree physiology.

  18. Menstrual cycle phase alters women's sexual preferences for composers of more complex music.

    PubMed

    Charlton, Benjamin D

    2014-06-07

    Over 140 years ago Charles Darwin first argued that birdsong and human music, having no clear survival benefit, were obvious candidates for sexual selection. Whereas the first contention is now universally accepted, his theory that music is a product of sexual selection through mate choice has largely been neglected. Here, I provide the first, to my knowledge, empirical support for the sexual selection hypothesis of music evolution by showing that women have sexual preferences during peak conception times for men that are able to create more complex music. Two-alternative forced-choice experiments revealed that woman only preferred composers of more complex music as short-term sexual partners when conception risk was highest. No preferences were displayed when women chose which composer they would prefer as a long-term partner in a committed relationship, and control experiments failed to reveal an effect of conception risk on women's preferences for visual artists. These results suggest that women may acquire genetic benefits for offspring by selecting musicians able to create more complex music as sexual partners, and provide compelling support for Darwin's assertion 'that musical notes and rhythm were first acquired by the male or female progenitors of mankind for the sake of charming the opposite sex'.

  19. Simple relationship between oxidation state and electron affinity in gas-phase metal-oxo complexes.

    PubMed

    Waller, Sarah E; Ray, Manisha; Yoder, Bruce L; Jarrold, Caroline Chick

    2013-12-19

    The photoelectron spectra of WO3H(-) and WO2F(-) are presented and analyzed in the context of a series of previous similar measurements on MO(y)(-) (M = Mo, W; y = 0-3), MO4H(-) and AlMOy(-) (y ≤ 4) complexes. The electronic structures of the WO3H and WO2F anion and neutral complexes were investigated using the B3LYP hybrid density functional method. The spectra of WO3H(-), WO2F(-), and previously measured AlWO3(-) photoelectron spectra show that the corresponding neutrals, in which the transition metal centers are all in a +5 oxidation state, have comparable electron affinities. In addition, the electron affinities fit the general trend of monotonically increasing electron affinity with oxidation state, in spite of the WO3H(-), WO2F(-), and AlWO3(-) having closed shell ground states, suggesting that the oxidation state of the metal atom has more influence than shell closing on the electron affinity of these transition metal-oxo complexes. Results of DFT calculations suggest that the neutrals are pyramidal and the anions are planar. However, the barriers for inversion on the neutral surface are low, and attempts to generate simple Franck-Condon simulations based on simple normal coordinate displacement, ignoring the effects of inversion, are inadequate.

  20. Vibrational Spectroscopy of Mass-Selected [UO2(ligand)n]2+ Complexes in the Gas Phase: Comparison with Theory

    SciTech Connect

    Gary S. Groenewold; Anita K. Gianotto

    2006-03-01

    The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the OdUdO stretch and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric OdUdO stretching frequency was measured at 1017 cm-1 for [UO2(CH3COCH3)2]2+ and was systematically red shifted to 1000 and 988 cm-1 by the addition of a third and fourth acetone ligand, respectively, which was consistent with increased donation of electron density to the uranium center in complexes with higher coordination number. The values generated computationally using LDA, B3LYP, and ZORA-PW91 were in good agreement with experimental measurements. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from two to four and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes, although the uranyl asymmetric stretching frequencies were greater than those measured for acetone complexes having equivalent coordination, which is consistent with the fact that acetonitrile is a weaker nucleophile than is acetone. This conclusion was confirmed by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3-6 cm-1.

  1. Exploiting charge-transfer complexation for selective measurement of gas-phase olefins with nanoparticle-coated chemiresistors.

    PubMed

    Rowe, Michael P; Steinecker, William H; Zellers, Edward T

    2007-02-01

    Charge-transfer-mediated olefin-selective sensing by use of chemiresistors (CR) coated with composite films of n-octanethiolate-monolayer-protected gold nanoparticles (C8-MPN) and each of several square-planar PtCl2(olefin)(pyridine) coordination complexes is described. Where the gas-phase olefin analyte differs from that initially coordinated to Pt, olefin substitution occurs and is accompanied by a persistent shift in the composite film resistance. Commensurate changes in film mass are also observed with a similarly coated thickness shear mode resonator. Regeneration is possible by exposure to the initially complexed olefin gas or vapor. If the olefin analyte is the same as that initially coordinated to Pt, then a reversible charge-transfer interaction occurs that is accompanied by a decrease in film resistance (increase in film mass), which recovers spontaneously after removal of the olefin from the atmosphere above the sensor. This behavior differs from that of MPN-coated CRs lacking such Pt complexes, which invariably yield resistance increases upon exposure to nonpolar vapors. Red shifts in the UV-vis absorbance spectra of the PtCl2(olefin)(pyridine) complexes in solution upon addition of free olefin support the hypothesis that Pt-olefin coordination in the composite films creates temporary low-resistance pathways that compete effectively with the concurrent increase in tunneling resistance associated with swelling-induced separation of C8-MPN cores. Structurally analogous non-olefins produce only increases in film resistance. Selective measurement of styrene, ethylene, 1-octene, and 1,3-butadiene is illustrated. Olefin detection limits are reduced as much as 23 000-fold by inclusion of the corresponding Pt complex in the CR interface film. Composite films suffer a gradual loss of selectivity from decomposition of the Pt-olefin complex, apparently facilitated by a Au-Pt charge transfer.

  2. Experimental and Theoretical Studies on the Fragmentation of Gas-Phase Uranyl-, Neptunyl- and Plutonyl-Diglycolamide Complexes

    SciTech Connect

    Gong, Yu; Hu, Han-Shi; Rao, Linfeng; Li, Jun; Gibson, John K.

    2013-10-10

    Fragmentation of actinyl(VI) complexes UVIO2(L)22+, NpVIO2(L)22+ and PuVIO2(L)22+ (L = tetramethyl-3-oxa-glutaramide, TMOGA) produced by electrospray ionization was examined in the gas phase by collision induced dissociation (CID) in a quadrupole ion trap mass spectrometer. Cleavage of the C-Oether bond was observed for all three complexes, with dominant products being UVIO2(L)(L-86)+ with charge reduction, and NpVIO2(L)(L-101)2+ and PuVIO2(L)(L-101)2+ with charge conservation. The neptunyl and plutonyl complexes also exhibited substantial L+ loss to give pentavalent complexes NpVO2(L)+ and PuVO2(L)+, whereas the uranyl complex did not, consistent with the comparative An 5f-orbital energies and the AnVIO22+/AnVO2+ (An = U, Np, Pu) reduction potentials. CID of NpVO2(L)2+ and PuVO2(L)2+ was dominated by neutral ligand loss to form NpVO2(L)+ and PuVO2(L)+, which hydrated by addition of residual water in the ion trap; UVO2(L)2+ was not observed. Theoretical calculations of the structures and bonding of the AnVIO2(L)22+ complexes using density functional theory reveal that the metal centers are coordinated by six oxygen atoms from the two TMOGA ligands. The results are compared with radiolytic decomposition of TMOGA in solution.

  3. The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition

    NASA Astrophysics Data System (ADS)

    Shephard, Jacob J.; Salzmann, Christoph G.

    2015-09-01

    The reversible phase transition from hydrochloric-acid-doped ice VI to its hydrogen-ordered counterpart ice XV is followed using differential scanning calorimetry. Upon cooling at ambient pressure fast hydrogen ordering is observed at first followed by a slower process which manifests as a tail to the initial sharp exotherm. The residual hydrogen disorder in H2O and D2O ice XV is determined as a function of the cooling rate. We conclude that it will be difficult to obtain fully hydrogen-ordered ice XV by cooling at ambient pressure. Our new experimental findings are discussed in the context of recent computational work on ice XV.

  4. Measuring spatiotemporal intensity-and-phase complexity of multimode fiber output pulses

    NASA Astrophysics Data System (ADS)

    Guang, Zhe; Rhodes, Michelle; Trebino, Rick

    2016-03-01

    We demonstrate ultrashort pulse spatiotemporal field measurement for multimode optical fibers, using a singleframe characterization technique, called Spatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH). We measure STRIPED FISH traces and retrieve the pulse field E(x,y,t) or equivalently E(x,y,ω), to generate movies revealing the field structure induced by propagating modes, due to their differences in field spatial distribution, modal propagation velocity and modal dispersion inside the fiber. We launch femtosecond pulses near 800nm from Ti: Sapphire laser to investigate linearly polarized modes LP01, LP11, LP02 and LP21 in multimode fibers.

  5. Enantiotropic phase transition in a binuclear tin complex with an O,N,O'-tridentate ligand.

    PubMed

    Schwarzer, Anke; Paul, Lydia E H; Böhme, Uwe

    2013-11-01

    The crystal structure of chlorido{μ-2-[(2-oxidobenzylidene)amino]ethanolato-κ(4)O,N,O':O'}{2-[(2-oxidobenzylidene)amino]ethanolato-κ(3)O,N,O'}trivinylditin(IV), [Sn2(C2H3)3(C9H9NO2)2Cl], is disordered above 178 K. A doubling of the unit-cell volume is observed on cooling. The asymmetric unit at 93 K contains two ordered molecules. The phase transition corresponds to an order-disorder transition of one vinyl group bound to the Sn(IV) atom.

  6. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    SciTech Connect

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-09-01

    Ion--molecules association reactions of the form A/sup -/(B)/sub n1/-+B=A/sup -/(B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl/sup -/, I/sup -/, and NO/sub 2//sup -/ with n ranging from one to three or four, and onto SO/sub 2//sup -/ and SO/sub 3//sup -/ with n equal to one; and (2) carbon dioxide onto Cl/sup -/, I/sup -/, NO/sub 2//sup -/, CO/sub 3//sup -/, and SO/sub 3//sup -/ with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps.

  7. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.

    PubMed

    Zhou, Heng; Lee, J Jack; Yuan, Ying

    2017-09-20

    We propose a flexible Bayesian optimal phase II (BOP2) design that is capable of handling simple (e.g., binary) and complicated (e.g., ordinal, nested, and co-primary) endpoints under a unified framework. We use a Dirichlet-multinomial model to accommodate different types of endpoints. At each interim, the go/no-go decision is made by evaluating a set of posterior probabilities of the events of interest, which is optimized to maximize power or minimize the number of patients under the null hypothesis. Unlike other existing Bayesian designs, the BOP2 design explicitly controls the type I error rate, thereby bridging the gap between Bayesian designs and frequentist designs. In addition, the stopping boundary of the BOP2 design can be enumerated prior to the onset of the trial. These features make the BOP2 design accessible to a wide range of users and regulatory agencies and particularly easy to implement in practice. Simulation studies show that the BOP2 design has favorable operating characteristics with higher power and lower risk of incorrectly terminating the trial than some existing Bayesian phase II designs. The software to implement the BOP2 design is freely available at www.trialdesign.org. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Heterogeneous preferences, decision-making capacity, and phase transitions in a complex adaptive system.

    PubMed

    Wang, Wei; Chen, Yu; Huang, Jiping

    2009-05-26

    There has been a belief that with the directing power of the market, the efficient state of a resource-allocating system can eventually be reached even in a case where the resource is distributed in a biased way. To mimic the realistic huge system for the resource allocation, we designed and conducted a series of economic experiments. From the experiments we found that efficient allocation can be realized despite a lack of communications among the participants or any instructions to them. To explain the underlying mechanism, an extended minority game model called the market-directed resource allocation game (MDRAG) is constructed by introducing heterogeneous preferences into the strategy-building procedures. MDRAG can produce results in good agreement with the experiments. We investigated the influence of agents' decision-making capacity on the system behavior and the phase structure of the MDRAG model as well. A number of phase transitions are identified in the system. In the critical region, we found that the overall system will behave in an efficient, stable, and unpredictable mode in which the market's invisible hand can fully play its role.

  9. Resistive switching effects on the spatial distribution of phases in metal-complex oxide interfaces

    NASA Astrophysics Data System (ADS)

    Schulman, A.; Acha, C.

    2012-08-01

    In order to determine the key parameters that control the resistive switching mechanism in metal-complex oxides interfaces, we have studied the electrical properties of metal/YBa2Cu3O7-δ (YBCO) interfaces using metals with different oxidation energy and work function (Au, Pt, Ag) deposited by sputtering on the surface of a YBCO ceramic sample. By analyzing the IV characteristics of the contact interfaces and the temperature dependence of their resistance, we inferred that ion migration may generate or cancel conducting filaments, which modify the resistance near the interface, in accordance with the predictions of a recent model.

  10. Wiener bounds for complex permittivity in terahertz spectroscopy: case study of two-phase pharmaceutical tablets.

    PubMed

    Tuononen, Heikki; Fukunaga, Kaori; Kuosmanen, Marko; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2010-01-01

    The terahertz measurement technique has become popular in the field of pharmaceutical technology for tablet quality inspection. Spectral data obtained from the tablets is based on the utilization of Fresnel's formulas for an ideal slab. However, a tablet is a porous medium. Hence, in the THz gap one has to assume that a tablet constitutes at least an effective medium if the Fresnel theory is applied in quantitative permittivity spectra analysis. Hence, it is suggested that one should consider instead of the permittivity of homogeneous media the concept of effective permittivity in the THz terminology of porous tablets. Usually the fill factor of a component of a tablet is known but not the detailed bulk structure. Nevertheless, it is possible to estimate the complex effective permittivity of a tablet with the aid of so-called Wiener bounds. The idea of this article is to present a modification of Wiener bounds applied to the estimation of the real and imaginary part of the permittivity of the pure component of a tablet. As an example, the effective complex permittivity of a starch acetate tablet is considered.

  11. Phases of school health promotion implementation through the lens of complexity theory: lessons learnt from an Austrian case study.

    PubMed

    Kremser, W

    2011-06-01

    The implementation of health promotion concepts in (school) settings is a complex undertaking on which little scientific knowledge exists. The purpose of this study was to better understand organizational influences on the implementation of school health promotion. An extended case study design that incorporated important insights from complexity science was used. This design influenced the focus of analysis and led to the use of multiple methods of data collection and analysis. A primary school in Vienna served as a case for observing and analysing the first year of implementing the health-promoting school concept. The study provided detailed insights into the implementation process. Results showed four chronologically overlapping implementation phases (starting health promotion, deciding what to do, planning health promotion projects, doing health promotion) on different system levels. In each phase, the original health-promoting school concept was adapted to the necessities and characteristics of each level and, therefore, changed considerably. Implications for possible adaptations of the health-promoting school concept to better fit the situation in schools are discussed.

  12. CAWSES November 7-8, 2004, superstorm: Complex solar and interplanetary features in the post-solar maximum phase

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-02-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks ``pump'' up the interplanetary magnetic field from a value of ~4 nT to ~44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these ``waves'' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were ``blast waves'' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  13. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  14. Phase transition and vapochromism in molecular assemblies of a polymorphic zinc(II) Schiff-base complex.

    PubMed

    Oliveri, Ivan Pietro; Malandrino, Graziella; Di Bella, Santo

    2014-09-15

    This paper reports for the first time the irreversible thermally induced phase transition, accompanied by color change, and the vapochromic behavior of an amphiphilic, Lewis acidic Zn(II) Schiff-base complex, through detailed X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and optical absorption studies. The unprecedented irreversible phase transition for such kind of complexes is associated with a thermal, lamellar-to-hexagonal columnar structural transition, which involves a different arrangement of each molecular unit within the assembled structure, H- and J-type aggregates, respectively, responsible for the thermochromic behavior. The vapochromism, investigated either in powder samples or in thermally annealed cast films, is related to the formation of 1:1 adducts upon exposure to vapors of strong Lewis bases and implies dramatic optical absorption variations and naked-eye observation of the change in color from red-brown to red. The chemisorption process is fast, completely reversible, reproducible, and selective for amines. The reversible switching of the chemisorption-desorption process in cast films is demonstrated by successive cycles, amine exposure and subsequent heating, by monitoring the substantial optical absorption changes in the visible region. Vapochromism of this material can potentially be used to detect vapors of volatile amines.

  15. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  16. Complexation-induced phase separation: preparation of composite membranes with a nanometer-thin dense skin loaded with metal ions.

    PubMed

    Villalobos, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-05-13

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  17. Design Implementation and Testing of a VLSI High Performance ASIC for Extracting the Phase of a Complex Signal

    NASA Astrophysics Data System (ADS)

    Altmeyer, Ronald C.

    2002-09-01

    This thesis documents the research, circuit design, and simulation testing of a VLSI (Very Large Scale Integration) ASIC which extracts phase angle information from a complex sampled signal using the arctangent relationship: (phi=tan/-1 (Q/1). Specifically, the circuit will convert the In-Phase and Quadrature terms into their corresponding phase angle. The design specifications were to implement the design in CMOS (Complementary Metal Oxide Semiconductors) technology with a minimum transistor count and ability to operate at a clock frequency of 700 MHz. Research on the arctangent function was performed to determine mathematical calculation methods and the CORDIC method was chosen to achieve the stated design specifications. MATLAB simulations were used to calculate and verify accuracy and to implement Quine-McClusky logic minimization. T-SPICE netlists were generated and simulations were run to determine transistor and circuit electrical operation and timing. Finally, overall circuit logic functionality of all possible input combinations was completed using a VHDL (VHSIC(Very High Speed Integrated Circuit) Hardware Description Language) simulation program.

  18. Effect of cooling-heating rate on sol-gel transformation of fish gelatin-gum arabic complex coacervate phase.

    PubMed

    Anvari, Mohammad; Chung, Donghwa

    2016-10-01

    The objective of this study was to characterize influence of different cooling and heating rates on gelation of fish gelatin (FG)-gum arabic (GA) complex coacervate phase using rheological measurements. For the coacervate phase prepared at 10°C, the gelling temperature, melting temperature, gel strength, and stress relaxation decreased with increasing cooling or heating rate, however, no gelation was observed at the highest cooling rate of 0.05°C/min. Similar trends were obtained for the coacervates phase prepared at 30°C, but the gelation did not occur at a cooling rate of 0.033 or 0.05°C/min. The results indicated that rheological properties of FG-GA coacervate gels were highly dependent to the cooling process, where more thermos-stable and stronger gels formed at slower cooling. This was probably because of higher degree of molecular rearrangements, more hydrogen bindings, and formation of greater junction zones into the gel network at slower cooling rates. However, all of the FG-GA coacervate gels obtained at different cooling rates were classified as a weak physical gel. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The photofragmentation of gas phase lanthanide complexes: Experimental and ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Jiangchao

    Dissociative laser-driven photoreactions of open-shell lanthanide metal-organic complexes are analyzed from experimental and computational aspects. Experimental analysis, based on time-of-flight mass spectrometry suggests the most probable pathway for the photoreactions. A sequence of intermediates and the distribution of final products are identified. The computational analysis, based on excited-state ab initio molecular dynamics with surface hopping, is implemented at the DFT level of theory. Computational treatment prompts the mechanism of laser-driven photoreactions at time ranges from femtoseconds to picoseconds. The experimental and computational analyses agree on several key products of photoreactions. Branching between two reaction pathways, ligand ejection versus cracking, is observed and explained. The results obtained are of importance for basic studies of processes beyond the Born-Oppenheimer approximation and for nano-electronics application of laser-assisted chemical vapor deposition of insulators with super-high dielectric constant.

  20. Gas-Phase Terahertz Spectroscopy and the Study of Complex Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Braakman, Rogier

    2010-11-01

    Terahertz spectroscopy holds great promise in the advancement of the field of astrochemistry. The sensitive observation of interstellar THz radiation is expected to lower detection limits and allow the study of larger and more complex species than is currently possible at millimeter wavelengths, which will place further constraints on chemical models and permit a direct comparison to the organic compounds seen in carbonaceous chondrites. With the successful recent launch of the Herschel Space Telescope, which will give high-fidelity access to interstellar THz radiation for the first time, and the completion of the Atacama Large Millimeter Array (ALMA) by 2013, the THz astronomy era is upon us. Unfortunately, laboratory THz spectroscopy presents significant challenges and will be soon be lagging behind the newly available observational platforms. Technologies to extend the capabilities of high-resolution spectroscopic systems into the THz domain are actively being pursued on many fronts, but affordable systems that are broadly tunable, sensitive and achieve the necessary resolution are not yet available. The work in this thesis should therefore be seen as part of the effort in the transition from centimeter-/millimeter-wave to THz spectroscopy that is currently taking place in the astrochemistry community. As part of this thesis, observational searches for the complex organics hydroxyacetone (CH3COCH2OH), 2-cyanoethanol (OHCH 2CH2CN) and methoxyacetonitrile (CH3OCH2 CN) were attempted at millimeter wavelengths. The unsuccessful nature of these searches highlight the current limits of studying interstellar chemistry using pure rotational spectroscopy. The characterization of the laboratory spectra of these molecules is nonetheless important as it will aid in the assignment and description of the rotational substructure and band shapes of their THz torsional spectra, features that may allow their interstellar detection; and this thesis presents methods by which such

  1. Probing ‘Spin-Forbidden’ Oxygen Atom Transfer: Gas-Phase Reactions of Chromium-Porphyrin Complexes

    PubMed Central

    Fornarini, Simonetta; Lanucara, Francesco; Warren, Jeffrey J.

    2010-01-01

    Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a ‘two-state’ reactivity model has been extensively applied especially in iron-porphyrin systems. Herein we explore the gas phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)CrIII]+ (1) and [(TPFPP)CrVO]+ (2). These are an attractive system to examine the effects of spin state change on oxygen atom transfer because the d1 CrV species are doublets while the CrIII complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)CrIII]+ forms adducts with a variety of neutral donors but O-atom transfer is only observed for NO2. Pyridine N-oxide adducts of 1 do yield 2 upon collision induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogs do not. [(TPFPP)CrVO]+ is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)3. In general, [(TPFPP)CrVO]+ species are much less reactive than the Fe and Mn analogs. Thermochemical analysis of the reactions points towards the involvement of spin issues in the lower observed reactivity of the chromium complexes. PMID:20218631

  2. Photofragmentation of Gas-Phase Lanthanide Cyclopentadienyl Complexes: Experimental and Time-Dependent Excited-State Molecular Dynamics

    PubMed Central

    2015-01-01

    Unimolecular gas-phase laser-photodissociation reaction mechanisms of open-shell lanthanide cyclopentadienyl complexes, Ln(Cp)3 and Ln(TMCp)3, are analyzed from experimental and computational perspectives. The most probable pathways for the photoreactions are inferred from photoionization time-of-flight mass spectrometry (PI-TOF-MS), which provides the sequence of reaction intermediates and the distribution of final products. Time-dependent excited-state molecular dynamics (TDESMD) calculations provide insight into the electronic mechanisms for the individual steps of the laser-driven photoreactions for Ln(Cp)3. Computational analysis correctly predicts several key reaction products as well as the observed branching between two reaction pathways: (1) ligand ejection and (2) ligand cracking. Simulations support our previous assertion that both reaction pathways are initiated via a ligand-to-metal charge-transfer (LMCT) process. For the more complex chemistry of the tetramethylcyclopentadienyl complexes Ln(TMCp)3, TMESMD is less tractable, but computational geometry optimization reveals the structures of intermediates deduced from PI-TOF-MS, including several classic “tuck-in” structures and products of Cp ring expansion. The results have important implications for metal–organic catalysis and laser-assisted metal–organic chemical vapor deposition (LCVD) of insulators with high dielectric constants. PMID:24910492

  3. Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction.

    PubMed

    Vriens, Bas; Mathis, Marcel; Winkel, Lenny H E; Berg, Michael

    2015-08-14

    Biologically produced volatile-alkylated Se and S compounds play an important role in the global biogeochemical Se and S cycles, are important constituents of odorous industrial emissions, and contribute to (off-)flavors in food and beverages. This study presents a fully automated direct-immersion solid-phase microextraction (DI-SPME) method coupled with capillary gas chromatography-mass spectrometry (GC/MS) for the simultaneous quantification of 10 volatile-alkylated Se and S compounds in complex aqueous media. Instrumental parameters of the SPME procedure were optimized to yield extraction efficiencies of up to 96% from complex aqueous matrices. The effects of sample matrix composition and analyte transformation during sample storage were critically assessed. With the use of internal standards and procedural calibrations, the DI-SPME-GC/MS method allows for trace-level quantification of volatile Se and S compounds in the ng/L range (e.g. down to 30 ng/L dimethyl sulfide and 75 ng/L dimethyl selenide). The applicability and robustness of the presented method demonstrate that the method may be used to quantify volatile Se and S compounds in complex aqueous samples, such as industrial effluents or food and beverage samples.

  4. Configuration of the Shoulder Complex During the Arm-Cocking Phase in Baseball Pitching.

    PubMed

    Konda, Shoji; Yanai, Toshimasa; Sakurai, Shinji

    2015-10-01

    The role of the scapula during high-velocity baseball pitching has been described without 3-dimensional kinematic data. It has been speculated that the scapula functions to align the humerus with the spine of the scapula on both the transverse and scapular planes at the end of the arm-cocking phase. Two hypotheses were formulated: (1) the scapulothoracic protraction angle correlates with the humerothoracic horizontal adduction angle among participants, and (2) the scapulohumeral rhythm of the humerothoracic elevation is not the same as the normal ratio (2:1) observed widely in controlled abductions. Descriptive laboratory study. A total of 20 Japanese professional baseball pitchers were asked to pitch 3 fastballs as they would normally during pitching practice. The 3-dimensional kinematic data of the thorax, scapulae, humeri, and pelvis were recorded using an electromagnetic tracking device operating at 240 Hz. Humerothoracic, scapulothoracic, and glenohumeral joint configurations were determined at the instant of stride-foot contact (SFC) and the end of the arm-cocking phase (MER). The mean (±SD) glenohumeral horizontal adduction (-6° ± 7°) and elevation (85° ± 10°) angles at the MER indicated that the humerus was positioned almost parallel to the spine of the scapula. The mean scapulothoracic protraction angle (15° ± 10°) was significantly correlated with the humerothoracic horizontal adduction angle (10° ± 11°) at the MER (r = 0.76, P < .001) but not at the SFC (r = 0.13, P = .58). The scapulohumeral rhythm (4.2 [±1.9]:1) expressed as the ratio of the glenohumeral elevation angle to the scapulothoracic upward rotation angle at the MER was significantly greater than the normal ratio (2:1) (P < .01). The results supported the hypotheses, providing evidence to corroborate the widely accepted concept that the scapula functions to align the humerus with the spine of the scapula so as to limit the glenohumeral joint configuration within the "safe zone

  5. Biphenyl based stationary phases for improved selectivity in complex steroid assays.

    PubMed

    Lindner, Johanna M; Vogeser, Michael; Grimm, Stefanie H

    2017-08-05

    The measurement of steroid hormones and their corticoid precursors is an important aspect in endocrinology since these analytes are biomarkers for several endocrine disorders. Over the last few years, HPLC-MS/MS has become the method of choice to analyze these compounds. There are already several methods using stationary phases modified with C18 groups. However, since these columns sometimes do not enable sufficient separation of some isobaric steroids, we investigated the potential of a different RP modification using biphenyl groups for the separation of challenging isobars such as corticosterone, 11- and 21-deoxycortisol. The aim of our work was the development of an isotope dilution UHPLC-MS/MS assay for clinical research that combines simple and effective sample preparation with a powerful MS method quantifying a broad steroid panel (aldosterone, corticosterone, cortisol, cortisone, 11-deoxycorticosterone, 11-deoxycortisol, 21-deoxycortisol, dehydroepiandrosterone, dehydroepiandrosterone sulfate, 17-OH-progesterone, progesterone, and testosterone) in human serum. After a manual protein precipitation step using zinc trifluoroacetate (ZnTFA) in methanol, the supernatants were directly injected into the UHPLC-MS system. Chromatographic baseline separation of all isobaric compounds (corticosterone↔11-deoxycortisol↔21-deoxycortisol, 17-OH-progesterone↔11-deoxycorticosterone, and aldosterone↔cortisone) was achieved using a Kinetex Biphenyl column (150×2.1mm, 1.7μm) with a mobile phase consisting of 0.2mM ammonium fluoride in water and methanol. The total run time was 10min. For detection we used a Xevo TQ-S mass spectrometer operating in the ESI positive and negative modes. The method was validated according to the EMA guideline for bioanalytical method validation. The results for accuracy (within-run: 92.3%-115%, between-run: 92.4 %-113%) and imprecision (within-run: 0.80%-9.05%, between-run: 1.98 %-15.2%) were satisfying. The recovery ranged from 95% to

  6. Complex Structures in the Reentrant Phase Diagram of HoNi_2B_2C

    NASA Astrophysics Data System (ADS)

    Childers, J.; Zhang, J.; Olinger, A., Jr.; Metlushko, V.; Delong, L.; Canfield, P.

    1996-03-01

    HoNi_2B_2C exhibits a resistive onset to superconductivity near 9.0 K, followed by transitions to incommensurate magnetic order (IMO) at 6.0 K and 5.5 K, and commensurate antiferromagnetic order (AFM) at TN = 5.2 K. Vibrating reed (VR) and resistance data reveal two previously unobserved lines of magnetic anomalies in both the upper superconducting (SC) and lower reentrant SC regions for H || a*b*. The wide region between the upper onset of SC and the first magnetic anomaly reflects weak vortex pinning, possibly due to a subtle buildup of IMO from well above 8K. The interplay between SC and magnetic order is evident in abrupt displacements of transition lines to IMO near their crossing with the reentrant normal transition line for 5.2phase transitions. * Funded by NSF Grant #EHR-9108764 ** Funded by DoE DER/OBS Contract #W-7405-Eng-82

  7. An Efficient Implementation of the GMC Micromechanics Model for Multi-Phased Materials with Complex Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Bednarcyk, Brett A.

    1997-01-01

    An efficient implementation of the generalized method of cells micromechanics model is presented that allows analysis of periodic unidirectional composites characterized by repeating unit cells containing thousands of subcells. The original formulation, given in terms of Hill's strain concentration matrices that relate average subcell strains to the macroscopic strains, is reformulated in terms of the interfacial subcell tractions as the basic unknowns. This is accomplished by expressing the displacement continuity equations in terms of the stresses and then imposing the traction continuity conditions directly. The result is a mixed formulation wherein the unknown interfacial subcell traction components are related to the macroscopic strain components. Because the stress field throughout the repeating unit cell is piece-wise uniform, the imposition of traction continuity conditions directly in the displacement continuity equations, expressed in terms of stresses, substantially reduces the number of unknown subcell traction (and stress) components, and thus the size of the system of equations that must be solved. Further reduction in the size of the system of continuity equations is obtained by separating the normal and shear traction equations in those instances where the individual subcells are, at most, orthotropic. The reformulated version facilitates detailed analysis of the impact of the fiber cross-section geometry and arrangement on the response of multi-phased unidirectional composites with and without evolving damage. Comparison of execution times obtained with the original and reformulated versions of the generalized method of cells demonstrates the new version's efficiency.

  8. Crystal growth, complex phase diagram and high pressure studies of layer compound PdBi2

    NASA Astrophysics Data System (ADS)

    Zhao, Kui; Zhu, Xiyu; Lv, Bing; Xue, Yuyi; Chu, Paul

    2013-03-01

    Among the different Pd-Bi Alloys, β-PdBi2, which is crystallized in a layered tetragonal (I4/mmm) structure, has been identified as a superconductor with transition temperature at ~ 5.4K. Band structure calculation indicates that the interlayer Bi-Bi bonds are weak but not negligible, which implies the 3D bonding character of this compound. In order to enhance or weaken the interlayer bonding and ultimately increase the Tc in this system, high pressure measurement, isovalent chemical substitution of Bi with Sb, and chemical intercalation using transition metal Cu and alkali metal Na, are applied to the system. Meanwhile, aliovalent chemical substitution on the Bi site by Pb is also carried out. The magnetic, electrical, and calorimetric properties of these compounds are determined at ambient pressure and compared. The detailed high pressure results and the complete phase diagram of chemical substitution and intercalation will be presented and discussed. Work in Houston is supported in part by US AFOSR, the State of Texas, T. L. L. Temple Foundation and John and Rebecca Moores Endowment.

  9. Acute social stress before the planning phase improves memory performance in a complex real life-related prospective memory task.

    PubMed

    Glienke, Katharina; Piefke, Martina

    2016-09-01

    Successful execution of intentions, but also the failure to recall are common phenomena in everyday life. The planning, retention, and realization of intentions are often framed as the scientific concept of prospective memory. The current study aimed to examine the influence of acute stress on key dimensions of complex "real life" prospective memory. To this end, we applied a prospective memory task that involved the planning, retention, and performance of intentions during a fictional holiday week. Forty healthy males participated in the study. Half of the subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions, and the other half of the participants underwent a control procedure at the same time. Salivary cortisol was used to measure the effectiveness of the SECPT stress induction. Stressed participants did not differ from controls in planning accuracy. However, when we compared stressed participants with controls during prospective memory retrieval, we found statistically significant differences in PM across the performance phase. Participants treated with the SECPT procedure before the planning phase showed improved prospective memory retrieval over time, while performance of controls declined. Particularly, there was a significant difference between the stress and control group for the last two days of the holiday week. Interestingly, control participants showed significantly better performance for early than later learned items, which could be an indicator of a primacy effect. This differential effect of stress on performance was also found in time- and event-dependent prospective memory. Our results demonstrate for the first time, that acute stress induced before the planning phase may improve prospective memory over the time course of the performance phase in time- and event-dependent prospective memory. Our data thus indicate that prospective memory can be enhanced by acute stress. Copyright © 2016

  10. Velocimetry with refractive index matching for complex flow configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

    1987-01-01

    The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

  11. Photochemical reactions of complex molecules in condensed phase. Progress report, March 1, 1983-February 28, 1984

    SciTech Connect

    Linschitz, H.

    1983-12-30

    This past year we have continued our studies of mechanism and yield, particularly for the redox reaction between simple inorganic anions and excited (triplet) anthraquinones or ketones. In studying these anion interactions, we find yet additional factors which influence primary charge-transfer efficiency. Radical yields can be sharply increased by raising the concentration of anions which, at lower concentrations, simply quench the substrate with little or no radical formation. Our kinetic results indicate that this new effect involves formations of triple charge-transfer complexes at high anion concentrations, in competition with the initial bimolecular quenching reactions. Other studies concluded this past year have dealt with the rate and range of electron transfer from excited porphyrins to quinones, as determined in a covalently-linked structure of rigid, well-defined geometry. We show that even at 10 A separation, the main decay pathway of the excited porphyrin is via reversible charge-transfer. Finally, a new line of investigation has been opened up, concerning the chemistry and photochemistry of porphyrin aggregates (probably dimers), formed by electrostatic interaction of porphyrin macrocycles bearing oppositely charged side chains at the delta-methine bridges.

  12. Matrix-assisted laser desorption mass spectrometry of gas-phase peptide-metal complexes

    NASA Astrophysics Data System (ADS)

    Hortal, Ana R.; Hurtado, Paola; Martínez-Haya, Bruno

    2008-12-01

    Cation attachment to a model peptide has been investigated in matrix-assisted laser desorption experiments. Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) is chosen as a system for study, and Cu2+ and K+ salts are used as cationizing agents. Three fundamentally different types of samples are investigated: (1) a crystalline sample of Ang I, metal salt and MALDI matrix, prepared with the conventional dried droplet method; (2) a solvent-free fine powder mixture of the same three compounds, and (3) a solution of the angiotensin and the metal salt in an ionic liquid matrix (a molten organic salt that acts as a MALDI active solvent). Effective protonation and cationization of the peptide are achieved with the three methods. The transition metal systematically provides more efficient cationization than the alkali metal. At sufficiently high concentration of the salt, the attachment of up to four copper cations to the angiotensin is observed in the MALDI spectrum. In contrast, only one K+ cation is efficiently bound to the peptide. For a given salt concentration, the highest degree of cationization is obtained in the laser desorption from the ionic liquid matrix. This is attributed to the efficient transfer of free metal cations to the desorption plume, where the complexation takes place.

  13. Crystallization of the pneumococcal autolysin LytC: in-house phasing using novel lanthanide complexes

    PubMed Central

    Pérez-Dorado, Inmaculada; Sanles, Reyes; González, Ana; García, Pedro; García, José L.; Martínez-Ripoll, Martín; Hermoso, Juan A.

    2010-01-01

    LytC, one of the major autolysins from the human pathogen Streptococcus pneumoniae, has been crystallized as needles by the hanging-drop technique using 10%(w/v) PEG 3350 as precipitant and 10 mM HEPES pH 7.5. LytC crystals were quickly soaked in mother liquor containing 2 mM of the complex Gd-HPDO3A to produce derivatized crystals (LytCGd-HPDO3A). Both native LytC and isomorphous LytCGd-HPDO3A crystals were flash-cooled in a nitrogen flow at 120 K prior to X-ray data collection using an in-house Enraf–Nonius rotating-anode generator (λ = 1.5418 Å) and a MAR345 imaging-plate detector. In both cases, good-quality diffraction patterns were obtained at high resolution. LytCGd-HPDO3A crystals allowed the collection of a SAD X-ray data set to 2.6 Å resolution indexed in terms of a P21 monoclinic unit cell with parameters a = 59.37, b = 67.16, c = 78.85 Å, β = 105.69°. The anomalous Patterson map allowed the identification of one heavy-atom binding site, which was sufficient for the calculation of an interpretable anomalous map at 2.6 Å resolution. PMID:20383019

  14. Fragmentation pathways analysis for the gas phase dissociation of protonated carnosine-oxaliplatin complexes.

    PubMed

    Ritacco, Ida; Moustafa, Eslam M; Sicilia, Emilia; Russo, Nino; Shoeib, Tamer

    2015-03-14

    Collision-induced dissociation (CID) experiments on the protonated carnosine-oxaliplatin complex, [Carnosine + OxPt + H](+) using several collision energies were shown to yield nine different fragment ions. Energy-resolved CID experiments on [Carnosine + OxPt + H](+) showed that the generation of the product ion [Carnosine - H + Pt(dach)](+) (where dach is 1,2-diaminocyclohexane) is the lowest energy process. At slightly higher collision energies, the loss of neutral carnosine from [Carnosine + OxPt + H](+) to produce [OxPt + H](+) was observed, followed by the loss of oxaliplatin from the same precursor ion to produce [Carnosine + H](+). At significantly higher energies, the ion [OxPt - CO2 + H](+) was shown to be formed, while the last two investigated ions [Carnosine + OxPt - CO2 + H](+) and [Carnosine - NH3 - H + Pt(dach)](+) did not attain any significant relative abundance. Density functional calculations at the B3LYP/LANL2DZ level were employed to probe the fragmentation mechanisms that account for all experimental data. The lowest free energy barriers for the generation of each of the ions [Carnosine - H + Pt(dach)](+), [OxPt + H](+), [Carnosine + H](+), [Carnosine + OxPt - CO2 + H](+) and [Carnosine - NH3 - H + Pt(dach)](+) from [Carnosine + OxPt + H](+) according to the fragmentation mechanisms offered here were calculated to be 31.9, 38.8, 49.3, 75.2, and 85.6 kcal mol(-1), respectively.

  15. First-Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides

    NASA Astrophysics Data System (ADS)

    Chou, Mei-Yin

    2009-03-01

    Complex metal hydrides are believed to be one of the promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have applied state-of-the-art computational techniques to study the structural, dynamic, and electronic properties of these materials. This talk will focus on the critical role played by the Ti catalyst in helping hydrogen cycling in the alanates, which remains a challenging topic for this hydrogen storage material. We have performed a series of calculations to address the hydrogen interaction on the aluminum surface in the presence of the Ti ``dopant,'' focusing on the effect of near-surface alloying on the Al(100) surface. It is found that Ti occupies subsurface sites near the Al surface. This subsurface Ti arrangement not only enhances H binding with the Al surface layer, but also improves H mobility on the surface. Based on existing experimental data and our preliminary results, we propose a model in which the catalyst does not enter the bulk, but facilitates hydrogen dissociation-recombination near the surface. In the dehydrogenation cycle, the catalyst kinetically facilitates the release and decomposition of AlH3 from the solid-state alanate. In the hydrogenation cycle, the catalyst helps the adsorption of hydrogen and the formation of AlH3 oligomers on Al surfaces. The implication of Ti as a catalyst for the hydrogenation reactions will be discussed.

  16. Single-phase microemulsification of a complex light-nonaqueous-phase-liquid: Laboratory evaluation of several mixtures of surfactant/alcohol solutions

    SciTech Connect

    Rhue, R.D.; Rao, P.S.C.; Annable, M.D.

    1999-08-01

    A recent advance in conventional pump-and-treat technology for aquifer remediation involves the use of surfactant-alcohol mixtures that will form a clear, transparent, thermodynamically stable oil-in-water microemulsion on contact with a residual non-aqueous-phase-liquid (NAPL). An initial screening of 86 commercial-grade surfactants for aqueous solubility resulted in selection of 58 that were further tested in batch experiments to evaluate the capacity to solubilize a complex NAPL waste collected from a Superfund site (Operable Unit OU-1) at Hill AFB, UT. The selected group of 58 surfactants represented six classes of anionic, nine classes of nonionic, and one class of amphoteric surfactants. Batch studies on NAPL solubilization identified a number of surfactants suitable for use in the field demonstration phase of the project; a further criterion in surfactant selection was that the flushing solution had a viscosity <2 cp. The best surfactants among this group had HLB (hydrophilic-lipophilic balance) values between 12 and 13, and solubilized 10 to 20 g L{sup {minus}1} of the OU-1 NAPL when the surfactant concentration was 3%. Column tests using NAPL-coated glass beads showed that the more efficient surfactants could remove >90% of the NAPL after flushing with <10 pore volumes. Brij 97, an ethoxylated alcohol ether surfactant, showed a high capacity for solubilizing the OU-1 NAPL. In a column test using contaminated Hill AFB aquifer material, flushing with a mixture of 3% Brij 97 and 2.5% n-pentanol removed essentially all of the mass of nine target analytes in the NAPL after flushing with <10 pore volumes without mobilizing the NAPL or destabilizing aquifer colloids.

  17. Statistical description of complex nuclear phases in supernovae and proto-neutron stars

    NASA Astrophysics Data System (ADS)

    Raduta, Ad. R.; Gulminelli, F.

    2010-12-01

    We develop a phenomenological statistical model for dilute star matter at finite temperature, in which free nucleons are treated within a mean-field approximation and nuclei are considered to form a loosely interacting cluster gas. Its domain of applicability, that is, baryonic densities ranging from about ρ>108 g/cm3 to normal nuclear density, temperatures between 1 and 20 MeV, and proton fractions between 0.5 and 0, makes it suitable for the description of baryonic matter produced in supernovae explosions and proto-neutron stars. The first finding is that, contrary to the common belief, the crust-core transition is not first order, and for all subsaturation densities matter can be viewed as a continuous fluid mixture between free nucleons and massive nuclei. As a consequence, the equations of state and the associated observables do not present any discontinuity over the whole thermodynamic range. We further investigate the nuclear matter composition over a wide range of densities and temperatures. At high density and temperature our model accounts for a much larger mass fraction bound in medium nuclei with respect to traditional approaches as Lattimer-Swesty, with sizable consequences on the thermodynamic quantities. The equations of state agree well with the presently used EOS only at low temperatures and in the homogeneous matter phase, while important differences are present in the crust-core transition region. The correlation among the composition of baryonic matter and neutrino opacity is finally discussed, and we show that the two problems can be effectively decoupled.

  18. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in

  19. Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.

    PubMed

    Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C

    2017-08-30

    The binuclear complex [Ag2(dcpm)2](PF6)2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag2(dcpm)2](2+) in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag2(dmpm)2](2+) (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C2 geometry two close-lying singlet states S1 ((1)MC(dσ*-pπ), (1)B, 4.13 eV) and S2 ((1)MC(dσ*-pσ), (1)A, 4.45 eV) are found. The nearly dark S1 state has not been reported so far. The excitation of the S2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T1 (3.87 eV) and T2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics is dominated by

  20. Stable [Pb(ROH)(N)](2+) complexes in the gas phase: softening the base to match the Lewis acid.

    PubMed

    Akibo-Betts, Glen; Barran, Perdita E; Puskar, Ljiljana; Duncombe, Bridgette; Cox, Hazel; Stace, Anthony J

    2002-08-07

    Experiments have been performed in the gas phase to investigate the stability of complexes of the general form [Pb(ROH)(N)](2+). With water as a solvent, there is no evidence of [Pb(H(2)O)(N)](2+); instead [PbOH(H(2)O)(N-1)](+) is observed, where lead is considered to be held formally in a +2 oxidation state by the formation of a hydroxide core. As the polarizability of the solvating ligands is increased through the use of straight chain alcohols, ROH, solvation of Pb(2+) is observed without proton transfer when R >or= CH(3)CH(2)CH(2)-. The relative stabilities of [Pb(ROH)(4)](2+) complexes with respect to proton transfer are further investigated through the application of density functional theory to examples where R = H, methyl, ethyl, and 1-propyl. Of three trial structures examined for [Pb(ROH)(4)](2+) complexes, in all cases those with the lowest energy comprised of three solvent molecules were directly bound to the central cation, with the fourth molecule held in a secondary shell by hydrogen bonds. The implications of this arrangement as a favorable starting structure for proton transfer are discussed. Conditions for the stability of particular Pb(II)/ligand combinations are also discussed in terms of the hard-soft acid-base principle. Charge population densities calculated for the central lead cation and oxygen donor atoms across the ROH range are used to support the proposal that proton transfer occurs when a ligand is hard. Stability of the [Pb(ROH)(4)](2+) unit is commensurate with a decrease in the ionic character of the bond between Pb(2+) and a ligand; this in turn reflects a softening of the ligand as the alkyl chain increases in length. From the calculations, the most favorable protonated product is, in all cases, (ROH)(2)H(+). The trends observed with lead are compared with Cu(II), which is capable of forming stable gas-phase complexes with water and all of the alcohols considered here.

  1. Phase-induced amplitude apodization complex mask coronagraph mask fabrication, characterization, and modeling for WFIRST-AFTA

    NASA Astrophysics Data System (ADS)

    Kern, Brian; Guyon, Olivier; Belikov, Ruslan; Wilson, Daniel; Muller, Richard; Sidick, Erkin; Balasubramanian, Bala; Krist, John; Poberezhskiy, Ilya; Tang, Hong

    2016-01-01

    This work describes the fabrication, characterization, and modeling of a second-generation occulting mask for a phase-induced amplitude apodization complex mask coronagraph, designed for use on the WFIRST-AFTA mission. The mask has many small features (˜micron lateral scales) and was fabricated at the Jet Propulsion Laboratory Microdevices Laboratory, then characterized using a scanning electron microscope, atomic force microscope, and optical interferometric microscope. The measured fabrication errors were then fed to a wavefront control model which predicts the contrast performance of a full coronagraph. The expected coronagraphic performance using this mask is consistent with observing ˜15 planetary targets with WFIRST-AFTA in a reasonable time (<1 day/target).

  2. Characterization of sodium carboxymethylcellulose-gelatin complex coacervation by chemical analysis of the coacervate and equilibrium fluid phases.

    PubMed

    Koh, G L; Tucker, I G

    1988-05-01

    The complex coacervation of sodium carboxymethylcellulose (SCMC) and gelatin has been characterized by chemical analyses of the coacervate and equilibrium fluid phases. The phenol-sulphuric acid (for SCMC) and Lowry (for gelatin) assays were used. Chemically analysed coacervate yield was used to predict optimum coacervation conditions, which occurred at a SCMC-gelatin mixing ratio of 3:7 at pH 3.5. The effects of pH, colloid mixing ratio and total colloid concentration on coacervate yield and composition were studied. The colloid mixing ratio, at which the peak coacervate yields occurred varied with coacervation pH. Increase in the total colloid concentration suppressed coacervation, resulting in a coacervate of higher water content. A similar coacervation mechanism was seen for two viscosity grades SCMC. However, because of the different degree of substitution of these two grades the SCMC-gelatin coacervates had different SCMC contents.

  3. Exploiting kinetics and thermodynamics to grow phase-pure complex oxides by molecular-beam epitaxy under continuous codeposition

    NASA Astrophysics Data System (ADS)

    Smith, Eva H.; Ihlefeld, Jon F.; Heikes, Colin A.; Paik, Hanjong; Nie, Yuefeng; Adamo, Carolina; Heeg, Tassilo; Liu, Zi-Kui; Schlom, Darrell G.

    2017-07-01

    We report the growth of PbTiO3 thin films by molecular-beam epitaxy utilizing continuous codeposition. In addition to the requirements from thermodynamics, whether the resulting film is single-phase PbTiO3 or not at a particular temperature depends strongly on the film growth rate and the incident fluxes of all species, including titanium. We develop a simple theory for the kinetics of lead oxidation on the growing film surface and find that it qualitatively explains the manner in which the adsorption-controlled growth window of PbTiO3 depends on lead flux, oxidant flux, and titanium flux. We successfully apply the kinetic theory to the dependence of the growth of BiFeO3 on oxidant type and surmise that the theory may be generally applicable to the adsorption-controlled growth of complex oxides by MBE.

  4. Phase-transformation-induced twinning of an iron(III) calix[4]pyrrolidine complex.

    PubMed

    Journot, Guillaume; Neier, Reinhard; Stoeckli-Evans, Helen

    2014-07-01

    The title compound, tetrachlorido-1κCl;2κ(3)Cl-(2,2,7,7,12,12,17,17-octamethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1(3,6).1(8,11).1(13,16)]tetracosane-1κ(4)N,N',N'',N''')-μ2-oxido-diiron(III), [Fe2Cl4O(C28H52N4)], undergoes a slow phase transformation at ca 173 K from monoclinic space group P2(1)/n, denoted form (I), to the maximal non-isomorphic subgroup, triclinic space group P1, denoted form (II), which is accompanied by nonmerohedral twinning [twin fractions of 0.693 (4) and 0.307 (4)]. The transformation was found to be reversible, as on raising the temperature the crystal reverted to monoclinic form (I). In the asymmetric unit of form (I), Z' = 1, while in form (II), Z' = 2, with a very small reduction (ca 1.8%) in the unit-cell volume. The two independent molecules (A and B) in form (II) are related by a pseudo-twofold screw axis along the b axis. The molecular overlay of molecule A on molecule B has an r.m.s. deviation of 0.353 Å, with the largest distance between two equivalent atoms being 1.202 Å. The reaction of calix[4]pyrrolidine, the fully reduced form of meso-octamethylporphyrinogen, with FeCl3 gave a red-brown solid that was recrystallized from ethanol in air, resulting in the formation of the title compound. In both forms, (I) and (II), the Fe(III) atoms are coordinated to the macrocyclic ligand and have distorted octahedral FeN4OCl coordination spheres. These Fe(III) atoms lie out of the mean plane of the four N atoms, displaced towards the O atom of the [OFeCl3] unit by 0.2265 (5) Å in form (I), and by 0.2210 (14) and 0.2089 (14) Å, respectively, in the two independent molecules (A and B) of form (II). The geometry of the [OFeCl3] units are similar, with each Fe(III) atom having a tetrahedral coordination sphere. The NH H atoms are directed below the planes of the macrocycles and are hydrogen bonded to the coordinated Cl(-) ions. There are also intramolecular C-H···Cl hydrogen bonds present in both (I) and (II

  5. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes.

    PubMed

    Caffrey, Martin

    2015-01-01

    The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for large proteins and complexes is outlined. Experimental phasing by heavy-atom derivatization, soaking or co-crystallization is routine and the approaches that have been implemented to date are described. An overview and a breakdown by family and function of the close to 200 published

  6. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    PubMed Central

    Caffrey, Martin

    2015-01-01

    The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for large proteins and complexes is outlined. Experimental phasing by heavy-atom derivatization, soaking or co-crystallization is routine and the approaches that have been implemented to date are described. An overview and a breakdown by family and function of the close to 200 published

  7. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    SciTech Connect

    Caffrey, Martin

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  8. Full-matrix capture with phased shift migration for flaw detection in layered objects with complex geometry.

    PubMed

    Lukomski, Tomasz

    2016-08-01

    This paper introduces a method for an ultrasonic imaging with a phased array based on a wave migration algorithm. The method allows for imaging layered objects with lateral velocity variations such as objects with a complex geometry or layers that are not perpendicular to the array's axis. The full-matrix capture ensures that there is enough information to reconstruct an image even when the wave indication angle is large. The method is implemented in a omega-k domain. The proposed algorithm is first tested in a single simulation of a concave object with side drilled holes under the concave surface. For evaluating the algorithm's performance three experiments are presented: one with a tilted object (surface not perpendicular with respect to the array axis) with side drilled holes and two experiments of an object with concave surface and two artificial defects under it. The results presented in the paper verify that the proposed method reconstructs images from the data gathered with the phased array.

  9. Vibrational Spectroscopy of Anionic Nitrate Complexes of UO₂2+ and Eu³+ Isolated in the Gas Phase

    SciTech Connect

    Groenewold, G. S.; Oomens, Jos; De Jong, Wibe A.; Gresham, Garold L.; McIIwain, Michael E.; Van Stipdonk, Michael J.

    2008-01-01

    Wavelength-selective infrared multiple photon photo-dissociation (IRMPD) was used to generate infrared spectra of anionic nitrate complexes of UO₂²+ and Eu3+ in the mid-infrared region. A pattern of absorptions were observed for both species, including splitting of the antisymmetric O-N-O stretch into high and low frequency components with the magnitude of the splitting consistent with attachment of nitrate to a strong Lewis acid center. The frequencies measured for [UO2(NO3)3]- were within a few cm-1 of those measured in the condensed phase, the best agreement yet achieved for a comparison of IRMPD with condensed phase absorption spectra. In addition, experimentally-determined values were in good general agreement with those predicted by DFT calculations, especially for the antisymmetric UO₂ stretch. The spectrum from the [UO₂ (NO₃)₃]- was compared with that of [Eu(NO3)4]-, which showed that nitrate was bound more strongly to the Eu3+ metal center, consistent with its higher charge. The spectrum of a unique uranyl-oxo species having an elemental composition [UO9N₃]- was also acquired, for which calculations suggested a [UO₂(NO₃)₂(O)]- structure.

  10. Vibrational spectroscopy of anionic nitrate complexes of UO22+ and Eu3+ isolated in the gas phase

    SciTech Connect

    G. S. Groenewold; G. L. Gresham; M. J. Van Stipdonk; J. Oomens; W. A. de Jong; M. E. McIlwain

    2008-01-01

    Wavelength-selective infrared multiple photon dissociation was used to generate infrared spectra of anionic nitrate complexes of UO22+ and Eu3+ in the mid-infrared region. A pattern of absorptions were observed for both species, including splitting of the antisymmetric O-N-O stretch into high and low frequency components with the magnitude of the splitting consistent with attachment of nitrate to a strong Lewis acid center. The frequencies measured for [UO2(NO3)3]- were within a few cm-1 of those measured in the condensed phase, the best agreement yet achieved for a comparison of IRMPD with condensed phase absorption spectra. In addition, experimentally-determined values were in good general agreement with those predicted by DFT calculations, especially for the antisymmetric UO2 stretch. The spectrum from the [UO2(NO3)3]- was compared with that of [Eu(NO3)4]-, which showed that nitrate was bound more strongly to the Eu3+ metal center, consistent with its higher charge. The spectrum of a unique uranyl-oxo species having an elemental composition [UO9N2]- was also acquired, for which calculations suggested a [UO2(NO3)2(O)]- structure

  11. G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes.

    PubMed Central

    Kudoh, T; Ishidate, T; Moriyama, M; Toyoshima, K; Akiyama, T

    1995-01-01

    WT1, the Wilms tumor-suppressor gene, maps to the human chromosomal region 11p13 and encodes a transcriptional repressor, WT1, implicated in controlling normal urogenital development. Microinjection of the WT1 cDNA into quiescent cells or cells in early to mid G1 phase blocked serum-induced cell cycle progression into S phase. The activity of WT1 varied significantly depending on the presence or absence of an alternatively spliced region located upstream of the zinc finger domain. The inhibitory activity of WT1 was abrogated by the overexpression of cyclin E/CDK2 as well as cyclin D1/CDK4. Furthermore, both CDK4- and CDK2-associated kinase activities were downregulated in cells overexpressing WT1, whereas the levels of CDK4, CDK2, and cyclin D1 expression were unchanged. These findings suggest that inhibition of the activity of cyclin/CDK complexes may be involved in mediating the WT1-induced cell cycle block. Images Fig. 1 Fig. 2 PMID:7753836

  12. Latex-protein complexes from an acute phase recombinant antigen of Toxoplasma gondii for the diagnosis of recently acquired toxoplasmosis.

    PubMed

    Peretti, Leandro E; Gonzalez, Verónica D G; Marcipar, Iván S; Gugliotta, Luis M

    2014-08-01

    The synthesis and characterization of latex-protein complexes (LPC), from the acute phase recombinant antigen P35 (P35Ag) of Toxoplasma gondii and "core-shell" carboxylated or polystyrene (PS) latexes (of different sizes and charge densities) are considered, with the aim of producing immunoagglutination reagents able to detect recently acquired toxoplasmosis. Physical adsorption (PA) and chemical coupling (CC) of P35Ag onto latex particles at different pH were investigated. Greater amounts of adsorbed protein were obtained on PS latexes than on carboxylated latexes, indicating that hydrophobic forces govern the interactions between the protein and the particle surface. In the CC experiments, the highest amount of bound protein was obtained at pH 6, near the isoelectric point of the protein (IP=6.27). At this pH, it decreased both the repulsion between particle surface and protein, and the repulsion between neighboring molecules. The LPC were characterized and the antigenicity of the P35Ag protein coupled on the particles surface was evaluated by Enzyme-Linked ImmunoSorbent Assay (ELISA). Results from ELISA showed that the P35Ag coupled to the latex particles surface was not affected during the particles sensitization by PA and CC and the produced LPC were able to recognize specific anti-P35Ag antibodies present in the acute phase of the disease.

  13. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    SciTech Connect

    Chien-Chih Liu, James

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li2BeF4 (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.

  14. Auditory streaming by phase relations between components of harmonic complexes: a comparative study of human subjects and bird forebrain neurons.

    PubMed

    Dolležal, Lena-Vanessa; Itatani, Naoya; Günther, Stefanie; Klump, Georg M

    2012-12-01

    Auditory streaming describes a percept in which a sequential series of sounds either is segregated into different streams or is integrated into one stream based on differences in their spectral or temporal characteristics. This phenomenon has been analyzed in human subjects (psychophysics) and European starlings (neurophysiology), presenting harmonic complex (HC) stimuli with different phase relations between their frequency components. Such stimuli allow evaluating streaming by temporal cues, as these stimuli only vary in the temporal waveform but have identical amplitude spectra. The present study applied the commonly used ABA- paradigm (van Noorden, 1975) and matched stimulus sets in psychophysics and neurophysiology to evaluate the effects of fundamental frequency (f₀), frequency range (f(LowCutoff)), tone duration (TD), and tone repetition time (TRT) on streaming by phase relations of the HC stimuli. By comparing the percept of humans with rate or temporal responses of avian forebrain neurons, a neuronal correlate of perceptual streaming of HC stimuli is described. The differences in the pattern of the neurons' spike rate responses provide for a better explanation for the percept observed in humans than the differences in the temporal responses (i.e., the representation of the periodicity in the timing of the action potentials). Especially for HC stimuli with a short 40-ms duration, the differences in the pattern of the neurons' temporal responses failed to represent the patterns of human perception, whereas the neurons' rate responses showed a good match. These results suggest that differential rate responses are a better predictor for auditory streaming by phase relations than temporal responses.

  15. Phosphoprotein Isotope-Coded Solid-Phase Tag Approach for Enrichment and Quantitative Analysis of Phosphopeptides from Complex Mixtures

    SciTech Connect

    Qian, Weijun ); Goshe, Michael B.; Camp, David G. ); Yu, Li-Rong ); Tang, Keqi ); Smith, Richard D. )

    2003-10-15

    Many cellular processes are regulated by reversible protein phosphorylation and the ability to identify and quantify phosphoproteins from proteomes is essential for gaining a better understanding of these dynamic cellular processes. However, a sensitive, efficient and global method capable of addressing the phosphoproteome has yet to be developed. Here we describe an improved stable-isotope labeling method using a Phosphoprotein Isotope-coded Solid-phase Tag (PhIST) for isolating and measuring the relative abundance of phosphorylated peptides from complex peptide mixtures resulting from the enzymatic digestion of extracted proteins. The PhIST approach is an extension of the previously reported Phosphoprotein Isotope-coded Affinity Tag (PhIAT)approach developed by our laboratory1-2, where the O-phosphate moiety on phosphoseryl or phosphothreonyl residues were derivatized by hydroxide ion-medated B-elimination followed by the addition of 1,2-ethanedithiol (EDT). Instead of using the biotin affinity tag, peptides containing the EDT moiety were captured and labeled in one step using isotope-coded solid-phase reagents containing either light (12C6, 14N) or heavy (13C6, 15N) stable isotopes. The captured peptides labeled with the isotope-coded tags were released from the solid-phase support by UV photocleavage and analyzed by capillary LC-MS/MS. The efficiency and sensitivity of the PhIST labeling approach for identification of phosphopeptides from mixtures was demonstrated using casein phosphoproteins. Its utility for proteomic applications is demonstrated by the labeling of soluble proteins from human breast cancer cell line.

  16. Infrared Spectroscopy of Gas-Phase M(+)(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    PubMed

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M(+)(CO2)n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO2 asymmetric stretch around 2350 cm(-1) using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO2, consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M(+)(CO2)2] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  17. Role of ion-neutral complexes during acid-catalyzed dehydration of ethanol in the gas phase

    SciTech Connect

    Bouchoux, G.; Hoppilliard, Y. )

    1990-12-05

    Acid-catalyzed dehydration of ethanol in the gas phase has been studied both theoretically and experimentally. Molecular orbital calculations have been done at the MP3/6-31G*//6-31G* level with correction of the zero-point vibrational energy. Protonated ethanol, 1 is predicted to isomerize easily into the C{sub 2}H{sub 4} {hor ellipsis} H {hor ellipsis} OH{sub 2}{sup +} complex, 2 (activation energy 120 kJ/mol). This result is in agreement with the observation of a near statistical hydrogen exchange preceding the dehydration reaction 1 {yields} C{sub 2}H{sub 4} + H{sub 3}O{sup +}. In the case of the water-solvated ion C{sub 2}H{sub 5}OH{sub 2} {hor ellipsis} OH{sub 2}{sup +}, 5, isomerization into a proton-bound complex C{sub 2}H{sub 4} {hor ellipsis} H{sub 5}O{sub 2}{sup +}, 6, needs a larger amount of energy (ca. 180 kJ/mol). Again the calculations agree with experiments: the important activation energy for the process 5 {yields} 6 prevents hydrogen exchanges and ethene elimination. Extension of these calculations to higher systems is discussed.

  18. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    PubMed Central

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  19. Condensed Phase Membrane Introduction Mass Spectrometry with Direct Electron Ionization: On-line Measurement of PAHs in Complex Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W.; Krogh, Erik T.; Gill, Chris G.

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated `proof of concept' use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%-90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%-104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples.

  20. Effect of Metals in Biomimetic Dimetal Complexes on Affinity and Gas-Phase Protection of Phosphate Esters.

    PubMed

    Svane, Simon; Jørgensen, Thomas J D; McKenzie, Christine J; Kjeldsen, Frank

    2015-07-21

    Although the biomimetic dimetal complex [LGa2(OH)2(H2O)2](3+) [L = 2,6-bis((N,N'-bis(2-picolyl)amino)methyl)-4-tertbutylphenolate] provides efficient protection against phosphate loss in phosphopeptides upon collision-induced dissociation tandem mass spectrometry (CID MS/MS), the underlying mechanism remains unknown. Here, we explored the mechanism in detail and investigated the selective binding to phosphate groups in solution. Dimetal complexes containing combinations of Ga(3+), In(3+), Fe(3+), Co(3+), Zn(2+), Cu(2+), and V(2+) were reacted with HPO4(2-), phosphoserine, and a phosphopeptide (FQpSEEQQQTEDELQDK, abbreviated "βcas") and studied with isothermal titration calorimetry (ITC), CID MS/MS, and density functional theory (DFT). Ka for HPO4(2-) binding scaled with the metal charge and was 35-fold larger for [LGa2(OH)2(H2O)2](3+) (3.08 ± 0.31 × 10(6) M(-1)) than for [LZn2(HCOO)2](+). CID MS/MS of [LGa2(βcas)](n+) revealed protection against phosphate detachment (<3% of the total ion intensity). Phosphate detachment from βcas was 22-40% and increased to 42-71% when bound to dimetal complexes of lower charge than {LGa2}(5+). CID data suggests that facile metal-phosphate dissociation is associated with proton transfer from the intermediate oxazoline ring formed in the phosphopeptide to the metal-phosphate complex. The observed phosphate stabilization was attributed to a significant reduction in the gas-phase basicity (GB) of the phosphate group when bound to {LGa2}(5+)/{LIn2}(5+) complex cores. Absence of proton transfer results in formation of an ion-zwitterion intermediate with a greater dissociation threshold. This hypothesis is supported by DFT calculations for [LGa2(PO4)](2+), [LGaZn(PO4)](+), [LZn2(PO4)], and 2,4-dimethyl-3-oxazoline showing that [LGa2(PO4)](2+) is the only compound with a substantial lower GB (321 kJ/mol less) than 2,4-dimethyl-3-oxazoline.

  1. Infrared Multiple Photon Dissociation Spectroscopy of a Gas-Phase Oxo-Molybdenum Complex with 1,2-Dithiolene Ligands

    PubMed Central

    2015-01-01

    Electrospray ionization (ESI) in the negative ion mode was used to create anionic, gas-phase oxo-molybdenum complexes with dithiolene ligands. By varying ESI and ion transfer conditions, both doubly and singly charged forms of the complex, with identical formulas, could be observed. Collision-induced dissociation (CID) of the dianion generated exclusively the monoanion, while fragmentation of the monoanion involved decomposition of the dithiolene ligands. The intrinsic structure of the monoanion and the dianion were determined by using wavelength-selective infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory calculations. The IRMPD spectrum for the dianion exhibits absorptions that can be assigned to (ligand) C=C, C–S, C—C≡N, and Mo=O stretches. Comparison of the IRMPD spectrum to spectra predicted for various possible conformations allows assignment of a pseudo square pyramidal structure with C2v symmetry, equatorial coordination of MoO2+ by the S atoms of the dithiolene ligands, and a singlet spin state. A single absorption was observed for the oxidized complex. When the same scaling factor employed for the dianion is used for the oxidized version, theoretical spectra suggest that the absorption is the Mo=O stretch for a distorted square pyramidal structure and doublet spin state. A predicted change in conformation upon oxidation of the dianion is consistent with a proposed bonding scheme for the bent-metallocene dithiolene compounds [Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc.1976, 98, 1729−1742], where a large folding of the dithiolene moiety along the S···S vector is dependent on the occupancy of the in-plane metal d-orbital. PMID:24988369

  2. Analysis of the phase solubility diagram of a phenacetin/competitor/beta-cyclodextrin ternary system, involving competitive inclusion complexation.

    PubMed

    Ono, N; Hirayama, F; Arima, H; Uekama, K

    2001-01-01

    The competitive inclusion complexations in the ternary phenacetin/competitors/beta-cyclodextrin (beta-CyD) systems were investigated by the solubility method, where m-bromobenzoic acid (m-BBA) and o-toluic acid (o-TA) were used as competitors. The solubility changes of the drug and competitors as a function of beta-CyD concentration in the ternary systems were formulated using their stability constants and intrinsic solubilities. The decrease in solubility of phenacetin by the addition of competitors could be quantitatively simulated by the formulation, when both drug and competitor give A(L) type solubility diagrams. On the other hand, when one of the guests gives a B(S) type solubility diagram, its solubility change was clearly reflected in that of the another guest, i.e., phenacetin gave an A(L) type solubility diagram in the binary phenacetin/beta-CyD system and o-TA gave a B(S) type diagram in the binary o-TA/beta-CyD system, but in the ternary phenacetin/o-TA/beta-CyD system, a new plateau region appeared in the original A(L) type diagram of phenacetin. This was explained by the solubilization theory of Higuchi and Connors. The solubility analysis of the ternary drug/competitor/CyD systems may be particularly useful for determination of the stability constant of a drug whose physicochemical and spectroscopic analyses are difficult, because they can be calculated by monitoring the solubility change of a competitor, without monitoring that of a drug. Furthermore, the present results suggest that attention should be paid to the type of the phase solubility diagram, as well as the magnitude of the stability constant and the solubility of the complex, for a rational formulation design of CyD complexes.

  3. Development of a full automation solid phase microextraction method for investigating the partition coefficient of organic pollutant in complex sample.

    PubMed

    Jiang, Ruifen; Lin, Wei; Wen, Sijia; Zhu, Fang; Luan, Tiangang; Ouyang, Gangfeng

    2015-08-07

    A fully automated solid phase microextraction (SPME) depletion method was developed to study the partition coefficient of organic compound between complex matrix and water sample. The SPME depletion process was conducted by pre-loading the fiber with a specific amount of organic compounds from a proposed standard gas generation vial, and then desorbing the fiber into the targeted samples. Based on the proposed method, the partition coefficients (Kmatrix) of 4 polyaromatic hydrocarbons (PAHs) between humic acid (HA)/hydroxypropyl-β-cyclodextrin (β-HPCD) and aqueous sample were determined. The results showed that the logKmatrix of 4 PAHs with HA and β-HPCD ranged from 3.19 to 4.08, and 2.45 to 3.15, respectively. In addition, the logKmatrix values decreased about 0.12-0.27 log units for different PAHs for every 10°C increase in temperature. The effect of temperature on the partition coefficient followed van't Hoff plot, and the partition coefficient at any temperature can be predicted based on the plot. Furthermore, the proposed method was applied for the real biological fluid analysis. The partition coefficients of 6 PAHs between the complex matrices in the fetal bovine serum and water were determined, and compared to ones obtained from SPME extraction method. The result demonstrated that the proposed method can be applied to determine the sorption coefficients of hydrophobic compounds between complex matrix and water in a variety of samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High temperature-induced phase transitions in Sr{sub 2}GdRuO{sub 6} complex perovskite

    SciTech Connect

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Crystal structure, thermal expansion and phase transitions at high-temperature of Sr{sub 2}GdRuO{sub 6} perovskite has been investigated. Black-Right-Pointing-Pointer X-ray diffraction pattern at 298 K of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with P2{sub 1}/n space group. Black-Right-Pointing-Pointer Evolution of X-ray diffraction patterns at high-temperature shows that the Sr{sub 2}GdRuO{sub 6} perovskite suffers two-phase transitions. Black-Right-Pointing-Pointer At 573 K the X-ray diffraction pattern of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with I2/m space group. Black-Right-Pointing-Pointer At 1273 K the Sr{sub 2}GdRuO{sub 6} perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K {<=} T {<=} 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2{sub 1}/n (no. 14) space group and 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Angstrom-Sign , b =5.8234(1) Angstrom-Sign , c =8.2193(9) Angstrom-Sign , V = 278.11(2) Angstrom-Sign {sup 3} and angle {beta} = 90.310(5) Degree-Sign . The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Angstrom-Sign , b = 5.8326(3) Angstrom-Sign , c = 8.2449(2) Angstrom-Sign , V = 280.31(3) Angstrom-Sign {sup 3} and angle {beta} = 90.251(3) Degree-Sign . Close

  5. ``Additive'' cooperativity of hydrogen bonds in complexes of catechol with proton acceptors in the gas phase: FTIR spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Varfolomeev, Mikhail A.; Klimovitskii, Alexander E.; Abaidullina, Dilyara I.; Madzhidov, Timur I.; Solomonov, Boris N.

    2012-06-01

    Experimental study of hydrogen bond cooperativity in hetero-complexes in the gas phase was carried out by IR-spectroscopy method. Stretching vibration frequencies of Osbnd H groups in phenol and catechol molecules as well as of their complexes with nitriles and ethers were determined in the gas phase using a specially designed cell. Osbnd H groups experimental frequency shifts in the complexes of catechol induced by the formation of intermolecular hydrogen bonds are significantly higher than in the complexes of phenol due to the hydrogen bond cooperativity. It was shown that the cooperativity factors of hydrogen bonds in the complexes of catechol with nitriles and ethers in the gas phase are approximately the same. Quantum chemical calculations of the studied systems have been performed using density functional theory (DFT) methods. It was shown, that theoretically obtained cooperativity factors of hydrogen bonds in the complexes of catechol with proton acceptors are in good agreement with experimental values. Cooperative effects lead to a strengthening of intermolecular hydrogen bonds in the complexes of catechol on about 30%, despite the significant difference in the proton acceptor ability of the bases. The analysis within quantum theory of atoms in molecules was carried out for the explanation of this fact.

  6. "Additive" cooperativity of hydrogen bonds in complexes of catechol with proton acceptors in the gas phase: FTIR spectroscopy and quantum chemical calculations.

    PubMed

    Varfolomeev, Mikhail A; Klimovitskii, Alexander E; Abaidullina, Dilyara I; Madzhidov, Timur I; Solomonov, Boris N

    2012-06-01

    Experimental study of hydrogen bond cooperativity in hetero-complexes in the gas phase was carried out by IR-spectroscopy method. Stretching vibration frequencies of O-H groups in phenol and catechol molecules as well as of their complexes with nitriles and ethers were determined in the gas phase using a specially designed cell. O-H groups experimental frequency shifts in the complexes of catechol induced by the formation of intermolecular hydrogen bonds are significantly higher than in the complexes of phenol due to the hydrogen bond cooperativity. It was shown that the cooperativity factors of hydrogen bonds in the complexes of catechol with nitriles and ethers in the gas phase are approximately the same. Quantum chemical calculations of the studied systems have been performed using density functional theory (DFT) methods. It was shown, that theoretically obtained cooperativity factors of hydrogen bonds in the complexes of catechol with proton acceptors are in good agreement with experimental values. Cooperative effects lead to a strengthening of intermolecular hydrogen bonds in the complexes of catechol on about 30%, despite the significant difference in the proton acceptor ability of the bases. The analysis within quantum theory of atoms in molecules was carried out for the explanation of this fact.

  7. Solid-Phase Synthesis as a Platform for the Discovery of New Ruthenium Complexes for Efficient Release of Photocaged Ligands with Visible Light

    PubMed Central

    Sharma, Rajgopal; Knoll, Jessica D.; Ancona, Nicholas; Martin, Phillip D.; Turro, Claudia; Kodanko, Jeremy J.

    2015-01-01

    Ruthenium-based photocaging groups have important applications as biological tools and show great potential as therapeutics. A method was developed to rapidly synthesize, screen and identify ruthenium-based caging groups that release nitriles upon irradiation with visible light. A diverse library of tetra- and pentadentate ligands was synthesized on polystyrene resin. Ruthenium complexes of the general formula [Ru(L)(MeCN)n]m+ (n = 1–3, m = 1–2) were generated from these ligands on solid phase, then cleaved from resin for photochemical analysis. Data indicate a wide range of spectral tuning and reactivity with visible light. Three complexes that showed strong absorbance in the visible range were synthesized by solution phase for comparison. Photochemical behavior of solution- and solid-phase complexes was in good agreement, confirming that the library approach is useful in identifying candidates with desired photoreactivity in short order, avoiding time consuming chromatography and compound purification. PMID:25611351

  8. Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized beta- and gamma-cyclodextrins by reversed phase liquid chromatography.

    PubMed

    Claude, B; Morin, Ph; Lafosse, M; Andre, P

    2004-09-17

    A reversed phase HPLC method has been investigated in order to resolve three main pentacyclic triterpene acids (oleanolic-, betulinic- and ursolic acid) found in a lot of plants. Some of them (oleanolic and ursolic acids) are position isomers and their resolution is highly improved by the addition of derivatized cyclodextrins in mobile phase. The formation of 1:1 inclusion complexes was assumed. Apparent formation constants of triterpene acids with DM-beta-CD and HP-gamma-CD were determined by HPLC method. Experimental results confirmed the complexation model and explained the modification of elution order according to the type of cyclodextrin added to the mobile phase. The influence of mobile phase organic modifier on apparent formation constants was also investigated. Results proved the competition between cyclodextrins hydrophobic cavity and organic solvent towards triterpene acids affinity.

  9. Exchange coupling transformations in Cu (II) heterospin complexes of “breathing crystals” under structural phase transitions

    SciTech Connect

    Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N.

    2015-08-15

    Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal” family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.

  10. Phase controlled colour tuning of samarium and europium complexes and excellent photostability of their PVA encapsulated materials. Structural elucidation, photophysical parameters and the energy transfer mechanism in the Eu(3+) complex by Sparkle/PM3 calculations.

    PubMed

    Dar, Wakeel Ahmed; Iftikhar, K

    2016-06-07

    Luminescent [Sm(acac)3(pyz)2] (1) and [Eu(acac)3(pyz)2] (2) complexes (acac is the anion of acetylacetone and pyz is pyrazine) have been synthesized and thoroughly characterized by microanalyses, TGA, DTA, IR, ESI-MS(+) and NMR spectroscopy. The photophysical properties of these complexes have been investigated. The Sparkle/PM3 model was utilized for predicting the ground-state geometry of (2). The Judd-Ofelt intensity parameters, radiative parameters, intramolecular energy transfer rates and quantum efficiency are calculated and discussed. The intramolecular energy transfer rates predict that the major energy transfer (96%) is from the ligand triplet state to the levels (5)D1 (74.53%) and (5)D0 (21.87%) of the Eu(3+) ion, in the complex. Complexes (1) and (2) were analysed for colour tuning properties and these show varying colours upon changing phases. This property would possibly allow the use of these complexes as 'colour indicators'. The photoluminescence and photostability of the thin hybrid films of both complexes (1) and (2) in polyvinyl alcohol (PVA) are investigated and discussed. The hybrid films of (1) and (2) are quite robust due to their higher photostability. An important feature of complex (2) is that the excitation window extends close to the visible range (393 nm). The lasing property of the Eu(3+) complex in various phases is also presented.

  11. Synthesis, characterization, and gas-phase fragmentation of rhenium-carbonyl complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands.

    PubMed

    Beltrán, Tomás F; Zaragoza, Guillermo; Delaude, Lionel

    2016-11-15

    Five complexes with the generic formula [ReBr(CO)3(κ(2)-S,S'-S2C·NHC)] were obtained by reacting [ReBr(CO)5] with a set of representative imidazol(in)ium-2-dithiocarboxylate zwitterions. These ligands are the adducts of N-heterocyclic carbenes (NHCs) and carbon disulfide. The monometallic Re(i) compounds were further coupled with Na[Re(CO)5] to afford bimetallic Re(0) species. Depending on the experimental conditions, either octacarbonyl dimers [Re2(CO)8(μ2-κ(1)-S,κ(1)-S'-S2C·NHC)] or hexacarbonyl clusters [Re2(CO)6(κ(2)-S,S'-κ(3)-S,C,S'-S2C·NHC)] were isolated. All the products were fully characterized using various analytical techniques. Single crystal XRD analysis helped establish with certainty the various binding modes exhibited by the NHC·CS2 ligands. With bite angles ranging from ca. 104 to 130°, these zwitterions displayed a remarkable flexibility, which also permitted significant twists of the thiometallated rings to preserve a staggered arrangement of the carbonyl groups in the bimetallic systems. Monitoring the chemical shift of the CS2(-) moiety by (13)C NMR spectroscopy was most useful to detect its change of hapticity upon decarbonylation of the octacarbonyl compounds into hexacarbonyl derivatives. IR spectroscopy was another very convenient tool to identify the type of complex formed in a reaction, based on the pattern of its carbonyl vibration bands. Advanced mass spectrometry techniques showed that all the compounds underwent partial or total decarbonylation in the gas phase with no concomitant fragmentation of the bimetallic assemblies into monometallic ions.

  12. A combined Phase I and II open-label study on the immunomodulatory effects of seaweed extract nutrient complex

    PubMed Central

    Myers, Stephen P; O’Connor, Joan; Fitton, J Helen; Brooks, Lyndon; Rolfe, Margaret; Connellan, Paul; Wohlmuth, Hans; Cheras, Phil A; Morris, Carol

    2011-01-01

    Background: Isolated fucoidans from brown marine algae have been shown to have a range of immune-modulating effects. This exploratory study aimed to determine whether a seaweed nutrient complex containing a blend of extracts from three different species of brown algae plus nutrients is safe to administer and has biological potential as an immune modulator. The study was undertaken as an open-label combined Phase I and II study. Methods: Participants (n = 10) were randomized to receive the study medication at either a 100 mg (n = 5) or 1000 mg (n = 5) dose over 4 weeks. The primary outcome measurement was in vivo changes in lymphocyte subsets. The secondary outcome measures were ex vivo changes in T-lymphocyte (CD4 and CD8) activation, phagocytosis of granulocytes and monocytes, T helper 1/T helper 2 cytokines, and serum oxygen radical absorbance capacity. Results: The preparation was found to be safe over the 4 weeks at both doses tested. There were no clinically relevant changes to blood measurements of hemopoietic, hepatic, or renal function. Immunomodulatory measurements showed no dose response between the two doses. The combined results from the two doses demonstrated a significant increase in cytotoxic T cell numbers and phagocytic capacity in monocytes, and a significant decrease in levels of the inflammatory cytokine interleukin 6. A separate analysis of the 100 mg dose (n = 5) alone showed a significant linear component over time (P < 0.05) for phagocytosis by both granulocytes and monocytes. Conclusion: The seaweed nutrient complex was safe to use when taken orally over 4 weeks. The preparation was demonstrated to have potential as an immune modulator, and this bioactivity deserves further exploration. PMID:21383915

  13. Heavy-atom derivatives in lipidic cubic phases: results on hen egg-white lysozyme tetragonal derivative crystals with Gd-HPDO3A complex.

    PubMed

    Girard, Eric; Pebay-Peyroula, Eva; Vicat, Jean; Kahn, Richard

    2004-08-01

    Gd-HPDO3A, a neutral gadolinium complex, is a good candidate for obtaining heavy-atom-derivative crystals by the lipidic cubic phase crystallization method known to be effective for membrane proteins. Gadolinium-derivative crystals of hen egg-white lysozyme were obtained by co-crystallizing the protein with 100 mM Gd-HPDO3A in a monoolein cubic phase. Diffraction data were collected to a resolution of 1.7 A using Cu Kalpha radiation from a rotating-anode generator. Two binding sites of the gadolinium complex were located from the strong gadolinium anomalous signal. The Gd-atom positions and their refined occupancies were found to be identical to those found in derivative crystals of hen egg-white lysozyme obtained by co-crystallizing the protein with 100 mM Gd-HPDO3A using the hanging-drop technique. Moreover, the refined structures are isomorphous. The lipidic cubic phase is not disturbed by the high concentration of Gd-HPDO3A. This experiment demonstrates that a gadolinium complex, Gd-HPDO3A, can be used to obtain derivative crystals by the lipidic cubic phase crystallization method. Further studies with membrane proteins that are known to crystallize in lipidic cubic phases will be undertaken with Gd-HPDO3A and other Gd complexes to test whether derivative crystals with high Gd-site occupancies can be obtained.

  14. Tetradihydrobenzoquinonate and tetrachloranilate Zr(IV) complexes: single-crystal-to-single-crystal phase transition and open-framework behavior for K4Zr(DBQ)4.

    PubMed

    Imaz, Inhar; Mouchaham, Georges; Roques, Nans; Brandès, Stéphane; Sutter, Jean-Pascal

    2013-10-07

    The molecular complexes K4[Zr(DBQ)4] and K4[Zr(CA)4], where DBQ(2-) and CA(2-) stand respectively for deprotonated dihydroxybenzoquinone and chloranilic acid, are reported. The anionic metal complexes consist of Zr(IV) surrounded by four O,O-chelating ligands. Besides the preparation and crystal structures for the two complexes, we show that in the solid state the DBQ complex forms a 3-D open framework (with 22% accessible volume) that undergoes a crystal-to-crystal phase transition to a compact structure upon guest molecule release. This process is reversible. In the presence of H2O, CO2, and other small molecules, the framework opens and accommodates guest molecules. CO2 adsorption isotherms show that the framework breathing occurs only when a slight gas pressure is applied. Crystal structures for both the hydrated and guest free phases of K4[Zr(DBQ)4] have been investigated.

  15. The Role of Accessory Phases in the Sm-Nd Isotope Systematics of the Acasta Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Fisher, C. M.; Vervoort, J. D.; Bowring, S. A.

    2015-12-01

    The Acasta Gneiss Complex (AGC) of the Slave Craton in the Northwest Territories, Canada, contains some of Earth's oldest continental crust. It is characterized by a range of compositionally diverse gneisses with crystallization ages of 3.3 to > 4.0 Ga1-5. The AGC has undergone a multistage history of metamorphism and deformation. Given these post-crystallization processes, the extent of Nd isotope heterogeneity suggested by published4-7 whole rock Sm-Nd analyses of these rocks has been called into question. Criticisms include the likelihood of mixed lithologies at the hand-sample scale and the potential for open-system behavior of the Sm-Nd isotopic system in these rocks. We obtained whole rock compositional, Sm-Nd and Lu-Hf isotope data paired with Hf in zircon and Nd in titanite and apatite data to further evaluate the isotope record, and use U-Pb and Lu-Hf of zircon as a basis for identifying mixed or complex samples. Preferential preservation of Lu-Hf over Sm-Nd isotope systematics in multiply deformed, complex rocks may be controlled by the minerals that dominate the Hf and Nd budgets, with the majority of the Hf effectively sheltered in zircon and the Nd largely hosted in accessory phases such as apatite and titanite. This composite dataset enables us to evaluate the possibility that Hf and Nd isotopic systematics have been decoupled in these samples that have such critical bearing on our understanding of early crust-forming processes. [1]Bowring and Williams (1999). CoMP, 134(1), 3-16. [2]Iizuka, T. et al. (2006) Geology, 34(4), 245-248. [3]Iizuka et al (2007). Precambrian Res, 153(3), 179-208. [4]Bowring et al. 1989. Nature, 340: 222-225. [5]Mojzsis et al. (2014). GCA, 133, 68-96. [6]Bowring and Housh (1995) Science 269, 1535-1540. [7]Moorbath et al (1997) Chem. Geol. 135, 213-231.

  16. Complexation of κ-carrageenan with gelatin in the aqueous phase analysed by (1)H NMR kinetics and relaxation.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Vovk, Mikhail A; Tolstoy, Peter M

    2017-08-01

    The (1)H NMR spectroscopy is used to study the kinetics of gelation in the aqueous mixtures of κ-carrageenan with gelatin. The time dependence of NMR signals intensities shows that the kinetics of gel formation consists of classical 'fast' (rate constant k≈6h(-1)) and 'slow' (k≈1h(-1)) periods, corresponding to a coil→helix transition and subsequent aggregation of helices. Upon increase of the κ-carrageenan/gelatin (w/w) ratio Z the rate of the fast process slows down by a factor of 1.6-2.4. Further analysis was done by studying the dependence of spin-spin relaxation times of protons of gelatin on Z in the aqueous phase. A qualitative scheme describing hydrogel formation in the complex solution is given. It is hypothesized that at higher concentration of PECs the hydrogel structure network is stabilized by three types of nodes: triple helices of gelatin and intra-/inter-molecular double helices of κ-carrageenan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electric field-assisted solid phase extraction and cleanup of ionic compounds in complex food matrices: Fluoroquinolones in eggs.

    PubMed

    Ribeiro, Cyntia Cabral; Orlando, Ricardo Mathias; Rohwedder, Jarbas José Rodrigues; Reyes, Felix Guillermo Reyes; Rath, Susanne

    2016-05-15

    The use of electric fields as additional driving forces in sample preparation techniques is an innovative approach that is environmentally friendly, straightforward, and able to overcome several limitations of conventional sample preparation procedures. In this work, the advantages of electric field-assisted solid phase extraction (E-SPE) using syringe-type cartridges were demonstrated for the extraction of four fluoroquinolones (FQs) in their anionic forms. The FQs were extracted from eggs and subsequently determined by UHPLC-MS/MS. The use of electric fields during the washing and final elution steps resulted in a significant improvement of the extraction efficiencies for almost all FQs when compared to conventional SPE. Intra- and inter-day assays showed coefficients of variation below 10%. The better cleanup also resulted in the appearance of less precipitated matter in the final eluate, as well as reduced matrix effects. The results showed that the electrophoretic forces derived from electric fields are a promising way of significantly increasing the extraction efficiency of ionic analytes, while minimizing matrix effects associated with complex samples.

  18. Polyethylene glycol-modified avidin: a novel agent for the selective extraction of biotinylated immune-complex in an aqueous two-phase system.

    PubMed

    Nishimura, H; Munakata, N; Hayashi, K; Hayakawa, M; Iwamoto, H; Terayama, S; Takahata, Y; Kodera, Y; Tsurui, H; Shirai, T

    1995-01-01

    Chicken avidin was chemically modified with 2,4-bis[O-methoxypoly(ethylene glycol)]-6-chloro-s-triazine (activated PEG2) to form PEG-avidin. The PEG-avidin, in which 78% of the amino groups were modified, retained 49% of the active biotin-binding sites. The modified avidin was partitioned preferentially into the PEG-phase in an aqueous two-phase system (PEG/dextran). Using PEG-avidin, the immune-complex formed between biotinylated anti-mouse IgG and its antigen IgG (mouse) molecules, was successfully transferred into the PEG-phase in an aqueous two-phase system. This finding leads to the effective isolation of a specific antigen among various kinds of antigens by partitioning with a two-phase system using PEG-avidin.

  19. Self diffusion and spectral modifications of a membrane protein, the Rubrivivax gelatinosus LH2 complex, incorporated into a monoolein cubic phase.

    PubMed Central

    Tsapis, N; Reiss-Husson, F; Ober, R; Genest, M; Hodges, R S; Urbach, W

    2001-01-01

    The light-harvesting complex LH2 from a purple bacterium, Rubrivivax gelatinosus, has been incorporated into the Q230 cubic phase of monoolein. We measured the self-diffusion of LH2 in detergent solution and in the cubic phase by fluorescence recovery after photobleaching. We investigated also the absorption and fluorescence properties of this oligomeric membrane protein in the cubic phase, in comparison with its beta-octyl glucoside solution. In these experiments, native LH2 and LH2 labeled by a fluorescent marker were used. The results indicate that the inclusion of LH2 into the cubic phase induced modifications in the carotenoid and B800 binding sites. Despite these significant perturbations, the protein seems to keep an oligomeric structure. The relevance of these observations for the possible crystallization of this protein in the cubic phase is discussed. PMID:11509374

  20. Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry.

    PubMed

    Bouchet, Sylvain; Björn, Erik

    2014-04-25

    The behavior of monomethylmercury (MMHg) is markedly influenced by its distribution among complexes with low molecular mass (LMM) thiols but analytical methodologies dedicated to measure such complexes are very scarce up to date. In this work, we selected 15 LMM thiols often encountered in living organisms and/or in the environment and evaluated the separation of the 15 corresponding MMHg-thiol complexes by various high performance liquid chromatography (HPLC) columns. Two C18 (Phenomenex Synergi Hydro-RP and LunaC18(2)), two phenyl (Inertsil Ph 3 and 5μm) and one mixed-mode (Restek Ultra IBD) stationary phases were tested for their retention and resolution capacities of the various complexes. The objective was to find simple separation conditions with low organic contents in the mobile phase to provide optimal conditions for detection by inductively coupled plasma mass spectrometry (ICPMS). The 15 complexes were synthesized in solution and characterized by electrospray ionization-mass spectrometry (ESI-MS). The C18 columns tested were either not resolutive enough or too retentive. The 3μm phenyl stationary phase was able to resolve 10 out of the 15 complexes in less than 25min, under isocratic conditions. The mixed-mode column was especially effective at separating the most hydrophilic complexes (6 complexes out of the 15), corresponding to the main LMM thiols found in living organisms. The detection limits (DLs) for these two columns were in the low nanomolar range and overall slightly better for the phenyl column. The possibilities offered by such methodology were exemplified by monitoring the time-course concentrations of four MMHg-thiol complexes within a phytoplankton incubation containing MMHg in the presence of an excess of four added thiols. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Computational Thermodynamic Study to Predict Complex Phase Equilibria in the Nickel-Base Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.; Ritzert, Frank J.

    2001-01-01

    A previous study by Ritzert et al. on the formation and prediction of topologically closed packed (TCP) phases in the nickel-base superalloy Rene' N6 is re-examined with computational thermodynamics. The experimental data on phase distribution in forty-four alloys with a composition within the patent limits of the nickel-base superalloy Rene' N6 provide a good basis for comparison to and validation of a commercial nickel superalloy database used with ThermoCalc. Volume fraction of the phases and partitioning of the elements are determined for the forty-four alloys in this dataset. The baseline heat treatment of 400 h at 1366 K was used. This composition set is particularly interesting since small composition differences lead to dramatic changes in phase composition. In general the calculated values follow the experimental trends. However, the calculations indicated no TCP phase formation when the experimental measurements gave a volume percent of TCP phase less than 2 percent. When TCP phases were predicted, the calculations under-predict the volume percent of TCP phases by a factor of 2 to 8. The calculated compositions of the gamma and gamma' phases show fair agreement with the measurements. However, the calculated compositions of the P Phase do not agree with those measured. This may be due to inaccuracies in the model parameters for P phase and/or issues with the microprobe analyses of these phases. In addition, phase fraction diagrams and sigma and P phase solvus temperatures are calculated for each of the alloys. These calculations indicate that P phase is the primary TCP phase formed for the alloys considered here at 1366 K. Finally, a series of isopleths are calculated for each of the seven alloying elements. These show the effect of each alloying element on creating TCP phases.

  2. Induced Smectic-G Phase through Intermolecular Hydrogen Bonding Part VIII: Phase and Crystallization Behaviours of 2-(p-n-heptyloxybenzyIidene imino)-5-chIoro-pyridine: p-n-alkoxybenzoic acid (HICP:n ABA) Complexes

    NASA Astrophysics Data System (ADS)

    Srinivasulu, M.; Satyanarayana, P. V. V.; Kumar, P. A.; Pisipatia, V. G. K. M.

    2001-10-01

    New intermolecular H-bonded liquid crystalline complexes, viz., 2-(p-n-heptyloxybenzylidene imi-no)-5-chloro-pyridine:p-/z-alkoxybenzoic acid; (HICP:nABA) (where n denotes the alkoxy carbon num­ bers 3 to 10 and 12) exhibiting smectic-F (n = 12) and smectic-G phases have been synthesized and char­ acterized by Thermal Microscopy and Differential Scanning Calorimetry (DSC). Detailed IR (solid and solution states) analysis confirms the existence of intermolecular H-bonding between the pyridyl nitro­ gen and the COOH group of the p-n-alkoxybenzoic acid moiety. The phase behaviour of the series is discussed in the light of reported data on free p-n-alkoxybenzoic acids. The crystallization kinetics of a representative complex, using the DSC technique, is discussed. The mechanism of the crystal growth of the new crystalline smectic-G phase is computed with the Avrami equation.

  3. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  4. Nonlinear complex diffusion approaches based on a novel noise estimation for noise reduction in phase-resolved optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xia, Shaoyan; Huang, Yong; Tan, Xiaodi

    2016-03-01

    Partial differential equation (PDE)-based nonlinear diffusion processes have been widely used for image denoising. In the traditional nonlinear anisotropic diffusion denoising techniques, behavior of the diffusion depends highly on the gradient of image. However, it is difficult to get a good effect if we use these methods to reduce noise in optical coherence tomography images. Because background has the gradient that is very similar to regions of interest, so background noise will be mistaken for edge information and cannot be reduced. Therefore, nonlinear complex diffusion approaches using texture feature(NCDTF) for noise reduction in phase-resolved optical coherence tomography is proposed here, which uses texture feature in OCT images and structural OCT images to remove noise in phase-resolved OCT. Taking into account the fact that texture between background and signal region is different, which can be linked with diffusion coefficient of nonlinear complex diffusion model, we use NCDTF method to reduce noises of structure and phase images first. Then, we utilize OCT structure images to filter phase image in OCT. Finally, to validate our method, parameters such as image SNR, contrast-to-noise ratio (CNR), equivalent number of looks (ENL), and edge preservation were compared between our approach and median filter, Gaussian filter, wavelet filter, nonlinear complex diffusion filter (NCDF). Preliminary results demonstrate that NCDTF method is more effective than others in keeping edges and denoising for phase-resolved OCT.

  5. A combined phase I and II open label study on the effects of a seaweed extract nutrient complex on osteoarthritis

    PubMed Central

    Myers, Stephen P; O’Connor, Joan; Fitton, J Helen; Brooks, Lyndon; Rolfe, Margaret; Connellan, Paul; Wohlmuth, Hans; Cheras, Phil A; Morris, Carol

    2010-01-01

    an increase in serum albumin which was not clinically significant. Conclusion: The seaweed extract nutrient complex when taken orally over twelve weeks decreased the symptoms of osteoarthritis in a dose-dependent manner. It was demonstrated to be safe to use over the study period at the doses tested. The efficacy of the preparation now needs to be demonstrated in a phase III randomized controlled trial (RCT). Australian and New Zealand Clinical Trials Register: ACTRN12607000229471. PMID:20376172

  6. Lipophilicity Assessment of Ruthenium(II)-Arene Complexes by the Means of Reversed-Phase Thin-Layer Chromatography and DFT Calculations

    PubMed Central

    Shweshein, Khalil Salem A. M.; Andrić, Filip; Radoičić, Aleksandra; Gruden-Pavlović, Maja; Tešić, Živoslav; Milojković-Opsenica, Dušanka

    2014-01-01

    The lipophilicity of ten ruthenium(II)-arene complexes was assessed by reversed-phase thin-layer chromatography (RP-TLC) on octadecyl silica stationary phase. The binary solvent systems composed of water and acetonitrile were used as mobile phase in order to determine chromatographic descriptors for lipophilicity estimation. Octanol-water partition coefficient, logKOW, of tested complexes was experimentally determined using twenty-eight standard solutes which were analyzed under the same chromatographic conditions as target substances. In addition, ab initio density functional theory (DFT) computational approach was employed to calculate logKOW values from the differences in Gibbs' free solvation energies of the solute transfer from n-octanol to water. A good overall agreement between DFT calculated and experimentally determined logKOW values was established (R2 = 0.8024–0.9658). PMID:24587761

  7. Spin- and phase transition in the spin crossover complex [Fe(ptz) 6](BF 4) 2 studied by nuclear inelastic scattering of synchrotron radiation and by DFT calculations

    NASA Astrophysics Data System (ADS)

    Böttger, Lars H.; Chumakov, Aleksandr I.; Matthias Grunert, C.; Gütlich, Philipp; Kusz, Joachim; Paulsen, Hauke; Ponkratz, Ulrich; Rusanov, Ventzislav; Trautwein, Alfred X.; Wolny, Juliusz A.

    2006-09-01

    Nuclear inelastic scattering (NIS) spectra of [Fe(ptz) 6](BF 4) 2 (ptz = 1- n-propyl-tetrazole) have been measured for five phases differing in spin state and crystallographic structure. Different spectral patterns have been found for the low-spin and high-spin phases and are described in terms of normal coordinate analysis of the complex molecule. For both low-spin and high-spin phases the conversion from ordered to disordered phase results in splitting of the observed NIS bands. Packing becomes visible in the NIS spectra via coupling of the Fe-N stretching vibrations with those of the terminal n-propyl groups. The DFT-based normal coordinate analysis also reveals the character of Raman markers.

  8. High n-value phases in the complex bismuth oxides with layered structure, Bi 2CaNa n-2 Nb nO 3 n+3

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kunitaka; Shimazu, Masaji; Tanaka, Junzo; Horiuchi, Shigeo

    1981-02-01

    Complex bismuth oxides with layered structure are prepared with a series of compositions in the system Bi 2CaNb 2O 9-NaNbO 3. It is found by X-ray powder diffraction that each compound is composed of more than two phases, which are described by a formula Bi 2CaNa n-2 Nb nO 3 n+3 , e.g., in the sample with the nominal composition Bi 2CaNb 2O 9 · 8NaNbO 3, the phases with n = 6 to 8 appear predominantly. These phases are closely intergrown to each other. Moreover, high-resolution electron microscopy reveals that microsyntactic intergrowth frequently occurs in the phases with n > 5. The occurrence of the latter intergrowth is explained in terms of the bond length obtained.

  9. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells.

    PubMed

    Kara, Nihan; Hossain, Manzar; Prasanth, Supriya G; Stillman, Bruce

    2015-05-08

    Replication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex. Upon S phase entry, Orc1 is ubiquitinated and targeted for destruction, with subsequent dissociation of ORC from chromosomes. Time lapse and live cell images of human cells expressing fluorescently tagged Orc1 show that Orc1 re-localizes to condensing chromatin during early mitosis and then displays different nuclear localization patterns at different times during G1 phase, remaining associated with late replicating regions of the genome in late G1 phase. The initial binding of Orc1 to mitotic chromosomes requires C-terminal amino acid sequences that are similar to mitotic chromosome-binding sequences in the transcriptional pioneer protein FOXA1. Depletion of Orc1 causes concomitant loss of the mini-chromosome maintenance (Mcm2-7) helicase proteins on chromatin. The data suggest that Orc1 acts as a nucleating center for ORC assembly and then pre-replication complex assembly by binding to mitotic chromosomes, followed by gradual removal from chromatin during the G1 phase.

  10. Chromatographic behaviour of naproxen-cyclodextrin complexes stationary phase C8 alkyl chain as competitor for the drug release from cyclodextrin cavity.

    PubMed

    Rozou, S; Antoniadou-Vyza, E

    2004-07-02

    Cyclodextrins are known to alter the absorptivity of the guest molecules, therefore, analytical methods that are based on the spectrophotometric data present accuracy problems. In this work, using RP-HPLC methods for naproxen-cyclodextrins quantitation, extensive analytical inaccuracies are detected. Competitive complexation technique is utilised in an attempt to develop an analytical method enabling the determination of naproxen as a free drug. For this reason, stationary phases with silica ligands that can function as competing agents were used, thus contributing to the drug release. The release of the drug from cyclodextrins complexes is achieved by modification of the thermodynamic parameters that determine the stability constant, by changing: the interactions with the mobile phase components (e.g. pH, organic modifier, competitive agents) and the interactions with the stationary phase ligands (C8). After studying the parameters affecting the interaction between the alkyl-chain C8 and naproxen:cyclodextrin complexes, we developed and validated a new specific method for the accurate determination of the drug. Consecutive accumulation of the cyclodextrins molecules on the stationary phase was studied.

  11. Drunken-cell footprints: nuclease treatment of ethanol-permeabilized bacteria reveals an initiation-like nucleoprotein complex in stationary phase replication origins.

    PubMed Central

    Cassler, M R; Grimwade, J E; McGarry, K C; Mott, R T; Leonard, A C

    1999-01-01

    The nucleoprotein complex formed on oriC, the Escherichia coli replication origin, is dynamic. During the cell cycle, high levels of the initiator DnaA and a bending protein, IHF, bind to oriC at the time of initiation of DNA replication, while binding of Fis, another bending protein, is reduced. In order to probe the structure of nucleoprotein complexes at oriC in more detail, we have developed an in situ footprinting method, termed drunken-cell footprinting, that allows enzymatic DNA modifying reagents access to intracellular nucleoprotein complexes in E.coli, after a brief exposure to ethanol. With this method, we observed in situ binding of Fis to oriC in exponentially growing cells, and binding of IHF to oriC in stationary cells, using DNase I and Bst NI endonuclease, respectively. Increased binding of DnaA to oriC in stationary phase was also noted. Because binding of DnaA and IHF results in unwinding of oriC in vitro, P1 endonuclease was used to probe for intracellular unwinding of oriC. P1 cleavage sites, localized within the 13mer unwinding region of oriC ', were dramatically enhanced in stationary phase on wild-type origins, but not on mutant versions of oriC unable to unwind. These observations suggest that most oriC copies become unwound during stationary phase, forming an initiation-like nucleoprotein complex. PMID:10556312

  12. Atomic-level imaging of Mo-V-O complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM

    PubMed Central

    Pyrz, William D.; Blom, Douglas A.; Sadakane, Masahiro; Kodato, Katsunori; Ueda, Wataru; Vogt, Thomas; Buttrey, Douglas J.

    2010-01-01

    In this work, we structurally characterize defects, grain boundaries, and intergrowth phases observed in various Mo-V-O materials using aberration-corrected high-angle annular dark-field (HAADF) imaging within a scanning transmission electron microscope (STEM). Atomic-level imaging of these preparations clearly shows domains of the orthorhombic M1-type phase intergrown with the trigonal phase. Idealized models based on HAADF imaging indicate that atomic-scale registry at the domain boundaries can be seamless with several possible trigonal and M1-type unit cell orientation relationships. The alignment of two trigonal domains separated by an M1-type domain or vice versa can be predicted by identifying the number of rows/columns of parallel symmetry operators. Intergrowths of the M1 catalyst with the M2 phase or with the Mo5O14-type phase have not been observed. The resolution enhancements provided by aberration-correction have provided new insights to the understanding of phase equilibria of complex Mo-V-O materials. This study exemplifies the utility of STEM for the characterization of local structure at crystalline phase boundaries. PMID:20308579

  13. Disentangling the history of complex multi-phased shell beds based on the analysis of 3D point cloud data

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Djuricic, Ana; Mandic, Oleg; Dorninger, Peter; Nothegger, Clemens; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2015-04-01

    Shell beds are key features in sedimentary records throughout the Phanerozoic. The interplay between burial rates and population productivity is reflected in distinct degrees of shelliness. Consequently, shell beds may provide informations on various physical processes, which led to the accumulation and preservation of hard parts. Many shell beds pass through a complex history of formation being shaped by more than one factor. In shallow marine settings, the composition of shell beds is often strongly influenced by winnowing, reworking and transport. These processes may cause considerable time averaging and the accumulation of specimens, which have lived thousands of years apart. In the best case, the environment remained stable during that time span and the mixing does not mask the overall composition. A major obstacle for the interpretation of shell beds, however, is the amalgamation of shell beds of several depositional units in a single concentration, as typically for tempestites and tsunamites. Disentangling such mixed assemblages requires deep understanding of the ecological requirements of the taxa involved - which is achievable for geologically young shell beds with living relatives - and a statistic approach to quantify the contribution by the various death assemblages. Furthermore it requires understanding of sedimentary processes potentially involved into their formation. Here we present the first attempt to describe and decipher such a multi-phase shell-bed based on a high resolution digital surface model (1 mm) combined with ortho-photos with a resolution of 0.5 mm per pixel. Documenting the oyster reef requires precisely georeferenced data; owing to high redundancy of the point cloud an accuracy of a few mm was achieved. The shell accumulation covers an area of 400 m2 with thousands of specimens, which were excavated by a three months campaign at Stetten in Lower Austria. Formed in an Early Miocene estuary of the Paratethys Sea it is mainly composed

  14. Host-guest chemistry in the gas phase: selected fragmentations of CB[6]-peptide complexes at lysine residues and its utility to probe the structures of small proteins.

    PubMed

    Heo, Sung Woo; Choi, Tae Su; Park, Kyung Man; Ko, Young Ho; Kim, Seung Bin; Kim, Kimoon; Kim, Hugh I

    2011-10-15

    The gas phase host-guest chemistry between cucurbit[6]uril (CB[6]) and peptide is investigated using electrospray ionization mass spectrometry (ESI-MS). CB[6] exhibits a high preference to interacting with a Lys residue in a peptide forming a CB[6]-peptide complex. Collisionally activated CB[6] complexes of peptides yield a common highly selective fragment product at m/z 549.2, corresponding to the doubly charged CB[6] complex of 5-iminiopentylammonium (5IPA). The process involves the formation of an internal iminium ion, which results from further fragments to an a-type ion from a y-type ion, and the resulting 5IPA ion threads through CB[6]. Numerous peptides are investigated to test the generality of the observed unique host-guest chemistry of CB[6]. Its potential utility in probing protein structures is demonstrated using CB[6] complexes of ubiquitin. Low-energy collision induced dissociation yields CB[6] complex fragments, and further MS(n) spectra reveal details of the CB[6] binding sites, which allow us to deduce the protein structure in the solution phase. The mechanisms and energetics of the observed reactions are evaluated using density functional theory calculations.

  15. Gas-Phase Coordination Complexes of UVIO{2/2+}, NpVIO{2/2+}, and PuVIO{2/2+} with Dimethylformamide

    NASA Astrophysics Data System (ADS)

    Rutkowski, Philip X.; Rios, Daniel; Gibson, John K.; van Stipdonk, Michael J.

    2011-11-01

    Electrospray ionization of actinyl perchlorate solutions in H2O with 5% by volume of dimethylformamide (DMF) produced the isolatable gas-phase complexes, [AnVIO2(DMF)3(H2O)]2+ and [AnVIO2(DMF)4]2+, where An = U, Np, and Pu. Collision-induced dissociation confirmed the composition of the dipositive coordination complexes, and produced doubly- and singly-charged fragment ions. The fragmentation products reveal differences in underlying chemistries of uranyl, neptunyl, and plutonyl, including the lower stability of Np(VI) and Pu(VI) compared with U(VI).

  16. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics.

    PubMed

    van Ooij, P; Guédon, A; Poelma, C; Schneiders, J; Rutten, M C M; Marquering, H A; Majoie, C B; VanBavel, E; Nederveen, A J

    2012-01-01

    The aim of this study was to validate the flow patterns measured by high-resolution, time-resolved, three-dimensional phase contrast MRI in a real-size intracranial aneurysm phantom. Retrospectively gated three-dimensional phase contrast MRI was performed in an intracranial aneurysm phantom at a resolution of 0.2 × 0.2 × 0.3 mm(3) in a solenoid rat coil. Both steady and pulsatile flows were applied. The phase contrast MRI measurements were compared with particle image velocimetry measurements and computational fluid dynamics simulations. A quantitative comparison was performed by calculating the differences between the magnitude of the velocity vectors and angles between the velocity vectors in corresponding voxels. Qualitative analysis of the results was executed by visual inspection and comparison of the flow patterns. The root-mean-square errors of the velocity magnitude in the comparison between phase contrast MRI and computational fluid dynamics were 5% and 4% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 16° and 14° for the steady and pulsatile measurements, respectively. In the phase contrast MRI and particle image velocimetry comparison, the root-mean-square errors were 12% and 10% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 19° and 15° for the steady and pulsatile measurements, respectively. Good agreement was found in the qualitative comparison of flow patterns between the phase contrast MRI measurements and both particle image velocimetry measurements and computational fluid dynamics simulations. High-resolution, time-resolved, three-dimensional phase contrast MRI can accurately measure complex flow patterns in an intracranial aneurysm phantom.

  17. The cohesin complex prevents the end-joining of distant DNA double-strand ends in S phase: Consequences on genome stability maintenance.

    PubMed

    Gelot, Camille; Guirouilh-Barbat, Josée; Lopez, Bernard S

    2016-07-03

    DNA double-strand break (DSB) repair is essential for genome stability maintenance, but the joining of distant DNA double strand ends (DSEs) inevitably leads to genome rearrangements. Therefore, DSB repair should be tightly controlled to secure genome stability while allowing genetic variability. Tethering of the proximal ends of a 2-ended DSB limits their mobility, protecting thus against their joining with a distant DSE. However, replication stress generates DSBs with only one DSE, on which tethering is impossible. Consistently, we demonstrated that the joining of 2 DSBs only 3.2 kb apart is repressed in the S, but not the G1, phase, revealing an additional mechanism limiting DNA ends mobility in S phase. The cohesin complex, by maintaining the 2 sister chromatids linked, limits DSEs mobility and thus represses the joining of distant DSEs, while allowing that of adjacent DSEs. At the genome scale, the cohesin complex protects against deletions, inversions, translocations and chromosome fusion.

  18. Peptide-lanthanide cation equilibria in aqueous phase. I. Bound shifts for L-carnosine-praseodymium complexes

    NASA Astrophysics Data System (ADS)

    Mossoyan, J.; Asso, M.; Benlian, D.

    L-Carnosine complexes of Pr 3+ were characterized in aqueous solution by 1H NMR and potentiometric titration. A rigorous treatment of chemical shifts and pH variation data with lanthanide concentration is presented. Two different forms of the peptide ligand, forming simultaneously two complexes, were taken into account. At low pH values the cation is only coordinated at the carboxylate site of the ligand in a weak complex ( β2 = 6) whereas in neutral solution a stronger complex ( β1 = 37) is present as a consequence of the deprotonation of the imidazole ring. The computation of induced bound shifts † 2 and Δ1 for resonating nuclei of the peptide in both forms yields consistent figures. These provide the experimental basis for a conformational model which is usually not obtainable for labile complexes with low stability constants.

  19. Paramagnetic-diamagnetic phase transition accompanied by coordination bond formation-dissociation in the dithiolate complex Na[Ni(pdt)2]·2H2O.

    PubMed

    Takaishi, Shinya; Ishihara, Nozomi; Kubo, Kazuya; Katoh, Keiichi; Breedlove, Brian K; Miyasaka, Hitoshi; Yamashita, Masahiro

    2011-07-18

    Bis(2,3-pyrazinedithiolate)nickel complex Na[Ni(pdt)(2)]·2H(2)O formed one-dimensional stacks of the Ni(pdt)(2) units and showed strong antiferromagnetic interactions along the stacking direction. A first-order phase transition between the paramagnetic and diamagnetic states, which was driven by dimerization of the Ni(pdt)(2) units, accompanied by coordination bond formation, was observed.

  20. Cobalt catalysis in the gas phase: experimental characterization of cobalt(I) complexes as intermediates in regioselective Diels-Alder reactions.

    PubMed

    Fiebig, Lukas; Kuttner, Julian; Hilt, Gerhard; Schwarzer, Martin C; Frenking, Gernot; Schmalz, Hans-Günther; Schäfer, Mathias

    2013-10-18

    In situ-formed cobalt(I) complexes are proposed to act as efficient catalysts in regioselective Diels-Alder reactions of unactivated substrates such as 1,3-dienes and alkynes. We report the first experimental evidence for the in situ reduction of CoBr2(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] by Zn/ZnI2 to [Co(I)(dppe)](+) by means of electrospray MS(n) experiments. Additionally, the reactivities of Co(II) and Co(I) dppe complexes toward the Diels-Alder substrates isoprene and phenylacetylene were probed in gas-phase ion/molecule reactions (IMRs). Isoprene and phenylacetylene were introduced into the mass spectrometer via the buffer gas flow of a linear ion trap. The IMR experiments revealed a significantly higher substrate affinity of [Co(I)(dppe)](+) compared with [Co(II)Br(dppe)](+). Furthermore, the central intermediate of the solution-phase cobalt-catalyzed Diels-Alder reaction, [Co(I)(dppe)(isoprene)(phenylacetylene)](+), could be generated via IMR and examined in the gas phase. Collision activation of this complex ion delivered evidence for the gas-phase reaction of isoprene with phenylacetylene in the coordination sphere of the cobalt ion. The experimental findings are consistent with the results of quantum-chemical calculations on all of the observed Co(I) dppe complex ions. The results constitute strong analytical evidence for the formation and importance of different cobalt(I) species in regioselective Diels-Alder reactions of unactivated substrates and identify [Co(I)(dppe)](+) as the active Diels-Alder catalyst.

  1. Ambulatory estimation of human circadian phase using models of varying complexity based on non-invasive signal modalities.

    PubMed

    Gil, Enrique A; Aubert, Xavier L; Beersma, Domien G M

    2014-01-01

    In this work, we introduce a number of models for human circadian phase estimation in ambulatory conditions using various sensor modalities. Machine learning techniques have been applied to ambulatory recordings of wrist actigraphy, light exposure, electrocardiograms (ECG), and distal and proximal skin temperature to develop ARMAX models capturing the main signal dependencies on circadian phase and evaluating them versus melatonin onset times. The most accurate models extracted heart rate variability features from an ECG coupled with wrist activity information to produce phase estimations with prediction errors of ~30 minutes. Replacing the ECG features with skin temperature from the upper leg led to a slight degradation, while less accurate results, in the order of 1 hour, were obtained from wrist activity and light measurements. The trade-off between highest precision and least obtrusive configuration is discussed for applications to sleep and mood disorders caused by a misalignment of the internal phase with the external solar and social times.

  2. Exploring dynamic property of traffic flow time series in multi-states based on complex networks: Phase space reconstruction versus visibility graph

    NASA Astrophysics Data System (ADS)

    Tang, Jinjun; Liu, Fang; Zhang, Weibin; Zhang, Shen; Wang, Yinhai

    2016-05-01

    A new method based on complex network theory is proposed to analyze traffic flow time series in different states. We use the data collected from loop detectors on freeway to establish traffic flow model and classify the flow into three states based on K-means method. We then introduced two widely used methods to convert time series into networks: phase space reconstruction and visibility graph. Furthermore, in phase space reconstruction, we discuss how to determine delay time constant and embedding dimension and how to select optimal critical threshold in terms of cumulative degree distribution. In the visibility graph, we design a method to construct network from multi-variables time series based on logical OR. Finally, we study and compare the statistic features of the networks converted from original traffic time series in three states based on phase space and visibility by using the degree distribution, network structure, correlation of the cluster coefficient to betweenness and degree-degree correlation.

  3. Ca(2+) -complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results.

    PubMed

    Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann

    2016-03-01

    Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Two-phase and three-dimensional simulations of complex fluid-sediment transport down a slope and impacting water bodies

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Kattel, Parameshwari; Kafle, Jeevan; Pokhrel, Puskar R.; Khattri, Khim B.

    2014-05-01

    We present a technique that simulates transport and flow of a real two-phase fluid (a mixture of fluid and sediment particles) down three-dimensional slopes and channels. This technique combines novel mechanics formulations and modeling into a unified high-resolution framework, providing a unique opportunity to simulate two-phase subearial landslides and debris flows with dynamically changing concentrations of solid particles. This mixture then impacts downslope with particle-laden fluid reservoirs, rivers, fjords, lakes, or oceans. This results in a super tsunami wave in the fluid body, while the submarine debris flow moves along the bathymetry. The same modelling technique can be applied to simulate rock-ice avalanches and turbidity currents with changing physical properties and mechanical responses of the phases that enhances the flow mobility. These results fundamentally advance our present knowledge associated with the complex mechanics and dynamics of multi-phase geophysical mass flows, including the subearial and submarine sediment transport and deposition processes. Our findings contribute significantly to our understanding of mixing and separation between phases, generation and propagation of special solid and fluid structures, and phase-transitions during the flow process. Finally, these results provide new insights into the evolution of morphodynamics of steep mountain slopes and channels. References Pudasaini, S. P. A general two-phase debris flow model. Journal of Geophysical Research, 117, F03010, 2012. doi: 10.1029/2011JF002186. Pudasaini, S. P. and Miller, S. A. A real two-phase submarine debris flow and tsunami. American Institute of Physics Proceedings, 1479, 197-200, 2012. doi: 10.1063/1.4756096.

  5. Characterization of Heterogeneity and Spatial Distribution of Phases in Complex Solid Dispersions by Thermal Analysis by Structural Characterization and X-ray Micro Computed Tomography.

    PubMed

    Alhijjaj, Muqdad; Yassin, Samy; Reading, Mike; Zeitler, J Axel; Belton, Peter; Qi, Sheng

    2017-05-01

    This study investigated the effect of drug-excipient miscibility on the heterogeneity and spatial distribution of phase separation in pharmaceutical solid dispersions at a micron-scale using two novel and complementary characterization techniques, thermal analysis by structural characterization (TASC) and X-ray micro-computed tomography (XμCT) in conjunction with conventional characterization methods. Complex dispersions containing felodipine, TPGS, PEG and PEO were prepared using hot melt extrusion-injection moulding. The phase separation behavior of the samples was characterized using TASC and XμCT in conjunction with conventional thermal, microscopic and spectroscopic techniques. The in vitro drug release study was performed to demonstrate the impact of phase separation on dissolution of the dispersions. The conventional characterization results indicated the phase separating nature of the carrier materials in the patches and the presence of crystalline drug in the patches with the highest drug loading (30% w/w). TASC and XμCT where used to provide insight into the spatial configuration of the separate phases. TASC enabled assessment of the increased heterogeneity of the dispersions with increasing the drug loading. XμCT allowed the visualization of the accumulation of phase separated (crystalline) drug clusters at the interface of air pockets in the patches with highest drug loading which led to poor dissolution performance. Semi-quantitative assessment of the phase separated drug clusters in the patches were attempted using XμCT. TASC and XμCT can provide unique information regarding the phase separation behavior of solid dispersions which can be closely associated with important product quality indicators such as heterogeneity and microstructure.

  6. Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates

    NASA Astrophysics Data System (ADS)

    Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola

    2010-11-01

    A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.

  7. Ion Mobility-Mass Spectrometry Analysis of Cross-Linked Intact Multiprotein Complexes: Enhanced Gas-Phase Stabilities and Altered Dissociation Pathways.

    PubMed

    Samulak, Billy M; Niu, Shuai; Andrews, Philip C; Ruotolo, Brandon T

    2016-05-17

    Analysis of protein complexes by ion mobility-mass spectrometry is a valuable method for the rapid assessment of complex composition, binding stoichiometries, and structures. However, capturing labile, unknown protein assemblies directly from cells remains a challenge for the technology. Furthermore, ion mobility-mass spectrometry measurements of complexes, subcomplexes, and subunits are necessary to build complete models of intact assemblies, and such data can be difficult to acquire in a comprehensive fashion. Here, we present the use of novel mass spectrometry cleavable cross-linkers and tags to stabilize intact protein complexes for ion mobility-mass spectrometry. Our data reveal that tags and linkers bearing permanent charges are superior stabilizers relative to neutral cross-linkers, especially in the context of retaining compact forms of the assembly under a wide array of activating conditions. In addition, when cross-linked protein complexes are collisionally activated in the gas phase, a larger proportion of the product ions produced are often more compact and reflect native protein subcomplexes when compared with unmodified complexes activated in the same fashion, greatly enabling applications in structural biology.

  8. Immobilization of metal-humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors.

    PubMed

    Cruz-Zavala, Aracely S; Pat-Espadas, Aurora M; Rangel-Mendez, J Rene; Chazaro-Ruiz, Luis F; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2016-05-01

    Metal-humic acid complexes were synthesized and immobilized by a granulation process in anaerobic sludge for their application as solid-phase redox mediators (RM) in the biotransformation of iopromide. Characterization of Ca- and Fe-humic acid complexes revealed electron accepting capacities of 0.472 and 0.556milli-equivalentsg(-1), respectively. Once immobilized, metal-humic acid complexes significantly increased the biotransformation of iopromide in upflow anaerobic sludge blanket (UASB) reactors. Control UASB reactor (without humic material) achieved 31.6% of iopromide removal, while 80% was removed in UASB reactors supplied with each metal-humic acid complex. Further analyses indicated multiple transformation reactions taking place in iopromide including deiodination, N-dealkylation, decarboxylation and deacetylation. This is the first successful application of immobilized RM, which does not require a supporting material to maintain the solid-phase RM in long term operation of bioreactors. The proposed redox catalyst could be suitable for enhancing the redox conversion of different recalcitrant pollutants present in industrial effluents.

  9. Selective extraction of histidine derivatives by metal affinity with a copper(II)-chelating ligand complex in an aqueous two-phase system.

    PubMed

    Oshima, Tatsuya; Oshima, Chinatsu; Baba, Yoshinari

    2015-05-15

    Affinity extraction based on the interaction between a target molecule and a specific affinity ligand offers a novel separation system for biomolecules in an aqueous two-phase system, however, most of affinity ligands are expensive. In the present study, metal affinity extraction of histidine (His) derivatives using a complex between Cu(II) and a commercially available chelating ligand was studied in a poly(ethylene glycol) (PEG)/Li2SO4 ATPS. Alizarin complexone (3-[N,N-bis(carboxymethyl)amino methyl]-1,2-dihydroxy anthraquinone, AC) was selected as the chelating ligand because of the good extractability of Cu(II) into the upper PEG-rich phase. On the basis of coordinate bonding with Cu(II), the extraction of His in the presence of the Cu(II)-AC complex under neutral condition was 73%, which was much higher than that under Cu(II) free condition (13%). Among a series of divalent transition metal ions (Cu(II), Ni(II), Co(II), and Zn(II)), Cu(II) was the most effective for the extraction of His. Derivatives of His were selectively extracted in the presence of many other amino acids because of the specificity of the interaction between Cu(II) and imidazole group of His. Extracted His was quantitatively stripped from the Cu(II)-AC complex using competitive complexation with agents such as iminodiacetic acid and imidazole. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Unusual Complex Formation and Chemical Reaction of Haloacetate Anion on the Exterior Surface of Cucurbit[6]uril in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Choi, Tae Su; Ko, Jae Yoon; Heo, Sung Woo; Ko, Young Ho; Kim, Kimoon; Kim, Hugh I.

    2012-10-01

    Noncovalent interactions of cucurbit[6]uril (CB[6]) with haloacetate and halide anions are investigated in the gas phase using electrospray ionization ion mobility mass spectrometry. Strong noncovalent interactions of monoiodoacetate, monobromoacetate, monochloroacetate, dichloroacetate, and trichloroacetate on the exterior surface of CB[6] are observed in the negative mode electrospray ionization mass spectra. The strong binding energy of the complex allows intramolecular SN2 reaction of haloacetate, which yields externally bound CB[6]-halide complex, by collisional activation. Utilizing ion mobility technique, structures of exteriorly bound CB[6] complexes of haloacetate and halide anions are confirmed. Theoretically determined low energy structures using density functional theory (DFT) further support results from ion mobility studies. The DFT calculation reveals that the binding energy and conformation of haloacetate on the CB[6] surface affect the efficiency of the intramolecular SN2 reaction of haloacetate, which correlate well with the experimental observation.

  11. Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes through control of their aggregated structures by external stimuli

    PubMed Central

    Fujisawa, Kaori; Yamada, Shigeyuki; Yanagi, Yukihiro; Yoshioka, Yasunori; Kiyohara, Ayumi; Tsutsumi, Osamu

    2015-01-01

    A series of new cyclic trinuclear Au(I) complexes with alkoxy side chains of various lengths were synthesized as photoluminescence materials. None of the complexes emitted luminescence in solution; however, some showed photoluminescence in the crystalline phase. Single crystal X-ray structural analyses revealed that an intermolecular interaction between two Au atoms (aurophilic interaction) existed only in the emissive complexes, which formed molecular aggregates in the crystal. Because isolated molecules show no luminescence in the present system, we conclude that only molecules aggregated via aurophilic interactions can luminesce. We demonstrated that luminescence properties, such as colour and intensity, were very sensitive to the aggregated structure of the molecules. We also found that such luminescence properties can be controlled by a change in the aggregated structure induced by external stimuli, such as heat, solvent, and mechanical stress. PMID:25879782

  12. New method for computer analysis of complex intermetallic compounds and nanocluster model of the samson phase Cd{sub 3}Cu{sub 4}

    SciTech Connect

    Blatov, V. A.; Ilyushin, G. D.

    2010-12-15

    A new method is proposed for the computer analysis of crystal structures of complex intermetallic compounds (with more than 1000 atoms per unit cell) using a developed algorithm of the complete decomposition of the 3D graph of the structure into nanocluster substructures. This method has been implemented in the TOPOS software package and approved successfully in an analysis of the complex Cu{sub 3}Cd{sub 4} structure (Samson phase). Cu{sub 3}Cd{sub 4} structure models were used to establish a structural relationship between nanoclusters in this intermetallic compound and nanoclusters in other complex crystal structures: ZrZn{sub 22}, Ru{sub 7}Mg{sub 44}, NaCd{sub 2}, and Mg{sub 2}Al{sub 3}.

  13. Phase diagram of 3β-[N-(N ,N-dimethylaminoethane)-carbamoyl]- cholesterol-dioleoylphosphatidylethanolamine/DNA complexes suggests strategies for efficient lipoplex transfection

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Amenitsch, Heinz; Marchini, Cristina; Caracciolo, Giulio

    2010-05-01

    Synchrotron small angle x-ray scattering and electrophoresis on agarose gels have been applied to construct the phase diagram of the ternary complex made up of the cationic lipid 3β-[N-(N ,N-dimethylaminoethane)-carbamoyl]-cholesterol, the neutral lipid dioleoylphosphatidylethanolamine and DNA. We show that nominally charge-neutral complexes coexist with free DNA, while excess cationic charge is necessary to protect all the genetic cargo. Such an extra-charge requirement diminishes as the molar fraction of neutral lipid in the bilayer increases. Furthermore, complexes with very different membrane composition and charge ratio exhibit the very same DNA protection ability. The relevance of results for transfection studies is discussed.

  14. Analysis of the open region of RNA polymerase II transcription complexes in the early phase of elongation

    PubMed Central

    Fiedler, Ulrike; Timmers, H. Th. Marc

    2001-01-01

    The RNA polymerase II (pol II) transcription complex undergoes a structural transition around registers 20–25, as indicated by ExoIII footprinting analyses. We have employed a highly purified system to prepare pol II complexes stalled at very precise positions during the initial stage of transcript elongation. Using potassium permanganate we analyzed the open region (‘transcription bubble’) of complexes stalled between registers 15 and 35. We found that from register 15 up to 25 the transcription bubble expands concomitantly with RNA synthesis. At registers 26 and 27 the bubble has a high tendency to retract at the leading edge. Addition of transcription elongation factor TFIIS re-extends the bubble to the stall site, resulting in complexes competent for transcript elongation. These findings are discussed in the light of the recently determined structures for RNA polymerases. PMID:11433015

  15. RNA polymerase II complexes in the very early phase of transcription are not susceptible to TFIIS-induced exonucleolytic cleavage

    PubMed Central

    Sijbrandi, Robert; Fiedler, Ulrike; Timmers, H. Th. Marc

    2002-01-01

    TFIIS is a transcription elongation factor for RNA polymerase II (pol II), which can suppress ribonucleotide misincorporation. We reconstituted transcription complexes in a highly purified pol II system on adenovirus Major-Late promoter constructs. We noted that these complexes have a high propensity for read-through upon GTP omission. Read-through occurred during the early stages at all registers analyzed. Addition of TFIIS reversed read-through of productive elongation complexes, which indicated that it was due to misincorporation. However, before register 13 transcription complexes were insensitive to TFIIS. These findings are discussed with respect to the structural models for pol II and we propose that TFIIS action is linked to the RNA:DNA hybrid. PMID:12034815

  16. Energetics and Dynamics of Electron Transfer and Proton Transfer in Dissociation of Metal III (salen)-Peptide Complexes in the Gas Phase

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Chu, Ivan K.

    2008-03-12

    Time- and collision energy-resolved surface-induced dissociation (SID) of ternary complexes of CoIII(salen)+, FeIII(salen)+, and MnIII(salen)+ with several angiotensin peptide analogs was studied using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially equipped to perform SID experiments. Time-resolved fragmentation efficiency curves (TFECs) were modeled using an RRKM-based approach developed in our laboratory. The approach utilizes a very flexible analytical expression for the internal energy deposition function that is capable of reproducing both single-collision and multiple-collision activation in the gas phase and excitation by collisions with a surface. The energetics and dynamics of competing dissociation pathways obtained from the modeling provides important insight on the competition between proton transfer, electron transfer, loss of neutral peptide ligand, and other processes that determine gas-phase fragmentation of these model systems. Similar fragmentation behavior was obtained for various CoIII(salen)-peptide systems of different angiotensin analogs. In contrast, dissociation pathways and relative stabilities of the complexes changed dramatically when cobalt was replaced with trivalent iron or manganese. We demonstrate that the electron transfer efficiency is correlated with redox properties of the metalIII(salen) complexes (Co > Fe > Mn), while differences in the types of fragments formed from the complexes reflect differences in the modes of binding between the metal-salen complex and the peptide ligand. RRKM modeling of time- and collision energy-resolved SID data suggests that the competition between proton transfer and electron transfer during dissociation of CoIII(salen)-peptide complexes is mainly determined by differences in entropy effects while the energetics of these two pathways are very similar.

  17. The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]-: infrared spectrum and structure

    SciTech Connect

    Groenewold, G. S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIIwain, Michael E.

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO2)2(NO3)5]- was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)2(NO3)5]- compared to the mono-complex [UO2(NO3)3]-, as indicated by a higher O-U-O asymmetric stretching (v3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  18. The gas-phase bis-uranyl nitrate complex [(UO2)(2)(NO3)(5)](-): infrared spectrum and structure

    SciTech Connect

    Gary S. Groenewold; Michael J. van Stipdonk; Jos Oomens; Wibe de Jong; Michael E. McIlwain

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO{sub 2}){sub 2}(NO{sub 3}){sub 5}]{sup -} was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate nu3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO{sub 2}){sub 2}(NO{sub 3}){sub 5}]{sup -} compared to the mono-complex [UO{sub 2}(NO{sub 3}){sub 3}]{sup -}, as indicated by a higher O-U-O asymmetric stretching (nu3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the {nu}{sub 3} frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The structure was calculated using density functional theory (B3LYP functional), which produced a structure in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  19. Proteomic analysis reveals that COP9 signalosome complex subunit 7A (CSN7A) is essential for the phase transition of migratory locust

    PubMed Central

    Tong, Xi-Wen; Chen, Bing; Huang, Li-Hua; Feng, Qi-Li; Kang, Le

    2015-01-01

    The migratory locust displays a reversible, density-dependent transition between the two phases of gregaria and solitaria. This phenomenon is a typical kind of behavior plasticity. Here, we report that COP9 signalosome complex subunit 7A (CSN7A) is involved in the regulation of locust phase transition. Firstly, 90 proteins were identified to express differentially between the two phases by quantitative proteomic analysis. Gregaria revealed higher levels in proteins related to structure formation, melanism and energy metabolism, whereas solitaria had more abundant proteins related to digestion, absorption and chemical sensing. Subsequently, ten proteins including CSN7A were found to reveal differential mRNA expression profiles between the two phases. The CSN7A had higher mRNA level in the gregaria as compared with the solitaria, and the mRNA amount in the gregaria decreased remarkably during the 32 h-isolation. However, the mRNA level in the solitaria kept constant during the crowding rearing. Finally and importantly, RNA interference of CSN7A in gregaria resulted in obvious phase transition towards solitaria within 24 h. It suggests that CSN7A plays an essential role in the transition of gregaria towards solitaria in the migratory locust. To our knowledge, it’s the first time to report the role of CSN in behavior plasticity of animals. PMID:26212173

  20. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.

    PubMed

    Xu, Zhijie; Meakin, Paul

    2009-06-21

    Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries.

  1. The properties of clusters in the gas phase. IV - Complexes of H2O and HNOx clustering on NOx/-/

    NASA Technical Reports Server (NTRS)

    Lee, N.; Castleman, A. W., Jr.; Keesee, R. G.

    1980-01-01

    Thermodynamic quantities for the gas-phase clustering equilibria of NO2(-) and NO3(-) were determined with high-pressure mass spectrometry. A comparison of values of the free energy of hydration derived from the data shows good agreement with formerly reported values at 296 K. New data for larger NO2(-) and NO3(-) hydrates as well as NO2(-)(HNO2)n were obtained in this study. To aid in understanding the bonding and stability of the hydrates of nitrite and nitrate ions, CNDO/2 calculations were performed, and the results are discussed. A correlation between the aqueous-phase total hydration enthalpy of a single ion and its gas-phase hydration enthalpy was obtained. Atmospheric implications of the data are also briefly discussed.

  2. The properties of clusters in the gas phase. IV - Complexes of H2O and HNOx clustering on NOx/-/

    NASA Technical Reports Server (NTRS)

    Lee, N.; Castleman, A. W., Jr.; Keesee, R. G.

    1980-01-01

    Thermodynamic quantities for the gas-phase clustering equilibria of NO2(-) and NO3(-) were determined with high-pressure mass spectrometry. A comparison of values of the free energy of hydration derived from the data shows good agreement with formerly reported values at 296 K. New data for larger NO2(-) and NO3(-) hydrates as well as NO2(-)(HNO2)n were obtained in this study. To aid in understanding the bonding and stability of the hydrates of nitrite and nitrate ions, CNDO/2 calculations were performed, and the results are discussed. A correlation between the aqueous-phase total hydration enthalpy of a single ion and its gas-phase hydration enthalpy was obtained. Atmospheric implications of the data are also briefly discussed.

  3. A complementary mobile phase approach based on the peak count concept oriented to the full resolution of complex mixtures.

    PubMed

    Ortín, A; Torres-Lapasió, J R; García-Álvarez-Coque, M C

    2011-08-26

    Situations of minimal resolution are often found in liquid chromatography, when samples that contain a large number of compounds, or highly similar in terms of structure and/or polarity, are analysed. This makes full resolution with a single separation condition (e.g., mobile phase, gradient or column) unfeasible. In this work, the optimisation of the resolution of such samples in reversed-phase liquid chromatography is approached using two or more isocratic mobile phases with a complementary resolution behaviour (complementary mobile phases, CMPs). Each mobile phase is dedicated to the separation of a group of compounds. The CMPs are selected in such a way that, when the separation is considered globally, all the compounds in the sample are satisfactorily resolved. The search of optimal CMPs can be carried out through a comprehensive examination of the mobile phases in a selected domain. The computation time of this search has been reported to be substantially reduced by application of a genetic algorithm with local search (LOGA). A much simpler approach is here described, which is accessible to non-experts in programming, and offers solutions of the same quality as LOGA, with a similar computation time. The approach makes a sequential search of CMPs based on the peak count concept, which is the number of peaks exceeding a pre-established resolution threshold. The new approach is described using as test sample a mixture of 30 probe compounds, 23 of them with an ionisable character, and the pH and organic solvent contents as experimental factors.

  4. A miniature condensed-phase membrane introduction mass spectrometry (CP-MIMS) probe for direct and on-line measurements of pharmaceuticals and contaminants in small, complex samples.

    PubMed

    Duncan, Kyle D; Willis, Megan D; Krogh, Erik T; Gill, Christopher G

    2013-06-15

    High-throughput, automated analytical measurements are desirable in many analytical scenarios, as are rapid sample pre-screening techniques to identify 'positive' samples for subsequent measurements using more time-consuming conventional methodologies (e.g., liquid chromatography/mass spectrometry (LC/MS)). A miniature condensed-phase membrane introduction mass spectrometry (CP-MIMS) probe for the direct and continuous, on-line measurement of pharmaceuticals and environmental contaminants in small, complex samples is presented. A miniature polydimethylsiloxane hollow fibre membrane (PDMS-HFM) probe is coupled with an electrospray ionization (ESI) triple quadrupole mass spectrometer. Analytes are transported from the probe to the ESI source by a methanol acceptor phase. The probe can be autosampler mounted and directly inserted in small samples (≥400 μL) allowing continuous and simultaneous pptr-ppb level detection of target analytes (chlorophenols, triclosan, gemfibrozil, nonylphenol) in complex samples (artificial urine, beer, natural water, waste water, plant tissue). The probe has been characterized and optimized for acceptor phase flow rate, sample mixing and probe washing. Signal response times, detection limits and calibration data are given for selected ion monitoring (SIM) and tandem mass spectrometry (MS/MS) measurements of target analytes at trace levels. Comparisons with flow cell type CP-MIMS systems are given. Analyte depletion effects are evaluated for small samples (≥400 μL). On-line measurements in small volumes of complex samples, temporally resolved reaction monitoring and in situ/in vivo demonstrations are presented. The miniature CP-MIMS probe developed was successfully used for the direct, on-line detection of target analytes in small volumes (40 mL to 400 μL) of complex samples at pptr to low ppb levels. The probe can be readily automated as well as deployed for in situ/in vivo monitoring, including reaction monitoring, small sample

  5. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-05-01

    A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.

  6. Quantum chemical calculations on the structure and stability of Mg2+XH3OH complexes in the gas phase (X = C, Si, and Ge)

    NASA Astrophysics Data System (ADS)

    El-Nahas, Ahmed M.; El-Demerdash, Safinaz H.; El-Shereefy, El-Sayed E.

    2007-06-01

    The structure and stability of Mg2+XH3OH complexes in gas phase (X = C, Si and Ge) have been studied using the B3LYP/6-31 + G(d) and CBS-QB3 levels of theory. Several dissociation pathways for Mg2+XH3OH complexes have been investigated. The complexes are thermodynamically stable with respect to the loss of H+, OH+, XH3, XH4, and XH4+ but thermodynamically unstable toward the loss of XH3+, XH3OH+, and XH3O+ ions. The presence of sizable kinetic energy barriers (25-81 kcal/mol) for unimolecular dissociation hinders the exothermic processes. This indicates that Mg2+XH3OH complexes can form metastable species and is likely observed under appropriate experimental conditions. On the other hand, endothermic channels are unlikely occurred under mild experimental conditions. Binding energies in the investigated complexes parallel charge transfer from ligands to the Mg2+ ion. Comparison between B3LYP and CBS-QB3 results is also presented.

  7. Gas-phase electrophoretic molecular mobility analysis of size and stoichiometry of complexes of a common cold virus with antibody and soluble receptor molecules.

    PubMed

    Laschober, Christian; Wruss, Juergen; Blaas, Dieter; Szymanski, Wladyslaw W; Allmaier, Günter

    2008-03-15

    Attachment of a nonaggregating monoclonal antibody and of a soluble recombinant receptor molecule to the icosahedral nonenveloped human rhinovirus serotype 2 was studied with a nanoelectrospray ionization gas-phase electrophoretic molecular mobility analyzer (nESI-GEMMA). The virus mass, as determined via nESI-GEMMA, was within instrument accuracy (+/-6%) close to the theoretical value (8 x 10(6) Da) calculated from the sum of all constituents of one virus particle (60 copies of each of the four viral capsid proteins, the RNA genome, and one copy of the RNA-linked protein VpG). The formation of virus-antibody complexes of different stoichiometries (up to a mass 12.5 x 10(6) Da corresponding to 30 attached antibodies) and virus-receptor complexes (up to a mass 8.8 x 10(6) Da corresponding to 12 attached receptor molecules) was monitored. Via the volume derived from the electrophoretic mobility diameter (EMD), the stoichiometry of the HRV complexes was calculated. The accuracy of the EMD was within +/-0.5 nm, which corresponds to an accuracy of +/-4 antibodies and +/-5 receptor molecules in the respective complexes. For the first time, we here demonstrate the use of nESI-GEMMA for the analysis of the size and stoichiometry of biomolecules in high-order complexes in real time under normal pressure conditions.

  8. Complex temporal patterns in molecular dynamics: a direct measure of the phase-space exploration by the trajectory at macroscopic time scales.

    PubMed

    Nerukh, Dmitry; Ryabov, Vladimir; Glen, Robert C

    2008-03-01

    Computer simulated trajectories of bulk water molecules form complex spatiotemporal structures at the picosecond time scale. This intrinsic complexity, which underlies the formation of molecular structures at longer time scales, has been quantified using a measure of statistical complexity. The method estimates the information contained in the molecular trajectory by detecting and quantifying temporal patterns present in the simulated data (velocity time series). Two types of temporal patterns are found. The first, defined by the short-time correlations corresponding to the velocity autocorrelation decay times (< or = 0.1 ps), remains asymptotically stable for time intervals longer than several tens of nanoseconds. The second is caused by previously unknown longer-time correlations (found at longer than the nanoseconds time scales) leading to a value of statistical complexity that slowly increases with time. A direct measure based on the notion of statistical complexity that describes how the trajectory explores the phase space and independent from the particular molecular signal used as the observed time series is introduced.

  9. Structure and Gas-Phase Thermochemistry of a Pd/Cu Complex: Studies on a Model for Transmetalation Transition States.

    PubMed

    Oeschger, Raphael J; Chen, Peter

    2017-01-25

    A heterobimetallic Pd(II)/Cu(I) complex was prepared and characterized by X-ray diffraction analysis. The crystal structure shows a remarkably short Pd-Cu bond and a trigonal ipso carbon atom. The Pd-Cu interaction, as determined by energy-resolved collision-induced dissociation cross-section experiments, models the net stabilizing energy of the Pd-Cu interaction in the transition state of the transmetalation step in Pd/Cu-catalyzed cross-coupling reactions. The bonding situation in the bimetallic dinuclear complex has been studied by atoms-in-molecules analysis.

  10. Dispersive micro-solid phase extraction of ortho-phosphate ions onto magnetite nanoparticles and determination as its molybdenum blue