Qualitative and quantitative assessment of unresolved complex mixture in PM2.5 of Bakersfield, CA
NASA Astrophysics Data System (ADS)
Nallathamby, Punith Dev; Lewandowski, Michael; Jaoui, Mohammed; Offenberg, John H.; Kleindienst, Tadeusz E.; Rubitschun, Caitlin; Surratt, Jason D.; Usenko, Sascha; Sheesley, Rebecca J.
2014-12-01
The 2010 CalNex (California Nexus) field experiment offered an opportunity for detailed characterization of atmospheric particulate carbon composition and sources in Bakersfield, CA. In the current study, the authors describe and employ a new protocol for reporting unresolved complex mixture (UCM) in over 30 daily samples. The Bakersfield, CA site has significant contribution from UCM, 2.9 ± 2.2% of the daily OC, which makes it an ideal first application. The new protocol reports two UCM peaks for Bakersfield with unique mean vapor pressure, retention time, mass spectra and daily ambient concentration trends. The first UCM peak, UCM-A, was comprised of semi-volatile compounds including alkanes, alkenes, and alkynes, with a mean vapor pressure of 2E-04 Torr and medium to heavy-duty diesel exhaust as a likely source. The second UCM peak, UCM-B, was comprised of linear, branched, and cyclic alkanes, with a mean vapor pressure of 1E-08 Torr. UCM-B had strong similarities to UCM in the NIST Standard Reference Material 1649b (urban dust) and to previously reported, detailed UCM for a representative Bakersfield sample, with possible sources including: motor vehicle exhaust, agricultural activities, and construction activities.
Donkin, Peter; Smith, Emma L; Rowland, Steven J
2003-11-01
Exposure of marine mussels (Mytilus edulis) to an unresolved complex mixture (UCM) of aromatic hydrocarbons isolated from a crude oil has been shown to reduce their feeding rate by 40%. The present study was undertaken to determine whether UCMs bioaccumulated by mussels in the field are also toxic. The feeding rate of mussels derived from polluted sites increased when they were placed in clean water, pointing to a loss of toxic agents from the tissues. At the end of the depuration period, water in which mussels from an oil-polluted site had been held contained a UCM. Steam-distillation extracts of the tissues of mussels taken from several polluted sites were shown to be highly toxic to the feeding activity of juvenile mussels. The tissues of mussels from these sites contained UCMs. Nontoxic steam distillates from clean mussels did not. Steam-distillation extracts of mussels from an oil-polluted site were fractionated by normal-phase high-performance liquid chromatography. A fraction, largely comprising a "monoaromatic" UCM, reduced the feeding rate of juvenile mussels by 70%. Two later-eluting fractions containing aromatic UCMs also produced smaller depressions in feeding rate. These results support our contention that some aromatic UCM hydrocarbons constitute a forgotten pollutant burden in the marine environment.
Toxicity of organic compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes.
Petersen, Karina; Hultman, Maria T; Rowland, Steven J; Tollefsen, Knut Erik
2017-09-01
Many environmental matrices contaminated with organic pollutants derived from crude oil or degraded petroleum contain mixtures so complex that they are typically unresolved by conventional analytical techniques such as gas chromatography. The resulting chromatographic features have become known as 'humps' or unresolved complex mixtures (UCMs). These UCMs often dominate the organic contaminants of polluted environmental samples: for example, in oil sands produced water up to 150mgL -1 of 'naphthenic acids' appear as UCMs when examined by gas chromatography as the esters. In oil-contaminated mussels, aromatic hydrocarbon UCMs may comprise almost all of the total toxic hydrocarbons, with over 7000μgg -1 dry weight reported in some samples. Over the last 25 years, efforts to resolve and thus identify, or at least to produce average structures, for some UCM components, have proved fruitful. Numerous non-polar UCM hydrocarbons and more polar UCM acids have been identified, then synthesised or purchased from commercial suppliers. As UCMs have been proposed to represent a risk to aquatic organisms, the need for assessment of the ecotoxicological effects and characterisation of the mode of action (MoA) of these environmental pollutants has arisen. In the present study, several chemicals with structures typical of those found in some UCMs, were assessed for their potential to disrupt membrane integrity, inhibit metabolic activity, activate the aryl hydrocarbon receptor (AhR), and activate the estrogen receptor (ER) in primary rainbow trout hepatocytes (Oncorhynchus mykiss). These endpoints were determined in order to screen for common toxic modes of action (MoA) in this diverse group of chemicals. The results from the in vitro screening indicated that of the endpoints tested, the predominant toxic MoA was cytotoxicity. EC 50 values for cytotoxicity were obtained for 16 compounds and ranged from 77μM-24mM, whereof aliphatic monocyclic acids, monoaromatic acids, polycyclic monoaromatic acids and alkylnaphthalenes were the most toxic. The observed cytotoxicity of the chemicals correlated well with the hydrophobicity (LogK OW ) suggesting that the toxicity was predominantly due to a non-specific MoA. Interestingly, two compounds induced the ER-mediated production of vitellogenin (Vtg) and six compounds induced the AhR-mediated Ethoxyresorufin-O-deethylase (EROD) enzymatic activity to >20% of the positive control; by doing so suggesting that they may act as ER or AhR agonists in fish. The heterogeneous group of 'UCM compounds' tested exhibited multiple MoA that may potentially cause adverse effects in fish. Additional studies to determine if these compounds may cause adverse effects in vivo at environmentally relevant concentrations, are warranted to identify if such compounds are indeed of potential environmental concern. Copyright © 2017 Elsevier B.V. All rights reserved.
Reid, Anna-Jean M; Budge, Suzanne M
2015-01-01
Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.
"Unresolved Complex Mixture" (UCM): A brief history of the term and moving beyond it.
Farrington, John W; Quinn, James G
2015-07-15
The term "Unresolved Complex Mixture" (UCM) has been used extensively for decades to describe a gas chromatographic characteristic indicative of the presence of fossil fuel hydrocarbons (mainly petroleum hydrocarbons) in hydrocarbons isolated from aquatic samples. We chronicle the origin of the term. While it is still a useful characteristic for screening samples, more modern higher resolution two dimensional gas chromatography and gas chromatography coupled with advanced mass spectrometry techniques (Time-of-Flight or Fourier Transform-Ion Cyclotron Resonance) should be employed for analyses of petroleum contaminated samples. This will facilitate advances in understanding of the origins, fates and effects of petroleum compounds in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...
Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V
2008-06-15
The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process.
Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to...
The origin of aliphatic hydrocarbons in olive oil.
Pineda, Manuel; Rojas, María; Gálvez-Valdivieso, Gregorio; Aguilar, Miguel
2017-11-01
There are many substances that can interfere with olive oil quality. Some of them are well characterized, but many others have an unknown origin. Saturated hydrocarbons make an extraordinary complex family of numerous molecules, some of them present naturally in vegetable oils. When major natural saturated hydrocarbons are analyzed by standard chromatographic methods, this complex mixture of saturated hydrocarbons appears as a hump in the chromatogram and is commonly named as unresolved complex mixture (UCM), whose origin remains unknown. In this work we studied the occurrence and the origin of aliphatic saturated hydrocarbons in olive oil. Hydrocarbons were analyzed in olive oil and along the industrial process of oil extraction. We also analyzed n-alkanes and the UCM fraction of hydrocarbons in leaf, fruit and oil from different varieties and different locations, and we also analyzed the soils at these locations. We conclude that the hydrocarbons present in olive oil do not necessarily have their origin in a contamination during olive oil elaboration; they seem to have a natural origin, as a result of olive tree metabolism and/or as the result of an intake and accumulation by the olive tree directly from the environment during its entire life cycle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Rushdi, Ahmed I; Al-Mutlaq, Khalid F; El-Mubarak, Aarif H; Al-Saleh, Mohammed A; El-Otaibi, Mubarak T; Ibrahim, Sami M M; Simoneit, Bernd R T
2016-01-01
Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quadir, Sema G; Guzelian, Eugenie; Palmer, Mason A; Martin, Douglas L; Kim, Jennifer; Szumlinski, Karen K
2017-08-10
Alcohol use disorders, affective disorders and their comorbidity are sexually dimorphic in humans. However, it is difficult to disentangle the interactions between subject factors influencing alcohol sensitivity in studies of humans. Herein, we combined murine models of unpredictable, chronic, mild stress (UCMS) and voluntary binge-drinking to examine for sex differences in the interactions between prior histories of excessive ethanol-drinking and stress upon ethanol-induced changes in motor behavior and subsequent drinking. In Experiment 1, female mice were insensitive to the UCMS-induced increase in ethanol-induced locomotion and ethanol intake under continuous alcohol-access. Experiment 2 revealed interactions between ethanol dose and sex (females>males), binge-drinking history (water>ethanol), and UCMS history (UCMS>controls), with no additive effect of a sequential prior history of both binge drinking and UCMS observed. We also observed an interaction between UCMS history and sex for righting recovery. UCMS history potentiated subsequent binge-drinking in water controls of both sexes and in male binge-drinking mice. Conversely, a prior binge-drinking history increased subsequent ethanol intake in females only, irrespective of prior UCMS history. In Experiment 3, a concurrent history of binge-drinking and UCMS did not alter ethanol intake, nor did it influence the ethanol dose-locomotor response function, but it did augment alcohol-induced sedation and reduced subsequent alcohol intake over that produced by binge-drinking alone. Thus, the subject factors of biological sex, prior stressor history and prior binge-drinking history interact in complex ways in mice to impact sensitivity to alcohol's motor-stimulating, -incoordinating and intoxicating effects, as well as to influence subsequent heavy drinking. Copyright © 2017 Elsevier Inc. All rights reserved.
Babcock, Christine; Theodosis, Christian; Bills, Corey; Kim, Jimin; Kinet, Melodie; Turner, Madeleine; Millis, Michael; Olopade, Olufunmilayo; Olopade, Christopher
2012-11-01
On January 12, 2010, a 7.0-magnitude earthquake struck Haiti. The event disrupted infrastructure and was marked by extreme morbidity and mortality. The global response to the disaster was rapid and immense, comprising multiple actors-including academic health centers (AHCs)-that provided assistance in the field and from home. The authors retrospectively examine the multidisciplinary approach that the University of Chicago Medicine (UCM) applied to postearthquake Haiti, which included the application of institutional structure and strategy, systematic deployment of teams tailored to evolving needs, and the actual response and recovery. The university mobilized significant human and material resources for deployment within 48 hours and sustained the effort for over four months. In partnership with international and local nongovernmental organizations as well as other AHCs, the UCM operated one of the largest and more efficient acute field hospitals in the country. The UCM's efforts in postearthquake Haiti provide insight into the role AHCs can play, including their strengths and limitations, in complex disasters. AHCs can provide necessary intellectual and material resources as well as technical expertise, but the cost and speed required for responding to an emergency, and ongoing domestic responsibilities, may limit the response of a large university and hospital system. The authors describe the strong institutional backing, the detailed predeployment planning and logistical support UCM provided, the engagement of faculty and staff who had previous experience in complex humanitarian emergencies, and the help of volunteers fluent in the local language which, together, made UCM's mission in postearthquake Haiti successful.
Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu
2015-06-12
The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Nguyen, Tuan Manh; Kim, Jaisoo
2017-05-01
White and pale yellow coloured bacteria were isolated from the riverside soil, Daejeon, South Korea, and were designated UCM-11 T , UCM-F25, and UCM-80 T . We found that all strains were able to reduce nitrate, and the cells were aerobic and motile. The DNA G+C contents of UCM-11 T , UCM-F25, and UCM-80 T were between 68.9 to 71.2 mol% and the main ubiquinone was observed as Q-8. Based on16S rRNA gene sequences, strains UCM-11 T and UCM-F25 were found to closely match with Azohydromonas australica IAM 12664 T (98.48-98.55%), and the strain UCM-80 T was the closest match with Azohydromonas lata IAM 12599 T (98.34%). The presence of summed feature 3 (C 16:1 ω7c and/or C 16:1 ω6c), C 16:0 , summed feature 8 (C 18:1 ω7c and/or C 18:1 ω6c) as well as twokinds of hydroxyfatty acids consisting of C 10:0 3-OH and C 12:0 2-OH, and branched fatty acids containing C 16:0 iso and C 17:0 cyclo were detected in all the strains. Phosphatidylethanolamine was a major polar lipid. DNA-DNA relatedness confirmed UCM-11 T , UCM-F25 and UCM-80 T as novel members of the genus Azohydromonas. Based on the morphological, physiological, biochemical and genotypic characteristics, we suggest that strains UCM-11 T , UCM-F25, and UCM-80 T represent novel species within the genus Azohydromonas. The names Azohydromonas riparia sp. nov., and Azohydromonas ureilytica sp. nov. are proposed for the type strains UCM-11 T (=KACC 18570 T =NBRC 111646 T ) and UCM-80 T (=KACC 18576 T =NBRC 111658 T ), respectively.
Joo, Changkyu; Shim, Won Joon; Kim, Gi Beum; Ha, Sung Yong; Kim, Moonkoo; An, Joon Geon; Kim, Eunsic; Kim, Beom; Jung, Seung Won; Kim, Young-Ok; Yim, Un Hyuk
2013-03-15
The environmental fate of Iranian Heavy crude oil (IHC) with and without an added oil spill dispersant (OSD) has been studied using a 1000 kL capacity in situ mesocosm. Physical weathering and chemical composition changes of the oil were monitored for 77 days. Compound-specific effects of the OSD could be observed as changes over time in the content of the total petroleum hydrocarbon (TPH), unresolved complex mixture (UCM), alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in the oil. As oil weathers, most hydrocarbons showed a rapid decreasing phase followed by a slowdown and stabilization. Recalcitrant biomarkers, however, showed a different trend. An increase in hydrocarbon contents in the form of UCM occurred after OSD treatment. The enhanced solubility of the low molecular weight PAHs by the OSD decreased the half-life of the alkylated PAHs in the OD. After 77 days of exposure at the sea surface, both the oils with and without the OSD exhibited moderate weathering. Most of the source diagnostic indices maintained their source information, and the weathering indices indicated that evaporation, dissolution, and dispersion were the major weathering processes. The mass balance of the weathered oil was calculated using laboratory and mesocosm data and the results demonstrate the importance of using a mesocosm for the production of environmentally realistic data. Copyright © 2013 Elsevier B.V. All rights reserved.
de Soure, António M; Fernandes-Platzgummer, Ana; Moreira, Francisco; Lilaia, Carla; Liu, Shi-Hwei; Ku, Chen-Peng; Huang, Yi-Feng; Milligan, William; Cabral, Joaquim M S; da Silva, Cláudia L
2017-05-01
Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGRO TM , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGRO TM -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGRO TM -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lima, Manoel B; Feitosa, Elaine A; Emídio, Elissandro S; Dórea, Haroldo S; Alexandre, Marcelo R
2012-08-01
The assessment of aliphatic hydrocarbons was performed in the Sergipe River estuarine system, northeastern Brazil. Aliphatic hydrocarbons concentration ranged from 9.9 ug g⁻¹ up to 30.8 ug g⁻¹ of dry sediment. The carbon preference index (CPI, based on nC₂₄ to nC₃₄ range), indicated predominance of petrogenic input in two of the sites analyzed (P4 and P5). The unresolved complex mixture (UCM) was found to be present in seven of the nine sites sampled (except for P4 and P5). Overall, the results of this work suggest that there is a mix of organic matter sources to the sediment. Although the coast of Sergipe has an intense off shore petroleum exploration and the Sergipe River crosses the entire city of Aracaju, the capital city of Sergipe, non-significant anthropogenic fingerprint was assessed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L
2015-10-06
Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations.
Vidal-Martínez, V M; Aguirre-Macedo, M L; Del Rio-Rodríguez, R; Gold-Bouchot, G; Rendón-von Osten, J; Miranda-Rosas, G A
2006-06-01
The pink shrimp Farfantepenaeus duorarum may acquire pollutants, helminths and symbionts from their environment. Statistical associations were studied between the symbionts and helminths of F. duorarum and pollutants in sediments, water and shrimps in Campeche Sound, Mexico. The study area spatially overlapped between offshore oil platforms and natural shrimp mating grounds. Spatial autocorrelation of data was controlled with spatial analysis using distance indices (SADIE) which identifies parasite or pollutant patches (high levels) and gaps (low levels), expressing them as clustering indices compared at each point to produce a measure of spatial association. Symbionts included the peritrich ciliates Epistylis sp. and Zoothamnium penaei and all symbionts were pooled. Helminths included Hysterothylacium sp., Opecoeloides fimbriatus, Prochristianella penaei and an unidentified cestode. Thirty-five pollutants were identified, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides and heavy metals. The PAHs (2-3 ring) in water, unresolved complex mixture (UCM), Ni and V in sediments, and Zn, Cr and heptachlor in shrimps were significantly clustered. The remaining pollutants were randomly distributed in the study area. Juvenile shrimps acquired pesticides, PAHs (2-3 rings) and Zn, while adults acquired PAHs (4-5 rings), Cu and V. Results suggest natural PAH spillovers, and continental runoff of dichlorodiphenyltrichloroethane (DDT), PCBs and PAHs (2-3 ring). There were no significant associations between pollutants and helminths. However, there were significant negative associations of pesticides, UCM and PCBs with symbiont numbers after controlling shrimp size and spatial autocorrelation. Shrimps and their symbionts appear to be promising bioindicators of organic chemical pollution in Campeche Sound.
Nguyen, Tuan Manh; Kim, Jaisoo
2017-07-01
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39 T , were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2 T (97.41-97.68%), Limnobacter litoralis KP1-19 T (95.55-95.76%), and various genera belonging to the class Betaproteobacteria (90.34-93.34%). DNA-DNA hybridization showed 79.3-83.9% similarity between the genomic DNA of UCM-39 T , UCM-30, and UCM-33, while the sequence similarity between UCM-39 T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C 16:1 ω7c and/or C 16:1 ω6c) and 8 (C 18:1 ω7c and/or C 18:1 ω6c), and C 16:0 . The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39 T (=KACC 18574 T =NBRC 111650 T ).
[Serological affinity of some species of nonpathogenic corynebacteria].
Furtat, I M; Nohina, T M; Mikhal's'kyĭ, L O; Vedenieieva, O A
2002-01-01
Serological peculiarities of the species strains Corynebacterium glutamicum, C. ammoniagenes, C. vitaeruminis, C. variabilis and strain of Corynebacterium sp. (Brevibacterium stationis) UCM Ac-719 have been investigated with the help of immunoenzyme analysis ELISA with the use of mice immune serum, specific to C. ammoniagenes UCM Ac-732T, C. vitaeruminis UCM Ac-718T, C. variabilis UCM Ac-717T, C. glutamicum UCM Ac-733 and Corynebacterium sp. UCM Ac-719. It has been established that the species of nonpathogenic corynebacteria differ between themselves as to the degree of serological affinity. C. variabilis, C. ammoniagenes and C. glutamicum are the least similar as to this indication. Weak antigenic relations have been revealed in C. vitaeruminis and C. ammoniagenes. The latter displayed the higher, as compared with other strains, affinity for Corynebacterium sp. UCM Ac-719. The highest degree of serological affinity within the species was registered in strains C. glutamicum and C. variabilis. Data obtained evidence that the ELISA method permits conducting the high-reliability species diagnosis of nonpathogenic corynebacteria on the basis of their antigenic characteristics.
Haemodynamic effects of umbilical cord milking in premature sheep during the neonatal transition.
Blank, Douglas A; Polglase, Graeme R; Kluckow, Martin; Gill, Andrew William; Crossley, Kelly J; Moxham, Alison; Rodgers, Karyn; Zahra, Valerie; Inocencio, Ishmael; Stenning, Fiona; LaRosa, Domeic A; Davis, Peter G; Hooper, Stuart B
2017-12-05
Umbilical cord milking (UCM) at birth may benefit preterm infants, but the physiological effects of UCM are unknown. We compared the physiological effects of two UCM strategies with immediate umbilical cord clamping (UCC) and physiological-based cord clamping (PBCC) in preterm lambs. At 126 days' gestational age, fetal lambs were exteriorised, intubated and instrumented to measure umbilical, pulmonary and cerebral blood flows and arterial pressures. Lambs received either (1) UCM without placental refill (UCMwoPR); (2) UCM with placental refill (UCMwPR); (3) PBCC, whereby ventilation commenced prior to UCC; or (4) immediate UCC. UCM involved eight milks along a 10 cm length of cord, followed by UCC. A net volume of blood was transferred into the lamb during UCMwPR (8.8 mL/kg, IQR 8-10, P=0.01) but not during UCMwoPR (0 mL/kg, IQR -2.8 to 1.7) or PBCC (1.1 mL/kg, IQR -1.3 to 4.3). UCM had no effect on pulmonary blood flow, but caused large fluctuations in mean carotid artery pressures (MBP) and blood flows (CABF). In UCMwoPR and UCMwPR lambs, MBP increased by 12%±1% and 8%±1% and CABF increased by 32%±2% and 15%±2%, respectively, with each milk. Cerebral oxygenation decreased the least in PBCC lambs (17%, IQR 13-26) compared with UCMwoPR (26%, IQR 23-25, P=0.03), UCMwPR (35%, IQR 27-44, P=0.02) and immediate UCC (34%, IQR 28-41, P=0.02) lambs. UCMwoPR failed to provide placental transfusion, and UCM strategies caused considerable haemodynamic disturbance. UCM does not provide the same physiological benefits of PBCC. Further review of UCM is warranted before adoption into routine clinical practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Pillai, Mamatha M; Elakkiya, V; Gopinathan, J; Sabarinath, C; Shanthakumari, S; Sahanand, K Santosh; Dinakar Rai, B K; Bhattacharyya, Amitava; Selvakumar, R
2016-10-01
The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.
Shams ara, Ali; Sheibani, Vahid; Esmaeilpour, Khadije; Eslaminejad, Touba; Nematollahi-Mahani, Seyed N
2015-09-01
Ischemic stroke is an acute brain insult that induces dramatic changes in the neurons. Treatment of brain stroke is one of the main therapeutic targets of neuroprotective therapies. The aim of this study was to evaluate the protective potential of implanted human umbilical cord mesenchymal stem (hUCMs) cells with/without aspirin (ASA) against focal cerebral ischemia. We assessed the migration and distribution of PKH26-labeled cells after transplantation. After day 10 of transient occlusion, we evaluated the effect of ASA and hUCMs on the recovery of learning and memory in rats by Morris water maze. Afterward, animals were sacrificed, and the infarct area in the brain was evaluated using 2, 3, 5-triphenyltetrazolium chloride staining and also by hematoxylin and eosin. The recovery of learning and memory in ischemic animals that received ASA and hUCM cells improved significantly compared with the untreated ischemic animals. Coadministration of ASA and hUCM cells did not improve the outcome at a comparable rate with ASA and hUCM cells alone. PKH26-labeled cells were detectable in the ischemic area of the brain tissue sections. 2,3,5-Triphenyltetrazolium chloride staining and histologic examinations showed that treatment with ASA and hUCM cells could significantly alter the ischemic area. The results of the present study suggest that ASA and hUCM cells can withstand degenerative changes induced by artificial stroke in the rat. Also the learning and memory disturbance in the ASA and cell-treated animals is less pronounced than ischemic animals. Coadministration of ASA and hUCM cells did not raise the outcome higher than administration of ASA and hUCM cells alone. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Observed and Simulated Urban Heat Island and Urban Cool Island in Las Vegas
NASA Astrophysics Data System (ADS)
Sauceda, Daniel O.
This research investigates the urban climate of Las Vegas and establishes long-term trends relative to the regional climate in an attempt to identify climate disturbances strictly related to urban growth. An experimental surface station network (DRI-UHI) of low-cost surface temperature (T2m) and relative humidity (RH) sensors were designed to cover under-sampled low-intensity residential urban areas, as well as complement the in-city and surrounding rural areas. In addition to the analysis of the surface station data, high-resolution gridded data products (GDPs) from Daymet (1km) and PRISM (800 m) and results from numerical simulations were used to further characterize the Las Vegas climate trends. The Weather Research and Forecasting (WRF) model was coupled with three different models: the Noah Land Surface Model (LSM) and a single- and multi-layer urban canopy model (UCM) to assess the urban related climate disturbances; as well as the model sensitivity and ability to characterize diurnal variability and rural/urban thermal contrasts. The simulations consisted of 1 km grid size for five, one month-long hindcast simulations during November of 2012: (i) using the Noah LSM without UCM treatment, (ii) same as (i) with a single-layer UCM (UCM1), (iii) same as (i) with a multi-layer UCM (UCM2), (iv) removing the City of Las Vegas (NC) and replacing it with predominant land cover (shrub), and (v) same as (ii) with increasing the albedo of rooftops from 0.20 to 0.65 as a potential adaptation scenario known as "white roofing". T2m long-term trends showed a regional warming of minimum temperatures (Tmin) and negligible trends in maximum temperatures (Tmax ). By isolating the regional temperature trends, an observed urban heat island (UHI) of ~1.63°C was identified as well as a daytime urban cool island (UCI) of ~0.15°C. GDPs agree with temperature trends but tend to underpredict UHI intensity by ~1.05°C. The WRF-UCM showed strong correlations with observed T2m (0.85 < rho < 0.95) and vapor pressure (ea ; 0.83 < rho < 0.88), and moderate-to-strong correlations for RH (0.64 < rho < 0.81) at the 95% confidence level. UCM1 shows the best skill and adequately simulates most of the UHI and UCI observed characteristics. Differences of LSM, UCM1, and UCM2 minus NC show simulated effects of warmer in-city Tmin for LSM and UCM2, and cooler in-city Tmax for UCM1 and UCM2. Finally, the white roofing scenario for Las Vegas was not found to significantly impact the UHI effect but has the potential to reduce daytime temperature by 1°-2°C.
Olvingson, C; Hallberg, N; Timpka, T; Lindqvist, K
2002-01-01
To evaluate Use Case Maps (UCMs) as a technique for Requirements Engineering (RE) in the development of information systems with functions for spatial analyses in inter-organizational public health settings. In this study, Participatory Action Research (PAR) is used to explore the UCM notation for requirements elicitation and to gather the opinions of the users. The Delphi technique is used to reach consensus in the construction of UCMs. The results show that UCMs can provide a visualization of the system's functionality and in combination with PAR provide a sound basis for gathering requirements in inter-organizational settings. UCMs were found to represent a suitable level for describing the organization and the dynamic flux of information including spatial resolution to all stakeholders. Moreover, by using PAR, the voices of the users and their tacit knowledge is intercepted. Further, UCMs are found useful in generating intuitive requirements by the creation of use cases. With UCMs and PAR it is possible to study the effects of design changes in the general information display and the spatial resolution in the same context. Both requirements on the information system in general and the functions for spatial analyses are possible to elicit when identifying the different responsibilities and the demands on spatial resolution associated to the actions of each administrative unit. However, the development process of UCM is not well documented and needs further investigation and formulation of guidelines.
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G.; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM). A control strategy related to this hypothesis (CoM-control-strategy) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway. PMID:27999535
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway.
Composition and major sources of organic compounds in urban aerosols
NASA Astrophysics Data System (ADS)
Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo
Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.
Martins, César C; Doumer, Marta E; Gallice, Wellington C; Dauner, Ana Lúcia L; Cabral, Ana Caroline; Cardoso, Fernanda D; Dolci, Natiely N; Camargo, Luana M; Ferreira, Paulo A L; Figueira, Rubens C L; Mangrich, Antonio S
2015-10-01
Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Shenghua; Wang, Junhui; Zhang, Yanbo; Li, Victor; Kong, Jiming; He, Jue; Li, Xin-Min
2014-08-12
The unpredictable chronic mild stress (UCMS) model was developed based upon the stress-diathesis hypothesis of depression. Most effects of UCMS can be reversed by antidepressants, demonstrating a strong predictive validity of this model for depression. However, the mechanisms underlying the effects induced by UCMS remain incompletely understood. Increasing evidence has shown that AMP-activated protein kinase (AMPK) regulates intracellular energy metabolism and is especially important for neurons because neurons are known to have small energy reserves. Abnormalities in the AMPK pathway disturb normal brain functions and synaptic integrity. In the present study, we first investigated the effects of UCMS on a battery of different tests measuring anxiety and depression-like behaviors in female C57BL/6N mice after 4 weeks of UCMS exposure. Stressed mice showed suppressed body weight gain, heightened anxiety, and increased immobility in the forced swim and tail suspension tests. These results are representative of some of the core symptoms of depression. Simultaneously, we observed decrease of synaptic proteins in the cortex of mice subjected to UCMS, which is associated with decreased levels of phosphorylated AMP-activated protein kinase α (AMPKα) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase). Our findings suggest that AMPKα inactivation might be a mechanism by which UCMS causes anxiety/depression-like behaviors in mice. Copyright © 2014 Elsevier B.V. All rights reserved.
[Biosorption ability of mutants of Rhodotorula mucilaginosa UCM Y-1776].
Mamieieva, O H; Kasatkina, T P; Lavrinchuk, V Ia
2007-01-01
Twenty stable mutants with various coloration intensity have been allocated in carotene-synthesizing natural strain Rhodotorula mucilaginosa UCM Y-1776 (wild type) after nitrosoguanidine action. Two brightly orange mutants 4L and 11 and one non-pigmented mutant 2 were chosen for the further researches. The ultraviolet was inefficient as a mutagen. Resistance to high concentration of copper ions (up to 200 mg/g), high sorption ability (Qmax = 9.1 mmol/g) was characteristic of R. mucilaginosa UCM Y-1776. Concentration of copper ions 50 mg/l was toxic for mutants 4L, 11 and 2, which sorption ability was lower in comparison with carotene pigmented R. mucilaginosa UCM Y-1776. It was shown, for the first time that there was a direct dependence between the presence of carotenoid pigments, resistance to high concentration of copper ions and sorption ability for yeast R. mucilaginosa UCM Y-1776.
A formal and data-based comparison of measures of motor-equivalent covariation.
Verrel, Julius
2011-09-15
Different analysis methods have been developed for assessing motor-equivalent organization of movement variability. In the uncontrolled manifold (UCM) method, the structure of variability is analyzed by comparing goal-equivalent and non-goal-equivalent variability components at the level of elemental variables (e.g., joint angles). In contrast, in the covariation by randomization (CR) approach, motor-equivalent organization is assessed by comparing variability at the task level between empirical and decorrelated surrogate data. UCM effects can be due to both covariation among elemental variables and selective channeling of variability to elemental variables with low task sensitivity ("individual variation"), suggesting a link between the UCM and CR method. However, the precise relationship between the notion of covariation in the two approaches has not been analyzed in detail yet. Analysis of empirical and simulated data from a study on manual pointing shows that in general the two approaches are not equivalent, but the respective covariation measures are highly correlated (ρ > 0.7) for two proposed definitions of covariation in the UCM context. For one-dimensional task spaces, a formal comparison is possible and in fact the two notions of covariation are equivalent. In situations in which individual variation does not contribute to UCM effects, for which necessary and sufficient conditions are derived, this entails the equivalence of the UCM and CR analysis. Implications for the interpretation of UCM effects are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms
Togo, Shunta; Kagawa, Takahiro; Uno, Yoji
2016-01-01
The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the “UCM reference feedback control.” To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque change, the variance components, and the index of synergy as well as the human subjects. We concluded that UCM reference feedback control can reproduce human-like joint coordination. The inference for motor control of the human central nervous system based on the proposed method was discussed. PMID:27462215
Isingrini, Elsa; Camus, Vincent; Le Guisquet, Anne-Marie; Pingaud, Maryse; Devers, Séverine; Belzung, Catherine
2010-01-01
Major depressive disorder is a debilitating disease. Unfortunately, treatment with antidepressants (ADs) has limited therapeutic efficacy since resistance to AD is common. Research in this field is hampered by the lack of a reliable natural animal model of AD resistance. Depression resistance is related to various factors, including the attendance of cardiovascular risk factors and past depressive episodes. We aimed to design a rodent model of depression resistance to ADs, associating cardiovascular risk factors with repeated unpredicted chronic mild stress (UCMS). Male BALB/c mice were given either a regular (4% fat) or a high fat diet (45% fat) and subjected to two 7-week periods of UCMS separated by 6 weeks. From the second week of each UCMS procedure, vehicle or fluoxetine (10 mg/kg, i.p.) was administrated daily. The effects of the UCMS and fluoxetine in both diet conditions were assessed using physical (coat state and body weight) and behavioural tests (the reward maze test and the splash test). The results demonstrate that during the second procedure, UCMS induced behavioural changes, including coat state degradation, disturbances in self-care behaviour (splash test) and anhedonia (reward maze test) and these were reversed by fluoxetine in the regular diet condition. In contrast, the high-fat diet regimen prevented the AD fluoxetine from abolishing the UCMS-induced changes. In conclusion, by associating UCMS—an already validated animal model of depression—with high-fat diet regimen, we designed a naturalistic animal model of AD resistance related to a sub-nosographic clinical entity of depression. PMID:20436931
Impacts of Mesopotamian wetland re-flooding on the lipid biomarker distributions in sediments
NASA Astrophysics Data System (ADS)
Rushdi, Ahmed I.; DouAbul, Ali A. Z.; Al-Maarofi, Sama S.; Simoneit, Bernd R. T.
2018-03-01
Shallow sediment core samples from two locales in the Mesopotamian marshlands of Iraq were analyzed to characterize the extractable organic (lipid) compounds, and their sources and distributions after hydrological restoration by re-flooding of the marshes. Dried samples were extracted with a dichloromethane/methanol mixture before analysis by gas chromatography-mass spectrometry (GC-MS). The major compounds were n-alkanes, fatty acids and alcohols, steroids, terpenoids, hopanes, steranes, unresolved complex mixture (UCM), and plasticizers. The lipid compounds in Kurmashia (Al-Hammar marshes) were generally higher in concentration than in Abu Zirig (Central marshes), and decreased with core depths for both sites. This concentration decrease with core depth is attributed to transformation, biodegradation and variable input processes. The distribution patterns of the lipids in the sediment cores indicated that the Abu Zirig area was drier than Kurmashia before the re-flooding process. Furthermore, the concentration of the compounds in the surface sediment the Abu Zirig core was as high and similar to that in Kurmashia, reflecting the re-flooding impacts on the marsh and the revival of the wetland. The major sources of these lipids were from natural terrestrial vegetation (35-66% for Abu Zirig; 40-49% for Kurmashia), microbial (plankton) residues and bacteria (27-52% for Abu Zirig; 39-43% for Kurmashia), with a minor contribution from anthropogenic sources including plastic wastes and petroleum (6-13% for Abu Zirig; 9-18% for Kurmashia).
Shetaia, Yousseria M H; El Khalik, Wafaa A A; Mohamed, Tarek M; Farahat, Laila A; ElMekawy, Ahmed
2016-10-15
Two microbial isolates from oil polluted Red Sea water in Egypt, designated as RS-Y1 and RS-F3, were found capable of degrading Belayim mix (BX) crude oil. Strains RS-Y1 and RS-F3 were assigned to the genera Lipomyces tetrasporus and Paecilomyces variotii based on their morphological and physiological characteristics. Both isolates were compared for the biodegradation of crude petroleum-oil hydrocarbons in basal salt medium supplemented with 5% (w/v) of BX-crude oil. Gas chromatography profile showed that the biodegradation of total petroleum hydrocarbons (TPHs) inoculated with L. tetrasporus (68.3%) and P. variotii (58.15%) along with their consortium (66%) significantly reduced TPHs levels as compared to the control after 30days. L. tetrasporus (44.5%) was more effective than P. variotii strain (32.89%) in reducing the unresolved complex mixtures (UCM) content from the medium. Both isolates exhibited a strong growth over a wide range of salinity (5-45g/L NaCl). Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Zeyu; Hollebone, Bruce P; Laforest, Sonia; Lambert, Patrick; Brown, Carl E; Yang, Chun; Shah, Keval; Landriault, Mike; Goldthorp, Michael
2017-09-15
The occurrence, source and ecological assessment of baseline hydrocarbons in the intertidal zone along the northern British shoreline were evaluated based on analyzing total petroleum hydrocarbons (TPH), n-alkanes, petroleum related biomarkers such as terpanes and steranes, and polycyclic aromatic hydrocarbons (PAHs) including non-alkylated and alkylated homologues (APAHs). The TPH levels, n-alkanes, petroleum biomarkers and PAHs in all the sampling sites, except for Masset Harbor/York Point at Gil Island were low, without obvious unresolved complex mixture (UCM) and petroleum contamination input. Specifically, n-alkanes showed a major terrestrial plants input; PAHs with abundant non-alkylated PAHs but minor APAHs showed a major pyrogenic input. However, obvious petroleum-derived hydrocarbons have impacted Masset Harbor. A historical petroleum input was found in York Point at Gil Island, due to the presence of the low level of petroleum biomarkers. Ecological assessment of 13 non-alkylated PAHs in Masset Harbor indicated no potential toxicity to the benthic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
MEGARA developments at LICA-UCM
NASA Astrophysics Data System (ADS)
Zamorano, J.; Gil de Paz, A.; Gallego, J.; Cardiel, N.; Eliche-Moral, M. C.; Pascual, S.; Castillo-Morales, A.; Marino, R. A.; Villar, V.; García-Vargas, M. L.; Tulloch, S. M.; Maldonado, M.; Sánchez-Blanco, E.; Carrasco, E.; Sánchez, F. M.; Vílchez, J. M.; Muñoz, V.; Aguirre, D.; The Megara Team
2013-05-01
LICA-UCM is the brand new laboratory for scientific advanced instrumentation (Laboratorio de Investigación Científica Avanzada) at Universidad Complutense de Madrid where MEGARA integration will take place.
Mizuki, Daishu; Matsumoto, Kinzo; Tanaka, Ken; Thi Le, Xoan; Fujiwara, Hironori; Ishikawa, Tsutomu; Higuchi, Yoshihiro
2014-10-28
Butea superba (BS) is a Thai medicinal plant that has been used as a folk medicine to improve physical and mental conditions and to prevent impaired sexual performance in middle-aged or elderly males. We have previously reported that this plant extract could improve cognitive deficits and depression-like behavior in olfactory bulbectomized mice, an animal model of dementia and depression. In this study we examined the effect of BS on depression-like behavior in mice subjected to unpredictable chronic mild stress (UCMS) to clarify the antidepressant-like activity of BS and the molecular mechanism underlying this effect. UCMS mice were administered BS daily (300 mg of dried herb weight/kg, p.o.) or a reference drug, imipramine (IMP, 10 mg/kg, i.p.), 1 week after starting the UCMS procedure. We employed the sucrose preference test and the tail suspension test to analyze anhedonia and depression-like behavior of mice, respectively. Serum and brain tissues of mice were used for neurochemical and immunohistochemical studies. The UCMS procedure induced anhedonia and depression-like behavior, and BS treatment, as well as IMP treatment, attenuated these symptoms. UCMS caused an elevation of serum corticosterone level, an index of hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis, in a manner attenuated by BS and IMP treatment. BS treatment also attenuated UCMS-induced decrease in the expression levels of brain-derived neurotrophic factor (BDNF) mRNA, cyclic AMP-responsive element binding protein (CREB) and a phosphorylated form of N-methyl-d-aspartate receptor subunit NR1, synaptic plasticity-related signaling proteins. Moreover, the UCMS procedure reduced doublecortin-positive cells in the dentate gyrus region of the hippocampus. BS administration reversed these UCMS-induced neurochemical and histological abnormalities. These results suggest that BS can ameliorate chronic stress-induced depression-like symptoms and that the effects of BS are mediated by restoring dysfunctions of the HPA axis and synaptic plasticity-related signaling systems and neurogenesis in the hippocampus. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Chandru, Kuhan; Zakaria, Mohamad Pauzi; Anita, Sofia; Shahbazi, Azadeh; Sakari, Mahyar; Bahry, Pourya Shahpoury; Mohamed, Che Abd Rahim
2008-05-01
The East Coast of Peninsular Malaysia faces the South China Sea and is vulnerable to oil pollution because of intense petroleum production activities in the area. The South China Sea is also a favored route for supertankers carrying crude oil to the Far East. Consequently, oil spills can occur, causing pollution and contamination in the surrounding areas. Residual oil spills stranded on coastal beaches usually end up as tar-balls. Elucidating the sources of tar-balls using a molecular marker approach is essential in assessing environmental impacts and perhaps settling legal liabilities for affected parties. This study utilizes a multimodal molecular marker approach through the use of diagnostic ratios of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) to determine the source, distribution and weathering of tar-balls. Hopane ratios (e.g., C29/C30, and summation C31-C35/C30 ratios) were used to identify the sources of tar-balls. The weathering effects were distinguished by using alkanes, namely the unresolved complex mixture (UCM) and low molecular weight/high molecular weight (L/H) ratios. Similarly, PAHs were also used for the determination of weathering processes undergone by the tar-balls. This multimodal molecular marker gave a very strong indication of the sources of tar-balls in this study. For example, 16 out of 17 samples originated from South East Asian Crude Oil (SEACO) with one sample from Merang, Terengganu originating from North Sea Oil (Troll). The TRME-2 sample may have come from a supertanker's ballast water discharge. The second possibility is that the tar-ball may have been transported via oceanographic currents. All 'weathered' sample characterizations were based on the presence of UCM and other ratios. The multimodal molecular marker approach applied in this study has enabled us to partially understand the transport behavior of tar-balls in the marine environment and has revealed insights into the weathering process of tar-balls.
Spiroski, Mirko
2015-03-15
The aim of this study was to analyze current scientific impact of Ss Cyril and Methodius University of Skopje, Republic of Macedonia in the Scopus Database (1960-2014). Affiliation search of the Scopus database was performed on November 23, 2014 in order to identify published papers from the Ss Cyril and Methodius University of Skopje (UC&M), Republic of Macedonia. A total number of 3960 articles (3055 articles from UC&M, 861 articles from Faculty of Medicine, UC&M, and 144 articles from Faculty of Pharmacy, UC&M) were selected for analysis (1960-2014). SCImago Journal Rank (SJR), Source Normalized Impact per Paper (SNIP) and h-index were calculated from the Scopus database. The number of published papers was sharply increased with maximum of 379 papers in 2012 year. The largest number of papers has been published in Macedonian Journal of Medical Sciences, Journal of Molecular Structure, Lecture Notes in Computer Science, Acta Pharmecutica, and Macedonian Journal of Chemistry and Chemical Engineering. The biggest SJR and SNIP has journal Nephrology Dialysis Transplantation. First three places of the top ten authors belong to Dimirovski GM, Gavrilovska L, and Gusev M. Top three places based on Scopus h-index (total number of published papers) belong to Kocarev L, Stafilov T, and Polenakovic M. The majority of papers originate from UC&M, but significant numbers of papers are affiliated to Faculty of Medicine, Faculty of Pharmacy, and Institute of Chemistry as members of UC&M, as well as Macedonian Academy of Sciences and Arts. Articles are the most dominant type of documents followed by conference papers, and review articles. Medicine is the most represented subject. Officials of the Ss Cyril and Methodius University of Skopje should undertake more effective and proactive policies for journal publishers and their Editorial Boards in order to include more journals from UC&M in the Scopus database.
Spiroski, Mirko
2015-01-01
AIM: The aim of this study was to analyze current scientific impact of Ss Cyril and Methodius University of Skopje, Republic of Macedonia in the Scopus Database (1960-2014). MATERIAL AND METHODS: Affiliation search of the Scopus database was performed on November 23, 2014 in order to identify published papers from the Ss Cyril and Methodius University of Skopje (UC&M), Republic of Macedonia. A total number of 3960 articles (3055 articles from UC&M, 861 articles from Faculty of Medicine, UC&M, and 144 articles from Faculty of Pharmacy, UC&M) were selected for analysis (1960-2014). SCImago Journal Rank (SJR), Source Normalized Impact per Paper (SNIP) and h-index were calculated from the Scopus database. RESULTS: The number of published papers was sharply increased with maximum of 379 papers in 2012 year. The largest number of papers has been published in Macedonian Journal of Medical Sciences, Journal of Molecular Structure, Lecture Notes in Computer Science, Acta Pharmecutica, and Macedonian Journal of Chemistry and Chemical Engineering. The biggest SJR and SNIP has journal Nephrology Dialysis Transplantation. First three places of the top ten authors belong to Dimirovski GM, Gavrilovska L, and Gusev M. Top three places based on Scopus h-index (total number of published papers) belong to Kocarev L, Stafilov T, and Polenakovic M. The majority of papers originate from UC&M, but significant numbers of papers are affiliated to Faculty of Medicine, Faculty of Pharmacy, and Institute of Chemistry as members of UC&M, as well as Macedonian Academy of Sciences and Arts. Articles are the most dominant type of documents followed by conference papers, and review articles. Medicine is the most represented subject. CONCLUSION: Officials of the Ss Cyril and Methodius University of Skopje should undertake more effective and proactive policies for journal publishers and their Editorial Boards in order to include more journals from UC&M in the Scopus database. PMID:27275188
Logan, Ryan W.; Edgar, Nicole; Gillman, Andrea G.; Hoffman, Daniel; Zhu, Xiyu; McClung, Colleen A.
2015-01-01
Background Emerging evidence implicates circadian abnormalities as a component of the pathophysiology of major depressive disorder (MDD). The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates rhythms throughout the brain and body. On a cellular level, rhythms are generated by transcriptional, translational, and post-translational feedback loops of core circadian genes and proteins. In patients with MDD, recent evidence suggests reduced amplitude of molecular rhythms in extra-SCN brain regions. We investigated whether unpredictable chronic mild stress (UCMS), an animal model that induces a depression-like physiological and behavioral phenotype, induces circadian disruptions similar to those seen with MDD. Methods Activity and temperature rhythms were recorded in C57BL/6J mice before, during, and after exposure to UCMS, and brain tissue explants were collected from Period2 luciferase (Per2::luc) mice following UCMS to assess cellular rhythmicity. Results UCMS significantly decreased circadian amplitude of activity and body temperature in mice, similar to findings in MDD patients and these changes directly correlate with depression-related behavior. While amplitude of molecular rhythms in the SCN was decreased following UCMS, surprisingly, rhythms in the nucleus accumbens were amplified with no changes seen in the prefrontal cortex or amygdala. These molecular rhythm changes in the SCN and the nucleus accumbens (NAc) also directly correlated with mood-related behavior. Conclusions These studies find that circadian rhythm abnormalities directly correlate with depression-related behavior following UCMS and suggest a desynchronization of rhythms in the brain with an independent enhancement of rhythms in the NAc. PMID:25771506
2014-01-01
Introduction Mesenchymal stromal cells (MSCs) have been extensively studied for their promising capabilities in regenerative medicine. Although bone marrow is the best-known source for isolating equine MSCs, non-invasive alternative sources such as umbilical cord blood (UCB), umbilical cord matrix (UCM), and peripheral blood (PB) have also been reported. Methods Equine MSCs from three non-invasive alternative sources were isolated from six individual mares (PB) and their foals (UCB and UCM) at parturition. To minimize inter-horse variability, the samples from the three sources were matched within the same mare and for UCB and UCM even within the same foal from that specific mare. The following parameters were analyzed: (i) success rate of isolation, (ii) proliferation capacity, (iii) tri-lineage differentiation ability, (iv) immunophenotypical protein, and (v) immunomodulatory mRNA profiles. Linear regression models were fit to determine the association between the source of MSCs (UCB, UCM, PB) and (i) the moment of first observation, (ii) the moment of first passage, (iii) cell proliferation data, (iv) the expression of markers related to cell immunogenicity, and (v) the mRNA profile of immunomodulatory factors, except for hepatocyte growth factor (HGF) as no normal distribution could be obtained for the latter variable. To evaluate the association between the source of MSCs and the mRNA expression of HGF, the non-parametric Kruskal-Wallis test was performed instead. Results While equine MSCs could be isolated from all the UCB and PB samples, isolation from UCM was successful in only two samples because of contamination issues. Proliferation data showed that equine MSCs from all three sources could be easily expanded, although UCB-derived MSCs appeared significantly faster in culture than PB- or UCM-derived MSCs. Equine MSCs from both UCB and PB could be differentiated toward the osteo-, chondro-, and adipogenic lineage, in contrast to UCM-derived MSCs in which only chondro- and adipogenic differentiation could be confirmed. Regardless of the source, equine MSCs expressed the immunomodulatory genes CD40, CD80, HGF, and transforming growth factor-beta (TGFβ). In contrast, no mRNA expression was found for CD86, indoleamine 2,3-dioxygenase (IDO), and tumor necrosis factor-alpha (TNFα). Conclusions Whereas UCM seems less feasible because of the high contamination risks and low isolation success rates, UCB seems a promising alternative MSC source, especially when considering allogeneic MSC use. PMID:24418262
Brooks, Steven; Brnayan, Kayla W; DeVallance, Evan; Skinner, Roy; Lemaster, Kent; Sheets, J Whitney; Pitzer, Christopher R; Asano, Shinichi; Bryner, Randall W; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D
2018-05-01
What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, T.L.; Velinsky, D.J.; Reinharz, E.
1994-06-01
Concentrations of aliphatic, aromatic, and chlorinated hydrocarbons were determined from 33 surface-sediment samples taken from the Tidal Basin, Washington Ship Channel, and the Anacostia and Potomac rivers in Washington, D.C. In conjunction with these samples, selected storm sewers and outfalls also were sampled to help elucidate general sources of contamination to the area. All of the sediments contained detectable concentrations of aliphatic and aromatic hydrocarbons, DDT (total dichlorodiphenytrichloroethande), DDE (dichlorodiphenyldichloroethene), DDD (dichlorodiphenyldichloroethane), PCBx (total polychlorinated biphenyls) and total chlordanes (oxy-, {alpha}-, and {gamma}-chlordane and cis + trans-nonachlor). Sediment concentrations of most contaminants were highest in the Anacostia River just downstreammore » of the Washington Navy Yard, except for total chlordane, which appeared to have upstream sources in addition to storm and combined sewer runoff. This area has the highest number of storm and combined sewer outfalls in the river. Potomac River stations had lower concentrations than other stations. Polycyclic aromatic hydrocarbons, saturated hydrocarbons, and the unresolved complex mixture (UCM) distributions reflect mixtures of combustion products and direct discharges of petroleum products. Sources of PCBs appear to be related to specific outfalls, while hydrocarbon inputs, especially PAHs, are diffuse, and may be related to street runoff. This study indicates that in large urban areas, nonpoint sources deliver substantial amounts of contaminants to ecosystems through storm and combined sewer systems, and control of these inputs must be addressed. 33 refs., 6 figs., 3 tabs.« less
Chronic psychological stress induces vascular inflammation in rabbits.
Lu, Xiao Ting; Liu, Yun Fang; Zhao, Li; Li, Wen Jing; Yang, Rui Xue; Yan, Fang Fang; Zhao, Yu Xia; Jiang, Fan
2013-01-01
Psychological stress is associated with a systemic inflammatory response. It is unclear, however, whether psychological stress contributes to vascular inflammation. Here, we examined the effects of unpredictable chronic mild stress (UCMS) on vascular inflammation in rabbits. One hundred rabbits were randomly divided into control and stress groups. UCMS was induced by a set of defined adverse conditions applied in a shuffled order for 4, 8, 12, or 16 weeks, and rabbits were killed 24 h after the end of the UCMS protocol. Expression of different inflammatory molecules was analyzed by real-time polymerase chain reaction, immunohistochemistry, or enzyme-linked immunosorbent assay. UCMS resulted in depression-like behaviors, decreased body weight gain, and hypertension with no significant effects on serum lipids. Aortic mRNA and protein expression for tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibitory factor, and expression of intercellular adhesion molecule-1 (ICAM-1) protein were increased. UCMS increased circulating concentrations of corticosterone, TNF-α, and CRP throughout. Moreover, stress downregulated the expression of endothelial nitric oxide synthase. At 16 weeks of UCMS, macrophage infiltration and lipid accumulation in the subendothelial space were detected in the aorta. In cultured murine vascular smooth muscle cells, treatment with serum from stressed rabbits significantly increased phosphorylation of p38 and c-Jun N-terminal kinase (JNK), and upregulated expression of MCP-1 and ICAM-1 mRNAs, in which the effect was blunted by a TNF-α neutralizing antibody or p38 and JNK inhibitors. Our results indicate that chronic psychological stress induces vascular inflammation via TNF-α and p38/JNK pathways, which may contribute to the development of atherosclerosis.
Li, Hong-Yan; Zhao, Ying-Hua; Zeng, Min-Jie; Fang, Fang; Li, Min; Qin, Ting-Ting; Ye, Lu-Yu; Li, Hong-Wei; Qu, Rong; Ma, Shi-Ping
2017-11-01
Saikosaponin D (SSD), a major bioactive component isolated from Radix Bupleuri, has been reported to exert neuroprotective properties. The present study was designed to investigate the anti-depressant-like effects and the potential mechanisms of SSD. Behavioural tests including sucrose preference test (SPT), open field test (OFT) and forced swim test (FST) were performed to study the antidepressant-like effects of SSD. In addition, we examined corticosterone and glucocorticoid receptor (GR) levels to evaluate hypothalamic-pituitary-adrenal (HPA) axis function. Furthermore, hippocampal neurogenesis was assessed by testing doublecortin (DCX) levels, and neurotrophic molecule levels were also investigated in the hippocampus of rats. We found that unpredictable chronic mild stress (UCMS) rats displayed lost body weight, decreased sucrose consumption in SPT, reduced locomotive activity in OFT, and increased immobility time in FST. Chronic treatment with SSD (0.75, 1.50 mg/kg) remarkably ameliorated the behavioral deficiency induced by UCMS procedure. SSD administration downregulated elevated serum corticosterone levels, as well as alleviated the suppression of GR expression and nuclear translocation caused by UCMS, suggesting that SSD is able to remit the dysfunction of HPA axis. In addition, Western blot and immunohistochemistry analysis showed that SSD treatment significantly increased the generation of neurons in the hippocampus of UCMS rats indicated by elevated DCX levels. Moreover, hippocampal neurotrophic molecule levels of UCMS rats such as phosphorylated cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were raised after SSD treatment. Together, Our results suggest that SSD opposed UCMS-induced depressive behaviors in rats, which was mediated, partially, by the enhancement of HPA axis function and consolidation of hippocampal neurogenesis.
Wang, Jianye; Zhao, Gang; Zhang, Zhengliang; Xu, Xiaoliang; He, Xiaoming
2016-03-01
Cryopreservation by vitrification has been recognized as a promising strategy for long-term banking of living cells. However, the difficulty to generate a fast enough heating rate to minimize devitrification and recrystallization-induced intracellular ice formation during rewarming is one of the major obstacles to successful vitrification. We propose to overcome this hurdle by utilizing magnetic induction heating (MIH) of magnetic nanoparticles to enhance rewarming. In this study, superparamagnetic (SPM) Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method. We successfully applied the MIH of Fe3O4 nanoparticles for rewarming human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs) cryopreserved by vitrification. Our results show that extracellular Fe3O4 nanoparticles with MIH may efficiently suppress devitrification and/or recrystallization during rewarming and significantly improve the survival of vitrified cells. We further optimized the concentration of Fe3O4 nanoparticles and the current of an alternating current (AC) magnetic field for generating the MIH to maximize cell viability. Our results indicate that MIH in an AC magnetic field with 0.05% (w/v) Fe3O4 nanoparticles significantly facilitates rewarming and improves the cryopreservation outcome of hUCM-MSCs by vitrification. The application of MIH of SPM nanoparticles to achieve rapid and spatially homogeneous heating is a promising strategy for enhanced cryopreservation of stem cells by vitrification. Here we report the successful synthesis and application of Fe3O4 nanoparticles for magnetic induction heating (MIH) to enhance rewarming of vitrification-cryopreserved human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs). We found that MIH-enhanced rewarming greatly improves the survival of vitrification-cryopreserved hUCM-MSCs. Moreover, the hUCM-MSCs retain their intact stemness and multilineage potential of differentiation post cryopreservation by vitrification with the MIH-enhanced rewarming. Therefore, the novel MIH-enhanced cell vitrification is valuable to facilitate the long-term storage of hUCM-MSCs and possibly many other important cells to meet their ever-increasing demand by the burgeoning cell-based medicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Astronomy and astrophysics communication in the UCM Observatory
NASA Astrophysics Data System (ADS)
Crespo-Chacón, I.; de Castro, E.; Díaz, C.; Gallego, J.; Gálvez, M. C.; Hernán-Obispo, M.; López-Santiago, J.; Montes, D.; Pascual, S.; Verdet, A.; Villar, V.; Zamorano, J.
We present a summary of the last activities of science communication that have taken place in the Observatorio de la Universidad Complutense de Madrid (UCM Observatory) on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.
NASA Technical Reports Server (NTRS)
Choi, H. J.; Su, Y. T.
1986-01-01
The User Constraint Measurement System (UCMS) is a hardware/software package developed by NASA Goddard to measure the signal parameter constraints of the user transponder in the TDRSS environment by means of an all-digital signal sampling technique. An account is presently given of the features of UCMS design and of its performance capabilities and applications; attention is given to such important aspects of the system as RF interface parameter definitions, hardware minimization, the emphasis on offline software signal processing, and end-to-end link performance. Applications to the measurement of other signal parameters are also discussed.
Sanches Filho, Pedro J; Böhm, Emerson M; Böhm, Giani M B; Montenegro, Gissele O; Silveira, Lucas A; Betemps, Glauco R
2017-01-30
A high concentration of hydrocarbons in the environment is indicative of pollution. To evaluate the effect of hydrocarbons transported by urban runoff, the present study analyzed total petroleum hydrocarbons (TPHs), aliphatic hydrocarbons (AHs), unresolved complex mixture (UCM), and n-alkanes of the sediments of the canal that cross the urban area of Pelotas, Rio Grande do Sul, Brazil. The carbon preference index (CPI), terrigenous/aquatic ratio (TAR), and pristane/phytane ratio were determined. The TPH content ranged from 177,043.7μg·kg -1 ±13.4% to 5,892,667.0μg·kg -1 ±5.9%. The total aliphatic content ranged from 116,268.8μg·kg -1 ±11.1% to 2,393,592.6μg·kg -1 ±7.7%, indicating chronic contamination of n-alkanes petrogenic and biogenic sources. The levels of hydrocarbons (TPH, AHs, and n-alkanes) were considered relatively high, confirming the effect of urban runoff on the drainage system of cities and their consequent effect on the estuarine region of Patos Lagoon and other water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dehghani Soltani, Samereh; Babaee, Abdolreza; Shojaei, Mohammad; Salehinejad, Parvin; Seyedi, Fatemeh; JalalKamali, Mahshid; Nematollahi-Mahani, Seyed Noureddin
2016-02-01
Light-emitting diodes (LED) have recently been introduced as a potential factor for proliferation of various cell types in vitro. Nowadays, stem cells are widely used in regenerative medicine. Human umbilical cord matrix-derived mesenchymal (hUCM) cells can be more easily isolated and cultured than adult mesenchymal stem cells. The aim of this study was to evaluate the effect of red and green lights produced by LED on the proliferation of hUCM cells. hUCM cells were isolated from the umbilical cord, and light irradiation was applied at radiation energies of 0.318, 0.636, 0.954, 1.59, 3.18, 6.36, 9.54, and 12.72 J/cm(2). Irradiation of the hUCM cells shows a significant (p < 0.05) increase in cell number as compared to controls after 40 h. In addition, cell proliferation on days 7, 14, and 21 in irradiated groups were significantly (p < 0.001) higher than that in the non-irradiated groups. The present study clearly demonstrates the ability of red and green lights irradiation to promote proliferation of hUCM cells in vitro. The energy applied to the cells through LED irradiation is an effective factor with paradoxical alterations. Green light inserted a much profound effect at special dosages than red light.
Medical Device Plug-and-Play Interoperability Standards and Technology Leadership
2014-10-01
downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/ CDRH /CDRHReports/UCM391521.pdf. Dr. Goldman spoke in multiple panels at this workshop...downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTo bacco/ CDRH /CDRHReports/UCM391521.pdf Arney D, Plourde J, Schrenker R, Mattegunta P
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-03
...ApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/ucm253101.htm , http://www.regulations.../Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/ucm253101.htm , http...), in a format that FDA can process, review, and archive. Currently, the Agency can process, review, and...
NASA Astrophysics Data System (ADS)
Kim, Youngseob; Sartelet, Karine; Raut, Jean-Christophe; Chazette, Patrick
2015-04-01
Impacts of meteorological modeling in the planetary boundary layer (PBL) and urban canopy model (UCM) on the vertical mixing of pollutants are studied. Concentrations of gaseous chemical species, including ozone (O3) and nitrogen dioxide (NO2), and particulate matter over Paris and the near suburbs are simulated using the 3-dimensional chemistry-transport model Polair3D of the Polyphemus platform. Simulated concentrations of O3, NO2 and PM10/PM2.5 (particulate matter of aerodynamic diameter lower than 10 μm/2.5 μm, respectively) are first evaluated using ground measurements. Higher surface concentrations are obtained for PM10, PM2.5 and NO2 with the MYNN PBL scheme than the YSU PBL scheme because of lower PBL heights in the MYNN scheme. Differences between simulations using different PBL schemes are lower than differences between simulations with and without the UCM and the Corine land-use over urban areas. Regarding the root mean square error, the simulations using the UCM and the Corine land-use tend to perform better than the simulations without it. At urban stations, the PM10 and PM2.5 concentrations are over-estimated and the over-estimation is reduced using the UCM and the Corine land-use. The ability of the model to reproduce vertical mixing is evaluated using NO2 measurement data at the upper air observation station of the Eiffel Tower, and measurement data at a ground station near the Eiffel Tower. Although NO2 is under-estimated in all simulations, vertical mixing is greatly improved when using the UCM and the Corine land-use. Comparisons of the modeled PM10 vertical distributions to distributions deduced from surface and mobile lidar measurements are performed. The use of the UCM and the Corine land-use is crucial to accurately model PM10 concentrations during nighttime in the center of Paris. In the nocturnal stable boundary layer, PM10 is relatively well modeled, although it is over-estimated on 24 May and under-estimated on 25 May. However, PM10 is under-estimated on both days in the residual layer, and over-estimated on both days over the residual layer. The under-estimations in the residual layer are partly due to difficulties to estimate the PBL height, to an over-estimation of vertical mixing during nighttime at high altitudes and to uncertainties in PM10 emissions. The PBL schemes and the UCM influence the PM vertical distributions not only because they influence vertical mixing (PBL height and eddy-diffusion coefficient), but also horizontal wind fields and humidity. However, for the UCM, it is the influence on vertical mixing that impacts the most the PM10 vertical distribution below 1.5 km.
Short, J.W.; Kolak, J.J.; Payne, J.R.; Van Kooten, G. K.
2007-01-01
We compared hydrocarbons in water, suspended particulate matter (SPM), and riparian sediment collected from coastal watersheds along the Yakataga foreland with corresponding hydrocarbons in Gulf of Alaska benthic sediments. This comparison allows an evaluation of hydrocarbon contributions to marine sediments from natural oil seeps, coal and organic matter (e.g., kerogen) associated with eroding siliciclastic rocks. The samples from oil seeps show extensive loss of low-molecular weight n-alkanes (
Latest technologies on ultrasonic cleaning
NASA Astrophysics Data System (ADS)
Hofstetter, Hans U.
2007-05-01
UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.
Change of a motor synergy for dampening hand vibration depending on a task difficulty.
Togo, Shunta; Kagawa, Takahiro; Uno, Yoji
2014-10-01
The present study investigated the relationship between the number of usable degrees of freedom (DOFs) and joint coordination during a human-dampening hand vibration task. Participants stood on a platform generating an anterior-posterior directional oscillation and held a water-filled cup. Their usable DOFs were changed under the following conditions of limb constraint: (1) no constraint; (2) ankle constrained; and (3) ankle-knee constrained. Kinematic whole-body data were recorded using a three-dimensional position measurement system. The jerk of each body part was evaluated as an index of oscillation intensity. To quantify joint coordination, an uncontrolled manifold (UCM) analysis was applied and the variance of joints related to hand jerk divided into two components: a UCM component that did not affect hand jerk and an orthogonal (ORT) component that directly affected hand jerk. The results showed that hand jerk when the task used a cup filled with water was significantly smaller than when a cup containing stones was used, regardless of limb constraint condition. Thus, participants dampened their hand vibration utilizing usable joint DOFs. According to UCM analysis, increasing the oscillation velocity and the decrease in usable DOFs by the limb constraints led to an increase of total variance of the joints and the UCM component, indicating that a synergy-dampening hand vibration was enhanced. These results show that the variance of usable joint DOFs is more fitted to the UCM subspace when the joints are varied by increasing the velocity and limb constraints and suggest that humans adopt enhanced synergies to achieve more difficult tasks.
Use of motor abundance in old adults in the regulation of a narrow-based stance.
Hsu, Wei-Li; Lin, Kwan-Hwa; Yang, Rong-Sen; Cheng, Chih-Hsiu
2014-02-01
The ability to maintain stable balance while standing decreases with age. The body must coordinate multiple joints using "freeze" or "free" strategy, or a combination of both to ensure balance stability. The purpose of this study was to examine age-related changes in the use of motor abundance during upright stance on a narrow base without visual input. Uncontrolled manifold (UCM) analysis was used to decompose the movement variability of joints into goal-equivalent variability (GEV) and non-goal-equivalent variability (NGEV). The ratio between GEV and NGEV (UCM(ratio)) quantifies the joint coordination related to postural stability, and a high UCM(ratio) value indicates flexible control of joints. To perform balance tests, participants in this study (healthy young and old adults, 20 each) were asked to stand on a flat platform and on narrow wooden blocks with their eyes open and then eyes closed. In upright balance tests, both old and young adults maintained postural stability. GEV was greater than NGEV across all participants and conditions. However, GEV was higher in the young adults than in the old adults, whereas NGEV was higher in the old adults than in the young adults. Therefore, the old adults exhibited a lower UCM(ratio) than the young adults. The old adults were unable to exploit motor abundance and used a less flexible multi-joint coordination pattern to achieve stable balance. The UCM(ratio) value reflects the quality of postural control and can be used for assessing joint coordination in balance disorders.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
...ScienceResearch/UCM334110.pdf . 2. FDA, ``Appendix 4 to Draft Qualitative Risk Assessment of Risk of....regulations.gov and at http://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafetyAssessment/UCM377408... on a Farm,'' 2013. Available at: http://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafety...
Cabrerizo, Ana; Tejedo, Pablo; Dachs, Jordi; Benayas, Javier
2016-11-01
Two Antarctic expeditions (in 2009 and 2011) were carried out to assess the local and remote anthropogenic sources of aliphatic and aromatic hydrocarbons, as well as potential biogenic hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs), n-alkanes, biomarkers such as phytane (Ph) and pristane (Pr), and the aliphatic unresolved complex mixture (UCM), were analysed in soil and vegetation samples collected at Deception, Livingston, Barrientos and Penguin Islands (South Shetland Islands, Antarctica). Overall, the patterns of n-alkanes in lichens, mosses and grass were dominated by odd-over-even carbon number alkanes. Mosses and vascular plants showed high abundances of n-C21 to n-C35, while lichens also showed high abundances of n-C17 and n-C19. The lipid content was an important factor controlling the concentrations of n-alkanes in Antarctic vegetation (r(2)=0.28-0.53, p-level<0.05). n-C12 to n-C35 n-alkanes were analysed in soils with a predominance of odd C number n-alkanes (n-C25, n-C27, n-C29, and n-C31), especially in the background soils not influenced by anthropogenic sources. The large values for the carbon predominance index (CPI) and the correlations between odd alkanes and some PAHs suggest the potential biogenic sources of these hydrocarbons in Antarctica. Unresolved complex mixture and CPI values ~1 detected at soils collected at intertidal areas and within the perimeter of Juan Carlos research station, further supported the evidence that even a small settlement (20 persons during the austral summer) can affect the loading of aliphatic and aromatic hydrocarbons in nearby soils. Nevertheless, the assessment of Pr/n-C17 and Ph/n-C18 ratios showed that hydrocarbon degradation is occurring in these soils. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.
2015-05-01
The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.
A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids
2001-10-01
the US-Spain Joint Commission for Scienti c and Technological Cooperation. yDepartamento Arquitectura de Computadores y Automatica, Universidad...Complutense, 28040 Madrid, Spain. E-mail: mpmatias@dacya.ucm.es zDepartamento Arquitectura de Computadores y Automatica, Universidad Complutense, 28040...Madrid, Spain. E-mail: rubensm@dacya.ucm.es xDepartamento Arquitectura de Computadores y Automatica, Universidad Complutense, 28040 Madrid, Spain. E-mail
Gros, Jonas; Reddy, Christopher M; Aeppli, Christoph; Nelson, Robert K; Carmichael, Catherine A; Arey, J Samuel
2014-01-01
Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils.
Guo, Wei; He, Mengchang; Yang, Zhifeng; Lin, Chunye; Quan, Xiangchun
2011-02-28
The characteristics of petroleum hydrocarbons and the risks they pose to the ecosystem were studied in the Xihe River, which is an urban river located in Shenyang, China. High levels of aliphatic hydrocarbons (AHc) and polycyclic aromatic hydrocarbons (PAHs) were observed in the river due to the discharge of wastewater from industrial and municipal facilities for a long period of time. High-molecular-weight hydrocarbons, including unresolved complex mixtures (UCM) of n-alkanes between n-C16 and n-C32 and of PAHs with four to six rings, were the dominant hydrocarbons in the river, particularly in suspended particulate matter (SPM) and sediments. The AHc was mainly from petrogenic sources, whereas PAHs was from both pyrolytic and petrogenic source inputs. Our results suggest that there is a high risk of toxicity for the soils and groundwater of the study area. The overall toxicity in the sediments can be described using the toxic equivalent (TEQ) of dibenzo[a,h]anthracene (DBA) based on benzo(a)pyrene (TEQ(BaP)) and dioxins (TEQ(TCDD)) toxic equivalent concentrations. The TEQ values for benzo(a)pyrene (TEQ(BaP)) and dioxins (TEQ(TCDD)) presented a consistent assessment of sediment PAHs. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Li, Shuanglin; Zhang, Shengyin; Dong, Heping; Zhao, Qingfang; Cao, Chunhui
2015-11-15
In order to determine the source of organic matter and the fingerprint of the oil components, 50 samples collected from the near-surface sediments of the oil spill area in Bohai Sea, China, were analyzed for grain size, total organic carbon, aliphatic hydrocarbons (AHs), and polycyclic aromatic hydrocarbons (PAHs). The concentrations of C15-35 n-alkanes and 16 United States Environmental Protection Agency (US EPA) priority pollutant PAHs were found in the ranges of 0.88-3.48μg g(-1) and 9.97-490.13ng/g, respectively. The terrestrial organic matters characterized by C27-C35 n-alkanes and PAHs, resulting from the combustion of higher plants, are dominantly contributed from the transportation of these plants by rivers. Marine organic matters produced from plankton and aquatic plants were represented by C17-C26 n-alkanes in AHs. Crude oil, characterized by C17-C21 n-alkanes, unresolved complex mixture (UCM) with a mean response factor of C19 n-alkanes, low levels of perylene, and a high InP/(InP+BghiP) ratio, seeped into the oceans from deep hydrocarbon reservoirs, as a result of geological faults. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rushdi, A. I.; El-Mubarak, A. H.; Luis, L.; Mubarak, A. T.; Qurban, M.; Al-Mutlaq, K. F.; Simoneit, B. R.
2013-12-01
The formation and sources of atmospheric particulate matter (PM) can affect air quality of metropolitan areas as well as climate change. Their chemical components can be toxic to humans and hazardous to the environment. Saudi Arabia is witnessing new development and industrial activities, which are expected to contribute to natural, regional and anthropogenic PM inputs of organic tracers. This work investigates the characteristics and sources of the extractable organic matter (EOM) in atmospheric suspended PM from the city of Dhahran in the eastern part of Saudi Arabia. The major compounds were an unresolved complex mixture (UCM) of branched and cyclic hydrocarbons (12-70% of EOM), plasticizers (7-30% of EOM for aryl phosphates and 4-18% of EOM for phthalates), n-alkanes (3-15% of EOM), hopane biomarkers (0.1-4.2% of EOM), n-alkanones (0.3-1.7% of EOM), PAHs (0.1-0.6% of EOM), sterane biomarkers (0.0-0.1% of EOM), and sterols (0.0-0.1% of EOM). Plasticizers are evidently major compounds (11- 48% of EOM) in the suspended PM of Dhahran, which likely have serious public health effects and environmental consequences. The major sources of these organic tracers are emissions from industrial factories north of the city, plastics and biomass burning, and petroleum product combustion.
ProBDNF Signaling Regulates Depression-Like Behaviors in Rodents under Chronic Stress.
Bai, Yin-Yin; Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Kang, Zhi-Long; Zhou, Li; Liu, Dennis; Zeng, Yue-Qing; Wang, Ting-Hua; Tian, Chang-Fu; Liao, Hong; Bobrovskaya, Larisa; Zhou, Xin-Fu
2016-11-01
Chronic exposure to stressful environment is a key risk factor contributing to the development of depression. However, the mechanisms involved in this process are still unclear. Brain-derived neurotropic factor (BDNF) has long been investigated for its positive role in regulation of mood, although the role of its precursor, proBDNF, in regulation of mood is not known. In this study, using an unpredictable chronic mild stress (UCMS) paradigm we found that the protein levels of proBDNF were increased in the neocortex and hippocampus of stressed mice and this UCMS-induced upregulation of proBDNF was abolished by chronic administration of fluoxetine. We then established a rat model of UCMS and found that the expression of proBDNF/p75 NTR /sortilin was upregulated, whereas the expression of mature BDNF and TrkB was downregulated in both neocortex and hippocampus of chronically stressed rats. Finally, we found that the injection of anti-proBDNF antibody via intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) approaches into the UCMS rats significantly reversed the stress-induced depression-like behavior and restored the exploratory activity and spine growth. Although intramuscular injection of AAV-proBDNF did not exacerbate the UCMS-elicited rat mood-related behavioral or pathological abnormalities, i.c.v. injection of AAV-proBDNF increased the depression-like behavior in naive rats. Our findings suggest that proBDNF plays a role in the development of chronic stress-induced mood disturbances in rodents. Central (i.c.v.) or peripheral (i.p.) inhibition of proBDNF by injecting specific anti-proBDNF antibodies may provide a novel therapeutic approach for the treatment of stress-related mood disorders.
Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar
2016-01-01
Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349
Human umbilical cord derived matrix: A scaffold suitable for tissue engineering application.
Dan, Pan; Velot, Émilie; Mesure, Benjamin; Groshenry, Guillaume; Bacharouche, Jalal; Decot, Véronique; Menu, Patrick
2017-01-01
Human tissue derived natural extracellular matrix (ECM) has great potential in tissue engineering. We sought to isolate extracellular matrix derived from human umbilical cord and test its potential in tissue engineering. An enzymatic method was applied to isolate and solubilized complete human umbilical cord derived matrix (hUCM). The obtained solution was analyzed for growth factors, collagen and residual DNA contents, then used to coat 2D and 3D surfaces for cell culture application. The hUCM was successfully isolated with trypsin digestion to acquire a solution containing various growth factors and collagen but no residual DNA. This hUCM solution can form a coating on 2D and 3D substrates suitable cell culture. We developed a new matrix derived from human source that can be further used in tissue engineering.
Li, Lu-Fan; Yang, Jie; Ma, Shi-Ping; Qu, Rong
2013-07-05
Growing evidence indicates that glia atrophy contributes to the pathophysiology and the pathogenesis of major depressive disorder. Magnolol is the main constituent identified in the bark of Magnolia officinalis, which has been used for the treatment of mental disorders, including depression, in Asian countries. In this study, we investigated the antidepressant-like effect and the possible mechanisms of magnolol in rats subjected to unpredictable chronic mild stress (UCMS). The ameliorative effect of magnolol on depression symptoms was investigated through behavior tests, including sucrose preference test, open-field test and forced-swimming test. In addition, the levels of glial fibrillary acidic protein (GFAP), an astrocyte marker, in the hippocampus and prefrontal cortex were determined by immunohistochemistry, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR). Exposure to UCMS resulted in a decrease of behavioral activity, whereas magnolol (20, 40 mg/kg) and fluoxetine (20mg/kg) administration significantly reversed the depressive-like behaviors (P<0.05).Moreover, treatment with magnolol effectively increased GFAP mRNA and protein levels in UCMS rats. These results confirmed the antidepressant-like effect of magnolol, which maybe primarily mediated by reversing the glial atrophy in the UCMS rat brain. Copyright © 2013 Elsevier B.V. All rights reserved.
PhenoWorld: a new paradigm to screen rodent behavior
Castelhano-Carlos, M; Costa, P S; Russig, H; Sousa, N
2014-01-01
Modeling depression in animals has inherent complexities that are augmented by intrinsic difficulties to measure the characteristic features of the disorder. Herein, we describe the PhenoWorld (PhW), a new setting in which groups of six rats lived in an ethological enriched environment, and have their feeding, locomotor activity, sleeping and social behavior automatically monitored. A battery of emotional and cognitive tests was used to characterize the behavioral phenotype of animals living in the PhW and in standard conditions (in groups of six and two rats), after exposure to an unpredictable chronic mild stress paradigm (uCMS) and antidepressants. Data reveal that animals living in the PhW displayed similar, but more striking, behavioral differences when exposed to uCMS, such as increased behavioral despair shown in the forced swimming test, resting/sleep behavior disturbances and reduced social interactions. Moreover, several PhW-cage behaviors, such as spontaneous will to go for food or exercise in running wheels, proved to be sensitive indicators of depressive-like behavior. In summary, this new ethological enriched paradigm adds significant discriminative power to screen depressive-like behavior, in particularly rodent's hedonic behavior. PMID:26126181
Van Camp, Gilles; Cigalotti, Jenny; Bouwalerh, Hammou; Mairesse, Jérôme; Gatta, Eleonora; Palanza, Paola; Maccari, Stefania; Morley-Fletcher, Sara
2018-07-01
The interplay between experiences during critical developmental periods and later adult life is crucial in shaping individual variability in stress coping strategies. Exposure to stressful events in early life has strongly programs an individual's phenotype and adaptive capabilities. Until now, studies on programming and reversal strategies in early life stress animal models have been essentially limited to males. By using the perinatal stress (PRS) rat model (a model more sensitive to aging changes) in middle-aged females, we investigated the behavioral and endocrine responses following exposure in later life to an unpredictable chronic mild stress (uCMS) condition for six weeks. PRS by itself accelerated the ageing-related-disruption in the estrous cycle and led to reductions in the levels of estradiol. It also reduced motivational and risk-taking behavior in later life, with PRS females being characterized by a reduction in self-grooming in the splash test, in the exploration of the light compartment in the light/dark box test and in the time spent eating a palatable food in the novelty-induced suppression feeding test. PRS females showed impaired regulation of plasma glucose and insulin levels following a glucose challenge, with a hyperglycemic phenotype, and disrupted feedback of the HPA axis after acute stress with respect to controls. Remarkably, all PRS-induced alterations were modified by exposure to the uCMS procedure, thus resulting in a disease-dependent intervention; controls were not affected by uCMS, except for a slight and transient reduction in body weight, while PRS females displayed a reduced body weight gain for the entire duration of the uCMS procedure. Interestingly, the effects of uCMS on PRS females were still observed up to two months after its termination and the females displayed heightened rhythms of locomotor activity and enhanced sensitivity to reward with respect to controls exposed to uCMS. Our findings indicate that many parameters of the PRS female adult phenotype are shaped by both early and later life experiences in a non-additive way. As a consequence, early stressed individuals may be programmed with a more dynamic phenotype than non-stressed individuals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stability of steady hand force production explored across spaces and methods of analysis.
de Freitas, Paulo B; Freitas, Sandra M S F; Lewis, Mechelle M; Huang, Xuemei; Latash, Mark L
2018-06-01
We used the framework of the uncontrolled manifold (UCM) hypothesis and explored the reliability of several outcome variables across different spaces of analysis during a very simple four-finger accurate force production task. Fourteen healthy, young adults performed the accurate force production task with each hand on 3 days. Small spatial finger perturbations were generated by the "inverse piano" device three times per trial (lifting the fingers 1 cm/0.5 s and lowering them). The data were analyzed using the following main methods: (1) computation of indices of the structure of inter-trial variance and motor equivalence in the space of finger forces and finger modes, and (2) analysis of referent coordinates and apparent stiffness values for the hand. Maximal voluntary force and the index of enslaving (unintentional finger force production) showed good to excellent reliability. Strong synergies stabilizing total force were reflected in both structure of variance and motor equivalence indices. Variance within the UCM and the index of motor equivalent motion dropped over the trial duration and showed good to excellent reliability. Variance orthogonal to the UCM and the index of non-motor equivalent motion dropped over the 3 days and showed poor to moderate reliability. Referent coordinate and apparent stiffness indices co-varied strongly and both showed good reliability. In contrast, the computed index of force stabilization showed poor reliability. The findings are interpreted within the scheme of neural control with referent coordinates involving the hierarchy of two basic commands, the r-command and c-command. The data suggest natural drifts in the finger force space, particularly within the UCM. We interpret these drifts as reflections of a trade-off between stability and optimization of action. The implications of these findings for the UCM framework and future clinical applications are explored in the discussion. Indices of the structure of variance and motor equivalence show good reliability and can be recommended for applied studies.
Babcock-Adams, Lydia; Chanton, Jeffrey P; Joye, Samantha B; Medeiros, Patricia M
2017-10-01
In April of 2010, the Macondo well blowout in the northern Gulf of Mexico resulted in an unprecedented release of oil into the water column at a depth of approximately 1500 m. A time series of surface and subsurface sediment samples were collected to the northwest of the well from 2010 to 2013 for molecular biomarker and bulk carbon isotopic analyses. While no clear trend was observed in subsurface sediments, surface sediments (0-3 cm) showed a clear pattern with total concentrations of n-alkanes, unresolved complex mixture (UCM), and petroleum biomarkers (terpanes, hopanes, steranes) increasing from May to September 2010, peaking in late November 2010, and strongly decreasing in the subsequent years. The peak in hydrocarbon concentrations were corroborated by higher organic carbon contents, more depleted Δ 14 C values and biomarker ratios similar to those of the initial MC252 crude oil reported in the literature. These results indicate that at least part of oil discharged from the accident sedimented to the seafloor in subsequent months, resulting in an apparent accumulation of hydrocarbons on the seabed by the end of 2010. Sediment resuspension and transport or biodegradation may account for the decrease in sedimented oil quantities in the years following the Macondo well spill. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proarrhythmia risk prediction using human induced pluripotent stem cell-derived cardiomyocytes.
Yamazaki, Daiju; Kitaguchi, Takashi; Ishimura, Masakazu; Taniguchi, Tomohiko; Yamanishi, Atsuhiro; Saji, Daisuke; Takahashi, Etsushi; Oguchi, Masao; Moriyama, Yuta; Maeda, Sanae; Miyamoto, Kaori; Morimura, Kaoru; Ohnaka, Hiroki; Tashibu, Hiroyuki; Sekino, Yuko; Miyamoto, Norimasa; Kanda, Yasunari
2018-04-01
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are expected to become a useful tool for proarrhythmia risk prediction in the non-clinical drug development phase. Several features including electrophysiological properties, ion channel expression profile and drug responses were investigated using commercially available hiPSC-CMs, such as iCell-CMs and Cor.4U-CMs. Although drug-induced arrhythmia has been extensively examined by microelectrode array (MEA) assays in iCell-CMs, it has not been fully understood an availability of Cor.4U-CMs for proarrhythmia risk. Here, we evaluated the predictivity of proarrhythmia risk using Cor.4U-CMs. MEA assay revealed linear regression between inter-spike interval and field potential duration (FPD). The hERG inhibitor E-4031 induced reverse-use dependent FPD prolongation. We next evaluated the proarrhythmia risk prediction by a two-dimensional map, which we have previously proposed. We determined the relative torsade de pointes risk score, based on the extent of FPD with Fridericia's correction (FPDcF) change and early afterdepolarization occurrence, and calculated the margins normalized to free effective therapeutic plasma concentrations. The drugs were classified into three risk groups using the two-dimensional map. This risk-categorization system showed high concordance with the torsadogenic information obtained by a public database CredibleMeds. Taken together, these results indicate that Cor.4U-CMs can be used for drug-induced proarrhythmia risk prediction. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Agarwal, Shivam; Jaiswal, Vijay; Singh, Dharamveer; Jaiswal, Prateek; Garg, Amit; Upadhyay, Amit
2016-11-01
Placental redistribution has been shown to improve haematological outcomes in the immediate neonatal period and early infancy. This study compared the effects of delayed cord clamping (DCC) and umbilical cord milking (UCM) on haematological and growth parameters at 12 months of age. This was a follow-up study of a randomised control trial, conducted in a tertiary care paediatric centre from August 2013 to August 2014. We studied 200 apparently healthy Indian infants randomised at birth to receive DCC for 60-90 seconds or UCM. The outcome measures were iron status and physical growth parameters at 12 months. Of the 200 babies, 161 completed the follow-up and baseline characteristics were comparable in both groups. The mean haemoglobin in the DCC group (102.2 (17.2) g/L and serum ferritin 16.44 (2.77) μg/L) showed no significant differences to the UCM group (98.6 (17.1) g/L and 18.2 (2.8) μg/L) at one year. In addition, there were no significant differences in weight, height and mid-upper arm circumference in the two groups. Term-born Indian infants who had DCC at 60-90 seconds or UCM showed no significant differences in ferritin and haemoglobin levels and growth parameters at 12 months of age. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Dänicke, S; Ueberschär, K H; Halle, I; Matthes, S; Valenta, H; Flachowsky, G
2002-11-01
16-wk experiment with laying hens was carried out to examine the effects of feeding of mycotoxin-contaminated maize (CM) on performance, nutrient digestibility, weight of organs, serum chemical parameters, and antibody titers to Newcastle disease virus (NDV) in serum. Also tested were fimbrien antigen K88 in egg yolk and zearalenone (ZON) residues in eggs and tissues. The Fusarium-toxin-contaminated maize contained 17,630 microg deoxynivalenol and 1,580 microg ZON/kg. Moreover, Mycofix Plus (MP), a so-called detoxifying agent, was added to both the uncontaminated control (UCM) and to the CM diet (70% dietary maize inclusion). Each of the four resulting diets (UCM, UCM-MP, CM, CM-MP) was tested on 25 laying hybrids (Lohmann Brown). Feeding of the CM diets significantly depressed feed intake compared to the control groups by approximately 5%. This was mainly due to the effects observed at the beginning of the experiment. Daily egg mass production/hen was 56.6, 58.4, 53.9, and 55.2 g in groups UCM, UCM-MP, CM and CM-MP, respectively. Nutrient digestibility and metabolizability of gross energy were slightly depressed by feeding the CM diets and improved by MP addition. Feeding of the CM diets resulted in a significant decrease in serum titers to NDV and to an increase in yolk titers to antigen K88. No residues of ZON or of its metabolites were found in yolk, albumen, abdominal fat, breast meat, follicles greater than 1 cm in diameter, ovaries including follicles smaller than 1 cm in diameter, magnum, and serum. ZON and alpha-zearalenol (alpha-ZOL) were detected in livers of hens fed the CM diets at mean concentrations of 2.1 and 3.7 microg/kg, respectively. It was concluded that feeding maize which was highly contaminated with Fusarium mycotoxins adversely influenced performance of hens and modulated immune response. At the given level of zearalenone and at the indicated detection limits, no residues of ZON and its metabolites were found in eggs. The effects of the tested detoxifying agent were quite mycotoxin-independent.
NASA Astrophysics Data System (ADS)
Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang
2018-03-01
We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.
Stabilization of cat paw trajectory during locomotion
Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.
2014-01-01
We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676
Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.
Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M
2013-09-20
Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.
Li, Lu-Fan; Lu, Jie; Li, Xiu-Min; Xu, Chang-Liang; Deng, Ji-Min; Qu, Rong; Ma, Shi-Ping
2012-08-01
Magnolol is the main constituent identified in the barks of Magnolia officinalis, which has been used for the treatment of mental disorders including depression in China. In this study, we investigated the antidepressant-like effect of magnolol, and its possible mechanisms in rats subjected to unpredictable chronic mild stress (UCMS). High performance liquid chromatography with electrochemical detection (HPLC-ECD) and immunohistochemical staining analysis were applied to explore the mechanisms underlying the antidepressant-like effect of magnolol. Magnolol (20, 40 mg/kg) significantly reversed UCMS-induced reduction in sucrose consumption and deficiency in locomotor activity. In addition, it was observed that administration of magnolol (20, 40 mg/kg) restored brain-derived neurotrophic factor (BDNF) expression, and normalized the serotonergic system changes in the UCMS-treated rats. These results confirmed the antidepressant-like effect of magnolol, which might be based primarily on its ability to increase the BDNF expression and enhance the activity of the serotonergic system in rat brains. Copyright © 2012 John Wiley & Sons, Ltd.
Hung, Yu-Ping; Lee, Chun-Lin
2017-06-08
Deep ocean water (DOW) has been shown to enhance the functional components of fungi, resulting in increased health benefits. Therefore, using DOW for culturing fungi can enhance the cordycepin and adenosine of Cordyceps militaris (CM) and its protective effects on the liver. In this study, the antiliver fibrosis effects and mechanisms of ultrapure water-cultured CM (UCM), DOW-cultured CM (DCM), synthetic water-cultured CM, DOW, cordycepin, and adenosine were compared in the liver fibrosis mice induced by intraperitoneal injections of thioacetamide (TAA). The results indicated that DCM exhibited superior performance in reducing liver collagen accumulation, mitigating liver injuries, inhibiting proinflammatory factors and fibrosis-related factor (TGF-β1, Smad2/3, α-SMA, COL1A1) expression compared with UCM. DOW, cordycepin, and adenosine also performed antiliver fibrosis effect. Therefore, because DCM is rich in DOW and functional components, it can achieve anti-liver fibrosis effects through multiple pathways. These ameliorative effects are considerably superior to those of UCM.
Dehghani-Soltani, Samereh; Shojaee, Mohammad; Jalalkamali, Mahshid; Babaee, Abdolreza; Nematollahi-Mahani, Seyed Noureddin
2017-08-30
Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.
NASA Astrophysics Data System (ADS)
Flores, Rosa M.; Doskey, Paul V.
2016-04-01
Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.
Bassi, Sabrina; Seney, Marianne L; Argibay, Pablo; Sibille, Etienne
2015-04-01
The amygdala is innervated by the cholinergic system and is involved in major depressive disorder (MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched controls (females: N = 16 pairs; males: N = 12 pairs), and in the mouse unpredictable chronic mild stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N = 6 pairs; males: N = 6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of women with MDD (p < 0.0001), but not males, and of UCMS-exposed mice (males and females; p = 0.037). HCNP-pp protein levels were investigated in the human female cohort, but no difference was found. There were no differences in gene expression of acetylcholinesterase (AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice (males and females; p = 0.044). Exploratory analyses revealed a baseline expression difference of cholinergic signaling-related genes between women and men (p < 0.0001). In conclusion, elevated amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially independently from regulating the cholinergic system. The differential expression of genes between women and men could also contribute to the increased vulnerability of females to develop MDD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sekhon, Mehtab K; Yoder, Bradley A
2018-05-08
Necrotizing enterocolitis (NEC) is a serious complication of prematurity. Our objective was to evaluate the impact of an umbilical cord milking protocol (UCM) and pasteurized donor human milk (PDHM) on NEC rates in infants less than 30 weeks gestational age from January 1, 2010 to September 30, 2016. We hypothesized an incremental decrease in NEC after each intervention. We performed a retrospective review of 638 infants born less than 30 weeks gestational age. Infants were grouped into three epochs: pre-UCM/pre-PDHM (Epoch 1, n = 159), post-UCM/pre-PDHM (Epoch 2, n = 133), and post-UCM/post-PDHM (Epoch 3, n = 252). The incidence of NEC, surgical NEC, and NEC/death were compared. Logistic regression was used to determine independent significance of time epoch, gestational age, birth weight, and patent ductus arteriosus for NEC, surgical NEC, and death/NEC. At birth, infants in Epoch 1 were younger than Epoch 2 and 3 (26.8 weeks versus 27.3 and 27.2, respectively, P = 0.036) and smaller (910 g versus 1012 and 983, respectively, P = 0.012). Across epochs, there was a significant correlation between patent ductus arteriosus treatment and NEC rate (P < 0.001, Cochran-Mantel-Haenszel). There was a significant decrease in rates of NEC, surgical NEC, and NEC/death between groups. Logistic regression showed this as significant for rates of NEC and surgical NEC between Epoch 1 and 3. Patent ductus arteriosus was a significant variable affecting the incidence of NEC, but not surgical NEC or death/NEC. An umbilical cord milking protocol and pasteurized donor human milk availability was associated with decreased rates of NEC and surgical NEC. This suggests an additive effect of these interventions in preventing NEC.
Shepard, Ryan; Page, Chloe E; Coutellier, Laurence
2016-09-22
Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Urban Climate Map System for Dutch spatial planning
NASA Astrophysics Data System (ADS)
Ren, Chao; Spit, Tejo; Lenzholzer, Sanda; Yim, Hung Lam Steve; Heusinkveld, Bert; van Hove, Bert; Chen, Liang; Kupski, Sebastian; Burghardt, René; Katzschner, Lutz
2012-08-01
Facing climate change and global warming, outdoor climatic environment is an important consideration factor for planners and policy makers because improving it can greatly contribute to achieve citizen's thermal comfort and create a better urban living quality for adaptation. Thus, the climatic information must be assessed systematically and applied strategically into the planning process. This paper presents a tool named Urban Climate Map System (UCMS) that has proven capable of helping compact cities to incorporate climate effects in planning processes in a systematic way. UCMS is developed and presented in a Geographic Information System (GIS) platform in which the lessons learned and experience gained from interdisciplinary studies can be included. The methodology of UCMS of compact cities, the construction procedure, and the basic input factors - including the natural climate resources and planning data - are described. Some literatures that shed light on the applicability of UMCS are reported. The Municipality of Arnhem is one of Dutch compact urban areas and still under fast urban development and urban renewal. There is an urgent need for local planners and policy makers to protect local climate and open landscape resources and make climate change adaptation in urban construction. Thus, Arnhem is chosen to carry out a case study of UCMS. Although it is the first work of Urban Climatic Mapping in The Netherlands, it serves as a useful climatic information platform to local planners and policy makers for their daily on-going works. We attempt to use a quick method to collect available climatic and planning data and create an information platform for planning use. It relies mostly on literature and theoretical understanding that has been well practiced elsewhere. The effort here is to synergize the established understanding for a case at hand and demonstrate how useful guidance can still be made for planners and policy makers.
Gumuslu, Esen; Mutlu, Oguz; Sunnetci, Deniz; Ulak, Guner; Celikyurt, Ipek K.; Cine, Naci; Akar, Furuzan; Savlı, Hakan; Erden, Faruk
2014-01-01
Agomelatine, a novel antidepressant with established clinical efficacy, acts as an agonist of melatonergic MT1 and MT2 receptors and as an antagonist of 5-HT2C receptors. The present study was undertaken to investigate whether chronic treatment with agomelatine would block unpredictable chronic mild stress (UCMS)-induced cognitive deterioration in mice in passive avoidance (PA), modified elevated plus maze (mEPM), novel object recognition (NOR), and Morris water maze (MWM) tests. Moreover, the effects of stress and agomelatine on brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) messenger ribonucleic acid (mRNA) levels in the hippocampus was also determined using quantitative real-time polymerase chain reaction (RT-PCR). Male inbred BALB/c mice were treated with agomelatine (10 mg/kg, i.p.), melatonin (10 mg/kg), or vehicle daily for five weeks. The results of this study revealed that UCMS-exposed animals exhibited memory deterioration in the PA, mEPM, NOR, and MWM tests. The chronic administration of melatonin had a positive effect in the PA and +mEPM tests, whereas agomelatine had a partial effect. Both agomelatine and melatonin blocked stress-induced impairment in visual memory in the NOR test and reversed spatial learning and memory impairment in the stressed group in the MWM test. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in UCMS-exposed mice, and these alterations were reversed by chronic agomelatine or melatonin treatment. Thus, agomelatine plays an important role in blocking stress-induced hippocampal memory deterioration and activates molecular mechanisms of memory storage in response to a learning experience. PMID:24634580
Quality and sensitivity of high-resolution numerical simulation of urban heat islands
NASA Astrophysics Data System (ADS)
Li, Dan; Bou-Zeid, Elie
2014-05-01
High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).
YAN, BEIZHAN; ABRAJANO, TEOFILO A.; BOPP, RICHARD F.; CHAKY, DAMON A.; BENEDICT, LUCILLE A.; CHILLRUD, STEVEN N.
2011-01-01
Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides 210Pb and 137Cs were used to assign approximate dates to each individual section in the core. The dating profile based on 210Pb matches very well with the time constraints provided by 137Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R [the ratio of unresolved complex mixture (UCM) to saturated hydrocarbons in the aliphatic fraction] and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP [1,7/(1,7 + 2,6)-DMP], retene to retene plus chrysene [Ret/(Ret + Chy)], and fluoranthene to fluoranthene plus pyrene [Fl/(Fl + Py)] provide additional source discrimination throughout the core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both Fl/(Fl + Py) and 1,7/(1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s. PMID:16201624
Yan, Beizhan; Abrajano, Teofilo A; Bopp, Richard F; Chaky, Damon A; Benedict, Lucille A; Chillrud, Steven N
2005-09-15
Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides 210Pb and 137Cs were used to assign approximate dates to each individual section in the core. The dating profile based on 210Pb matches very well with the time constraints provided by 137Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R [the ratio of unresolved complex mixture (UCM)to saturated hydrocarbons in the aliphatic fraction] and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP [1,7/(1,7 + 2,6)-DMP], retene to retene plus chrysene [Ret/(Ret + Chy)], and fluoranthene to fluoranthene plus pyrene [FI/(FI + Py)] provide additional source discrimination throughoutthe core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both FI/(FI + Py) and 1,7/ (1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s.
Trunk lean gait decreases multi-segmental coordination in the vertical direction.
Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi
2017-11-01
[Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.
Jo, ByungWan
2018-01-01
The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R2 and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality. PMID:29561777
Jo, ByungWan; Khan, Rana Muhammad Asad
2018-03-21
The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH₄, CO, SO₂, and H₂S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R ² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.
Impact of Land Use/Land Cover Conditions on WRF Model Evaluation for Heat Island Assessment
NASA Astrophysics Data System (ADS)
Bhati, S.; Mohan, M.
2017-12-01
Urban heat island effect has been assessed using Weather Research and Forecasting model (WRF v3.5) focusing on air temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. Impact of urbanization related changes in land use/land cover (LULC) on model outputs has been analyzed. Four simulations have been carried out with different types of LULC data viz. (1) USGS , (2) MODIS, (3) user-modified USGS and (4) user modified land use data coupled with urban canopy model (UCM) for incorporation of canopy features. Heat island intensities have been estimated based on these simulations and subsequently compared with those derived from in-situ and satellite observations. There is a significant improvement in model performance with modification of LULC and inclusion of UCM. Overall, RMSEs for near surface temperature improved from 6.3°C to 3.9°C and index of agreement for mean urban heat island intensities (UHI) improved from 0.4 to 0.7 with modified land use coupled with UCM. In general, model is able to capture the magnitude of UHI as well as high UHI zones well. The study highlights the importance of appropriate and updated representation of landuse-landcover and urban canopies for improving predictive capabilities of the mesoscale models.
User Centric Job Monitoring - a redesign and novel approach in the STAR experiment
NASA Astrophysics Data System (ADS)
Arkhipkin, D.; Lauret, J.; Zulkarneeva, Y.
2014-06-01
User Centric Monitoring (or UCM) has been a long awaited feature in STAR, whereas programs, workflows and system "events" could be logged, broadcast and later analyzed. UCM allows to collect and filter available job monitoring information from various resources and present it to users in a user-centric view rather than an administrative-centric point of view. The first attempt and implementation of "a" UCM approach was made in STAR 2004 using a log4cxx plug-in back-end and then further evolved with an attempt to push toward a scalable database back-end (2006) and finally using a Web-Service approach (2010, CSW4DB SBIR). The latest showed to be incomplete and not addressing the evolving needs of the experiment where streamlined messages for online (data acquisition) purposes as well as the continuous support for the data mining needs and event analysis need to coexists and unified in a seamless approach. The code also revealed to be hardly maintainable. This paper presents the next evolutionary step of the UCM toolkit, a redesign and redirection of our latest attempt acknowledging and integrating recent technologies and a simpler, maintainable and yet scalable manner. The extended version of the job logging package is built upon three-tier approach based on Task, Job and Event, and features a Web-Service based logging API, a responsive AJAX-powered user interface, and a database back-end relying on MongoDB, which is uniquely suited for STAR needs. In addition, we present details of integration of this logging package with the STAR offline and online software frameworks. Leveraging on the reported experience and work from the ATLAS and CMS experience on using the ESPER engine, we discuss and show how such approach has been implemented in STAR for meta-data event triggering stream processing and filtering. An ESPER based solution seems to fit well into the online data acquisition system where many systems are monitored.
Sanna, Maria Domenica; Quattrone, Alessandro; Galeotti, Nicoletta
2018-06-01
Currently available antidepressant drugs often fail to achieve full remission and patients might evolve to treatment resistance, showing the need to achieve a better therapy of depressive disorders. Increasing evidence supports that post-transcriptional regulation of gene expression is important in neuronal development and survival and a relevant role is played by RNA binding proteins (RBP). To explore new therapeutic strategies, we investigated the role of the neuron-specific ELAV-like RBP (HuB, HuC, HuD) in a mouse model of depression. In this study, a 4-week unpredictable chronic mild stress (UCMS) protocol was applied to mice to induce a depressive-like phenotype. In the last 2 weeks of the UCMS regimen, silencing of HuB, HuC or HuD was performed by using specific antisense oligonucleotides (aODN). Treatment of UCMS-exposed mice with anti-HuB and anti-HuC aODN improved both anhedonia and behavioural despair, used as measures of depressive-like behaviour, without modifying the response of stressed mice to an anxiety-inducing environment. On the contrary, HuD silencing promoted an anxiolytic-like behaviour in UCMS-exposed mice without improving depressive-like behaviours. The antidepressant-like phenotype of anti-HuB and anti-HuC mice was not shown concurrently with the promotion of adult hippocampal neurogenesis in the dentate gyrus, and no increase in the BDNF and CREB content was detected. Conversely, in the CA3 hippocampal region, projection area of newly born neurons, HuB and HuC silencing increased the number of BrdU/NeuN positive cells. These results give the first indication of a role of nELAV in the modulation of emotional states in a mouse model of depression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Culig, Luka; Surget, Alexandre; Bourdey, Marlene; Khemissi, Wahid; Le Guisquet, Anne-Marie; Vogel, Elise; Sahay, Amar; Hen, René; Belzung, Catherine
2017-11-01
Major depression is hypothesized to be associated with dysregulations of the hypothalamic-pituitary-adrenal (HPA) axis and impairments in adult hippocampal neurogenesis. Adult-born hippocampal neurons are required for several effects of antidepressants and increasing the rate of adult hippocampal neurogenesis (AHN) before exposure to chronic corticosterone is sufficient to protect against its harmful effects on behavior. However, it is an open question if increasing AHN after the onset of chronic stress exposure would be able to rescue behavioral deficits and which mechanisms might be involved in recovery. We investigated this question by using a 10-week unpredictable chronic mild stress (UCMS) model on a transgenic mouse line (iBax mice), in which the pro-apoptotic gene Bax can be inducibly ablated in neural stem cells following Tamoxifen injection, therefore enhancing the survival of newborn neurons in the adult brain. We did not observe any effect of our treatment in non-stress conditions, but we did find that increasing AHN after 2 weeks of UCMS is sufficient to counteract the effects of UCMS on certain behaviors (splash test and changes in coat state) and endocrine levels and thus to display some antidepressant-like effects. We observed that increasing AHN lowered the elevated basal corticosterone levels in mice exposed to UCMS. This was accompanied by a tamoxifen-induced reversal of the lack of stress-induced decrease in neuronal activation in the anteromedial division of the bed nucleus of the stria terminalis (BSTMA) after intrahippocampal dexamethasone infusion, pointing to a possible mechanism through which adult-born neurons might have exerted their effects. Our results contribute to the neurogenesis hypothesis of depression by suggesting that increasing AHN may be beneficial not just before, but also after exposure to stress by counteracting several of its effects, in part through regulating the HPA axis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cord milking versus immediate clamping in preterm infants: a randomised controlled trial.
El-Naggar, Walid; Simpson, David; Hussain, Arif; Armson, Anthony; Dodds, Linda; Warren, Andrew; Whyte, Robin; McMillan, Douglas
2018-06-14
To investigate whether umbilical cord milking (UCM) at birth improves systemic blood flow and short-term outcomes, as compared with immediate cord clamping (ICC). Randomised clinical trial. Single tertiary care centre. Infants born to eligible women presenting in preterm labour between 24 and 31 weeks' gestation. UCM three times at birth or ICC. Primary outcome included systemic blood flow as represented by echo-derived superior vena cava(SVC) flow at 4-6 hours after birth. The echocardiographer and interpreter were blinded to the randomisation. Secondary outcomes included cardiac output, neonatal morbidities and mortality. Analysis was by intention to treat. A total of 73 infants were randomised (37 to UCM and 36 to ICC). Mean (SD) gestational age was 27 (2) weeks and mean (SD) birth weight was 1040 (283) g. Haemoglobin on admission was higher in the UCM than in the ICC group (16.1 vs 15.0 g/L), p=0.049 (mean difference 1.1, 95% CI 0.003 to 2.2). No statistically significant differences were found between groups in SVC flow at 4-6 hours (88.9±37.8 and 107.3±60.1 mL/kg/min), p=0.13 (mean difference -18.4, 95% CI -41.7 to 5.0 mL/kg/min) or at 10-12 hours of age (102.5±41.8 and 90.6±28.4 mL/kg/min), p=0.17 (mean difference 12.0, 95% CI -4.7 to 28.7 mL/kg/min), cardiac output or neonatal morbidities. Cord milking was not shown to improve functional cardiac outcomes, neonatal morbidity or mortality. More research is needed before routine cord milking can be recommended for very preterm infants. NCT01487187. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Hansen, Eva; Grimme, Britta; Reimann, Hendrik; Schöner, Gregor
2018-05-01
In a sequence of arm movements, any given segment could be influenced by its predecessors (carry-over coarticulation) and by its successor (anticipatory coarticulation). To study the interdependence of movement segments, we asked participants to move an object from an initial position to a first and then on to a second target location. The task involved ten joint angles controlling the three-dimensional spatial path of the object and hand. We applied the principle of the uncontrolled manifold (UCM) to analyze the difference between joint trajectories that either affect (non-motor equivalent) or do not affect (motor equivalent) the hand's trajectory in space. We found evidence for anticipatory coarticulation that was distributed equally in the two directions in joint space. We also found strong carry-over coarticulation, which showed clear structure in joint space: More of the difference between joint configurations observed for different preceding movements lies in directions in joint space that leaves the hand's path in space invariant than in orthogonal directions in joint space that varies the hand's path in space. We argue that the findings are consistent with anticipatory coarticulation reflecting processes of movement planning that lie at the level of the hand's trajectory in space. Carry-over coarticulation may reflect primarily processes of motor control that are governed by the principle of the UCM, according to which changes that do not affect the hand's trajectory in space are not actively delimited. Two follow-up experiments zoomed in on anticipatory coarticulation. These experiments strengthened evidence for anticipatory coarticulation. Anticipatory coarticulation was motor-equivalent when visual information supported the steering of the object to its first target, but was not motor equivalent when that information was removed. The experiments showed that visual updating of the hand's path in space when the object approaches the first target only affected the component of the joint difference vector orthogonal to the UCM, consistent with the UCM principle.
n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.
Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa
2007-05-15
As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.
3.rd Scientific conferences UCM-ASEN "Nutrition as a strategy in improving and promoting health"
Ortega Anta, Rosa M
2016-07-12
En el presente suplemento de la revista Nutrición Hospitalaria se resumen las conferencias presentadas en las Terceras Jornadas UCMASEN (Universidad Complutense de Madrid - Asociación de Estudios Nutricionales), bajo el título "Nutrición como estrategia en la mejora y promoción de la salud", que se celebraron durante los días 3 y 4 de febrero de 2016 en la Facultad de Farmacia de la Universidad Complutense de Madrid. Estas Jornadas han sido una actividad promovida por el grupo de investigación UCM-VALORNUT y han contado con el apoyo institucional de la Fundación Española de la Nutrición (FEN).
Automatic segmentation of equine larynx for diagnosis of laryngeal hemiplegia
NASA Astrophysics Data System (ADS)
Salehin, Md. Musfequs; Zheng, Lihong; Gao, Junbin
2013-10-01
This paper presents an automatic segmentation method for delineation of the clinically significant contours of the equine larynx from an endoscopic image. These contours are used to diagnose the most common disease of horse larynx laryngeal hemiplegia. In this study, hierarchal structured contour map is obtained by the state-of-the-art segmentation algorithm, gPb-OWT-UCM. The conic-shaped outer boundary of equine larynx is extracted based on Pascal's theorem. Lastly, Hough Transformation method is applied to detect lines related to the edges of vocal folds. The experimental results show that the proposed approach has better performance in extracting the targeted contours of equine larynx than the results of using only the gPb-OWT-UCM method.
Dual Solutions for Nonlinear Flow Using Lie Group Analysis
Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman
2015-01-01
`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996
... sitting for long periods. If you travel by airplane, walk the aisle periodically. For long car trips, ... Your-Risk-for-Excessive-Blood-Clotting_UCM_448771_Article.jsp. Accessed April 18, 2016. What causes excessive ...
... www.fda.gov/Drugs/DrugSafety/ucm085729.htm.No matter your age, before you take an antidepressant, you, ... seeing things that do not exist) widened pupils (dark circles in the middle of the eyes) drowsiness ...
... www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/UCM096273.No matter your age, before you take an antidepressant, you, ... abdomen itching yellowing of the skin or eyes dark colored urine loss of appetite extreme tiredness or ...
... www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/UCM096273.No matter your age, before you take an antidepressant, you, ... blue discoloration of the skin fever widened pupils (dark circles in the center of the eye) decreased ...
... www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/UCM096273.No matter what your age, before you take an antidepressant, ... seeing things that do not exist) widened pupils (dark circles in the middle of the eyes) drowsiness ...
... www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/UCM096273.No matter what your age, before you take an antidepressant, ... the skin or eyes, unusual bleeding or bruising, dark-colored urine, pain in the upper right part ...
UCM Meteor and Fireball Research group: Results 2012--2014
NASA Astrophysics Data System (ADS)
Ocaña, F.; Sánchez de Miguel, A.; Zamorano, J.; Izquierdo, J.; Pascual, S.; Palos, M. F.; Oré, S.; Rodríguez-Coira, G.; Zamora, S.; Lorenzo, C.; San Juan, R.; Muñoz-Ibáñez, B.; Vázquez, C.; Alonso-Moragón, A.; Gallego, J.; Trigo-Rodríguez, J. M.; Madiedo, J. M.
2015-05-01
Most of the activity of the group is based on the Fireball Detection Station located at the Observatorio UCM, a system consisting of 6 high-sensitivity videocameras covering the whole sky with wide-angle lenses during nighttime. Another 15 cameras have been placed by the researchers between 10 and 200 km away from Madrid for multiple station observations. It works as a node in the SPanish Meteor and Fireball Network (SPMN), a network of similar stations covering the atmosphere over Spain. Besides the continuous monitoring, the group has worked on the recording and analysis of some meteor showers. Most of the attention was focused on the Draconids 2011 campaign at Observatorio de Sierra Nevada (Trigo-Rodríguez, J. M., Madiedo, J. M., Williams, I. P., et al. 2013, MNRAS, 433, 560; Ocaña, F., Palos, M. F., Zamorano, J., et al. 2013, Proceedings of the International Meteor Conference, 31st IMC, La Palma, Canary Islands, Spain, 2012, 70), and the 2012 Geminids balloon-borne mission over Spain (Sánchez de Miguel, A., Ocaña, F., Madiedo, J. M., et al. 2013, Lunar and Planetary Science Conference, 44, 2202). The products of the station have been used for undergraduate thesis projects at the Physics Faculty (Ocaña, F., 2011, UCM e-prints, 13292) and other undergraduate projects. In 2013 the station received new equipment thanks to the Certamen Arquímedes award, complementing the detection with spectroscopic and frame-integrating devices.
Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine
NASA Astrophysics Data System (ADS)
Presto, Albert A.; Nguyen, Ngoc T.; Ranjan, Manish; Reeder, Aaron J.; Lipsky, Eric M.; Hennigan, Christopher J.; Miracolo, Marissa A.; Riemer, Daniel D.; Robinson, Allen L.
2011-07-01
Staged tests were conducted to measure the particle and vapor emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135T Stratotanker airframe at different engine loads. Exhaust was sampled using a rake inlet installed 1-m downstream of the engine exit plane of a parked and chocked aircraft and a dilution sampler and portable smog chamber were used to investigate the particulate matter (PM) emissions. Total fine PM mass emissions were highest at low (4%) and high (85%) load and lower at intermediate loads (7% and 30%). PM mass emissions at 4% load are dominated by organics, while at 85% load elemental carbon is dominant. Quantifying the primary organic aerosol (POA) emissions is complicated by substantial filter sampling artifacts. Partitioning experiments reveal that the majority of the POA is semivolatile; for example, the POA emission factor changed by a factor of two when the background organic aerosol concentration was increased from 0.7 to 4 μg m -3. Therefore, one cannot define a single non-volatile PM emission factor for aircraft exhaust. The gas- and particle-phase organic emissions were comprehensively characterized by analyzing canister, sorbent and filter samples with gas-chromatography/mass-spectrometry. Vapor-phase organic emissions are highest at 4% load and decrease with increasing load. Low-volatility organics (less volatile than a C 12n-alkane) contributed 10-20% of the total organic emissions. The low-volatility organic emissions contain signatures of unburned fuel and aircraft lubricating oil but are dominated by an unresolved complex mixture (UCM) of presumably branched and cyclic alkanes. Emissions at all loads contain more low-volatility organic vapors than POA; thus secondary organic aerosol formation in the aging plume will likely exceed POA emissions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
.../DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/ucm253101.htm , http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm , or http...
GuMNet - A high altitude monitoring network in the Sierra de Guadarrama (Madrid, Spain)
NASA Astrophysics Data System (ADS)
Santolaria-Canales, Edmundo
2016-04-01
The Guadarrama Monitoring Network (GuMNet) is an observational infrastructure focused on monitoring the state of the atmosphere and the ground in the Sierra de Guadarrama, 50 km NW of the city of Madrid. The network is composed of10 stations ranging from low altitude (900 m a.s.l.) to high mountain climate (2400 m a.s.l.). The atmospheric instrumentation includes sensors for air temperature, air humidity, 4-component net radiation, precipitation, snow height and wind speed and direction. The surface and subsurface infrastructure includes temperature and humidity sensors distributed in 9 trenches up to a maximum of 1 m depth and additionally temperature sensors in 15 PVC cased boreholes down to 20 m and 2 m with a higher vertical resolution close to the surface. All stations are located in exposed open areas except for one site that is in a forested area for measuring air-ground fluxes under forest conditions. High altitude sites are focused on periglacial areas and lower altitude sites have emphasis on pastures. One of the low altitude sites is equipped with a 10 m high tower with 3D sonic anemometers and a CO2/H2O analyzer that will allow the sampling of wind profiles and H2O and CO2 eddy covariance fluxes, important for estimation of CO2 and energy exchanges over complex vegetated surfaces. The network is connected via general packet radio service to the central lab in the Campus of Excellence of Moncloa and management software has been developed to handle the operation of the infrastructure. The data provided by GuMNet will help to improve the characterization of atmospheric variability from turbulent scales to meteorology and climate at high mountain areas, as well as land-atmosphere interactions. The network information aims at meeting the needs of accuracy to be used for biological, agricultural, hydrological, meteorological and climatic investigations in this area with relevance for ecosystem oriented studies. This setup will complement the broader network of meteorological stations of the Spanish National Meteorological Agency(AEMET), mostly distributed in the lower latitude range. This initiative is supported and developed by research groups integrating the GuMNet Consortium from the Complutense and Polytechnical Universities of Madrid (UCM and UPM), the Energetic Environmental and Technological Research Centre (CIEMAT), AEMET, and the National Park Sierra de Guadarrama (PNSG) which provided the initial foundations of this network. GuMNet will be operational in 2016. Web: http://www.ucm.es/gumnet/ Contact: edmundo.santolaria@ucm.es
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura
The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz
2012-01-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01–0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multimode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus. PMID:21207094
Niacin to Boost Your HDL "Good" Cholesterol
... the AIM-HIGH trial. U.S. Food and Drug Administration. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm256841.htm. Accessed May 27, 2011. May 16, 2018 Original article: http://www.mayoclinic.org/diseases-conditions/ ...
Rushdi, Ahmed I; Al-Zarban, Sheikha; Simoneit, Bernd R T
2006-09-01
Fine particles in the atmosphere from soil and sand resuspension contain a variety of organic compounds from natural biogenic and anthropogenic matter. Soil and sand samples from various sites near Kuwait city were collected, sieved to retain the fine particles, and extracted with a mixture of dichloromethane and methanol. The extracts were derivatized and analyzed by gas chromatography-mass spectrometry in order to characterize the chemical compositions and sources of the organic components. The major inputs of organic compounds were from both natural biogenic and anthropogenic sources in these samples. Vegetation was the major natural source of organic compounds and included n-alkanols, n-alkanoic acids, n-alkanes, sterols and triterpenoids. Saccharides had high concentrations (31-43%) in the sand dune and seafront samples, indicating sources from decomposed vegation materials and/or the presence of viable microbiota such as bacteria and fungi. Vehicular emission products, leakage of lubricating oils, discarded plastics and emissions from cooking operations were the major anthropogenic inputs in the samples from the urban areas. This input was mainly UCM, n-alkanes, hopanes, plasticizers and cholesterol, respectively.
NASA Astrophysics Data System (ADS)
Fortenberry, Claire F.; Walker, Michael J.; Zhang, Yaping; Mitroo, Dhruv; Brune, William H.; Williams, Brent J.
2018-02-01
The chemical complexity of biomass burning organic aerosol (BBOA) greatly increases with photochemical aging in the atmosphere, necessitating controlled laboratory studies to inform field observations. In these experiments, BBOA from American white oak (Quercus alba) leaf and heartwood samples was generated in a custom-built emissions and combustion chamber and photochemically aged in a potential aerosol mass (PAM) flow reactor. A thermal desorption aerosol gas chromatograph (TAG) was used in parallel with a high-resolution time-of-flight aerosol mass spectrometer (AMS) to analyze BBOA chemical composition at different levels of photochemical aging. Individual compounds were identified and integrated to obtain relative decay rates for key molecules. A recently developed chromatogram binning positive matrix factorization (PMF) technique was used to obtain mass spectral profiles for factors in TAG BBOA chromatograms, improving analysis efficiency and providing a more complete determination of unresolved complex mixture (UCM) components. Additionally, the recently characterized TAG decomposition window was used to track molecular fragments created by the decomposition of thermally labile BBOA during sample desorption. We demonstrate that although most primary (freshly emitted) BBOA compounds deplete with photochemical aging, certain components eluting within the TAG thermal decomposition window are instead enhanced. Specifically, the increasing trend in the decomposition m/z 44 signal (CO2+) indicates formation of secondary organic aerosol (SOA) in the PAM reactor. Sources of m/z 60 (C2H4O2+), typically attributed to freshly emitted BBOA in AMS field measurements, were also investigated. From the TAG chemical speciation and decomposition window data, we observed a decrease in m/z 60 with photochemical aging due to the decay of anhydrosugars (including levoglucosan) and other compounds, as well as an increase in m/z 60 due to the formation of thermally labile organic acids within the PAM reactor, which decompose during TAG sample desorption. When aging both types of BBOA (leaf and heartwood), the AMS data exhibit a combination of these two contributing effects, causing limited change to the overall m/z 60 signal. Our observations demonstrate the importance of chemically speciated data in fully understanding bulk aerosol measurements provided by the AMS in both laboratory and field studies.
Dreixler, John C.; Poston, Jacqueline N.; Balyasnikova, Irina; Shaikh, Afzhal R.; Tupper, Kelsey Y.; Conway, Sineadh; Boddapati, Venkat; Marcet, Marcus M.; Lesniak, Maciej S.; Roth, Steven
2014-01-01
Purpose. Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. Methods. Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. Results. Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. Conclusions. By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect. PMID:24699381
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L
2011-12-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.
Tao, Weiwei; Dong, Yu; Su, Qiang; Wang, Hanqing; Chen, Yanyan; Xue, Wenda; Chen, Chang; Xia, Baomei; Duan, Jinao; Chen, Gang
2016-07-15
Major depression is a common long-lasting or recurrent psychiatric disease with high lifetime prevalence and high incidence of suicide. The main purpose of the current study was to verify whether liquiritigenin conferred an antidepressant-like effect on the depressive mouse model established by unpredictable chronic mild stress (UCMS) and explore its possible mechanism. The results of depression-related behaviors including sucrose preference test (SPT), open field test (OFT), forced swimming test (FST) and tail suspension test (TST) indicated that both liquiritigenin (7.5mg/kg, 15mg/kg) and fluoxetine (20mg/kg) dramatically improved the depression symptoms. Enzyme-linked immunosorbent assay (ELISA) revealed that treatment with liquiritigenin significantly reduced the concentrations of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α in serum and hippocampus. Compared with the UCMS group, the administrations of liquiritigenin, increased levels of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and decreased Malondialdehyde (MDA) content. Meanwhile, glucocorticoids (GC) content was reduced in the liquiritigenin group, which suggested that liquiritigenin exhibiting the ameliorative effect on activated hypothalamic-pituitary-adrenal (HPA) axis stimulated with UCMS. Mice treated with liquiritigenin showed restored levels of neurotransmitter norepinephrine (NE) and serotonin (5-HT). Western blot analysis displayed up-regulated expressions of p-phosphatidylinositol 3-kinase (PI3K), p-Akt, p- mammalian target of rapamycin (mTOR), p-tropomyosin-related kinase B (TrkB), brain-derived neurotrophic factor (BDNF). Thus, it was supposed that liquiritigenin might be useful for the treatment of chronic depression possibly through PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
The roles of sex and serotonin transporter levels in age- and stress-related emotionality in mice.
Joeyen-Waldorf, Jennifer; Edgar, Nicole; Sibille, Etienne
2009-08-25
Mood disorders are influenced by genetic make-up and differentially affect men and women. The s/l promoter polymorphism in the serotonin transporter (SERT) gene moderates both trait emotion and the vulnerability to develop depressive states in humans. Similarly, male mice lacking SERT (Knockout/KO) display an elevated emotionality phenotype. We now report that the SERT-KO phenotype is maintained throughout late-adulthood, and that female KO mice develop a larger emotionality phenotype with increasing age. Thus, to test the hypothesis that these findings reflected a putative sexual dimorphism in SERT-mediated modulation of emotionality, we submitted adult male and female wild-type, heterozygous (HZ) and KO mice to unpredictable chronic mild stress (UCMS) and assessed behavioral changes. In males, the elevated SERT-KO emotion-related behavior converged with other groups after UCMS. Conversely, female SERT-KO displayed a normal non-stressed baseline, but highest UCMS-induced emotionality. SERT-HZ displayed variable and intermediate phenotypes in both experiments. Thus, consistent results across different biological modalities (age, stress) revealed a high contribution of SERT genotype for baseline "trait" emotionality in males, and low contribution for females. In contrast, age-correlated and stress-induced behavioral changes resulted in a high SERT genotype-mediated behavioral variance in females, but low in males. This suggests that high emotionality states associated with low SERT were differentially achieved in males (high baseline/trait) compared to females (increased vulnerability to develop high emotionality). This sex-by-SERT double dissociation provides a framework to investigate molecular substrates of emotionality regulation in concert with serotonin function and may contribute to the sexually dimorphic features of mood disorders.
NASA Astrophysics Data System (ADS)
Sanchez-Santolino, Gabriel; Tornos, Javier; Leon, Carlos; Varela, María; Pennycook, Stephen J.; Santamaría, Jacobo
2014-03-01
Interfaces in complex oxide heterostructures are responsible for exciting new physics, which is directly related to the chemical, structural and electronic properties at the atomic scale. Here, we study artificial multiferroic heterostructures combining ferromagnetic La0.7Sr0.3MnO3 with ferroelectric BaTiO3 by atomic resolution aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy. Measurements of the atomic positions in the STEM images permit calculating relative displacements and hence, local polarization. Polarization gradients can be observed in annular bright field images which seem to be correlated to strain gradients associated with the large lattice mismatch between barriers and electrodes. Spectroscopic measurements suggest the presence of O vacancies through the ferroelectric layers. Understanding the effect of the charge carriers associated with the oxygen vacancies may be the key to control the dynamics of domain walls in these heterostructures. Acknowledgements ORNL: U.S. DOE-BES, Materials Sciences and Engineering Division. UCM: ERC Starting Investigator Award, Spanish MICINN MAT2011-27470-C02 and Consolider Ingenio 2010 - CSD2009-00013 (Imagine), CAM S2009/MAT-1756 (Phama).
Oxygen vacancy ordering in transition-metal-oxide LaCoO3 films
NASA Astrophysics Data System (ADS)
Biskup, Neven; Salafranca, Juan; Mehta, Virat; Suzuki, Yuri; Pennycook, Stephen; Pantelides, Sokrates; Varela, Maria
2013-03-01
Oxygen vacancies in complex oxides affect the structure and the electronic and magnetic properties. Here we use atomically-resolved Z-contrast imaging, electron-energy-loss spectroscopy and densityfunctional calculations to demonstrate that ordered oxygen vacancies may act as the controlling degree of freedom for the structural, electronic, and magnetic properties of LaCoO3 thin films. We find that epitaxial strain is released through the formation of O vacancy superlattices. The O vacancies donate excess electrons to the Co d-states, resulting in ferromagnetic ordering. The appearance of Peierls-like minigaps followed by strain relaxation triggers a nonlinear rupture of the energy bands, which explains the observed insulating behavior. We conclude that oxygen vacancy ordering constitutes a degree of freedom that can be used to engineer novel behavior in complex-oxide films. Research at ORNL supported by U.S. DOE-BES, Materials Sciences and Engineering Div. and by ORNL's ShaRE User Program (DOE-BES), at UCM by the ERC Starting Inv. Award, at UC Berkeley and LBNL by BES-DMSE, at Vanderbilt by U.S DOE and the McMinn Endowment.
METHODS AND TECHNIQUES FOR DEALING WITH THE UNIDENTIFIED FRACTION OF COMPLEX MIXTURES
For the vast majority of highly complex environmental mixtures to which humans are exposed, significant portions of the mixture are unidentified. Although toxicological data on the mixture itself are desired for risk assessment, such data, even on a similar mixture, are rarely a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
....fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm , http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm062630.htm , http://www.fda.gov/AnimalVeterinary/Safety...
Active tectonics on Lanzarote (Canary Islands) from the analysis of CGPS data
NASA Astrophysics Data System (ADS)
Riccardi, Umberto; Arnoso, Jose; Benavent, María Teresa; Velez, Emilio; Tammaro, Umberto; González Montesinos, Fuensanta
2017-04-01
We report on the analysis of about three years of CGPS data collected on a small network consisting in five permanent stations, with the largest baseline up to 40 km, spread over Timanfaya National Park in Lanzarote Island. The GPS stations are operated by different institutions, as follows: CAME is co-operated by the Institute of Geosciences (CSIC-UCM), DiSTAR and the Geodesy Research Group of University Complutense of Madrid (GRG-UCM), while LACV is operated by (CSIC-UCM and GRG-UCM). Stations HRIA, TIAS, YAIZ, belong to GRAFCAN (Cartographical Service of the Government of Canary Islands). Lanzarote is the most Northeast and the oldest island of the Canarian Archipelago (Spain), which is located on a transitional zone, a passive margin, between oceanic and continental crust. Due to some peculiarities in geochemistry and geochronology of the rocks as well as tectonics, the origin of the archipelago from a hot spot is still debated. In fact, the most recent Holocenic volcanism is scattered over the islands and the last eruption was a submarine one, occurred in October 2011 at El Hierro Island. The last eruption in Lanzarote was a 7 years voluminous eruptive cycle, occurred during the 18th century. Historical seismicity registered in the region, is customarily attributed to diffuse tectonic activity. This study is intended to contributing to shed light on the active tectonics on Lanzarote island and to separate between local and regional strain fields. With the aid of Gamit 10.6 software, we compute from the GPS observations the "ionofree" linear combinations in order to obtain the positions of the stations in ITRF2008 frame using daily sessions, and IGS precise ephemeris. The frame referencing of the network is realized by eleven IGS GPS stations. Then through a Kalman filtering procedure, implemented in GLOBK software, we obtain the final daily solutions by constraining the fiducial GPS stations to their ITRF2008 coordinates. For a reliable strain field retrieval, a careful study is preliminarily carried out on the time series of the daily solutions aimed at characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources. A tentative strain field is reconstructed through the analysis of the time evolution of the web of the possible baselines ranging the stations. Finally, we try to interpret the observed displacement and strain field in the framework of the known tectonic setting coming from previous and ongoing geophysical studies.
Chemical characterization of complex mixtures and assessment of stability over time of the characterized chemicals is crucial both to characterize exposure and to use data from one mixture as a surrogate for other similar mixtures. The chemical composition of test mixtures can va...
Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.
2018-01-01
The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments.
Simmons, J E; Yang, R S; Berman, E
1995-02-01
As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures.
Helping Students THRIVE--A Two-Way Street
ERIC Educational Resources Information Center
Bias, Ken; Docheff, Dennis
2017-01-01
At the University of Central Missouri (UCM), the THRIVE program is made up of young adults, ages 18 to 25, who have developmental or intellectual disabilities. A merger occurred between the THRIVE program and the adapted physical education course required for physical education teacher education (PETE) students to provide practical experiences for…
Are CT Scans Safe? Is It True That CT Scans May Increase My Risk of Cancer?
... products: Computed tomography (CT). U.S. Food and Drug Administration. http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/MedicalX-Rays/ucm115317.htm. Accessed Jan. 19, 2018. Lee C, et al. Radiation-related risks of ...
The 1996 Amendments to the Safe Drinking Water Act require USEPA to perform Unregulated Contaminant Monitoring (UCM) for chemicals of interest to the Agency for possible future regulation. Many of these chemicals fall into the category of "emerging contaminants". An important e...
People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these exp...
The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...
Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud
2016-10-15
In 2012, a significant number of tar balls occurred along the Southwest coasts of the Caspian Sea (Iran). Several oil fields of Turkmenistan, Azerbaijan and Iran might be sources of oil spills and lead to the formation of these tar balls. For source identification, 6 tar ball samples were collected from the Southwest beaches of the Caspian Sea and subjected to fingerprint analysis based on the distribution of the source-specific biomarkers of pentacyclic tri-terpanes and steranes. Comparing the diagenic ratios revealed that the tar balls were chemically similar and originated from the same source. Results of double ratio plots (e.g., C29/C30 versus ∑C31-C35/C30 and C28 αββ/(C27 αββ+C29 αββ) versus C29 αββ/(C27 αββ+C28 αββ)) in the tar balls and oils from Iran, Turkmenistan and Azerbaijan indicated that the tar balls might be the result of spills from Turkmenistan oil. Moreover, principle component analysis (PCA) using biomarker ratios on the tar balls and 20 crude oil samples from different wells of Azerbaijan, Iran and Turkmenistan oils showed that the tar balls collected at the Southwest beaches are highly similar to the Turkmenistan oil but one of the Azerbaijan oils (from Bahar field oils) was found to be also slightly close to the tar balls. The weathering characterizations based on the presence of UCM (unresolved complex mixture) and low/high molecular weight ratios (L/H) of alkanes and PAHs indicated the tar ball samples have been significantly influenced by natural weathering processes such as evaporation, photo-degradation and biodegradation. This is the first study of its kind in Iran to use fingerprinting for source identification of tar balls. Copyright © 2016 Elsevier B.V. All rights reserved.
Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions
NASA Astrophysics Data System (ADS)
Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.
2014-12-01
Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with and without abatement devices fitted. The wealth of compounds identified and quantified in the C15-C35 range included PAH, esters, carboxylic acids, alkanes, alkenes, alcohols and hopanes.
Zakaria, M P; Okuda, T; Takada, H
2001-12-01
Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.
The characterisation of diesel exhaust particles - composition, size distribution and partitioning.
Alam, Mohammed S; Zeraati-Rezaei, Soheil; Stark, Christopher P; Liang, Zhirong; Xu, Hongming; Harrison, Roy M
2016-07-18
A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and without a DOC. The results indicate that the DOC tested is of very limited efficiency, under the studied engine operating conditions, for removal of SVOCs, especially at the upper end of the molecular weight range.
NASA Astrophysics Data System (ADS)
Hatzianestis, Ioannis
2015-04-01
Hydrocarbons are abundant components of the organic material in coastal zones. Their sources are mainly anthropogenic, but several natural ones have also been recognized. Among hydrocarbons, the polycyclic aromatic ones (PAHs) have received special attention since they considered as hazardous environmental chemicals and are included in priority pollutant lists. The purpose of this study was to investigate the distribution, sources and transport pathways of hydrocarbons in marine areas in Greece directly influenced from the operation of major industrial units in the coastal zone by using a molecular marker approach, characteristic compositional patterns and related indices and also to evaluate their potential toxicity. Thirty two surface sediment samples were collected from three marine areas: a) Antikyra bay in Korinthiakos gulf, affected from the operation of an alumina and production plant b) Larymna bay in Noth Evoikos, affected from the operation of a nickel production plant and c) Aliveri bay in South Evoikos Gulf, affected from a cement production plant. In all the studied areas aquaculture and fishing activities have been also developed in the coastal zone. High aliphatic hydrocarbon (AHC) concentrations (~500 μg/g), indicating significant petroleum related inputs, were measured only in Antikyra bay. In all the other samples, AHC values were below 100 μg/g. N-alkanes were the most prominent resolved components (R) with an elevated odd to even carbon number preference, revealing the high importance of terrestrial inputs in the study areas. The unresolved complex mixture (UCM) was the major component of the aliphatic fraction (UCM/R > 4), indicating a chronic oil pollution. A series of hopanes were also identified, with patterns characteristic of oil-derived hydrocarbons, further confirming the presence of pollutant inputs from fossil fuel products. Extremely high PAH concentrations (> 100,000 ng/g) were found in the close vicinity of the alumina production plant in Antikyra bay. High levels of PAHs up to 22,000 ng/g were also found in Aliveri bay, whereas lower values up to 7500 ng/g, but still indicating significant pollution, were measured close to the nickel production plant in Larymna bay. The examination of PAH molecular indices revealed that in Antikyra and Larymna bays more than 80% of the PAHs have pyrolytic origin coming from various combustion sources. On the contrary, in Aliveri bay about 60% of the PAHs are related to petrogenic/petroleum inputs. With respect to ecotoxicological effects, mean quotient Effect-Range Median (m-ERM) values, higher than 1.5, were calculated in Antikyra bay, indicating a high probability (76%) of toxicity. In Aliveri and Larymna bays the m-ERM values were between 0.11 and 0.5 bay suggesting a lower probability (21%) of toxicity. Overall, the results of our study reveal that high quantities of PAHs produced from land point sources such as the industrial units can enter into small coastal marine areas supporting activities such as aquaculture and fishing. Thus, desirable and permitted uses must be well defined and regulatory frameworks must be established.
Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...
Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...
21 CFR 118.8 - Testing methodology for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2010 CFR
2010-04-01
... Salmonella Web site is located at http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/ucm114716.htm... you may examine a copy at the Center for Food Safety and Applied Nutrition's Library, 5100 Paint... Edition, is located at http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalytical...
21 CFR 118.8 - Testing methodology for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2012 CFR
2012-04-01
... Salmonella Web site is located at http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/ucm114716.htm... Nutrition, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, 301-436-2364, or... Branch Pkwy., College Park, MD, 301-436-2163, or at the National Archives and Records Administration...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
....fda.gov/ScienceResearch/SpecialTopics/WomensHealthResearch/ucm134844.htm . FDA regulations (21 CFR 201... ``mental modeling,'' a qualitative research method that compares a model of the priorities, perceptions... are rarely included in experimental research studies of the medication because of concerns that the...
The conical pendulum: the tethered aeroplane
NASA Astrophysics Data System (ADS)
Mazza, Anthony P.; Metcalf, William E.; Cinson, Anthony D.; Lynch, John J.
2007-01-01
The introductory physics lab curriculum usually has one experiment on uniform circular motion (UCM). Physics departments typically have several variable-speed rotators in storage that, if they work, no longer work well. Replacing these rotators with new ones is costly, especially when they are only used once a year. This article describes how an inexpensive (ap10) tethered aeroplane, powered by a small electric motor, can be used to study UCM. The aeroplane is easy to see and entertaining to watch. For a given string length and air speed, a tethered aeroplane quickly finds a stable, horizontal, circular orbit. Using a digital video (DV) camcorder, VideoPoint Capture, QuickTime player, metre sticks and a stopwatch, data on the aeroplane's motion were obtained. The length of the string was varied from 120 to 340 cm while the air speed ranged from 200 to 480 cm s-1. For each string length and air speed, the period of the orbit and the diameter of the path were carefully measured. Theoretical values of path radii were then calculated using Newton's second law. The agreement between experiment and theory was usually better than 2%.
Modeling confirmation bias and polarization
NASA Astrophysics Data System (ADS)
Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter
2017-01-01
Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models.
Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T
2005-11-01
Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2010-10-01
The impact of urban surface parameterizations in the WRF (Weather Research and Forecasting) model on the simulation of local meteorological fields is investigated. The Noah land surface model (LSM), a modified LSM, and a single-layer urban canopy model (UCM) have been compared, focusing on urban patches. The model simulations were performed for 6 days from 12 August to 17 August during the Texas Air Quality Study 2006 field campaign. Analysis was focused on the Houston-Galveston metropolitan area. The model simulated temperature, wind, and atmospheric boundary layer (ABL) height were compared with observations from surface meteorological stations (Continuous Ambient Monitoring Stations, CAMS), wind profilers, the NOAA Twin Otter aircraft, and the NOAA Research Vessel Ronald H. Brown. The UCM simulation showed better results in the comparison of ABL height and surface temperature than the LSM simulations, whereas the original LSM overestimated both the surface temperature and ABL height significantly in urban areas. The modified LSM, which activates hydrological processes associated with urban vegetation mainly through transpiration, slightly reduced warm and high biases in surface temperature and ABL height. A comparison of surface energy balance fluxes in an urban area indicated the UCM reproduces a realistic partitioning of sensible heat and latent heat fluxes, consequently improving the simulation of urban boundary layer. However, the LSMs have a higher Bowen ratio than the observation due to significant suppression of latent heat flux. The comparison results suggest that the subgrid heterogeneity by urban vegetation and urban morphological characteristics should be taken into account along with the associated physical parameterizations for accurate simulation of urban boundary layer if the region of interest has a large fraction of vegetation within the urban patch. Model showed significant discrepancies in the specific meteorological conditions when nocturnal low-level jets exist and a thermal internal boundary layer over water forms.
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2011-03-01
The performance of different urban surface parameterizations in the WRF (Weather Research and Forecasting) in simulating urban boundary layer (UBL) was investigated using extensive measurements during the Texas Air Quality Study 2006 field campaign. The extensive field measurements collected on surface (meteorological, wind profiler, energy balance flux) sites, a research aircraft, and a research vessel characterized 3-dimensional atmospheric boundary layer structures over the Houston-Galveston Bay area, providing a unique opportunity for the evaluation of the physical parameterizations. The model simulations were performed over the Houston metropolitan area for a summertime period (12-17 August) using a bulk urban parameterization in the Noah land surface model (original LSM), a modified LSM, and a single-layer urban canopy model (UCM). The UCM simulation compared quite well with the observations over the Houston urban areas, reducing the systematic model biases in the original LSM simulation by 1-2 °C in near-surface air temperature and by 200-400 m in UBL height, on average. A more realistic turbulent (sensible and latent heat) energy partitioning contributed to the improvements in the UCM simulation. The original LSM significantly overestimated the sensible heat flux (~200 W m-2) over the urban areas, resulting in warmer and higher UBL. The modified LSM slightly reduced warm and high biases in near-surface air temperature (0.5-1 °C) and UBL height (~100 m) as a result of the effects of urban vegetation. The relatively strong thermal contrast between the Houston area and the water bodies (Galveston Bay and the Gulf of Mexico) in the LSM simulations enhanced the sea/bay breezes, but the model performance in predicting local wind fields was similar among the simulations in terms of statistical evaluations. These results suggest that a proper surface representation (e.g. urban vegetation, surface morphology) and explicit parameterizations of urban physical processes are required for accurate urban atmospheric numerical modeling.
Malki, Karim; Mineur, Yann S; Tosto, Maria Grazia; Campbell, James; Karia, Priya; Jumabhoy, Irfan; Sluyter, Frans; Crusio, Wim E; Schalkwyk, Leonard C
2015-04-03
BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder.
Multi-muscle synergies in an unusual postural task: quick shear force production.
Robert, Thomas; Zatsiorsky, Vladimir M; Latash, Mark L
2008-05-01
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.
Zhao, Hui; Liang, Bingyu; Yu, Linjie; Xu, Yun
2017-01-01
Jieyu chufan (JYCF) is a well-known Chinese traditional medicine used for depression; however, the molecular mechanism underlying its anti-depressant action has remained elusive. In the present study, the anti-depressant effects of JYCF and the potential mechanisms were investigated in a mouse model. Five groups of 12 C57BL/6 mice each were used in the study, including a normal control group (NC group), a model control group (MC group) and three groups, which received different doses of JYCF (1.25, 2.5 and 5 g/kg) orally for 21 days (JYCF groups). The MC group and the three JYCF groups were subjected to 3 weeks of unpredictable chronic mild stress (UCMS) to induce depression-like behavior. All groups were subjected to a sucrose consumption test along with a forced swimming test to confirm depression-like behavior, an open-field test and an elevated plus maze test to confirm anxiety-like behavior, and a Morris water maze test to evaluate spatial learning and memory. In addition, synaptic density in the hippocampus was evaluated and western blot and immunostaining were used to analyze hippocampal expression of postsynaptic density protein-95 (PSD95), synaptophysin (Syn), cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), Akt and glycogen synthase kinase (GSK)-3β as well as their phosphorylated (p) versions. The results showed that JYCF (2.5 and 5 g/kg) alleviated depressive-like behaviors and increased synaptic density in UCMS mice. Moreover, JYCF upregulated the expression of PSD95, Syn and BDNF and increased phosphorylated Akt, CREB and GSK-3β in the hippocampus. These results suggested that JYCF exerts an anti-depressant-like activity in UCMS-induced mice, which is likely to be mediated by reversing the stress-induced disruption of BDNF and GSK-3β activity. PMID:28810562
Neonatal testosterone partially organizes sex differences in stress-induced emotionality in mice.
Seney, Marianne L; Walsh, Christopher; Stolakis, Ryan; Sibille, Etienne
2012-05-01
Major depressive disorder (MDD) is a debilitating disorder of altered mood regulation. Despite well established sex differences in MDD prevalence, the mechanism underlying the increased female vulnerability remains unknown. Although evidence suggests an influence of adult circulating hormone levels on mood (i.e. activational effects of hormones), MDD prevalence is consistently higher in women across life stages (and therefore hormonal states), suggesting that additional underlying structural or biological differences place women at higher risk. Studies in human subjects and in rodent models suggest a developmental origin for mood disorders, and interestingly, a developmental process also establishes sex differences in the brain. Hence, based on these parallel developmental trajectories, we hypothesized that a proportion of the female higher vulnerability to MDD may originate from the differential organization of mood regulatory neural networks early in life (i.e. organizational effects of hormones). To test this hypothesis in a rodent system, we took advantage of a well-established technique used in the field of sexual differentiation (neonatal injection with testosterone) to masculinize sexually dimorphic brain regions in female mice. We then investigated adult behavioral consequences relating to emotionality by comparing neonatal testosterone-treated females to normal males and females. Under baseline/trait conditions, neonatal testosterone treatment of female mice did not influence adult emotionality, but masculinized adult locomotor activity, as revealed by the activational actions of hormones. Conversely, the increased vulnerability of female mice to develop high emotionality following unpredictable chronic mild stress (UCMS) was partially masculinized by neonatal testosterone exposure, with no effect on post-UCMS locomotion. The elevated female UCMS-induced vulnerability did not differ between adult hormone treated groups. These results demonstrate that sex differences in adult emotionality in mice are partially caused by the organizational effects of sex hormones during development, hence supporting a developmental hypothesis of the human adult female prevalence of MDD. Copyright © 2012 Elsevier Inc. All rights reserved.
Edgar, N M; Touma, C; Palme, R; Sibille, E
2011-01-01
Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3–9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (⩽9–12 months). Notably, Cnp1KO mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1KO mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1KO behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD may cause unsustainable and maladaptive molecular compensations contributing to the disease pathophysiology. PMID:22832658
Neonatal testosterone partially organizes sex differences in stress-induced emotionality in mice
Seney, Marianne L.; Walsh, Christopher; Stolakis, Ryan; Sibille, Etienne
2012-01-01
Major depressive disorder (MDD) is a debilitating disorder of altered mood regulation. Despite well established sex differences in MDD prevalence, the mechanism underlying the increased female vulnerability remains unknown. Although evidence suggests an influence of adult circulating hormone levels on mood (i.e. activational effects of hormones), MDD prevalence is consistently higher in women across life stages (and therefore hormonal states), suggesting that additional underlying structural or biological differences place women at higher risk. Studies in human subjects and in rodent models suggest a developmental origin for mood disorders, and interestingly, a developmental process also establishes sex differences in the brain. Hence, based on these parallel developmental trajectories, we hypothesized that a proportion of the female higher vulnerability to MDD may originate from the differential organization of mood regulatory neural networks early in life (i.e. organizational effects of hormones). To test this hypothesis in a rodent system, we took advantage of a well-established technique used in the field of sexual differentiation (neonatal injection with testosterone) to masculinize sexually dimorphic brain regions in female mice. We then investigated adult behavioral consequences relating to emotionality by comparing neonatal testosterone-treated females to normal males and females. Under baseline/trait conditions, neonatal testosterone treatment of female mice did not influence adult emotionality, but masculinized adult locomotor activity, as revealed by the activational actions of hormones. Conversely, the increased vulnerability of female mice to develop high emotionality following unpredictable chronic mild stress (UCMS) was partially masculinized by neonatal testosterone exposure, with no effect on post-UCMS locomotion. The elevated female UCMS-induced vulnerability did not differ between adult hormone treated groups. These results demonstrate that sex differences in adult emotionality in mice are partially caused by the organizational effects of sex hormones during development, hence supporting a developmental hypothesis of the human adult female prevalence of MDD. PMID:22394611
Honeybees Learn Odour Mixtures via a Selection of Key Odorants
Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles
2010-01-01
Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714
Kiley, Erin M; Yakovlev, Vadim V; Ishizaki, Kotaro; Vaucher, Sebastien
2012-01-01
Microwave thermal processing of metal powders has recently been a topic of a substantial interest; however, experimental data on the physical properties of mixtures involving metal particles are often unavailable. In this paper, we perform a systematic analysis of classical and contemporary models of complex permittivity of mixtures and discuss the use of these models for determining effective permittivity of dielectric matrices with metal inclusions. Results from various mixture and core-shell mixture models are compared to experimental data for a titanium/stearic acid mixture and a boron nitride/graphite mixture (both obtained through the original measurements), and for a tungsten/Teflon mixture (from literature). We find that for certain experiments, the average error in determining the effective complex permittivity using Lichtenecker's, Maxwell Garnett's, Bruggeman's, Buchelnikov's, and Ignatenko's models is about 10%. This suggests that, for multiphysics computer models describing the processing of metal powder in the full temperature range, input data on effective complex permittivity obtained from direct measurement has, up to now, no substitute.
NASA Astrophysics Data System (ADS)
Okumuş, Mustafa
2017-11-01
In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.
Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S
2012-04-01
Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.
Component-Based and Whole-Mixtures Assessments in Addressing the Unidentified Fraction of Complex Mixtures: Drinking Water as an Example
J. E. Simmons; L. K. Teuschler; C. Gennings; T. F. Speth; S. D. Richardson; R. J. Miltner; M. G. Narotsky; K. D. Schenck; G. Rice
Liquid class predictor for liquid handling of complex mixtures
Seglke, Brent W [San Ramon, CA; Lekin, Timothy P [Livermore, CA
2008-12-09
A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.
COMPLEX MIXTURES OF CHEMICAL CARCINOGENS: PRINCIPLES OF ACTION AND HUMAN CANCER
There is strong epidemiological evidence supported by experimental animal data that complex environmental mixtures pose a risk to human health producing increases in cancer incidence. Understanding the chemical and biological properties of these mixtures leads to a clearer unde...
Patel, Chirag J
2017-01-01
Mixtures, or combinations and interactions between multiple environmental exposures, are hypothesized to be causally linked with disease and health-related phenotypes. Established and emerging molecular measurement technologies to assay the exposome , the comprehensive battery of exposures encountered from birth to death, promise a new way of identifying mixtures in disease in the epidemiological setting. In this opinion, we describe the analytic complexity and challenges in identifying mixtures associated with phenotype and disease. Existing and emerging machine-learning methods and data analytic approaches (e.g., "environment-wide association studies" [EWASs]), as well as large cohorts may enhance possibilities to identify mixtures of correlated exposures associated with phenotypes; however, the analytic complexity of identifying mixtures is immense. If the exposome concept is realized, new analytical methods and large sample sizes will be required to ascertain how mixtures are associated with disease. The author recommends documenting prevalent correlated exposures and replicated main effects prior to identifying mixtures.
Dynamic behavior of the interaction between epidemics and cascades on heterogeneous networks
NASA Astrophysics Data System (ADS)
Jiang, Lurong; Jin, Xinyu; Xia, Yongxiang; Ouyang, Bo; Wu, Duanpo
2014-12-01
Epidemic spreading and cascading failure are two important dynamical processes on complex networks. They have been investigated separately for a long time. But in the real world, these two dynamics sometimes may interact with each other. In this paper, we explore a model combined with the SIR epidemic spreading model and a local load sharing cascading failure model. There exists a critical value of the tolerance parameter for which the epidemic with high infection probability can spread out and infect a fraction of the network in this model. When the tolerance parameter is smaller than the critical value, the cascading failure cuts off the abundance of paths and blocks the spreading of the epidemic locally. While the tolerance parameter is larger than the critical value, the epidemic spreads out and infects a fraction of the network. A method for estimating the critical value is proposed. In simulations, we verify the effectiveness of this method in the uncorrelated configuration model (UCM) scale-free networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Ian W.H., E-mail: Ian.Jarvis@ki.se; Bergvall, Christoffer, E-mail: Christoffer.Bergvall@anchem.su.se; Bottai, Matteo, E-mail: Matteo.Bottai@ki.se
2013-02-01
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNAmore » damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
... health industry that submits new animal drug applications to CVM's Office of New Animal Drug Evaluation... agreed to in the Animal Drug User Fee Amendments (ADUFA II) of 2008 ( http://www.fda.gov/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/ucm044941.htm ). The ONADE will be soliciting feedback on both the e...
Drug interactions evaluation: An integrated part of risk assessment of therapeutics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Reynolds, Kellie S.; Zhao, Ping
2010-03-01
Pharmacokinetic drug interactions can lead to serious adverse events or decreased drug efficacy. The evaluation of a new molecular entity's (NME's) drug-drug interaction potential is an integral part of risk assessment during drug development and regulatory review. Alteration of activities of enzymes or transporters involved in the absorption, distribution, metabolism, or excretion of a new molecular entity by concomitant drugs may alter drug exposure, which can impact response (safety or efficacy). The recent Food and Drug Administration (FDA) draft drug interaction guidance ( (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf)) highlights the methodologies and criteria that may be used to guide drug interaction evaluation by industrymore » and regulatory agencies and to construct informative labeling for health practitioner and patients. In addition, the Food and Drug Administration established a 'Drug Development and Drug Interactions' website to provide up-to-date information regarding evaluation of drug interactions ( (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm)). This review summarizes key elements in the FDA drug interaction guidance and new scientific developments that can guide the evaluation of drug-drug interactions during the drug development process.« less
Motor abundance and control structure in the golf swing.
Morrison, A; McGrath, D; Wallace, E S
2016-04-01
Variability and control structure are under-represented areas of golf swing research. This study investigated the use of the abundant degrees of freedom in the golf swing of high and intermediate skilled golfers using uncontrolled manifold (UCM) analysis. The variance parallel to (VUCM) and orthogonal to (VOrth) the UCM with respect to the orientation and location of the clubhead were calculated. The higher skilled golfers had proportionally higher values of VUCM than lower skilled players for all measured outcome variables. Motor synergy was found in the control of the orientation of the clubhead and the combined outcome variables but not for clubhead location. Clubhead location variance zeroed-in on impact as has been previously shown, whereas clubhead orientation variance increased near impact. Both skill levels increased their control over the clubhead location leading up to impact, with more control exerted over the clubhead orientation in the early downswing. The results suggest that to achieve higher skill levels in golf may not lie simply in optimal technique, but may lie more in developing control over the abundant degrees of freedom in the body. Copyright © 2016 Elsevier B.V. All rights reserved.
Ahmed, Abdulwaheed S; Webster, Lynda; Pollard, Pat; Davies, Ian M; Russell, Marie; Walsham, Pam; Packer, Gill; Moffat, Colin F
2006-02-01
The distribution and composition of hydrocarbons in sediment from the Fladen Ground oilfield in the northern North Sea have been investigated. The total PAH concentrations (2- to 6-ring parent and alkylated PAHs, including the 16 US EPA PAHs) in sediments were relatively low (<100 microg kg(-1) dry weight). The PAH, the Forties crude and diesel oil equivalent concentrations were generally higher in sediment of fine grain size and higher organic carbon concentration. PAH distributions and concentration ratios indicated a predominantly pyrolytic input, being dominated by the heavier, more persistent, 5- and 6-ring compounds, and with a high proportion of parent PAHs. The n-alkane profiles of a number of the sediments contained small, high boiling point, UCMs, indicative of weathered oil arising from a limited petrogenic input. The geochemical biomarker profiles of the sediments that contained UCMs showed a small bisnorhopane peak and a high proportion of norhopane relative to hopane, indicating that there was contamination from both Middle Eastern and North Sea oils. Therefore contamination was not directly as a result of oil exploration activity in the area. The most likely source of petrogenic contamination was from general shipping activity.
Rice, Glenn E; Teuschler, Linda K; Bull, Richard J; Simmons, Jane E; Feder, Paul I
2009-01-01
Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon; concentrations and proportions of individual DBPs with known toxicity data on the same endpoint; magnitude of the unidentified fraction of total organic halides; similar toxicity outcomes for whole mixture testing (e.g., mutagenicity); and summary chemical measures such as total trihalomethanes, total haloacetic acids, total haloacetonitriles, and the levels of bromide incorporation in the DBP classes.
Synthetic and natural steroidal androgens and estrogens and many other non-steroidal endocrine-active compounds commonly occur as complex mixtures in aquatic environments. It is important to understand the potential interactive effects of these mixtures to properly assess their r...
This article presents a toxicologically-based risk assessment strategy for identifying the individual components or fractions of a complex mixture that are associated with its toxicity. The strategy relies on conventional component-based mixtures risk approaches such as dose addi...
Mixture and odorant processing in the olfactory systems of insects: a comparative perspective.
Clifford, Marie R; Riffell, Jeffrey A
2013-11-01
Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.
Bioassays can be employed to evaluate the integrated effects of complex mixtures of both known and unidentified contaminants present in environmental samples. However, such methods have typically focused on one or a few pathways despite the fact that the chemicals in a mixture ma...
NASA Astrophysics Data System (ADS)
Zheng, Yongchun; Wang, Shijie; Feng, Junming; Ouyang, Ziyuan; Li, Xiongyao
2005-12-01
The complex permittivity of dry rocks and minerals varies over a very wide range, even within a sample there are variation at different temperatures and frequencies. Most rocks and minerals are inhomogeneous materials, therefore, most of the present methods of dielectric measurement designed for artificial homogeneous materials are not suitable for rocks and minerals. The resonant cavity perturbation (RCP) method is a reliable and simple technique to determine the complex permittivity of dielectric materials in the GHz range, and this method is also used extensively. However, the traditional RCP method is sensitive to the measurement of low dielectric constant (ɛ') and low loss factor (ɛ'' or tanδ) materials. The complex permittivity of most dry rocks and minerals exceeds the span vibration of the RCP method, and cannot be measured by the RCP method directly. This paper proposes a new method to measure the complex permittivity of dry rocks and minerals with the RCP method incorporated in the application of polythene (PE) dilution method and Lichtenecker's mixture formulae. Dry rocks and minerals were ground into fine powder. The powder of rocks and minerals was mixed with polythene powder in a definite volume per cent. The mixture was heated and pressed into a thin circular slice. The slice was processed into a small rectangular strip sample, the size of which was fitted to the demands of the RCP method. The complex permittivity of the strip was obtained by the RCP method. The relationship between the dielectric properties of the two-phase mixture and those of each phase in the mixture can be expressed by Lichtenecker's mixture formula. Thus the complex permittivity of dry rocks and minerals can be calculated from the complex permittivity of the mixture in case the complex permittivity of polythene is known. The presented method was verified by measurements of reference materials of various known complex permittivity and other reliable dielectric measurement methods. The results of the experiment showed that this new method is of high accuracy, small sample requirement, and convenient application. Moreover, the complex permittivity of rocks and minerals measured by this method is more reliable than the direct dielectric measurement of rocks or minerals without application of the polythene dilution method and Lichtenecker's mixture formulae.
THE GENOTOXICITY OF PRIORITY POLYCYCLIC AROMATIC HYDROCARBONS IN COMPLEX MIXTURES
Risk assessment of complex environmental samples suffers from difficulty in identifying toxic components, inadequacy of available toxicity data, and a paucity of knowledge about the behavior of geno(toxic) substances in complex mixtures. Lack of information about the behavior of ...
Assessment of health effects in epidemiologic studies of air pollution.
Samet, J M; Speizer, F E
1993-01-01
As we increasingly recognize the complexity of the pollutants in indoor and outdoor microenvironments, a broad array of inhaled mixtures has assumed scientific, public health, and regulatory importance. Few adverse effects of environmental pollutants are specific, that is, uniquely associated with a single agent; the adverse effects that might be considered in an investigation of the consequences of exposure to an inhaled complex mixture are generally nonspecific. In the context of this paper, we will refer to binary mixtures as complex, though we realize that a more precise definition of complexity would restrict the term to mixtures of three or more constituents. Their causes potentially include not only pollutant exposures through the medium of inhaled air but other environmental agents, such as infectious organisms and radiation, and inherent characteristics of the exposed persons, such as atopy. We review the outcome measures that have been used in epidemiologic studies of the health effects of single pollutants and complex mixtures. Some of these outcome measures have been carefully standardized, whereas others need similar standardization and modification to improve sensitivity and specificity for investigating the health effects of air pollution. PMID:8206024
Mazurek, Monica A
2002-12-01
This article describes a chemical characterization approach for complex organic compound mixtures associated with fine atmospheric particles of diameters less than 2.5 m (PM2.5). It relates molecular- and bulk-level chemical characteristics of the complex mixture to atmospheric chemistry and to emission sources. Overall, the analytical approach describes the organic complex mixtures in terms of a chemical mass balance (CMB). Here, the complex mixture is related to a bulk elemental measurement (total carbon) and is broken down systematically into functional groups and molecular compositions. The CMB and molecular-level information can be used to understand the sources of the atmospheric fine particles through conversion of chromatographic data and by incorporation into receptor-based CMB models. Once described and quantified within a mass balance framework, the chemical profiles for aerosol organic matter can be applied to existing air quality issues. Examples include understanding health effects of PM2.5 and defining and controlling key sources of anthropogenic fine particles. Overall, the organic aerosol compositional data provide chemical information needed for effective PM2.5 management.
NASA Astrophysics Data System (ADS)
Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.
2016-12-01
Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a global distribution of urban parameters for later incorporation into a weather model, thus allowing us to acquire a global understanding of urban climate (Global Urban Climatology). Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Non-target high resolution mass spectrometry techniques combined with advanced cheminformatics offer huge potential for exploring complex mixtures in our environment – yet also offers plenty of challenges. Peak inventories of several non-target studies from within Europe reveal t...
75 FR 73080 - Science Advisory Board Staff Office; Request for Nominations of Experts for the SAB...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
... are IRIS reference doses (RfDs) for two commercial PCB mixtures: Aroclor 1016 and Aroclor 1254 that... developing a draft assessment of the potential noncancer health hazards of complex PCB mixtures for inclusion... with the goal of establishing an RfD for application to complex PCB mixtures. The EPA's National Center...
STRATEGIES TO IDENTIFY BIOACTIVE SUBSTANCES IN COMPLEX AIR POLLUTANT MIXTURES
Both indoor and outdoor air contains a very complex mixture of gas and particulate matter (PM) pollutants. The assessment of the role of each pollutant in the complex atmosphere in the induction of an associated health effect or a response can be difficult due to many factors, i...
ERIC Educational Resources Information Center
Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin
2011-01-01
A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…
Modeling the chemistry of complex petroleum mixtures.
Quann, R J
1998-01-01
Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903
PyEmir: Data Reduction Pipeline for EMIR, the GTC Near-IR Multi-Object Spectrograph
NASA Astrophysics Data System (ADS)
Pascual, S.; Gallego, J.; Cardiel, N.; Eliche-Moral, M. C.
2010-12-01
EMIR is the near-infrared wide-field camera and multi-slit spectrograph being built for Gran Telescopio Canarias. We present here the work being done on its data processing pipeline. PyEmir is based on Python and it will process automatically data taken in both imaging and spectroscopy mode. PyEmir is begin developed by the UCM Group of Extragalactic Astrophysics and Astronomical Instrumentation.
Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization.
Paul, Supantha; Ghosh, Subimal; Mathew, Micky; Devanand, Anjana; Karmakar, Subhankar; Niyogi, Dev
2018-03-02
While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.
Asymmetry of wind waves studied in a laboratory tank
NASA Astrophysics Data System (ADS)
Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.
1995-03-01
Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.
Asymmetry of wind waves studied in a laboratory tank
NASA Astrophysics Data System (ADS)
Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.
Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.
Dugnani, Silvana; Calastretti, Angela; Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco; Canti, Gianfranco; Scaglione, Francesco; Bevilacqua, Annamaria
2017-01-01
Melatonin plays different physiological functions ranging from the regulation of circadian rhythms to tumor inhibition, owing to its antioxidant, immunomodulatory and anti-aging properties. Due to its pleiotropic functions, melatonin has been shown to elicit cytoprotective processes in normal cells and trigger pro-apoptotic signals in cancer cells. The therapeutic potential of melatonin analogues prompted us to investigate the in vitro and in vivo antitumor activity of new melatonin derivatives and explore the underlying molecular mechanisms. The experiments revealed that the new melatonin analogues inhibited the growth of melanoma and breast cancer cells in a dose- and time-dependent manner. In addition, our results indicated that melatonin derivative UCM 1037 could induce apoptosis in melanoma and breast cancer cells, as well as cell necrosis, in MCF-7. Together, apoptosis and necrosis could be two possible mechanisms to explain the cytotoxic effect of the melatonin analogue against cancer cells. The suppression of tumor growth by the melatonin analogues was further demonstrated in vivo in a xenograft mice model. A decrease in the activation of MAPK pathway was observed in all cancer cells following UCM 1037 treatment. Overall, this study describes a promising antitumor compound showing antiproliferative and cytotoxic activity in melanoma and breast cancer cells. PMID:28978121
Gatti, Giuliana; Lucini, Valeria; Dugnani, Silvana; Calastretti, Angela; Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco; Canti, Gianfranco; Scaglione, Francesco; Bevilacqua, Annamaria
2017-09-15
Melatonin plays different physiological functions ranging from the regulation of circadian rhythms to tumor inhibition, owing to its antioxidant, immunomodulatory and anti-aging properties. Due to its pleiotropic functions, melatonin has been shown to elicit cytoprotective processes in normal cells and trigger pro-apoptotic signals in cancer cells. The therapeutic potential of melatonin analogues prompted us to investigate the in vitro and in vivo antitumor activity of new melatonin derivatives and explore the underlying molecular mechanisms. The experiments revealed that the new melatonin analogues inhibited the growth of melanoma and breast cancer cells in a dose- and time-dependent manner. In addition, our results indicated that melatonin derivative UCM 1037 could induce apoptosis in melanoma and breast cancer cells, as well as cell necrosis, in MCF-7. Together, apoptosis and necrosis could be two possible mechanisms to explain the cytotoxic effect of the melatonin analogue against cancer cells. The suppression of tumor growth by the melatonin analogues was further demonstrated in vivo in a xenograft mice model. A decrease in the activation of MAPK pathway was observed in all cancer cells following UCM 1037 treatment. Overall, this study describes a promising antitumor compound showing antiproliferative and cytotoxic activity in melanoma and breast cancer cells.
Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...
Phenol removal pretreatment process
Hames, Bonnie R.
2004-04-13
A process for removing phenols from an aqueous solution is provided, which comprises the steps of contacting a mixture comprising the solution and a metal oxide, forming a phenol metal oxide complex, and removing the complex from the mixture.
Supercritical separation process for complex organic mixtures
Chum, Helena L.; Filardo, Giuseppe
1990-01-01
A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.
Rabbit Neonates and Human Adults Perceive a Blending 6-Component Odor Mixture in a Comparable Manner
Sinding, Charlotte; Thomas-Danguin, Thierry; Chambault, Adeline; Béno, Noelle; Dosne, Thibaut; Chabanet, Claire; Schaal, Benoist; Coureaud, Gérard
2013-01-01
Young and adult mammals are constantly exposed to chemically complex stimuli. The olfactory system allows for a dual processing of relevant information from the environment either as single odorants in mixtures (elemental perception) or as mixtures of odorants as a whole (configural perception). However, it seems that human adults have certain limits in elemental perception of odor mixtures, as suggested by their inability to identify each odorant in mixtures of more than 4 components. Here, we explored some of these limits by evaluating the perception of three 6-odorant mixtures in human adults and newborn rabbits. Using free-sorting tasks in humans, we investigated the configural or elemental perception of these mixtures, or of 5-component sub-mixtures, or of the 6-odorant mixtures with modified odorants' proportion. In rabbit pups, the perception of the same mixtures was evaluated by measuring the orocephalic sucking response to the mixtures or their components after conditioning to one of these stimuli. The results revealed that one mixture, previously shown to carry the specific odor of red cordial in humans, was indeed configurally processed in humans and in rabbits while the two other 6-component mixtures were not. Moreover, in both species, such configural perception was specific not only to the 6 odorants included in the mixture but also to their respective proportion. Interestingly, rabbit neonates also responded to each odorant after conditioning to the red cordial mixture, which demonstrates their ability to perceive elements in addition to configuration in this complex mixture. Taken together, the results provide new insights related to the processing of relatively complex odor mixtures in mammals and the inter-species conservation of certain perceptual mechanisms; the results also revealed some differences in the expression of these capacities between species putatively linked to developmental and ecological constraints. PMID:23341948
NASA Astrophysics Data System (ADS)
Bendle, James; Kawamura, Kimitaka; Yamazaki, Koji; Niwai, Takeji
2007-12-01
We investigated the latitudinal changes in atmospheric transport of organic matter to the western Pacific and Southern Ocean (27.58°N-64.70°S). Molecular distributions of lipid compound classes (homologous series of C 15 to C 35n-alkanes, C 8 to C 34n-alkanoic acids, C 12 to C 30n-alkanols) and compound-specific stable isotopes (δ 13C of C 29 and C 31n-alkanes) were measured in marine aerosol filter samples collected during a cruise by the R/V Hakuho Maru. The geographical source areas for each sample were estimated from air-mass back-trajectory computations. Concentrations of TC and lipid compound classes were several orders of magnitude lower than observations from urban sites in Asia. A stronger signature of terrestrial higher plant inputs was apparent in three samples collected under conditions of strong terrestrial winds. Unresolved complex mixtures (UCM) showed increasing values in the North Pacific, highlighting the influence of the plume of polluted air exported from East Asia. n-Alkane average chain length (ACL) distribution had two clusters, with samples showing a relation to latitude between 28°N and 47°S (highest ACL values in the tropics), whilst a subset of southern samples had anomalously high ACL values. Compound-specific carbon isotopic analysis of the C 29 (-25.6‰ to -34.5‰) and C 31n-alkanes (-28.3‰ to -37‰) revealed heavier δ 13C values in the northern latitudes with a transition to lighter values in the Southern Ocean. By comparing the isotopic measurements with back-trajectory analysis it was generally possible to discriminate between different source areas. The terrestrial vegetation source for a subset of the southernmost Southern Ocean is enigmatic; the back-trajectories indicate eastern Antarctica as the only intercepted terrestrial source area. These samples may represent a southern hemisphere background of well mixed and very long range transported higher plant organic material.
NASA Astrophysics Data System (ADS)
Eiserbeck, Christiane; Nelson, Robert K.; Grice, Kliti; Curiale, Joseph; Reddy, Christopher M.
2012-06-01
Higher plant biomarkers occur in various compound classes with an array of isomers that are challenging to separate and identify. Traditional one-dimensional (1D) gas chromatographic (GC) techniques achieved impressive results in the past, but have reached limitations in many cases. Comprehensive two-dimensional gas chromatography (GC × GC) either coupled to a flame ionization detector (GC × GC-FID) or time-of-flight mass spectrometer (GC × GC-TOFMS) is a powerful tool to overcome the challenges of 1D GC, such as the resolution of unresolved complex mixture (UCM). We studied a number of Tertiary, terrigenous oils, and source rocks from the Arctic and Southeast Asia, with special focus on angiosperm biomarkers, such as oleanoids and lupanoids. Different chromatographic separation and detection techniques such as traditional 1D GC-MS, metastable reaction monitoring (GC-MRM-MS), GC × GC-FID, and GC × GC-TOFMS are compared and applied to evaluate the differences and advantages in their performance for biomarker identification. The measured 22S/(22S + 22R) homohopane ratios for all applied techniques were determined and compare exceptionally well (generally between 2% and 10%). Furthermore, we resolved a variety of angiosperm-derived compounds that co-eluted using 1D GC techniques, demonstrating the superior separation power of GC × GC for these biomarkers, which indicate terrigenous source input and Cretaceous or younger ages. Samples of varying thermal maturity and biodegradation contain higher plant biomarkers from various stages of diagenesis and catagenesis, which can be directly assessed in a GC × GC chromatogram. The analysis of whole crude oils and rock extracts without loss in resolution enables the separation of unstable compounds that are prone to rearrangement (e.g. unsaturated triterpenoids such as taraxer-14-ene) when exposed to fractionation techniques like molecular sieving. GC × GC-TOFMS is particularly valuable for the successful separation of co-eluting components having identical molecular masses and similar fragmentation patterns. Such components co-elute when analysed by 1D GC and cannot be resolved by single-ion-monitoring, which prevents accurate mass spectral assessment for identification or quantification.
NASA Astrophysics Data System (ADS)
Rocha, A. C.; Mirante, F.; Gonçalves, C.; Nunes, T.; Alves, C.; Evtyugina, M.; Kowacz, M.; Pio, C.; Rocha, C.; Vasconcelos, T.
2009-04-01
The concentration of organic pollutants in urban areas is mostly due to incomplete combustion from vehicles, industries and domestic heating. Some of these compounds, principally the aliphatic (ALIPH) and polycyclic aromatic hydrocarbons (PAHs) promote harmful effects in human health. The determination of the ALIPH and PAHs concentration levels and their possible emission sources are useful for air quality management and source apportionment studies. In order to estimate and compare the ambient concentrations and establish the main sources of these compounds, the fine fraction of the atmospheric particulate matter (PM2.5) was collected simultaneously in Oporto and Coimbra during summer and winter seasons using a high volume sampler. The organic compounds were extracted from the particulate matter, under reflux with dichloromethane and the total organic extract (TOE) was fractionated by flash chromatography using five different eluents with increasing polarity. The hydrocarbon fractions were analysed by gas chromatography/mass spectrometry (GC/MS). Here we present and discuss the qualitative and quantitative composition of the aliphatic and aromatic fractions present in PM2.5 samples from both cities. The homologous series of C14 to C34 n-alkanes, isoprenoid hydrocarbons (pristane and phytane), PAHs and some petroleum markers have been identified and quantified. With the purpose of identifying the possible sources, various molecular diagnostic ratios were calculated. The global carbon preference index (CPI) closer to the unity, the large concentration of the unresolved complex mixture (UCM) and the presence of PAHs indicate that motor vehicle exhaust was the main emission source of the aliphatic and polycyclic aromatic fractions of Oporto and Coimbra aerosol, especially in the first city. Also, the remarkable presence of petroleum biomarkers such, as hopanes, confirms the previous results. Concentration ratios between PAHs were calculated and used to assign emission sources. The abundance and the sources of these organic pollutants for the two cities are discussed and compared taking into account the local/regional characteristics. Acknowledgement: The authors would like to thank Fundação para a Ciência e Tecnologia (FCT) for the financial support through the project POCI/AMB/60267/2004 which provided funding for the work presented here.
Extractable organic matter in PM10 from LiWan district of Guangzhou City, PR China.
Bi, Xinhui; Sheng, Guoying; Peng, Peng an; Zhang, Zhiqiang; Fu, Jiamo
2002-12-02
PM10 (particulate matter with aerodynamic diameter <10 microm) samples were collected at LiWan District of Guangzhou, PR China during April and July 2001 using a high volume air sampler to determine the distributions of homologous compounds and biomarkers. Polycyclic aromatic hydrocarbons (PAHs) including non-alkylated PAHs, methyl-alkylated PAHs, and some PAHs containing S/O atoms and n-alkanes were measured using gas chromatography/mass spectrometry analysis. The sigma(n)-alkane and sigmaPAHs ranged from 26.4 to 719.2 ng/m3 and 7.4 to 159.4 ng/m3, respectively. A seasonal fluctuation was clearly evident with higher concentrations occurring during the colder months (April). In addition, some compositional differences are observed for the organic compounds in samples collected from different heights above ground level. Higher sites had a significant contribution from vascular plant wax. The presence of petroleum products with no carbon number preference, pristane, phytane and a significant unresolved complex mixture (UCM) with unresolved to resolved components ratio (U/R) of 6.2-13.2 confirm the petroleum component. The relative distribution of n-alkanes and the values of molecular diagnostic ratio, such as carbon preference index (CPI) values ranging from 1.0 to 1.4 (for the whole range of n-alkanes), indicated the importance of petroleum and diesel residues and gasoline emissions, as well as the minor contribution of n-alkanes emitted directly from epicuticular waxes. Indeed, the percent contribution of leaf 'wax' n-alkanes (5.2-19.4%) indicated a low contribution of biogenic sources. The fossil fuel biomarkers, hopanes and steranes were observed in the PM10 samples, which indicate a petroleum origin. The distribution pattern of PAHs was characteristic of anthropogenic emissions. Coupling carbon number maximum (Cmax), CPI, U/R values, molecular marker and molecular diagnostic ratios for alkanes and PAHs revealed a classification of natural biogenic and anthropogenic components of atmospheric aerosols. These analyses support the conclusion that vehicular emission was the major source of organic compounds during the study period, while the contribution of epicuticular waxes emitted by terrestrial plants was minor.
Using Big Data Analytics to Address Mixtures Exposure
The assessment of chemical mixtures is a complex issue for regulators and health scientists. We propose that assessing chemical co-occurrence patterns and prevalence rates is a relatively simple yet powerful approach in characterizing environmental mixtures and mixtures exposure...
Ground-Based Aerosol Measurements
Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to ...
Indoor air-assessment: Indoor concentrations of environmental carcinogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, K.W.; Naugle, D.F.; Berry, M.A.
1991-01-01
In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified,more » however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures.« less
Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.
2016-01-01
Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning levels of biological organization and life stages when assessing contaminant interactions.
Transcriptional responses to complex mixtures - A review
Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after expos...
Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.
Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C
2014-04-01
Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.
Supercritical separation process for complex organic mixtures
Chum, H.L.; Filardo, G.
1990-10-23
A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.
Toward the Rational Use of Exposure Information in Mixtures Toxicology
Of all the disciplines of toxicology, perhaps none is as dependent on exposure information as Mixtures Toxicology. Identifying real world mixtures and replicating them in the laboratory (or in silico) is critical to understanding their risks. Complex mixtures such as cigarett...
Highly-Complex Environmentally-Realistic Mixtures: Challenges and Advances
The difficulties involved in design, conduct, analysis and interpretation of defmed mixtures experiments and use of the resulting data in risk assessment are now wellknown to the toxicology, risk assessment and risk management communities. The arena of highly-complex environment...
Constituent bioconcentration in rainbow trout exposed to a complex chemical mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, G.; Bergman, H.L.; Meyer, J.S.
1984-09-01
Classically, aquatic contaminant fate models predicting a chemical's bioconcentration factor (BCF) are based upon single-compound derived models, yet such BCF predictions may deviate from observed BCFs when physicochemical interactions or biological responses to complex chemical mixture exposures are not adequately considered in the predictive model. Rainbow trout were exposed to oil-shale retort waters. Such a study was designed to model the potential biological effects precluded by exposure to complex chemical mixtures such as solid waste leachates, agricultural runoff, and industrial process waste waters. Chromatographic analysis of aqueous and nonaqueous liquid-liquid reservoir components yielded differences in mixed extraction solvent HPLC profilesmore » of whole fish exposed for 1 and 3 weeks to the highest dilution of the complex chemical mixture when compared to their corresponding control, yet subsequent whole fish extractions at 6, 9, 12, and 15 weeks into exposure demonstrated no qualitative differences between control and exposed fish. Liver extractions and deproteinized bile samples from exposed fish were qualitatively different than their corresponding controls. These findings support the projected NOEC of 0.0045% dilution, even though the differences in bioconcentration profiles suggest hazard assessment strategies may be useful in evaluating environmental fate processes associated with complex chemical mixtures. 12 references, 4 figures, 2 tables.« less
Zhang, Yu; Cai, Xiyun; Lang, Xianming; Qiao, Xianliang; Li, Xuehua; Chen, Jingwen
2012-07-01
Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC(50) values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enhancement of archaeological heritage. El Risco de las Cuevas at Perales de Tajuña, Madrid (Spain)
NASA Astrophysics Data System (ADS)
Freire-Lista, David Martin; Alvarez de Buergo, Mónica; Fort, Rafael
2016-04-01
Heritage conservation has a great impact on the economy of a country. The enhancement of archaeological sites is an investment that promotes tourism and culture. The interdisciplinary knowledge of heritage should be the basis of its management. Preventive actions, non-destructive analytical techniques and monitoring for the conservation of these assets should be promoted. "El Risco de las Cuevas" is a highly decayed and nearly vertical gypsum escarpment which contains a series of dwellings excavated during the Chalcolithic and much more recent times. It is located at Perales de Tajuña, 40 km southeast of Madrid, Spain. This monument is approximately 70 metres high and 500 metres wide. It was listed as a cultural and monumental heritage site by the regional government of Madrid in 1998. The gypsum escarpment housing the dwellings forms part of a lower Miocene unit (Madrid Basin). Debris cones with a mixture of debris from the lower, medium and upper units are found at the bottom of the rockwall. The vulnerability of this monument to atmospheric agents has been studied using "in situ" monitoring techniques of humidity, temperature and rate of rockfalls. Drones have been used for aerial photography in the highest areas of the escarpment and have provided an information network of fractures likely to cause rockfall. Gypsum artificial accelerated ageing has been carried out in the laboratory, including freeze/thaw, wet/dry, thermal shock and dissolution tests. To determine the response of these accelerated ageing processes, density, micro-roughness, ultrasound velocities (Vp and Vs), air permeability and microscopy measurements were made before, during and after ageing tests. Geomorphological studies, rates of decay, material characteristics and durability tests indicate that the decay is controlled by the mineralogy, clay content and porosity of the gypsum rock, as well as microclimate, temperature changes and rock fractures. Rockfalls are particularly relevant in the safety of the monument and visitors. The enhancement of El Risco de las Cuevas has involved both local government (City council of Perales de Tajuña) and regional one (General Directorate of Historical Heritage of the Community of Madrid), besides the Institute of Geosciences IGEO (CSIC-UCM). Thanks to the collaboration of these agencies an interpretation centre has been created, preserving El Risco de las Cuevas in an educational and user-friendly manner. By conducting tours during the Science week of Madrid this promotes citizen participation, dissemination and social transfer, which are essential to preserve heritage. A project has been designed to monitor and ensure control and stability of the monument Acknowledgements: Community of Madrid for financing Geomateriales2 program (P2013/MIT2914), CEI-Moncloa UCM-UPM, Applied Petrology for Heritage Stone Materials Conservation Research Group and local government of Perales de Tajuña.
NASA Astrophysics Data System (ADS)
Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.
2018-03-01
Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.
2017-12-01
Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.
Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R
2018-03-01
Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.
Understanding the human health effects of chemical mixtures.
Carpenter, David O; Arcaro, Kathleen; Spink, David C
2002-01-01
Most research on the effects of chemicals on biologic systems is conducted on one chemical at a time. However, in the real world people are exposed to mixtures, not single chemicals. Although various substances may have totally independent actions, in many cases two substances may act at the same site in ways that can be either additive or nonadditive. Many even more complex interactions may occur if two chemicals act at different but related targets. In the extreme case there may be synergistic effects, in which case the effects of two substances together are greater than the sum of either effect alone. In reality, most persons are exposed to many chemicals, not just one or two, and therefore the effects of a chemical mixture are extremely complex and may differ for each mixture depending on the chemical composition. This complexity is a major reason why mixtures have not been well studied. In this review we attempt to illustrate some of the principles and approaches that can be used to study effects of mixtures. By the nature of the state of the science, this discussion is more a presentation of what we do not know than of what we do know about mixtures. We approach the study of mixtures at three levels, using specific examples. First, we discuss several human diseases in relation to a variety of environmental agents believed to influence the development and progression of the disease. We present results of selected cellular and animal studies in which simple mixtures have been investigated. Finally, we discuss some of the effects of mixtures at a molecular level. PMID:11834461
Bieber, Frederick R; Buckleton, John S; Budowle, Bruce; Butler, John M; Coble, Michael D
2016-08-31
The evaluation and interpretation of forensic DNA mixture evidence faces greater interpretational challenges due to increasingly complex mixture evidence. Such challenges include: casework involving low quantity or degraded evidence leading to allele and locus dropout; allele sharing of contributors leading to allele stacking; and differentiation of PCR stutter artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength of the evidence when inclusion of a specific known individual(s) is determined, and the approaches used must be supportable. There are concerns that methods utilized for interpretation of complex forensic DNA mixtures may not be implemented properly in some casework. Similar questions are being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpretation for current and previous casework. Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures are described. Given the most common method for statistical evaluation of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use is the focus of this article. Formulae and other supporting materials are provided. Guidance and details of a DNA mixture interpretation protocol is provided for application of the CPI/CPE method in the analysis of more complex forensic DNA mixtures. This description, in turn, should help reduce the variability of interpretation with application of this methodology and thereby improve the quality of DNA mixture interpretation throughout the forensic community.
NASA Astrophysics Data System (ADS)
Ergenç, Duygu; Freire, David; Fort, Rafael
2016-04-01
The chemical characterization of lime mortars used in Roman period has a great significance and plays a key role in the acquisition of knowledge with respect to construction technology, raw materials and, accordingly, in its conservation works. When it comes to cultural heritage studies, sampling is always complicated since the minimum damage is the primary concern. The use of non-destructive techniques and direct measurements with portable devices reduce the amount of samples and time consumed in analyses, consequently it could be stated that such techniques are extremely useful in conservation and restoration works. In this study, the portable XRF device was used to determine the composition of chemical elements which compose the Roman lime mortars in the archaeological site of Complutum, Alcalá de Henares (Madrid, Spain) which is listed as a World Heritage Site by UNESCO since 1998. Portable XRF devices have some detection limits below the ones of the laboratory equipment that are immovable and require sampling. In order to correlate the results, sampling and grinding were initially done to prepare the powders for the laboratory XRF analysis with the following elements: Si, Al, Fe, Ca, Mg, K, Ti, Nb, Zr, Sr, Rb, Pb, Zn and Cr. The analyses of the powdered samples were conducted with the laboratory equipment PHILIPS Magix Pro (PW-2440) from the Centre of Scientific Instrumentation CIC in the University of Granada, and the results were compared to the results gathered with X Ray Florescence (EDTRX) THERMO NITON model XL3T from the Petrophysics Laboratory Geosciences Institute IGEO (CSIC-UCM). Analyses were performed on the surfaces of the samples -without any previous preparation-, and on the powdered samples to compare the variations between both traditional XRF analyses and the portable XRF. A good correlation was found among the results obtained by the laboratory equipment, the portable device as well as the surface measurements. The results of this study enable to differentiate the types of lime mortars used in the site (Caementicium and Signinum) and in different buildings that form the Roman city. Acknowledgements: Thanks to the project CLIMORTEC (BIA2014-53911-R), to CEI-Moncloa of UCM-UPM-UCM and to Madrid Community for funding the Geomateriales2 (P2013/MIT2914) program
Complex mixtures of synthetic and natural androgens and estrogens, and many other non-steroidal components are commonly released to the aquatic environment from anthropogenic sources. It is important to understand the potential interactive (i.e., additive, synergistic, antagonist...
Diagnostic Assessment of the Ecological Risk of EDCs in Complex Mixtures
Although it is important to be able to forecast the potential endocrine toxicity of chemical mixtures that could enter aquatic environments, in many instances there is a need to determine possible effects of endocrine-active chemicals already present in complex environmental mixt...
SOLUBILITY, SORPTION AND TRANSPORT OF HYDROPHOBIC ORGANIC CHEMICALS IN COMPLEX MIXTURES
The research summarized in this report focuses on the effects which organic cosolvents have on the sorption and mobility of organic contaminants. This work was initiated In an effort to improve our understanding of the environmental consequences associated with complex mixtur...
Waste water treatment plants (WWTPs), as well as industrial and agricultural operations release complex mixtures of anthropogenic chemicals that negatively affect surface water quality. Previous studies have shown that exposure to such complex chemical mixtures can produce adver...
This work addresses several issues associated with the toxicity of a complex petroleum mixture (combined kerosene/diesel and crude oil), including developmental effects and early lifestage mortality, method of solubilization, and potential photo-activated and photo-modified toxic...
A Parametric Model for Large Scale Agent Systems
2005-04-01
what are the critical parameters that it depends on? We have argued in a companion paper (also in this vol- ume) that the common prescriptions of...the companion paper immediately preced- ing this paper. 241 3 An Application A collection of Unmanned Aerial Vehicles (UAVs) on a multi-task mission...Narciso Mart́ı-Oliet Dpto. de Sistemas Informáticos y Programación Universidad Complutense de Madrid, Spain narciso@sip.ucm.es Abstract We describe
de Llano, Dolores González; Arroyo, Amalia; Cárdenas, Nivia; Rodríguez, Juan Miguel; Moreno-Arribas, M Victoria; Bartolomé, Begoña
2017-06-01
Urinary tract infections (UTIs), one of most common infections worldwide, face high recurrence rates and increasing antimicrobial resistance. Probiotic bacteria, especially of the genus Lactobacillus, are considered a promising preventive and/or treatment therapy against UTIs. In order to elucidate the mechanisms involved in these beneficial effects, we studied the impact of different Lactobacillus strains (Lactobacillus salivarius UCM572, L. plantarum CLC17 and L. acidophilus 01) in the adherence of reference and clinical uropathogenic strains (Escherichia coli ATCC® 53503, E. coli 10791, Enterococcus faecalis 04-1, En. faecalis 08-1 and Staphylococcus epidermidis 08-3) to T24 epithelial bladder cells. In general, the Lactobacillus strains with previous in vivo evidence of beneficial effects against UTIs (L. salivarius UCM572 and L. acidophilus 01) significantly inhibited the adherence of the five uropathogens to T24 cells, displaying percentages of inhibition ranging between 22.2% and 43.9%, and between 16.5% and 53.7%, respectively. On the other hand, L. plantarum CLC17, a strain with no expected effects on UTIs, showed almost negligible anti-adherence effects.Therefore, these in vitro results suggest that inhibition of the adherence of uropathogens to epithelial bladder cells may be one of the mechanisms involved in the potential beneficial effects of probiotics against UTIs in vivo. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Presentation describes the advantages and challenges of working with Whole Mixtures, discusses an exploratory approach for evaluating sufficient similarity, and challenges of applying such approaches to other environmental mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aube, Michel, E-mail: 4aubem@videotron.ca; Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca; Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca
2011-04-15
Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cellsmore » and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100x10{sup 3} and 50x10{sup 3} dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10x10{sup 3} and 5x10{sup 3} dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p<0.05 at the 50x10{sup 3} dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, {beta}-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The proliferative effect of the mixture on CAMA-1 cells in the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation. - Research highlights: {yields} We studied effects of a complex organochlorine mixture on breast cancer cell growth. {yields} Weak xenoestrogens in the mixture stimulated the proliferation of MCF-7 cells. {yields} Antiandrogens increased the proliferation CAMA-1 cells grown with sex steroids. {yields} High concentrations of the mixture decreased the proliferation of all cell lines.« less
Intermolecular forces in acetonitrile + ethanol binary liquid mixtures
NASA Astrophysics Data System (ADS)
Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.
2015-10-01
FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.
Toxicological assessment of adverse health outcomes associated with exposure to complex mixtures provides an integrated response of the organism (or in vitro test system) that accounts for additivity among the components (both dose and response) as well as any greater than or les...
Point sources of endocrine active compounds to aquatic environments such as waste water treatment plants, pulp and paper mills, and animal feeding operations invariably contain complex mixtures of chemicals. The current study investigates the use of targeted in vitro assays des...
Point sources of potentially endocrine active compounds to aquatic environments such as waste water treatment plants, pulp and paper mills, and animal feeding operations invariably contain complex mixtures of chemicals. The current study investigates the use of targeted in vitro ...
Product Description:Due to technological improvements, increasing numbers of chemical contaminants are being detected in surface waters nation-wide, including the Great Lakes. Methods are needed to understand what impact these complex mixtures of contaminants can have on aquatic ...
Wastewater effluents are complex mixtures containing a variety of anthropogenic compounds, many of which are known endocrine disruptors. In order to characterize the development and behavorial effects of such a complex mixture, northern leopard frogs, Rana pipiens, were e...
Toxicological assessment of environmentally-realistic complex mixtures of drinking-water disinfection byproducts (DBPs) are needed to address concerns raised by some epidemiological studies showing associations between exposure to chemically disinfected water and adverse reproduc...
Eflluents from sources such as waste water treatment plants and animal feeding operations invariably contain complex mixtures of chemicals. Recent research on effluent from cattle feeding operations in the US have linked morphological alterations in fish with in vitro androgenic ...
Ground-Based Aerosol Measurements | Science Inventory ...
Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo
Altenburger, Rolf; Scholze, Martin; Busch, Wibke; Escher, Beate I; Jakobs, Gianina; Krauss, Martin; Krüger, Janet; Neale, Peta A; Ait-Aissa, Selim; Almeida, Ana Catarina; Seiler, Thomas-Benjamin; Brion, François; Hilscherová, Klára; Hollert, Henner; Novák, Jiří; Schlichting, Rita; Serra, Hélène; Shao, Ying; Tindall, Andrew; Tolefsen, Knut-Erik; Umbuzeiro, Gisela; Williams, Tim D; Kortenkamp, Andreas
2018-05-01
Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential adverse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters. We compared the observed mixture effects against component-based mixture effect predictions derived from additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the active components as predicted even against a background of other inactive contaminants. When none of the mixture components showed any activity by themselves then the mixture also was without effects. The mixture effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity predictions for concentration addition and independent action, reflecting well the diversity of the anticipated modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell- and organism-based endpoints produced mixture responses in agreement with the additivity expectation of concentration addition. Exceptionally, expected (additive) mixture response did not occur due to masking effects such as general toxicity from other compounds. Generally, deviations from an additivity expectation could be explained due to experimental factors, specific limitations of the effect endpoint or masking side effects such as cytotoxicity in in vitro assays. The majority of bioassays were able to quantitatively detect the predicted non-interactive, additive combined effect of the specifically bioactive compounds against a background of complex mixture of other chemicals in the sample. This supports the use of a combination of chemical and bioanalytical monitoring tools for the identification of chemicals that drive a specific mixture effect. Furthermore, we demonstrated that a panel of bioassays can provide a diverse profile of effect responses to a complex contaminated sample. This could be extended towards representing mixture adverse outcome pathways. Our findings support the ongoing development of bioanalytical tools for (i) compiling comprehensive effect-based batteries for water quality assessment, (ii) designing tailored surveillance methods to safeguard specific water uses, and (iii) devising strategies for effect-based diagnosis of complex contamination. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
A competitive binding model predicts the response of mammalian olfactory receptors to mixtures
NASA Astrophysics Data System (ADS)
Singh, Vijay; Murphy, Nicolle; Mainland, Joel; Balasubramanian, Vijay
Most natural odors are complex mixtures of many odorants, but due to the large number of possible mixtures only a small fraction can be studied experimentally. To get a realistic understanding of the olfactory system we need methods to predict responses to complex mixtures from single odorant responses. Focusing on mammalian olfactory receptors (ORs in mouse and human), we propose a simple biophysical model for odor-receptor interactions where only one odor molecule can bind to a receptor at a time. The resulting competition for occupancy of the receptor accounts for the experimentally observed nonlinear mixture responses. We first fit a dose-response relationship to individual odor responses and then use those parameters in a competitive binding model to predict mixture responses. With no additional parameters, the model predicts responses of 15 (of 18 tested) receptors to within 10 - 30 % of the observed values, for mixtures with 2, 3 and 12 odorants chosen from a panel of 30. Extensions of our basic model with odorant interactions lead to additional nonlinearities observed in mixture response like suppression, cooperativity, and overshadowing. Our model provides a systematic framework for characterizing and parameterizing such mixing nonlinearities from mixture response data.
Widom Lines in Binary Mixtures of Supercritical Fluids.
Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias
2017-06-08
Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.
Phillips, Patrick J.; Nowell, Lisa H.; Gilliom, Robert J.; Nakagaki, Naomi; Murray, Karen; VanAlstyne, Carolyn
2010-01-01
Mixtures of organochlorine compounds have the potential for additive or interactive toxicity to organisms exposed in the stream. This study uses a variety of methods to identify mixtures and a modified concentration-addition approach to estimate their potential toxicity at 845 stream sites across the United States sampled between 1992 and 2001 for organochlorine pesticides and polychlorinated biphenyls (PCBs) in bed sediment. Principal-component (PC) analysis identified five PCs that account for 77% of the total variance in 14 organochlorine compounds in the original dataset. The five PCs represent: (1) chlordane-related compounds and dieldrin; (2) p,p′-DDT and its degradates; (3) o,p′-DDT and its degradates; (4) the pesticide degradates oxychlordane and heptachlor epoxide; and (5) PCBs. The PC analysis grouped compounds that have similar chemical structure (such as parent compound and degradate), common origin (in the same technical pesticide mixture), and(or) similar relation of concentrations to land use. For example, the highest concentrations of chlordane compounds and dieldrin occurred at urban sites, reflecting past use of parent pesticides for termite control. Two approaches to characterizing mixtures—PC-based mixtures and unique mixtures—were applied to all 299 samples with a detection of two or more organochlorine compounds. PC-based mixtures are defined by the presence (in the sample) of one or more compounds associated with that PC. Unique mixtures are defined as a specific combination of two or more compounds detected in a sample, regardless of how many other compounds were also detected in that sample. The simplest PC-based mixtures (containing compounds from 1 or 2 PCs) commonly occurred in a variety of land use settings. Complex mixtures (containing compounds from 3 or more PCs) were most common in samples from urban and mixed/urban sites, especially in the Northeast, reflecting high concentrations of multiple chlordane, dieldrin, DDT-related compounds, and(or) PCBs. The most commonly occurring unique mixture (p,p′-DDE, p,p′-DDD) occurred in both simple and complex PC-based mixtures, and at both urban and agricultural sites. Mean Probable Effect Concentration Quotients (PEC-Q) values, which estimate the potential toxicity of organochlorine contaminant mixtures, were highest for complex mixtures. Mean PEC-Q values were highest for urban sites in the Northeast, followed by mixed/urban sites in the Northeast and agricultural sites in cotton growing areas. These results demonstrate that the PEC-Q approach can be used in combination with PC-based and unique mixture analyses to relate potential aquatic toxicity of contaminant mixtures to mixture complexity, land use, and other surrogates for contaminant sources.
Analysis of the improvement of selenite retention in smectite by adding alumina nanoparticles.
Mayordomo, Natalia; Alonso, Ursula; Missana, Tiziana
2016-12-01
Smectite clay is used as barrier for hazardous waste retention and confinement. It is a powerful material to retain cations, but less effective for retaining anionic species like selenite. This study shows that the addition of a small percentage of γ-Al 2 O 3 nanoparticles to smectite significantly improves selenite sorption. γ-Al 2 O 3 nanoparticles provide high surface area and positively charged surface sites within a wide range of pH, since their point of zero charge is at pH8-9. An addition of 20wt% of γ-Al 2 O 3 to smectite is sufficient to approach the sorption capacity of pure alumina. To analyze the sorption behavior of the smectite/oxide mixtures, a nonelectrostatic surface complexation model was considered, accounting for the surface complexation of HSeO 3 - and SeO 3 2- , the anion competition, and the formation of surface ternary complexes with major cations present in the solution. Selenite sorption in mixtures was satisfactorily described with the surface parameters and complexation constants defined for the pure systems, accounting only for the mixture weight fractions. Sorption in mixtures was additive despite the particle heteroaggregation observed in previous stability studies carried out on smectite/γ-Al 2 O 3 mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.
Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures.
Chundawat, Shishir P S; Lipton, Mary S; Purvine, Samuel O; Uppugundla, Nirmal; Gao, Dahai; Balan, Venkatesh; Dale, Bruce E
2011-10-07
Efficient deconstruction of cellulosic biomass to fermentable sugars for fuel and chemical production is accomplished by a complex mixture of cellulases, hemicellulases, and accessory enzymes (e.g., >50 extracellular proteins). Cellulolytic enzyme mixtures, produced industrially mostly using fungi like Trichoderma reesei, are poorly characterized in terms of their protein composition and its correlation to hydrolytic activity on cellulosic biomass. The secretomes of commercial glycosyl hydrolase-producing microbes was explored using a proteomics approach with high-throughput quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we show that proteomics-based spectral counting approach is a reasonably accurate and rapid analytical technique that can be used to determine protein composition of complex glycosyl hydrolase mixtures that also correlates with the specific activity of individual enzymes present within the mixture. For example, a strong linear correlation was seen between Avicelase activity and total cellobiohydrolase content. Reliable, quantitative and cheaper analytical methods that provide insight into the cellulosic biomass degrading fungal and bacterial secretomes would lead to further improvements toward commercialization of plant biomass-derived fuels and chemicals.
Exploring the Fate of Nitrogen Heterocycles in Complex Prebiotic Mixtures
NASA Technical Reports Server (NTRS)
Smith, Karen E.; Callahan, Michael P.; Cleaves, Henderson J.; Dworkin, Jason P.; House, Christopher H.
2011-01-01
A long standing question in the field of prebiotic chemistry is the origin of the genetic macromolecules DNA and RNA. DNA and RNA have very complex structures with repeating subunits of nucleotides, which are composed of nucleobases (nitrogen heterocycles) connected to sugar-phosphate. Due to the instability of some nucleobases (e.g. cytosine), difficulty of synthesis and instability of D-ribose, and the likely scarcity of polyphosphates necessary for the modern nucleotides, alternative nucleotides have been proposed for constructing the first genetic material. Thus, we have begun to investigate the chemistry of nitrogen heterocycles in plausible, complex prebiotic mixtures in an effort to identify robust reactions and potential alternative nucleotides. We have taken a complex prebiotic mixture produced by a spark discharge acting on a gas mixture of N2, CO2, CH4, and H2, and reacted it with four nitrogen heterocycles: uracil, 5-hydroxymethyluracil, guanine, and isoxanthopterin (2-amino-4,7-dihydroxypteridine). The products of the reaction between the spark mixture and each nitrogen heterocycle were characterized by liquid chromatography coupled to UV spectroscopy and Orbitrap mass spectrometry. We found that the reaction between the spark mixtUl'e and isoxanthopterin formed one major product, which was a cyanide adduct. 5-hydroxymethyluracil also reacted with the spark mixture to form a cyanide adduct, uracil-5-acetonitrile, which has been synthesized previously by reacting HCN with S-hydroxymethyluracil. Unlike isoxanthopterin, the chromatogram of the 5-hydroxymethyluracil reaction was much more complex with multiple products including spark-modified dimers. Additionally, we observed that HMU readily self-polymerizes in solution to a variety of oligomers consistent with those suggested by Cleaves. Guanine and uracil, the biological nucleobases, did not react with the spark mixture, even at high temperature (100 C). This suggests that there are alternative nucleobases which are more reactive under prebiotic conditions and may have been involved in producing precursor nucleotides.
1974-11-01
double resonance experiments to study vibration to rotation energy transfer; chemical laser initiation and pumping by electrical discharges in...8217) + HF(v=0,J2’). (7) Ihe experiment consists of the use of one HF laser to pump the IIFfv^jp molecules in less than 500 nanoseconds and the...each stage of diöüUaUcm, Ihc mid- dle 90’c of the .-.ample was rolained." The distilled sam- ple was condensed and pumped on at TV K in r
Stellar populations in local star-forming galaxies
NASA Astrophysics Data System (ADS)
Perez-Gonzalez, P. G.
2003-11-01
The main goal of this thesis work is studying the main properties of the stellar populations embedded in a statistically complete sample of local active star-forming galaxies: the Universidad Complutense de Madrid (UCM) Survey of emission-line galaxies. This sample contains 191 local star-forming galaxies at an average redshift of 0.026. The survey was carried out using an objective-prism technique centered at the wavelength of the Halpha nebular emission-line (a common tracer of recent star formation). (continues)
Disinfectants used in the production of drinking water react with naturally occurring organic and inorganic material in the source water to produce disinfection by-products (DBPs). Humans are exposed daily to a complex mixture of DBPs via oral, dermal, and inhalation routes. To ...
When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...
McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco
2015-01-01
Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567
Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton.
Echeveste, Pedro; Galbán-Malagón, Cristóbal; Dachs, Jordi; Berrojalbiz, Naiara; Agustí, Susana
2016-11-15
Semivolatile and persistent organic pollutants (POPs) undergo atmospheric transport before being deposited to the oceans, where they partition to phytoplankton organic matter. The goal of this study was to determine the toxicity of naturally occurring complex mixtures of organic pollutants to temperate and polar phytoplankton communities from the Mediterranean Sea, the North East (NE) Atlantic, and Southern Oceans. The cell abundance of the different phytoplankton groups, chlorophyll a concentrations, viability of the cells, and growth and decay constants were monitored in response to addition of a range of concentrations of mixtures of organic pollutants obtained from seawater extracts. Almost all of the phytoplankton groups were significantly affected by the complex mixtures of non-polar and polar organic pollutants, with toxicity being greater for these mixtures than for single POPs or simple POP mixtures. Cocktails' toxicity arose at concentrations as low as tenfold the field oceanic levels, probably due to a higher chemical activity of the mixture than of simple POPs mixtures. Overall, smaller cells were the most affected, although Mediterranean picophytoplankton was significantly more tolerant to non-polar POPs than picophytoplankton from the Atlantic Ocean or the Bellingshausen Sea microphytoplankton. Copyright © 2016 Elsevier B.V. All rights reserved.
Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan
2016-01-01
Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements. PMID:27112127
Pradines, Joël R; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan
2016-04-26
Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.
NASA Astrophysics Data System (ADS)
Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan
2016-04-01
Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.
DOT National Transportation Integrated Search
2014-05-01
At its most basic, an asphalt mixture is asphalt : binder and crushed stone aggregate. This : seemingly simple mixture is very complex; method : of preparation and application, additives, and : aggregate type all influence the quality and : durabilit...
Introduction
Polychlorinated biphenyls (PCBs) offer a unique model to understand the major issues related to complex environmental mixtures. These environmental pollutants are ubiquitous, persistent, bioaccumulate in human body through the food chain, and exist as mixtures of ...
Method of analysis of polymerizable monomeric species in a complex mixture
Hermes, Robert E
2014-03-18
Method of selective quantitation of a polymerizable monomeric species in a well spacer fluid, said method comprising the steps of adding at least one solvent having a refractive index of less than about 1.33 to a sample of the complex mixture to produce a solvent phase, and measuring the refractive index of the solvent phase.
Behavior of complex mixtures in aquatic environments: a synthesis of PNL ecological research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fickeisen, D.H.; Vaughan, B.E.
1984-06-01
The term complex mixture has been recently applied to energy-related process streams, products and wastes that typically contain hundreds or thousands of individual organic compounds, like petroleum or synthetic fuel oils; but it is more generally applicable. A six-year program of ecological research has focused on four areas important to understanding the environmental behavior of complex mixtures: physicochemical variables, individual organism responses, ecosystems-level determinations, and metabolism. Of these areas, physicochemical variables and organism responses were intensively studied; system-level determinations and metabolism represent more recent directions. Chemical characterization was integrated throughout all areas of the program, and state-of-the-art methods were applied.more » 155 references, 35 figures, 4 tables.« less
Process for removing cadmium from scrap metal
Kronberg, J.W.
1995-04-11
A process is described for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal. 2 figures.
Process for removing cadmium from scrap metal
Kronberg, J.W.
1994-01-01
A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to exposure additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.
Process for removing cadmium from scrap metal
Kronberg, James W.
1995-01-01
A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Huihui; Qu, ChenChen; Liu, Jing
Bacteria and phyllosilicate commonly coexist in the natural environment, producing various bacteria–clay complexes that are capable of immobilizing heavy metals, such as cadmium, via adsorption. However, the molecular binding mechanisms of heavy metals on these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive B. subtilis, Gram-negative P. putida and their binary mixtures with montmorillonite (Mont) using the Cd K-edge x-ray absorption spectroscopy (XAS) and isothermal titration calorimetry (ITC). We observed a lower adsorptive capacity for P. putida than B. subtilis, whereas P. putida–Mont and B. subtilis–Mont mixtures showed nearly identical Cd adsorption behaviors. EXAFS fitsmore » and ITC measurements demonstrated more phosphoryl binding of Cd in P. putida. The decreased coordination of C atoms around Cd and the reduced adsorption enthalpies and entropies for the binary mixtures compared to that for individual bacteria suggested that the bidentate Cd-carboxyl complexes in pure bacteria systems were probably transformed into monodentate complexes that acted as ionic bridging structure between bacteria and motmorillonite. This study clarified the binding mechanism of Cd at the bacteria–phyllosilicate interfaces from a molecular and thermodynamic view, which has an environmental significance for predicting the chemical behavior of trace elements in complex mineral–organic systems.« less
Rodea-Palomares, Ismael; Gonzalez-Pleiter, Miguel; Gonzalo, Soledad; Rosal, Roberto; Leganes, Francisco; Sabater, Sergi; Casellas, Maria; Muñoz-Carpena, Rafael; Fernández-Piñas, Francisca
2016-01-01
The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of experimental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complex mixtures, and variable environmental conditions) supports the widespread perception that these effects are often unpredictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). We present a case study where GSA-QHTS allowed for the identification of the main pharmaceutical pollutants (and their interactions), driving biological effects of low-dose complex mixtures at the microbial population level. The QHTS experiments involved the integrated analysis of nearly 2700 observations from an array of 180 unique low-dose mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceutical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typical freshwater microbial community assemblages. Contrary to our expectations and challenging established scientific opinion, the bioactivity of the mixtures was not predicted by the null mixture models, and the main drivers that were identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants and introduce a new operational framework for their systematic identification. PMID:27617294
Short-term bioassay of complex organic mixtures. Part II. Mutagenicity testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epler, J.L.; Clark, B.R.; Ho, C.
1978-01-01
The feasibility of using short-term mutagenicity assays to predict the potential biohazard of various crude and complex test materials has been examined in a coupled chemical and biological approach. The principal focus of the research has involved the preliminary chemical characterizatiion and preparation for bioassay, followed by testing in the Salmonella histidine reversion assay system. The mutagenicity tests are intended to act as predictors of profound long-range health effects such as mutagenesis and/or carcinogenesis; act as a mechanism to rapidly isolate and identify a hazardous agent in a complex mixture; and function as a measure of biological activity correlating baselinemore » data with changes in process conditions. Since complex mixtures can be fractionated and approached in these short-term assays, information reflecting on the actual compounds responsible for the biological effect may be accumulated.« less
ANALYSIS OF FUNCTIONAL EFFECTS OF A MIXTURE OF FIVE PESTICIDES USING A RAY DESIGN
Abstract
The protection of human health from the adverse effects of cumulative environmental exposure to chemical mixtures is an important issue. Of particular interest is the potential detection and characterization of interaction among chemicals in complex mixtures. R...
Khemissi, Wahid; Farooq, Rai Khalid; Le Guisquet, Anne-Marie; Sakly, Mohsen; Belzung, Catherine
2014-01-01
In depressed patients, antidepressant resistance has been associated with dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis but the underlying mechanisms are poorly understood. The scope of this study was to try to create HPA-related antidepressant resistance in mice and to investigate adult hippocampal neurogenesis as a putative mechanism of antidepressant resistance. Mice were subjected to a 9 week Unpredictable Chronic Mild Stress (UCMS). After a 2 weeks drug-free period, mice were segregated in two groups, according to the percentage of corticosterone suppression after dexamethasone injection: High suppression (HS) and Low suppression (LS) mice. From the 5th week onwards, fluoxetine at a dose of 15 mg/kg (i.p.) was administered daily and at the end of 8th week, a battery of behavioral tests assessing the emotional, cognitive, and motor aspects of UCMS-induced depressive-like behavior was applied. Results show that fluoxetine-induced antidepressant effects were observed with higher amplitude in HS when compared to LS on various behavioral phenotypes, like coat state, novelty suppression of feeding, splash test and nest test. The same profile was found concerning the immunohistochimical analysis of ki-67 positive cells in the dentate gyrus of the hippocampus, which is a marker of neuronal proliferation, but not for doublecortin labeling. This suggests that the failure of fluoxetine to induce antidepressant effects may be associated to the poor ability of the compound to stimulate cell proliferation in the hippocampus. PMID:25324748
Anticipatory synergy adjustments reflect individual performance of feedforward force control.
Togo, Shunta; Imamizu, Hiroshi
2016-10-06
We grasp and dexterously manipulate an object through multi-digit synergy. In the framework of the uncontrolled manifold (UCM) hypothesis, multi-digit synergy is defined as the coordinated control mechanism of fingers to stabilize variable important for task success, e.g., total force. Previous studies reported anticipatory synergy adjustments (ASAs) that correspond to a drop of the synergy index before a quick change of the total force. The present study compared ASA's properties with individual performances of feedforward force control to investigate a relationship of those. Subjects performed a total finger force production task that consisted of a phase in which subjects tracked target line with visual information and a phase in which subjects produced total force pulse without visual information. We quantified their multi-digit synergy through UCM analysis and observed significant ASAs before producing total force pulse. The time of the ASA initiation and the magnitude of the drop of the synergy index were significantly correlated with the error of force pulse, but not with the tracking error. Almost all subjects showed a significant increase of the variance that affected the total force. Our study directly showed that ASA reflects the individual performance of feedforward force control independently of target-tracking performance and suggests that the multi-digit synergy was weakened to adjust the multi-digit movements based on a prediction error so as to reduce the future error. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
SPR imaging based electronic tongue via landscape images for complex mixture analysis.
Genua, Maria; Garçon, Laurie-Amandine; Mounier, Violette; Wehry, Hillary; Buhot, Arnaud; Billon, Martial; Calemczuk, Roberto; Bonnaffé, David; Hou, Yanxia; Livache, Thierry
2014-12-01
Electronic noses/tongues (eN/eT) have emerged as promising alternatives for analysis of complex mixtures in the domain of food and beverage quality control. We have recently developed an electronic tongue by combining surface plasmon resonance imaging (SPRi) with an array of non-specific and cross-reactive receptors prepared by simply mixing two small molecules in varying and controlled proportions and allowing the mixtures to self-assemble on the SPRi prism surface. The obtained eT generated novel and unique 2D continuous evolution profiles (CEPs) and 3D continuous evolution landscapes (CELs) based on which the differentiation of complex mixtures such as red wine, beer and milk were successful. The preliminary experiments performed for monitoring the deterioration of UHT milk demonstrated its potential for quality control applications. Furthermore, the eT exhibited good repeatability and stability, capable of operating after a minimum storage period of 5 months. Copyright © 2014 Elsevier B.V. All rights reserved.
Equilibration of a polycation - anionic surfactant mixture at the water/vapor interface.
Akanno, Andrew; Guzmán, Eduardo; Fernández-Peña, Laura; Llamas, Sara; Ortega, Francisco; Rubio, Ramon Gonzalez
2018-06-01
The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC) - sodium lauryl ether sulfate (SLES) mixtures at the water / vapor interface has been studied by different surface tension techniques and dilational visco-elasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte - surfactant complexes in the bulk affects to the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC - SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work helps on the understanding of the most fundamental bases of the physico-chemical behavior of concentrated polyelectrolyte - surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.
NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.
Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow
2018-06-01
DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Polychlorinated biphenyls (PCBs) offer a unique model to understand the major issues related to complex environmental mixtures. These pollutants are ubiquitous and exist as mixtures of several congeners in the environment. Human exposures to PCBs are associated with a variety of ...
Polychlorinated biphenyls (PCBs) offer a unique model to understand the major issues related to complex environmental mixtures of persistent chemicals. These pollutants are ubiquitous, persistent, bioaccumulate in human body through the food chain, and exist as mixtures of severa...
Method for milling and drilling glass
NASA Technical Reports Server (NTRS)
Rice, S. H. (Inventor)
1980-01-01
A process for machining glass by placing a rotating carbide working surface under minimum pressure against an area of glass to be worked is described. Concurrently the region between the working surface and the area of glass is wet with a lubricant consisting essentially of a petroleum carrier, a complex mixture of esters and a complex mixture of naturally occurring aromatic oils.
Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas.
Suslick, Benjamin A; Feng, Liang; Suslick, Kenneth S
2010-03-01
The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.
Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas
Suslick, Benjamin A.; Feng, Liang; Suslick, Kenneth S.
2010-01-01
The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures. PMID:20143838
Jasper, Micah N; Martin, Sheppard A; Oshiro, Wendy M; Ford, Jermaine; Bushnell, Philip J; El-Masri, Hisham
2016-03-15
People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felton, D.L.
1985-02-01
Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo(a)pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base. (ACR)
Electrophoresis-mass spectrometry probe
Andresen, Brian D.; Fought, Eric R.
1987-01-01
The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.
Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J
2016-03-07
Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.
Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A
2018-07-01
The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.
Dielectric constant of liquid alkanes and hydrocarbon mixtures
NASA Technical Reports Server (NTRS)
Sen, A. D.; Anicich, V. G.; Arakelian, T.
1992-01-01
The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.
NASA Astrophysics Data System (ADS)
Swami, M. B.; Hudge, P. G.; Pawar, V. P.
The dielectric properties of binary mixtures of benzylamine-1,2,6-hexantriol mixtures at different volume fractions of 1,2,6-hexanetriol have been measured using Time Domain Reflectometry (TDR) technique in the frequency range of 10 MHz to 30 GHz. Complex permittivity spectra were fitted using Havriliak-Negami equation. By using least square fit method the dielectric parameters such as static dielectric constant (ɛ0), dielectric constant at high frequency (ɛ∞), relaxation time τ (ps) and relaxation distribution parameter (β) were extracted from complex permittivity spectra at 25∘C. The intramolecular interaction of different molecules has been discussed using the Kirkwood correlation factor, Bruggeman factor. The Kirkwood correlation factor (gf) and effective Kirkwood correlation factor (geff) indicate the dipole ordering of the binary mixtures.
Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.
Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A
2015-07-01
Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Alizadeh, Nina
2011-01-01
Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
Owen, Benjamin C; Haupert, Laura J; Jarrell, Tiffany M; Marcum, Christopher L; Parsell, Trenton H; Abu-Omar, Mahdi M; Bozell, Joseph J; Black, Stuart K; Kenttämaa, Hilkka I
2012-07-17
In the search for a replacement for fossil fuel and the valuable chemicals currently obtained from crude oil, lignocellulosic biomass has become a promising candidate as an alternative biorenewable source for crude oil. Hence, many research efforts focus on the extraction, degradation, and catalytic transformation of lignin, hemicellulose, and cellulose. Unfortunately, these processes result in the production of very complex mixtures. Further, while methods have been developed for the analysis of mixtures of oligosaccharides, this is not true for the complex mixtures generated upon degradation of lignin. For example, high-performance liquid chromatography/multiple stage tandem mass spectrometry (HPLC/MS(n)), a tool proven to be invaluable in the analysis of complex mixtures derived from many other biopolymers, such as proteins and DNA, has not been implemented for lignin degradation products. In this study, we have developed an HPLC separation method for lignin degradation products that is amenable to negative-ion-mode electrospray ionization (ESI doped with NaOH), the best method identified thus far for ionization of lignin-related model compounds without fragmentation. The separated and ionized compounds are then analyzed by MS(3) experiments to obtain detailed structural information while simultaneously performing high-resolution measurements to determine their elemental compositions in the two parts of a commercial linear quadrupole ion trap/Fourier-transform ion cyclotron resonance mass spectrometer. A lignin degradation product mixture was analyzed using this method, and molecular structures were proposed for some components. This methodology significantly improves the ability to analyze complex product mixtures that result from degraded lignin.
2006-04-01
capability. One key problem is the extent to which the pressures and demands of both family and military life compete. This work - life balance is especially...deployed to Iraq in 2003 (Op TELIC 1) and subsequently 2004-5 (Op TELIC 5). During periods of deployment, work - life balance may be particularly difficult...Perspectives on the Study of Work Life Balance . Available from: URL: http://www.ucm.es/info/Psyap/enop/guest.htm accessed on August 22 2005. 2. Coser, L
1991-01-01
Millhn, I. Rasines* Instituto de Ciencia de Materiales , CSIC Serrano 113, 28006 Madrid, Spain. J.A. Camps, Facultad de Ciencias Geol6gicas, UCM Ciudad...L2080-L2081, 1987. 28. J. Amador, M.T. Casais, C. Cascales, A. Castro and I. Rasines, "Sintesis y ca- racterizaci6n de nuevos 6xidos superconductores...Ciencia de Materiales (Spain) REICK, Franklin Fluoramics, Inc. REILEY, Don PTO/Mech/Gen Classification Gp ROMANOFSKY, Robert NASA Headquarters ROYTBURD, A
Designing the Search Service for Enterprise Portal based on Oracle Universal Content Management
NASA Astrophysics Data System (ADS)
Bauer, K. S.; Kuznetsov, D. Y.; Pominov, A. D.
2017-01-01
Enterprise Portal is an important part of an organization in informative and innovative space. The portal provides collaboration between employees and the organization. This article gives a valuable background of Enterprise Portal and technologies. The paper presents Oracle WebCenter Portal and UCM Server integration in detail. The focus is on tools for Enterprise Portal and on Search Service in particular. The paper also presents several UML diagrams to describe the use of cases for Search Service and main components of this application.
ERIC Educational Resources Information Center
Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.
2016-01-01
Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…
Modeling of Complex Mixtures: JP-8 Toxicokinetics
2008-10-01
generic tissue compartments in which we have combined diffusion limitation and deep tissue (global tissue model). We also applied a QSAR approach for...SUBJECT TERMS jet fuel, JP-8, PBPK modeling, complex mixtures, nonane, decane, naphthalene, QSAR , alternative fuels 16. SECURITY CLASSIFICATION OF...necessary, to apply to the interaction of specific compounds with specific tissues. We have also applied a QSAR approach for estimating blood and tissue
The Control of Orbital Mixing in Ruthenium Complexes Containing Quinone Related Ligands
1991-04-04
and sodium, respectively. Tetrabutylammonium perchlorate (TBAP) and tetrabutylammonium hexafluorophosphate (Kodak; TBAH) were recrystallized from...solution. Lithium perchlorate trihydrate (0.036 g; 0.23 mmol) in methanol (2 mL) was added to the hot reaction mixture. The mixture was cooled to room...and lithium aluminum hydride suspension in THF (this required the use of the 4,5-dimethylated orthophenylenediamine complex for solubility reasons
Office of Research and Development's Four Lab Study: Toxicological and Chemical Evaluation of Complex Mixtures of Disinfection By-Products (DBPs), and Quality Assurance Activities for a Large U.S. EPA Multilaboratoty Study
Thomas J. Hughes, Project and QA Manager, Expe...
Pharmacokinetic Modeling of JP-8 Jet Fuel Components: II. A Conceptual Framework
2003-12-01
example, a single type of (simple) binary interaction between 300 components would require the specification of some 105 interaction coefficients . One...individual substances, via binary mechanisms, is enough to predict the interactions present in the mixture. Secondly, complex mixtures can often be...approximated as pseudo- binary systems, consisting of the compound of interest plus a single interacting complex vehicle with well-defined, composite
Determinants of Whether or not Mixtures of Disinfection By-products are Similar
This project summary and its related publications provide information on the development of chemical, toxicological and statistical criteria for determining the sufficient similarity of complex chemical mixtures.
Li, D Q; Zhao, J; Li, S P
2014-06-06
Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrophoresis-mass spectrometry probe
Andresen, B.D.; Fought, E.R.
1987-11-10
The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raphaelian, L.A.; Boparai, A.S.; Schneider, J.F.
1987-01-01
Objectives of this research project were: (1) to enhance the capabilities of analyzing the complex mixtures found in coal wastes by using gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR); (2) to separate, by supercritical fluid chromatography (SFC), the complex mixtures found in coal wastes into a few, less-complex mixtures so that analysis by gas chromatography (GC/MS) and GC/MIIR would be simplified. Preliminary results are presented for the mass spectra and infrared spectra of xylene isomers, gas chromatogram of 12 C/sub 2/-Napthalenes, averaged IR spectrum and a comparison of matrix isolation with light-pipe infrared spectra. A SFC chromatogram of polynuclear aromatic hydrocarbonsmore » is also presented. 2 refs., 5 figs.« less
Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver; Axelstad, Marta; Boberg, Julie; Christiansen, Sofie; Rehrauer, Hubert; Georgijevic, Jelena Kühn; Hass, Ulla; Kortenkamp, Andreas; Schlumpf, Margret
2015-04-01
The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E-Mix (estrogenic mixture) with 4 estrogenic chemicals (bisphenol A, 4-methylbenzylidene camphor, 2-ethylhexyl 4-methoxycinnamate, and butylparaben), a complex mixture, AEP-Mix, containing the components of A-Mix and E-Mix plus paracetamol, and paracetamol alone, were administered by oral gavage to rat dams from gestation day 7 until weaning. General developmental endpoints were not affected by EDC mixtures or paracetamol. Gene expression was analyzed on postnatal day 6, during sexual brain differentiation, by exon microarray in medial preoptic area in the high-dose group, and by real-time RT-PCR in medial preoptic area and ventromedial hypothalamus in all dose groups. Expression patterns were mixture, sex, and region specific. Effects of the analgesic drug paracetamol, which exhibits antiandrogenic activity in peripheral systems, differed from those of A-Mix. All mixtures had a strong, mixture-specific impact on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids also in hippocampus, this may represent a general target of ECD mixtures.
Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo
2018-06-01
Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.
Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît
2014-04-01
In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.
Public drinking water treated with chemical disinfectants contains a complex mixture of disinfection by-products (DBPs) for which the relative toxicity of the mixtures needs to be characterized to accurately assess risk. Potassium bromate (KBrO3) is a by-product from ozonation of...
Manzano, Carlos; Hoh, Eunha; Massey Simonich, Staci L.
2014-01-01
This research is the first to quantify complex PAH mixtures in NIST SRMs using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/ToF-MS), with and without extract cleanup, and reports previously unidentified PAH isomers in the NIST SRMs. We tested a novel, high orthogonality GC column combination (LC-50×NSP-35), as well as with a commonly used column combination (Rtx-5ms×Rxi-17) for the quantification of a complex mixture of 85 different PAHs, including parent (PAHs), alkyl- (MPAHs), nitro- (NPAHs), oxy- (OPAHs), thio- (SPAHs), bromo- (BrPAHs), and chloro-PAHs (ClPAHs) in extracts from two standard reference materials: NIST SRM1650b (diesel particulate matter), with cleanup and NIST SRM1975 (diesel particulate extract), with and without extract cleanup. The LC-50×NSP-35 column combination resulted in an average absolute percent difference of 33.8%, 62.2% and 30.8% compared to the NIST certified PAH concentrations for NIST SRM1650b, NIST SRM1975 with cleanup and NIST SRM1975 without cleanup, while the Rtx-5ms×Rxi-17 resulted in an absolute percent difference of 38.6%, 67.2% and 79.6% for NIST SRM1650b, NIST SRM1975 with cleanup and NIST SRM1975 without cleanup, respectively. This GC×GC/ToF-MS method increases the number of PAHs detected and quantified in complex environmental extracts using a single chromatographic run. Without clean-up, 7 additional compounds were detected and quantified in NIST SRM1975 using the LC-50×NSP-35 column combination. These results suggest that the use of the LC-50×NSP-35 column combination in GC×GC/ToF-MS not only results in better chromatographic resolution and greater orthogonality for the separation of complex PAH mixtures, but can also be used for the accurate quantification of complex PAH mixtures in environmental extracts without cleanup. PMID:23932031
Kringel, Dianini Hüttner; Antunes, Mariana Dias; Klein, Bruna; Crizel, Rosane Lopes; Wagner, Roger; de Oliveira, Roberto Pedroso; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-11-01
The aim of this study was to produce and characterize inclusion complexes (IC) between β-cyclodextrin (β-CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace-gas chromatography (SH-GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β-CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β-CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β-CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.; Terekhova, I. V.; Kumeev, R. S.
2012-08-01
The influence of water-ethanol mixture composition on the complex formation between 18-crown-6 ether and L-phenylalanine was studied by titration calorimetry at Т = 298.15 K. The standard thermodynamic parameters (ΔrGо, ΔrHо, ТΔrSо) of formation of [Phe18C6] molecular complex were calculated from data obtained by means of the microcalorimetric system TAM III (TA Instruments, USA) at X(EtOH) = 0.0/0.6 mol fraction. The stability of [Phe18C6] and the mechanism of complexation in water were investigated using the 1Н and 13С NMR spectroscopy. The increase of EtOH concentration results in an increase of the complex stability and of the exothermicity of complexation.
Bolshakov, M A; Ashikhmin, A A; Makhneva, Z K; Moskalenko, A A
2016-11-01
Carotenoid mixture enriched by rhodopin and spirilloxanthin was incorporated in LH2 and LH1 complexes from Allochromatium (Alc.) minutissimum in vitro. The maximum incorporating level was ~95%. Rhodopin (56.4%) and spirilloxanthin (13.8%) were incorporated into the LH1 complex, in contrast to the control complex, which contained primarily spirilloxanthin (66.8%). After incorporating, the LH2 complex contained rhodopin (66.7%) and didehydrorhodopin (14.6%), which was close to their content in the control (67.4 and 20.5%, respectively). Thus, it was shown that carotenoids from the total pool are not selectively incorporated into LH2 and LH1 complexes in vitro in the proportion corresponding to the carotenoid content in the complexes in vivo.
Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.
Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana
2016-12-01
β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.
Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan
2014-06-10
The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.
NASA Technical Reports Server (NTRS)
Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Pickering, Kenneth E.; Dickerson, Russell R.; Landry, Laura
2012-01-01
Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is examined by incorporating trees, soil, and grass into the coupled Weather Research and Forecasting model and an urban canopy model (WRF-UCM). By parameterizing the effects of these natural surfaces alongside roadways and buildings, the modified WRF-UCM is used to investigate how urban trees, soil, and grass dampen the UHI. The modified model was run with 50% tree cover over urban roads and a 10% decrease in the width of urban streets to make space for soil and grass alongside the roads and buildings. Results show that, averaged over all urban areas, the added vegetation decreases surface air temperature in urban street canyons by 4.1 K and road-surface and building-wall temperatures by 15.4 and 8.9 K, respectively, as a result of tree shading and evapotranspiration. These temperature changes propagate downwind and alter the temperature gradient associated with the Chesapeake Bay breeze and, therefore, alter the strength of the bay breeze. The impact of building height on the UHI shows that decreasing commercial building heights by 8 m and residential building heights by 2.5 m results in up to 0.4-K higher daytime surface and near-surface air temperatures because of less building shading and up to 1.2-K lower nighttime temperatures because of less longwave radiative trapping in urban street canyons.
Management of vaginal penetration phobia in Arab women: a retrospective study.
Muammar, Tarfah; McWalter, Patricia; Alkhenizan, Abdullah; Shoukri, Mohamed; Gabr, Alia; Bin, Abdulaziz AlDanah
2015-01-01
Vaginal penetration phobia is a common and distressing problem world.wide. It interferes with vaginal penetrative sexual relations, and leads to unconsummated marriage (UCM). This problem may be heightened in Arab women, due to cultural taboos about pain and bleeding, that may be associated with the first coital experience after marriage. Data about this problem is scarce in Arab societies. The aim of this study was to evaluate the response of these women and their husbands to an individualized, psychotherapeutic assessment and treatment to resolve this problem. Retrospective descriptive in a general gynecology community setting over a 6-year period. The study involved a retrospective sequential cohort of 100 Arab couples with UCM due to the woman's VPP. They were evaluated by a female gynecologist in out patient clinics. Data was collected through chart review, and telephone interviews. Final analysis was performed on 100 Arab couples, who satisfied the inclusion criteria. They were followed up to assess their response to an individualized, structured treatment protocol. The treatment combined sex education with systematic desensitization, targeting fear and anxiety as.sociated with vaginal penetration. A total of 96% of the studied group had a successful outcome after an average of 4 sessions. Penetrative intercourse was reported by the tolerance of these women; further pregnancy was achieved in 77.8 % of the infertile couples. Insufficient knowledge of sexual intercourse is a major contributor to the development of VPP in the sampled population. It appears that they respond well to an individualized, structured treatment protocol as described by Hawten 1985 (regardless of other risk factors associated with vaginismus).
Adaptive Postural Control for Joint Immobilization during Multitask Performance
Hsu, Wei-Li
2014-01-01
Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477
Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.
Tokuda, Kazuki; Anan, Masaya; Takahashi, Makoto; Sawada, Tomonori; Tanimoto, Kenji; Kito, Nobuhiro; Shinkoda, Koichi
2018-01-03
The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee-ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L
2016-08-01
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioanalytical Methods for Food Contaminant Analysis
Foods are complex mixtures of lipids, carbohydrates, proteins, vitamins, organic compounds and other naturally occurring compounds. Sometimes added to this mixture are residues of pesticides, veterinary and human drugs, microbial toxins, preservatives, contaminants from food proc...
Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity.
Desforges, Jean-Pierre; Levin, Milton; Jasperse, Lindsay; De Guise, Sylvain; Eulaers, Igor; Letcher, Robert J; Acquarone, Mario; Nordøy, Erling; Folkow, Lars P; Hammer Jensen, Trine; Grøndahl, Carsten; Bertelsen, Mads F; St Leger, Judy; Almunia, Javier; Sonne, Christian; Dietz, Rune
2017-10-03
Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 μg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC 50 : 0.94 vs 6.06 μg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.
NASA Astrophysics Data System (ADS)
Loh, C. W.
1980-03-01
A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2017-05-01
The complex relative dielectric function ɛ*(ω)=ɛ'-jɛ″ of the binary mixture of 2-chloroaniline(2-CA) and methanol (MeOH) were measured using precision LCR meter in the frequency range of 10 KHz to 2 MHz The measurements were carried out at eight different temperatures and five different concentrations of 2-CA and MeOH. The loss tangent peaks were observed in the studied frequency range for all the binary mixtures. From the loss tangent peaks electrode polarization relaxation time were evaluated. In the plot of real part of complex permittivity against frequency, at different temperatures for 2-CA (54.54%) + MeOH (45.45%) and 2-CA (27.27%) + MeOH (72.72%)and 100% MeOH systems permittivity inversion effect was observed.
State of research: environmental pathways and food chain transfer.
Vaughan, B E
1984-01-01
Data on the chemistry of biologically active components of petroleum, synthetic fuel oils, certain metal elements and pesticides provide valuable generic information needed for predicting the long-term fate of buried waste constituents and their likelihood of entering food chains. Components of such complex mixtures partition between solid and solution phases, influencing their mobility, volatility and susceptibility to microbial transformation. Estimating health hazards from indirect exposures to organic chemicals involves an ecosystem's approach to understanding the unique behavior of complex mixtures. Metabolism by microbial organisms fundamentally alters these complex mixtures as they move through food chains. Pathway modeling of organic chemicals must consider the nature and magnitude of food chain transfers to predict biological risk where metabolites may become more toxic than the parent compound. To obtain predictions, major areas are identified where data acquisition is essential to extend our radiological modeling experience to the field of organic chemical contamination. PMID:6428875
An assessment of the information content of likelihood ratios derived from complex mixtures.
Marsden, Clare D; Rudin, Norah; Inman, Keith; Lohmueller, Kirk E
2016-05-01
With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two or more contributors are increasingly being encountered. However, insufficient research has been conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor (KNC) in these complex samples, and under what specific conditions. In order to investigate this question, sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing 2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs and KNCs. This work was intended to illustrate the best-case scenario, in which all alleles from the TC were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence profile to TCs and KNCs. This resulted in 140,000 LRs for each of the two scenarios. These complex mixture simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than 1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater than 1,000. Thus, overall, these results imply that the weight of evidence that can be derived from complex mixtures containing up to 5 contributors, under a scenario in which no drop-out is required to explain any of the contributors, is remarkably high. This is a useful benchmark result on top of which to layer the effects of additional factors, such as drop-out, peak height, and other variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
EDCs Mixtures: A Stealthy Hazard for Human Health?
Ribeiro, Edna; Ladeira, Carina; Viegas, Susana
2017-02-07
Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed "body burden" of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex "body burden" of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce.
Peptide Identification by Database Search of Mixture Tandem Mass Spectra*
Wang, Jian; Bourne, Philip E.; Bandeira, Nuno
2011-01-01
In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision. PMID:21862760
EDCs Mixtures: A Stealthy Hazard for Human Health?
Ribeiro, Edna; Ladeira, Carina; Viegas, Susana
2017-01-01
Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed “body burden” of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex “body burden” of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce. PMID:29051438
Spectroscopic Case-Based Studies in a Flipped Quantum Mechanics Course
NASA Astrophysics Data System (ADS)
Shipman, Steven
2015-06-01
Students in a flipped Quantum Mechanics course were expected to apply their knowledge of spectroscopy to a variety of case studies involving complex mixtures of chemicals. They used simulated data, prepared in advance by the instructor, to determine the major chemical constituents of complex mixtures. Students were required to request the appropriate data in order to ultimately make plausible guesses about the composition of the mixtures, allowing them ownership over the discovery process. This talk will describe how these activities worked in practice, give caveats for instructors who wish to adopt them in the future, and discuss how the results of these exercises can be used for both formative and summative assessment.
Mohamed, Ekram H; Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen
2017-05-25
Analysis of complex mixture containing three or more components represented a challenge for analysts. New smart spectrophotometric methods have been recently evolved with no limitation. A study of different novel and smart spectrophotometric techniques for resolution of severely overlapping spectra were presented in this work utilizing isosbestic points present in different absorption spectra, normalized spectra as a divisor and dual wavelengths. A quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PCT) and para-aminophenol (PAP) was taken as an example for application of the proposed techniques without any separation steps. The adopted techniques adopted of successive and progressive steps manipulating zero /or ratio /or derivative spectra. The proposed techniques includes eight novel and simple methods namely direct spectrophotometry after applying derivative transformation (DT) via multiplying by a decoding spectrum, spectrum subtraction (SS), advanced absorbance subtraction (AAS), advanced amplitude modulation (AAM), simultaneous derivative ratio (S 1 DD), advanced ratio difference (ARD), induced ratio difference (IRD) and finally double divisor-ratio difference-dual wavelength (DD-RD-DW) methods. The proposed methods were assessed by analyzing synthetic mixtures of the studied drugs. They were also successfully applied to commercial pharmaceutical formulations without interference from other dosage form additives. The methods were validated according to the ICH guidelines, accuracy, precision, repeatability, were found to be within the acceptable limits. The proposed procedures are accurate, simple and reproducible and yet economic. They are also sensitive and selective and could be used for routine analysis of complex most of the binary, ternary and quaternary mixtures and even more complex mixtures.
Blueprint for prescriber continuing education program.
2012-06-01
On October 25, 2011, the Center for Drug Evaluation and Research (CDER) of the Food and Drug Administration (FDA) posted online this Blueprint for Prescriber Continuing Education, labeled "final," relating to extended-release and long-acting opioids. The pending FDA Risk Evaluation Management Strategy (REMS) requires prescriber education. This document provides guidance to sponsors of these dosage forms in developing the prescvriber education component of their REMS. This report was posted online by the federal agency on October 25, 2011 at: http://www.fda.gov/downloads/drugs/drugsafety/informationbydrugclass/ucm277916.pdf. It is in the public domain.
Tandem mass spectrometry: analysis of complex mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, K.E.
1985-01-01
Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction productsmore » of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.« less
Romero, Max; Rojano, Benjamin; Mella-Raipán, Jaime; Pessoa-Mahana, Carlos David; Lissi, Eduardo; López-Alarcón, Camilo
2010-09-01
The protective effect of different antioxidants and complex mixtures on the consumption of pyrogallol red (PGR) induced by peroxyl radicals was studied in the absence and presence of Triton X-100 micelles. The presence of micelles decreased significantly the protection of PGR afforded by lipophilic antioxidants (β-carotene, octyl gallate), while no effect of micelles was observed for hydrophilic antioxidants such as Trolox, caffeic acid, gallic acid, and ascorbic acid. In the presence of complex mixtures a clear effect of Triton X-100 micelles was also observed in the protection afforded by wines, tea infusions, and seed extracts of Eugenia jambolana and Myrciaria cauliflora. On the other hand, no effect of micelles was observed for orange juice and pulp fruit extracts. The ORAC (Oxygen Radical Absorbance Capacity) index was evaluated in the absence (ORAC-PGR) and presence of Triton X-100 micelles (ORAC-PGR(MIC)). Triton X-100 micelles affect ORAC-PGR values of antioxidants in a lipophilicity-dependent way. From the obtained results, we conclude that ORAC-PGR and ORAC-PGR(MIC) assays could be considered as an alternative to estimate the antioxidant ability (ORAC-PGR) and to infer the association to Triton X-100 micelles (ORAC-PGR/ORAC-PGR(MIC)) of pure antioxidants and their complex mixtures.
Generation of two-dimensional binary mixtures in complex plasmas
NASA Astrophysics Data System (ADS)
Wieben, Frank; Block, Dietmar
2016-10-01
Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.
Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.
Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery
2015-07-23
In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.
What is the study?
This study was designed to provide data on the in vitro toxicity of water concentrates containing complex mixtures of DBPs. Rat hepatocytes in primary culture were exposed for 24 hr to full strength, 1:10 or 1:20 dilutions of chlorination or ozonation/chl...
Forsberg, Erica M; Green, James R A; Brennan, John D
2011-07-01
A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.
Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne
2010-07-08
Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.
Comparative Chemistry and Toxicity of Diesel and Biomass Combustion Emissions
Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...
EXPERIMENTS AT THE INTERFACE OF CARBON PARTICLE CHEMISTRY AND TOXCIOLOGY
Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...
A view at the interface between particle chemistry and toxicology
Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...
Desforges, Jean-Pierre; Eulaers, Igor; Periard, Luke; Sonne, Christian; Dietz, Rune; Letcher, Robert J
2017-06-01
In vitro investigations of the health impact of individual chemical compounds have traditionally been used in risk assessments. However, humans and wildlife are exposed to a plethora of potentially harmful chemicals, including organohalogen contaminants (OHCs). An alternative exposure approach to individual or simple mixtures of synthetic OHCs is to isolate the complex mixture present in free-ranging wildlife, often non-destructively sampled from lipid rich adipose. High concentration stock volumes required for in vitro investigations do, however, pose a great analytical challenge to extract sufficient amounts of complex OHC cocktails. Here we describe a novel method to easily, rapidly and efficiently extract an environmentally accumulated and therefore relevant contaminant cocktail from large (10-50 g) marine mammal blubber samples. We demonstrate that lipid freeze-filtration with acetonitrile removes up to 97% of blubber lipids, with minimal effect on the efficiency of OHC recovery. Sample extracts after freeze-filtration were further processed to remove residual trace lipids via high-pressure gel permeation chromatography and solid phase extraction. Average recoveries of OHCs from triplicate analysis of killer whale (Orcinus orca), polar bear (Ursus maritimus) and pilot whale (Globicephala spp.) blubber standard reference material (NIST SRM-1945) ranged from 68 to 80%, 54-92% and 58-145%, respectively, for 13 C-enriched internal standards of six polychlorinated biphenyl congeners, 16 organochlorine pesticides and four brominated flame retardants. This approach to rapidly generate OHC mixtures shows great potential for experimental exposures using complex contaminant mixtures, research or monitoring driven contaminant quantification in biological samples, as well as the untargeted identification of emerging contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
High affinity ligands from in vitro selection: Complex targets
Morris, Kevin N.; Jensen, Kirk B.; Julin, Carol M.; Weil, Michael; Gold, Larry
1998-01-01
Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188
Sensitivity of the immature rat uterotrophic assay to mixtures of estrogens.
Tinwell, Helen; Ashby, John
2004-01-01
We have evaluated whether mixtures of estrogens, present in the mix at doses that are individually inactive in the immature rat uterotrophic assay, can give a uterotrophic response. Seven chemicals were evaluated: nonylphenol, bisphenol A (BPA), methoxychlor, genistein (GEN), estradiol, diethylstilbestrol, and ethinyl estradiol. Dose responses in the uterotrophic assay were constructed for each chemical. The first series of experiments involved evaluating binary mixtures of BPA and GEN at dose levels that gave moderate uterotrophic responses when tested individually. The mixtures generally showed an intermediate or reduced uterotrophic effect compared with when the components of the mixture were tested alone at the dose used in the mixture. The next series of experiments used a multicomponent (complex) mixture of all seven chemicals evaluated at doses that gave either weakly positive or inactive uterotrophic responses when tested individually in the assay. Doses that were nominally equi-uterotrophic ranged over approximately six orders of magnitude for the seven chemicals. Doses of agents that gave a weak uterotrophic response when tested individually gave a marginally enhanced positive response in the assay when tested combined as a mixture. Doses of agents that gave a negative uterotrophic response when tested individually gave a positive response when tested as a mixture. These data indicate that a variety of different estrogen receptor (ER) agonists, present individually at subeffective doses, can act simultaneously to evoke an ER-regulated response. However, translating these findings into the process of environmental hazard assessment will be difficult. The simple addition of the observed, or predicted, activities for the components of a mixture is confirmed here to be inappropriate and to overestimate the actual effect induced by the mixture. Equally, isobole analysis is only suitable for two- or three-component mixtures, and concentration addition requires access to dose-response data and EC50 values (concentration giving 50% of the maximum response) for the individual components of the mixture--requirements that will rarely be fulfilled for complex environmental samples. Given these uncertainties, we conclude that it may be most expedient to select and bioassay whole environmental mixtures of potential concern. PMID:15064164
General Blending Models for Data From Mixture Experiments
Brown, L.; Donev, A. N.; Bissett, A. C.
2015-01-01
We propose a new class of models providing a powerful unification and extension of existing statistical methodology for analysis of data obtained in mixture experiments. These models, which integrate models proposed by Scheffé and Becker, extend considerably the range of mixture component effects that may be described. They become complex when the studied phenomenon requires it, but remain simple whenever possible. This article has supplementary material online. PMID:26681812
Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia
2016-01-01
Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767
Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia
2016-04-21
Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.
Research and Guidance on Drinking Water Contaminant Mixtures
Accurate assessment of potential human health risk(s) from multiple-route exposures to multiple chemicals in drinking water is needed because of widespread daily exposure to this complex mixture. Hundreds of chemicals have been identified in drinking water with the mix of chemic...
Effects of Photochemically-Aged Atmospheres on Allergic Responses in Mice
Although air pollution is a complex mixture consisting of multiple gaseous and particulate components, current regulations and research approaches often focus on single pollutants. To better assess the impact of air pollution mixtures on respiratory health, we investigated the ef...
Multi-finger synergies and the muscular apparatus of the hand.
Cuadra, Cristian; Bartsch, Angelo; Tiemann, Paula; Reschechtko, Sasha; Latash, Mark L
2018-05-01
We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.
Rosenblatt, N J; Latash, M L; Hurt, C P; Grabiner, M D
2015-07-23
Previous studies using the uncontrolled manifold (UCM) analysis demonstrated that during the swing phase of gait, multi-joint kinematic synergies act to stabilize, i.e., minimize the variance of, the mediolateral trajectory of the swinging limb. Importantly, these synergies are strongest during midswing, suggesting that during gait, individuals may employ strategies to avoid collisions between the limbs at this instance. The purpose of the current study was to test this hypothesis by quantifying whether the synergy index (ΔV) during the middle period of the swing phase of treadmill walking was affected when the width of the treadmill belt was narrowed, a task expected to increase the risk of limb collisions. Eleven healthy young adults walked on a dual-belt treadmill under two conditions: (1) dual-belt - both belts of the treadmill moved at 1.2 m/s (total width: 62.5 cm) and the subject walked with one foot on each of the moving belts and (2) single-belt - one treadmill belt moved at 1.2m/s while the other belt remained stationary and the subject walked with both feet on the moving belt (total width: 30.5 cm). During both conditions, motion capture recorded the positions of 22 passive reflective markers from which UCM analysis was used to quantify ΔV in the joint configuration space. Results indicate that ΔV during the middle-third of swing phase significantly increased by 20% during single-belt walking (p<.01). We interpret this as evidence that the stronger synergies at midswing are needed to stabilize the limb trajectory in order to reduce the risk of between-limb collisions during a period when the lower limbs are nearest each other in the frontal plane. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Boura, Joana S; Santos, Francisco Dos; Gimble, Jeffrey M; Cardoso, Carla M P; Madeira, Catarina; Cabral, Joaquim M S; Silva, Cláudia Lobato da
2013-02-01
Nonviral gene delivery to human mesenchymal stem/stromal cells (MSC) can be considered a very promising strategy to improve their intrinsic features, amplifying the therapeutic potential of these cells for clinical applications. In this work, we performed a comprehensive comparison of liposome-mediated gene transfer efficiencies to MSC derived from different human sources-bone marrow (BM MSC), adipose tissue-derived cells (ASC), and umbilical cord matrix (UCM MSC). The results obtained using a green fluorescent protein (GFP)-encoding plasmid indicated that MSC isolated from BM and UCM are more amenable to genetic modification when compared to ASC as they exhibited superior levels of viable, GFP(+) cells 48 hr post-transfection, 58 ± 7.1% and 54 ± 3.8%, respectively, versus 33 ± 4.7%. For all cell sources, high cell recoveries (≈50%) and viabilities (>85%) were achieved, and the transgene expression was maintained for 10 days. Levels of plasmid DNA uptake, as well as kinetics of transgene expression and cellular division, were also determined. Importantly, modified cells were found to retain their characteristic immunophenotypic profile and multilineage differentiation capacity. By using the lipofection protocol optimized herein, we were able to maximize transfection efficiencies to human MSC (maximum of 74% total GFP(+) cells) and show that lipofection is a promising transfection strategy for MSC genetic modification, especially when a transient expression of a therapeutic gene is required. Importantly, we also clearly demonstrated that intrinsic features of MSC from different sources should be taken into consideration when developing and optimizing strategies for MSC engineering with a therapeutic gene.
Guilloux, Jean-Philippe; Seney, Marianne; Edgar, Nicole; Sibille, Etienne
2011-01-01
Defining anxiety- and depressive-like states in mice (“emotionality”) is best characterized by the use of complementary tests, leading sometimes to puzzling discrepancies and lack of correlation between similar paradigms. To address this issue, we hypothesized that integrating measures along the same behavioral dimensions in different tests would reduce the intrinsic variability of single tests and provide a robust characterization of the underlying “emotionality” of individual mouse, similarly as mood and related syndromes are defined in humans through various related symptoms over time. We describe the use of simple mathematical and integrative tools to help phenotype animals across related behavioral tests (syndrome diagnosis) and experiments (meta-analysis). We applied z-normalization across complementary measures of emotionality in different behavioral tests after unpredictable chronic mild stress (UCMS) or prolonged corticosterone exposure - two approaches to induce anxious-/depressive-like states in mice. Combining z-normalized test values, lowered the variance of emotionality measurement, enhanced the reliability of behavioral phenotyping, and increased analytical opportunities. Comparing integrated emotionality scores across studies revealed a robust sexual dimorphism in the vulnerability to develop high emotionality, manifested as higher UCMS-induced emotionality z-scores, but lower corticosterone-induced scores in females compared to males. Interestingly, the distribution of individual z-scores revealed a pattern of increased baseline emotionality in female mice, reminiscent of what is observed in humans. Together, we show that the z-scoring method yields robust measures of emotionality across complementary tests for individual mice and experimental groups, hence facilitating the comparison across studies and refining the translational applicability of these models. PMID:21277897
Guilloux, Jean-Philippe; Seney, Marianne; Edgar, Nicole; Sibille, Etienne
2011-04-15
Defining anxiety- and depressive-like states in mice (emotionality) is best characterized by the use of complementary tests, leading sometimes to puzzling discrepancies and lack of correlation between similar paradigms. To address this issue, we hypothesized that integrating measures along the same behavioral dimensions in different tests would reduce the intrinsic variability of single tests and provide a robust characterization of the underlying "emotionality" of individual mouse, similarly as mood and related syndromes are defined in humans through various related symptoms over time. We describe the use of simple mathematical and integrative tools to help phenotype animals across related behavioral tests (syndrome diagnosis) and experiments (meta-analysis). We applied z-normalization across complementary measures of emotionality in different behavioral tests after unpredictable chronic mild stress (UCMS) or prolonged corticosterone exposure - two approaches to induce anxious-/depressive-like states in mice. Combining z-normalized test values, lowered the variance of emotionality measurement, enhanced the reliability of behavioral phenotyping, and increased analytical opportunities. Comparing integrated emotionality scores across studies revealed a robust sexual dimorphism in the vulnerability to develop high emotionality, manifested as higher UCMS-induced emotionality z-scores, but lower corticosterone-induced scores in females compared to males. Interestingly, the distribution of individual z-scores revealed a pattern of increased baseline emotionality in female mice, reminiscent of what is observed in humans. Together, we show that the z-scoring method yields robust measures of emotionality across complementary tests for individual mice and experimental groups, hence facilitating the comparison across studies and refining the translational applicability of these models. Copyright © 2011 Elsevier B.V. All rights reserved.
Labib, Sarah; Williams, Andrew; Kuo, Byron; Yauk, Carole L; White, Paul A; Halappanavar, Sabina
2017-07-01
The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose-response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose-response curves for each PAH mixture. The predicted and observed pathway dose-response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.« less
Saoji, Suprit D; Dave, Vivek S; Dhore, Pradip W; Bobde, Yamini S; Mack, Connor; Gupta, Deepak; Raut, Nishikant A
2017-10-15
In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (>97%) in comparison to the pure SCE (~42%), or the physical mixture (~47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (>90%), compared to the pure SBE (~21%), or the physical mixture (~24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents. Copyright © 2016 Elsevier B.V. All rights reserved.
Gu, Yao; Ni, Yongnian; Kokot, Serge
2012-09-13
A novel, simple and direct fluorescence method for analysis of complex substances and their potential substitutes has been researched and developed. Measurements involved excitation and emission (EEM) fluorescence spectra of powdered, complex, medicinal herbs, Cortex Phellodendri Chinensis (CPC) and the similar Cortex Phellodendri Amurensis (CPA); these substances were compared and discriminated from each other and the potentially adulterated samples (Caulis mahoniae (CM) and David poplar bark (DPB)). Different chemometrics methods were applied for resolution of the complex spectra, and the excitation spectra were found to be the most informative; only the rank-ordering PROMETHEE method was able to classify the samples with single ingredients (CPA, CPC, CM) or those with binary mixtures (CPA/CPC, CPA/CM, CPC/CM). Interestingly, it was essential to use the geometrical analysis for interactive aid (GAIA) display for a full understanding of the classification results. However, these two methods, like the other chemometrics models, were unable to classify composite spectral matrices consisting of data from samples of single ingredients and binary mixtures; this suggested that the excitation spectra of the different samples were very similar. However, the method is useful for classification of single-ingredient samples and, separately, their binary mixtures; it may also be applied for similar classification work with other complex substances.
Nonylphenols are environmentally persistent endocrine disrupting chemicals. They exist in the environment as complex mixtures containing many nonylphenol isomers. Environmental mixtures of nonylphenols, along with a few single isomers have been tested for their capacity to inte...
Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including fibers from asbestos, are influenced by changes in fiber dose composition, bioavailability and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and com...
Many cases of environmental contamination result in concurrent or sequential exposure to more than one chemical. Limitations of available resources prevent experimental toxicology from providing health risk information about all the possible mixtures to which humans or other spec...
Proteomic analysis of a model fish species exposed to individual pesticides and a binary mixture
Aquatic organisms are often exposed to multiple pesticides simultaneously. Due to the relatively poor characterization of mixture constituent interactions and the potential for highly complex exposure scenarios, there is considerable uncertainty in understanding the toxicity of m...
PHOTOCHEMICAL PRODUCTS IN URBAN MIXTURES ENHANCE INFLAMMATORY RESPONSES IN LUNG CELLS
Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concent...
Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...
NASA Astrophysics Data System (ADS)
Sukhanov, P. T.; Chibisova, T. V.; Korenman, Ya. I.
2014-12-01
The extraction of local anesthetics from aqueous media with mixtures of solvent is examined and its synergistic and antagonistic effects are determined. Synergism parameters, separation factors, constants for the formation of anesthetic complexes, and solvate numbers are calculated.
Effects of Isoprene- and Toluene-Generated Smog on Allergic Inflammation in Mice
Reactions of organic compounds with nitric oxide (NO) and sunlight produce complex mixtures of pollutants including secondary organic aerosol (SOA), ozone (O3), nitrogen dioxide (NO2), and reactive aldehydes. The health effects of these photochemical smog mixtures in susceptible ...
NASA Astrophysics Data System (ADS)
Islam, Saidul; Bučar, Dejan-Krešimir; Powner, Matthew W.
2017-06-01
A central problem for the prebiotic synthesis of biological amino acids and nucleotides is to avoid the concomitant synthesis of undesired or irrelevant by-products. Additionally, multistep pathways require mechanisms that enable the sequential addition of reactants and purification of intermediates that are consistent with reasonable geochemical scenarios. Here, we show that 2-aminothiazole reacts selectively with two- and three-carbon sugars (glycolaldehyde and glyceraldehyde, respectively), which results in their accumulation and purification as stable crystalline aminals. This permits ribonucleotide synthesis, even from complex sugar mixtures. Remarkably, aminal formation also overcomes the thermodynamically favoured isomerization of glyceraldehyde into dihydroxyacetone because only the aminal of glyceraldehyde separates from the equilibrating mixture. Finally, we show that aminal formation provides a novel pathway to amino acids that avoids the synthesis of the non-proteinogenic α,α-disubstituted analogues. The common physicochemical mechanism that controls the proteinogenic amino acid and ribonucleotide assembly from prebiotic mixtures suggests that these essential classes of metabolite had a unified chemical origin.
Kumar, Ranjeet; Pradhan, Ajay; Khan, Faisal Ahmad; Lindström, Pia; Ragnvaldsson, Daniel; Ivarsson, Per; Olsson, Per-Erik; Jass, Jana
2015-01-01
Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention. PMID:26168046
Mixture-based gatekeeping procedures in adaptive clinical trials.
Kordzakhia, George; Dmitrienko, Alex; Ishida, Eiji
2018-01-01
Clinical trials with data-driven decision rules often pursue multiple clinical objectives such as the evaluation of several endpoints or several doses of an experimental treatment. These complex analysis strategies give rise to "multivariate" multiplicity problems with several components or sources of multiplicity. A general framework for defining gatekeeping procedures in clinical trials with adaptive multistage designs is proposed in this paper. The mixture method is applied to build a gatekeeping procedure at each stage and inferences at each decision point (interim or final analysis) are performed using the combination function approach. An advantage of utilizing the mixture method is that it enables powerful gatekeeping procedures applicable to a broad class of settings with complex logical relationships among the hypotheses of interest. Further, the combination function approach supports flexible data-driven decisions such as a decision to increase the sample size or remove a treatment arm. The paper concludes with a clinical trial example that illustrates the methodology by applying it to develop an adaptive two-stage design with a mixture-based gatekeeping procedure.
Olvera-Néstor, Corina G; Morales-Avila, Enrique; Gómez-Olivan, Leobardo M; Galár-Martínez, Marcela; García-Medina, Sandra; Neri-Cruz, Nadia
2016-03-01
Hospital wastewater is an important source of emerging contaminants. Recent studies emphasize the importance of assessing the effects of mixtures of contaminants rather than environmental risk of their individual components, as well as the determination of intrinsic toxicity of wastewater. Mixtures of pollutants has possible interactions that have notable environmental side effects. The aim of this study is an attempt to characterize biomarkers in Cyprinus carpio related to the exposure to a complex mixture of contaminants found in hospital wastewater. Results of a particular hospital effluent show the presence of traces of heavy metals, high chlorine concentration and emerging contaminants such as non-steroidal anti-inflammatory drugs. The LC50 was of 5.49 % at 96 h. The cytotoxic, genotoxic and apoptotic biomarkers increase when fishes were exposed to wastewater (1/10 CL50) from hospital wastewater. This study emphasizes the importance of identifying and quantifying the effects of contaminants as pharmaceuticals, disinfectants and surfactants in order to design and implement an ecotoxicological plan.
Dingus, Cheryl A; Teuschler, Linda K; Rice, Glenn E; Simmons, Jane Ellen; Narotsky, Michael G
2011-10-01
In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA's Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss.
Dingus, Cheryl A.; Teuschler, Linda K.; Rice, Glenn E.; Simmons, Jane Ellen; Narotsky, Michael G.
2011-01-01
In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA’s Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss. PMID:22073030
Bankefors, Johan; Nord, Lars I; Kenne, Lennart
2010-02-01
A method for separation and detection of major and minor components in complex mixtures has been developed, utilising two-dimensional high-performance liquid chromatography (2D-HPLC) combined with electrospray ionisation ion-trap multiple-stage mass spectrometry (ESI-ITMS(n)). Chromatographic conditions were matched with mass spectrometric detection to maximise the number of components that could be separated. The described procedure has proven useful to discern several hundreds of saponin components when applied to Quillaja saponaria Molina bark extracts. The discrimination of each saponin component relies on the fact that three coordinates (x, y, z) for each component can be derived from the retention time of the two chromatographic steps (x, y) and the m/z-values from the multiple-stage mass spectrometry (z(n), n=1, 2, ...). Thus an improved graphical representation was obtained by combining retention times from the two-stage separation with +MS(1) (z(1)) and the additional structural information from the second mass stage +MS(2) (z(2), z(3)) corresponding to the main fragment ions. By this approach three-dimensional plots can be made that reveal both the chromatographic and structural properties of a specific mixture which can be useful in fingerprinting of complex mixtures. 2009 Elsevier B.V. All rights reserved.
Application of Biologically-Based Lumping To Investigate the ...
People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these experiments, though this simplification provides little insight into the impact of a mixture's chemical composition on toxicologically-relevant metabolic interactions that may occur among its constituents. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically-based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate performance of our PBPK model. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course kinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for the 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 non-target chemicals. Application of this biologic
Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures.
Ross, Charles W; Simonsick, William J; Aaserud, David J
2002-09-15
Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.
The glatiramoid class of immunomodulator drugs.
Varkony, Haim; Weinstein, Vera; Klinger, Ety; Sterling, Jeffrey; Cooperman, Helena; Komlosh, Turi; Ladkani, David; Schwartz, Rivka
2009-03-01
Glatiramer acetate (GA) is a complex heterogenous mixture of polypeptides with immunomodulatory activity approved for treatment of relapsing-remitting multiple sclerosis. GA is the first, and was until recently, the only member of the glatiramoids, a family of synthetic copolymer mixtures comprising the four amino acids, L-glutamic acid, L-alanine, L-lysine and L-tyrosine, in a defined molar ratio. Another glatiramoid, protiramer, was recently evaluated in preclinical studies and in two small Phase II clinical trials with relapsing-remitting multiple sclerosis patients. Due to the complexity and heterogeneity of GA and other glatiramoids, the clinically active epitopes within the mixture cannot be identified and the consistency of polypeptide sequences within the mixture is dependent on a tightly controlled manufacturing process. Although no two glatiramoids can be proved identical, it is possible to differentiate among members of the glatiramoid class using analytical methods and immunological and biological markers. Even slight differences in the distribution of molecular masses or in the composition of antigenic polypeptide sequences among glatiramoids can significantly influence their efficacy, toxicity and immunogenicity profiles. Experience with GA may be instructive regarding important safety and efficacy considerations for new glatiramoid mixtures now in development.
Boukhalfa-Heniche, Fatima-Zohra; Hernández, Belén; Gaillard, Stéphane; Coïc, Yves-Marie; Huynh-Dinh, Tam; Lecouvey, Marc; Seksek, Olivier; Ghomi, Mahmoud
2004-04-15
Optical spectroscopic techniques such as CD, Raman scattering, and fluorescence imaging allowed us to analyze the complex formation and vectorization of a single-stranded 20-mer phosphorothioate oligodeoxynucleotide with a 15-mer amphipathic peptide at molecular and cellular levels. Different solvent mixtures (methanol and water) and molecular ratios of peptide/oligodeoxynucleotide complexes were tested in order to overcome the problems related to solubility. Optimal conditions for both spectroscopic and cellular experiments were obtained with the molecular ratio peptide/oligodeoxynucleotide equal to 21:4, corresponding to a 7:5 ratio for their respective +/- charge ratio. At the molecular level, CD and Raman spectra were consistent with a alpha-helix conformation of the peptide in water or in a methanol-water mixture. The presence of methanol increased considerably the solubility of the peptide without altering its alpha-helix conformation, as evidenced by CD and Raman spectroscopies. UV absorption melting profile of the oligodeoxynucleotide gave rise to a flat melting profile, corresponding to its random structure in solution. Raman spectra of oligodeoxynucleotide/peptide complexes could only be studied in methanol/water mixture solutions. Drastic changes observed in Raman spectra have undoubtedly shown: (a) the perturbation occurred in the peptide secondary structure, and (b) possible interaction between the lysine residues of the peptide and the oligodeoxynucleotide. At the cellular level, the complex was prepared in a mixture of 10% methanol and 90% cell medium. Cellular uptake in optimal conditions for the oligodeoxynucleotide delivery with low cytotoxicity was controlled by fluorescence imaging allowing to specifically locate the compacted oligonucleotide labeled with fluorescein at its 5'-terminus with the peptide into human glioma cells after 1 h of incubation at 37 degrees C. Copyright 2004 Wiley Periodicals, Inc.
Kakita, Veera Mohana Rao; Vemulapalli, Sahithya Phani Babu; Bharatam, Jagadeesh
2016-04-01
Precise assignments of (1) H atomic sites and establishment of their through-bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using (1) H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of (1) H-(1) H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure-shift), particularly, Morris's advanced broadband pure-shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE-TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE-TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band-selective analog of the broadband PSYCHE-TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band-selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE-PSYCHE-TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE-TOCSY. Furthermore, unlike the earlier homonuclear band-selective decoupling, the BSE-PSYCHE-decoupling provides fully decoupled pure-shift spectra for all the individual chemical sites within the excited band. The BSE-PSYCHE-TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including asbestos fibers, are influenced by changes in fiber dose composition, bioavailability, and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and compreh...
METHODOLOGICAL ISSUES IN HUMAN EXPOSURE STUDIES OF LOW LEVEL SOLVENT MIXTURES
The design of appropriate studies to assess the sensory irritant and neurobehavioral-effects of exposure to complex VOC mixtures poses a variety of methodological challenges, particularly at the low levels found in new buildings. or instance, Otto et al (1989) exposed subjects to...
CONCENTRATION AND TREATMENT OF DRINKING WATERS IN THE FOUR LAB STUDY
The purpose of the four lab study was to address concerns related to potential health effects from exposure to complex mixtures of DBPs that cannot be addressed directly from toxicological studies of individual disinfection by-products (DBPs) or simple DBP mixtures. In order to ...
This article describes the disinfection byproduct (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking water concentrates containing highly complex mixtures of DBP. This project, called the Four...
Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...
Quantitative trace analysis of complex mixtures using SABRE hyperpolarization.
Eshuis, Nan; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2015-01-26
Signal amplification by reversible exchange (SABRE) is an emerging nuclear spin hyperpolarization technique that strongly enhances NMR signals of small molecules in solution. However, such signal enhancements have never been exploited for concentration determination, as the efficiency of SABRE can strongly vary between different substrates or even between nuclear spins in the same molecule. The first application of SABRE for the quantitative analysis of a complex mixture is now reported. Despite the inherent complexity of the system under investigation, which involves thousands of competing binding equilibria, analytes at concentrations in the low micromolar range could be quantified from single-scan SABRE spectra using a standard-addition approach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.
2012-04-01
In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O:C. We did not find any dependence of LLPS on the complexity of the mixture. Overall, the RH range of coexistence of two liquid phases depends in first place on the O:C ratio of the particles and in second place also on the specific organic functionalities.
The Urtica dioica Agglutinin Is a Complex Mixture of Isolectins 1
Van Damme, Els J. M.; Broekaert, Willem F.; Peumans, Willy J.
1988-01-01
Rhizomes of stinging nettle (Urtica dioica) contain a complex mixture of isolectins. Ion exchange chromatography with a high resolution fast protein liquid chromatography system revealed six isoforms which exhibit identical agglutination properties and carbohydrate-binding specificity and in addition have the same molecular structure and virtually identical biochemical properties. However, since the U. dioica agglutinin isolectins differ definitely with respect to their amino acid composition, it is likely that at least some of them are different polypeptides coded for by different genes. Images Fig. 3 PMID:16665952
Geier, Mitra C.; James Minick, D.; Truong, Lisa; ...
2018-04-01
Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geier, Mitra C.; James Minick, D.; Truong, Lisa
Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less
McDonnell, W F
1993-01-01
The study of health effects induced by exposure to mixtures of pollutants is a complex task. The purpose of this paper is to identify areas of research in which the conduct of human controlled exposure (clinical) studies may contribute to better understanding health effects of exposure to indoor air and other mixtures. The strengths and weaknesses of clinical studies in general are reviewed, as well as examples from the literature of approaches that have been used. Human chamber studies play an important role alongside epidemiologic and animal toxicologic studies in such research. Human chamber studies are limited with regard to assessing chronic effects, rare effects, or effects from long-duration exposures but are powerful in assessing acute, reversible effects from short-duration exposures in humans. The areas in which human chamber studies are most likely to contribute include identification of effects or markers of effects for exposure to a given pollutant or mix of pollutants; direct dose-response assessment of effects for individual compounds and mixtures of set composition; identification of individual compounds responsible for the effects of a mixture; study of the joint effects of a binary mixture; development of markers of acute exposure for particular compounds; development of outcome measurements to be used in the field; and identification, characterization, and testing of sensitive subpopulations. PMID:8206031
Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.
Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W
2010-04-01
A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.
Study of decolorisation of binary dye mixture by response surface methodology.
Khamparia, Shraddha; Jaspal, Dipika
2017-10-01
Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6 M DR81, 12 × 10 -6 M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Many cases of environmental contamination result in concurrent or sequential exposure to more than one chemical. However, limitations of available resources make it unlikely that experimental toxicology will provide health risk information about all the possible mixtures to which...
There is an increasing interest in examining complex urban air pollution mixtures that include both particulate and gaseous components. Conventional methodologies are unable to expose lung cells in vitro simultaneously to both particulate and gaseous pollutants that are being for...
Background: Air pollution consists of a complex mixture of particulate and gaseous components. Individual criteria and other hazardous air pollutants have been linked to adverse respiratory and cardiovascular health outcomes. However, assessing risk of air pollutant mixtures is d...
From the lab bench: Mixtures of grasses and legumes; a good or bad thing?
USDA-ARS?s Scientific Manuscript database
A column was written to discuss the advantages of complex mixtures of grasses and legumes. Historically, Kentucky pastures have been primarily composed of toxic endophyte-infected tall fescue, but Kentucky bluegrass and other grasses are presently encroaching tall fescue pastures. These other gras...
Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen...
Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) present in the source water. Since 1974, over 600 DBPs have been identified in drinking water, yet a large portio...
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, Lane A.; Ryan, Jack L.
1999-01-01
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, L.A.; Ryan, J.L.
1999-03-23
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.
The perception of odor objects in everyday life: a review on the processing of odor mixtures
Thomas-Danguin, Thierry; Sinding, Charlotte; Romagny, Sébastien; El Mountassir, Fouzia; Atanasova, Boriana; Le Berre, Elodie; Le Bon, Anne-Marie; Coureaud, Gérard
2014-01-01
Smelling monomolecular odors hardly ever occurs in everyday life, and the daily functioning of the sense of smell relies primarily on the processing of complex mixtures of volatiles that are present in the environment (e.g., emanating from food or conspecifics). Such processing allows for the instantaneous recognition and categorization of smells and also for the discrimination of odors among others to extract relevant information and to adapt efficiently in different contexts. The neurophysiological mechanisms underpinning this highly efficient analysis of complex mixtures of odorants is beginning to be unraveled and support the idea that olfaction, as vision and audition, relies on odor-objects encoding. This configural processing of odor mixtures, which is empirically subject to important applications in our societies (e.g., the art of perfumers, flavorists, and wine makers), has been scientifically studied only during the last decades. This processing depends on many individual factors, among which are the developmental stage, lifestyle, physiological and mood state, and cognitive skills; this processing also presents striking similarities between species. The present review gathers the recent findings, as observed in animals, healthy subjects, and/or individuals with affective disorders, supporting the perception of complex odor stimuli as odor objects. It also discusses peripheral to central processing, and cognitive and behavioral significance. Finally, this review highlights that the study of odor mixtures is an original window allowing for the investigation of daily olfaction and emphasizes the need for knowledge about the underlying biological processes, which appear to be crucial for our representation and adaptation to the chemical environment. PMID:24917831
Health Impacts of Estrogens in the Environment, Considering Complex Mixture Effects
Filby, Amy L.; Neuparth, Teresa; Thorpe, Karen L.; Owen, Richard; Galloway, Tamara S.; Tyler, Charles R.
2007-01-01
Background Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. Objectives We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). Methods Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17α-ethinyl-estradiol (EE2)], and to EE2 alone. Results In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. Conclusion These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures. PMID:18087587
A rapid, ideal, and eco-friendlier protocol for quantifying proline.
Shabnam, Nisha; Tripathi, Indu; Sharmila, P; Pardha-Saradhi, P
2016-11-01
Proline, a stress marker, is routinely quantified by a protocol that essentially uses hazardous toluene. Negative impacts of toluene on human health prompted us to develop a reliable alternate protocol for proline quantification. Absorbance of the proline-ninhydrin condensation product formed by reaction of proline with ninhydrin at 100 °C in the reaction mixture was significantly higher than that recorded after its transfer to toluene, revealing that toluene lowers sensitivity of this assay. λ max of the proline-ninhydrin complex in the reaction mixture and toluene were 508 and 513 nm, respectively. Ninhydrin in glacial acetic acid yielded higher quantity of the proline-ninhydrin condensation product compared to ninhydrin in mixture of glacial acetic acid and H 3 PO 4 , indicating negative impact of H 3 PO 4 on proline quantification. Further, maximum yield of the proline-ninhydrin complex with ninhydrin in glacial acetic acid and ninhydrin in mixture of glacial acetic acid and H 3 PO 4 was achieved within 30 and 60 min, respectively. This revealed that H 3 PO 4 has negative impact on the reaction rate and quantity of the proline-ninhydrin complex formed. In brief, our proline quantification protocol involves reaction of a 1-ml proline sample with 2 ml of 1.25 % ninhydrin in glacial acetic acid at 100 °C for 30 min, followed by recording absorbance of the proline-ninhydrin condensation product in the reaction mixture itself at 508 nm. Amongst proline quantification protocols known till date, our protocol is the most simple, rapid, reliable, cost-effective, and eco-friendlier.
The effects of binary UV filter mixtures on the midge Chironomus riparius.
Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis
2016-06-15
Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. Copyright © 2016 Elsevier B.V. All rights reserved.
Ji, Cuicui; Jia, Yonghong; Gao, Zhihai; Wei, Huaidong; Li, Xiaosong
2017-01-01
Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement.
Jia, Yonghong; Gao, Zhihai; Wei, Huaidong
2017-01-01
Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement. PMID:29240777
Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J
2017-05-01
Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.
Biological markers of intermediate outcomes in studies of indoor air and other complex mixtures.
Wilcosky, T C
1993-01-01
Biological markers of intermediate health outcomes sometimes provide a superior alternative to traditional measures of pollutant-related disease. Some opportunities and methodologic issues associated with using markers are discussed in the context of exposures to four complex mixtures: environmental tobacco smoke and nitrogen dioxide, acid aerosols and oxidant outdoor pollution, environmental tobacco smoke and radon, and volatile organic compounds. For markers of intermediate health outcomes, the most important property is the positive predictive value for clinical outcomes of interest. Unless the marker has a known relationship with disease, a marker response conveys no information about disease risk. Most markers are nonspecific in that various exposures cause the same marker response. Although nonspecificity can be an asset in studies of complex mixtures, it leads to problems with confounding and dilution of exposure-response associations in the presence of other exposures. The timing of a marker's measurement in relation to the occurrence of exposure influences the ability to detect a response; measurements made too early or too late may underestimate the response's magnitude. Noninvasive markers, such as those measured in urine, blood, or nasal lavage fluid, are generally more useful for field studies than are invasive markers. However, invasive markers, such as those measured in bronchoalveolar lavage fluid or lung specimens from autopsies, provide the most direct evidence of pulmonary damage from exposure to air pollutants. Unfortunately, the lack of basic information about marker properties (e.g., sensitivity, variability, statistical link with disease) currently precludes the effective use of most markers in studies of complex mixtures. PMID:8206030
NASA Astrophysics Data System (ADS)
Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi
2017-09-01
In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing L and HDNNS in the non-polar organic phase, the structures of the two copper(II) complexes were further investigated by Fourier transform infrared spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS), and the results indicated that the extracted copper(II) complex in the non-polar organic phase might possess a similar coordination structure as the copper(II) synergist complex.
GMM-based speaker age and gender classification in Czech and Slovak
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Matoušek, Jindřich
2017-01-01
The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.
D'Agostino, Carmine; Gladden, Lynn F; Mantle, Mick D; Abbott, Andrew P; Ahmed, Essa I; Al-Murshedi, Azhar Y M; Harris, Robert C
2015-06-21
Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.
Root, Katharina; Wittwer, Yves; Barylyuk, Konstantin; Anders, Ulrike; Zenobi, Renato
2017-09-01
Native ESI-MS is increasingly used for quantitative analysis of biomolecular interactions. In such analyses, peak intensity ratios measured in mass spectra are treated as abundance ratios of the respective molecules in solution. While signal intensities of similar-size analytes, such as a protein and its complex with a small molecule, can be directly compared, significant distortions of the peak ratio due to unequal signal response of analytes impede the application of this approach for large oligomeric biomolecular complexes. We use a model system based on concatenated maltose binding protein units (MBPn, n = 1, 2, 3) to systematically study the behavior of protein mixtures in ESI-MS. The MBP concatamers differ from each other only by their mass while the chemical composition and other properties remain identical. We used native ESI-MS to analyze model mixtures of MBP oligomers, including equimolar mixtures of two proteins, as well as binary mixtures containing different fractions of the individual components. Pronounced deviation from a linear dependence of the signal intensity with concentration was observed for all binary mixtures investigated. While equimolar mixtures showed linear signal dependence at low concentrations, distinct ion suppression was observed above 20 μM. We systematically studied factors that are most often used in the literature to explain the origin of suppression effects. Implications of this effect for quantifying protein-protein binding affinity by native ESI-MS are discussed in general and demonstrated for an example of an anti-MBP antibody with its ligand, MBP. Graphical Abstract ᅟ.
Biomedically relevant chemical and physical properties of coal combustion products.
Fisher, G L
1983-01-01
The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824
Heat detection and compositions and devices therefor
NASA Technical Reports Server (NTRS)
Rembaum, A. (Inventor)
1975-01-01
Temperature change of a substrate such as a microelectronic component is sensed and detected by means of a mixture of a weak molecular complex of an electron donor compound such as an organic amine and an electron acceptor compound such as nitroaromatic compound. The mixture is encapsulated in a clear binder such as a vinyl resin.
Identification and evaluation of composition in food powder using point-scan Raman spectral imaging
USDA-ARS?s Scientific Manuscript database
This study used Raman spectral imaging coupled with self-modeling mixture analysis (SMA) for identification of three components mixed into a complex food powder mixture. Vanillin, melamine, and sugar were mixed together at 10 different concentration levels (spanning 1% to 10%, w/w) into powdered non...
Cell-based assays could serve as a useful tool in the regulatory screening toolbox due to their high sensitivity and the ability to assess complex mixtures in which unknown compounds may be present. We have completed 3 major projects in collaboration with USGS: 1) Chemical Mixtur...
To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...
To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...
Rogstad, Sarah; Pang, Eric; Sommers, Cynthia; Hu, Meng; Jiang, Xiaohui; Keire, David A; Boyne, Michael T
2015-11-01
Glatiramer acetate (GA) is a mixture of synthetic copolymers consisting of four amino acids (glutamic acid, lysine, alanine, and tyrosine) with a labeled molecular weight range of 5000 to 9000 Da. GA is marketed as Copaxone™ by Teva for the treatment of multiple sclerosis. Here, the agency has evaluated the structure and composition of GA and a commercially available comparator, Copolymer-1. Modern analytical technologies which can characterize these complex mixtures are desirable for analysis of their comparability and structural "sameness." In the studies herein, a molecular fingerprinting approach is taken using mass-accurate mass spectrometry (MS) analysis, nuclear magnetic resonance (NMR) (1D-(1)H-NMR, 1D-(13)C-NMR, and 2D NMR), and asymmetric field flow fractionation (AFFF) coupled with multi-angle light scattering (MALS) for an in-depth characterization of three lots of the marketplace drug and a formulated sample of the comparator. Statistical analyses were applied to the MS and AFFF-MALS data to assess these methods' ability to detect analytical differences in the mixtures. The combination of multiple orthogonal measurements by liquid chromatography coupled with MS (LC-MS), AFFF-MALS, and NMR on the same sample set was found to be fit for the intended purpose of distinguishing analytical differences between these complex mixtures of peptide chains.
Zhang, Bo; Yuan, Jiaqi; Brüschweiler, Rafael
2017-07-12
A primary goal of metabolomics is the characterization of a potentially very large number of metabolites that are part of complex mixtures. Application to biofluids and tissue samples offers insights into biochemical metabolic pathways and their role in health and disease. 1D 1 H and 2D 13 C- 1 H HSQC NMR spectra are most commonly used for this purpose. They yield quantitative information about each proton of the mixture, but do not tell which protons belong to the same molecule. Interpretation requires the use of NMR spectral databases, which naturally limits these investigations to known metabolites. Here, a new method is presented that uses complementary ion exchange resin beads to differentially attenuate 2D NMR cross-peaks that belong to different metabolites. Based on their characteristic attenuation patterns, cross-peaks could be clustered and assigned to individual molecules, including unknown metabolites with multiple spin systems, as demonstrated for a metabolite model mixture and E. coli cell lysate. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Datta, Kakali; Roy, Dalim Kumar; Mukherjee, Asok K.
2008-07-01
Charge transfer complexes of 1:1 stoichiometry have been found to form between vitamin B 6 (pyridoxine hydrochloride) and a series of electron acceptors including p-chloranil. Since vitamin B 6 is soluble in water while the electron acceptors are insoluble in water but soluble in ethanol, the medium chosen for study is water-ethanol mixture. From the trends in the CT absorption bands the vertical ionization potential of vitamin B 6 has been determined to be 8.12 eV. The enthalpy and entropy of formation of the complex between p-chloranil and vitamin B 6 have been determined by estimating the formation constant ( K) spectroscopically at four different temperatures in 75% ethanol-water mixture. Again, the magnitude of K has been found to decrease noticeably with decrease in dielectric constant of the medium (as the percentage of ethanol in the aqueous-ethanol mixture is increased). A plausible explanation for this has been given in terms of hydrolysis of pyridoxine hydrochloride.
Acute and additive toxicity of ten photosystem-II herbicides to seagrass
NASA Astrophysics Data System (ADS)
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.
2015-11-01
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (ΔF/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ΔF/Fm‧.
NASA Astrophysics Data System (ADS)
Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo
2002-02-01
Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.
Acute and additive toxicity of ten photosystem-II herbicides to seagrass
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.
2015-01-01
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm′) by 50% at concentrations ranging from 3.5 μg l−1 (ametryn) to 132 μg l−1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm′. PMID:26616444
Acute and additive toxicity of ten photosystem-II herbicides to seagrass.
Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P
2015-11-30
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.
Bayesian mixture analysis for metagenomic community profiling.
Morfopoulou, Sofia; Plagnol, Vincent
2015-09-15
Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated produces an opportunity to detect species even at very low levels, provided that computational tools can effectively profile the relevant metagenomic communities. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture model framework for resolving complex metagenomic mixtures. We show that the use of parallel Monte Carlo Markov chains for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. We demonstrate the greater accuracy of metaMix compared with relevant methods, particularly for profiling complex communities consisting of several related species. We designed metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on viral pathogen detection; however, the principles are generally applicable to all types of metagenomic mixtures. metaMix is implemented as a user friendly R package, freely available on CRAN: http://cran.r-project.org/web/packages/metaMix sofia.morfopoulou.10@ucl.ac.uk Supplementary data are available at Bionformatics online. © The Author 2015. Published by Oxford University Press.
The Umov effect in application to an optically thin two-component cloud of cosmic dust
NASA Astrophysics Data System (ADS)
Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy
2018-04-01
The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modeling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggest the Umov effect may also be observed in more complex mixtures.
The Umov effect in application to an optically thin two-component cloud of cosmic dust
NASA Astrophysics Data System (ADS)
Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy
2018-07-01
The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modelling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggests the Umov effect may also be observed in more complex mixtures.
Using Ion Exchange Chromatography to Separate and Quantify Complex Ions
ERIC Educational Resources Information Center
Johnson, Brian J.
2014-01-01
Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…
Glorikian, Harry; Warburg, Richard Jeremy; Moore, Kelly; Malinowski, Jennifer
2018-02-01
The development of molecular diagnostics is a complex endeavor, with multiple regulatory pathways to consider and numerous approaches to development and commercialization. Companion diagnostics, devices which are "essential for the safe and effective use of a corresponding drug or diagnostic product" (see U.S. Food & Drug Administration, In Vitro Diagnostics - Companion Diagnostics, U.S. Dept. of Health & Human Services(2016), available at https://www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm407297.htm ) and complementary diagnostics, which are more broadly associated with a class of drug, are becoming increasingly important as integral components of the implementation of precision medicine. Areas covered: The following article will highlight the intellectual property ('IP') considerations pertinent to molecular diagnostics development with special emphasis on companion diagnostics. Expert opinion/commentary Summary: For all molecular diagnostics, intellectual property (IP) concerns are of paramount concern, whether the device will be marketed only in the United States or abroad. Taking steps to protect IP at each stage of product development is critical to optimize profitability of a diagnostic product. Also the legal framework around IP protection of diagnostic technologies has been changing over the previous few years and can be expected to continue to change in the foreseeable near future, thus, a comprehensive IP strategy should take into account the fact that changes in the law can be expected.
NASA Astrophysics Data System (ADS)
Farenc, Mathilde; Paupy, Benoit; Marceau, Sabrina; Riches, Eleanor; Afonso, Carlos; Giusti, Pierre
2017-07-01
Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques.
Tauchman, Jiří; Císařová, Ivana; Stěpnička, Petr
2014-01-28
1'-Diphenylphosphino-1-{[(2-(methylthio)ethyl)amino]carbonyl}ferrocene (1), accessible via amidation of 1'-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) with 2-(methylthio)ethylamine, reacts with [PdCl2(cod)] (cod = cycloocta-1,5-diene) at a 1 : 1 metal-to-ligand ratio to give trans-[PdCl2(1-κ(2)P,S)] (trans-2) as the sole product. A similar reaction with [PtCl2(cod)] affords a mixture of cis- and trans-[PtCl2(1-κ(2)P,S)] (cis- and trans-3), which can be separated by fractional crystallisation. Complexation reactions performed with 2 equiv. of the ligand are less selective, yielding mixtures of the expected bis-phosphine complexes (i.e., trans-[PdCl2(1-κP)2], or a mixture of cis- and trans-[PtCl2(-κP)2]) with the respective monophosphine complexes. The structures of 1, trans-2, cis-3 and trans-3 determined by X-ray diffraction demonstrate the ability of the title ligand to act as a flexible cis- or trans-P,S-chelate donor (the ligand bite angles are 174.03(2)/173.05(2)° for trans-2/3 and 92.86(2)° for cis-3).
Novel selective TOCSY method enables NMR spectral elucidation of metabolomic mixtures
NASA Astrophysics Data System (ADS)
MacKinnon, Neil; While, Peter T.; Korvink, Jan G.
2016-11-01
Complex mixture analysis is routinely encountered in NMR-based investigations. With the aim of component identification, spectral complexity may be addressed chromatographically or spectroscopically, the latter being favored to reduce sample handling requirements. An attractive experiment is selective total correlation spectroscopy (sel-TOCSY), which is capable of providing tremendous spectral simplification and thereby enhancing assignment capability. Unfortunately, isolating a well resolved resonance is increasingly difficult as the complexity of the mixture increases and the assumption of single spin system excitation is no longer robust. We present TOCSY optimized mixture elucidation (TOOMIXED), a technique capable of performing spectral assignment particularly in the case where the assumption of single spin system excitation is relaxed. Key to the technique is the collection of a series of 1D sel-TOCSY experiments as a function of the isotropic mixing time (τm), resulting in a series of resonance intensities indicative of the underlying molecular structure. By comparing these τm -dependent intensity patterns with a library of pre-determined component spectra, one is able to regain assignment capability. After consideration of the technique's robustness, we tested TOOMIXED firstly on a model mixture. As a benchmark we were able to assign a molecule with high confidence in the case of selectively exciting an isolated resonance. Assignment confidence was not compromised when performing TOOMIXED on a resonance known to contain multiple overlapping signals, and in the worst case the method suggested a follow-up sel-TOCSY experiment to confirm an ambiguous assignment. TOOMIXED was then demonstrated on two realistic samples (whisky and urine), where under our conditions an approximate limit of detection of 0.6 mM was determined. Taking into account literature reports for the sel-TOCSY limit of detection, the technique should reach on the order of 10 μ M sensitivity. We anticipate this technique will be highly attractive to various analytical fields facing mixture analysis, including metabolomics, foodstuff analysis, pharmaceutical analysis, and forensics.
The scent of mixtures: rules of odour processing in ants
Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia
2015-01-01
Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects. PMID:25726692
Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme
2014-12-01
In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.
Modeling abundance using multinomial N-mixture models
Royle, Andy
2016-01-01
Multinomial N-mixture models are a generalization of the binomial N-mixture models described in Chapter 6 to allow for more complex and informative sampling protocols beyond simple counts. Many commonly used protocols such as multiple observer sampling, removal sampling, and capture-recapture produce a multivariate count frequency that has a multinomial distribution and for which multinomial N-mixture models can be developed. Such protocols typically result in more precise estimates than binomial mixture models because they provide direct information about parameters of the observation process. We demonstrate the analysis of these models in BUGS using several distinct formulations that afford great flexibility in the types of models that can be developed, and we demonstrate likelihood analysis using the unmarked package. Spatially stratified capture-recapture models are one class of models that fall into the multinomial N-mixture framework, and we discuss analysis of stratified versions of classical models such as model Mb, Mh and other classes of models that are only possible to describe within the multinomial N-mixture framework.
Bioavailability enhancement of curcumin by complexation with phosphatidyl choline.
Gupta, Nishant Kumar; Dixit, Vinod Kumar
2011-05-01
Curcumin is a major constituent of rhizomes of Curcuma longa. Pharmacokinetic studies of curcumin reveal its poor absorption through intestine. Objective of the present study was to enhance bioavailability of curcumin by its complexation with phosphatidyl choline (PC). Complex of curcumin was prepared with PC and characterized on the basis of solubility, melting point, differential scanning calorimetry, thin layer chromatography, and infrared spectroscopic analysis. Everted intestine sac technique was used to study ex vivo drug absorption of curcumin-PC (CU-PC) complex and plain curcumin. Pharmacokinetic studies were performed in rats, and hepatoprotective activity of CU-PC complex was also compared with curcumin and CU-PC physical mixture in isolated rat hepatocytes. Analytical reports along with spectroscopic data revealed the formation of complex. The results of ex vivo study show that CU-PC complex has significantly increased absorption compared with curcumin, when given in equimolar doses. Complex showed enhanced bioavailability, improved pharmacokinetics, and increased hepatoprotective activity as compared with curcumin or CU-PC physical mixture. Enhanced bioavailability of CU-PC complex may be due to the amphiphilic nature of the complex, which greatly enhance the water and lipid solubility of the curcumin. The present study clearly indicates the superiority of complex over curcumin, in terms of better absorption, enhanced bioavailability, and improved pharmacokinetics. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Yong, Yingqiong; Nguyen, Mai Thanh; Tsukamoto, Hiroki; Matsubara, Masaki; Liao, Ying-Chih; Yonezawa, Tetsu
2017-03-01
Mixtures of a copper complex and copper fine particles as copper-based metal-organic decomposition (MOD) dispersions have been demonstrated to be effective for low-temperature sintering of conductive copper film. However, the copper particle size effect on decomposition process of the dispersion during heating and the effect of organic residues on the resistivity have not been studied. In this study, the decomposition process of dispersions containing mixtures of a copper complex and copper particles with various sizes was studied. The effect of organic residues on the resistivity was also studied using thermogravimetric analysis. In addition, the choice of copper salts in the copper complex was also discussed. In this work, a low-resistivity sintered copper film (7 × 10-6 Ω·m) at a temperature as low as 100 °C was achieved without using any reductive gas.
Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.
Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka
2018-06-01
Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.
Development of a new continuous process for mixing of complex non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration
2017-11-01
Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.
NASA Astrophysics Data System (ADS)
Barot, D. K.; Chaube, H. A.; Rana, V. A.
2017-05-01
The complex relative dielectric function ɛ*(ω) = ɛ'-jɛ″ of binary mixture of 1-Butyl-3-methylimadazolium (BMiCl) with water of varying concentration have been measured using Precision LCR meter in the frequency range 20 Hz to 2 MHz at 293.15 K. The dielectric and electrical properties of BMiCl and water are represented in terms of electrical conductivity σ*(ω) and complex relative dielectric function ɛ*(ω). To describe the relationship of the electrical conductivity with concentration, the empirical Casteel-Amis (C-A) equation was used. The influence of concentration variation of BMiCl in water to the various electrical parameters was discussed. All of these presentations are used to explore various processes contributed in the electrical/dielectric properties of the mixtures of BMiCl and water.
Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress
Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.
2013-01-01
Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561
Müllerová, Ludmila; Dubský, Pavel; Gaš, Bohuslav
2015-03-06
Interactions among analyte forms that undergo simultaneous dissociation/protonation and complexation with multiple selectors take the shape of a highly interconnected multi-equilibrium scheme. This makes it difficult to express the effective mobility of the analyte in these systems, which are often encountered in electrophoretical separations, unless a generalized model is introduced. In the first part of this series, we presented the theory of electromigration of a multivalent weakly acidic/basic/amphoteric analyte undergoing complexation with a mixture of an arbitrary number of selectors. In this work we demonstrate the validity of this concept experimentally. The theory leads to three useful perspectives, each of which is closely related to the one originally formulated for simpler systems. If pH, IS and the selector mixture composition are all kept constant, the system is treated as if only a single analyte form interacted with a single selector. If the pH changes at constant IS and mixture composition, the already well-established models of a weakly acidic/basic analyte interacting with a single selector can be employed. Varying the mixture composition at constant IS and pH leads to a situation where virtually a single analyte form interacts with a mixture of selectors. We show how to switch between the three perspectives in practice and confirm that they can be employed interchangeably according to the specific needs by measurements performed in single- and dual-selector systems at a pH where the analyte is fully dissociated, partly dissociated or fully protonated. Weak monoprotic analyte (R-flurbiprofen) and two selectors (native β-cyclodextrin and monovalent positively charged 6-monodeoxy-6-monoamino-β-cyclodextrin) serve as a model system. Copyright © 2015 Elsevier B.V. All rights reserved.
Sahmsipur, Mojtaba; Dastjerdi, Leila Shafiee; Alizadeh, Nader; Bijanzadeh, Hamid Reza
2008-04-01
(133)Cs NMR spectroscopy was used to determine the stoichiometry and stability of the Cs(+) ion complex with dibenzo-21-crown-7 (DB21C7) in acetonitrile-dimethylsulfoxide (96.5:3.5, w/w) and nitromethane-dimethylsulfoxide (96.5:3.5, w/w) mixtures. A competitive (133)Cs NMR technique was also employed to probe the complexation of Na(+), K(+), Rb(+), Ag(+), Tl(+), NH(4)(+), Mg(2+), Ba(2+), Hg(2+), Pb(2+) and UO(2)(2+) ions with DB21C7 in the same solvent systems. All the resulting 1:1 complexes in nitromethane-dimethylsulfoxide were more stable than those in acetonitrile-dimethylsulfoxide solution. In both solvent systems, the stability of the resulting complexes was found to vary in the order Rb(+)>K(+) approximately Ba(2+)>Tl(+)>Cs(+)>NH(4)(+) approximately Pb(2+)>Ag(+)>UO(2)(2+)>Hg(2+)>Mg(2+)>Na(+).
Ghorab, M K; Adeyeye, M C
2001-08-01
The effect of oven-dried wet granulation on the complexation of beta-cyclodextrin with ibuprofen (IBU) in solution was investigated using Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and molecular modeling. Granulation was carried out using 5 mL of three different granulating solvents; water, ethanol (95% v/v), and isopropanol and the granules were oven-dried at 60 degrees C for 2 h. The granules were compared to oven-dried physical mixture and conventionally prepared complex. Phase solubility study was performed to investigate the stability of the granulation-formed complexes in solution. FT-IR was used to examine the complexation in the granules while 1H NMR, and molecular modeling studies were carried out to determine the mechanism of complexation in the water-prepared granules. The solubility studies suggested a 1:1 complex between IBU and betaCD. It also showed that the stability of the complex in solution was in the following order with respect to the granulating solvents: ethanol > water > isopropanol. The FT-IR study revealed a shift in the carboxylic acid stretching band and decrease in the intensities of the C-H bending bands of the isopropyl group and the out-of-plane aromatic ring, of IBU, in granules compared to the oven-dried physical mixture. This indicated that granules might have some extent of solid state complexation that could further enhance dissolution and the IBU-betaCD solution state complexation. 1H NMR showed that water prepared oven-dried granules had a different 1H NMR spectrum compared to similarly made oven-dried physical mixture, indicative of complexation in the former. The 1H NMR and the molecular modeling studies together revealed that solution state complexation from the granules occurred by inclusion of the isopropyl group together with part of the aromatic ring of IBU into the betaCD cavity probably through its wider side. These results indicate that granulation process induced faster complexation in solution which enhances the solubility and the dissolution rate of poorly soluble drugs. The extent of complexation in the granules was dependent on the type of solvent used.
Maximum workplace concentration values and carcinogenicity classification for mixtures.
Bartsch, R; Forderkunz, S; Reuter, U; Sterzl-Eckert, H; Greim, H
1998-01-01
In Germany, the Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission) generally sets maximum workplace concentration values (i.e., a proposed occupational exposure level [OEL]) for single substances, not for mixtures. For mixtures containing substances with a genotoxic and carcinogenic potential, the commission considered it scientifically inappropriate to establish a safe threshold. This approach is currently under discussion. Carcinogenic mixtures are categorized according to either the carcinogenicity of the mixture or the classification of the carcinogenic substances included. In regulating exposure to mixtures, an approach similar to that used by the American Conference of Governmental Hygienists is proposed: For components with the same target organ and mode of action or interfering metabolism, synergistic effects must be expected and the respective OELs must be lowered. However, if there is proof that the components act independently, the OELs of the individual compounds are not considered to be modified. In the view of the commission, calculating OELs for solvent mixtures according to their liquid phase composition is not justified, and the setting of scientifically based OELs for complex mixtures is not possible. PMID:9860883
ERIC Educational Resources Information Center
DeGrand, Michael J.; Abrams, M. Leigh; Jenkins, Judith L.; Welch, Lawrence E.
2011-01-01
By adding a large quantity of Cl[superscript -] to an aqueous solution of CoCl[subscript 2][multiplied by]6H[subscript 2]O, a mixture containing a red octahedral cobalt complex and a blue tetrahedral complex is produced. When the solution temperature is modified, the equilibrium constant, K[subscript eq], of the complexation reaction is shifted…
2011-01-01
Abstract Background The combinatorial library strategy of using multiple candidate ligands in mixtures as library members is ideal in terms of cost and efficiency, but needs special screening methods to estimate the affinities of candidate ligands in such mixtures. Herein, a new method to screen candidate ligands present in unknown molar quantities in mixtures was investigated. Results The proposed method involves preparing a processed-mixture-for-screening (PMFS) with each mixture sample and an exogenous reference ligand, initiating competitive binding among ligands from the PMFS to a target immobilized on magnetic particles, recovering target-ligand complexes in equilibrium by magnetic force, extracting and concentrating bound ligands, and analyzing ligands in the PMFS and the concentrated extract by chromatography. The relative affinity of each candidate ligand to its reference ligand is estimated via an approximation equation assuming (a) the candidate ligand and its reference ligand bind to the same site(s) on the target, (b) their chromatographic peak areas are over five times their intercepts of linear response but within their linear ranges, (c) their binding ratios are below 10%. These prerequisites are met by optimizing primarily the quantity of the target used and the PMFS composition ratio. The new method was tested using the competitive binding of biotin derivatives from mixtures to streptavidin immobilized on magnetic particles as a model. Each mixture sample containing a limited number of candidate biotin derivatives with moderate differences in their molar quantities were prepared via parallel-combinatorial-synthesis (PCS) without purification, or via the pooling of individual compounds. Some purified biotin derivatives were used as reference ligands. This method showed resistance to variations in chromatographic quantification sensitivity and concentration ratios; optimized conditions to validate the approximation equation could be applied to different mixture samples. Relative affinities of candidate biotin derivatives with unknown molar quantities in each mixture sample were consistent with those estimated by a homogenous method using their purified counterparts as samples. Conclusions This new method is robust and effective for each mixture possessing a limited number of candidate ligands whose molar quantities have moderate differences, and its integration with PCS has promise to routinely practice the mixture-based library strategy. PMID:21545719
Oxidative DNA Damage and Repair in Rats Treated with Potassium Bromate and a Mixture of Drinking Water Disinfection By-Products
Public drinking water treated with chemical disint'ectants contains a complex mixture of disinfection by-products (D BPs). There is a need for m...
Since humans and wildlife are exposed to more than one chemical at a time, concern has arisen about the effects of complex mixtures on reproduction and development. To date, different regulatory groups have not yet developed consistent approaches to conducting assessments of the ...
ERIC Educational Resources Information Center
Mota, A. R.; Lopes dos Santos, J. M. B.
2014-01-01
Students' misconceptions concerning colour phenomena and the apparent complexity of the underlying concepts--due to the different domains of knowledge involved--make its teaching very difficult. We have developed and tested a teaching device, the addition table of colours (ATC), that encompasses additive and subtractive mixtures in a single…
Superconductor precursor mixtures made by precipitation method
Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.
1989-01-01
Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.
Determining the associated health risks of exposure to complex mixtures in the environment is a recognized challenge. The Chemical Mixtures project, a collaborative effort between USEPA and USGS, is making a step in that direction by examining the co-occurrence of chemicals and b...
This product is an invited webinar to the Society of Toxicology Risk Assessment Specialty Section (co-hosted by the Mixtures Specialty Section) as part of their monthly webinar series. The webinar is scheduled for 3:00PM on Wednesday September 13th.
The phase behavior of cationic lipid-DNA complexes.
May, S; Harries, D; Ben-Shaul, A
2000-01-01
We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951
Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David
2016-07-01
The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, B.; Marston, C.P.; Luch, A.
2007-03-15
A complex mixture of polycyclic aromatic hydrocarbons (PAH) extracted from coal tar, the Standard Reference Material (SRM) 1597, was recently shown to decrease the levels of DNA binding of the 2 strong carcinogens benzo(a)pyrene (BP) and dibenzo(a,l)pyrene (DBP) in the human mammary carcinoma-derived cell line MCF-7. The present study was designed to further elucidate the biochemical mechanisms involved in this inhibition process. We examined the effects of SRM 1597 on the metabolic activation of BP and DBP toward DNA-binding derivatives in Chinese hamster cells expressing either human cytochrome P450 (CYP) 1A1 or CYP1B1. The data obtained from biochemical experiments revealedmore » that SRM 1597 competitively inhibited the activity of both human enzymes as analyzed by 7-ethoxyresorufin O-deethylation assays. While the Michaelis-Menten constant (K-M) was {lt} 0.4 {mu}M in the absence of SRM 1597, this value increased up to 1.12 (CYP1A1) or 4.45 {mu}M (CYP1B1) in the presence of 0.1 {mu} g/ml SRM 1597. Hence the inhibitory effects of the complex mixture on human CYP1B1 were much stronger when compared to human CYP1A1 Taken together, the decreases in PAH-DNA adduct formation on co-treatment with SRM 1597 revealed inhibitory effects on the CYP enzymes that convert carcinogenic PAH into DNA-binding metabolites. The implications for the tumorigenicity of complex environmental PAR mixtures are discussed.« less
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Kazi, Tasneem Gul; Afridi, Hassan Imran; Ali, Jamshed; Baig, Jameel Ahmed; Arain, Mohammad Balal; Khan, Mustafa
2017-08-01
A green tunable dispersive liquid-liquid micro extraction (TDLLME) technique was established for the simultaneous enrichment of lead (Pb) and cadmium (Cd) from different lakes water before analysis by flame atomic absorption spectrometry (FAAS). A solvent known as tunable polarity solvent (TPS), mixture of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) and 1-decanol, has been employed as extractant in aqueous medium. In first step this mixture can be made polar by slowly bubbling the antisolvent trigger (CO2) through the solution, which makes a monophasic solution. During this step hydrophobic complexes of the metals with 8-hydroxy quinoline (8-HQ) were extracted by TPS. Then the mixture was switched back to hydrophobic one by heating and/or bubbling nitrogen, turning the mixture into two phases again. In second phase the metals were leached out from the complexes entrapped in TPS, by treating with a solution of nitric acid and exposing the mixture to CO2, which switched the mixture into single phase. Then N2 purging and/or heating again turned the mixture into two phases. The acidic aqueous phase containing the metals was introduced to FAAS for analysis, whereas TPS was recycled for next experiment. Different parameters, affecting the efficiency the technique, were optimized by multivariate approach. The method was applied to certified reference material of water and to a real sample spiked with standards of known concentration, to confirm its validity and accuracy. LOD obtained for Pb and Cd were 0.560 and 0.056 μg L- 1 respectively. The developed method was applied successfully to the real water samples of two lakes of Sindh, Pakistan.
Geier, Mitra C; James Minick, D; Truong, Lisa; Tilton, Susan; Pande, Paritosh; Anderson, Kim A; Teeguardan, Justin; Tanguay, Robert L
2018-04-06
Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. We constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilization (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures. Copyright © 2018 Elsevier Inc. All rights reserved.
Enzymatic and Microbial Preparation of d-Xylulose from d-Xylose
Chiang, Lin-Chang; Hsiao, Humg-Yu; Ueng, Pear P.; Tsao, George T.
1981-01-01
A high-d-xylulose mixture (d-xylose-d-xylulose = 33:67) was prepared from the cold ethanol extract of preisomerized d-xylose solution (d-xylose-d-xylulose = 77:23). Fusarium oxysporum f. sp. lini and Aspergillus niger were demonstrated to preferentially utilize d-xylose in the mixture of d-xylose and d-xylulose. Chromatographically pure d-xylulose was thus obtained in 90% yield. A high-d-xylulose mixture was also incubated with Rhodotorula toruloides, Klebsiella pneumoniae, Candida utilis, or Mucor rouxii.d-Xylose and d-xylulose were simultaneously consumed. When borate was added to the mixture, a d-xylulose-borate complex was formed, and it could be used to protect d-xylulose from being utilized. PMID:16345816
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
Liu, Meina; Cao, Wen; Sun, Yinghua; He, Zhonggui
2014-12-30
The therapeutic efficacy of repaglinide (RPG) is limited by the low and variable oral bioavailability owing to its limited aqueous solubility. In our present study, the development and evaluation of inclusion complex applying hydroxypropyl-β-cyclodextrin (HP-β-CD) for the improvement of oral bioavailability of repaglinide was investigated systematically. The inclusion complex of repaglinide was prepared by lyophilization technique using drug: hydroxypropyl-β-cyclodextrin (1:15 mole). The prepared complexation was characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), NMR spectroscopy and evaluated by dissolution studies. The (1)H NMR was used in the structure study of repaglinide-HP-β-CD (RPG-HP-β-CD) inclusion complex. The analysis proved the higher probability of the repaglinide A-ring into the narrow rim of the β-cyclodextrin molecule. All the characterization information confirmed the formation of RPG-HP-β-CD inclusion complex. The in vivo pharmacokinetics of RPG-HP-β-CD and their physical mixture were performed in beagle dogs. For the first time, a simple, rapid, and sensitive LC-MS/MS method for determination of RPG in beagle dog plasma was developed. The Cmax and AUC0-t of RPG-HP-β-CD were 2.5 and 2 times higher than that of the physical mixture. These results suggested that the interaction of repaglinide with HP-β-CD could notably improve the dissolution rate and bioavailability of repaglinide comparing with its physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.
Ajmani, Subhash; Rogers, Stephen C; Barley, Mark H; Burgess, Andrew N; Livingstone, David J
2010-09-17
In our earlier work, we have demonstrated that it is possible to characterize binary mixtures using single component descriptors by applying various mixing rules. We also showed that these methods were successful in building predictive QSPR models to study various mixture properties of interest. Here in, we developed a QSPR model of an excess thermodynamic property of binary mixtures i.e. excess molar volume (V(E) ). In the present study, we use a set of mixture descriptors which we earlier designed to specifically account for intermolecular interactions between the components of a mixture and applied successfully to the prediction of infinite-dilution activity coefficients using neural networks (part 1 of this series). We obtain a significant QSPR model for the prediction of excess molar volume (V(E) ) using consensus neural networks and five mixture descriptors. We find that hydrogen bond and thermodynamic descriptors are the most important in determining excess molar volume (V(E) ), which is in line with the theory of intermolecular forces governing excess mixture properties. The results also suggest that the mixture descriptors utilized herein may be sufficient to model a wide variety of properties of binary and possibly even more complex mixtures. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Incorporation de particules de verre post-consommation dans un enrobe bitumineux de type ESG14
NASA Astrophysics Data System (ADS)
Lachance Tremblay, Eric
In 2008, around 244,000 tons of glass was produced by the Quebec population. From this number, 128,000 tons were collected by various means of collection. Glass recycling is problematic because all the glass that cannot be classified according to the type can't be used to manufacture new products. It is therefore necessary to find new sources of uses for this material. Because the use of recycled materials in road structure material is beneficial from an environmental and sometimes structural point of view, the idea of using recycled glass into asphalt mixture was recently studied at the LCMB. Nowadays, the use of recycled glass in asphalt mixture is not regulated by the MTQ. This research goal was to verify the possibility of using recycled glass particles in a ESG14 asphalt mixture while maintaining equivalent properties and performance compared to a conventional mix. Different dosages of recycled glass particles have been studied to evaluate the effect of glass on the asphalt mixture volumetric characteristics, the ability of compaction and the rutting resistance. These mixes were formulated according to the LC formulation of the MTQ. The first part allowed selecting an optimal dosage of recycled glass particles. Thereafter, the thermo mechanical performance (resistance to low temperatures (TSRST), complex modulus (E*) and resistance to fatigue cracking), physical characteristics (macro texture and surface grip) and durability (resistance to water damage) of the asphalt mixture with the optimal dosage were evaluated and compared with a reference mixture. The results show that the ESG14 mixture with recycled glass formulated with the LC method is more susceptible to rutting than the reference mixture. Therefore, a reduction of the bitumen content can increase the rutting resistance while conserving equivalent properties to a conventional mix regarding resistance to low temperatures, complex modulus, resistance to fatigue cracking as well as the physical characteristics. Therefore, the use of recycled in glass seems to modify the asphalt behavior and increase the moisture susceptibility.
Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.
2004-01-01
Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.
Leclercq, Loïc; Lubart, Quentin; Aubry, Jean-Marie; Nardello-Rataj, Véronique
2013-05-28
The surface tension equations of binary surfactant mixtures (di-n-decyldimethylammonium chloride and octaethylene glycol monododecyl ether) are established by combining the Szyszkowski equation of surfactant solutions, the ideal or nonideal mixing theory, and the phase separation model. For surfactant mixtures, the surface tension at the air-water interface is calculated using nonideal theory due to synergism between the two adsorbed surfactant types. The incorporation of cyclodextrin complexation model to the surface tension equations gives a robust model for the description of the surface tension isotherms of binary, ternary, and more complex systems involving numerous inclusion complexes. The surface tension data obtained experimentally shows excellent agreement with the theoretical model below and above the formation of micelles. The strong synergistic effect observed between the two surfactants is disrupted by the presence of CDs, leading to ideal behavior of ternary systems. Indeed, depending on the nature of the cyclodextrin (i.e., α, β, or γ), which allows a tuning of the cavity size, the binding constants with the surfactants are modified as well as the surface properties due to strong modification of equilibria involved in the ternary mixture.
Jing, Li; Amster, I Jonathan
2009-10-15
Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using (15)N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures that with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a compute program which significantly accelerates the interpretation of (15)N metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the (15)N/(14)N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.
Brodaczewska, Natalia; Košťálová, Zuzana; Uhrín, Dušan
2018-02-01
Overlap of NMR signals is the major cause of difficulties associated with NMR structure elucidation of molecules contained in complex mixtures. A 2D homonuclear correlation spectroscopy in particular suffers from low dispersion of 1 H chemical shifts; larger dispersion of 13 C chemical shifts is often used to reduce this overlap, while still providing the proton-proton correlation information e.g. in the form of a 2D 1 H, 13 C HSQC-TOCSY experiment. For this methodology to work, 13 C chemical shift must be resolved. In case of 13 C chemical shifts overlap, 1 H chemical shifts can be used to achieve the desired resolution. The proposed (3, 2)D 1 H, 13 C BIRD r,X -HSQC-TOCSY experiment achieves this while preserving singlet character of cross peaks in the F 1 dimension. The required high-resolution in the 13 C dimension is thus retained, while the cross peak overlap occurring in a regular HSQC-TOCSY experiment is eliminated. The method is illustrated on the analysis of a complex carbohydrate mixture obtained by depolymerisation of a fucosylated chondroitin sulfate isolated from the body wall of the sea cucumber Holothuria forskali.
Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.
Roussis, Stilianos G; Proulx, Richard
2003-03-15
A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.
DEVELOPMENT OF A PASSIVE, IN SITU, INTEGRATIVE ...
Until recently, hydrophobic, bioconcentratable compounds have been the primary focus of most environmental organic contaminant investigations, There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants as well. This group of compounds includes a wide variety of chemicals, including potentially endocrine disrupting and estrogenic contaminants which have been shown to contribute to numerous abnormalities such as impaired reproduction in aquatic organisms exposed in environmental waters. To address this issue, we developed a passive, in situ, sampling device (the Polar Organic Chemical Integrative Sampler or POCIS) which integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations and provides a screening assessment of the toxicological significance of the complex mixture of waterborne contaminants. Using a prototype sampler (effective membrane sampling surface area = 18.2 cm 2) linear uptake of selected herbicides and pharmaceuticals was observed for up to 56 days. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS chemical sampling rates. The research focused on in the subtasks is the development and application of state-of
A Winsor Type I surfactant/alcohol mixture was used as an in situ flushing agent to solubilize a muticomponent nonaqueous phase liquid (NAPL) as a single-phase microemulsion (SPME) in a hydraulically isolated test cell at Hill Air Force Base (AFB), Utah. The surfactant (polyoxye...
At present, there are IRIS RfDs for two commercial PCB mixtures: Aroclor 1016 and Aroclor 1254. There is no IRIS RfD for complex PCB mixtures in general; and the RfDs for Aroclor 1016 and Aroclor 1254 were last updated in 1993 and 1994, respectively. The new assessment will integ...
Experimental designs and risk assessment in combination toxicology: panel discussion.
Henschler, D; Bolt, H M; Jonker, D; Pieters, M N; Groten, J P
1996-01-01
Advancing our knowledge on the toxicology of combined exposures to chemicals and implementation of this knowledge in guidelines for health risk assessment of such combined exposures are necessities dictated by the simple fact that humans are continuously exposed to a multitude of chemicals. A prerequisite for successful research and fruitful discussions on the toxicology of combined exposures (mixtures of chemicals) is the use of defined terminology implemented by an authoritative international body such as, for example, the International Union of Pure and Applied Chemistry (IUPAC) Toxicology Committee. The extreme complexity of mixture toxicology calls for new research methodologies to study interactive effects, taking into account limited resources. Of these methodologies, statistical designs and mathematical modelling of toxicokinetics and toxicodynamics seem to be most promising. Emphasis should be placed on low-dose modelling and experimental validation. The scientifically sound so-called bottom-up approach should be supplemented with more pragmatic approaches, focusing on selection of the most hazardous chemicals in a mixture and careful consideration of the mode of action and possible interactive effects of these chemicals. Pragmatic approaches may be of particular importance to study and evaluate complex mixtures; after identification of the 'top ten' (most risky) chemicals in the mixture they can be examined and evaluated as a defined (simple) chemical mixture. In setting exposure limits for individual chemicals, the use of an additional safety factor to compensate for potential increased risk due to simultaneous exposure to other chemicals, has no clear scientific justification. The use of such an additional factor is a political rather than a scientific choice.
Islam, Saidul; Aguilar, Juan A; Powner, Matthew W; Nilsson, Mathias; Morris, Gareth A; Sutherland, John D
2013-01-01
In the context of prebiotic chemistry, one of the characteristics of mixed nitrogenous-oxygenous chemistry is its propensity to give rise to highly complex reaction mixtures. There is therefore an urgent need to develop improved spectroscopic techniques if onerous chromatographic separations are to be avoided. One potential avenue is the combination of pure shift methodology, in which NMR spectra are measured with greatly improved resolution by suppressing multiplet structure, with diffusion-ordered spectroscopy, in which NMR signals from different species are distinguished through their different rates of diffusion. Such a combination has the added advantage of working with intact mixtures, allowing analyses to be carried out without perturbing mixtures in which chemical entities are part of a network of reactions in equilibrium. As part of a systems chemistry approach towards investigating the self-assembly of potentially prebiotic small molecules, we have analysed the complex mixture arising from mixing glycolaldehyde and cyanamide, in a first application of pure shift DOSY NMR to the characterisation of a partially unknown reaction composition. The work presented illustrates the potential of pure shift DOSY to be applied to chemistries that give rise to mixtures of compounds in which the NMR signal resolution is poor. The direct formation of potential RNA and TNA nucleoside precursors, amongst other adducts, was observed. These preliminary observations may have implications for the potentially prebiotic assembly chemistry of pyrimidine threonucleotides, and therefore of TNA, by using recently reported chemistries that yield the activated pyridimidine ribonucleotides. PMID:23371787
NASA Astrophysics Data System (ADS)
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2016-02-01
Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.
GUMNET - A new long-term monitoring initiative in the Guadarrama Mountains, Madrid, Spain
NASA Astrophysics Data System (ADS)
Rath, Volker; Fidel González Rouco, J.; Yagüe Anguis, Carlos
2014-05-01
We are announcing a new monitoring network in the Guadarrama Mountains north of Madrid, which is planned to be operational in early 2015. This network integrates atmospheric measurements as well as subsurface observations. It aims at improving the characterization of atmosphere-ground interactions in mountainous terrain, the hydrometeorology of the region, climatic change, and related research lines. It will also provide the meteorological and climate data which form the necessary background information for biological, agricultural and hydrological investigations in this area. Currently, the initiative is supported by research groups from the Complutense and Polytechnical Universities of Madrid (UCM and UPM), the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), the Spanish National Meteorological Agency (AEMET), and finally the Parque Nacional de la Sierra de Guadarrama (PNSG). This infrastructure forms part of the Campus of Excellence Moncloa, and is supposed to become a focus of local as well as of international research. However, it is not associated with a particular project: data will in principle be available to the scientific and public communities. Also, the integration of new instruments (long or short term) will be welcome. The starting setup is as following: A group of WMO-compatible meteorological station in the central area of the massif will be installed, which include also a subsurface component of boreholes (≡20 m depth), where temperature and moisture will be measured. This core group is complemented by a reference site near El Escorial (including a fixed and a mobile tower for micrometeorological investigations). This setup is embedded in a network of meteorological stations run partly by AEMET and partly by the PNSG, which will provide the information necessary for the characterization of regional meteorology and climate. Finally, part of the data will be made available quasi-online on a central web server in Madrid. (temporary web page: http://tifon.fis.ucm.es/~gumnet/)
Yang, Ying-Ying; Liu, Hongqun; Nam, Soon Woo; Kunos, George; Lee, Samuel S
2010-08-01
Chronic liver disease is associated with endotoxemia, oxidative stress, increased endocannabinoids and decreased cardiac responsiveness. Endocannabinoids activate the tumor necrosis factor-alpha (TNFalpha)-nuclear factor kappaB (NFkappaB) pathway. However, how they interact with each other remains obscure. We therefore aimed to clarify the relationship between the TNFalpha-NFkappaB pathway and endocannabinoids in the pathogenesis of cardiodepression of cholestatic bile duct ligated (BDL) mice. BDL mice with TNFalpha knockout (TNFalpha-/-) and infusion of anti-TNFalpha antibody were used. Cardiac mRNA and protein expression of NFkappaBp65, c-Jun-N-terminal kinases (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracelullar-signal- regulated kinase (ERK), inducible nitric oxide synthase (iNOS), Copper/Zinc and Magnesium-superoxide dismutase (Cu/ Zn- and Mn-SOD), cardiac anandamide, 2-arachidonoylglycerol (2-AG), nitric oxide (NOx) and glutathione, and plasma TNFalpha were measured. The effects of TNFalpha, cannabinoid receptor (CB1) antagonist AM251 and the endocannabinoid reuptake inhibitor UCM707, on the contractility of isolated cardiomyocytes, were assessed. In BDL mice, cardiac mRNA and protein expression of NFkappaBp65, p38MAPK, iNOS, NOx, anandamide, and plasma TNFa were increased, whereas glutathione, Cu/Zn-SOD, and Mn-SOD were decreased. Cardiac contractility was blunted in BDL mice. Anti-TNFa treatment in BDL mice decreased cardiac anandamide and NOx, reduced expression of NFkappaBp65, p38MAPK, and iNOS, enhanced expression of Cu/Zn-SOD and Mn-SOD, increased reductive glutathione and restored cardiomyocyte contractility. TNFa-depressed contractility was worsened by UCM707, whereas AM251 improved contractility. Increased TNFalpha, acting via NFkappaB-iNOS and p38MAPK signaling pathways, plays an important role in the pathogenesis of cardiodepression in BDL mice. TNFalpha also suppressed contractility by increasing oxidative stress and endocannabinoid activity.
Piantadosi, Sean C.; French, Beverly J.; Poe, Michael M.; Timić, Tamara; Marković, Bojan D.; Pabba, Mohan; Seney, Marianne L.; Oh, Hyunjung; Orser, Beverley A.; Savić, Miroslav M.; Cook, James M.; Sibille, Etienne
2016-01-01
Rationale: Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2’F-R-CH3 (denoted “α5-PAM”), a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with α5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as “behavioral emotionality”) across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities. PMID:27920723
NASA Astrophysics Data System (ADS)
Imran, H. M.; Kala, J.; Ng, A. W. M.; Muthukumaran, S.
2018-04-01
Appropriate choice of physics options among many physics parameterizations is important when using the Weather Research and Forecasting (WRF) model. The responses of different physics parameterizations of the WRF model may vary due to geographical locations, the application of interest, and the temporal and spatial scales being investigated. Several studies have evaluated the performance of the WRF model in simulating the mean climate and extreme rainfall events for various regions in Australia. However, no study has explicitly evaluated the sensitivity of the WRF model in simulating heatwaves. Therefore, this study evaluates the performance of a WRF multi-physics ensemble that comprises 27 model configurations for a series of heatwave events in Melbourne, Australia. Unlike most previous studies, we not only evaluate temperature, but also wind speed and relative humidity, which are key factors influencing heatwave dynamics. No specific ensemble member for all events explicitly showed the best performance, for all the variables, considering all evaluation metrics. This study also found that the choice of planetary boundary layer (PBL) scheme had largest influence, the radiation scheme had moderate influence, and the microphysics scheme had the least influence on temperature simulations. The PBL and microphysics schemes were found to be more sensitive than the radiation scheme for wind speed and relative humidity. Additionally, the study tested the role of Urban Canopy Model (UCM) and three Land Surface Models (LSMs). Although the UCM did not play significant role, the Noah-LSM showed better performance than the CLM4 and NOAH-MP LSMs in simulating the heatwave events. The study finally identifies an optimal configuration of WRF that will be a useful modelling tool for further investigations of heatwaves in Melbourne. Although our results are invariably region-specific, our results will be useful to WRF users investigating heatwave dynamics elsewhere.
Implementation of an Online Chemistry Model to a Large Eddy Simulation Model (PALM-4U0
NASA Astrophysics Data System (ADS)
Mauder, M.; Khan, B.; Forkel, R.; Banzhaf, S.; Russo, E. E.; Sühring, M.; Kanani-Sühring, F.; Raasch, S.; Ketelsen, K.
2017-12-01
Large Eddy Simulation (LES) models permit to resolve relevant scales of turbulent motion, so that these models can capture the inherent unsteadiness of atmospheric turbulence. However, LES models are so far hardly applied for urban air quality studies, in particular chemical transformation of pollutants. In this context, BMBF (Bundesministerium für Bildung und Forschung) funded a joint project, MOSAIK (Modellbasierte Stadtplanung und Anwendung im Klimawandel / Model-based city planning and application in climate change) with the main goal to develop a new highly efficient urban climate model (UCM) that also includes atmospheric chemical processes. The state-of-the-art LES model PALM; Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015), has been used as a core model for the new UCM named as PALM-4U. For the gas phase chemistry, a fully coupled 'online' chemistry model has been implemented into PALM. The latest version of the Kinetic PreProcessor (KPP) Version 2.3, has been utilized for the numerical integration of chemical species. Due to the high computational demands of the LES model, compromises in the description of chemical processes are required. Therefore, a reduced chemistry mechanism, which includes only major pollutants namely O3, NO, NO2, CO, a highly simplified VOC chemistry and a small number of products have been implemented. This work shows preliminary results of the advection, and chemical transformation of atmospheric pollutants. Non-cyclic boundaries have been used for inflow and outflow in east-west directions while periodic boundary conditions have been implemented to the south-north lateral boundaries. For practical applications, our approach is to go beyond the simulation of single street canyons to chemical transformation, advection and deposition of air pollutants in the larger urban canopy. Tests of chemistry schemes and initial studies of chemistry-turbulence, transport and transformations are presented.
2014-01-01
Introduction Among the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play. Methods Human umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays. Results Evaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation. Conclusions UCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results suggest that UCX® should be considered an alternative cell source when designing new therapeutic approaches to treat MI. PMID:24411922
Can a Reaction's Environment Program its Outcome, and Does it Matter?
NASA Astrophysics Data System (ADS)
Surman, A. J.; Rodriguez-Garcia, M.; Abul-Haija, Y.; Cooper, G. J. T.; Donkers, K.; Planchat i Barbarà, J. M.; Kube, J.; Mullin, M.; Hezwani, M.; Cronin, L.
2017-07-01
Where most eschew reactions producing complex mixtures (‘tar') and prefer to plan ‘clean' syntheses, we embrace complexity. We show that environments can steer ‘messy' reactions, and ask if this can yield significant difference in structure and function.
MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS
Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...
High temperature impact on fatigue life of asphalt mixture in Slovakia
NASA Astrophysics Data System (ADS)
Mandula, Ján; Olexa, Tomáš
2017-09-01
Temperature dependence of materials bonded with bitumen is a well-known fact. The impact of temperature changes the behaviour of asphalt mixtures from elastic to viscous state, and it also influences the complex modulus, phase angle and other properties of asphalt mixtures. This study observed the summer temperature influence on fatigue behaviour of an asphalt mixture for the surface course of roads in conditions of Slovakia. Measurements were made using the four-point bending method on the asphalt mixture with maximum grain size of 11 mm bonded with polymer modified bitumen. Summer conditions were represented by environmental temperature of 27 °C according to the Slovakian pavement design method. Ordinary temperatures for fatigue measurements are 10 °C, 15 °C and 20 °C according to European standards for asphalt mixture testing. Structural changes in the material were observed by dissipation energy calculations for each loading cycle. The aim of the study was to find out if the influence of high environmental temperature is positive or negative for the lifespan of asphalt mixtures.
Lifshitz phase: the microscopic structure of aqueous and ethanol mixtures of 1,n-diols.
Požar, Martina; Perera, Aurélien
2017-06-14
We study binary mixtures of ethylene glycol and 1,3-propandiol with water or ethanol using computer simulations. Despite strong hydrogen bonding tendencies between all these molecules, we find that these mixtures are surprisingly homogeneous, in contrast to the strong micro-heterogeneity found in aqueous ethanol mixtures. The aqueous diol mixtures are found to be close to ideal mixtures, with near-ideal Kirkwood-Buff integrals. Ethanol-diol mixtures show weak non-ideality. The origin of this unexpected randomness is due to the fact that the two hydrogen bonding hydroxyl groups of the 1,n-diol are bound by the neutral alkyl bond, which prevents the micro-segregation of the different types of hydroxyl groups. These findings suggest that random disorder can arise in the presence of strong interactions - in contrast to the usual picture of random disorder due to weak interactions between the components. They point to the important role of molecular topology in tuning concentration fluctuations in complex liquids. We propose and justify herein the name of Lifshitz phases to designate such types of disordered systems.
Robust nonlinear system identification: Bayesian mixture of experts using the t-distribution
NASA Astrophysics Data System (ADS)
Baldacchino, Tara; Worden, Keith; Rowson, Jennifer
2017-02-01
A novel variational Bayesian mixture of experts model for robust regression of bifurcating and piece-wise continuous processes is introduced. The mixture of experts model is a powerful model which probabilistically splits the input space allowing different models to operate in the separate regions. However, current methods have no fail-safe against outliers. In this paper, a robust mixture of experts model is proposed which consists of Student-t mixture models at the gates and Student-t distributed experts, trained via Bayesian inference. The Student-t distribution has heavier tails than the Gaussian distribution, and so it is more robust to outliers, noise and non-normality in the data. Using both simulated data and real data obtained from the Z24 bridge this robust mixture of experts performs better than its Gaussian counterpart when outliers are present. In particular, it provides robustness to outliers in two forms: unbiased parameter regression models, and robustness to overfitting/complex models.
Medicines, shaken and stirred: a critical review on the ecotoxicology of pharmaceutical mixtures
Backhaus, Thomas
2014-01-01
Analytical monitoring surveys routinely confirm that organisms in the environment are exposed to complex multi-component pharmaceutical mixtures. We are hence tasked with the challenge to take this into consideration when investigating the ecotoxicology of pharmaceuticals. This review first provides a brief overview of the fundamental approaches for mixture toxicity assessment, which is then followed by a critical review on the empirical evidence that is currently at hand on the ecotoxicology of pharmaceutical mixtures. It is concluded that, while the classical concepts of concentration addition and independent action (response addition) provide a robust scientific footing, several knowledge gaps remain. This includes, in particular, the need for more and better empirical data on the effects of pharmaceutical mixtures on soil organisms as well as marine flora and fauna, and exploring the quantitative consequences of toxicokinetic, toxicodynamic and ecological interactions. Increased focus should be put on investigating the ecotoxicology of pharmaceutical mixtures in environmentally realistic settings. PMID:25405972
Introduction to the special section on mixture modeling in personality assessment.
Wright, Aidan G C; Hallquist, Michael N
2014-01-01
Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.
Clark, R.N.; Lucey, P.G.
1984-01-01
The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors
Dielectric properties of binary mixtures of methyl iso butyl ketone and amino silicone oil
NASA Astrophysics Data System (ADS)
Shah, K. N.; Rana, V. A.; Trivedi, C. M.; Vankar, H. P.
2017-05-01
Dielectric permittivity ɛ*(ω) = ɛ' - jɛ″ of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. Relative complex permittivity spectra in the frequency range 100 Hz to 2 MHz, of the mixture solutions of varying concentrations is reported. Determined values of the permittivity at optical frequency of all the samples are also reported. The dielectric parameters are used to gain information about the effect of concentration variation of components of the mixtures on the dielectric properties. It also provides the information about electrode polarization phenomena taking place under the low frequency A.C. electric field.
Environmental Risk Assessment of Pharmaceutical Mixtures: Demands, Gaps, and Possible Bridges.
Backhaus, Thomas
2016-07-01
The ecotoxicological risk of pharmaceutical mixtures typically exceeds the risk of each individual compound, which calls specific attention to the fact that monitoring surveys routinely find complex pharmaceutical mixtures in various environmental compartments. However, although the body of evidence on the ecotoxicology of pharmaceutical mixtures is quite consistent, the current guidelines for the environmental risk assessment of pharmaceuticals often do not explicitly address mixture effects. Data availability and acceptable methods often limit such assessments. A tiered approach that begins with summing up individual risk quotients, i.e., the ratio between the predicted or measured environmental concentration and the predicted no effect concentration (PNEC) is therefore suggested in this paper, in order to improve the realism of the environmental risk assessment of pharmaceuticals. Additionally, the use of a mixture-specific assessment factor, as well as the classical mixture toxicity concepts of concentration addition and independent action is explored. Finally, specific attention is given to the exposure-based waiving of environmental risk assessments, as currently implemented in screening or pre-screening phases (tier 0 in Europe, categorical exclusion in the USA), since even low, individually non-toxic concentrations might combine to produce substantial mixture effects.
NASA Astrophysics Data System (ADS)
Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel
Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.
Hansen, Lone Rykær; Roslev, Peter
2016-10-01
Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum herbicide formulations. Glyphosate is a chelating agent that can form stable complexes with divalent metal ions including Cu(II). Little is known about the bioavailability and ecotoxicity of glyphosate-Cu(II) complexes to aquatic organisms. In this study, we used video tracking and behavior analysis to investigate sublethal effects of binary mixtures of glyphosate and Cu(II) to juvenile D. magna. Behavioral responses were quantified for individual D. magna after 24h and 48h exposure to glyphosate and glyhosate-Cu(II) mixtures. Sublethal concentrations resulted in decreases in swimming velocity, acceleration speed, and distance moved whereas inactive time of D. magna increased. Distance moved and inactive time were the most responsive parameters to glyphosate and glyphosate-Cu(II) exposure. On a molar basis, glyphosate-Cu(II) complexes appeared more toxic to D. magna than glyphosate alone. The 48h EC50 for glyphosate and glyphosate-Cu(II) determined from swimming distance were 75.2μM and 8.4μM, respectively. In comparison, traditional visual observation of mobility resulted in 48h EC50 values of 52.8μM and 25.5μM for glyphosate and glyphosate-Cu(II), respectively. The behavioral responses indicated that exposure of D. magna to mixtures of glyphosate and Cu(II) attenuated acute metal toxicity but increased apparent glyphosate toxicity due to complexation with Cu(II). The study suggests that glyphosate is a likely mediator of aquatic metal toxicity, and that video tracking provides an opportunity for quantitative studies of sublethal effects of pesticide complexes. Copyright © 2016 Elsevier B.V. All rights reserved.
Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V
1997-07-20
Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.
Algarra, Andrés G; Basallote, Manuel G; Castillo, Carmen E; Clares, M Paz; Ferrer, Armando; García-España, Enrique; Llinares, José M; Máñez, M Angeles; Soriano, Conxa
2009-02-02
A ligand (L1) (bis(aminoethyl)[2-(4-quinolylmethyl)aminoethyl]amine) containing a 4-quinolylmethyl group attached to one of the terminal amino groups of tris(2-aminoethyl)amine (tren) has been prepared, and its protonation constants and stability constants for the formation of Cu(2+) complexes have been determined. Kinetic studies on the formation of Cu(2+) complexes in slightly acidic solutions and on the acid-promoted complex decomposition strongly suggest that the Cu(2+)-L1 complex exists in solution as a mixture of two species, one of them showing a trigonal bipyramidal (tbp) coordination environment with an absorption maximum at 890 nm in the electronic spectrum, and the other one being square pyramidal (sp) with a maximum at 660 nm. In acidic solution only a species with tbp geometry is formed, whereas in neutral and basic solutions a mixture of species with tbp and sp geometries is formed. The results of density functional theory (DFT) calculations indicate that these results can be rationalized by invoking the existence of an equilibrium of hydrolysis of the Cu-N bond with the amino group supporting the quinoline ring so that CuL1(2+) would be actually a mixture of tbp [CuL1(H(2)O)](2+) and sp [CuL1(H(2)O)(2)](2+). As there are many Cu(2+)-polyamine complexes with electronic spectra that show two overlapping bands at wavelengths close to those observed for the Cu(2+)-L1 complex, the existence of this kind of equilibrium between species with two different geometries can be quite common in the chemistry of these compounds. A correlation found between the position of the absorption maximum and the tau parameter measuring the distortion from the idealized tbp and sp geometries can be used to estimate the actual geometry in solution of this kind of complex.
NASA Astrophysics Data System (ADS)
Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek
2017-10-01
Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.
NASA Astrophysics Data System (ADS)
Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.
2016-01-01
The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.
Considerations for Bioassay Monitoring of Mixtures of Radionuclides
Klumpp, John; Waters, Tom; Bertelli, Luiz
2017-10-01
Complying with regulations for bioassay monitoring of radionuclide intakes is significantly more complex for mixtures than it is for pure radionuclides. Different constituents will naturally have different dose coefficients, be detectable at significantly different levels, and may require very different amounts of effort to bioassay. The ability to use certain constituents as surrogates for others will depend on how well characterized the mixture is, as well as whether the employee is also working with other radionuclides. This is further compounded by the fact that the composition of a mixture (or even of a pure radionuclide) is likely to change overmore » time. Internal dosimetrists must decide how best to monitor employees who work with radionuclide mixtures. In particular, they must decide which constituents should be monitored routinely, which constituents only need to be monitored in the case of an intake, and how to estimate doses based on intakes of monitored and unmonitored constituents.« less
Dimensionally stable metallic hydride composition
Heung, Leung K.
1994-01-01
A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.
Li, Xue; Zhao, Shuying; Zhang, Shuxiang; Kim, Dong Ha; Knoll, Wolfgang
2007-06-19
Inorganic compound HAuCl4, which can form a complex with pyridine, is introduced into a poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) block copolymer/poly(methyl methacrylate) (PMMA) homopolymer mixture. The orientation of the cylindrical microdomains formed by the P2VP block, PMMA, and HAuCl4 normal to the substrate surface can be generated via cooperative self-assembly of the mixture. Selective removal of the homopolymer can lead to porous nanostructures containing metal components in P2VP domains, which have a novel photoluminescence property.
Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...
Inhalation Exposure and Lung Dose Analysis of Multi-mode Complex Ambient Aerosols
Rationale: Ambient aerosols are complex mixture of particles with different size, shape and chemical composition. Although they are known to cause health hazard, it is not fully understood about causal mechanisms and specific attributes of particles causing the effects. Internal ...
NASA Astrophysics Data System (ADS)
Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi
2018-05-01
Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.
Kaliappan, S; Lucey, J A
2011-09-01
Calcium-chelating salts (CCS), such as phosphates and citrates, are often added to milk systems to modify physical properties like heat stability. The objective of this study was to investigate the effect of binary CCS mixtures on the properties of casein (CN) micelles including the distribution of Ca between the soluble and CN-bound states. Six binary CCS mixtures were prepared from 4 different types of CCS [i.e., trisodium citrate (TSC), disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), and sodium hexameta phosphate (SHMP)] by combining 2 CCS at a time in 5 different proportions (8.3:91.7, 29.2:70.8, 50:50, 70.8:29.2, and 91.7:8.3). Different concentrations of these mixtures (0, 0.1, 0.3, 0.5, and 0.7% wt/wt) were added to milk protein concentrate solutions (5% wt/wt) at pH 5.8. The ability of CCS to disperse CN particles and its interaction with Ca were assessed from turbidity measurements, acid-base titration behavior, and the quantity of CN-bound Ca and inorganic phosphate (Pi). Turbidity and the buffering peak at pH ∼5.0 during acid titration decreased with an increasing concentration of CCS. This was due to the chelation of Ca and the dispersion of CN micelles. The presence of TSC in mixtures decreased the amount of CN-bound Ca and Pi; however, the presence of TSPP in mixtures increased CN-bound Ca and Pi. When DSP was present at high proportions in mixtures of CCS, the CN-bound Ca and Pi slightly increased. When SHMP was used in mixtures of CCS, CN-bound Ca and Pi increased with the use of a low proportion of SHMP but decreased when SHMP was used at high proportions in the mixture. Combinations of DSP-TSPP used in the proportions 29.2:70.8, 50:50, and 70.8:29.2 resulted in the gelation of milk protein concentrates when the total CCS concentration was ≥0.3%. These results indicated that the type of CCS present in a mixture modified CN properties by various mechanisms, including chelation of Ca, dispersion of CN micelles, and formation of new types of Ca-CCS complexes. The type of interaction between the newly formed Ca-CCS complexes and the dispersed CN depended on the proportion, concentration, and type of CCS present in the mixtures. This information is useful in understanding how mixtures of CCS affect CN properties. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lifespan effects of simple and complex nutraceutical combinations fed isocalorically to mice.
Spindler, Stephen R; Mote, Patricia L; Flegal, James M
2014-04-01
Present data suggest that the consumption of individual dietary supplements does not enhance the health or longevity of healthy rodents or humans. It might be argued that more complex combinations of such agents might extend lifespan or health-span by more closely mimicking the complexity of micronutrients in fruits and vegetables, which appear to extend health-span and longevity. To test this hypothesis we treated long-lived, male, F1 mice with published and commercial combinations of dietary supplements and natural product extracts, and determined their effects on lifespan and health-span. Nutraceutical, vitamin or mineral combinations reported to extend the lifespan or health-span of healthy or enfeebled rodents were tested, as were combinations of botanicals and nutraceuticals implicated in enhanced longevity by a longitudinal study of human aging. A cross-section of commercial nutraceutical combinations sold as potential health enhancers also were tested, including Bone Restore®, Juvenon®, Life Extension Mix®, Ortho Core®, Ortho Mind®, Super K w k2®, and Ultra K2®. A more complex mixture of vitamins, minerals, botanical extracts and other nutraceuticals was compounded and tested. No significant increase in murine lifespan was found for any supplement mixture. Our diverse supplement mixture significantly decreased lifespan. Thus, our results do not support the hypothesis that simple or complex combinations of nutraceuticals, including antioxidants, are effective in delaying the onset or progress of the major causes of death in mice. The results are consistent with epidemiological studies suggesting that dietary supplements are not beneficial and even may be harmful for otherwise healthy individuals.
NASA Astrophysics Data System (ADS)
Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.
2011-04-01
In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.