Sample records for complex mixture-associated hormesis

  1. Predicting hormesis in mixtures of herbicidal compounds – where are we and how far can we go?

    USDA-ARS?s Scientific Manuscript database

    Predicting the occurrence and expression of stimulatory effects of subtoxic doses of phytotoxins or herbicides (hormesis) in mixtures is a challenging and needed task, considering that herbicide exposures in practice often occur in mixtures at low doses due to drift deposition, errors in application...

  2. Complex Mixture-Associated Hormesis and Toxicity: The Case of Leather Tanning Industry

    PubMed Central

    Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco

    2008-01-01

    A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process. PMID:19088903

  3. Complex mixture-associated hormesis and toxicity: the case of leather tanning industry.

    PubMed

    Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco

    2008-01-01

    A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels > or =1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels > or =1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.

  4. Hormesis and the salk polio vaccine.

    PubMed

    Calabrese, Edward J

    2012-01-01

    The production of the Salk vaccine polio virus by monkey kidney cells was generated using the synthetic tissue culture medium, Mixture 199. In this paper's retrospective assessment of this process, it was discovered that Mixture 199 was modified by the addition of ethanol to optimize animal cell survival based on experimentation that revealed a hormetic-like biphasic response relationship. This hormesis-based optimization procedure was then applied to all uses of Mixture 199 and modifications of it, including its application to the Salk polio vaccine during preliminary testing and in its subsequent major societal treatment programs.

  5. Hormesis and the Salk Polio Vaccine

    PubMed Central

    Calabrese, Edward J.

    2011-01-01

    The production of the Salk vaccine polio virus by monkey kidney cells was generated using the synthetic tissue culture medium, Mixture 199. In this paper’s retrospective assessment of this process, it was discovered that Mixture 199 was modified by the addition of ethanol to optimize animal cell survival based on experimentation that revealed a hormetic-like biphasic response relationship. This hormesis-based optimization procedure was then applied to all uses of Mixture 199 and modifications of it, including its application to the Salk polio vaccine during preliminary testing and in its subsequent major societal treatment programs. PMID:22423232

  6. Fundamental Flaws of Hormesis for Public Health Decisions

    PubMed Central

    Thayer, Kristina A.; Melnick, Ronald; Burns, Kathy; Davis, Devra; Huff, James

    2005-01-01

    Hormesis (defined operationally as low-dose stimulation, high-dose inhibition) is often used to promote the notion that while high-level exposures to toxic chemicals could be detrimental to human health, low-level exposures would be beneficial. Some proponents claim hormesis is an adaptive, generalizable phenomenon and argue that the default assumption for risk assessments should be that toxic chemicals induce stimulatory (i.e., “beneficial”) effects at low exposures. In many cases, nonmonotonic dose–response curves are called hormetic responses even in the absence of any mechanistic characterization of that response. Use of the term “hormesis,” with its associated descriptors, distracts from the broader and more important questions regarding the frequency and interpretation of nonmonotonic dose responses in biological systems. A better understanding of the biological basis and consequences of nonmonotonic dose–response curves is warranted for evaluating human health risks. The assumption that hormesis is generally adaptive is an oversimplification of complex biological processes. Even if certain low-dose effects were sometimes considered beneficial, this should not influence regulatory decisions to allow increased environmental exposures to toxic and carcinogenic agents, given factors such as interindividual differences in susceptibility and multiplicity in exposures. In this commentary we evaluate the hormesis hypothesis and potential adverse consequences of incorporating low-dose beneficial effects into public health decisions. PMID:16203233

  7. An analogous wood barrel theory to explain the occurrence of hormesis: A case study of sulfonamides and erythromycin on Escherichia coli growth.

    PubMed

    Wang, Dali; Lin, Zhifen; Wang, Ting; Ding, Xiruo; Liu, Ying

    2017-01-01

    Hormesis has aroused much attention during the past two decades and may have great implications on many fields, including toxicology and risk assessment. However, the observation of hormesis remains challenged under laboratory conditions. To determine favorable conditions under which to observe hormesis, we investigated the hormetic responses of Escherichia coli (E. coli) upon exposure of different concentrations of sulfonamides and erythromycin at different time points and in different culture media: Luria-Bertani (LB) broth and Mueller Hinton (MH) broth. Our results reveal that the antibiotics, both individually and combined, produce hormetic effects on E. coli growth in MH broth at the stationary phase, with the maximum stimulatory response increasing with time. However, in LB broth, the hormetic response was not observed, which can be explained by an analogous "wood barrel theory". Our study suggests that the culture medium and time should be taken into consideration in hormetic studies, and compound mixtures should also receive more attention for their potential to induce hormesis.

  8. Insecticide-induced hormesis and arthropod pest management.

    PubMed

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry.

  9. Sparsely Ionizing Diagnostic and Natural Background Radiations are Likely Preventing Cancer and Other Genomic-Instability-Associated Diseases

    PubMed Central

    Scott, Bobby R.; Di Palma, Jennifer

    2007-01-01

    Routine diagnostic X-rays (e.g., chest X-rays, mammograms, computed tomography scans) and routine diagnostic nuclear medicine procedures using sparsely ionizing radiation forms (e.g., beta and gamma radiations) stimulate the removal of precancerous neo-plastically transformed and other genomically unstable cells from the body (medical radiation hormesis). The indicated radiation hormesis arises because radiation doses above an individual-specific stochastic threshold activate a system of cooperative protective processes that include high-fidelity DNA repair/apoptosis (presumed p53 related), an auxiliary apoptosis process (PAM process) that is presumed p53-independent, and stimulated immunity. These forms of induced protection are called adapted protection because they are associated with the radiation adaptive response. Diagnostic X-ray sources, other sources of sparsely ionizing radiation used in nuclear medicine diagnostic procedures, as well as radioisotope-labeled immunoglobulins could be used in conjunction with apopto-sis-sensitizing agents (e.g., the natural phenolic compound resveratrol) in curing existing cancer via low-dose fractionated or low-dose, low-dose-rate therapy (therapeutic radiation hormesis). Evidence is provided to support the existence of both therapeutic (curing existing cancer) and medical (cancer prevention) radiation hormesis. Evidence is also provided demonstrating that exposure to environmental sparsely ionizing radiations, such as gamma rays, protect from cancer occurrence and the occurrence of other diseases via inducing adapted protection (environmental radiation hormesis). PMID:18648608

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, Edward J.

    This paper assesses historical reasons that may account for the marginalization of hormesis as a dose-response model in the biomedical sciences in general and toxicology in particular. The most significant and enduring explanatory factors are the early and close association of the concept of hormesis with the highly controversial medical practice of homeopathy and the difficulty in assessing hormesis with high-dose testing protocols which have dominated the discipline of toxicology, especially regulatory toxicology. The long-standing and intensely acrimonious conflict between homeopathy and 'traditional' medicine (allopathy) lead to the exclusion of the hormesis concept from a vast array of medical- andmore » public health-related activities including research, teaching, grant funding, publishing, professional societal meetings, and regulatory initiatives of governmental agencies and their advisory bodies. Recent publications indicate that the hormetic dose-response is far more common and fundamental than the dose-response models [threshold/linear no threshold (LNT)] used in toxicology and risk assessment, and by governmental regulatory agencies in the establishment of exposure standards for workers and the general public. Acceptance of the possibility of hormesis has the potential to profoundly affect the practice of toxicology and risk assessment, especially with respect to carcinogen assessment.« less

  11. Hormesis and homeopathy: bridge over troubled waters.

    PubMed

    Oberbaum, Menachem; Singer, Shepherd Roee; Samuels, Noah

    2010-07-01

    Homeopathy is an empirical method of treatment. Hormesis, while stemming from within the rationalist tradition, has yet to be explained according to current pharmacological theory. Both share in common sub-threshold doses of toxic substances and an initial semi-toxicological insult followed by a greater compensatory (or healing) response. We question whether the differences between these fields may be amenable to scientific research. We identify five cardinal differences between homeopathy and hormesis: (1) Hormesis is a universal phenomenon, while homeopathy is highly specific; (2) Hormesis uses only measurable quantities of compounds, as opposed to homeopathy, which frequently administers medicines at dilutions far beyond the material range; (3) Preparation of hormetic solutions follows standard laboratory procedure, while homeopathy requires a sequential series of dilutions, each followed by vigorous shaking ('succussion'); (4) The effects of hormesis are moderate and temporary, while homeopathy claims curative and permanent responses and (5) Hormesis is a lab phenomenon observed primarily in healthy organisms, whereas homeopathy is a mode of treatment administered primarily to ailing individuals. We believe that all five of these differences are amenable to scientific investigation, and suggest comparing succussed to non-succussed diluted solutions as an optimal first evaluation. We conclude that while certain differences exist between hormesis and homeopathy, hormesis may in fact be a subset of homeopathy.

  12. Rationale and methods of discovering hormetins as drugs for healthy ageing.

    PubMed

    Rattan, Suresh I S

    2012-05-01

    Mild stress-induced hormesis is becoming increasingly attractive as an ageing interventional strategy and is leading to the discovery of hormesis-inducing compounds called hormetins. Almost 50 years of modern biogerontolgical research has established a clear framework regarding the biological basis of ageing and longevity, and it is now generally accepted that ageing occurs in spite of the presence of complex pathways of maintenance, repair and defense, and there is no 'enemy within.' This viewpoint makes modulation of ageing different from the treatment of one or more age-related diseases. A promising strategy to slow down ageing and prevent or delay the onset of age-related diseases is that of mild stress-induced hormesis by using hormetins. The article presents the rationale and a strategy for discovering novel hormetins as potential drugs for ageing intervention by elucidating multiple stress responses of normal human cells. Furthermore, it discusses the first steps in identifying prospective hormetin drugs and provides a recent example of successful product development, based on the ideas of hormesis and by following the strategy described here. As a biomedical issue, the biological process of ageing underlies several major diseases, and although the optimal treatment of every disease, irrespective of age, is a social and moral necessity, preventing the onset of age-related diseases by intervening in the basic process of ageing is the best approach for achieving healthy ageing and for extending the healthspan.

  13. Comments on the article 'Defining hormesis', by EJ Calabrese and LA Baldwin.

    PubMed

    Upton, A C

    2002-02-01

    In view of the diversity of biological responses and the extent to which many of them remain poorly elucidated, there is merit in the suggestion by Calabrese and Baldwin that the term 'hormesis' should be applicable to those adaptive responses that are characterized by biphasic dose-response relationships, without reference to any associated beneficial or harmful effects. Whether the dose-response relationships for radiation-induced mutations and chromosome aberrations are biphasic in nature is an important question that remains to be resolved.

  14. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos.

    PubMed

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-02-11

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish ( Danio rerio ) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  15. A CRITIQUE OF THE USE OF HORMESIS IN RISK ASSESSMENT

    EPA Science Inventory

    A critique of the use of hormesis in risk assessment.

    Kitchin, KT; and Drane, Wanzer

    Summary:
    There are severe problems and limitations with the use of hormesis as the principal dose-response default assumption in risk assessment. These problems and limitations i...

  16. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus

    USDA-ARS?s Scientific Manuscript database

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage, and environmental parameters. Glyphosate hormesis is well established, bu...

  17. Using Delaunay triangulation and Voronoi tessellation to predict the toxicities of binary mixtures containing hormetic compound

    NASA Astrophysics Data System (ADS)

    Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong

    2017-03-01

    Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures.

  18. Using Delaunay triangulation and Voronoi tessellation to predict the toxicities of binary mixtures containing hormetic compound

    PubMed Central

    Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong

    2017-01-01

    Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures. PMID:28287626

  19. Do Stress Trajectories Predict Mortality in Older Men? Longitudinal Findings from the VA Normative Aging Study

    PubMed Central

    Aldwin, Carolyn M.; Molitor, Nuoo-Ting; Avron, Spiro; Levenson, Michael R.; Molitor, John; Igarashi, Heidi

    2011-01-01

    We examined long-term patterns of stressful life events (SLE) and their impact on mortality contrasting two theoretical models: allostatic load (linear relationship) and hormesis (inverted U relationship) in 1443 NAS men (aged 41–87 in 1985; M = 60.30, SD = 7.3) with at least two reports of SLEs over 18 years (total observations = 7,634). Using a zero-inflated Poisson growth mixture model, we identified four patterns of SLE trajectories, three showing linear decreases over time with low, medium, and high intercepts, respectively, and one an inverted U, peaking at age 70. Repeating the analysis omitting two health-related SLEs yielded only the first three linear patterns. Compared to the low-stress group, both the moderate and the high-stress groups showed excess mortality, controlling for demographics and health behavior habits, HRs = 1.42 and 1.37, ps <.01 and <.05. The relationship between stress trajectories and mortality was complex and not easily explained by either theoretical model. PMID:21961066

  20. Herbicides and plant hormesis.

    PubMed

    Belz, Regina G; Duke, Stephen O

    2014-05-01

    Herbicide hormesis is commonly observed at subtoxic doses of herbicides and other phytotoxins. The occurrence and magnitude of this phenomenon are influenced by plant growth stage and physiological status, environmental factors, the endpoint measured and the timing between treatment and endpoint measurement. The mechanism in some cases of herbicide hormesis appears to be related to the target site of the herbicide, whereas in other examples hormesis may be by overcompensation to moderate stress induced by the herbicides or a response to disturbed homeostasis. Theoretically, herbicide hormesis could be used in crop production, but this has been practical only in the case of the use of herbicides as sugar cane 'ripeners' to enhance sucrose accumulation. The many factors that can influence the occurrence, the magnitude and the dose range of hormetic increases in yield for most crops make it too unpredictable and risky as a production practice with the currently available knowledge. Herbicide hormesis can cause undesired effects in situations in which weeds are unintentionally exposed to hormetic doses (e.g. in adjacent fields, when shielded by crop vegetation). Some weeds that have evolved herbicide resistance may have hormetic responses to recommended herbicide application rates. Little is known about such effects under field conditions. A more complete understanding of herbicide hormesis is needed to exploit its potential benefits and to minimize its potential harmful effects in crop production. © 2014 Society of Chemical Industry.

  1. Hormesis associated with a low dose of methylmercury injected into mallard eggs

    USGS Publications Warehouse

    Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.; Kondrad, Shannon L.; Erwin, Carol A.

    2012-01-01

    We injected mallard (Anas platyrhynchos) eggs with methylmercury chloride at doses of 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 μg mercury/g egg contents on a wet-weight basis. A case of hormesis seemed to occur because hatching success of eggs injected with 0.05 μg mercury (the lowest dose) was significantly greater (93.3%) than that of controls (72.6%), whereas hatching success decreased at progressively greater doses of mercury. Our finding of hormesis when a low dose of methylmercury was injected into eggs agrees with a similar observation in a study in which a group of female mallards was fed a low dietary concentration of methylmercury and hatching of their eggs was significantly better than that of controls. If methylmercury has a hormetic effect at low concentrations in avian eggs, these low concentrations may be important in a regulatory sense in that they may represent a no-observed adverse effect level (NOAEL).

  2. Postconditioning hormesis put in perspective: an overview of experimental and clinical studies.

    PubMed

    Wiegant, F A C; Prins, H A B; Van Wijk, R

    2011-01-01

    A beneficial effect of applying mild stress to cells or organisms, that were initially exposed to a high dose of stress, has been referred to as 'postconditioning hormesis'. The initial high dose of stress activates intrinsic self-recovery mechanisms. Modulation of these endogenous adaptation strategies by administration of a subsequent low dose of stress can confer effects that are beneficial to the biological system. Owing to its potentially therapeutic applications, postconditioning hormesis is subject to research in various scientific disciplines. This paper presents an overview of the dynamics of postconditioning hormesis and illustrates this phenomenon with a number of examples in experimental and clinical research.

  3. Hormesis does not make sense except in the light of TOR-driven aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2011-01-01

    Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. “Hormesis A” inhibits the TOR pathway. “Hormesis B” increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions. PMID:22166724

  4. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.

    PubMed

    Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo

    2015-06-01

    The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structured Development and Promotion of a Research Field: Hormesis in Biology, Toxicology, and Environmental Regulatory Science.

    PubMed

    Mushak, Paul; Elliott, Kevin C

    2015-12-01

    The ability of powerful and well-funded interest groups to steer scientific research in ways that advance their goals has become a significant social concern. This steering ability is increasingly being recognized in the peer-reviewed scientific literature and in findings of deliberative scientific bodies. This paper provides a case study that illustrates some of the major strategies that can be used to structure and advance a controversial research field. It focuses on hormesis, described as a type of dose-response relationship in toxicology and biology showing low-dose stimulation but high-dose inhibition, or the reverse. Hormesis proponents tout its significance, arguing that substances toxic at high doses and beneficial at lower doses should be regulated less stringently. We identify five strategies employed by hormesis proponents to foster its acceptance: (1) creating institutions focused on supporting hormesis; (2) developing terminology, study designs, and data interpretations that cast it in a favorable light; (3) using bibliometric techniques and surveys to attract attention; (4) aggressively advocating for the phenomenon and challenging critics; and (5) working with outside interest groups to apply the hormesis phenomenon in the economic and political spheres. We also suggest a number of oversight strategies that can be implemented to help promote credible and socially responsible research in cases like this one.

  6. Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle

    PubMed Central

    2010-01-01

    Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments. PMID:21143891

  7. The quantum mitochondrion and optimal health.

    PubMed

    Nunn, Alistair V W; Guy, Geoffrey W; Bell, Jimmy D

    2016-08-15

    A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as 'tunnelling' and 'coherence' while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis-a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. Low concentrations of Al(III) accelerate the formation of biofilm: Multiple effects of hormesis and flocculation.

    PubMed

    Cui, Xiaochun; Huo, Mingxin; Chen, Congli; Yu, Zhisen; Zhou, Chen; Li, Anran; Qiao, Bingqian; Zhou, Dandan; Crittenden, John C

    2018-09-01

    Residual Al(III) (at low concentration) is common in water treatment plants (WTPs) and is associated with bacteria. We hypothesize that Al(III) accelerate biofouling due to its hydrolysis and hormesis characteristics, as compared with other cations. To verify this, we elaborated the roles of Al(III) at low concentrations on the biofilm formation. Al(III) hormesis (<2.0mg/L) stimulated bacteria growth increased by ~3.7 times, and extracellular polymeric substances production also enhanced. Al(III) flocculation resulted in the suspended cells precipitation instantly, for Al(III) dosages of 0.6 and 2.0mg/L and the concentration of Al(III) decreased by 0.07 and 0.14mg/L, respectively. Al(III) poisoned the bridged bacterial cells and decreased their ATP by 22.36% and 55.91%, respectively. Al(III) formed polymer presented strong affinity with bacterial outer membrane, and this damaged the bacterial outer membrane. This caused proteins to leak at the combined point. Al-polymer bound to NH 2 and/or NH on the leaked protein, contributed to biofilm formation. Biofilm maturity was aided by polysaccharides, which shielded Al(III) toxicity for the formed biofilm. Thus, the biofilm exhibited a distinguished double-layer microstructure, principally with proteins and inactivated cells at the bottom, polysaccharides and activated cells at the top. Thus, hormesis and flocculation caused by low concentration Al(III) mutually promoted each other, and together accelerated biofilm formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Hormesis as a biological hypothesis.

    PubMed Central

    Calabrese, E J; Baldwin, L A

    1998-01-01

    A comprehensive effort was undertaken to identify articles demonstrating chemical hormesis. Nearly 4000 potentially relevant articles were retrieved from preliminary computer database searches by using various key word descriptors and extensive cross-referencing. A priori evaluation criteria were established including study design features (e.g., number of doses, dose range), statistical analysis, and reproducibility of results. Evidence of chemical hormesis was judged to have occurred in approximately 350 of the 4000 studies evaluated. Chemical hormesis was observed in a wide range of taxonomic groups and involved agents representing highly diverse chemical classes, many of potential environmental relevance. Numerous biological end points were assessed; growth responses were the most prevalent, followed by metabolic effects, longevity, reproductive responses, and survival. Hormetic responses were generally observed to be of limited magnitude. The average low-dose maximum stimulation was approximately 50% greater than controls. The hormetic dose-response range was generally limited to about one order of magnitude, with the upper end of the hormetic curve approaching the estimated no observable effect level for the particular end point. Based on the evaluation criteria, high to moderate evidence of hormesis was observed in studies comprised of > 6 doses; with > 3 doses in the hormetic zone. The present analysis suggests that chemical hormesis is a reproducible and relatively common biological phenomenon. A quantitative scheme is presented for future application to the database. PMID:9539030

  10. Model Uncertainty via the Integration of Hormesis and LNT as the Default in Cancer Risk Assessment.

    PubMed

    Calabrese, Edward J

    2015-01-01

    On June 23, 2015, the US Nuclear Regulatory Commission (NRC) issued a formal notice in the Federal Register that it would consider whether "it should amend its 'Standards for Protection Against Radiation' regulations from the linear non-threshold (LNT) model of radiation protection to the hormesis model." The present commentary supports this recommendation based on the (1) flawed and deceptive history of the adoption of LNT by the US National Academy of Sciences (NAS) in 1956; (2) the documented capacity of hormesis to make more accurate predictions of biological responses for diverse biological end points in the low-dose zone; (3) the occurrence of extensive hormetic data from the peer-reviewed biomedical literature that revealed hormetic responses are highly generalizable, being independent of biological model, end point measured, inducing agent, level of biological organization, and mechanism; and (4) the integration of hormesis and LNT models via a model uncertainty methodology that optimizes public health responses at 10(-4). Thus, both LNT and hormesis can be integratively used for risk assessment purposes, and this integration defines the so-called "regulatory sweet spot."

  11. Unequal brothers : are homeopathy and hormesis linked?

    PubMed

    Oberbaum, Menachem; Frass, Michael; Gropp, Cornelius

    2015-04-01

    The debate between those who believe homeopathy and hormesis derive from the same root and those who believe the two are different phenomena is as old as hormesis. It is an emotionally loaded discussion, with both sides fielding arguments which are far from scientific. Careful analysis of the basic paradigms of the two systems questions the claim of the homeopaths, who find similarities between them. The authors discuss these paradigms, indicating the differences between the claims of homeopathy and hormesis. It is time for thorough and serious research to lay this question to rest. One possible approach is to compare the activity of a hormetic agent, prepared in the usual way, with that of the same agent in the same concentration prepared homeopathically by serial dilution and succussion. Copyright © 2015. Published by Elsevier Ltd.

  12. Linear No-Threshold Model VS. Radiation Hormesis

    PubMed Central

    Doss, Mohan

    2013-01-01

    The atomic bomb survivor cancer mortality data have been used in the past to justify the use of the linear no-threshold (LNT) model for estimating the carcinogenic effects of low dose radiation. An analysis of the recently updated atomic bomb survivor cancer mortality dose-response data shows that the data no longer support the LNT model but are consistent with a radiation hormesis model when a correction is applied for a likely bias in the baseline cancer mortality rate. If the validity of the phenomenon of radiation hormesis is confirmed in prospective human pilot studies, and is applied to the wider population, it could result in a considerable reduction in cancers. The idea of using radiation hormesis to prevent cancers was proposed more than three decades ago, but was never investigated in humans to determine its validity because of the dominance of the LNT model and the consequent carcinogenic concerns regarding low dose radiation. Since cancer continues to be a major health problem and the age-adjusted cancer mortality rates have declined by only ∼10% in the past 45 years, it may be prudent to investigate radiation hormesis as an alternative approach to reduce cancers. Prompt action is urged. PMID:24298226

  13. Bayesian Dose-Response Modeling in Sparse Data

    NASA Astrophysics Data System (ADS)

    Kim, Steven B.

    This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a wrong parametric assumption. In this regard, we consider a robust experimental design which does not require any parametric assumption.

  14. Time to Reject the Linear-No Threshold Hypothesis and Accept Thresholds and Hormesis: A Petition to the U.S. Nuclear Regulatory Commission.

    PubMed

    Marcus, Carol S

    2015-07-01

    On February 9, 2015, I submitted a petition to the U.S. Nuclear Regulatory Commission (NRC) to reject the linear-no threshold (LNT) hypothesis and ALARA as the bases for radiation safety regulation in the United States, using instead threshold and hormesis evidence. In this article, I will briefly review the history of LNT and its use by regulators, the lack of evidence supporting LNT, and the large body of evidence supporting thresholds and hormesis. Physician acceptance of cancer risk from low dose radiation based upon federal regulatory claims is unfortunate and needs to be reevaluated. This is dangerous to patients and impedes good medical care. A link to my petition is available: http://radiationeffects.org/wp-content/uploads/2015/03/Hormesis-Petition-to-NRC-02-09-15.pdf, and support by individual physicians once the public comment period begins would be extremely important.

  15. Hormesis and adaptive cellular control systems

    EPA Science Inventory

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  16. Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clanton, Ryan; Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843; Saucier, David

    Utilization of environmental stimuli for growth is the main factor contributing to the evolution of prokaryotes and eukaryotes, independently and mutualistically. Epigenetics describes an organism’s ability to vary expression of certain genes based on their environmental stimuli. The diverse degree of dose-dependent responses based on their variances in expressed genetic profiles makes it difficult to ascertain whether hormesis or oncogenesis has or is occurring. In the medical field this is shown where survival curves used in determining radiotherapeutic doses have substantial uncertainties, some as large as 50% (Barendsen, 1990). Many in-vitro radiobiological studies have been limited by not taking intomore » consideration the innate presence of microbes in biological systems, which have either grown symbiotically or pathogenically. Present in-vitro studies neglect to take into consideration the varied responses that commensal and opportunistic pathogens will have when exposed to the same stimuli and how such responses could act as stimuli for their macro/microenvironment. As a result many theories such as radiation carcinogenesis explain microscopic events but fail to describe macroscopic events (Cohen, 1995). As such, this review shows how microorganisms have the ability to perturb risks of cancer and enhance hormesis after irradiation. It will also look at bacterial significance in the microenvironment of the tumor before and during treatment. In addition, bacterial systemic communication after irradiation and the host’s immune responses to infection could explain many of the phenomena associated with bystander effects. Therefore, the present literature review considers the paradigms of hormesis and oncogenesis in order to find a rationale that ties them all together. This relationship was thus characterized to be the microbiome.« less

  17. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture.

    PubMed

    Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G; Romero-Gomez, Sergio de J; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V; Alvarez-Arquieta, Luz de L; Torres-Pacheco, Irineo

    2017-01-01

    Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.

  18. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture

    PubMed Central

    Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G.; Romero-Gomez, Sergio de J.; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V.; Alvarez-Arquieta, Luz de L.; Torres-Pacheco, Irineo

    2017-01-01

    Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called “elicitors” that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed. PMID:29081787

  19. The 10th anniversary of the publication of genes and environment: memoir of establishing the Japanese environmental mutagen society and a proposal for a new collaborative study on mutagenic hormesis.

    PubMed

    Sutou, Shizuyo

    2017-01-01

    The Japanese Environmental Mutagen Society (JEMS) was established in 1972 by 147 members, 11 of whom are still on the active list as of May 1, 2016. As one of them, I introduce some historic topics here. These include 1) establishment of JEMS, 2) the issue of 2-(2-furyl)-3-(3-nitro-2-furyl)acrylamide (AF-2), 3) the Mammalian Mutagenicity Study Group (MMS) and its achievements, and 4) the Collaborative Study Group of the Micronucleus Test (CSGMT) and its achievements. In addition to these historic matters, some of which are still ongoing, a new collaborative study is proposed on adaptive response or hormesis by mutagens. There is a close relationship between mutagens and carcinogens, the dose-response relationship of which has been thought to follow the linear no-threshold model (LNT). LNT was fabricated on the basis of Drosophila sperm experiments using high dose radiation delivered in a short period. The fallacious 60 years-old LNT is applied to cancer induction by radiation without solid data and then to cancer induction by carcinogens also without solid data. Therefore, even the smallest amount of carcinogens is postulated to be carcinogenic without thresholds now. Radiation hormesis is observed in a large variety of living organisms; radiation is beneficial at low doses, but hazardous at high doses. There is a threshold at the boundary between benefit and hazard. Hormesis denies LNT. Not a few papers report existence of chemical hormesis. If mutagens and carcinogens show hormesis, the linear dose-response relationship in mutagenesis and carcinogenesis is denied and thresholds can be introduced.

  20. First study of hormesis effect on mushroom cultivation.

    PubMed

    Zied, Diego Cunha; Dourado, Fernanda Aparecida; Dias, Eustáquio Souza; Pardo-Giménez, Arturo

    2017-10-05

    The use of fungicides is common in mushroom cultivation, but no study was carried out applying reduced doses of fungicides in order to increase yield, taking account the hormesis effect. The aim of this manuscript was to verify the effects of different concentrations of fungicides to stimulate the productivity of different strains of Agaricus bisporus. Two stages were developed, an in vitro study to define the best concentration to be applied in the second experiment an agronomic study, which consisted of the application of the selected fungicides, in their respective concentrations, in an experiment carried out in the mushroom chamber. Clearly, the result of the hormesis effect on mushroom cultivation can be verified. The results obtained in the 1st stage of the study (in vitro) were not always reproduced in the 2nd stage of the study (in vivo). The kresoxim methyl active ingredient may be an important chemical agent, while strain ABI 15/01 may be an extremely important biological agent to increase yield in the study of hormesis effects.

  1. Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster.

    PubMed

    Sarup, Pernille; Loeschcke, Volker

    2011-04-01

    Hormesis, the beneficial effect of a mild stress, has been proposed as a means to prolong the period of healthy ageing as it can increase the average lifespan of a cohort. However, if we want to use hormesis therapeutically it is important that the treatment is beneficial on the individual level and not just on average at the population level. Long lived lines have been shown not to benefit from a, in other lines, hormesis inducing heat treatment in Drosophila melanogaster, D. buzzatii and mice. Also in many experiments hormesis has been reported to occur in one sex only, usually males but not in females. Here we investigated the interaction between the hormetic response and genetic background, sex and duration of a mild heat stress in D. melanogaster, using three replicate lines that have been selected for increased longevity and their respective control lines. We found that genetic background influences the position of the hormetic zone. The implication of this result could be that in a genetically diverse populations a treatment that is life prolonging in one individual could be life shortening in other individuals. However, we did find a hormetic response in all combinations of line and sex in at least one of the experiments which suggests that if it is possible to identify the optimal hormetic dose individually hormesis might become a therapeutic treatment.

  2. Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with Phenotypes in the Exposome Era.

    PubMed

    Patel, Chirag J

    2017-01-01

    Mixtures, or combinations and interactions between multiple environmental exposures, are hypothesized to be causally linked with disease and health-related phenotypes. Established and emerging molecular measurement technologies to assay the exposome , the comprehensive battery of exposures encountered from birth to death, promise a new way of identifying mixtures in disease in the epidemiological setting. In this opinion, we describe the analytic complexity and challenges in identifying mixtures associated with phenotype and disease. Existing and emerging machine-learning methods and data analytic approaches (e.g., "environment-wide association studies" [EWASs]), as well as large cohorts may enhance possibilities to identify mixtures of correlated exposures associated with phenotypes; however, the analytic complexity of identifying mixtures is immense. If the exposome concept is realized, new analytical methods and large sample sizes will be required to ascertain how mixtures are associated with disease. The author recommends documenting prevalent correlated exposures and replicated main effects prior to identifying mixtures.

  3. Prospectus

    PubMed Central

    Parsons, Peter A.

    2009-01-01

    Free living organisms typically occur in harsh environments challenged by abiotic stresses of varying intensities. Taking ionizing radiation and caloric restriction as examples, environmental variation from benign to extreme gives a fitness-stress continuum where energetic efficiency, a measure of fitness, is inversely related to stress level. Hormesis occurs in benign regions for these examples. In contrast aging emphasizes survival towards the limits of survival under accumulating stress from Reactive Oxygen Species, ROS. An energetic evolutionary approach underlies an ecological aging theory based principally upon survival, which incorporates hormesis. Multiple environmental agents contributing to hormesis should be considered by those attempting to improve the quality of life by delaying the onset of senescence, so enhancing survival. Caloric restriction has wider acceptance in this process than ionizing radiation. PMID:20221282

  4. Homeopathy: clarifying its relationship to hormesis.

    PubMed

    Calabrese, Edward J; Jonas, Wayne B

    2010-07-01

    This paper presents the case that certain types of homeopathic medicine may represent a form of hormesis, that is, either pre- or post-conditioning hormesis. An example of a post-conditioning model by van Wijk and colleagues demonstrated successful enhancement of adaptive responses using below-toxic threshold doses (i.e. hormetic doses) of inducing agents when administered subsequent to a highly toxic chemical exposure, thus satisfying a basic experimental biomedical standard. Of note is that this model uses exposures within a measurable predicted hormetic range, unlike most forms of homeopathy. This experimental framework (along with a pre-conditioning model developed by Bellavite) provides a possible vehicle by which certain aspect(s) of homeopathy may be integrated into mainstream biomedical assessment and clinical practice.

  5. Hormesis as a mechanistic approach to understanding herbal treatments in traditional Chinese medicine.

    PubMed

    Wang, Dali; Calabrese, Edward J; Lian, Baoling; Lin, Zhifen; Calabrese, Vittorio

    2018-04-01

    Traditional Chinese medicine (TCM) has been long practiced and is becoming ever more widely recognized as providing curative and/or healing treatments for a number of diseases and physiological conditions. This paper posits that herbal medicines used in TCM treatments may act through hormetic dose-response mechanisms. It is proposed that the stimulatory (i.e., low dose) and inhibitory (i.e., high dose) components of the hormetic dose response correspond to respective "regulating" and "curing" aspects of TCM herbal treatments. Specifically, the "regulating" functions promote adaptive or preventive responses, while "curing" treatments alleviate the clinical symptoms. Patterns of hormetic responses are described, and the applicability of these processes to herbal medicines of TCM are explicated. It is noted that a research agenda aimed at elucidating these mechanisms and patterns would be expansive and complex. However, we argue its value, in that hormesis may afford something akin to a Rosetta Stone with which to interpret, translate, and explain TCM herbology in ways that are aligned with biomedical perspectives that could enable a more integrative approach to medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Resistance to diabetes-promoting lifestyle factors -- what is the mechanism?

    PubMed

    Kolb, Hubert

    2012-08-01

    Not all people exposed to diabetes-promoting lifestyle factors progress to overt type 2 diabetes. The emerging concept of hormesis provides an explanation for the resistance to metabolic stress. Hormesis requires limited stress or damage which elicits an adaptive repair and protective response which renders the organism resistant to further metabolic stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Hormesis on life-history traits: is there such thing as a free lunch?

    PubMed

    Jager, Tjalling; Barsi, Alpar; Ducrot, Virginie

    2013-03-01

    The term "hormesis" is used to describe dose-response relationships where the response is reversed between low and high doses of a stressor (generally, stimulation at low doses and inhibition at high ones). A mechanistic explanation is needed to interpret the relevance of such responses, but there does not appear to be a single universal mechanism underlying hormesis. When the endpoint is a life-history trait such as growth or reproduction, a stimulation of the response comes with costs in terms of resources. Organisms have to obey the conservation laws for mass and energy; there is no such thing as a free lunch. Based on the principles of Dynamic Energy Budget theory, we introduce three categories of explanations for hormesis that obey the conservation laws: acquisition (i.e., increasing the input of energy into the individual), allocation (i.e., rearranging the energy flows over various traits) and medication (e.g., the stressor is an essential element or acts as a cure for a disease or infection). In this discussion paper, we illustrate these explanations with cases where they might apply, and elaborate on the potential consequences for field populations.

  8. Hormetic effect of methylmercury on Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmcke, Kirsten J., E-mail: Kirsten.J.Helmcke@gmail.com; Aschner, Michael, E-mail: Michael.Aschner@vanderbilt.ed

    2010-10-15

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity.more » Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.« less

  9. Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level - A case study with Lactuca sativa and PCIB.

    PubMed

    Belz, Regina G; Sinkkonen, Aki

    2016-10-01

    Natural plant populations have large phenotypic plasticity that enhances acclimation to local stress factors such as toxin exposures. While consequences of high toxin exposures are well addressed, effects of low-dose toxin exposures on plant populations are seldom investigated. In particular, the importance of 'selective low-dose toxicity' and hormesis, i.e. stimulatory effects, has not been studied simultaneously. Since selective toxicity can change the size distribution of populations, we assumed that hormesis alters the size distribution at the population level, and investigated whether and how these two low-dose phenomena coexist. The study was conducted with Lactuca sativa L. exposed to the auxin-inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB) in vitro. In two separate experiments, L. sativa was exposed to 12 PCIB doses in 24 replicates (50 plants/replicate). Shoot/root growth responses at the population level were compared to the fast-growing (≥90% percentile) and the slow-growing subpopulations (≤10% percentile) by Mann-Whitney U testing and dose-response modelling. In the formation of pronounced PCIB hormesis at the population level, low-dose effects proved selective, but widely stimulatory which seems to counteract low-dose selective toxicity. The selectivity of hormesis was dose- and growth rate-dependent. Stimulation occurred at lower concentrations and stimulation percentage was higher among slow-growing individuals, but partly or entirely masked at the population level by moderate or negligible stimulation among the faster growing individuals. We conclude that the hormetic effect up to the maximum stimulation may be primarily facilitated by an increase in size of the most slow-growing individuals, while thereafter it seems that mainly the fast-growing individuals contributed to the observed hormesis at the population level. As size distribution within a population is related to survival, our study hints that selective effects on slow- and fast-growing individuals may change population dynamics, providing that similar effects can be repeated under field conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nutrient removal by Chlorella vulgaris F1068 under cetyltrimethyl ammonium bromide induced hormesis.

    PubMed

    Zhou, Qiongzhi; Li, Feng; Ge, Fei; Liu, Na; Kuang, Yangduo

    2016-10-01

    Toxicants are generally harmful to biotechnology in wastewater treatment. However, trace toxicant can induce microbial hormesis, but to date, it is still unknown how this phenomenon affects nutrient removal during municipal wastewater treatment process. Therefore, this study focused on the effects of hormesis induced by cetyltrimethyl ammonium bromide (CTAB), a representative quaternary ammonium cationic surfactant, on nutrient removal by Chlorella vulgaris F1068. Results showed that when the concentration of CTAB was less than 10 ng/L, the cellular components chlorophyll a, proteins, polysaccharides, and total lipids increased by 10.11, 58.17, 38.78, and 11.87 %, respectively, and some enzymes in nutrient metabolism of algal cells, such as glutamine synthetase (GS), acid phosphatase (ACP), H(+)-ATPase, and esterase, were also enhanced. As a result, the removal efficiencies of ammonia nitrogen (NH4 (+)) and total phosphorus (TP) increased by 14.66 and 8.51 %, respectively, compared to the control during a 7-day test period. The underlying mechanism was mainly due to an enhanced photosynthetic activity of C. vulgaris F1068 indicated by the increase in chlorophyll fluorescence parameters (the value of Fv/Fm, ΦII, Fv/Fo, and rETR increased by 12.99, 7.56, 25.59, and 8.11 %, respectively) and adenylate energy charge (AEC) (from 0.68 to 0.72). These results suggest that hormesis induced by trace toxicants could enhance the nutrient removal, which would be further considered in the design of municipal wastewater treatment processes. Graphical abstract The schematic mechanism of C. vulgaris F1068 under CTAB induced hormesis. Green arrows ( ) represent the increase and the red arrow ( ) represents the decrease.

  11. A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri.

    PubMed

    Sun, Haoyu; Calabrese, Edward J; Zheng, Min; Wang, Dali; Pan, Yongzheng; Lin, Zhifen; Liu, Ying

    2018-08-01

    Hormesis occurs frequently in broadly ranging biological areas (e.g. plant biology, microbiology, biogerontology), toxicology, pharmacology and medicine. While numerous mechanisms (e.g. receptor and pathway mediated pathway responses) account for stimulatory and inhibitory features of hormetic dose responses, the vast majority emphasizes the inclusion of many doses but only one timepoint or use of a single optimized dose that is assessed over a broad range of timepoints. In this paper, a toxicity study was designed using a large number of properly spaced doses with responses determined over a large number of timepoints, which could help us reveal the underlying mechanism of hormesis. We present the results of a dose-time-response study on hormesis using five antibacterial chemicals on the bioluminescence of Aliivibrio fischeri, measuring expression of protein mRNA based on quorum sensing, simulating bioluminescent reaction and analyzing toxic actions of test chemicals. The findings show dose-time-dependent responses conforming to the hormetic dose-response model, while revealing unique response dynamics between agent induced stimulatory and inhibitory effects within bacterial growth phase dynamics. These dynamic dose-time features reveal a type of biological seesaw model that integrates stimulatory and inhibitory responses within unique growth phase, dose and time features, which has faultlessly explained the time-dependent hormetic phenomenon induced by five antibacterial chemicals (characterized by low-dose stimulation and high-dose inhibition). This study offers advances in understanding cellular dynamics, the biological integration of diverse and opposing responses and their role in evolutionary adaptive strategies to chemicals, which can provide new insight into the mechanistic investigation of hormesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The rare earth element (REE) lanthanum (La) induces hormesis in plants.

    PubMed

    Agathokleous, Evgenios; Kitao, Mitsutoshi; Calabrese, Edward J

    2018-07-01

    Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Stress and fish reproduction: The roles of allostasis and hormesis

    USGS Publications Warehouse

    Schreck, C.B.

    2010-01-01

    This paper is a review of the effects of stress on reproduction in fishes. I hope to further the development of the concepts of allostasis and hormesis as relevant to understanding reproduction in general and in fish in particular. The main contentions I derive in this review are the following: Stressors affect fish reproduction in a variety of ways depending on the nature and severity of the stressor. The effects are transduced through a hormonal cascade initiated by perception of the stressor and involving the hypothalamus-pituitary-interrenal axis, the catecholamines, and also cytokines. Mounting a stress response and resisting a stressor is an energetically costly process, including costs associated with allostasis, attempting to reset homeostatic norms. Responses in emergency situations (e.g., being chased by a predator or a net) can be different from those where fish can cope (e.g., being in a more crowded environment) with a stressor, but both situations involve energy re-budgeting. Emergency responses happen in concert with the onset of energy limitations (e.g., the fish may not eat), while coping with allostatic overload can happen in a more energy-rich environment (e.g., the fish can continue to eat). Low levels of stress may have a positive effect on reproductive processes while greater stress has negative effects on fish reproduction. The concept of hormesis is a useful way to think about the effect of stressors on fish reproduction since responses can be nonmonotonal, often biphasic.

  14. Hormesis and Paradoxical Effects of Drooping Birch (Betula pendula Roth) Parameters Under Motor Traffic Pollution

    PubMed Central

    2015-01-01

    Various plant indexes are used or recommended for bioindication. However, the nonmonotonic dose–response dependences (hormesis and paradoxical effects) of these indexes are insufficiently explored upon exposure to pollution. We studied the dependences of these Betula pendula indexes on the intensity of motor traffic pollution. Regression analysis did not reveal any dependence of chlorophyll and carotenoid content on traffic intensity (in 2008 and 2010-2013). Lipid peroxidation rate had different versions of paradoxical effects in 2008 and 2010 to 2012 and increased in comparison with control under an increase in pollution level in 2013. In 2010 to 2012, all dose–response dependences for total protein and thiol group content were biphasic and multiphasic paradoxical effects. In 2013, an increase in traffic intensity induced a linear reduction in protein content and an increase in thiol group level in comparison with the control. In most cases, the studied phenological indexes and seed production decreased monotonically in comparison with the control following an increase in traffic intensity. Only in 2010 and 2013, share of fallen leaves had hormesis and paradoxical effect accordingly. Fluctuating asymmetry had a paradoxical effect and hormesis in 2008 and 2012, accordingly, and increased in comparison with the control under an increase in the level of pollution in 2010 to 2011. PMID:26676071

  15. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature.

    PubMed

    Calabrese, Edward J; Blain, Robyn B

    2011-10-01

    In 2005 we published an assessment of dose responses that satisfied a priori evaluative criteria for inclusion within the relational retrieval hormesis database (Calabrese and Blain, 2005). The database included information on study characteristics (e.g., biological model, gender, age and other relevant aspects, number of doses, dose distribution/range, quantitative features of the dose response, temporal features/repeat measures, and physical/chemical properties of the agents). The 2005 article covered information for about 5000 dose responses; the present article has been expanded to cover approximately 9000 dose responses. This assessment extends and strengthens the conclusion of the 2005 paper that the hormesis concept is broadly generalizable, being independent of biological model, endpoint measured and chemical class/physical agent. It also confirmed the definable quantitative features of hormetic dose responses in which the strong majority of dose responses display maximum stimulation less than twice that of the control group and a stimulatory width that is within approximately 10-20-fold of the estimated toxicological or pharmacological threshold. The remarkable consistency of the quantitative features of the hormetic dose response suggests that hormesis may provide an estimate of biological plasticity that is broadly generalized across plant, microbial and animal (invertebrate and vertebrate) models. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A theoretical framework informing research about the role of stress in the pathophysiology of bipolar disorder.

    PubMed

    Brietzke, Elisa; Mansur, Rodrigo Barbachan; Soczynska, Joanna; Powell, Alissa M; McIntyre, Roger S

    2012-10-01

    The staggering illness burden associated with Bipolar Disorder (BD) invites the need for primary prevention strategies. Before preventative strategies can be considered in individuals during a pre-symptomatic period (i.e., at risk), unraveling the mechanistic steps wherein external stress is transduced and interacts with genetic vulnerability in the early stages of BD will be a critical conceptual necessity. Herein we comprehensively review extant studies reporting on stress and bipolar disorder. The overarching aim is to propose a conceptual framework to inform research about the role of stress in the pathophysiology of BD. Computerized databases i.e. PubMed, PsychInfo, Cochrane Library and Scielo were searched using the following terms: "bipolar disorder" cross-referenced with "stress", "general reaction to stress", "resilience", "resistance", "recovery" "stress-diathesis", "allostasis", and "hormesis". Data from literature indicate the existence of some theoretical models to understand the influence of stress in the pathophysiology of BD, including classical stress-diathesis model and new models such as allostasis and hormesis. In addition, molecular mechanisms involved in stress adaptation (resistance, resilience and recovery) can also be translated in research strategies to investigate the impact of stress in the pathophysiology of BD. Most studies are retrospective and/or cross sectional, do not consider the period of development, assess brain function with only one or few methodologies, and use animal models which are not always similar to human phenotypes. The interaction between stress and brain development is dynamic and complex. In this article we proposed a theoretical model for investigation about the role of stress in the pathophysiology of BD, based on the different kinds of stress adaptation response and their putative neurobiological underpinnings. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Integrated Disinfection By-Products Research: Assessing Reproductive and Developmental Risks Posed by Complex Disinfection By-Product Mixtures

    EPA Science Inventory

    This article presents a toxicologically-based risk assessment strategy for identifying the individual components or fractions of a complex mixture that are associated with its toxicity. The strategy relies on conventional component-based mixtures risk approaches such as dose addi...

  18. The frequency of U-shaped dose responses in the toxicological literature.

    PubMed

    Calabrese, E J; Baldwin, L A

    2001-08-01

    Hormesis has been defined as a dose-response relationship in which there is a stimulatory response at low doses, but an inhibitory response at high doses, resulting in a U- or inverted U-shaped dose response. To assess the proportion of studies satisfying criteria for evidence of hormesis, a database was created from published toxicological literature using rigorous a priori entry and evaluative criteria. One percent (195 out of 20,285) of the published articles contained 668 dose-response relationships that met the entry criteria. Subsequent application of evaluative criteria revealed that 245 (37% of 668) dose-response relationships from 86 articles (0.4% of 20,285) satisfied requirements for evidence of hormesis. Quantitative evaluation of false-positive and false-negative responses indicated that the data were not very susceptible to such influences. A complementary analysis of all dose responses assessed by hypothesis testing or distributional analyses, where the units of comparison were treatment doses below the NOAEL, revealed that of 1089 doses below the NOAEL, 213 (19.5%) satisfied statistical significance or distributional data evaluative criteria for hormesis, 869 (80%) did not differ from the control, and 7 (0.6%) displayed evidence of false-positive values. The 32.5-fold (19.5% vs 0.6%) greater occurrence of hormetic responses than a response of similar magnitude in the opposite (negative) direction strongly supports the nonrandom nature of hormetic responses. This study, which provides the first documentation of a data-derived frequency of hormetic responses in the toxicologically oriented literature, indicates that when the study design satisfies a priori criteria (i.e., a well-defined NOAEL, > or = 2 doses below the NOAEL, and the end point measured has the capacity to display either stimulatory or inhibitory responses), hormesis is frequently encountered and is broadly represented according to agent, model, and end point. These findings have broad-based implications for study design, risk assessment methods, and the establishment of optimal drug doses and suggest important evolutionarily adaptive strategies for dose-response relationships.

  19. STRATEGIES TO IDENTIFY BIOACTIVE SUBSTANCES IN COMPLEX AIR POLLUTANT MIXTURES

    EPA Science Inventory

    Both indoor and outdoor air contains a very complex mixture of gas and particulate matter (PM) pollutants. The assessment of the role of each pollutant in the complex atmosphere in the induction of an associated health effect or a response can be difficult due to many factors, i...

  20. Hormesis and medicine

    PubMed Central

    Calabrese, Edward J

    2008-01-01

    Evidence is presented which supports the conclusion that the hormetic dose–response model is the most common and fundamental in the biological and biomedical sciences, being highly generalizable across biological model, endpoint measured and chemical class and physical agent. The paper provides a broad spectrum of applications of the hormesis concept for clinical medicine including anxiety, seizure, memory, stroke, cancer chemotherapy, dermatological processes such as hair growth, osteoporosis, ocular diseases, including retinal detachment, statin effects on cardiovascular function and tumour development, benign prostate enlargement, male sexual behaviours/dysfunctions, and prion diseases. PMID:18662293

  1. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE PAGES

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L -1 and inhibited at > 2.5 g L -1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L -1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] wasmore » mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  2. Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster.

    PubMed

    Chattopadhyay, Debarati; Chitnis, Atith; Talekar, Aishwarya; Mulay, Prajakta; Makkar, Manyata; James, Joel; Thirumurugan, Kavitha

    2017-06-01

    Hormetins are compounds that mediate hormesis by being beneficial at low doses but detrimental at high doses. Recent studies have highlighted that many compounds that extended lifespan in model organisms did so by mediating hormesis. Rutin is a glycosylate conjugate of quercetin and rutinose and is abundant in citrus fruits and buckwheat seeds. Rutin possess ROS scavenging, anti-cancer, cardio-protective, skin-regenerative and neuro-protective properties. Drosophila melanogaster is an attractive model organism for longevity studies owing to its homology of organ and cellular-pathways with mammals. In this study, we aimed to understand the effect of rutin on extending longevity in Drosophila melanogaster. Male and female flies were administered with a range of rutin doses (100-800 µM) to analyse whether rutin mediated lifespan-extension by hormesis. Effect of rutin on physiological parameters like food intake, fecundity, climbing activity, development and resistance to various stresses was also studied. Lifespan assays showed that rutin at 200 and 400 µM significantly extended median lifespan in both male and female flies beyond which flies exhibited drastically reduced longevity. Increase in survival at 400 µM was associated with reduced food intake and fecundity. Flies exhibited improved climbing capability with both 200 and 400 µM rutin. Flies fed with 100 and 200 µM rutin exhibited enhanced survival upon exposure to oxidative stress with 400 µM rutin exhibiting no improvement in median lifespan following oxidative stress. Analysis of endogenous peroxide upon treatment with rutin (100-400 µM) with or without 5% H 2 O 2 showed elevated levels of endogenous peroxide with 400 µM rutin whereas no increase in hydrogen peroxide level was observed with rutin at 100 and 200 µM. Finally, gene expression studies in male flies revealed that rutin treatment at 200 and/or 400 µM elevated transcript levels of dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, dAtg5 and dAtg7 and reduced transcript levels of dTor. Collectively, rutin at 200 and 400 µM improved longevity in flies; 200 µM rutin acted as a mild stressor to prolong lifespan in flies by mediating hormesis whereas 400 µM, being a high dose for best positive effects.

  3. Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure.

    PubMed

    Shushimita, Shushimita; Grefhorst, Aldo; Steenbergen, Jacobie; de Bruin, Ron W F; Ijzermans, Jan N M; Themmen, Axel P N; Dor, Frank J M F

    2016-01-01

    Dietary restriction (DR) and fasting (FA) induce robust protection against the detrimental effects of renal ischemia-reperfusion injury (I/RI). Several mechanisms of protection have been proposed, such as hormesis. Hormesis is defined as a life-supporting beneficial effect resulting from the cellular responses to single or multiple rounds of (mild) stress. The cold exposure (CE) model is a stress model similar to DR, and has been shown to have hormetic effects and has proved to increase longevity. CE is considered to be the most robust method to increase metabolism through activation of brown adipocytes. BAT has been considered important in etiology of obesity and its metabolic consequences. Since DR, FA, and CE models are proposed to work through hormesis, we investigated physiology of adipose tissue and effect on BAT in these models and compared them to ad libitum (AL) fed mice. We also studied the differential effect of these stress models on immunological changes, and effect of CE on renal I/RI. We show similar physiological changes in adiposity in male C57Bl/6 mice due to DR, FA and CE, but the CE mice were not protected against renal I/RI. The immunophenotypic changes observed in the CE mice were similar to the AL animals, in contrast to FA mice, that showed major immunophenotypic changes in the B and T cell development stages in primary and secondary lymphoid organs. Our findings thus demonstrate that DR, FA and CE are hormetic stress models. DR and FA protect against renal I/IR, whereas CE could not. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. SOLUBILITY, SORPTION AND TRANSPORT OF HYDROPHOBIC ORGANIC CHEMICALS IN COMPLEX MIXTURES

    EPA Science Inventory

    The research summarized in this report focuses on the effects which organic cosolvents have on the sorption and mobility of organic contaminants. This work was initiated In an effort to improve our understanding of the environmental consequences associated with complex mixtur...

  5. DIRECT AND PHOTOACTIVATED TOXICITY OF A COMPLEX PETROLEUM MIXTURE: A COMPARISON OF SOLUBILIZATION METHODS

    EPA Science Inventory

    This work addresses several issues associated with the toxicity of a complex petroleum mixture (combined kerosene/diesel and crude oil), including developmental effects and early lifestage mortality, method of solubilization, and potential photo-activated and photo-modified toxic...

  6. Combining Toxicological and Chemical Characterization of Complex Mixtures to Understand the Impact of the Unknown Fraction

    EPA Science Inventory

    Toxicological assessment of adverse health outcomes associated with exposure to complex mixtures provides an integrated response of the organism (or in vitro test system) that accounts for additivity among the components (both dose and response) as well as any greater than or les...

  7. THE POWER TO DETECT A DIFFERENCE: DETERMINING SAMPLE SIZE REQUIREMENTS FOR EVALUATION OF REPRODUCTIVE/DEVELOPMENTAL EFFECTS FROM EXPOSURE TO COMPLEX MIXTURES OF DISINFECTION BYPRODUCTS

    EPA Science Inventory

    Toxicological assessment of environmentally-realistic complex mixtures of drinking-water disinfection byproducts (DBPs) are needed to address concerns raised by some epidemiological studies showing associations between exposure to chemically disinfected water and adverse reproduc...

  8. Influence of Select Antibiotics on Vibrio fischeri and Desmodesmus subspicatus at μg L-1 Concentrations.

    PubMed

    de Vasconcelos, E C; Dalke, C R; de Oliveira, C M R

    2017-07-01

    The presence of pharmaceuticals in the aquatic environment is a contemporary reality and it is necessary to understand more about the effects of this presence on organisms. The purpose of this work was to assess the ecotoxicity of antibiotics metronidazole, nitrofurantoin, trimethoprim, and sulphamethoxazole (single and mixture) in Vibrio fischeri and Desmodesmus subspicatus at μg L -1 concentrations. The evaluation of the toxic effect of the antibiotics on V. fischeri and D. subspicatus was based on fluorescence and bioluminescence tests, respectively, using nominal concentrations. When tested individually, the four antibiotics gave rise to a toxic effect on the evaluated organisms. Sulphamethoxazole caused a higher toxic effect on V. fischeri and D. subspicatus from 7.81 to 500 μg L -1 . Trimethoprim and sulphamethoxazole showed hormesis for the concentrations, which ranged from 7.81 to 62.5 μg L -1 . The mixture of antibiotics induced a toxic effect on the V. fischeri and D. subspicatus organisms (from 0.03 to 1 μg L -1 concentrations) than when the antibiotics were evaluated individually. These results were significant since water quality problems are widespread all over the word, and emerging pollutants such as antibiotics have been detected in the aquatic environment in very low concentrations.

  9. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability.

    PubMed

    Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza

    2017-04-15

    We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evidence supporting radiation hormesis in atomic bomb survivor cancer mortality data.

    PubMed

    Doss, Mohan

    2012-12-01

    A recent update on the atomic bomb survivor cancer mortality data has concluded that excess relative risk (ERR) for solid cancers increases linearly with dose and that zero dose is the best estimate for the threshold, apparently validating the present use of the linear no threshold (LNT) model for estimating the cancer risk from low dose radiation. A major flaw in the standard ERR formalism for estimating cancer risk from radiation (and other carcinogens) is that it ignores the potential for a large systematic bias in the measured baseline cancer mortality rate, which can have a major effect on the ERR values. Cancer rates are highly variable from year to year and between adjacent regions and so the likelihood of such a bias is high. Calculations show that a correction for such a bias can lower the ERRs in the atomic bomb survivor data to negative values for intermediate doses. This is consistent with the phenomenon of radiation hormesis, providing a rational explanation for the decreased risk of cancer observed at intermediate doses for which there is no explanation based on the LNT model. The recent atomic bomb survivor data provides additional evidence for radiation hormesis in humans.

  11. CHANGES IN NUCLEAR TRANSCRIPTION FACTORS IN RAT HIPPOCAMPUS AND CEREBELLUM FOLLOWING DEVELOPMENTAL EXPOSURE TO A COMMERCIAL PCB MIXTURE.

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) offer a unique model to understand the major issues related to complex environmental mixtures. These pollutants are ubiquitous and exist as mixtures of several congeners in the environment. Human exposures to PCBs are associated with a variety of ...

  12. Assessment of health effects in epidemiologic studies of air pollution.

    PubMed Central

    Samet, J M; Speizer, F E

    1993-01-01

    As we increasingly recognize the complexity of the pollutants in indoor and outdoor microenvironments, a broad array of inhaled mixtures has assumed scientific, public health, and regulatory importance. Few adverse effects of environmental pollutants are specific, that is, uniquely associated with a single agent; the adverse effects that might be considered in an investigation of the consequences of exposure to an inhaled complex mixture are generally nonspecific. In the context of this paper, we will refer to binary mixtures as complex, though we realize that a more precise definition of complexity would restrict the term to mixtures of three or more constituents. Their causes potentially include not only pollutant exposures through the medium of inhaled air but other environmental agents, such as infectious organisms and radiation, and inherent characteristics of the exposed persons, such as atopy. We review the outcome measures that have been used in epidemiologic studies of the health effects of single pollutants and complex mixtures. Some of these outcome measures have been carefully standardized, whereas others need similar standardization and modification to improve sensitivity and specificity for investigating the health effects of air pollution. PMID:8206024

  13. Molecular identification of organic compounds in atmospheric complex mixtures and relationship to atmospheric chemistry and sources.

    PubMed

    Mazurek, Monica A

    2002-12-01

    This article describes a chemical characterization approach for complex organic compound mixtures associated with fine atmospheric particles of diameters less than 2.5 m (PM2.5). It relates molecular- and bulk-level chemical characteristics of the complex mixture to atmospheric chemistry and to emission sources. Overall, the analytical approach describes the organic complex mixtures in terms of a chemical mass balance (CMB). Here, the complex mixture is related to a bulk elemental measurement (total carbon) and is broken down systematically into functional groups and molecular compositions. The CMB and molecular-level information can be used to understand the sources of the atmospheric fine particles through conversion of chromatographic data and by incorporation into receptor-based CMB models. Once described and quantified within a mass balance framework, the chemical profiles for aerosol organic matter can be applied to existing air quality issues. Examples include understanding health effects of PM2.5 and defining and controlling key sources of anthropogenic fine particles. Overall, the organic aerosol compositional data provide chemical information needed for effective PM2.5 management.

  14. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    PubMed Central

    Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561

  15. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    PubMed

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Stimulation versus inhibition--bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L.

    PubMed

    Belz, Regina G

    2007-09-30

    Parthenium hysterophorus L. is an invasive weed that biosynthesizes several phytochemicals. The sesquiterpene lactone parthenin receives most attention regarding allelopathy of the plant or potential herbicidal properties. Since parthenin exhibits dose-dependent phytotoxicity with low dose stimulation, this study investigated the occurrence and temporal features of parthenin hormesis in Sinapis arvensis L. sprayed with parthenin under semi-natural conditions. Dose/response studies showed that the occurrence and the magnitude of hormesis depended on climatic conditions and the parameter measured. Within the tested dose range, stimulatory responses were only observed under less-stressful conditions and were most pronounced for leaf area growth [138 % of control; 13 days after treatment (DAT)]. Temporal assessment of leaf area development showed that doses causing a stimulatory response at the end of the experiment (< 0.42 +/- 0.04 kg/ha; 13 DAT) were initially inhibitory up to ED(50) values (2 DAT). This clearly demonstrated an over-compensatory response. Inhibition of leaf area at 13 DAT reached ED(50) values on average at 0.62 +/-0.12 kg/ha, and S. arvensis was completely inhibited at doses exceeding 1.81 +/-0.56 kg/ha (ED(90)). Based on these findings, implications of parthenin hormesis are discussed with respect to allelopathy of P. hysterophorus and exploitation of growth stimulatory responses in agriculture.

  17. Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling

    PubMed Central

    Li, Wei; Zhao, Yuguang; Wen, Xue; Liang, Xinyue; Zhang, Xiaoying; Zhou, Lei; Hu, Jifan; Niu, Chao; Tian, Huimin; Han, Fujun; Chen, Xiao; Dong, Lihua; Cai, Lu; Cui, Jiuwei

    2016-01-01

    Low-dose radiation (LDR) induces hormesis and adaptive response in normal cells but not in cancer cells, suggesting its potential protection of normal tissue against damage induced by conventional radiotherapy. However, the underlying mechanisms are not well established. We addressed this in the present study by examining the role of the ataxia telangiectasia mutated (ATM) signaling pathway in response to LDR using A549 human lung adenocarcinoma cells and HBE135-E6E7 (HBE) normal lung epithelial cells. We found that LDR-activated ATM was the initiating event in hormesis and adaptive response to LDR in HBE cells. ATM activation increased the expression of CDK4/CDK6/cyclin D1 by activating the AKT/glycogen synthase kinase (GSK)-3β signaling pathway, which stimulated HBE cell proliferation. Activation of ATM/AKT/GSK-3β signaling also increased nuclear accumulation of nuclear factor erythroid 2-related factor 2, leading to increased expression of antioxidants, which mitigated cellular damage from excessive reactive oxygen species production induced by high-dose radiation. However, these effects were not observed in A549 cells. Thus, the failure to activate these pathways in A549 cells likely explains the difference between normal and cancer cells in terms of hormesis and adaptive response to LDR. PMID:27708248

  18. Chlorpyrifos-induced hormesis in insecticide-resistant and -susceptible Plutella xylostella under normal and high temperatures.

    PubMed

    Deng, Z Z; Zhang, F; Wu, Z L; Yu, Z Y; Wu, G

    2016-06-01

    Hormesis induced by insecticides at the dosage lower than what ostensibly directly causes death on insects was studied. This paper reports the effects of the in vivo application of varied concentrations of chlorpyrifos (CPF) on Plutella xylostella (DBM). The insecticide concentrations applied included 0.000025-2.5 mg l-1, which are far lower than LC1 (7.2 mg l-1), for the CPF-susceptable (Si) DBM, and 250 mg l-1 which is far below LC1 (1286 mg l-1), for the CPF-resistant (Rc) DBM, as well as LC10- and LC50-doses for both strains. Significant hormesis was found with the 'hermetic-CPFs', i.e., 0.0025 mg l-1 for Si DBM and 2.5 mg l-1 for Rc DBM, at the normal or high temperature either in a 24 h or under a long-term treatment. These doses of CPF significantly stimulated the development and increased the fecundity of Si and Rc DBM at 25°C with approximately 23.5-29.8% activity increase on acetylcholinesterase (AChE) and 30.5-91.3% increase on glutathione S-transferases (GSTs) at 25 or 38°C in 4-24 h. The enzymatic activities were significantly reduced by LC50-CPF at 25°C in vivo, but the inhibition was relieved significantly, if the insects were first subjected to a hormetic-CPF pretreatment. It was remarkable that the average rates of enzymatic activity increase were 67.5-76.6% for AChE and 366-546% for GSTs. Consequently, it was concluded that the hormesis on Si and Rc DBM could be induced by CPF doses far below LC1 at normal or high temperature in short- or long-term treatment. These findings might help to improve the current insect control practices in the field.

  19. Stress Response Mechanisms: From Single Cells to Multinational Organizations

    PubMed Central

    Pech, Richard J.

    2006-01-01

    Can a literal comparison be made between biological phenomena in organisms and phenomena in human organizations? The evidence provided by simplified but useful examples appears to suggest that a phenomenon simulating hormesis can and does occur in organizational contexts. Similarities between stress response behaviors of organisms and stress response behaviors in organizations are discussed. Cellular stress response mechanisms stimulate and repair, as well as defend the organism against further attacks. Organizational hormesis describes actions that stimulate the organization by increasing its focus and protecting it against future attacks. The common aim for the organism as well as the organization is to increase the probability of survival. The following describes examples of organizational survival that demonstrate a number of hormetic parallels between organisms and organisations. PMID:18648597

  20. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    PubMed Central

    2012-01-01

    Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Summary Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine. PMID:23088629

  1. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system.

    PubMed

    Bell, Iris R; Koithan, Mary

    2012-10-22

    This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create "top-down" nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism's allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine.

  2. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Ian W.H., E-mail: Ian.Jarvis@ki.se; Bergvall, Christoffer, E-mail: Christoffer.Bergvall@anchem.su.se; Bottai, Matteo, E-mail: Matteo.Bottai@ki.se

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNAmore » damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.« less

  3. Stimulation Versus Inhibition—Bioactivity of Parthenin, A Phytochemical From Parthenium hysterophorus L.

    PubMed Central

    Belz, Regina G.

    2008-01-01

    Parthenium hysterophorus L. is an invasive weed that biosynthesizes several phytochemi-cals. The sesquiterpene lactone parthenin receives most attention regarding allelopathy of the plant or potential herbicidal properties. Since parthenin exhibits dose-dependent phy-totoxicity with low dose stimulation, this study investigated the occurrence and temporal features of parthenin hormesis in Sinapis arvensis L. sprayed with parthenin under semi-natural conditions. Dose/response studies showed that the occurrence and the magnitude of hormesis depended on climatic conditions and the parameter measured. Within the tested dose range, stimulatory responses were only observed under less-stressful conditions and were most pronounced for leaf area growth [138 % of control; 13 days after treatment (DAT)]. Temporal assessment of leaf area development showed that doses causing a stimulatory response at the end of the experiment (< 0.42 ± 0.04 kg/ha; 13 DAT) were initially inhibitory up to ED50 values (2 DAT). This clearly demonstrated an over-compensatory response. Inhibition of leaf area at 13 DAT reached ED50 values on average at 0.62 ±0.12 kg/ha, and S. arvensis was completely inhibited at doses exceeding 1.81 ±0.56 kg/ha (ED90). Based on these findings, implications of parthenin hormesis are discussed with respect to allelopathy of P. hysterophorus and exploitation of growth stimulatory responses in agriculture. PMID:18648571

  4. Investigation of J-shaped dose-responses induced by exposure to the alkylating agent N-methyl-N-nitrosourea.

    PubMed

    Chapman, Katherine E; Hoffmann, George R; Doak, Shareen H; Jenkins, Gareth J S

    2017-07-01

    Hormesis is defined as a biphasic dose-response where biological effects of low doses of a stressor demonstrate the opposite effect to high-dose effects of the same stressor. Hormetic, or J-shaped, dose-response relationships are relatively rarely observed in toxicology, resulting in a limited understanding and even some skepticism of the concept. Low dose-response studies for genotoxicity endpoints have been performed at Swansea University for over a decade. However, no statistically significant decreases below control genotoxicity levels have been detected until recently. A hormetic-style dose-response following a 24h exposure to the alkylating agent N-methyl-N-nitrosourea (MNU) was observed in a previous study for HPRT mutagenesis in the human lymphoblastoid cell line AHH-1. A second recent study demonstrated a J-shaped dose-response for the induction of micronuclei by MNU in a 24h treatment in a similar test system. Following mechanistic investigations, it was hypothesized that p53 may be responsible for the observed hormetic phenomenon. As genotoxic carcinogens are a major causative factor of many cancers, consideration of hormesis in carcinogenesis could be important in safety assessment. The data examined here offer possible insights into hormesis, including its estimated prevalence, underlying mechanisms and lack of generalizability. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Constituent bioconcentration in rainbow trout exposed to a complex chemical mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder, G.; Bergman, H.L.; Meyer, J.S.

    1984-09-01

    Classically, aquatic contaminant fate models predicting a chemical's bioconcentration factor (BCF) are based upon single-compound derived models, yet such BCF predictions may deviate from observed BCFs when physicochemical interactions or biological responses to complex chemical mixture exposures are not adequately considered in the predictive model. Rainbow trout were exposed to oil-shale retort waters. Such a study was designed to model the potential biological effects precluded by exposure to complex chemical mixtures such as solid waste leachates, agricultural runoff, and industrial process waste waters. Chromatographic analysis of aqueous and nonaqueous liquid-liquid reservoir components yielded differences in mixed extraction solvent HPLC profilesmore » of whole fish exposed for 1 and 3 weeks to the highest dilution of the complex chemical mixture when compared to their corresponding control, yet subsequent whole fish extractions at 6, 9, 12, and 15 weeks into exposure demonstrated no qualitative differences between control and exposed fish. Liver extractions and deproteinized bile samples from exposed fish were qualitatively different than their corresponding controls. These findings support the projected NOEC of 0.0045% dilution, even though the differences in bioconcentration profiles suggest hazard assessment strategies may be useful in evaluating environmental fate processes associated with complex chemical mixtures. 12 references, 4 figures, 2 tables.« less

  6. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications

    PubMed Central

    Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu

    2017-01-01

    The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809

  7. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    PubMed

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a possibly common mechanism for the hormetic responses observed with many mutagens/carcinogens whose activities require bioactivation by phase I enzymes. Feedforward control, often operating in combination with negative feedback regulation in a homeostatic system, may be a general control theme responsible for steady-state hormesis.

  8. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans.

    PubMed

    Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo

    2018-06-01

    Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.

  9. Mobile phone signal exposure triggers a hormesis-like effect in Atm+/+ and Atm-/- mouse embryonic fibroblasts.

    PubMed

    Sun, Chuan; Wei, Xiaoxia; Fei, Yue; Su, Liling; Zhao, Xinyuan; Chen, Guangdi; Xu, Zhengping

    2016-11-18

    Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm +/+ ) or deficient (Atm -/- ) ATM. In Atm +/+ MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm -/- MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF.

  10. The quantum mitochondrion and optimal health

    PubMed Central

    Nunn, Alistair V.W.; Guy, Geoffrey W.; Bell, Jimmy D.

    2016-01-01

    A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as ‘tunnelling’ and ‘coherence’ while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis–a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level. PMID:27528758

  11. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae).

    PubMed

    Mallqui, K S Vilca; Vieira, J L; Guedes, R N C; Gontijo, L M

    2014-04-01

    Insecticides can have lethal or sublethal effects upon targeted pest species, and sublethal effects may even favor pest outbreaks if insecticide-induced hormesis occurs. Hormesis is a biphasic dose-response of a given chemical compound that is stimulatory at low doses and toxic at high doses. The former response may result from the disruption of animal homeostasis leading to trade-off shifts between basic ecophysiological processes. A growing interest in the use of biorational insecticides, such as azadirachtin to control stored-product pests, raises concerns about potential sublethal effects. In this study, we explored the hypothesis that azadirachtin can negatively impact the reproductive capacity of the Mexican bean weevil, Zabrotes subfasciatus (Boheman) (Chrysomelidae: Bruchinae), a key pest of stored beans. In addition, we investigated whether adults of this species could compensate for any sublethal effect that might have affected any of their reproductive parameters by adjusting the allocation of its reproductive efforts. The results showed that females of Z. subfasciatus increased fecundity daily to compensate for azadirachtin-induced decreased longevity. In addition, a stage-structured matrix study revealed that populations of Z. subfasciatus engendered from females exposed to azadirachtin exhibited a higher rate of population increase (r) and a higher net reproductive rate (R(o)). Finally, a projection matrix analysis showed notably higher densities along the generations for azadirachtin-exposed Z. subfasciatus populations. Thus, our study provides empirical evidence for the capacity of Z. subfasciatus to adapt to sublethal effects caused by biorational insecticides; consequently, this study highlights the importance of understanding this phenomenon when devising pest management strategies.

  13. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons.

    PubMed

    Labib, Sarah; Williams, Andrew; Kuo, Byron; Yauk, Carole L; White, Paul A; Halappanavar, Sabina

    2017-07-01

    The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose-response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose-response curves for each PAH mixture. The predicted and observed pathway dose-response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.

  14. Detection of High Levels of Endocrine Activity in Selected Environmental Surface Water Samples Using ER, AR, and GR-mediated In Vitro Bioassays

    EPA Science Inventory

    Determining the associated health risks of exposure to complex mixtures in the environment is a recognized challenge. The Chemical Mixtures project, a collaborative effort between USEPA and USGS, is making a step in that direction by examining the co-occurrence of chemicals and b...

  15. The equilibrium constant of complex formation in solution: A study utilizing a dielectric constant method

    NASA Astrophysics Data System (ADS)

    Loh, C. W.

    1980-03-01

    A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.

  16. Biological markers of intermediate outcomes in studies of indoor air and other complex mixtures.

    PubMed Central

    Wilcosky, T C

    1993-01-01

    Biological markers of intermediate health outcomes sometimes provide a superior alternative to traditional measures of pollutant-related disease. Some opportunities and methodologic issues associated with using markers are discussed in the context of exposures to four complex mixtures: environmental tobacco smoke and nitrogen dioxide, acid aerosols and oxidant outdoor pollution, environmental tobacco smoke and radon, and volatile organic compounds. For markers of intermediate health outcomes, the most important property is the positive predictive value for clinical outcomes of interest. Unless the marker has a known relationship with disease, a marker response conveys no information about disease risk. Most markers are nonspecific in that various exposures cause the same marker response. Although nonspecificity can be an asset in studies of complex mixtures, it leads to problems with confounding and dilution of exposure-response associations in the presence of other exposures. The timing of a marker's measurement in relation to the occurrence of exposure influences the ability to detect a response; measurements made too early or too late may underestimate the response's magnitude. Noninvasive markers, such as those measured in urine, blood, or nasal lavage fluid, are generally more useful for field studies than are invasive markers. However, invasive markers, such as those measured in bronchoalveolar lavage fluid or lung specimens from autopsies, provide the most direct evidence of pulmonary damage from exposure to air pollutants. Unfortunately, the lack of basic information about marker properties (e.g., sensitivity, variability, statistical link with disease) currently precludes the effective use of most markers in studies of complex mixtures. PMID:8206030

  17. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.

    PubMed

    Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow

    2018-06-01

    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Herbicide toxicity, selectivity and hormesis of nicosulfuron on 10 Trichogrammatidae (Hymenoptera) species parasitizing Anagasta ( = Ephestia) kuehniella (Lepidoptera: Pyralidae) eggs.

    PubMed

    Leite, Germano L D; de Paulo, Paula D; Zanuncio, José C; Tavares, Wagner De S; Alvarenga, Anarelly C; Dourado, Luan R; Bispo, Edilson P R; Soares, Marcus A

    2017-01-02

    Selective agrochemicals including herbicides that do not affect non-target organisms such as natural enemies are important in the integrated pest management (IPM) programs. The aim of this study was to evaluate the herbicide toxicity, selectivity and hormesis of nicosulfuron, recommended for the corn Zea mays L. (Poaceae) crop, on 10 Trichogrammatidae (Hymenoptera) species. A female of each Trichogramma spp. or Trichogrammatoidea annulata De Santis, 1972 was individually placed in plastic test tubes (no choice) with a cardboard containing 45 flour moth Anagasta ( = Ephestia) kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) eggs. Parasitism by these natural enemies was allowed for 48 h and the cardboards were sprayed with the herbicide nicosulfuron at 1.50 L.ha -1 , along with the control (only distilled water). Nicosulfuron reduced the emergence rate of Trichogramma bruni Nagaraja, 1983 females, but increased that of Trichogramma pretiosum Riley, 1879, Trichogramma acacioi Brun, Moraes and Smith, 1984 and T. annulata females. Conversely, this herbicide increased the emergence rate of Trichogramma brasiliensis Ashmead, 1904, T. bruni, Trichogramma galloi Zucchi, 1988 and Trichogramma soaresi Nagaraja, 1983 males and decreased those of T. acacioi, Trichogramma atopovilia Oatman and Platner, 1983 and T. pretiosum males. In addition, nicosulfuron reduced the sex ratio of T. galloi, Trichogramma bennetti Nagaraja and Nagarkatti, 1973 and T. pretiosum and increased that of T. acacioi, T. bruni, T. annulata, Trichogramma demoraesi Nagaraja, 1983, T. soaresi and T. brasiliensis. The herbicide nicosulfuron was "harmless" (class 1, <30% reduction) for females and the sex ratio of all Trichogrammatidae species based on the International Organization for Biological Control (IOBC) classification. The possible hormesis effect of nicosulfuron on Trichogrammatidae species and on the bacterium Wolbachia sp. (Rickettsiales: Rickettsiaceae) was also discussed.

  19. EDCs Mixtures: A Stealthy Hazard for Human Health?

    PubMed

    Ribeiro, Edna; Ladeira, Carina; Viegas, Susana

    2017-02-07

    Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed "body burden" of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex "body burden" of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce.

  20. EDCs Mixtures: A Stealthy Hazard for Human Health?

    PubMed Central

    Ribeiro, Edna; Ladeira, Carina; Viegas, Susana

    2017-01-01

    Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed “body burden” of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex “body burden” of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce. PMID:29051438

  1. Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis.

    PubMed

    Roullier-Gall, Chloé; Witting, Michael; Moritz, Franco; Gil, Ryan B; Goffette, Delphine; Valade, Michel; Schmitt-Kopplin, Philippe; Gougeon, Régis D

    2016-07-15

    The oxygenation of Champagne wine after 4 and 6 years of aging on lees in bottle was investigated by FTICR-MS and UPLC-Q-TOF-MS. Three levels of permeability were considered for the stoppers, ranging from 0.2 to 1.8 mg/L/year of oxygen transfer rate. Our results confirmed a good repeatability of ultra-high resolution FTICR-MS, both in terms of m/z and coefficient of variation of peak intensities among biological replicates. Vintages appeared to be the most discriminated features, and metabolite annotations suggested that the oldest wines (2006) were characterized by a higher sensitivity towards oxygenation. Within each vintage, the oxygenation mechanisms appeared to be different for low and high ingresses of oxygen, in agreement with the hormesis character of wine oxygenation. In the particular case of single variety wines and for a given level of stopper permeability, our results also showed that variety discrimination could be easily achieved among wines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nanoparticle Exposure and Hormetic Dose–Responses: An Update

    PubMed Central

    Leso, Veruscka; Fontana, Luca; Calabrese, Edward J.

    2018-01-01

    The concept of hormesis, as an adaptive response of biological systems to moderate environmental challenges, has raised considerable nano-toxicological interests in view of the rapid pace of production and application of even more innovative nanomaterials and the expected increasing likelihood of environmental and human exposure to low-dose concentrations. Therefore, the aim of this review is to provide an update of the current knowledge concerning the biphasic dose–responses induced by nanoparticle exposure. The evidence presented confirmed and extended our previous findings, showing that hormesis is a generalized adaptive response which may be further generalized to nanoscale xenobiotic challenges. Nanoparticle physico-chemical properties emerged as possible features affecting biphasic relationships, although the molecular mechanisms underlining such influences remain to be fully understood, especially in experimental settings resembling long-term and low-dose realistic environmental exposure scenarios. Further investigation is necessary to achieve helpful information for a suitable assessment of nanomaterial risks at the low-dose range for both the ecosystem function and the human health. PMID:29534471

  3. Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory.

    PubMed

    Mi, Jianguo; Tang, Yiping; Zhong, Chongli; Li, Yi-Gui

    2005-11-03

    Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.

  4. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures.

    PubMed

    Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A

    2018-07-01

    The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.

  5. Screening Complex Effluents for Estrogenic Activity with the T47D-Kbluc Cell Bioassay: Assay Optimization and Comparison to In Vivo Responses in Fish

    EPA Science Inventory

    The endocrine activity of complex mixtures of chemicals associated with wastewater treatment plant effluents, runoff from concentrated animal feeding operations (CAFOs), and/or other environmental samples can be difficult to characterize based on analytical chemistry. In vitro bi...

  6. Composition, distribution, and potential toxicity of organochlorine mixtures in bed sediments of streams

    USGS Publications Warehouse

    Phillips, Patrick J.; Nowell, Lisa H.; Gilliom, Robert J.; Nakagaki, Naomi; Murray, Karen; VanAlstyne, Carolyn

    2010-01-01

    Mixtures of organochlorine compounds have the potential for additive or interactive toxicity to organisms exposed in the stream. This study uses a variety of methods to identify mixtures and a modified concentration-addition approach to estimate their potential toxicity at 845 stream sites across the United States sampled between 1992 and 2001 for organochlorine pesticides and polychlorinated biphenyls (PCBs) in bed sediment. Principal-component (PC) analysis identified five PCs that account for 77% of the total variance in 14 organochlorine compounds in the original dataset. The five PCs represent: (1) chlordane-related compounds and dieldrin; (2) p,p′-DDT and its degradates; (3) o,p′-DDT and its degradates; (4) the pesticide degradates oxychlordane and heptachlor epoxide; and (5) PCBs. The PC analysis grouped compounds that have similar chemical structure (such as parent compound and degradate), common origin (in the same technical pesticide mixture), and(or) similar relation of concentrations to land use. For example, the highest concentrations of chlordane compounds and dieldrin occurred at urban sites, reflecting past use of parent pesticides for termite control. Two approaches to characterizing mixtures—PC-based mixtures and unique mixtures—were applied to all 299 samples with a detection of two or more organochlorine compounds. PC-based mixtures are defined by the presence (in the sample) of one or more compounds associated with that PC. Unique mixtures are defined as a specific combination of two or more compounds detected in a sample, regardless of how many other compounds were also detected in that sample. The simplest PC-based mixtures (containing compounds from 1 or 2 PCs) commonly occurred in a variety of land use settings. Complex mixtures (containing compounds from 3 or more PCs) were most common in samples from urban and mixed/urban sites, especially in the Northeast, reflecting high concentrations of multiple chlordane, dieldrin, DDT-related compounds, and(or) PCBs. The most commonly occurring unique mixture (p,p′-DDE, p,p′-DDD) occurred in both simple and complex PC-based mixtures, and at both urban and agricultural sites. Mean Probable Effect Concentration Quotients (PEC-Q) values, which estimate the potential toxicity of organochlorine contaminant mixtures, were highest for complex mixtures. Mean PEC-Q values were highest for urban sites in the Northeast, followed by mixed/urban sites in the Northeast and agricultural sites in cotton growing areas. These results demonstrate that the PEC-Q approach can be used in combination with PC-based and unique mixture analyses to relate potential aquatic toxicity of contaminant mixtures to mixture complexity, land use, and other surrogates for contaminant sources.

  7. (Mis)Understanding Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, Stephen Bruce

    2016-02-10

    This set of slides discusses radiation and fears concerning it at a non-technical level. Included are some misconceptions and practical consequences resulting from these. The concept of radiation hormesis is explained. The author concludes that a number of significant societal benefits are being foregone because of overly cautious concerns about low-level radiation.

  8. Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC-pyrogallol red assay in the presence of Triton X-100 micelles.

    PubMed

    Romero, Max; Rojano, Benjamin; Mella-Raipán, Jaime; Pessoa-Mahana, Carlos David; Lissi, Eduardo; López-Alarcón, Camilo

    2010-09-01

    The protective effect of different antioxidants and complex mixtures on the consumption of pyrogallol red (PGR) induced by peroxyl radicals was studied in the absence and presence of Triton X-100 micelles. The presence of micelles decreased significantly the protection of PGR afforded by lipophilic antioxidants (β-carotene, octyl gallate), while no effect of micelles was observed for hydrophilic antioxidants such as Trolox, caffeic acid, gallic acid, and ascorbic acid. In the presence of complex mixtures a clear effect of Triton X-100 micelles was also observed in the protection afforded by wines, tea infusions, and seed extracts of Eugenia jambolana and Myrciaria cauliflora. On the other hand, no effect of micelles was observed for orange juice and pulp fruit extracts. The ORAC (Oxygen Radical Absorbance Capacity) index was evaluated in the absence (ORAC-PGR) and presence of Triton X-100 micelles (ORAC-PGR(MIC)). Triton X-100 micelles affect ORAC-PGR values of antioxidants in a lipophilicity-dependent way. From the obtained results, we conclude that ORAC-PGR and ORAC-PGR(MIC) assays could be considered as an alternative to estimate the antioxidant ability (ORAC-PGR) and to infer the association to Triton X-100 micelles (ORAC-PGR/ORAC-PGR(MIC)) of pure antioxidants and their complex mixtures.

  9. METHODS AND TECHNIQUES FOR DEALING WITH THE UNIDENTIFIED FRACTION OF COMPLEX MIXTURES

    EPA Science Inventory

    For the vast majority of highly complex environmental mixtures to which humans are exposed, significant portions of the mixture are unidentified. Although toxicological data on the mixture itself are desired for risk assessment, such data, even on a similar mixture, are rarely a...

  10. Capacity building and predictors of success for HIV-1 drug resistance testing in the Asia-Pacific region and Africa

    PubMed Central

    Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami

    2013-01-01

    Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227

  11. A Statistical Approach for Judging Stability of Whole Mixture Chemical Composition over Time for Highly Complex Disinfection By-Product Mixtures from EPA's Four Lab Study

    EPA Science Inventory

    Chemical characterization of complex mixtures and assessment of stability over time of the characterized chemicals is crucial both to characterize exposure and to use data from one mixture as a surrogate for other similar mixtures. The chemical composition of test mixtures can va...

  12. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    USGS Publications Warehouse

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  13. Evaluation of the nephrotoxicity of complex mixtures containing organics and metals: advantages and disadvantages of the use of real-world complex mixtures.

    PubMed

    Simmons, J E; Yang, R S; Berman, E

    1995-02-01

    As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures.

  14. Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures.

    PubMed

    Ross, Charles W; Simonsick, William J; Aaserud, David J

    2002-09-15

    Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.

  15. How Do Nutritional Antioxidants Really Work: Nucleophilic Tone and Para-Hormesis Versus Free Radical Scavenging in vivo

    PubMed Central

    Forman, Henry Jay; Davies, Kelvin J. A.; Ursini, Fulvio

    2013-01-01

    We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic constraints indicate that in vivo scavenging of radicals is ineffective in antioxidant defense. Instead, enzymatic removal of non-radical electrophiles, such as hydroperoxides, in two-electron redox reactions is the major antioxidant mechanism. Furthermore, we propose that a major mechanism of action for nutritional antioxidants is the paradoxical oxidative activation of the Nrf2 (NF-E2-related factor 2) signaling pathway, which maintains protective oxidoreductases and their nucleophilic substrates. This maintenance of ‘Nucleophilic Tone,’ by a mechanism that can be called ‘Para-Hormesis,’ provides a means for regulating physiological non-toxic concentrations of the non-radical oxidant electrophiles that boost antioxidant enzymes, and damage removal and repair systems (for proteins, lipids, and DNA), at the optimal levels consistent with good health. PMID:23747930

  16. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.

    PubMed

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  17. Hormesis, epitaxy, the structure of liquid water, and the science of homeopathy.

    PubMed

    Mastrangelo, Domenico

    2007-01-01

    According to the western medical establishment, homeopathy is both "unscientific" and "implausible". A short overview of its history and the methods it uses, however, easily reveals that homeopathy is a true science, fully grounded on the scientific method and on principles, such as, among others, the Arndt-Schultz law, hormesis, and epitaxy, whose plausibility has been clearly and definitely demonstrated in a number of scientific publications and reports. Through a review of the scientific literature, an explanation of the basic principles of homeopathy is proposed based on arguments and evidence of mainstream science to demonstrate that, in spite of the claims of conventional medicine, homeopathy is both scientific and plausible and that there is no reasonable justification for its rejection by the western medical establishment. Hopefully, this hurdle will be overcome by opening academic institutions to homeopathy to enlarge the horizons of medical practice, recover the value of the human relationship with the patient, and through all this, offer the sick a real alternative and the concrete perspective of an improved quality of life.

  18. Correcting Systemic Deficiencies in Our Scientific Infrastructure

    PubMed Central

    Doss, Mohan

    2014-01-01

    Scientific method is inherently self-correcting. When different hypotheses are proposed, their study would result in the rejection of the invalid ones. If the study of a competing hypothesis is prevented because of the faith in an unverified one, scientific progress is stalled. This has happened in the study of low dose radiation. Though radiation hormesis was hypothesized to reduce cancers in 1980, it could not be studied in humans because of the faith in the unverified linear no-threshold model hypothesis, likely resulting in over 15 million preventable cancer deaths worldwide during the past two decades, since evidence has accumulated supporting the validity of the phenomenon of radiation hormesis. Since our society has been guided by scientific advisory committees that ostensibly follow the scientific method, the long duration of such large casualties is indicative of systemic deficiencies in the infrastructure that has evolved in our society for the application of science. Some of these deficiencies have been identified in a few elements of the scientific infrastructure, and remedial steps suggested. Identifying and correcting such deficiencies may prevent similar tolls in the future. PMID:24910580

  19. Application of Biologically-Based Lumping To Investigate the Toxicological Interactions of a Complex Gasoline Mixture

    EPA Science Inventory

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these exp...

  20. Central hardwood forest types

    Treesearch

    Ivan L. Sander; Burnell C. Fischer

    1989-01-01

    Each of the four broad forest types, often called associations, that you will read about in these Notes is a complex, highly variable mixture of trees, shrubs, and herbs. This Note describes the species you will generally find in each type.

  1. Roles of thioredoxin in nitric oxide-dependent preconditioning-induced tolerance against MPTP neurotoxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiueh, C.C.; Andoh, Tsugunobu; Chock, P. Boon

    2005-09-01

    Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation.more » Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against MPTP/MPP{sup +}.« less

  2. COMPARATIVE TUMOR-INITIATING ACTIVITY OF COMPLEX MIXTURES FROM ENVIRONMENTAL PARTICULATE EMISSIONS ON SENCAR MOUSE SKIN

    EPA Science Inventory

    The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...

  3. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.

    PubMed

    Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador

    2013-08-01

    In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies. © 2013 FEBS.

  4. Comparison of Chemical Composition of Complex Disinfection Byproduct (DBP) Mixtures Produced by Different Treatment Methods - slides

    EPA Science Inventory

    Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...

  5. Comparison of Chemical Composition of Complex Disinfection Byproduct (DBP) Mixtures Produced by Different Treatment Methods

    EPA Science Inventory

    Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...

  6. RESPIRATORY DAMAGE IN CHILDREN EXPOSED TO URBAN POLLUTION

    EPA Science Inventory


    Southwest Metropolitan Mexico City (SWMMC) children are chronically exposed to complex mixtures of air pollutants. In a cross-sectional arm of our study, we investigated the association between exposure to SWMMC atmosphere and nasal abnormalities, hyperinflation, and intersti...

  7. To survive or to slay

    PubMed Central

    2009-01-01

    The ecological relevance of allelopathy is highly debated due to the lack of phytotoxic concentrations of allelochemical in natural field conditions. Most of the putative allelochemicals are exuded at low concentrations, and subsequently undergo rapid chemical and biological degradation in soil matrices. At sub-toxic concentrations, due to hormesis effect, these compounds could possibly have a stimulatory effect on plant growth. Many of the suggested allelopathic compounds are chelants and can complex-with and mobilize metal ions in soil. These complexation reactions will detoxify the compound, but will increase the chemical-nutrient-foraging ability of the donor plant. The concentration in which these compounds are exuded matches with other similar secondary metabolites facilitating plant nutrient acquisition. Irrespective of whether the implicated PSMs facilitate donor plant in chemical nutrient-foraging or in poisoning the neighbors, the conferred advantage translates in terms of resource availability—in first case the donor enjoys uncontested nutrient uptake efficiency, where as in the latter the donor gain an uncontested access to resources. This further reaffirms the notion that resource competition and allelopathy are inextricable. Since most of the secondary metabolites could mobilize nutrients from soil, along with its phytotoxic effect, complementary self-facilitation roles of these compounds should be investigated. PMID:19820349

  8. Anoxia-conditioning hormesis alters the relationship between irradiation doses for survival and sterility in the cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    One of the most important components of a Sterile Insect Technique (SIT) program is appropriate irradiation dose. Knowing the organismal dose-response enables the selection of a dose that induces the highest level of sterility while preserving the sexual competitiveness and quality of the sterile in...

  9. An assessment of the information content of likelihood ratios derived from complex mixtures.

    PubMed

    Marsden, Clare D; Rudin, Norah; Inman, Keith; Lohmueller, Kirk E

    2016-05-01

    With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two or more contributors are increasingly being encountered. However, insufficient research has been conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor (KNC) in these complex samples, and under what specific conditions. In order to investigate this question, sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing 2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs and KNCs. This work was intended to illustrate the best-case scenario, in which all alleles from the TC were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence profile to TCs and KNCs. This resulted in 140,000 LRs for each of the two scenarios. These complex mixture simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than 1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater than 1,000. Thus, overall, these results imply that the weight of evidence that can be derived from complex mixtures containing up to 5 contributors, under a scenario in which no drop-out is required to explain any of the contributors, is remarkably high. This is a useful benchmark result on top of which to layer the effects of additional factors, such as drop-out, peak height, and other variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Honeybees Learn Odour Mixtures via a Selection of Key Odorants

    PubMed Central

    Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles

    2010-01-01

    Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714

  11. Applicability study of classical and contemporary models for effective complex permittivity of metal powders.

    PubMed

    Kiley, Erin M; Yakovlev, Vadim V; Ishizaki, Kotaro; Vaucher, Sebastien

    2012-01-01

    Microwave thermal processing of metal powders has recently been a topic of a substantial interest; however, experimental data on the physical properties of mixtures involving metal particles are often unavailable. In this paper, we perform a systematic analysis of classical and contemporary models of complex permittivity of mixtures and discuss the use of these models for determining effective permittivity of dielectric matrices with metal inclusions. Results from various mixture and core-shell mixture models are compared to experimental data for a titanium/stearic acid mixture and a boron nitride/graphite mixture (both obtained through the original measurements), and for a tungsten/Teflon mixture (from literature). We find that for certain experiments, the average error in determining the effective complex permittivity using Lichtenecker's, Maxwell Garnett's, Bruggeman's, Buchelnikov's, and Ignatenko's models is about 10%. This suggests that, for multiphysics computer models describing the processing of metal powder in the full temperature range, input data on effective complex permittivity obtained from direct measurement has, up to now, no substitute.

  12. Investigation of thermal and optical properties of some quartet mixed hydrogen-bonded liquid crystals

    NASA Astrophysics Data System (ADS)

    Okumuş, Mustafa

    2017-11-01

    In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.

  13. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix river basin, MN, WI, USA.

    EPA Science Inventory

    Evaluating the potential human health and/or ecological risks associated with exposures to complex chemical mixtures in the ambient environment is one of the central challenges of chemical safety assessment and environmental protection. There is a need for approaches that can he...

  14. Visual Characterization of VX Droplets on Plant Foliage

    DTIC Science & Technology

    2016-07-01

    epicuticular waxes, which are complex lipophilic mixtures of primarily long-chain aliphatics, including primary alcohols (n-alkan-1-ols), aldehydes, fatty...2006). Trichomes act in a complex way relative to spread of herbicide solution and sorption of herbicide. Trichomes may cause reduced wetting and...Bicellular trichomes discharge a mucilage-type secretion that contains callose, a carbohydrate component (1,3-glucan) usually associated with “walling

  15. Evaluating the aquatic toxicity of complex organic chemical mixtures: lessons learned from polycyclic aromatic hydrocarbon and petroleum hydrocarbon case studies.

    PubMed

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2012-04-01

    Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.

  16. COMPONENT-BASED AND WHOLE-MIXTURE ASSESSMENTS IN ADDRESSING THE UNIDENTIFIED FRACTION OF COMPLEX MIXTURES: DRINKING WATER AS AN EXAMPLE

    EPA Science Inventory


    Component-Based and Whole-Mixtures Assessments in Addressing the Unidentified Fraction of Complex Mixtures: Drinking Water as an Example

    J. E. Simmons; L. K. Teuschler; C. Gennings; T. F. Speth; S. D. Richardson; R. J. Miltner; M. G. Narotsky; K. D. Schenck; G. Rice

  17. Liquid class predictor for liquid handling of complex mixtures

    DOEpatents

    Seglke, Brent W [San Ramon, CA; Lekin, Timothy P [Livermore, CA

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  18. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments

    USGS Publications Warehouse

    Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.

    2004-01-01

    Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.

  19. (3, 2)D 1H, 13C BIRDr,X-HSQC-TOCSY for NMR structure elucidation of mixtures: application to complex carbohydrates.

    PubMed

    Brodaczewska, Natalia; Košťálová, Zuzana; Uhrín, Dušan

    2018-02-01

    Overlap of NMR signals is the major cause of difficulties associated with NMR structure elucidation of molecules contained in complex mixtures. A 2D homonuclear correlation spectroscopy in particular suffers from low dispersion of 1 H chemical shifts; larger dispersion of 13 C chemical shifts is often used to reduce this overlap, while still providing the proton-proton correlation information e.g. in the form of a 2D 1 H, 13 C HSQC-TOCSY experiment. For this methodology to work, 13 C chemical shift must be resolved. In case of 13 C chemical shifts overlap, 1 H chemical shifts can be used to achieve the desired resolution. The proposed (3, 2)D 1 H, 13 C BIRD r,X -HSQC-TOCSY experiment achieves this while preserving singlet character of cross peaks in the F 1 dimension. The required high-resolution in the 13 C dimension is thus retained, while the cross peak overlap occurring in a regular HSQC-TOCSY experiment is eliminated. The method is illustrated on the analysis of a complex carbohydrate mixture obtained by depolymerisation of a fucosylated chondroitin sulfate isolated from the body wall of the sea cucumber Holothuria forskali.

  20. EVALUATION OF ULTRAFINE PARTICLES AS PART OF A HEALTH EFFECTS EXPOSURE STUDY

    EPA Science Inventory

    Ambient particulate matter (PM) is a complex mixture that includes bioactive and toxic compounds of natural and anthropogenic origin. Numerous epidemiological studies have reported associations between exposure to ambient levels of PM and various indices of cardiopulmonary morbi...

  1. Commentary on resveratrol and hormesis: resveratrol--a hormetic marvel in waiting?

    PubMed

    Marques, Francine Z; Morris, Brian J

    2010-12-01

    Hormesis is a phenomenon in which adaptive responses to low doses of otherwise-harmful factors (also called mild stressors) make cells and organisms more robust. In their review, Calabrese et al. provide evidence for resveratrol acting hormetically in different types of human cell lines. The effects of resveratrol represent a 'two-edged sword' in that it has contrasting effects at low and high doses in healthy and cancerogenous cells. What demarcates a low and a high dose needs to be clarified. Concentrations tested in cell cultures, moreover, may not be relevant to whole organisms. And data from animal models need not apply to humans. Co-morbidities should also be considered. More research is needed to understand the action of resveratrol on all cell types and conditions, and the optimum therapeutic concentration that applies to each of these. Future research needs to determine the dynamics of the effects of resveratrol in different subcellular compartments and the interactions of these. In addition, the interactions between resveratrol, environmental factors, other compounds and medications, diseases and the genetic background of the individual will need to be appreciated in order to gain a complete understanding of the hormetic response of resveratrol.

  2. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    PubMed

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  3. Nuclear Energy and Health: And the Benefits of Low-Dose Radiation Hormesis

    PubMed Central

    Cuttler, Jerry M.; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled. PMID:19343116

  4. COMPLEX MIXTURES OF CHEMICAL CARCINOGENS: PRINCIPLES OF ACTION AND HUMAN CANCER

    EPA Science Inventory

    There is strong epidemiological evidence supported by experimental animal data that complex environmental mixtures pose a risk to human health producing increases in cancer incidence. Understanding the chemical and biological properties of these mixtures leads to a clearer unde...

  5. Origins and identities of key manure odor components

    USDA-ARS?s Scientific Manuscript database

    Odor is just one of many environmental issues associated with animal manures. Odor arises from a number of different locations in animal production systems, but the chemistry and biochemical origin is similar across sites. A complex mixture of volatile organic compounds (VOC) and inorganic compoun...

  6. A MULTIPLE-PURPOSE DESIGN APPROACH TO THE EVALUATION OF RISKS FROM COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Drinking water disinfection has effectively eliminated much of the morbidity and mortality associated with waterborne infectious diseases in the United States. Various disinfection processes, however, produce certain types and amounts of disinfection by-products (DBPs), including...

  7. Associations between complex OHC mixtures and thyroid and cortisol hormone levels in East Greenland polar bears

    PubMed Central

    TØ, Bechshøft; Sonne, C; Dietz, R; Born, EW; Muir, DCG; Letcher, RJ; Novak, MA; Henchey, E; Meyer, JS; Jenssen, BM; Villanger, GD

    2012-01-01

    The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p′-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis. PMID:22575327

  8. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis

    PubMed Central

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163

  9. Chemical Composition and Source Apportionment of Size Fractionated Particulate Matter in Cleveland, Ohio, USA

    EPA Science Inventory

    The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible...

  10. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  11. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  12. Evaluating the similarity of complex drinking-water disinfection by-product mixtures: overview of the issues.

    PubMed

    Rice, Glenn E; Teuschler, Linda K; Bull, Richard J; Simmons, Jane E; Feder, Paul I

    2009-01-01

    Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon; concentrations and proportions of individual DBPs with known toxicity data on the same endpoint; magnitude of the unidentified fraction of total organic halides; similar toxicity outcomes for whole mixture testing (e.g., mutagenicity); and summary chemical measures such as total trihalomethanes, total haloacetic acids, total haloacetonitriles, and the levels of bromide incorporation in the DBP classes.

  13. Characterization of the Androgen-sensitive MDA-kb2 Cell Line for Assessing Complex Environmental Mixtures, Presentation

    EPA Science Inventory

    Synthetic and natural steroidal androgens and estrogens and many other non-steroidal endocrine-active compounds commonly occur as complex mixtures in aquatic environments. It is important to understand the potential interactive effects of these mixtures to properly assess their r...

  14. Reduced gas seepages in serpentinized peridotite complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Deville, E.; Vacquand, C.; Beaumont, V.; Francois, G.; Sissmann, O.; Pillot, D.; Arcilla, C. A.; Prinzhofer, A.

    2017-12-01

    A comparative study of reduced gas seepages associated to serpentinized ultrabasic rocks was conducted in the ophiolitic complexes of Oman, the Philippines, Turkey and New Caledonia. This study is based on analyzes of the gas chemical composition, noble gases contents, and stable isotopes of carbon, hydrogen and nitrogen. These gas seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct families of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These families are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich family associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 families. H2-bearing gases are either associated to ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and high pH conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4 (conditions of strong carbon restriction). The N2-rich family is associated with relatively high contents of crustal 4He. In this family N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  15. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander effects in previous studies, as neutron sources invariably emit neutrons with concomitant gamma-ray photons, which is often referred to as gamma-ray contamination.

  16. The hormesis effect of BDE-47 in HepG2 cells and the potential molecular mechanism.

    PubMed

    Wang, Liulin; Zou, Wen; Zhong, Yufang; An, Jing; Zhang, Xinyu; Wu, Minghong; Yu, Zhiqiang

    2012-03-07

    Polybrominated diphenyl ethers (PBDEs) had been used extensively in electrical and electronic products as brominated flame retardants. PBDEs are widely distributed in environment media and wildlife since they are lipophilic and persistent, resulting in bioaccumulation and bioamplification through food chains. Accumulation of PBDEs in the environment and human tissues will consequently cause potential negative effects on the ecological environment and human health. To date, some in vitro and in vivo studies have reported that PBDEs possess neurotoxicity, hepatotoxicity, immunotoxicity, reproduction toxicity, endocrine disrupting activity and carcinogenicity. BDE-47 is one of the most predominant PBDE congeners detected in human tissues. The objective of this study is to investigate whether low concentration of BDE-47 could cause hormesis effect in the human hepatoma HepG(2) cells, and to explore the possible molecular mechanism. The results showed that low concentration of BDE-47 (10(-10), 10(-9) and 10(-8) M) could promote cell proliferation and cause no obvious change in DNA damage or cell apoptosis, while the high concentration significantly inhibit cell proliferation. Meanwhile, the reactive oxygen species (ROS) in low concentration BDE-47 (10(-10), 10(-9) and 10(-8) M) treated groups significantly elevated compared with the control group. After low concentration BDE-47 treatment, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D1, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylated protein kinase B (p-Akt) in the HepG(2) cells was markedly up-regulated. However, in DNA-PKcs inhibited cells, the promotion effect on cell proliferation was significantly suppressed. Cell cycle analysis showed a significant decrease in G1 phase after exposure to low concentration of BDE-47. Moreover, pre-exposure to low concentration BDE-47 seemed alleviate the negative effects of high concentration (50 μM) exposure to cause DNA damage and apoptosis. These results suggested that BDE-47 has a hormesis effect in HepG(2) cells and DNA-PKcs/Akt pathway may be involved in regulation of cell proliferation and apoptosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants.

    PubMed

    Teixeira, José; Deus, Cláudia M; Borges, Fernanda; Oliveira, Paulo J

    2018-04-01

    Mitochondrial function and regulation of redox balance is fundamental in controlling cellular life and death pathways. Antioxidants have been used to counteract disruption of redox networks, normally associated with progressive loss of cell homeostasis and disease pathophysiology, although therapeutic success is limited mainly due to pharmacokinetic drawbacks. Attempts to improve mitochondrial function in a range of diseases spurred active drug discovery efforts. Currently, the most effective strategy to deliver drugs to mitochondria is the covalent link of lipophilic cations to the bioactive compound. Although targeting mitochondrial oxidative stress with antioxidants has been demonstrated, clinical use has been hampered by several challenges, with no FDA-approved drug so far. Development of new mitochondriotropic antioxidant agents based on dietary polyphenols has recently gained momentum. Due to their nature, mitochondria-targeted multi-functional antioxidants can trigger stress responses and contribute to tissue protection through hormesis mechanisms, inhibiting excessive mitochondrial ROS production and associated diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mixture and odorant processing in the olfactory systems of insects: a comparative perspective.

    PubMed

    Clifford, Marie R; Riffell, Jeffrey A

    2013-11-01

    Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.

  19. Overview of current TEFs as it relates to current PCB exposures: What is needed?

    EPA Science Inventory

    The toxic equivalency factor (TEF) approach is one of the ways to assess the risk associated with exposure to complex mixture of polychlorinated biphenyls (PCBs) and structurally related chemicals. This method is based on mode of action with the assumption that all chemicals in ...

  20. Integrated Multidisciplinary Assessment of Environmentally Realistic Complex Mixtures of Drinking Water Disinfection ByProducts (DBPs) (The 4Lab Study)

    EPA Science Inventory

    More than 600 DBPs have been identified; yet ~50% of the total organic halide from chlorination is unidentified. Epidemiology studies suggest associations between human use of chlorinated water and reproductive/developmental effects (pregnancy loss, low birth weight), that are un...

  1. ALTERATION OF SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY ASSOCIATED WITH BIOSOLIDS APPLICATION (ABSTRACT)

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  2. BIOMARKERS OF PM EXPOSURE TO COMBUSTION SOURCE EMISSIONS & ORGANIC (TOXIC) COMPONENTS

    EPA Science Inventory

    Fine particles (PM2.5) and associated semivolatile organic compounds (SVOC) contain a very complex mixture of both organic and inorganic chemicals that may contribute to toxicity of the particles. The health effects of PM2.5 exposures in humans result from both acute and chronic...

  3. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  4. EVALUATION OF COARSE, FINE, AND ULTRAFINE PARTICLES AS PART OF A HEALTH EFFECTS EXPOSURE STUDY

    EPA Science Inventory

    Ambient PM is a complex mixture that includes bioactive and toxic compounds of natural and anthropogenic origin, several of which have been theorized to be causative or contributory to the adverse effects of PM inhalation. Numerous epidemiological studies have reported associ...

  5. Application of the high throughput Attagene Factorial TM platform to environmental monitoring: Characterizing complex, environmental mixtures

    EPA Science Inventory

    Bioassays can be employed to evaluate the integrated effects of complex mixtures of both known and unidentified contaminants present in environmental samples. However, such methods have typically focused on one or a few pathways despite the fact that the chemicals in a mixture ma...

  6. Measurement of the complex permittivity of dry rocks and minerals: application of polythene dilution method and Lichtenecker's mixture formulae

    NASA Astrophysics Data System (ADS)

    Zheng, Yongchun; Wang, Shijie; Feng, Junming; Ouyang, Ziyuan; Li, Xiongyao

    2005-12-01

    The complex permittivity of dry rocks and minerals varies over a very wide range, even within a sample there are variation at different temperatures and frequencies. Most rocks and minerals are inhomogeneous materials, therefore, most of the present methods of dielectric measurement designed for artificial homogeneous materials are not suitable for rocks and minerals. The resonant cavity perturbation (RCP) method is a reliable and simple technique to determine the complex permittivity of dielectric materials in the GHz range, and this method is also used extensively. However, the traditional RCP method is sensitive to the measurement of low dielectric constant (ɛ') and low loss factor (ɛ'' or tanδ) materials. The complex permittivity of most dry rocks and minerals exceeds the span vibration of the RCP method, and cannot be measured by the RCP method directly. This paper proposes a new method to measure the complex permittivity of dry rocks and minerals with the RCP method incorporated in the application of polythene (PE) dilution method and Lichtenecker's mixture formulae. Dry rocks and minerals were ground into fine powder. The powder of rocks and minerals was mixed with polythene powder in a definite volume per cent. The mixture was heated and pressed into a thin circular slice. The slice was processed into a small rectangular strip sample, the size of which was fitted to the demands of the RCP method. The complex permittivity of the strip was obtained by the RCP method. The relationship between the dielectric properties of the two-phase mixture and those of each phase in the mixture can be expressed by Lichtenecker's mixture formula. Thus the complex permittivity of dry rocks and minerals can be calculated from the complex permittivity of the mixture in case the complex permittivity of polythene is known. The presented method was verified by measurements of reference materials of various known complex permittivity and other reliable dielectric measurement methods. The results of the experiment showed that this new method is of high accuracy, small sample requirement, and convenient application. Moreover, the complex permittivity of rocks and minerals measured by this method is more reliable than the direct dielectric measurement of rocks or minerals without application of the polythene dilution method and Lichtenecker's mixture formulae.

  7. THE GENOTOXICITY OF PRIORITY POLYCYCLIC AROMATIC HYDROCARBONS IN COMPLEX MIXTURES

    EPA Science Inventory

    Risk assessment of complex environmental samples suffers from difficulty in identifying toxic components, inadequacy of available toxicity data, and a paucity of knowledge about the behavior of geno(toxic) substances in complex mixtures. Lack of information about the behavior of ...

  8. Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors

    PubMed Central

    Flohé, Leopold

    2011-01-01

    Abstract Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O2•− and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H2O2, enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed. Antioxid. Redox Signal. 15, 2335–2381. PMID:21194351

  9. Stimulation or Inhibition: Conflicting evidence for (+/-)-catechin's role as a chemical facilitator and disease protecting agent.

    PubMed

    Bais, Harsh P; Venkatachalam, L; Biedrzycki, Meredith L

    2010-03-01

    The occurrence of plant hormesis is a poorly understood phenomenon, wherein low doses of phytotoxins unusually promote growth responses in higher plants. In contrast, negative plant-plant interactions mediated through secreted small molecular weight compounds initiate growth inhibitory responses. Studies related to (+/-)-catechin mediated allelopathy have transpired both novel information and generated significant controversy. Specifically, studies related to the phytotoxicity responses mediated by (+/-)-catechins have been seriously debated. The pronged opinion that (+/-)-catechin is phytotoxic versus non-phytotoxic relies more on the target plant systems and the conditions used to test phytotoxic responses. It is reported that lower than MIC dosage supplementation of (+/-)-catechin could promote growth responses in the model plant Arabidopsis thaliana. Furthermore, it was shown that sub-MIC levels of (+/-)-catechin supplementation leads to elicitation of disease resistance against Pseudomonas syringae DC3000 (hereafter DC3000). Intrigued by the unique hormesis response observed, we tested whether (+/-)-catechin indeed promotes growth responses in A. thaliana. In our hands, we observed no growth promotion responses of (+/-)-catechin against A. thaliana under in vitro or in soil conditions. We also evaluated the previously reported disease protecting properties of (+/-)-catechin in A. thaliana against DC3000. The systematic observations to evaluate disease protecting properties entailing colony counts, disease incidences and loss of chlorophyll studies showed no disease protecting properties of (+/-)-catechin. The transcriptional response for a marker pathogenesis related PR1 defense gene showed no induction post (+/-)-catechin supplementation. The cell death genes (ACD2 and CAD1) associated with programmed cell death revealed unchanged expression levels in plants treated with sub-MIC levels of (+/-)-catechin. Further, we report supplementation of sub-MIC levels of (+/-)-catechin negates any change in the expression of an auxin responsive gene. Our results refute the previous claims of growth and defense inducing effects of (+/-)-catechin, thus suggesting that a thorough reexamination is required to evaluate the hormetic effect of (+/-)-catechin under both controlled and natural conditions.

  10. Identifying Complex Mixtures in the Environment with Cheminformatics and Non-targeted High Resolution Mass Spectrometry (SETAC NA Focused Topic Meeting : Risk Assessment of Chemical Mixtures)

    EPA Science Inventory

    Non-target high resolution mass spectrometry techniques combined with advanced cheminformatics offer huge potential for exploring complex mixtures in our environment – yet also offers plenty of challenges. Peak inventories of several non-target studies from within Europe reveal t...

  11. 75 FR 73080 - Science Advisory Board Staff Office; Request for Nominations of Experts for the SAB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... are IRIS reference doses (RfDs) for two commercial PCB mixtures: Aroclor 1016 and Aroclor 1254 that... developing a draft assessment of the potential noncancer health hazards of complex PCB mixtures for inclusion... with the goal of establishing an RfD for application to complex PCB mixtures. The EPA's National Center...

  12. Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders

    PubMed Central

    Cornelius, Carolin; Dinkova-Kostova, Albena T.; Calabrese, Edward J.; Mattson, Mark P.

    2010-01-01

    Abstract Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose–response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling. Antioxid. Redox Signal. 13, 1763–1811. PMID:20446769

  13. Mitochondrial maintenance failure in aging and role of sexual dimorphism

    PubMed Central

    Tower, John

    2014-01-01

    Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in C. elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation. PMID:25447815

  14. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    PubMed

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  15. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O3 phytotoxicity.

    PubMed

    Agathokleous, Evgenios

    2017-08-01

    Ethylenediurea (EDU) has been widely studied for its effectiveness to protect plants against injuries caused by surface ozone (O 3 ), however its mode of action remains unclear. So far, there is not a unified methodological approach and thus the methodology is quite arbitrary, thereby making it more difficult to generalize findings and understand the EDU mode of action. This review examines the question of whether potential N addition to plants by EDU is a fundamental underlying mechanism in protecting against O 3 phytotoxicity. Yet, this review proposes an evidence-based hypothesis that EDU may protect plants against O 3 deleterious effects upon generation of EDU-induced hormesis, i.e. by activating plant defense at low doses. This hypothesis challenges the future research directions. Revealing a hormesis-based EDU mode of action in protecting plants against O 3 toxicity would have further implications to ecotoxicology and environmental safety. Furthermore, this review discusses the need for further studies on plant metabolism under EDU treatment through relevant experimental approach, and attempts to set the bases for approaching a unified methodology that will contribute in revealing the EDU mode of action. In this framework, focus is given to the main EDU application methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Design and Construction of a Single-Tube, LATE-PCR, Multiplex Endpoint Assay with Lights-On/Lights-Off Probes for the Detection of Pathogens Associated with Sepsis

    PubMed Central

    Carver-Brown, Rachel K.; Reis, Arthur H.; Rice, Lisa M.; Czajka, John W.; Wangh, Lawrence J.

    2012-01-01

    Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis. PMID:23326668

  17. Geologic associations of Arizona willow in the White Mountains, Arizona

    Treesearch

    Jonathan W. Long; Alvin L. Medina

    2007-01-01

    The Arizona willow (Salix arizonica Dorn) is a rare species growing in isolated populations at the margins of the Colorado Plateau. Although its habitat in the White Mountains of Arizona has been mischaracterized as basaltic, the area is actually a complex mixture of felsic, basaltic and epiclastic formations. Comparing the distribution of the...

  18. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance

    EPA Science Inventory

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrat...

  19. Exploring the Aerodynamic Drag of a Moving Cyclist

    ERIC Educational Resources Information Center

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  20. Anion-free bambus[6]uril and its supramolecular properties.

    PubMed

    Svec, Jan; Dusek, Michal; Fejfarova, Karla; Stacko, Peter; Klán, Petr; Kaifer, Angel E; Li, Wei; Hudeckova, Edita; Sindelar, Vladimir

    2011-05-09

    Methods for the preparation of anion-free bambus[6]uril (BU6) are presented. They are based on the oxidation of iodide anion, which is bound inside the macrocycle, utilizing dark oxidation by hydrogen peroxide or photooxidation in the presence of titanium dioxide. Anion-free BU6 was found to be insoluble in any of the investigated solvents; however, it dissolves in methanol/chloroform (1:1) or acetonitrile/water (1:1) mixtures in the presence of the tetrabutylammonium salt of a suitable anion. The association constants with halide ions, BF(4)(-), NO(3)(-), and CN(-), were measured by (1)H NMR spectroscopy. The highest association constant (8.9×10(5) M(-1)) was found for the 1:1 complex of BU6 with I(-) in acetonitrile/water mixture. A number of crystal structures of BU6 complexes with various anions were obtained. The influence of the anion size on the macrocycle diameter is discussed together with an unusual arrangement of the macrocycles into separate layers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Associations between complex OHC mixtures and thyroid and cortisol hormone levels in East Greenland polar bears.

    PubMed

    Bechshøft, T Ø; Sonne, C; Dietz, R; Born, E W; Muir, D C G; Letcher, R J; Novak, M A; Henchey, E; Meyer, J S; Jenssen, B M; Villanger, G D

    2012-07-01

    The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p'-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  3. Modeling the chemistry of complex petroleum mixtures.

    PubMed Central

    Quann, R J

    1998-01-01

    Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903

  4. Multilevel Mixture Kalman Filter

    NASA Astrophysics Data System (ADS)

    Guo, Dong; Wang, Xiaodong; Chen, Rong

    2004-12-01

    The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

  5. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  6. Viscosity of Associated Mixtures Approximated by the Grunberg-Nissan Model

    NASA Astrophysics Data System (ADS)

    Marczak, W.; Adamczyk, N.; Łężniak, M.

    2012-04-01

    Previous experiments demonstrated that microheterogeneities occur in liquid systems (2-methylpyridine or 2,6-dimethylpyridine) + water. They are most probably due to the association of the hydrates through hydrogen bonds between water molecules. Substitution of methanol for water causes that the mixtures become homogenous. The results of viscometric studies reported in this study confirmed that the molecular clusters in aqueous solutions are much larger than the complexes occurring in the methanolic systems. Taking into consideration "kinetic entities" rather than monomeric molecules, the dependence of viscosity on concentration and temperature have been satisfactorily approximated by the Grunberg-Nissan relation with two adjustable coefficients. The kinetic entities were trimers of water, dimers of methanol, and monomeric amines. The same approach proved to be valid for the activation energy of viscous flow as well.

  7. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  8. Phenol removal pretreatment process

    DOEpatents

    Hames, Bonnie R.

    2004-04-13

    A process for removing phenols from an aqueous solution is provided, which comprises the steps of contacting a mixture comprising the solution and a metal oxide, forming a phenol metal oxide complex, and removing the complex from the mixture.

  9. A Mixture of Persistent Organic Pollutants and Perfluorooctanesulfonic Acid Induces Similar Behavioural Responses, but Different Gene Expression Profiles in Zebrafish Larvae

    PubMed Central

    Khezri, Abdolrahman; Fraser, Thomas W. K.; Nourizadeh-Lillabadi, Rasoul; Kamstra, Jorke H.; Berg, Vidar; Zimmer, Karin E.; Ropstad, Erik

    2017-01-01

    Persistent organic pollutants (POPs) are widespread in the environment and some may be neurotoxic. As we are exposed to complex mixtures of POPs, we aimed to investigate how a POP mixture based on Scandinavian human blood data affects behaviour and neurodevelopment during early life in zebrafish. Embryos/larvae were exposed to a series of sub-lethal doses and behaviour was examined at 96 h post fertilization (hpf). In order to determine the sensitivity window to the POP mixture, exposure models of 6 to 48 and 48 to 96 hpf were used. The expression of genes related to neurological development was also assessed. Results indicate that the POP mixture increases the swimming speed of larval zebrafish following exposure between 48 to 96 hpf. This behavioural effect was associated with the perfluorinated compounds, and more specifically with perfluorooctanesulfonic acid (PFOS). The expression of genes related to the stress response, GABAergic, dopaminergic, histaminergic, serotoninergic, cholinergic systems and neuronal maintenance, were altered. However, there was little overlap in those genes that were significantly altered by the POP mixture and PFOS. Our findings show that the POP mixture and PFOS can have a similar effect on behaviour, yet alter the expression of genes relevant to neurological development differently. PMID:28146072

  10. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  11. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis

    PubMed Central

    Castillo-Quan, Jorge Iván; Li, Li; Kinghorn, Kerri J.; Ivanov, Dobril K.; Tain, Luke S.; Slack, Cathy; Kerr, Fiona; Nespital, Tobias; Thornton, Janet; Hardy, John; Bjedov, Ivana; Partridge, Linda

    2016-01-01

    Summary The quest to extend healthspan via pharmacological means is becoming increasingly urgent, both from a health and economic perspective. Here we show that lithium, a drug approved for human use, promotes longevity and healthspan. We demonstrate that lithium extends lifespan in female and male Drosophila, when administered throughout adulthood or only later in life. The life-extending mechanism involves the inhibition of glycogen synthase kinase-3 (GSK-3) and activation of the transcription factor nuclear factor erythroid 2-related factor (NRF-2). Combining genetic loss of the NRF-2 repressor Kelch-like ECH-associated protein 1 (Keap1) with lithium treatment revealed that high levels of NRF-2 activation conferred stress resistance, while low levels additionally promoted longevity. The discovery of GSK-3 as a therapeutic target for aging will likely lead to more effective treatments that can modulate mammalian aging and further improve health in later life. PMID:27068460

  12. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, Helena L.; Filardo, Giuseppe

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  13. Rabbit Neonates and Human Adults Perceive a Blending 6-Component Odor Mixture in a Comparable Manner

    PubMed Central

    Sinding, Charlotte; Thomas-Danguin, Thierry; Chambault, Adeline; Béno, Noelle; Dosne, Thibaut; Chabanet, Claire; Schaal, Benoist; Coureaud, Gérard

    2013-01-01

    Young and adult mammals are constantly exposed to chemically complex stimuli. The olfactory system allows for a dual processing of relevant information from the environment either as single odorants in mixtures (elemental perception) or as mixtures of odorants as a whole (configural perception). However, it seems that human adults have certain limits in elemental perception of odor mixtures, as suggested by their inability to identify each odorant in mixtures of more than 4 components. Here, we explored some of these limits by evaluating the perception of three 6-odorant mixtures in human adults and newborn rabbits. Using free-sorting tasks in humans, we investigated the configural or elemental perception of these mixtures, or of 5-component sub-mixtures, or of the 6-odorant mixtures with modified odorants' proportion. In rabbit pups, the perception of the same mixtures was evaluated by measuring the orocephalic sucking response to the mixtures or their components after conditioning to one of these stimuli. The results revealed that one mixture, previously shown to carry the specific odor of red cordial in humans, was indeed configurally processed in humans and in rabbits while the two other 6-component mixtures were not. Moreover, in both species, such configural perception was specific not only to the 6 odorants included in the mixture but also to their respective proportion. Interestingly, rabbit neonates also responded to each odorant after conditioning to the red cordial mixture, which demonstrates their ability to perceive elements in addition to configuration in this complex mixture. Taken together, the results provide new insights related to the processing of relatively complex odor mixtures in mammals and the inter-species conservation of certain perceptual mechanisms; the results also revealed some differences in the expression of these capacities between species putatively linked to developmental and ecological constraints. PMID:23341948

  14. Using Big Data Analytics to Address Mixtures Exposure

    EPA Science Inventory

    The assessment of chemical mixtures is a complex issue for regulators and health scientists. We propose that assessing chemical co-occurrence patterns and prevalence rates is a relatively simple yet powerful approach in characterizing environmental mixtures and mixtures exposure...

  15. Complex organochlorine pesticide mixtures as determinant factor for breast cancer risk: a population-based case–control study in the Canary Islands (Spain)

    PubMed Central

    2012-01-01

    Background All the relevant risk factors contributing to breast cancer etiology are not fully known. Exposure to organochlorine pesticides has been linked to an increased incidence of the disease, although not all data have been consistent. Most published studies evaluated the exposure to organochlorines individually, ignoring the potential effects exerted by the mixtures of chemicals. Methods This population-based study was designed to evaluate the profile of mixtures of organochlorines detected in 103 healthy women and 121 women diagnosed with breast cancer from Gran Canaria Island, and the relation between the exposure to these compounds and breast cancer risk. Results The most prevalent mixture of organochlorines among healthy women was the combination of lindane and endrin, and this mixture was not detected in any affected women. Breast cancer patients presented more frequently a combination of aldrin, dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), and this mixture was not found in any healthy woman. After adjusting for covariables, the risk of breast cancer was moderately associated with DDD (OR = 1.008, confidence interval 95% 1.001-1.015, p = 0.024). Conclusions This study indicates that healthy women show a very different profile of organochlorine pesticide mixtures than breast cancer patients, suggesting that organochlorine pesticide mixtures could play a relevant role in breast cancer risk. PMID:22534004

  16. Ground-Based Aerosol Measurements

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to ...

  17. Indoor air-assessment: Indoor concentrations of environmental carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gold, K.W.; Naugle, D.F.; Berry, M.A.

    1991-01-01

    In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified,more » however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures.« less

  18. In vitro screening for population variability in toxicity of pesticide-containing mixtures

    PubMed Central

    Abdo, Nour; Wetmore, Barbara A.; Chappell, Grace A.; Shea, Damian; Wright, Fred A.; Rusyna, Ivan

    2016-01-01

    Population-based human in vitro models offer exceptional opportunities for evaluating the potential hazard and mode of action of chemicals, as well as variability in responses to toxic insults among individuals. This study was designed to test the hypothesis that comparative population genomics with efficient in vitro experimental design can be used for evaluation of the potential for hazard, mode of action, and the extent of population variability in responses to chemical mixtures. We selected 146 lymphoblast cell lines from 4 ancestrally and geographically diverse human populations based on the availability of genome sequence and basal RNA-seq data. Cells were exposed to two pesticide mixtures – an environmental surface water sample comprised primarily of organochlorine pesticides and a laboratory-prepared mixture of 36 currently used pesticides – in concentration response and evaluated for cytotoxicity. On average, the two mixtures exhibited a similar range of in vitro cytotoxicity and showed considerable inter-individual variability across screened cell lines. However, when in vitroto-in vivo extrapolation (IVIVE) coupled with reverse dosimetry was employed to convert the in vitro cytotoxic concentrations to oral equivalent doses and compared to the upper bound of predicted human exposure, we found that a nominally more cytotoxic chlorinated pesticide mixture is expected to have greater margin of safety (more than 5 orders of magnitude) as compared to the current use pesticide mixture (less than 2 orders of magnitude) due primarily to differences in exposure predictions. Multivariate genome-wide association mapping revealed an association between the toxicity of current use pesticide mixture and a polymorphism in rs1947825 in C17orf54. We conclude that a combination of in vitro human population-based cytotoxicity screening followed by dosimetric adjustment and comparative population genomics analyses enables quantitative evaluation of human health hazard from complex environmental mixtures. Additionally, such an approach yields testable hypotheses regarding potential toxicity mechanisms. PMID:26386728

  19. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches

    USGS Publications Warehouse

    Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.

    2016-01-01

    Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning levels of biological organization and life stages when assessing contaminant interactions.

  20. Transcriptional responses to complex mixtures - A review

    EPA Science Inventory

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after expos...

  1. Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.

    PubMed

    Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C

    2014-04-01

    Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.

  2. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION : DELETION OF INDIVIDUAL AMINO ACIDS FROM GROWTH MIXTURE OF TEN ESSENTIAL AMINO ACIDS. SIGNIFICANT CHANGES IN URINARY NITROGEN.

    PubMed

    Robscheit-Robbins, F S; Miller, L L; Whipple, G H

    1947-02-28

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive urinary nitrogen balance and a liberal output of blood proteins but there is always weight loss, however we may choose to explain this loss. These experiments touch on the complex problems of parenteral nutrition, experimental and clinical.

  3. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, H.L.; Filardo, G.

    1990-10-23

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

  4. Derivation of a reference dose for a complex petroleum hydrocarbon mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryer-Powder, J.E.; LaPirre, A.; Scofield, R.

    1997-12-31

    Petroleum hydrocarbon mixtures pose a challenge in assessing potential health effects associated with environmental exposures through impacted media. Two components of risk assessment that must be addressed when evaluating these mixtures are toxicity and environmental fate. In this paper, we focus on issues regarding toxicity. Specifically, we have developed a methodology to derive a reference dose (RfD) for a complex petroleum hydrocarbon mixture referred to as diluent. Diluent is a solvent used in the production of crude oil and is composed of hydrocarbons in the middle distillate range. Two conservative approaches to developing a reference dose for diluent are presented.more » Both involve separating the diluent into carbon number ranges (e.g., diluent consists of hydrocarbons containing between 5 carbons and greater than 21 carbons, so, the mixture can be divided into mixtures of hydrocarbons having 5 carbons, 6-11 carbons, etcetera) and assigning each range a representative RfD. In the first approach, the representative RfD for each range is that of one specific chemical within the range (e.g., the reference dose for the C{sub 5}-C{sub 8} carbon range is that of n-hexane). In the second approach, the RfD dose for each range is that of a mixture of chemicals representative of each carbon number range (e.g., the RfD for the C{sub 6} to C{sub 11} carbon range is that of mineral spirits). The RfD for each carbon range is then multiplied by the percent of diluent in the corresponding range and the products are added to arrive at a final RfD. The RfD for diluent using the first approach is estimated at 2 mg/kg-day and that using the second approach is estimated at 1 mg/kg-day.« less

  5. Toward the Rational Use of Exposure Information in Mixtures Toxicology

    EPA Science Inventory

    Of all the disciplines of toxicology, perhaps none is as dependent on exposure information as Mixtures Toxicology. Identifying real world mixtures and replicating them in the laboratory (or in silico) is critical to understanding their risks. Complex mixtures such as cigarett...

  6. NAPL source zone depletion model and its application to railroad-tank-car spills.

    PubMed

    Marruffo, Amanda; Yoon, Hongkyu; Schaeffer, David J; Barkan, Christopher P L; Saat, Mohd Rapik; Werth, Charles J

    2012-01-01

    We developed a new semi-analytical source zone depletion model (SZDM) for multicomponent light nonaqueous phase liquids (LNAPLs) and incorporated this into an existing screening model for estimating cleanup times for chemical spills from railroad tank cars that previously considered only single-component LNAPLs. Results from the SZDM compare favorably to those from a three-dimensional numerical model, and from another semi-analytical model that does not consider source zone depletion. The model was used to evaluate groundwater contamination and cleanup times for four complex mixtures of concern in the railroad industry. Among the petroleum hydrocarbon mixtures considered, the cleanup time of diesel fuel was much longer than E95, gasoline, and crude oil. This is mainly due to the high fraction of low solubility components in diesel fuel. The results demonstrate that the updated screening model with the newly developed SZDM is computationally efficient, and provides valuable comparisons of cleanup times that can be used in assessing the health and financial risk associated with chemical mixture spills from railroad-tank-car accidents. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  7. Assessment of DNA damage in ceramic workers.

    PubMed

    Anlar, Hatice Gul; Taner, Gokce; Bacanli, Merve; Iritas, Servet; Kurt, Turker; Tutkun, Engin; Yilmaz, Omer Hinc; Basaran, Nursen

    2018-02-24

    It is known that ceramic workers are potentially exposed to complex mixture of chemicals such as silica, inorganic lead, lime, beryllium and aluminum that can be associated with an increased risk of several diseases. All operations in the ceramic industries such as mixing, moulding, casting, shaking out and finishing jobs, have been associated with the higher exposure levels and in most of the silica-related industries, average overall exposure exceeded permissible exposure levels for respirable crystalline silica. The aim of this study was to evaluate the possible genotoxic damage in ceramic workers exposed to complex mixture of chemicals mainly crystalline silica. For this purpose, the blood and buccal epithelial cell samples were taken from the ceramic workers (n = 99) and their controls (n = 81). The genotoxicity was assessed by the alkaline comet assay in isolated lymphocytes and whole blood. Micronucleus (MN), binucleated (BN), pyknotic (PYC), condensed chromatin (CC), karyolytic (KYL), karyorrhectic (KHC) and nuclear bud (NBUD) frequencies in buccal epithelial cells and plasma 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels were also evaluated. In the study, 38 workers were diagnosed with silicosis, 9 workers were suspected to have silicosis, whereas 52 workers were found to be healthy. DNA damage in blood and lymphocytes; MN, CC + KHC, PYC frequencies in buccal epithelial cells and 8-oxodG levels in plasma were increased in workers compared to their controls. These results showed that occupational chemical mixture exposure in ceramic industry may cause genotoxic damage that can lead to important health problems in the workers.

  8. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    PubMed

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  9. Highly-Complex Environmentally-Realistic Mixtures: Challenges and Advances

    EPA Science Inventory

    The difficulties involved in design, conduct, analysis and interpretation of defmed mixtures experiments and use of the resulting data in risk assessment are now wellknown to the toxicology, risk assessment and risk management communities. The arena of highly-complex environment...

  10. Vertebrate pheromones and other semiochemicals: the potential for accommodating complexity in signalling by volatile compounds for vertebrate management

    PubMed Central

    Pickett, John A.; Barasa, Stephen; Birkett, Michael A.

    2014-01-01

    The interaction between volatile and non-volatile, e.g. proteinaceous, components of pheromone and other semiochemical-based signalling systems presents a daunting set of problems for exploitation in the management of vertebrates, good or bad. Aggravating this is the complexity of the mixtures involved with pheromones, not only by definition associated with each species, but also with individual members of that species and their positions within their immediate communities. Nonetheless, already in some contexts, particularly where signals are perceived at other trophic levels from those of the vertebrates, e.g. by arthropods, reductionist approaches can be applied whereby the integrity of complex volatile mixtures is maintained, but perturbed by augmentation with individual components. In the present article, this is illustrated for cattle husbandry, fish farming and human health. So far, crude formulations have been used to imitate volatile semiochemical interactions with non-volatile components, but new approaches must be developed to accommodate more sophisticated interactions and not least the activities of the non-volatile, particularly proteinaceous components, currently being deduced. PMID:25109967

  11. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    PubMed Central

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  12. Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays.

    PubMed Central

    Zacharewski, T

    1998-01-01

    It has been suggested that chemicals and complex mixtures capable of modulating the endocrine system may contribute to adverse health, reproduction, and developmental effects in humans and wildlife. These effects include increased incidence of hormone-dependent cancers, compromised reproductive fitness, and abnormal reproductive system development. In response to public concern, regulatory agencies in North America and Europe are formulating potential strategies to systematically test chemicals and complex mixtures for their endocrine-disrupting activities. Because of the complexity of the endocrine system and the number of potential endocrine disruptor targets, a tiered approach involving a complementary battery of short- and long-term in vivo and in vitro assays that assesses both receptor and nonreceptor-mediated mechanisms of action is being considered. However, the available established assays use a limited number of end points, and significant information gaps exist for other potential targets in the endocrine system. In addition to discussing the merits and limitations of the assays that may be adopted, this paper also highlights potential problems associated with the use of a tiered testing strategy. PMID:9599705

  13. Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.

    PubMed

    Cheng, Wen; Gill, Gurdiljot Singh; Zhang, Yongping; Cao, Zhong

    2018-03-01

    The traffic safety research has developed spatiotemporal models to explore the variations in the spatial pattern of crash risk over time. Many studies observed notable benefits associated with the inclusion of spatial and temporal correlation and their interactions. However, the safety literature lacks sufficient research for the comparison of different temporal treatments and their interaction with spatial component. This study developed four spatiotemporal models with varying complexity due to the different temporal treatments such as (I) linear time trend; (II) quadratic time trend; (III) Autoregressive-1 (AR-1); and (IV) time adjacency. Moreover, the study introduced a flexible two-component mixture for the space-time interaction which allows greater flexibility compared to the traditional linear space-time interaction. The mixture component allows the accommodation of global space-time interaction as well as the departures from the overall spatial and temporal risk patterns. This study performed a comprehensive assessment of mixture models based on the diverse criteria pertaining to goodness-of-fit, cross-validation and evaluation based on in-sample data for predictive accuracy of crash estimates. The assessment of model performance in terms of goodness-of-fit clearly established the superiority of the time-adjacency specification which was evidently more complex due to the addition of information borrowed from neighboring years, but this addition of parameters allowed significant advantage at posterior deviance which subsequently benefited overall fit to crash data. The Base models were also developed to study the comparison between the proposed mixture and traditional space-time components for each temporal model. The mixture models consistently outperformed the corresponding Base models due to the advantages of much lower deviance. For cross-validation comparison of predictive accuracy, linear time trend model was adjudged the best as it recorded the highest value of log pseudo marginal likelihood (LPML). Four other evaluation criteria were considered for typical validation using the same data for model development. Under each criterion, observed crash counts were compared with three types of data containing Bayesian estimated, normal predicted, and model replicated ones. The linear model again performed the best in most scenarios except one case of using model replicated data and two cases involving prediction without including random effects. These phenomena indicated the mediocre performance of linear trend when random effects were excluded for evaluation. This might be due to the flexible mixture space-time interaction which can efficiently absorb the residual variability escaping from the predictable part of the model. The comparison of Base and mixture models in terms of prediction accuracy further bolstered the superiority of the mixture models as the mixture ones generated more precise estimated crash counts across all four models, suggesting that the advantages associated with mixture component at model fit were transferable to prediction accuracy. Finally, the residual analysis demonstrated the consistently superior performance of random effect models which validates the importance of incorporating the correlation structures to account for unobserved heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: complexation versus mixture.

    PubMed

    Zhang, Yu; Cai, Xiyun; Lang, Xianming; Qiao, Xianliang; Li, Xuehua; Chen, Jingwen

    2012-07-01

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC(50) values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hormetic Response by Silver Nanoparticles on In Vitro Multiplication of Sugarcane (Saccharum spp. Cv. Mex 69-290) Using a Temporary Immersion System.

    PubMed

    Bello-Bello, Jericó J; Chavez-Santoscoy, Rocío A; Lecona-Guzmán, Carlos A; Bogdanchikova, Nina; Salinas-Ruíz, Josafhat; Gómez-Merino, Fernando Carlos; Pestryakov, Alexey

    2017-01-01

    Hormesis is considered a dose-response phenomenon characterized by growth stimulation at low doses and inhibition at high doses. The hormetic response by silver nanoparticles (AgNPs) on in vitro multiplication of sugarcane was evaluated using a temporary immersion system. Sugarcane shoots were used as explants cultured in Murashige and Skoog medium with AgNPs at concentrations of 0, 25, 50, 100, and 200 mg/L. Shoot multiplication rate and length were used to determine hormetic response. Total content of phenolic compounds of sugarcane, mineral nutrition, and reactive oxygen species (ROS) was determined. Results were presented as a dose-response curve. Stimulation phase growth was observed at 50 mg/L AgNPs, whereas inhibition phase was detected at 200 mg/L AgNPs. Mineral nutrient analysis showed changes in macronutrient and micronutrient contents due to the effect of AgNPs. Moreover, AgNPs induced ROS production and increased total phenolic content, with a dose-dependent effect. Results suggested that the production of ROS and mineral nutrition are key mechanisms of AgNP-induced hormesis and that phenolic accumulation was obtained as a response of the plant to stress produced by high doses of AgNPs. Therefore, small doses of AgNPs in the culture medium could be an efficient strategy for commercial micropropagation.

  16. Hormetic Response by Silver Nanoparticles on In Vitro Multiplication of Sugarcane (Saccharum spp. Cv. Mex 69-290) Using a Temporary Immersion System

    PubMed Central

    Chavez-Santoscoy, Rocío A.; Lecona-Guzmán, Carlos A.; Bogdanchikova, Nina; Salinas-Ruíz, Josafhat; Gómez-Merino, Fernando Carlos; Pestryakov, Alexey

    2017-01-01

    Background: Hormesis is considered a dose–response phenomenon characterized by growth stimulation at low doses and inhibition at high doses. The hormetic response by silver nanoparticles (AgNPs) on in vitro multiplication of sugarcane was evaluated using a temporary immersion system. Methods: Sugarcane shoots were used as explants cultured in Murashige and Skoog medium with AgNPs at concentrations of 0, 25, 50, 100, and 200 mg/L. Shoot multiplication rate and length were used to determine hormetic response. Total content of phenolic compounds of sugarcane, mineral nutrition, and reactive oxygen species (ROS) was determined. Results: Results were presented as a dose–response curve. Stimulation phase growth was observed at 50 mg/L AgNPs, whereas inhibition phase was detected at 200 mg/L AgNPs. Mineral nutrient analysis showed changes in macronutrient and micronutrient contents due to the effect of AgNPs. Moreover, AgNPs induced ROS production and increased total phenolic content, with a dose-dependent effect. Conclusion: Results suggested that the production of ROS and mineral nutrition are key mechanisms of AgNP-induced hormesis and that phenolic accumulation was obtained as a response of the plant to stress produced by high doses of AgNPs. Therefore, small doses of AgNPs in the culture medium could be an efficient strategy for commercial micropropagation. PMID:29238274

  17. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  18. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  19. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures.

    PubMed

    Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.

  20. Understanding the human health effects of chemical mixtures.

    PubMed Central

    Carpenter, David O; Arcaro, Kathleen; Spink, David C

    2002-01-01

    Most research on the effects of chemicals on biologic systems is conducted on one chemical at a time. However, in the real world people are exposed to mixtures, not single chemicals. Although various substances may have totally independent actions, in many cases two substances may act at the same site in ways that can be either additive or nonadditive. Many even more complex interactions may occur if two chemicals act at different but related targets. In the extreme case there may be synergistic effects, in which case the effects of two substances together are greater than the sum of either effect alone. In reality, most persons are exposed to many chemicals, not just one or two, and therefore the effects of a chemical mixture are extremely complex and may differ for each mixture depending on the chemical composition. This complexity is a major reason why mixtures have not been well studied. In this review we attempt to illustrate some of the principles and approaches that can be used to study effects of mixtures. By the nature of the state of the science, this discussion is more a presentation of what we do not know than of what we do know about mixtures. We approach the study of mixtures at three levels, using specific examples. First, we discuss several human diseases in relation to a variety of environmental agents believed to influence the development and progression of the disease. We present results of selected cellular and animal studies in which simple mixtures have been investigated. Finally, we discuss some of the effects of mixtures at a molecular level. PMID:11834461

  1. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion.

    PubMed

    Bieber, Frederick R; Buckleton, John S; Budowle, Bruce; Butler, John M; Coble, Michael D

    2016-08-31

    The evaluation and interpretation of forensic DNA mixture evidence faces greater interpretational challenges due to increasingly complex mixture evidence. Such challenges include: casework involving low quantity or degraded evidence leading to allele and locus dropout; allele sharing of contributors leading to allele stacking; and differentiation of PCR stutter artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength of the evidence when inclusion of a specific known individual(s) is determined, and the approaches used must be supportable. There are concerns that methods utilized for interpretation of complex forensic DNA mixtures may not be implemented properly in some casework. Similar questions are being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpretation for current and previous casework. Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures are described. Given the most common method for statistical evaluation of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use is the focus of this article. Formulae and other supporting materials are provided. Guidance and details of a DNA mixture interpretation protocol is provided for application of the CPI/CPE method in the analysis of more complex forensic DNA mixtures. This description, in turn, should help reduce the variability of interpretation with application of this methodology and thereby improve the quality of DNA mixture interpretation throughout the forensic community.

  2. Characterization of the Androgen-sensitive MDA-kb2 Cell Line for Assessing Complex Environmental Mixtures

    EPA Science Inventory

    Complex mixtures of synthetic and natural androgens and estrogens, and many other non-steroidal components are commonly released to the aquatic environment from anthropogenic sources. It is important to understand the potential interactive (i.e., additive, synergistic, antagonist...

  3. Diagnostic Assessment of the Ecological Risk of EDCs in Complex Mixtures

    EPA Science Inventory

    Although it is important to be able to forecast the potential endocrine toxicity of chemical mixtures that could enter aquatic environments, in many instances there is a need to determine possible effects of endocrine-active chemicals already present in complex environmental mixt...

  4. Assessing chemical exposure and ecological impacts of environmental surface waters using cell culture-based metabolomic

    EPA Science Inventory

    Waste water treatment plants (WWTPs), as well as industrial and agricultural operations release complex mixtures of anthropogenic chemicals that negatively affect surface water quality. Previous studies have shown that exposure to such complex chemical mixtures can produce adver...

  5. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION

    PubMed Central

    Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.

    1947-01-01

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive urinary nitrogen balance and a liberal output of blood proteins but there is always weight loss, however we may choose to explain this loss. These experiments touch on the complex problems of parenteral nutrition, experimental and clinical. PMID:19871612

  6. Influence of mixtures of calcium-chelating salts on the physicochemical properties of casein micelles.

    PubMed

    Kaliappan, S; Lucey, J A

    2011-09-01

    Calcium-chelating salts (CCS), such as phosphates and citrates, are often added to milk systems to modify physical properties like heat stability. The objective of this study was to investigate the effect of binary CCS mixtures on the properties of casein (CN) micelles including the distribution of Ca between the soluble and CN-bound states. Six binary CCS mixtures were prepared from 4 different types of CCS [i.e., trisodium citrate (TSC), disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), and sodium hexameta phosphate (SHMP)] by combining 2 CCS at a time in 5 different proportions (8.3:91.7, 29.2:70.8, 50:50, 70.8:29.2, and 91.7:8.3). Different concentrations of these mixtures (0, 0.1, 0.3, 0.5, and 0.7% wt/wt) were added to milk protein concentrate solutions (5% wt/wt) at pH 5.8. The ability of CCS to disperse CN particles and its interaction with Ca were assessed from turbidity measurements, acid-base titration behavior, and the quantity of CN-bound Ca and inorganic phosphate (Pi). Turbidity and the buffering peak at pH ∼5.0 during acid titration decreased with an increasing concentration of CCS. This was due to the chelation of Ca and the dispersion of CN micelles. The presence of TSC in mixtures decreased the amount of CN-bound Ca and Pi; however, the presence of TSPP in mixtures increased CN-bound Ca and Pi. When DSP was present at high proportions in mixtures of CCS, the CN-bound Ca and Pi slightly increased. When SHMP was used in mixtures of CCS, CN-bound Ca and Pi increased with the use of a low proportion of SHMP but decreased when SHMP was used at high proportions in the mixture. Combinations of DSP-TSPP used in the proportions 29.2:70.8, 50:50, and 70.8:29.2 resulted in the gelation of milk protein concentrates when the total CCS concentration was ≥0.3%. These results indicated that the type of CCS present in a mixture modified CN properties by various mechanisms, including chelation of Ca, dispersion of CN micelles, and formation of new types of Ca-CCS complexes. The type of interaction between the newly formed Ca-CCS complexes and the dispersed CN depended on the proportion, concentration, and type of CCS present in the mixtures. This information is useful in understanding how mixtures of CCS affect CN properties. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  8. Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures

    PubMed Central

    Nishino, Jo; Kochi, Yuta; Shigemizu, Daichi; Kato, Mamoru; Ikari, Katsunori; Ochi, Hidenori; Noma, Hisashi; Matsui, Kota; Morizono, Takashi; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Matsui, Shigeyuki

    2018-01-01

    Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic [~40% of independent genome-wide SNPs are risk variants, most within odds ratio (OR = 1.03)], whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR = 1.05 to 1.1). For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutations. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases. PMID:29740473

  9. Whole-Range Assessment: A Simple Method for Analysing Allelopathic Dose-Response Data

    PubMed Central

    An, Min; Pratley, J. E.; Haig, T.; Liu, D.L.

    2005-01-01

    Based on the typical biological responses of an organism to allelochemicals (hormesis), concepts of whole-range assessment and inhibition index were developed for improved analysis of allelopathic data. Examples of their application are presented using data drawn from the literature. The method is concise and comprehensive, and makes data grouping and multiple comparisons simple, logical, and possible. It improves data interpretation, enhances research outcomes, and is a statistically efficient summary of the plant response profiles. PMID:19330165

  10. [Systemic approach to radiobiological studies].

    PubMed

    Bulanova, K Ia; Lobanok, L M

    2004-01-01

    The principles of information theory were applied for analysis of radiobiological effects. The perception of ionizing radiations as a signal enables living organism to discern their benefits or harm, to react to absolute and relatively small deviations, to keep the logic and chronicle of events, to use the former experience for reacting in presence, to forecast consequences. The systemic analysis of organism's response to ionizing radiations allows explaining the peculiarities of effects of different absorbed doses, hormesis, apoptosis, remote consequences and other post-radiation effects.

  11. Evaluating the Similarity of Complex Drinking-Water Disinfection By-Product Mixtures: Overview of the Issues

    EPA Science Inventory

    The Presentation describes the advantages and challenges of working with Whole Mixtures, discusses an exploratory approach for evaluating sufficient similarity, and challenges of applying such approaches to other environmental mixtures.

  12. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aube, Michel, E-mail: 4aubem@videotron.ca; Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca; Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca

    2011-04-15

    Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cellsmore » and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100x10{sup 3} and 50x10{sup 3} dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10x10{sup 3} and 5x10{sup 3} dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p<0.05 at the 50x10{sup 3} dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, {beta}-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The proliferative effect of the mixture on CAMA-1 cells in the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation. - Research highlights: {yields} We studied effects of a complex organochlorine mixture on breast cancer cell growth. {yields} Weak xenoestrogens in the mixture stimulated the proliferation of MCF-7 cells. {yields} Antiandrogens increased the proliferation CAMA-1 cells grown with sex steroids. {yields} High concentrations of the mixture decreased the proliferation of all cell lines.« less

  13. Health risks associated with inhaled nasal toxicants.

    PubMed

    Feron, V J; Arts, J H; Kuper, C F; Slootweg, P J; Woutersen, R A

    2001-05-01

    Health risks of inhaled nasal toxicants were reviewed with emphasis on chemically induced nasal lesions in humans, sensory irritation, olfactory and trigeminal nerve toxicity, nasal immunopathology and carcinogenesis, nasal responses to chemical mixtures, in vitro models, and nasal dosimetry- and metabolism-based extrapolation of nasal data in animals to humans. Conspicuous findings in humans are the effects of outdoor air pollution on the nasal mucosa, and tobacco smoking as a risk factor for sinonasal squamous cell carcinoma. Objective methods in humans to discriminate between sensory irritation and olfactory stimulation and between adaptation and habituation have been introduced successfully, providing more relevant information than sensory irritation studies in animals. Against the background of chemoperception as a dominant window of the brain on the outside world, nasal neurotoxicology is rapidly developing, focusing on olfactory and trigeminal nerve toxicity. Better insight in the processes underlying neurogenic inflammation may increase our knowledge of the causes of the various chemical sensitivity syndromes. Nasal immunotoxicology is extremely complex, which is mainly due to the pivotal role of nasal lymphoid tissue in the defense of the middle ear, eye, and oral cavity against antigenic substances, and the important function of the nasal passages in brain drainage in rats. The crucial role of tissue damage and reactive epithelial hyperproliferation in nasal carcinogenesis has become overwhelmingly clear as demonstrated by the recently developed biologically based model for predicting formaldehyde nasal cancer risk in humans. The evidence of carcinogenicity of inhaled complex mixtures in experimental animals is very limited, while there is ample evidence that occupational exposure to mixtures such as wood, leather, or textile dust or chromium- and nickel-containing materials is associated with increased risk of nasal cancer. It is remarkable that these mixtures are aerosols, suggesting that their "particulate nature" may be a major factor in their potential to induce nasal cancer. Studies in rats have been conducted with defined mixtures of nasal irritants such as aldehydes, using a model for competitive agonism to predict the outcome of such mixed exposures. When exposure levels in a mixture of nasal cytotoxicants were equal to or below the "No-Observed-Adverse-Effect-Levels" (NOAELs) of the individual chemicals, neither additivity nor potentiation was found, indicating that the NOAEL of the "most risky chemical" in the mixture would also be the NOAEL of the mixture. In vitro models are increasingly being used to study mechanisms of nasal toxicity. However, considering the complexity of the nasal cavity and the many factors that contribute to nasal toxicity, it is unlikely that in vitro experiments ever will be substitutes for in vivo inhalation studies. It is widely recognized that a strategic approach should be available for the interpretation of nasal effects in experimental animals with regard to potential human health risk. Mapping of nasal lesions combined with airflow-driven dosimetry and knowledge about local metabolism is a solid basis for extrapolation of animal data to humans. However, more research is needed to better understand factors that determine the susceptibility of human and animal tissues to nasal toxicants, in particular nasal carcinogens.

  14. Intermolecular forces in acetonitrile + ethanol binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.

    2015-10-01

    FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.

  15. In Vitro Assays for Assessment of Androgenic and Estrogenic Activity of Defined Mixtures and Complex Environmental Samples

    EPA Science Inventory

    Point sources of endocrine active compounds to aquatic environments such as waste water treatment plants, pulp and paper mills, and animal feeding operations invariably contain complex mixtures of chemicals. The current study investigates the use of targeted in vitro assays des...

  16. In vitro assays for assessment of androgenic and estrogenic activity of defined mixtures and complex environment samples

    EPA Science Inventory

    Point sources of potentially endocrine active compounds to aquatic environments such as waste water treatment plants, pulp and paper mills, and animal feeding operations invariably contain complex mixtures of chemicals. The current study investigates the use of targeted in vitro ...

  17. Integrating multiple lines of evidence to assess biological hazards of complex mixtures: A case study in the Maumee River

    EPA Science Inventory

    Product Description:Due to technological improvements, increasing numbers of chemical contaminants are being detected in surface waters nation-wide, including the Great Lakes. Methods are needed to understand what impact these complex mixtures of contaminants can have on aquatic ...

  18. The Developmental Effects Of A Municipal Wastewater Effluent On The Northern Leopard Frog, Rana pipiens

    EPA Science Inventory

    Wastewater effluents are complex mixtures containing a variety of anthropogenic compounds, many of which are known endocrine disruptors. In order to characterize the development and behavorial effects of such a complex mixture, northern leopard frogs, Rana pipiens, were e...

  19. In vitro assays for assessment of androgenic and estrogenic activity in defined mixtures and complex environmental samples

    EPA Science Inventory

    Eflluents from sources such as waste water treatment plants and animal feeding operations invariably contain complex mixtures of chemicals. Recent research on effluent from cattle feeding operations in the US have linked morphological alterations in fish with in vitro androgenic ...

  20. Ground-Based Aerosol Measurements | Science Inventory ...

    EPA Pesticide Factsheets

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo

  1. Mixture effects in samples of multiple contaminants - An inter-laboratory study with manifold bioassays.

    PubMed

    Altenburger, Rolf; Scholze, Martin; Busch, Wibke; Escher, Beate I; Jakobs, Gianina; Krauss, Martin; Krüger, Janet; Neale, Peta A; Ait-Aissa, Selim; Almeida, Ana Catarina; Seiler, Thomas-Benjamin; Brion, François; Hilscherová, Klára; Hollert, Henner; Novák, Jiří; Schlichting, Rita; Serra, Hélène; Shao, Ying; Tindall, Andrew; Tolefsen, Knut-Erik; Umbuzeiro, Gisela; Williams, Tim D; Kortenkamp, Andreas

    2018-05-01

    Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential adverse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters. We compared the observed mixture effects against component-based mixture effect predictions derived from additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the active components as predicted even against a background of other inactive contaminants. When none of the mixture components showed any activity by themselves then the mixture also was without effects. The mixture effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity predictions for concentration addition and independent action, reflecting well the diversity of the anticipated modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell- and organism-based endpoints produced mixture responses in agreement with the additivity expectation of concentration addition. Exceptionally, expected (additive) mixture response did not occur due to masking effects such as general toxicity from other compounds. Generally, deviations from an additivity expectation could be explained due to experimental factors, specific limitations of the effect endpoint or masking side effects such as cytotoxicity in in vitro assays. The majority of bioassays were able to quantitatively detect the predicted non-interactive, additive combined effect of the specifically bioactive compounds against a background of complex mixture of other chemicals in the sample. This supports the use of a combination of chemical and bioanalytical monitoring tools for the identification of chemicals that drive a specific mixture effect. Furthermore, we demonstrated that a panel of bioassays can provide a diverse profile of effect responses to a complex contaminated sample. This could be extended towards representing mixture adverse outcome pathways. Our findings support the ongoing development of bioanalytical tools for (i) compiling comprehensive effect-based batteries for water quality assessment, (ii) designing tailored surveillance methods to safeguard specific water uses, and (iii) devising strategies for effect-based diagnosis of complex contamination. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions.

    PubMed

    Anvari, Mohammad; Joyner Melito, Helen S

    2017-12-01

    Concentrated emulsions containing both proteins and polysaccharides are the basis for many commercial products; however, the effects of protein-polysaccharide interactions on the functional properties of these complex systems are often poorly understood from a fundamental standpoint. Hence, the objective of this study was to determine the effects of fish gelatin (FG)-gum arabic (GA) complexation at different aqueous phase pH (3.6, 5.0, and 9.0) on concentrated emulsion structure-function relationships. Concentrated emulsions were prepared using FG-GA mixtures and characterized by rheometry and confocal scanning laser microscopy (CSLM). CSLM images showed that all samples were O/W emulsions; emulsions with lower pH showed smaller oil droplets, greater homogeneity in size distribution, and higher stability. This was attributed to an increased number of FG-GA complexes in the emulsification. Electrostatic attractive interactions and charge neutralization created biopolymer associations with increased emulsification capacity. Samples with FG-GA mixtures at lower pH showed higher elastic moduli under small deformation and exhibited greater deviation between apparent and complex viscosities under the Cox-Merz rule, indicating increased gel network extension and greater intermolecular connectivity between adsorbed layers of adjacent oil droplets. These results can be used to incorporate protein-polysaccharide complexes as a suitable emulsifier in materials comprising concentrated emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A competitive binding model predicts the response of mammalian olfactory receptors to mixtures

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Murphy, Nicolle; Mainland, Joel; Balasubramanian, Vijay

    Most natural odors are complex mixtures of many odorants, but due to the large number of possible mixtures only a small fraction can be studied experimentally. To get a realistic understanding of the olfactory system we need methods to predict responses to complex mixtures from single odorant responses. Focusing on mammalian olfactory receptors (ORs in mouse and human), we propose a simple biophysical model for odor-receptor interactions where only one odor molecule can bind to a receptor at a time. The resulting competition for occupancy of the receptor accounts for the experimentally observed nonlinear mixture responses. We first fit a dose-response relationship to individual odor responses and then use those parameters in a competitive binding model to predict mixture responses. With no additional parameters, the model predicts responses of 15 (of 18 tested) receptors to within 10 - 30 % of the observed values, for mixtures with 2, 3 and 12 odorants chosen from a panel of 30. Extensions of our basic model with odorant interactions lead to additional nonlinearities observed in mixture response like suppression, cooperativity, and overshadowing. Our model provides a systematic framework for characterizing and parameterizing such mixing nonlinearities from mixture response data.

  4. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  5. Considering the cumulative risk of mixtures of chemicals – A challenge for policy makers

    PubMed Central

    2012-01-01

    Background The current paradigm for the assessment of the health risk of chemical substances focuses primarily on the effects of individual substances for determining the doses of toxicological concern in order to inform appropriately the regulatory process. These policy instruments place varying requirements on health and safety data of chemicals in the environment. REACH focuses on safety of individual substances; yet all the other facets of public health policy that relate to chemical stressors put emphasis on the effects of combined exposure to mixtures of chemical and physical agents. This emphasis brings about methodological problems linked to the complexity of the respective exposure pathways; the effect (more complex than simple additivity) of mixtures (the so-called 'cocktail effect'); dose extrapolation, i.e. the extrapolation of the validity of dose-response data to dose ranges that extend beyond the levels used for the derivation of the original dose-response relationship; the integrated use of toxicity data across species (including human clinical, epidemiological and biomonitoring data); and variation in inter-individual susceptibility associated with both genetic and environmental factors. Methods In this paper we give an overview of the main methodologies available today to estimate the human health risk of environmental chemical mixtures, ranging from dose addition to independent action, and from ignoring interactions among the mixture constituents to modelling their biological fate taking into account the biochemical interactions affecting both internal exposure and the toxic potency of the mixture. Results We discuss their applicability, possible options available to policy makers and the difficulties and potential pitfalls in implementing these methodologies in the frame of the currently existing policy framework in the European Union. Finally, we suggest a pragmatic solution for policy/regulatory action that would facilitate the evaluation of the health effects of chemical mixtures in the environment and consumer products. Conclusions One universally applicable methodology does not yet exist. Therefore, a pragmatic, tiered approach to regulatory risk assessment of chemical mixtures is suggested, encompassing (a) the use of dose addition to calculate a hazard index that takes into account interactions among mixture components; and (b) the use of the connectivity approach in data-rich situations to integrate mechanistic knowledge at different scales of biological organization. PMID:22759500

  6. Quantification of trace metals in water using complexation and filter concentration.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel

    2010-06-15

    Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.

  7. Stimulation or Inhibition Conflicting evidence for (±)-catechin’s role as a chemical facilitator and disease protecting agent

    PubMed Central

    Venkatachalam, L; Biedrzycki, Meredith L

    2010-01-01

    The occurrence of plant hormesis is a poorly understood phenomenon, wherein low doses of phytotoxins unusually promote growth responses in higher plants. In contrast, negative plant-plant interactions mediated through secreted small molecular weight compounds initiate growth inhibitory responses. Studies related to (±)-catechin mediated allelopathy have transpired both novel information and generated significant controversy. Specifically, studies related to the phytotoxicity responses mediated by (±)-catechins have been seriously debated. The pronged opinion that (±)-catechin is phytotoxic versus non-phytotoxic relies more on the target plant systems and the conditions used to test phytotoxic responses. It is reported that lower than MIC dosage supplementation of (±)-catechin could promote growth responses in the model plant Arabidopsis thaliana. Furthermore, it was shown that sub-MIC levels of (±)-catechin supplementation leads to elicitation of disease resistance against Pseudomonas syringae DC3000 (hereafter DC3000). Intrigued by the unique hormesis response observed, we tested whether (±)-catechin indeed promotes growth responses in A. thaliana. In our hands, we observed no growth promotion responses of (±)-catechin against A. thaliana under in vitro or in soil conditions. We also evaluated the previously reported disease protecting properties of (±)-catechin in A. thaliana against DC3000. The systematic observations to evaluate disease protecting properties entailing colony counts, disease incidences and loss of chlorophyll studies showed no disease protecting properties of (±)-catechin. The transcriptional response for a marker pathogenesis related PR1 defense gene showed no induction post (±)-catechin supplementation. The cell death genes (AC D2 and CA D1) associated with programmed cell death revealed unchanged expression levels in plants treated with sub-MIC levels of (±)-catechin. Further, we report supplementation of sub-MIC levels of (±)-catechin negates any change in the expression of an auxin responsive gene. Our results refute the previous claims of growth and defense inducing effects of (±)-catechin, thus suggesting that a thorough reexamination is required to evaluate the hormetic effect of (±)-catechin under both controlled and natural conditions. PMID:20023372

  8. Hazardous air pollutants and asthma.

    PubMed

    Leikauf, George D

    2002-08-01

    Asthma has a high prevalence in the United States, and persons with asthma may be at added risk from the adverse effects of hazardous air pollutants (HAPs). Complex mixtures (fine particulate matter and tobacco smoke) have been associated with respiratory symptoms and hospital admissions for asthma. The toxic ingredients of these mixtures are HAPs, but whether ambient HAP exposures can induce asthma remains unclear. Certain HAPs are occupational asthmagens, whereas others may act as adjuncts during sensitization. HAPs may exacerbate asthma because, once sensitized, individuals can respond to remarkably low concentrations, and irritants lower the bronchoconstrictive threshold to respiratory antigens. Adverse responses after ambient exposures to complex mixtures often occur at concentrations below those producing effects in controlled human exposures to a single compound. In addition, certain HAPs that have been associated with asthma in occupational settings may interact with criteria pollutants in ambient air to exacerbate asthma. Based on these observations and past experience with 188 HAPs, a list of 19 compounds that could have the highest impact on the induction or exacerbation of asthma was developed. Nine additional compounds were identified that might exacerbate asthma based on their irritancy, respirability, or ability to react with biological macromolecules. Although the ambient levels of these 28 compounds are largely unknown, estimated exposures from emissions inventories and limited air monitoring suggest that aldehydes (especially acrolein and formaldehyde) and metals (especially nickel and chromium compounds) may have possible health risk indices sufficient for additional attention. Recommendations for research are presented regarding exposure monitoring and evaluation of biologic mechanisms controlling how these substances induce and exacerbate asthma.

  9. Hazardous air pollutants and asthma.

    PubMed Central

    Leikauf, George D

    2002-01-01

    Asthma has a high prevalence in the United States, and persons with asthma may be at added risk from the adverse effects of hazardous air pollutants (HAPs). Complex mixtures (fine particulate matter and tobacco smoke) have been associated with respiratory symptoms and hospital admissions for asthma. The toxic ingredients of these mixtures are HAPs, but whether ambient HAP exposures can induce asthma remains unclear. Certain HAPs are occupational asthmagens, whereas others may act as adjuncts during sensitization. HAPs may exacerbate asthma because, once sensitized, individuals can respond to remarkably low concentrations, and irritants lower the bronchoconstrictive threshold to respiratory antigens. Adverse responses after ambient exposures to complex mixtures often occur at concentrations below those producing effects in controlled human exposures to a single compound. In addition, certain HAPs that have been associated with asthma in occupational settings may interact with criteria pollutants in ambient air to exacerbate asthma. Based on these observations and past experience with 188 HAPs, a list of 19 compounds that could have the highest impact on the induction or exacerbation of asthma was developed. Nine additional compounds were identified that might exacerbate asthma based on their irritancy, respirability, or ability to react with biological macromolecules. Although the ambient levels of these 28 compounds are largely unknown, estimated exposures from emissions inventories and limited air monitoring suggest that aldehydes (especially acrolein and formaldehyde) and metals (especially nickel and chromium compounds) may have possible health risk indices sufficient for additional attention. Recommendations for research are presented regarding exposure monitoring and evaluation of biologic mechanisms controlling how these substances induce and exacerbate asthma. PMID:12194881

  10. Analysis of the improvement of selenite retention in smectite by adding alumina nanoparticles.

    PubMed

    Mayordomo, Natalia; Alonso, Ursula; Missana, Tiziana

    2016-12-01

    Smectite clay is used as barrier for hazardous waste retention and confinement. It is a powerful material to retain cations, but less effective for retaining anionic species like selenite. This study shows that the addition of a small percentage of γ-Al 2 O 3 nanoparticles to smectite significantly improves selenite sorption. γ-Al 2 O 3 nanoparticles provide high surface area and positively charged surface sites within a wide range of pH, since their point of zero charge is at pH8-9. An addition of 20wt% of γ-Al 2 O 3 to smectite is sufficient to approach the sorption capacity of pure alumina. To analyze the sorption behavior of the smectite/oxide mixtures, a nonelectrostatic surface complexation model was considered, accounting for the surface complexation of HSeO 3 - and SeO 3 2- , the anion competition, and the formation of surface ternary complexes with major cations present in the solution. Selenite sorption in mixtures was satisfactorily described with the surface parameters and complexation constants defined for the pure systems, accounting only for the mixture weight fractions. Sorption in mixtures was additive despite the particle heteroaggregation observed in previous stability studies carried out on smectite/γ-Al 2 O 3 mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures.

    PubMed

    Chundawat, Shishir P S; Lipton, Mary S; Purvine, Samuel O; Uppugundla, Nirmal; Gao, Dahai; Balan, Venkatesh; Dale, Bruce E

    2011-10-07

    Efficient deconstruction of cellulosic biomass to fermentable sugars for fuel and chemical production is accomplished by a complex mixture of cellulases, hemicellulases, and accessory enzymes (e.g., >50 extracellular proteins). Cellulolytic enzyme mixtures, produced industrially mostly using fungi like Trichoderma reesei, are poorly characterized in terms of their protein composition and its correlation to hydrolytic activity on cellulosic biomass. The secretomes of commercial glycosyl hydrolase-producing microbes was explored using a proteomics approach with high-throughput quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we show that proteomics-based spectral counting approach is a reasonably accurate and rapid analytical technique that can be used to determine protein composition of complex glycosyl hydrolase mixtures that also correlates with the specific activity of individual enzymes present within the mixture. For example, a strong linear correlation was seen between Avicelase activity and total cellobiohydrolase content. Reliable, quantitative and cheaper analytical methods that provide insight into the cellulosic biomass degrading fungal and bacterial secretomes would lead to further improvements toward commercialization of plant biomass-derived fuels and chemicals.

  12. Exploring the Fate of Nitrogen Heterocycles in Complex Prebiotic Mixtures

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Cleaves, Henderson J.; Dworkin, Jason P.; House, Christopher H.

    2011-01-01

    A long standing question in the field of prebiotic chemistry is the origin of the genetic macromolecules DNA and RNA. DNA and RNA have very complex structures with repeating subunits of nucleotides, which are composed of nucleobases (nitrogen heterocycles) connected to sugar-phosphate. Due to the instability of some nucleobases (e.g. cytosine), difficulty of synthesis and instability of D-ribose, and the likely scarcity of polyphosphates necessary for the modern nucleotides, alternative nucleotides have been proposed for constructing the first genetic material. Thus, we have begun to investigate the chemistry of nitrogen heterocycles in plausible, complex prebiotic mixtures in an effort to identify robust reactions and potential alternative nucleotides. We have taken a complex prebiotic mixture produced by a spark discharge acting on a gas mixture of N2, CO2, CH4, and H2, and reacted it with four nitrogen heterocycles: uracil, 5-hydroxymethyluracil, guanine, and isoxanthopterin (2-amino-4,7-dihydroxypteridine). The products of the reaction between the spark mixture and each nitrogen heterocycle were characterized by liquid chromatography coupled to UV spectroscopy and Orbitrap mass spectrometry. We found that the reaction between the spark mixtUl'e and isoxanthopterin formed one major product, which was a cyanide adduct. 5-hydroxymethyluracil also reacted with the spark mixture to form a cyanide adduct, uracil-5-acetonitrile, which has been synthesized previously by reacting HCN with S-hydroxymethyluracil. Unlike isoxanthopterin, the chromatogram of the 5-hydroxymethyluracil reaction was much more complex with multiple products including spark-modified dimers. Additionally, we observed that HMU readily self-polymerizes in solution to a variety of oligomers consistent with those suggested by Cleaves. Guanine and uracil, the biological nucleobases, did not react with the spark mixture, even at high temperature (100 C). This suggests that there are alternative nucleobases which are more reactive under prebiotic conditions and may have been involved in producing precursor nucleotides.

  13. Heteroprotein Complex Formation of Bovine Lactoferrin and Pea Protein Isolate: A Multiscale Structural Analysis.

    PubMed

    Adal, Eda; Sadeghpour, Amin; Connell, Simon; Rappolt, Michael; Ibanoglu, Esra; Sarkar, Anwesha

    2017-02-13

    Associative electrostatic interactions between two oppositely charged globular proteins, lactoferrin (LF) and pea protein isolate (PPI), the latter being a mixture of vicilin, legumin, and convicilin, was studied with a specific PPI/LF molar ratio at room temperature. Structural aspects of the electrostatic complexes probed at different length scales were investigated as a function of pH by means of different complementary techniques, namely, with dynamic light scattering, small-angle X-ray scattering (SAXS), turbidity measurements, and atomic force microscopy (AFM). Irrespective of the applied techniques, the results consistently displayed that complexation between LF and PPI did occur. In an optimum narrow range of pH 5.0-5.8, a viscous liquid phase of complex coacervate was obtained upon mild centrifugation of the turbid LF-PPI mixture with a maximum R h , turbidity and the ζ-potential being close to zero observed at pH 5.4. In particular, the SAXS data demonstrated that the coacervates were densely assembled with a roughly spherical size distribution exhibiting a maximum extension of ∼80 nm at pH 5.4. Equally, AFM image analysis showed size distributions containing most frequent cluster sizes around 40-80 nm with spherical to elliptical shapes (axis aspect ratio ≤ 2) as well as less frequent elongated to chainlike structures. The most frequently observed compact complexes, we identify as mainly leading to LF-PPI coacervation, whereas for the less frequent chain-like aggregates, we hypothesize that additionally PPI-PPI facilitated complexes exist.

  14. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, Megan K., E-mail: megan.horton@mssm.edu; Blount, Benjamin C.; Valentin-Blasini, Liza

    Background: Adequate maternal thyroid function during pregnancy is necessary for normal fetal brain development, making pregnancy a critical window of vulnerability to thyroid disrupting insults. Sodium/iodide symporter (NIS) inhibitors, namely perchlorate, nitrate, and thiocyanate, have been shown individually to competitively inhibit uptake of iodine by the thyroid. Several epidemiologic studies examined the association between these individual exposures and thyroid function. Few studies have examined the effect of this chemical mixture on thyroid function during pregnancy Objectives: We examined the cross sectional association between urinary perchlorate, thiocyanate and nitrate concentrations and thyroid function among healthy pregnant women living in New Yorkmore » City using weighted quantile sum (WQS) regression. Methods: We measured thyroid stimulating hormone (TSH) and free thyroxine (FreeT4) in blood samples; perchlorate, thiocyanate, nitrate and iodide in urine samples collected from 284 pregnant women at 12 (±2.8) weeks gestation. We examined associations between urinary analyte concentrations and TSH or FreeT4 using linear regression or WQS adjusting for gestational age, urinary iodide and creatinine. Results: Individual analyte concentrations in urine were significantly correlated (Spearman's r 0.4–0.5, p<0.001). Linear regression analyses did not suggest associations between individual concentrations and thyroid function. The WQS revealed a significant positive association between the weighted sum of urinary concentrations of the three analytes and increased TSH. Perchlorate had the largest weight in the index, indicating the largest contribution to the WQS. Conclusions: Co-exposure to perchlorate, nitrate and thiocyanate may alter maternal thyroid function, specifically TSH, during pregnancy. - Highlights: • Perchlorate, nitrate, thiocyanate and iodide measured in maternal urine. • Thyroid function (TSH and Free T4) measured in maternal blood. • Weighted quantile sum (WQS) regression examined complex mixture effect. • WQS identified an inverse association between the exposure mixture and maternal TSH. • Perchlorate indicated as the ‘bad actor’ of the mixture.« less

  15. ORD'S FOUR LAB STUDY: TOXICOLOGICAL AND CHEMICAL EVALUATION OF COMPLEX MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Disinfectants used in the production of drinking water react with naturally occurring organic and inorganic material in the source water to produce disinfection by-products (DBPs). Humans are exposed daily to a complex mixture of DBPs via oral, dermal, and inhalation routes. To ...

  16. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  17. Synergistic cellular effects including mitochondrial destabilization, autophagy and apoptosis following low-level exposure to a mixture of lipophilic persistent organic pollutants.

    PubMed

    Rainey, Nathan E; Saric, Ana; Leberre, Alexandre; Dewailly, Etienne; Slomianny, Christian; Vial, Guillaume; Zeliger, Harold I; Petit, Patrice X

    2017-07-05

    Humans are exposed to multiple exogenous environmental pollutants. Many of these compounds are parts of mixtures that can exacerbate harmful effects of the individual mixture components. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is primarily produced via industrial processes including incineration and the manufacture of herbicides. Both endosulfan and TCDD are persistent organic pollutants which elicit cytotoxic effects by inducing reactive oxygen species generation. Sublethal concentrations of mixtures of TCDD and endosulfan increase oxidative stress, as well as mitochondrial homeostasis disruption, which is preceded by a calcium rise and, in fine, induce cell death. TCDD+Endosulfan elicit a complex signaling sequence involving reticulum endoplasmic destalilization which leads to Ca 2+ rise, superoxide anion production, ATP drop and late NADP(H) depletion associated with a mitochondrial induced apoptosis concomitant early autophagic processes. The ROS scavenger, N-acetyl-cysteine, blocks both the mixture-induced autophagy and death. Calcium chelators act similarly and mitochondrially targeted anti-oxidants also abrogate these effects. Inhibition of the autophagic fluxes with 3-methyladenine, increases mixture-induced cell death. These findings show that subchronic doses of pollutants may act synergistically. They also reveal that the onset of autophagy might serve as a protective mechanism against ROS-triggered cytotoxic effects of a cocktail of pollutants in Caco-2 cells and increase their tumorigenicity.

  18. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  19. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros

    PubMed Central

    Haddi, Khalid; Mendes, Marcos V.; Lino-Neto, José; Freitas, Hemerson L.; Guedes, Raul Narciso C.; Oliveira, Eugênio E.

    2016-01-01

    Environmental stress in newly-emerged adult insects can have dramatic consequences on their life traits (e.g., dispersion, survival and reproduction) as adults. For instance, insects sublethally exposed to environmental stressors (e.g., insecticides) can gain fitness benefits as a result of hormesis (i.e., benefits of low doses of compounds that would be toxic at higher doses). Here, we experimentally tested whether sublethal exposure to the insecticide imidacloprid would hormetically affect the sexual fitness of newly-emerged adults of the Neotropical brown stink bug Euschistus heros (Hemiptera: Heteroptera: Pentatomidae), which is the most abundant and prevalent insect pest in Neotropical soybean fields. We evaluated the sexual fitness of four couple combinations: unexposed couples, exposed females, exposed males, and exposed couples. Sublethal exposure to dry residues (i.e., contact) of imidacloprid (at 1% of recommended field rate) did not affect insect survival, but led to higher mating frequencies when at least one member of the couple was exposed. However, the average mating duration was shortened when only females were exposed to imidacloprid. Moreover, exposed males showed higher locomotory (walking) activity, lower respiration rates and induced higher fecundity rates when mated to unexposed females. Although the reproductive tracts of exposed males did not differ morphometrically from unexposed males, their accessory glands exhibited positive reactions for acidic and basic contents. Our findings suggest that males of the Neotropical brown stink bug hormetically increase their sexual fitness when cued by impending insecticidal stress in early adulthood. PMID:27284906

  20. Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

    PubMed

    Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank

    2018-05-21

    Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.

  1. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  2. Fingerprinting selection for agroenvironmental catchment studies: EDXRF analysis for solving complex artificial mixtures

    NASA Astrophysics Data System (ADS)

    Torres Astorga, Romina; Velasco, Hugo; Dercon, Gerd; Mabit, Lionel

    2017-04-01

    Soil erosion and associated sediment transportation and deposition processes are key environmental problems in Central Argentinian watersheds. Several land use practices - such as intensive grazing and crop cultivation - are considered likely to increase significantly land degradation and soil/sediment erosion processes. Characterized by highly erodible soils, the sub catchment Estancia Grande (12.3 km2) located 23 km north east of San Luis has been investigated by using sediment source fingerprinting techniques to identify critical hot spots of land degradation. The authors created 4 artificial mixtures using known quantities of the most representative sediment sources of the studied catchment. The first mixture was made using four rotation crop soil sources. The second and the third mixture were created using different proportions of 4 different soil sources including soils from a feedlot, a rotation crop, a walnut forest and a grazing soil. The last tested mixture contained the same sources as the third mixture but with the addition of a fifth soil source (i.e. a native bank soil). The Energy Dispersive X Ray Fluorescence (EDXRF) analytical technique has been used to reconstruct the source sediment proportion of the original mixtures. Besides using a traditional method of fingerprint selection such as Kruskal-Wallis H-test and Discriminant Function Analysis (DFA), the authors used the actual source proportions in the mixtures and selected from the subset of tracers that passed the statistical tests specific elemental tracers that were in agreement with the expected mixture contents. The selection process ended with testing in a mixing model all possible combinations of the reduced number of tracers obtained. Alkaline earth metals especially Strontium (Sr) and Barium (Ba) were identified as the most effective fingerprints and provided a reduced Mean Absolute Error (MAE) of approximately 2% when reconstructing the 4 artificial mixtures. This study demonstrates that the EDXRF fingerprinting approach performed very well in reconstructing our original mixtures especially in identifying and quantifying the contribution of the 4 rotation crop soil sources in the first mixture.

  3. Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions

    PubMed Central

    Latino, Diogo A. R. S.; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. PMID:24551112

  4. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.

  5. Positive effects of intermittent fasting in ischemic stroke.

    PubMed

    Fann, David Yang-Wei; Ng, Gavin Yong Quan; Poh, Luting; Arumugam, Thiruma V

    2017-03-01

    Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate periods of ad libitum feeding and fasting. Prophylactic intermittent fasting has been shown to extend lifespan and attenuate the progress and severity of age-related diseases such as cardiovascular (e.g. stroke and myocardial infarction), neurodegenerative (e.g. Alzheimer's disease and Parkinson's disease) and cancerous diseases in animal models. Stroke is the second leading cause of death, and lifestyle risk factors such as obesity and physical inactivity have been associated with elevated risks of stroke in humans. Recent studies have shown that prophylactic IF may mitigate tissue damage and neurological deficit following ischemic stroke by a mechanism(s) involving suppression of excitotoxicity, oxidative stress, inflammation and cell death pathways in animal stroke models. This review summarizes data supporting the potential hormesis mechanisms of prophylactic IF in animal models, and with a focus on findings from animal studies of prophylactic IF in stroke in our laboratory. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Interactions and Toxicity of Cu-Zn mixtures to Hordeum vulgare in Different Soils Can Be Rationalized with Bioavailability-Based Prediction Models.

    PubMed

    Qiu, Hao; Versieren, Liske; Rangel, Georgina Guzman; Smolders, Erik

    2016-01-19

    Soil contamination with copper (Cu) is often associated with zinc (Zn), and the biological response to such mixed contamination is complex. Here, we investigated Cu and Zn mixture toxicity to Hordeum vulgare in three different soils, the premise being that the observed interactions are mainly due to effects on bioavailability. The toxic effect of Cu and Zn mixtures on seedling root elongation was more than additive (i.e., synergism) in soils with high and medium cation-exchange capacity (CEC) but less than additive (antagonism) in a low-CEC soil. This was found when we expressed the dose as the conventional total soil concentration. In contrast, antagonism was found in all soils when we expressed the dose as free-ion activities in soil solution, indicating that there is metal-ion competition for binding to the plant roots. Neither a concentration addition nor an independent action model explained mixture effects, irrespective of the dose expressions. In contrast, a multimetal BLM model and a WHAM-Ftox model successfully explained the mixture effects across all soils and showed that bioavailability factors mainly explain the interactions in soils. The WHAM-Ftox model is a promising tool for the risk assessment of mixed-metal contamination in soils.

  7. Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton.

    PubMed

    Echeveste, Pedro; Galbán-Malagón, Cristóbal; Dachs, Jordi; Berrojalbiz, Naiara; Agustí, Susana

    2016-11-15

    Semivolatile and persistent organic pollutants (POPs) undergo atmospheric transport before being deposited to the oceans, where they partition to phytoplankton organic matter. The goal of this study was to determine the toxicity of naturally occurring complex mixtures of organic pollutants to temperate and polar phytoplankton communities from the Mediterranean Sea, the North East (NE) Atlantic, and Southern Oceans. The cell abundance of the different phytoplankton groups, chlorophyll a concentrations, viability of the cells, and growth and decay constants were monitored in response to addition of a range of concentrations of mixtures of organic pollutants obtained from seawater extracts. Almost all of the phytoplankton groups were significantly affected by the complex mixtures of non-polar and polar organic pollutants, with toxicity being greater for these mixtures than for single POPs or simple POP mixtures. Cocktails' toxicity arose at concentrations as low as tenfold the field oceanic levels, probably due to a higher chemical activity of the mixture than of simple POPs mixtures. Overall, smaller cells were the most affected, although Mediterranean picophytoplankton was significantly more tolerant to non-polar POPs than picophytoplankton from the Atlantic Ocean or the Bellingshausen Sea microphytoplankton. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    PubMed Central

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-01-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements. PMID:27112127

  9. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate.

    PubMed

    Pradines, Joël R; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-26

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  10. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    NASA Astrophysics Data System (ADS)

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  11. Evaluate the contribution of the mixture components on the longevity and performance of FC-5 : [summary].

    DOT National Transportation Integrated Search

    2014-05-01

    At its most basic, an asphalt mixture is asphalt : binder and crushed stone aggregate. This : seemingly simple mixture is very complex; method : of preparation and application, additives, and : aggregate type all influence the quality and : durabilit...

  12. SELECTIVE CHANGES IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO A PCB MIXTURE.

    EPA Science Inventory

    Introduction
    Polychlorinated biphenyls (PCBs) offer a unique model to understand the major issues related to complex environmental mixtures. These environmental pollutants are ubiquitous, persistent, bioaccumulate in human body through the food chain, and exist as mixtures of ...

  13. Method of analysis of polymerizable monomeric species in a complex mixture

    DOEpatents

    Hermes, Robert E

    2014-03-18

    Method of selective quantitation of a polymerizable monomeric species in a well spacer fluid, said method comprising the steps of adding at least one solvent having a refractive index of less than about 1.33 to a sample of the complex mixture to produce a solvent phase, and measuring the refractive index of the solvent phase.

  14. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  15. Behavior of complex mixtures in aquatic environments: a synthesis of PNL ecological research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fickeisen, D.H.; Vaughan, B.E.

    1984-06-01

    The term complex mixture has been recently applied to energy-related process streams, products and wastes that typically contain hundreds or thousands of individual organic compounds, like petroleum or synthetic fuel oils; but it is more generally applicable. A six-year program of ecological research has focused on four areas important to understanding the environmental behavior of complex mixtures: physicochemical variables, individual organism responses, ecosystems-level determinations, and metabolism. Of these areas, physicochemical variables and organism responses were intensively studied; system-level determinations and metabolism represent more recent directions. Chemical characterization was integrated throughout all areas of the program, and state-of-the-art methods were applied.more » 155 references, 35 figures, 4 tables.« less

  16. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1995-04-11

    A process is described for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal. 2 figures.

  17. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1994-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to exposure additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  18. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, James W.

    1995-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  19. Sensitivity enhancement by chromatographic peak concentration with ultra-high performance liquid chromatography-nuclear magnetic resonance spectroscopy for minor impurity analysis.

    PubMed

    Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko

    2017-07-28

    High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Huihui; Qu, ChenChen; Liu, Jing

    Bacteria and phyllosilicate commonly coexist in the natural environment, producing various bacteria–clay complexes that are capable of immobilizing heavy metals, such as cadmium, via adsorption. However, the molecular binding mechanisms of heavy metals on these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive B. subtilis, Gram-negative P. putida and their binary mixtures with montmorillonite (Mont) using the Cd K-edge x-ray absorption spectroscopy (XAS) and isothermal titration calorimetry (ITC). We observed a lower adsorptive capacity for P. putida than B. subtilis, whereas P. putida–Mont and B. subtilis–Mont mixtures showed nearly identical Cd adsorption behaviors. EXAFS fitsmore » and ITC measurements demonstrated more phosphoryl binding of Cd in P. putida. The decreased coordination of C atoms around Cd and the reduced adsorption enthalpies and entropies for the binary mixtures compared to that for individual bacteria suggested that the bidentate Cd-carboxyl complexes in pure bacteria systems were probably transformed into monodentate complexes that acted as ionic bridging structure between bacteria and motmorillonite. This study clarified the binding mechanism of Cd at the bacteria–phyllosilicate interfaces from a molecular and thermodynamic view, which has an environmental significance for predicting the chemical behavior of trace elements in complex mineral–organic systems.« less

  1. Metabolomics Tools for Describing Complex Pesticide Exposure in Pregnant Women in Brittany (France)

    PubMed Central

    Bonvallot, Nathalie; Tremblay-Franco, Marie; Chevrier, Cécile; Canlet, Cécile; Warembourg, Charline; Cravedi, Jean-Pierre; Cordier, Sylvaine

    2013-01-01

    Background The use of pesticides and the related environmental contaminations can lead to human exposure to various molecules. In early-life, such exposures could be responsible for adverse developmental effects. However, human health risks associated with exposure to complex mixtures are currently under-explored. Objective This project aims at answering the following questions: What is the influence of exposures to multiple pesticides on the metabolome? What mechanistic pathways could be involved in the metabolic changes observed? Methods Based on the PELAGIE cohort (Brittany, France), 83 pregnant women who provided a urine sample in early pregnancy, were classified in 3 groups according to the surface of land dedicated to agricultural cereal activities in their town of residence. Nuclear magnetic resonance-based metabolomics analyses were performed on urine samples. Partial Least Squares Regression-Discriminant Analysis (PLS-DA) and polytomous regressions were used to separate the urinary metabolic profiles from the 3 exposure groups after adjusting for potential confounders. Results The 3 groups of exposure were correctly separated with a PLS-DA model after implementing an orthogonal signal correction with pareto standardizations (R2 = 90.7% and Q2 = 0.53). After adjusting for maternal age, parity, body mass index and smoking habits, the most statistically significant changes were observed for glycine, threonine, lactate and glycerophosphocholine (upward trend), and for citrate (downward trend). Conclusion This work suggests that an exposure to complex pesticide mixtures induces modifications of metabolic fingerprints. It can be hypothesized from identified discriminating metabolites that the pesticide mixtures could increase oxidative stress and disturb energy metabolism. PMID:23704985

  2. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling process, (3) deriving and using informative priors in sediment fingerprinting context and (4) transparency of the process and replication of model results by other users.

  3. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method

    PubMed Central

    Rodea-Palomares, Ismael; Gonzalez-Pleiter, Miguel; Gonzalo, Soledad; Rosal, Roberto; Leganes, Francisco; Sabater, Sergi; Casellas, Maria; Muñoz-Carpena, Rafael; Fernández-Piñas, Francisca

    2016-01-01

    The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of experimental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complex mixtures, and variable environmental conditions) supports the widespread perception that these effects are often unpredictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). We present a case study where GSA-QHTS allowed for the identification of the main pharmaceutical pollutants (and their interactions), driving biological effects of low-dose complex mixtures at the microbial population level. The QHTS experiments involved the integrated analysis of nearly 2700 observations from an array of 180 unique low-dose mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceutical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typical freshwater microbial community assemblages. Contrary to our expectations and challenging established scientific opinion, the bioactivity of the mixtures was not predicted by the null mixture models, and the main drivers that were identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants and introduce a new operational framework for their systematic identification. PMID:27617294

  4. Short-term bioassay of complex organic mixtures. Part II. Mutagenicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epler, J.L.; Clark, B.R.; Ho, C.

    1978-01-01

    The feasibility of using short-term mutagenicity assays to predict the potential biohazard of various crude and complex test materials has been examined in a coupled chemical and biological approach. The principal focus of the research has involved the preliminary chemical characterizatiion and preparation for bioassay, followed by testing in the Salmonella histidine reversion assay system. The mutagenicity tests are intended to act as predictors of profound long-range health effects such as mutagenesis and/or carcinogenesis; act as a mechanism to rapidly isolate and identify a hazardous agent in a complex mixture; and function as a measure of biological activity correlating baselinemore » data with changes in process conditions. Since complex mixtures can be fractionated and approached in these short-term assays, information reflecting on the actual compounds responsible for the biological effect may be accumulated.« less

  5. ANALYSIS OF FUNCTIONAL EFFECTS OF A MIXTURE OF FIVE PESTICIDES USING A RAY DESIGN

    EPA Science Inventory


    Abstract
    The protection of human health from the adverse effects of cumulative environmental exposure to chemical mixtures is an important issue. Of particular interest is the potential detection and characterization of interaction among chemicals in complex mixtures. R...

  6. SPR imaging based electronic tongue via landscape images for complex mixture analysis.

    PubMed

    Genua, Maria; Garçon, Laurie-Amandine; Mounier, Violette; Wehry, Hillary; Buhot, Arnaud; Billon, Martial; Calemczuk, Roberto; Bonnaffé, David; Hou, Yanxia; Livache, Thierry

    2014-12-01

    Electronic noses/tongues (eN/eT) have emerged as promising alternatives for analysis of complex mixtures in the domain of food and beverage quality control. We have recently developed an electronic tongue by combining surface plasmon resonance imaging (SPRi) with an array of non-specific and cross-reactive receptors prepared by simply mixing two small molecules in varying and controlled proportions and allowing the mixtures to self-assemble on the SPRi prism surface. The obtained eT generated novel and unique 2D continuous evolution profiles (CEPs) and 3D continuous evolution landscapes (CELs) based on which the differentiation of complex mixtures such as red wine, beer and milk were successful. The preliminary experiments performed for monitoring the deterioration of UHT milk demonstrated its potential for quality control applications. Furthermore, the eT exhibited good repeatability and stability, capable of operating after a minimum storage period of 5 months. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Equilibration of a polycation - anionic surfactant mixture at the water/vapor interface.

    PubMed

    Akanno, Andrew; Guzmán, Eduardo; Fernández-Peña, Laura; Llamas, Sara; Ortega, Francisco; Rubio, Ramon Gonzalez

    2018-06-01

    The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC) - sodium lauryl ether sulfate (SLES) mixtures at the water / vapor interface has been studied by different surface tension techniques and dilational visco-elasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte - surfactant complexes in the bulk affects to the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC - SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work helps on the understanding of the most fundamental bases of the physico-chemical behavior of concentrated polyelectrolyte - surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.

  8. Chirality- and sequence-selective successive self-sorting via specific homo- and complementary-duplex formations

    PubMed Central

    Makiguchi, Wataru; Tanabe, Junki; Yamada, Hidekazu; Iida, Hiroki; Taura, Daisuke; Ousaka, Naoki; Yashima, Eiji

    2015-01-01

    Self-recognition and self-discrimination within complex mixtures are of fundamental importance in biological systems, which entirely rely on the preprogrammed monomer sequences and homochirality of biological macromolecules. Here we report artificial chirality- and sequence-selective successive self-sorting of chiral dimeric strands bearing carboxylic acid or amidine groups joined by chiral amide linkers with different sequences through homo- and complementary-duplex formations. A mixture of carboxylic acid dimers linked by racemic-1,2-cyclohexane bis-amides with different amide sequences (NHCO or CONH) self-associate to form homoduplexes in a completely sequence-selective way, the structures of which are different from each other depending on the linker amide sequences. The further addition of an enantiopure amide-linked amidine dimer to a mixture of the racemic carboxylic acid dimers resulted in the formation of a single optically pure complementary duplex with a 100% diastereoselectivity and complete sequence specificity stabilized by the amidinium–carboxylate salt bridges, leading to the perfect chirality- and sequence-selective duplex formation. PMID:26051291

  9. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease.

    PubMed

    Pennisi, Manuela; Crupi, Rosalia; Di Paola, Rosanna; Ontario, Maria Laura; Bella, Rita; Calabrese, Edward J; Crea, Roberto; Cuzzocrea, Salvatore; Calabrese, Vittorio

    2017-07-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities

    PubMed Central

    Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.

    2014-01-01

    Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host's nutrient-based mechanism for bacterial partner selection. PMID:25412107

  11. CHANGES IN HIPPOCAMPAL SPINE DENSITY AND PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO A MIXTURE OF PERSISTENT CHEMICALS.

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) offer a unique model to understand the major issues related to complex environmental mixtures of persistent chemicals. These pollutants are ubiquitous, persistent, bioaccumulate in human body through the food chain, and exist as mixtures of severa...

  12. Method for milling and drilling glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H. (Inventor)

    1980-01-01

    A process for machining glass by placing a rotating carbide working surface under minimum pressure against an area of glass to be worked is described. Concurrently the region between the working surface and the area of glass is wet with a lubricant consisting essentially of a petroleum carrier, a complex mixture of esters and a complex mixture of naturally occurring aromatic oils.

  13. Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas.

    PubMed

    Suslick, Benjamin A; Feng, Liang; Suslick, Kenneth S

    2010-03-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.

  14. Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas

    PubMed Central

    Suslick, Benjamin A.; Feng, Liang; Suslick, Kenneth S.

    2010-01-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures. PMID:20143838

  15. Application of Biologically Based Lumping To Investigate the Toxicokinetic Interactions of a Complex Gasoline Mixture.

    PubMed

    Jasper, Micah N; Martin, Sheppard A; Oshiro, Wendy M; Ford, Jermaine; Bushnell, Philip J; El-Masri, Hisham

    2016-03-15

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents.

  16. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felton, D.L.

    1985-02-01

    Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo(a)pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base. (ACR)

  17. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  18. Quantitative carbon detector for enhanced detection of molecules in foods, pharmaceuticals, cosmetics, flavors, and fuels.

    PubMed

    Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J

    2016-03-07

    Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.

  19. Determination of sediment provenance by unmixing the mineralogy of source-area sediments: The "SedUnMix" program

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.

    2012-01-01

    Along the margins of areas such as Greenland and Baffin Bay, sediment composition reflects a complex mixture of sources associated with the transport of sediment in sea ice, icebergs, melt-water and turbidite plumes. Similar situations arise in many contexts associated with sediment transport and with the mixing of sediments from different source areas. The question is: can contributions from discrete sediment (bedrock) sources be distinguished in a mixed sediment by using mineralogy, and, if so, how accurately? To solve this problem, four end-member source sediments were mixed in various proportions to form eleven artificial mixtures. Two of the end-member sediments are felsic, and the other two have more mafic compositions. End member and mixed sediment mineralogies were measured for the < 2. mm sediment fractions by quantitative X-ray diffraction (qXRD). The proportions of source sediments in the mixtures then were calculated using an Excel macro program named SedUnMix, and the results were evaluated to determine the robustness of the algorithm. The program permits the unmixing of up to six end members, each of which can be represented by up to 5 alternative compositions, so as to better simulate variability within each source region. The results indicate that we can track the relative percentages of the four end members in the mixtures. We recommend, prior to applying the technique to down-core or to other provenance problems, that a suite of known, artificial mixtures of sediments from probable source areas be prepared, scanned, analyzed for quantitative mineralogy, and then analyzed by SedUnMix to check the sensitivity of the method for each specific unmixing problem. ?? 2011 Elsevier B.V..

  20. In-vitro activity of taurolidine on single species and a multispecies population associated with periodontitis.

    PubMed

    Zollinger, Lilly; Schnyder, Simone; Nietzsche, Sandor; Sculean, Anton; Eick, Sigrun

    2015-04-01

    The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Identification of hybrid node and link communities in complex networks

    PubMed Central

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-01-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010

  2. Identification of hybrid node and link communities in complex networks.

    PubMed

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-02

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  3. Identification of hybrid node and link communities in complex networks

    NASA Astrophysics Data System (ADS)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  4. Effect of pH and temperature upon self-assembling process between poly(aspartic acid) and Pluronic F127.

    PubMed

    Nita, Loredana E; Chiriac, Aurica P; Bercea, Maria

    2014-07-01

    The present investigation was made in order to evaluate the capability of self-assembling of the two water soluble polymers, respectively, poly(aspartic acid) and Pluronic F127 into well interpenetrated mixture, and to evidence the connection effects intervened during polymer complex formation to exhibit good stability once formed, as well to understand and correlate the binding strength and the interval between better association domains. The effect of pH and temperature on the interpolymeric complex formation between poly(aspartic acid) and Pluronic F127 was studied by combining rheology with light scattering technique. The solution mixtures between poly(aspartic acid) and Pluronic F127 are Newtonian fluids for all ratios among them. Depending on the polymeric mixture composition and experimental temperature, positive or negative deviations of the experimental values from the additive dependence appear. An interesting behavior was registered around 1/1 wt. ratio between the two polymers, when the hydrodynamic diameter of the interpenetrated polymeric particles decreased suddenly. This allows us to conclude the formation of core-shell micelle structure with poly(aspartic acid) core and Pluronic F127 as shell, performed through strong interactions between polymers. This behavior was sustained by the increase of absolute value of zeta potential owing to the decrease of functional groups number at the surface of micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Characterizing the bioactivity of complex environmental ...

    EPA Pesticide Factsheets

    Bioassays can be employed to evaluate the integrated effects of complex mixtures of both known and unidentified contaminants present in environmental samples. However, such methods have typically focused on one or a few bioactivities despite the fact that the chemicals in a mixture may exhibit a wide range of activities. High throughput toxicology approaches that can rapidly screen samples for a broad diversity of biological activities offer a means to provide a more comprehensive characterization. To test this concept, twenty-four ambient water samples were collected, extracted, and screened for their ability to interact with or modulate over 80 different transcription factors using the Attagene subset of assays utilized by the US EPA’s ToxCast Program. Samples evaluated included water collected at five sites along a spatial gradient centered around a wastewater discharge into the Maumee River, Ohio, USA; 10 samples were collected in varying proximity to a wastewater discharge within the St. Louis River Area of Concern (AOC), MN; and eight samples were associated with a nation-wide US Geological Survey Mixture Study. Samples collected along the Maumee River showed a gradient response in the number of observed activities, ranging from three positive assay responses observed far upstream of discharge to seven positive responses in water from the mixing zone. TGFb signaling and the aryl hydrocarbon receptor (AhR) activation were the biological activities obser

  6. Application of the high throughput Attagene Factorial TM ...

    EPA Pesticide Factsheets

    Bioassays can be employed to evaluate the integrated effects of complex mixtures of both known and unidentified contaminants present in environmental samples. However, such methods have typically focused on one or a few pathways despite the fact that the chemicals in a mixture may exhibit a wide range of activities. High throughput toxicology approaches that can rapidly screen samples for a broad diversity of biological activities offer a means to provide a more comprehensive characterization of complex mixtures. To test this concept, twenty-four ambient water samples were collected, extracted, and screened for their ability to interact with or modulate over 80 different transcription factors using the Attagene FactorialTM platform utilized by the US EPA’s ToxCast Program. Samples evaluated included 10 water samples collected in varying proximity to a wastewater discharge into the St. Louis River, MN; water collected at five sites along a gradient centered on a wastewater discharge into the Maumee River, Ohio, USA; and eight samples collected in association with a nation-wide USGS surface streams study. For samples collected along the St. Louis River, the greatest number of biological activities were observed at locations closest to wastewater discharge with up to 13 endpoints responding. The Maumee River showed a gradient response in the number of observed activities, ranging from three positive responses observed far upstream of a wastewater discharge to 10

  7. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  8. Dielectric properties of benzylamine in 1,2,6-hexanetriol mixture using time domain reflectometry technique

    NASA Astrophysics Data System (ADS)

    Swami, M. B.; Hudge, P. G.; Pawar, V. P.

    The dielectric properties of binary mixtures of benzylamine-1,2,6-hexantriol mixtures at different volume fractions of 1,2,6-hexanetriol have been measured using Time Domain Reflectometry (TDR) technique in the frequency range of 10 MHz to 30 GHz. Complex permittivity spectra were fitted using Havriliak-Negami equation. By using least square fit method the dielectric parameters such as static dielectric constant (ɛ0), dielectric constant at high frequency (ɛ∞), relaxation time τ (ps) and relaxation distribution parameter (β) were extracted from complex permittivity spectra at 25∘C. The intramolecular interaction of different molecules has been discussed using the Kirkwood correlation factor, Bruggeman factor. The Kirkwood correlation factor (gf) and effective Kirkwood correlation factor (geff) indicate the dipole ordering of the binary mixtures.

  9. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.

    PubMed

    Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A

    2015-07-01

    Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A comparison of complexation of Li+ ion with macrocyclic ligands 15-crown-5 and 12-crown-4 in binary nitromethane-acetonitrile mixtures by using lithium-7 NMR technique and ab initio calculation.

    PubMed

    Alizadeh, Nina

    2011-01-01

    Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products.

    PubMed

    Owen, Benjamin C; Haupert, Laura J; Jarrell, Tiffany M; Marcum, Christopher L; Parsell, Trenton H; Abu-Omar, Mahdi M; Bozell, Joseph J; Black, Stuart K; Kenttämaa, Hilkka I

    2012-07-17

    In the search for a replacement for fossil fuel and the valuable chemicals currently obtained from crude oil, lignocellulosic biomass has become a promising candidate as an alternative biorenewable source for crude oil. Hence, many research efforts focus on the extraction, degradation, and catalytic transformation of lignin, hemicellulose, and cellulose. Unfortunately, these processes result in the production of very complex mixtures. Further, while methods have been developed for the analysis of mixtures of oligosaccharides, this is not true for the complex mixtures generated upon degradation of lignin. For example, high-performance liquid chromatography/multiple stage tandem mass spectrometry (HPLC/MS(n)), a tool proven to be invaluable in the analysis of complex mixtures derived from many other biopolymers, such as proteins and DNA, has not been implemented for lignin degradation products. In this study, we have developed an HPLC separation method for lignin degradation products that is amenable to negative-ion-mode electrospray ionization (ESI doped with NaOH), the best method identified thus far for ionization of lignin-related model compounds without fragmentation. The separated and ionized compounds are then analyzed by MS(3) experiments to obtain detailed structural information while simultaneously performing high-resolution measurements to determine their elemental compositions in the two parts of a commercial linear quadrupole ion trap/Fourier-transform ion cyclotron resonance mass spectrometer. A lignin degradation product mixture was analyzed using this method, and molecular structures were proposed for some components. This methodology significantly improves the ability to analyze complex product mixtures that result from degraded lignin.

  12. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  13. Modeling of Complex Mixtures: JP-8 Toxicokinetics

    DTIC Science & Technology

    2008-10-01

    generic tissue compartments in which we have combined diffusion limitation and deep tissue (global tissue model). We also applied a QSAR approach for...SUBJECT TERMS jet fuel, JP-8, PBPK modeling, complex mixtures, nonane, decane, naphthalene, QSAR , alternative fuels 16. SECURITY CLASSIFICATION OF...necessary, to apply to the interaction of specific compounds with specific tissues. We have also applied a QSAR approach for estimating blood and tissue

  14. The Control of Orbital Mixing in Ruthenium Complexes Containing Quinone Related Ligands

    DTIC Science & Technology

    1991-04-04

    and sodium, respectively. Tetrabutylammonium perchlorate (TBAP) and tetrabutylammonium hexafluorophosphate (Kodak; TBAH) were recrystallized from...solution. Lithium perchlorate trihydrate (0.036 g; 0.23 mmol) in methanol (2 mL) was added to the hot reaction mixture. The mixture was cooled to room...and lithium aluminum hydride suspension in THF (this required the use of the 4,5-dimethylated orthophenylenediamine complex for solubility reasons

  15. OFFICE OF RESEARCH AND DEVELOPMENT'S FOUR LAB STUDY: TOXICOLOGICCAL AND CHEMICAL EVALUATION OF COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS (DBPS) AND QUALITY ASSURANCE ACTIVITIES FOR A LARGE U. S. EPA MULTILABORATORY STUDY

    EPA Science Inventory

    Office of Research and Development's Four Lab Study: Toxicological and Chemical Evaluation of Complex Mixtures of Disinfection By-Products (DBPs), and Quality Assurance Activities for a Large U.S. EPA Multilaboratoty Study

    Thomas J. Hughes, Project and QA Manager, Expe...

  16. Pharmacokinetic Modeling of JP-8 Jet Fuel Components: II. A Conceptual Framework

    DTIC Science & Technology

    2003-12-01

    example, a single type of (simple) binary interaction between 300 components would require the specification of some 105 interaction coefficients . One...individual substances, via binary mechanisms, is enough to predict the interactions present in the mixture. Secondly, complex mixtures can often be...approximated as pseudo- binary systems, consisting of the compound of interest plus a single interacting complex vehicle with well-defined, composite

  17. Validation of Quantitative HPLC Method for Bacosides in KeenMind.

    PubMed

    Dowell, Ashley; Davidson, George; Ghosh, Dilip

    2015-01-01

    Brahmi (Bacopa monnieri) has been used by Ayurvedic medical practitioners in India for almost 3000 years. The pharmacological properties of Bacopa monnieri were studied extensively and the activities were attributed mainly due to the presence of characteristic saponins called "bacosides." Bacosides are complex mixture of structurally closely related compounds, glycosides of either jujubogenin or pseudojujubogenin. The popularity of herbal medicines and increasing clinical evidence to support associated health claims require standardisation of the phytochemical actives contained in these products. However, unlike allopathic medicines which typically contain a single active compound, herbal medicines are typically complex mixtures of various phytochemicals. The assay for bacosides in the British Pharmacopoeia monograph for Bacopa monnieri exemplifies that only a subset of bacosides present are included in the calculation of total bacosides. These results in calculated bacoside values are significantly lower than those attained for the same material using more inclusive techniques such as UV spectroscopy. This study illustrates some of the problems encountered when applying chemical analysis for standardisation of herbal medicines, particularly in relation to the new method development and validation of bacosides from KeenMind.

  18. Validation of Quantitative HPLC Method for Bacosides in KeenMind

    PubMed Central

    Dowell, Ashley; Davidson, George; Ghosh, Dilip

    2015-01-01

    Brahmi (Bacopa monnieri) has been used by Ayurvedic medical practitioners in India for almost 3000 years. The pharmacological properties of Bacopa monnieri were studied extensively and the activities were attributed mainly due to the presence of characteristic saponins called “bacosides.” Bacosides are complex mixture of structurally closely related compounds, glycosides of either jujubogenin or pseudojujubogenin. The popularity of herbal medicines and increasing clinical evidence to support associated health claims require standardisation of the phytochemical actives contained in these products. However, unlike allopathic medicines which typically contain a single active compound, herbal medicines are typically complex mixtures of various phytochemicals. The assay for bacosides in the British Pharmacopoeia monograph for Bacopa monnieri exemplifies that only a subset of bacosides present are included in the calculation of total bacosides. These results in calculated bacoside values are significantly lower than those attained for the same material using more inclusive techniques such as UV spectroscopy. This study illustrates some of the problems encountered when applying chemical analysis for standardisation of herbal medicines, particularly in relation to the new method development and validation of bacosides from KeenMind. PMID:26448776

  19. Post-flight Analysis of the Argon Filled Ion Chamber

    NASA Technical Reports Server (NTRS)

    Tai, H.; Goldhagen, P.; Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Shinn, J. L.

    2003-01-01

    Atmospheric ionizing radiation is a complex mixture of primary galactic and solar cosmic rays and a multitude of secondary particles produced in collision with air nuclei. The first series of Atmospheric Ionizing Radiation (AIR) measurement flights on the NASA research aircraft ER-2 took place in June 1997. The ER-2 flight package consisted of fifteen instruments from six countries and were chosen to provide varying sensitivity to specific components. These AIR ER-2 flight measurements are to characterize the AIR environment during solar minimum to allow the continued development of environmental models of this complex mixture of ionizing radiation. This will enable scientists to study the ionizing radiation health hazard associated with the high-altitude operation of a commercial supersonic transport and to allow estimates of single event upsets for advanced avionics systems design. The argon filled ion chamber representing about 40 percent of the contributions to radiation risks are analyzed herein and model discrepancies for solar minimum environment are on the order of 5 percent and less. Other biologically significant components remain to be analyzed.

  20. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, Edward J.; Blain, Robyn

    A relational retrieval database has been developed compiling toxicological studies assessing the occurrence of hormetic dose responses and their quantitative characteristics. This database permits an evaluation of these studies over numerous parameters, including study design and dose-response features and physical/chemical properties of the agents. The database contains approximately 5600 dose-response relationships satisfying evaluative criteria for hormesis across over approximately 900 agents from a broadly diversified spectrum of chemical classes and physical agents. The assessment reveals that hormetic dose-response relationships occur in males and females of numerous animal models in all principal age groups as well as across species displaying amore » broad range of differential susceptibilities to toxic agents. The biological models are extensive, including plants, viruses, bacteria, fungi, insects, fish, birds, rodents, and primates, including humans. The spectrum of endpoints displaying hormetic dose responses is also broad being inclusive of growth, longevity, numerous metabolic parameters, disease incidences (including cancer), various performance endpoints such as cognitive functions, immune responses among others. Quantitative features of the hormetic dose response reveal that the vast majority of cases display a maximum stimulatory response less than two-fold greater than the control while the width of the stimulatory response is typically less than 100-fold in dose range immediately contiguous with the toxicological NO(A)EL. The database also contains a quantitative evaluation component that differentiates among the various dose responses concerning the strength of the evidence supporting a hormetic conclusion based on study design features, magnitude of the stimulatory response, statistical significance, and reproducibility of findings.« less

  1. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview.

    PubMed

    Calabrese, Edward J; Blain, Robyn

    2005-02-01

    A relational retrieval database has been developed compiling toxicological studies assessing the occurrence of hormetic dose responses and their quantitative characteristics. This database permits an evaluation of these studies over numerous parameters, including study design and dose-response features and physical/chemical properties of the agents. The database contains approximately 5600 dose-response relationships satisfying evaluative criteria for hormesis across over approximately 900 agents from a broadly diversified spectrum of chemical classes and physical agents. The assessment reveals that hormetic dose-response relationships occur in males and females of numerous animal models in all principal age groups as well as across species displaying a broad range of differential susceptibilities to toxic agents. The biological models are extensive, including plants, viruses, bacteria, fungi, insects, fish, birds, rodents, and primates, including humans. The spectrum of endpoints displaying hormetic dose responses is also broad being inclusive of growth, longevity, numerous metabolic parameters, disease incidences (including cancer), various performance endpoints such as cognitive functions, immune responses among others. Quantitative features of the hormetic dose response reveal that the vast majority of cases display a maximum stimulatory response less than two-fold greater than the control while the width of the stimulatory response is typically less than 100-fold in dose range immediately contiguous with the toxicological NO(A)EL. The database also contains a quantitative evaluation component that differentiates among the various dose responses concerning the strength of the evidence supporting a hormetic conclusion based on study design features, magnitude of the stimulatory response, statistical significance, and reproducibility of findings.

  2. Non-induction of radioadaptive response in zebrafish embryos by neutrons

    PubMed Central

    Ng, Candy Y.P.; Kong, Eva Y.; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-01-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. PMID:26850927

  3. Structure, thermodynamics, and solubility in tetromino fluids.

    PubMed

    Barnes, Brian C; Siderius, Daniel W; Gelb, Lev D

    2009-06-16

    To better understand the self-assembly of small molecules and nanoparticles adsorbed at interfaces, we have performed extensive Monte Carlo simulations of a simple lattice model based on the seven hard "tetrominoes", connected shapes that occupy four lattice sites. The equations of state of the pure fluids and all of the binary mixtures are determined over a wide range of density, and a large selection of multicomponent mixtures are also studied at selected conditions. Calculations are performed in the grand canonical ensemble and are analogous to real systems in which molecules or nanoparticles reversibly adsorb to a surface or interface from a bulk reservoir. The model studied is athermal; objects in these simulations avoid overlap but otherwise do not interact. As a result, all of the behavior observed is entropically driven. The one-component fluids all exhibit marked self-ordering tendencies at higher densities, with quite complex structures formed in some cases. Significant clustering of objects with the same rotational state (orientation) is also observed in some of the pure fluids. In all of the binary mixtures, the two species are fully miscible at large scales, but exhibit strong species-specific clustering (segregation) at small scales. This behavior persists in multicomponent mixtures; even in seven-component mixtures of all the shapes there is significant association between objects of the same shape. To better understand these phenomena, we calculate the second virial coefficients of the tetrominoes and related quantities, extract thermodynamic volume of mixing data from the simulations of binary mixtures, and determine Henry's law solubilities for each shape in a variety of solvents. The overall picture obtained is one in which complementarity of both the shapes of individual objects and the characteristic structures of different fluids are important in determining the overall behavior of a fluid of a given composition, with sometimes counterintuitive results. Finally, we note that no sharp phase transitions are observed but that this appears to be due to the small size of the objects considered. It is likely that complex phase behavior may be found in systems of larger polyominoes.

  4. Determinants of Whether or not Mixtures of Disinfection By-products are Similar

    EPA Science Inventory

    This project summary and its related publications provide information on the development of chemical, toxicological and statistical criteria for determining the sufficient similarity of complex chemical mixtures.

  5. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    PubMed

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  7. Advanced instrumental methods for analyzing organics in solid waste: The use of gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR) and supercritical fluid chromatography (SFC) for waste characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raphaelian, L.A.; Boparai, A.S.; Schneider, J.F.

    1987-01-01

    Objectives of this research project were: (1) to enhance the capabilities of analyzing the complex mixtures found in coal wastes by using gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR); (2) to separate, by supercritical fluid chromatography (SFC), the complex mixtures found in coal wastes into a few, less-complex mixtures so that analysis by gas chromatography (GC/MS) and GC/MIIR would be simplified. Preliminary results are presented for the mass spectra and infrared spectra of xylene isomers, gas chromatogram of 12 C/sub 2/-Napthalenes, averaged IR spectrum and a comparison of matrix isolation with light-pipe infrared spectra. A SFC chromatogram of polynuclear aromatic hydrocarbonsmore » is also presented. 2 refs., 5 figs.« less

  8. Differential gene expression patterns in developing sexually dimorphic rat brain regions exposed to antiandrogenic, estrogenic, or complex endocrine disruptor mixtures: glutamatergic synapses as target.

    PubMed

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver; Axelstad, Marta; Boberg, Julie; Christiansen, Sofie; Rehrauer, Hubert; Georgijevic, Jelena Kühn; Hass, Ulla; Kortenkamp, Andreas; Schlumpf, Margret

    2015-04-01

    The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E-Mix (estrogenic mixture) with 4 estrogenic chemicals (bisphenol A, 4-methylbenzylidene camphor, 2-ethylhexyl 4-methoxycinnamate, and butylparaben), a complex mixture, AEP-Mix, containing the components of A-Mix and E-Mix plus paracetamol, and paracetamol alone, were administered by oral gavage to rat dams from gestation day 7 until weaning. General developmental endpoints were not affected by EDC mixtures or paracetamol. Gene expression was analyzed on postnatal day 6, during sexual brain differentiation, by exon microarray in medial preoptic area in the high-dose group, and by real-time RT-PCR in medial preoptic area and ventromedial hypothalamus in all dose groups. Expression patterns were mixture, sex, and region specific. Effects of the analgesic drug paracetamol, which exhibits antiandrogenic activity in peripheral systems, differed from those of A-Mix. All mixtures had a strong, mixture-specific impact on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids also in hippocampus, this may represent a general target of ECD mixtures.

  9. Efficient statistically accurate algorithms for the Fokker-Planck equation in large dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Majda, Andrew J.

    2018-02-01

    Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace and is therefore computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O (100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.

  10. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research.

    PubMed Central

    Delfino, Ralph J

    2002-01-01

    Outdoor ambient air pollutant exposures in communities are relevant to the acute exacerbation and possibly the onset of asthma. However, the complexity of pollutant mixtures and etiologic heterogeneity of asthma has made it difficult to identify causal components in those mixtures. Occupational exposures associated with asthma may yield clues to causal components in ambient air pollution because such exposures are often identifiable as single-chemical agents (e.g., metal compounds). However, translating occupational to community exposure-response relationships is limited. Of the air toxics found to cause occupational asthma, only formaldehyde has been frequently investigated in epidemiologic studies of allergic respiratory responses to indoor air, where general consistency can be shown despite lower ambient exposures. The specific volatile organic compounds (VOCs) identified in association with occupational asthma are generally not the same as those in studies showing respiratory effects of VOC mixtures on nonoccupational adult and pediatric asthma. In addition, experimental evidence indicates that airborne polycyclic aromatic hydrocarbon (PAH) exposures linked to diesel exhaust particles (DEPs) have proinflammatory effects on airways, but there is insufficient supporting evidence from the occupational literature of effects of DEPs on asthma or lung function. In contrast, nonoccupational epidemiologic studies have frequently shown associations between allergic responses or asthma with exposures to ambient air pollutant mixtures with PAH components, including black smoke, high home or school traffic density (particularly truck traffic), and environmental tobacco smoke. Other particle-phase and gaseous co-pollutants are likely causal in these associations as well. Epidemiologic research on the relationship of both asthma onset and exacerbation to air pollution is needed to disentangle effects of air toxics from monitored criteria air pollutants such as particle mass. Community studies should focus on air toxics expected to have adverse respiratory effects based on biological mechanisms, particularly irritant and immunological pathways to asthma onset and exacerbation. PMID:12194890

  11. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    PubMed

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  12. OXIDATIVE DNA DAMAGE FROM POTASSIUM BROMATE EXPOSURE IN LONG-EVANS RATS IS NOT ENHANCED BY A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Public drinking water treated with chemical disinfectants contains a complex mixture of disinfection by-products (DBPs) for which the relative toxicity of the mixtures needs to be characterized to accurately assess risk. Potassium bromate (KBrO3) is a by-product from ozonation of...

  13. Quantification of Complex Polycyclic Aromatic Hydrocarbon Mixtures in Standard Reference Materials Using GC×GC/ToF-MS

    PubMed Central

    Manzano, Carlos; Hoh, Eunha; Massey Simonich, Staci L.

    2014-01-01

    This research is the first to quantify complex PAH mixtures in NIST SRMs using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/ToF-MS), with and without extract cleanup, and reports previously unidentified PAH isomers in the NIST SRMs. We tested a novel, high orthogonality GC column combination (LC-50×NSP-35), as well as with a commonly used column combination (Rtx-5ms×Rxi-17) for the quantification of a complex mixture of 85 different PAHs, including parent (PAHs), alkyl- (MPAHs), nitro- (NPAHs), oxy- (OPAHs), thio- (SPAHs), bromo- (BrPAHs), and chloro-PAHs (ClPAHs) in extracts from two standard reference materials: NIST SRM1650b (diesel particulate matter), with cleanup and NIST SRM1975 (diesel particulate extract), with and without extract cleanup. The LC-50×NSP-35 column combination resulted in an average absolute percent difference of 33.8%, 62.2% and 30.8% compared to the NIST certified PAH concentrations for NIST SRM1650b, NIST SRM1975 with cleanup and NIST SRM1975 without cleanup, while the Rtx-5ms×Rxi-17 resulted in an absolute percent difference of 38.6%, 67.2% and 79.6% for NIST SRM1650b, NIST SRM1975 with cleanup and NIST SRM1975 without cleanup, respectively. This GC×GC/ToF-MS method increases the number of PAHs detected and quantified in complex environmental extracts using a single chromatographic run. Without clean-up, 7 additional compounds were detected and quantified in NIST SRM1975 using the LC-50×NSP-35 column combination. These results suggest that the use of the LC-50×NSP-35 column combination in GC×GC/ToF-MS not only results in better chromatographic resolution and greater orthogonality for the separation of complex PAH mixtures, but can also be used for the accurate quantification of complex PAH mixtures in environmental extracts without cleanup. PMID:23932031

  14. Production, Characterization, and Stability of Orange or Eucalyptus Essential Oil/β-Cyclodextrin Inclusion Complex.

    PubMed

    Kringel, Dianini Hüttner; Antunes, Mariana Dias; Klein, Bruna; Crizel, Rosane Lopes; Wagner, Roger; de Oliveira, Roberto Pedroso; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-11-01

    The aim of this study was to produce and characterize inclusion complexes (IC) between β-cyclodextrin (β-CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace-gas chromatography (SH-GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β-CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β-CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β-CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods. © 2017 Institute of Food Technologists®.

  15. The influence of water-ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.; Terekhova, I. V.; Kumeev, R. S.

    2012-08-01

    The influence of water-ethanol mixture composition on the complex formation between 18-crown-6 ether and L-phenylalanine was studied by titration calorimetry at Т = 298.15 K. The standard thermodynamic parameters (ΔrGо, ΔrHо, ТΔrSо) of formation of [Phe18C6] molecular complex were calculated from data obtained by means of the microcalorimetric system TAM III (TA Instruments, USA) at X(EtOH) = 0.0/0.6 mol fraction. The stability of [Phe18C6] and the mechanism of complexation in water were investigated using the 1Н and 13С NMR spectroscopy. The increase of EtOH concentration results in an increase of the complex stability and of the exothermicity of complexation.

  16. Distribution of rhodopin and spirilloxanthin between LH1 and LH2 complexes when incorporating carotenoid mixture into the membrane of purple sulfur bacterium Allochromatium minutissimum in vitro.

    PubMed

    Bolshakov, M A; Ashikhmin, A A; Makhneva, Z K; Moskalenko, A A

    2016-11-01

    Carotenoid mixture enriched by rhodopin and spirilloxanthin was incorporated in LH2 and LH1 complexes from Allochromatium (Alc.) minutissimum in vitro. The maximum incorporating level was ~95%. Rhodopin (56.4%) and spirilloxanthin (13.8%) were incorporated into the LH1 complex, in contrast to the control complex, which contained primarily spirilloxanthin (66.8%). After incorporating, the LH2 complex contained rhodopin (66.7%) and didehydrorhodopin (14.6%), which was close to their content in the control (67.4 and 20.5%, respectively). Thus, it was shown that carotenoids from the total pool are not selectively incorporated into LH2 and LH1 complexes in vitro in the proportion corresponding to the carotenoid content in the complexes in vivo.

  17. Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.

    PubMed

    Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana

    2016-12-01

    β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.

  18. Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions.

    PubMed

    Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan

    2014-06-10

    The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.

  19. The application of computer modeling to health effect research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, R.S.H.

    1996-12-31

    In the United States, estimates show that more than 30,000 hazardous waste disposal sites exist, not including military installations, U.S. Department of Energy nuclear facilities, and hundreds and thousands of underground fuel storage tanks; these sites undoubtedly have their own respective hazardous waste chemical problems. When so many sites contain hazardous chemicals, how does one study the health effects of the chemicals at these sites? There could be many different answers, but none would be perfect. For an area as complex and difficult as the study of chemical mixtures associated with hazardous waste disposal sites, there are no perfect approachesmore » and protocols. Human exposure to chemicals, be it environmental or occupational, is rarely, if ever, limited to a single chemical. Therefore, it is essential that we consider multiple chemical effects and interactions in our risk assessment process. Systematic toxicity testing of chemical mixtures in the environment or workplace that uses conventional toxicology methodologies is highly impractical because of the immense numbers of mixtures involved. For example, about 600,000 chemicals are being used in our society. Just considering binary chemical mixtures, this means that there could be 600,000 x 599,999/2 = 359,999,400,000 pairs of chemicals. Assuming that only one in a million of these pairs of chemicals acts synergistically or has other toxicologic interactions, there would still be 359,999 binary chemical mixtures possessing toxicologic interactions. Moreover, toxicologic interactions undoubtedly exist among chemical mixtures with three or more component chemicals; the number of possible combinations for these latter mixtures is almost infinite. These are astronomically large numbers with respect to systematic toxicity testing. 22 refs., 5 figs., 1 tab.« less

  20. Bioanalytical Methods for Food Contaminant Analysis

    EPA Science Inventory

    Foods are complex mixtures of lipids, carbohydrates, proteins, vitamins, organic compounds and other naturally occurring compounds. Sometimes added to this mixture are residues of pesticides, veterinary and human drugs, microbial toxins, preservatives, contaminants from food proc...

  1. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE PAGES

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    2015-01-01

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  2. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  3. Hormesis effect of trace metals on cultured normal and immortal human mammary cells.

    PubMed

    Schmidt, Craig M; Cheng, Chun N; Marino, Angelo; Konsoula, Roula; Barile, Frank A

    2004-06-01

    An in vitro study was conducted to determine the effects of variable concentrations of trace metals on human cultured mammary cells. Monolayers of human mortal (MCF-12A) and immortal (MDA-MB231) mammary epithelial cells were incubated in the absence or presence of increasing concentrations of arsenic (As), mercury (Hg) and copper (Cu) for 24-h, 72-h, 4-d, and 7-d. The MTT assay was used to assess viability for all time periods and cell proliferation was monitored for 4-d and 7-d studies. Monolayers were also labeled with rhodamine-110 (R-6501), Sytox green, and Celltiter blue fluorescent dyes as indicators for intracellular esterase activity, nucleic acid staining, and cell reduction/viability, respectively. Total incubation time with chemical plus dyes was 24 h. For 24-h and 72-h studies, cells were seeded in 96-well plates, after which confluent monolayers were exposed to increasing concentrations of chemicals. For 4-d and 7-d studies, cells were seeded in 12-well plates at 1/3 confluent density (day 0) and exposed to increasing concentrations of metals on day 1. All cells were counted on days 4 and 7. In addition, test medium was removed from select groups of cultures on day 4, replaced with fresh medium in the absence of chemical (recovery studies), and assays were performed on day 7 as above. The data suggest that there is a consistent protective and/or stimulating effect of metals at the lowest concentrations in MCF-12A cells that is not observed in immortal MDA-MB231 cells. In fact, cell viability of MCF-12A cells is stimulated by otherwise equivalent inhibitory concentrations of As, Cu, and Hg on MDA-MB231 cells at 24-h. Whereas As and Hg suppress proliferation and viability in both cell lines after 4-d and 7-d of exposure, Cu enhances cell proliferation and viability of MCF-12A cells. MDA-MB231, however, recover better after 4-days of toxic insult. In addition, nutritional manipulation of media between the cell lines, or pretreatment with penicillamine, did not alter the hormesis effect displayed by MCF-12A. Growth of these cells however was not maintained in the alternative medium. The study demonstrates that a hormesis effect from trace metals is detectable in cultured mammary cells; fluorescent indicators, however, are not as sensitive as cell proliferation or MTT in recognizing the subtle responses. Also, sensitivity of mammary cells to lower concentrations of Cu, a biologically important trace metal, may play an important role in controlling cellular processes and proliferation. The ability to detect this in vitro phenomenon implies that similar processes, occurring in vivo, may be responsible for the development, induction, or enhancement of human cancers.

  4. Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity.

    PubMed

    Desforges, Jean-Pierre; Levin, Milton; Jasperse, Lindsay; De Guise, Sylvain; Eulaers, Igor; Letcher, Robert J; Acquarone, Mario; Nordøy, Erling; Folkow, Lars P; Hammer Jensen, Trine; Grøndahl, Carsten; Bertelsen, Mads F; St Leger, Judy; Almunia, Javier; Sonne, Christian; Dietz, Rune

    2017-10-03

    Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 μg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC 50 : 0.94 vs 6.06 μg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.

  5. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  6. Study of complex permittivity spectra of binary mixtures of 2-chloroaniline and methanol in frequency range 10 KHz to 2 MHz at different temperatures

    NASA Astrophysics Data System (ADS)

    Shah, N. S.; Vankar, H. P.; Rana, V. A.

    2017-05-01

    The complex relative dielectric function ɛ*(ω)=ɛ'-jɛ″ of the binary mixture of 2-chloroaniline(2-CA) and methanol (MeOH) were measured using precision LCR meter in the frequency range of 10 KHz to 2 MHz The measurements were carried out at eight different temperatures and five different concentrations of 2-CA and MeOH. The loss tangent peaks were observed in the studied frequency range for all the binary mixtures. From the loss tangent peaks electrode polarization relaxation time were evaluated. In the plot of real part of complex permittivity against frequency, at different temperatures for 2-CA (54.54%) + MeOH (45.45%) and 2-CA (27.27%) + MeOH (72.72%)and 100% MeOH systems permittivity inversion effect was observed.

  7. State of research: environmental pathways and food chain transfer.

    PubMed Central

    Vaughan, B E

    1984-01-01

    Data on the chemistry of biologically active components of petroleum, synthetic fuel oils, certain metal elements and pesticides provide valuable generic information needed for predicting the long-term fate of buried waste constituents and their likelihood of entering food chains. Components of such complex mixtures partition between solid and solution phases, influencing their mobility, volatility and susceptibility to microbial transformation. Estimating health hazards from indirect exposures to organic chemicals involves an ecosystem's approach to understanding the unique behavior of complex mixtures. Metabolism by microbial organisms fundamentally alters these complex mixtures as they move through food chains. Pathway modeling of organic chemicals must consider the nature and magnitude of food chain transfers to predict biological risk where metabolites may become more toxic than the parent compound. To obtain predictions, major areas are identified where data acquisition is essential to extend our radiological modeling experience to the field of organic chemical contamination. PMID:6428875

  8. Diversifying mechanisms in the on-farm evolution of crop mixtures.

    PubMed

    Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle

    2015-06-01

    While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.

  9. Peptide Identification by Database Search of Mixture Tandem Mass Spectra*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2011-01-01

    In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision. PMID:21862760

  10. RNA Whole-Mount In situ Hybridisation Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells.

    PubMed

    Roussis, Ioannis M; Guille, Matthew; Myers, Fiona A; Scarlett, Garry P

    2016-01-01

    Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation-Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-characterised interaction of the Xenopus laevis Staufen RNA binding protein with Vg1 mRNA, the complex of which co-localises to the vegetal pole of Xenopus oocytes. The applicability of both the Stau1 antibody and the Locked Nucleic Acid probe (LNA) recognising Vg1 mRNA were independently validated by whole-mount Immunohistochemistry and whole-mount in situ hybridisation assays respectively prior to combining them in the rISH-PLA assay. The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogenous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos.

  11. Spectroscopic Case-Based Studies in a Flipped Quantum Mechanics Course

    NASA Astrophysics Data System (ADS)

    Shipman, Steven

    2015-06-01

    Students in a flipped Quantum Mechanics course were expected to apply their knowledge of spectroscopy to a variety of case studies involving complex mixtures of chemicals. They used simulated data, prepared in advance by the instructor, to determine the major chemical constituents of complex mixtures. Students were required to request the appropriate data in order to ultimately make plausible guesses about the composition of the mixtures, allowing them ownership over the discovery process. This talk will describe how these activities worked in practice, give caveats for instructors who wish to adopt them in the future, and discuss how the results of these exercises can be used for both formative and summative assessment.

  12. How organisms do the right thing: The attractor hypothesis

    USGS Publications Warehouse

    Emlen, J.M.; Freeman, D.C.; Mills, A.; Graham, J.H.

    1998-01-01

    Neo-Darwinian theory is highly successful at explaining the emergence of adaptive traits over successive generations. However, there are reasons to doubt its efficacy in explaining the observed, impressively detailed adaptive responses of organisms to day-to-day changes in their surroundings. Also, the theory lacks a clear mechanism to account for both plasticity and canalization. In effect, there is a growing sentiment that the neo-Darwinian paradigm is incomplete, that something more than genetic structure, mutation, genetic drift, and the action of natural selection is required to explain organismal behavior. In this paper we extend the view of organisms as complex self-organizing entities by arguing that basic physical laws, coupled with the acquisitive nature of organisms, makes adaptation all but tautological. That is, much adaptation is an unavoidable emergent property of organisms' complexity and, to some a significant degree, occurs quite independently of genomic changes wrought by natural selection. For reasons that will become obvious, we refer to this assertion as the attractor hypothesis. The arguments also clarify the concept of "adaptation." Adaptation across generations, by natural selection, equates to the (game theoretic) maximization of fitness (the success with which one individual produces more individuals), while self-organizing based adaptation, within generations, equates to energetic efficiency and the matching of intake and biosynthesis to need. Finally, we discuss implications of the attractor hypothesis for a wide variety of genetical and physiological phenomena, including genetic architecture, directed mutation, genetic imprinting, paramutation, hormesis, plasticity, optimality theory, genotype-phenotype linkage and puncuated equilibrium, and present suggestions for tests of the hypothesis. ?? 1998 American Institute of Physics.

  13. How organisms do the right thing: The attractor hypothesis

    NASA Astrophysics Data System (ADS)

    Emlen, John M.; Freeman, D. Carl; Mills, April; Graham, John H.

    1998-09-01

    Neo-Darwinian theory is highly successful at explaining the emergence of adaptive traits over successive generations. However, there are reasons to doubt its efficacy in explaining the observed, impressively detailed adaptive responses of organisms to day-to-day changes in their surroundings. Also, the theory lacks a clear mechanism to account for both plasticity and canalization. In effect, there is a growing sentiment that the neo-Darwinian paradigm is incomplete, that something more than genetic structure, mutation, genetic drift, and the action of natural selection is required to explain organismal behavior. In this paper we extend the view of organisms as complex self-organizing entities by arguing that basic physical laws, coupled with the acquisitive nature of organisms, makes adaptation all but tautological. That is, much adaptation is an unavoidable emergent property of organisms' complexity and, to some a significant degree, occurs quite independently of genomic changes wrought by natural selection. For reasons that will become obvious, we refer to this assertion as the attractor hypothesis. The arguments also clarify the concept of "adaptation." Adaptation across generations, by natural selection, equates to the (game theoretic) maximization of fitness (the success with which one individual produces more individuals), while self-organizing based adaptation, within generations, equates to energetic efficiency and the matching of intake and biosynthesis to need. Finally, we discuss implications of the attractor hypothesis for a wide variety of genetical and physiological phenomena, including genetic architecture, directed mutation, genetic imprinting, paramutation, hormesis, plasticity, optimality theory, genotype-phenotype linkage and puncuated equilibrium, and present suggestions for tests of the hypothesis.

  14. Genetic evidence of local exploitation of Atlantic salmon in a coastal subsistence fishery in the Northwest Atlantic

    USGS Publications Warehouse

    Bradbury, Ian R.; Hamilton, Lorraine C.; Rafferty, Sara; Meerburg, David; Poole, Rebecca; Dempson, J. Brian; Robertson, Martha J.; Reddin, David G.; Bourret, Vincent; Dionne, Mélanie; Chaput, Gerald J.; Sheehan, Timothy F.; King, Tim L.; Candy, John R.; Bernatchez, Louis

    2014-01-01

    Fisheries targeting mixtures of populations risk the over utilization of minor stock constituents unless harvests are monitored and managed. We evaluated stock composition and exploitation of Atlantic salmon in a subsistence fishery in coastal Labrador, Canada using genetic mixture analysis and individual assignment with a microsatellite baseline (15 loci, 11 829 individuals, 12 regional groups) encompassing the species western Atlantic range. Bayesian and maximum likelihood mixture analyses of fishery samples over six years (2006-2011; 1 772 individuals) indicate contributions of adjacent stocks of 96-97%. Estimates of fishery associated exploitation were highest for Labrador salmon (4.2-10.6% per year) and generally < 1% for other regions. Individual assignment of fishery samples indicated non-local contributions to the fishery (e.g., Quebec, Newfoundland) were rare and primarily in southern Labrador, consistent with migration pathways utilizing the Strait of Belle Isle. This work illustrates how genetic analysis of mixed stock Atlantic salmon fisheries in the northwest Atlantic using this new baseline can disentangle exploitation and reveal complex migratory behaviours.

  15. A Comprehensive Mixture of Tobacco Smoke Components Retards Orthodontic Tooth Movement via the Inhibition of Osteoclastogenesis in a Rat Model

    PubMed Central

    Nagaie, Maya; Nishiura, Aki; Honda, Yoshitomo; Fujiwara, Shin-Ichi; Matsumoto, Naoyuki

    2014-01-01

    Tobacco smoke is a complex mixture of numerous components. Nevertheless, most experiments have examined the effects of individual chemicals in tobacco smoke. The comprehensive effects of components on tooth movement and bone resorption remain unexplored. Here, we have shown that a comprehensive mixture of tobacco smoke components (TSCs) attenuated bone resorption through osteoclastogenesis inhibition, thereby retarding experimental tooth movement in a rat model. An elastic power chain (PC) inserted between the first and second maxillary molars robustly yielded experimental tooth movement within 10 days. TSC administration effectively retarded tooth movement since day 4. Histological evaluation disclosed that tooth movement induced bone resorption at two sites: in the bone marrow and the peripheral bone near the root. TSC administration significantly reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cells in the bone marrow cavity of the PC-treated dentition. An in vitro study indicated that the inhibitory effects of TSCs on osteoclastogenesis seemed directed more toward preosteoclasts than osteoblasts. These results indicate that the comprehensive mixture of TSCs might be a useful tool for detailed verification of the adverse effects of tobacco smoke, possibly contributing to the development of reliable treatments in various fields associated with bone resorption. PMID:25322153

  16. Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids

    NASA Astrophysics Data System (ADS)

    Bymaster, Adam

    Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any association scheme. Theoretical results elucidate how reversible bonding governs the structure of a fluid near a surface and in confined environments, the molecular connectivity (formation of supramolecules, star polymers, etc.) and the phase behavior of the system. Finally, the DFT is extended to predict the inter- and intramolecular correlation functions of polymeric fluids. A theory capable of providing such local structure is important to understanding how local chemistry, branching, and bond flexibility affect the thermodynamic properties of polymers.

  17. Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canaani, O.; Gantt, E.

    1982-09-01

    Formation of phycobilisomes has been accomplished in vitro from isolated phycobiliprotein fraction obtained from the same blue-green alga (intrageneric) and from different blue-green algae (intergeneric). Phycobilisomes, which are supramolecular complexes of phycobiliproteins, serve as major light-harvesting antennae for photosynthesis in blue-green and red algae. Intrageneric association into energetically functional phycobilisomes, previously reported to occur with Nostoc sp. allophycocyanin and phycoerythrin-phycocyanin complexes has been obtained with Fremyella diplosiphon. By their spectral propeties (absorption, fluorescence excitation, and emission) and electron microscopic images, the native and in vitro-associated phycobilisomes were virtually indistinguishable. Intergeneic phycobilisomes have been produced from allophycocyanin of Nostoc sp. strainmore » Mac, and phycoerythrin-phycocyanin of F. diplosiphon, as well as from the reverse mixtures. Phycobilisomes of Nostoc and Fremyella, analyzed by NaDodSO/sub 4//polyacrylamide gel electrophoresis, possessed a number of polypeptides having similar molecular weights: the usual ..cap alpha..- and ..beta..-phycobilin-containing polypeptides of M/sub r/ 15,000-22,000, a faint band at M/sub r/ ca. 95,000, and a prominent band at M/sub r/ ca. 31,000. The M/sub r/ 31,000 polypeptide is assumed to provide the recognition site for attachment of the phycoerythrin-phycocyanin complexes with the allophycocyanin core. In vitro association was not obtained between allophycocyanin from Nostoc and phycoerythrin-phycocyanin complexes from Phormidium persicinum or Porphyridium sordidum.« less

  18. Histone methylation and aging: Lessons learned from model systems

    PubMed Central

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  19. Different applications of isosbestic points, normalized spectra and dual wavelength as powerful tools for resolution of multicomponent mixtures with severely overlapping spectra.

    PubMed

    Mohamed, Ekram H; Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen

    2017-05-25

    Analysis of complex mixture containing three or more components represented a challenge for analysts. New smart spectrophotometric methods have been recently evolved with no limitation. A study of different novel and smart spectrophotometric techniques for resolution of severely overlapping spectra were presented in this work utilizing isosbestic points present in different absorption spectra, normalized spectra as a divisor and dual wavelengths. A quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PCT) and para-aminophenol (PAP) was taken as an example for application of the proposed techniques without any separation steps. The adopted techniques adopted of successive and progressive steps manipulating zero /or ratio /or derivative spectra. The proposed techniques includes eight novel and simple methods namely direct spectrophotometry after applying derivative transformation (DT) via multiplying by a decoding spectrum, spectrum subtraction (SS), advanced absorbance subtraction (AAS), advanced amplitude modulation (AAM), simultaneous derivative ratio (S 1 DD), advanced ratio difference (ARD), induced ratio difference (IRD) and finally double divisor-ratio difference-dual wavelength (DD-RD-DW) methods. The proposed methods were assessed by analyzing synthetic mixtures of the studied drugs. They were also successfully applied to commercial pharmaceutical formulations without interference from other dosage form additives. The methods were validated according to the ICH guidelines, accuracy, precision, repeatability, were found to be within the acceptable limits. The proposed procedures are accurate, simple and reproducible and yet economic. They are also sensitive and selective and could be used for routine analysis of complex most of the binary, ternary and quaternary mixtures and even more complex mixtures.

  20. Ionizing radiation and aging: rejuvenating an old idea

    PubMed Central

    Richardson, Richard B.

    2009-01-01

    This paper reviews the contemporary evidence that radiation can accelerate aging, degenerative health effects and mortality. Around the 1960s, the idea that ionizing radiation caused premature aging was dismissed as the radiation-induced health effects appeared to be virtually confined to neoplasms. More recently, radiation has become associated with a much wider spectrum of age-related diseases, including cardiovascular disease; although some diseases of old age, such as diabetes, are notably absent as a radiation risk. On the basis of recent research, is there a stronger case today to be made linking radiation and aging? Comparison is made between the now-known biological mechanisms of aging and those of radiation, including oxidative stress, chromosomal damage, apoptosis, stem cell exhaustion and inflammation. The association between radiation effects and the free-radical theory of aging as the causative hypothesis seems to be more compelling than that between radiation and the nutrient-sensing TOR pathway. Premature aging has been assessed by biomarkers in calorie restriction studies; yet, biomarkers such as telomere erosion and p16INK4a are ambiguous for radiation-induced aging. Some animal studies suggest low dose radiation may even demonstrate hormesis health benefits. Regardless, there is virtually no support for a life span extending hypothesis for A-bomb survivors and other exposed subjects. PMID:20157573

  1. Smart Hydrogel Particles: Biomarker Harvesting: One-step affinity purification, size exclusion, and protection against degradation

    PubMed Central

    Luchini, Alessandra; Geho, David H.; Bishop, Barney; Tran, Duy; Xia, Cassandra; Dufour, Robert; Jones, Clint; Espina, Virginia; Patanarut, Alexis; Zhu, Weidong; Ross, Mark; Tessitore, Alessandra; Petricoin, Emanuel; Liotta, Lance A.

    2010-01-01

    Disease-associated blood biomarkers exist in exceedingly low concentrations within complex mixtures of high-abundance proteins such as albumin. We have introduced an affinity bait molecule into N-isopropylacrylamide to produce a particle that will perform three independent functions within minutes, in one step, in solution: a) molecular size sieving b) affinity capture of all solution phase target molecules, and c) complete protection of harvested proteins from enzymatic degradation. The captured analytes can be readily electroeluted for analysis. PMID:18076201

  2. Tandem mass spectrometry: analysis of complex mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction productsmore » of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.« less

  3. Generation of two-dimensional binary mixtures in complex plasmas

    NASA Astrophysics Data System (ADS)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  4. Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.

    PubMed

    Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery

    2015-07-23

    In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.

  5. INTEGRATED DISINFECTION BY-PRODUCTS (DBP) MIXTURES RESEARCH: GENE EXPRESSION ALTERATIONS IN PRIMARY RAT HEPATOCYTE CULTURES EXPOSED TO DBP MIXTURES FORMED BY CHLORINATION AND OZONATION/POSTCHLORINATION

    EPA Science Inventory

    What is the study?
    This study was designed to provide data on the in vitro toxicity of water concentrates containing complex mixtures of DBPs. Rat hepatocytes in primary culture were exposed for 24 hr to full strength, 1:10 or 1:20 dilutions of chlorination or ozonation/chl...

  6. Missing heritability in the tails of quantitative traits? A simulation study on the impact of slightly altered true genetic models.

    PubMed

    Pütter, Carolin; Pechlivanis, Sonali; Nöthen, Markus M; Jöckel, Karl-Heinz; Wichmann, Heinz-Erich; Scherag, André

    2011-01-01

    Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright © 2011 S. Karger AG, Basel.

  7. Exometabolite niche partitioning among sympatric soil bacteria

    DOE PAGES

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; ...

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites,more » with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.« less

  8. Exometabolite niche partitioning among sympatric soil bacteria

    PubMed Central

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-01-01

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity. PMID:26392107

  9. Non-induction of radioadaptive response in zebrafish embryos by neutrons.

    PubMed

    Ng, Candy Y P; Kong, Eva Y; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-06-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Redox homeostasis: The Golden Mean of healthy living

    PubMed Central

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-01-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis. PMID:26820564

  11. Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil.

    PubMed

    Zhang, Y; Price, G W; Jamieson, R; Burton, D; Khosravi, K

    2017-05-01

    Non-steroidal, anti-inflammatory drugs (NSAIDs) are widely used pharmaceutical products with analgesic and anti-inflammatory effects that are consistently detected in municipal wastewater systems and in municipal biosolids. Land application of biosolids and irrigation with reclaimed wastewater introduces these compounds into agricultural environments, which is an emerging issue of concern for ecosystem health. In this study, the sorption-desorption behaviour of four commonly consumed NSAIDs, including naproxen (NPX), ibuprofen (IBU), ketoprofen (KTF), and diclofenac (DCF), was examined in a loam textured soil exposed to either an individual-compound or a mixture of the four NSAIDs. The proportion of NSAIDs adsorbed to the soil in the mixture-compound system was 72%, 55%, 50% and 45%, for diclofenac, naproxen, ketoprofen, and ibuprofen, respectively, and differed slightly from the individual compound adsorption. Diclofenac displayed strong sorption and low desorption in both the individual-compound and mixture-compound systems. Naproxen and ibuprofen exhibited significant differences between the adsorption isotherms of the individual-compound and mixture-compound systems. Results of this study highlight differences in the sorption behaviour of NSAIDs, when present as mixtures, possibly through multilayer bonding effects or complexation with cationic metals or organo-clays from the soil. Soil organic matter (SOM) may have played a role in determining some of the interactions between the compounds but other factors associated with the mixture-compound system, such as cation bridging or multilayer cooperative adsorption. Desorption data suggests that the mechanisms involved in binding NSAIDs to the soil surface are also influence by the presence of other compounds in a mixture. A reduction in desorption was observed for all four NSAIDs in the mixture-compound system relative to the individual-compound system, but were greatest for naproxen and ibuprofen. The sorption-desorption hysteresis increased for naproxen and ibuprofen in the mixture-compound system. This study suggests that cooperative adsorption plays a role in the interaction of NSAIDs when present as mixtures rather than as individual compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Which sources of flavonoids: complex diets or dietary supplements?

    PubMed

    Egert, Sarah; Rimbach, Gerald

    2011-01-01

    There is increasing interest in the potential health benefits of dietary flavonoids. Fruits and vegetables, tea, and cocoa are rich natural sources of flavonoids. Epidemiological studies have indicated that consumption of these foods is likely to be associated with a reduced risk of cardiovascular disease, but the etiology of this benefit is not yet clearly defined. Furthermore, in some acute interventions, a positive effect of tea and cocoa on vascular function has been reported. An alternative source of flavonoids is dietary supplements, which have become increasingly popular in the recent past. In this context, it needs to be critically evaluated whether vascular health-promoting and other positive properties of flavonoid-rich diets can be replaced by purified flavonoids as dietary supplements. Plant sources of flavonoids contain a complex mixture of secondary plant metabolites and not only flavonoids per se. This complex mixture of secondary plant metabolites cannot be simply exchanged by single purified compounds as dietary supplements. If flavonoids are given as dietary supplements, toxicity issues as well as nutrient drug interactions need to be taken into account. Purified flavonoids given in high doses as dietary supplements may affect trace element, folate, and vitamin C status. Furthermore, they may exhibit antithyroid and goitrogenic activities. In this review article, the available literature on the safety issues surrounding high dose supplemental flavonoid consumption has been summarized.

  13. Which Sources of Flavonoids: Complex Diets or Dietary Supplements?1

    PubMed Central

    Egert, Sarah; Rimbach, Gerald

    2011-01-01

    There is increasing interest in the potential health benefits of dietary flavonoids. Fruits and vegetables, tea, and cocoa are rich natural sources of flavonoids. Epidemiological studies have indicated that consumption of these foods is likely to be associated with a reduced risk of cardiovascular disease, but the etiology of this benefit is not yet clearly defined. Furthermore, in some acute interventions, a positive effect of tea and cocoa on vascular function has been reported. An alternative source of flavonoids is dietary supplements, which have become increasingly popular in the recent past. In this context, it needs to be critically evaluated whether vascular health-promoting and other positive properties of flavonoid-rich diets can be replaced by purified flavonoids as dietary supplements. Plant sources of flavonoids contain a complex mixture of secondary plant metabolites and not only flavonoids per se. This complex mixture of secondary plant metabolites cannot be simply exchanged by single purified compounds as dietary supplements. If flavonoids are given as dietary supplements, toxicity issues as well as nutrient drug interactions need to be taken into account. Purified flavonoids given in high doses as dietary supplements may affect trace element, folate, and vitamin C status. Furthermore, they may exhibit antithyroid and goitrogenic activities. In this review article, the available literature on the safety issues surrounding high dose supplemental flavonoid consumption has been summarized. PMID:22211185

  14. ABRF-PRG07: advanced quantitative proteomics study.

    PubMed

    Falick, Arnold M; Lane, William S; Lilley, Kathryn S; MacCoss, Michael J; Phinney, Brett S; Sherman, Nicholas E; Weintraub, Susan T; Witkowska, H Ewa; Yates, Nathan A

    2011-04-01

    A major challenge for core facilities is determining quantitative protein differences across complex biological samples. Although there are numerous techniques in the literature for relative and absolute protein quantification, the majority is nonroutine and can be challenging to carry out effectively. There are few studies comparing these technologies in terms of their reproducibility, accuracy, and precision, and no studies to date deal with performance across multiple laboratories with varied levels of expertise. Here, we describe an Association of Biomolecular Resource Facilities (ABRF) Proteomics Research Group (PRG) study based on samples composed of a complex protein mixture into which 12 known proteins were added at varying but defined ratios. All of the proteins were present at the same concentration in each of three tubes that were provided. The primary goal of this study was to allow each laboratory to evaluate its capabilities and approaches with regard to: detection and identification of proteins spiked into samples that also contain complex mixtures of background proteins and determination of relative quantities of the spiked proteins. The results returned by 43 participants were compiled by the PRG, which also collected information about the strategies used to assess overall performance and as an aid to development of optimized protocols for the methodologies used. The most accurate results were generally reported by the most experienced laboratories. Among laboratories that used the same technique, values that were closer to the expected ratio were obtained by more experienced groups.

  15. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.

  16. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-08

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.

  17. Effect of ionic strength on the thermodynamic characteristics of complexation between Fe(III) ion and nicotinamide in water-ethanol and water-dimethyl sulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.

    2013-06-01

    Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.

  18. Phase behavior and structure of stable complexes between a long polyanion and a branched polycation

    NASA Astrophysics Data System (ADS)

    Mengarelli, Valentina; Zeghal, Mehdi; Auvray, Loïc; Clemens, Daniel

    2011-08-01

    The association between oppositely charged branched polyethylenimine (BPEI) and polymethacrylic acid (PMA) in the dilute regime is investigated using turbidimetric titration and electrophoretic mobility measurements. The complexation is controlled by tuning continuously the pH-sensitive charge of the polyacid in acidic solution. The formation of soluble and stable positively charged complexes is a cooperative process characterized by the existence of two regimes of weak and strong complexation. In the regime of weak complexation, a long PMA chain overcharged by several BPEI molecules forms a binary complex. As the charge of the polyacid increases, these binary complexes condense at a well defined charge ratio of the mixture to form large positively charged aggregates. The overcharging and the existence of two regimes of complexation are analyzed in the light of recent theories. The structure of the polyelectrolytes is investigated at higher polymer concentration by small angle neutron scattering. Binary complexes of finite size present an open structure where the polyacid chains connecting a small number of BPEI molecules have shrunk slightly. In the condensed complexes, BPEI molecules, wrapped by polyacid chains, form networks of stretched necklaces.

  19. Comparative Chemistry and Toxicity of Diesel and Biomass Combustion Emissions

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  20. EXPERIMENTS AT THE INTERFACE OF CARBON PARTICLE CHEMISTRY AND TOXCIOLOGY

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  1. A view at the interface between particle chemistry and toxicology

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  2. A rapid analytical method to quantify complex organohalogen contaminant mixtures in large samples of high lipid mammalian tissues.

    PubMed

    Desforges, Jean-Pierre; Eulaers, Igor; Periard, Luke; Sonne, Christian; Dietz, Rune; Letcher, Robert J

    2017-06-01

    In vitro investigations of the health impact of individual chemical compounds have traditionally been used in risk assessments. However, humans and wildlife are exposed to a plethora of potentially harmful chemicals, including organohalogen contaminants (OHCs). An alternative exposure approach to individual or simple mixtures of synthetic OHCs is to isolate the complex mixture present in free-ranging wildlife, often non-destructively sampled from lipid rich adipose. High concentration stock volumes required for in vitro investigations do, however, pose a great analytical challenge to extract sufficient amounts of complex OHC cocktails. Here we describe a novel method to easily, rapidly and efficiently extract an environmentally accumulated and therefore relevant contaminant cocktail from large (10-50 g) marine mammal blubber samples. We demonstrate that lipid freeze-filtration with acetonitrile removes up to 97% of blubber lipids, with minimal effect on the efficiency of OHC recovery. Sample extracts after freeze-filtration were further processed to remove residual trace lipids via high-pressure gel permeation chromatography and solid phase extraction. Average recoveries of OHCs from triplicate analysis of killer whale (Orcinus orca), polar bear (Ursus maritimus) and pilot whale (Globicephala spp.) blubber standard reference material (NIST SRM-1945) ranged from 68 to 80%, 54-92% and 58-145%, respectively, for 13 C-enriched internal standards of six polychlorinated biphenyl congeners, 16 organochlorine pesticides and four brominated flame retardants. This approach to rapidly generate OHC mixtures shows great potential for experimental exposures using complex contaminant mixtures, research or monitoring driven contaminant quantification in biological samples, as well as the untargeted identification of emerging contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures

    PubMed Central

    Bogart, Justin A.; Cole, Bren E.; Boreen, Michael A.; Lippincott, Connor A.; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J.

    2016-01-01

    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx3–, featured a size-sensitive aperture formed of its three η2-(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)]2 species. Differences in the equilibrium constants Kdimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La–Sm and RE2 = Gd–Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early–late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation. PMID:27956636

  4. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures.

    PubMed

    Bogart, Justin A; Cole, Bren E; Boreen, Michael A; Lippincott, Connor A; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-12-27

    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx 3- , featured a size-sensitive aperture formed of its three η 2 -(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)] 2 species. Differences in the equilibrium constants K dimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.

  5. Development of a highly sensitive and selective method for extractive spectrophotometric determination of aluminum(III) from environmental matrices, synthetic mixtures, and alloys using orthohydroxypropiophenoneisonicotinoylhydrazone.

    PubMed

    Ramachandraiah, C; Rajesh Kumar, J; Adinarayana Reddy, S; Lee, Jin-Young; Varada Reddy, A

    2010-01-01

    Orthohydroxypropiophenoneisonicotinoylhydrazone (OHPINH) is proposed as a new sensitive reagent for the spectrophotometric determination of aluminum(III). OHPINH formed a greenish-yellow colored complex with aluminum(III) in buffer solutions of pH 1 to 3. The color in pH 2 was stable for more than 48 h. The complex solution has given maximum absorbance at 390 nm when the reagent was chosen as blank and the absorbance of the reagent at this wavelength is negligible; the molar absorptivity and Sandell's sensitivity being 0.6371x10(4) L mol(-1) cm(-1) and 4.234x10(-3) microg cm(-2), respectively. The system obeys Beer's law in the range of 0.5-3.5 microg mL(-1) with excellent linearity in terms of the correlation coefficient value of 0.999. Most of the common metal ions generally found associated with aluminum(III) do not interfere. The repeatability of the method was checked by finding the relative standard deviation. The developed method has been successfully employed for the determination of aluminum(III) environmental matrices like medicinal and leafy samples, alloys, and synthetic mixtures.

  6. Comparative Characterization of Crofelemer Samples Using Data Mining and Machine Learning Approaches With Analytical Stability Data Sets.

    PubMed

    Nariya, Maulik K; Kim, Jae Hyun; Xiong, Jian; Kleindl, Peter A; Hewarathna, Asha; Fisher, Adam C; Joshi, Sangeeta B; Schöneich, Christian; Forrest, M Laird; Middaugh, C Russell; Volkin, David B; Deeds, Eric J

    2017-11-01

    There is growing interest in generating physicochemical and biological analytical data sets to compare complex mixture drugs, for example, products from different manufacturers. In this work, we compare various crofelemer samples prepared from a single lot by filtration with varying molecular weight cutoffs combined with incubation for different times at different temperatures. The 2 preceding articles describe experimental data sets generated from analytical characterization of fractionated and degraded crofelemer samples. In this work, we use data mining techniques such as principal component analysis and mutual information scores to help visualize the data and determine discriminatory regions within these large data sets. The mutual information score identifies chemical signatures that differentiate crofelemer samples. These signatures, in many cases, would likely be missed by traditional data analysis tools. We also found that supervised learning classifiers robustly discriminate samples with around 99% classification accuracy, indicating that mathematical models of these physicochemical data sets are capable of identifying even subtle differences in crofelemer samples. Data mining and machine learning techniques can thus identify fingerprint-type attributes of complex mixture drugs that may be used for comparative characterization of products. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  7. Determination of polycyclic aromatic hydrocarbons in urine of coke oven workers by headspace solid phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Waidyanatha, Suramya; Zheng, Yuxin; Rappaport, Stephen M

    2003-05-06

    Polycyclic aromatic hydrocarbons (PAHs) represent a complex mixture of toxic compounds that are ubiquitous in the environment. We investigated the utility of head space-solid phase microextraction (HS-SPME) to measure the following surrogate PAHs in urine: naphthalene (NAP), phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BAP), representing classes of 2-, 3-, 4- and 5-ring compounds, respectively. We then applied the method to urine from 28 coke oven workers (median levels (microg/l) were: NAP=3.65, PHE=1.51, PYR=0.003, BAP not detected) and 22 controls (median (microg/l) NAP=0.859, PHE=0.062, PYR=0.001, BAP not detected). Urinary levels of NAP, PHE, and PYR were all associated with exposure category (controls, side- and bottom-workers, and top-workers) but not with smoking status. Strong correlations were observed between urinary levels of NAP, PHE, and PYR in coke-oven workers. Our results indicate that unmetabolized 2-, 3- and 4-ring PAHs can be measured in urine by HS-SPME. Such measurements can be used to investigate the uptake and metabolism of complex PAH mixtures in humans.

  8. Identification of unresolved complex mixtures (UCMs) of hydrocarbons in commercial fish oil supplements.

    PubMed

    Reid, Anna-Jean M; Budge, Suzanne M

    2015-01-01

    Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.

  9. High affinity ligands from in vitro selection: Complex targets

    PubMed Central

    Morris, Kevin N.; Jensen, Kirk B.; Julin, Carol M.; Weil, Michael; Gold, Larry

    1998-01-01

    Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188

  10. Sensitivity of the immature rat uterotrophic assay to mixtures of estrogens.

    PubMed Central

    Tinwell, Helen; Ashby, John

    2004-01-01

    We have evaluated whether mixtures of estrogens, present in the mix at doses that are individually inactive in the immature rat uterotrophic assay, can give a uterotrophic response. Seven chemicals were evaluated: nonylphenol, bisphenol A (BPA), methoxychlor, genistein (GEN), estradiol, diethylstilbestrol, and ethinyl estradiol. Dose responses in the uterotrophic assay were constructed for each chemical. The first series of experiments involved evaluating binary mixtures of BPA and GEN at dose levels that gave moderate uterotrophic responses when tested individually. The mixtures generally showed an intermediate or reduced uterotrophic effect compared with when the components of the mixture were tested alone at the dose used in the mixture. The next series of experiments used a multicomponent (complex) mixture of all seven chemicals evaluated at doses that gave either weakly positive or inactive uterotrophic responses when tested individually in the assay. Doses that were nominally equi-uterotrophic ranged over approximately six orders of magnitude for the seven chemicals. Doses of agents that gave a weak uterotrophic response when tested individually gave a marginally enhanced positive response in the assay when tested combined as a mixture. Doses of agents that gave a negative uterotrophic response when tested individually gave a positive response when tested as a mixture. These data indicate that a variety of different estrogen receptor (ER) agonists, present individually at subeffective doses, can act simultaneously to evoke an ER-regulated response. However, translating these findings into the process of environmental hazard assessment will be difficult. The simple addition of the observed, or predicted, activities for the components of a mixture is confirmed here to be inappropriate and to overestimate the actual effect induced by the mixture. Equally, isobole analysis is only suitable for two- or three-component mixtures, and concentration addition requires access to dose-response data and EC50 values (concentration giving 50% of the maximum response) for the individual components of the mixture--requirements that will rarely be fulfilled for complex environmental samples. Given these uncertainties, we conclude that it may be most expedient to select and bioassay whole environmental mixtures of potential concern. PMID:15064164

  11. General Blending Models for Data From Mixture Experiments

    PubMed Central

    Brown, L.; Donev, A. N.; Bissett, A. C.

    2015-01-01

    We propose a new class of models providing a powerful unification and extension of existing statistical methodology for analysis of data obtained in mixture experiments. These models, which integrate models proposed by Scheffé and Becker, extend considerably the range of mixture component effects that may be described. They become complex when the studied phenomenon requires it, but remain simple whenever possible. This article has supplementary material online. PMID:26681812

  12. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    PubMed Central

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-01-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767

  13. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry.

    PubMed

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia

    2016-04-21

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  14. Application of linear mixed-effects model with LASSO to identify metal components associated with cardiac autonomic responses among welders: a repeated measures study

    PubMed Central

    Zhang, Jinming; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2017-01-01

    Background Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations. Objective To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses. Methods Urinary concentrations of 16 types of metals were examined and ‘acceleration capacity’ (AC) and ‘deceleration capacity’ (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures. Results Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with ‘selected’ metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with −0.58 ms (−1.03, –0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC. Conclusion Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes. PMID:28663305

  15. Research and Guidance on Drinking Water Contaminant Mixtures

    EPA Science Inventory

    Accurate assessment of potential human health risk(s) from multiple-route exposures to multiple chemicals in drinking water is needed because of widespread daily exposure to this complex mixture. Hundreds of chemicals have been identified in drinking water with the mix of chemic...

  16. Effects of Photochemically-Aged Atmospheres on Allergic Responses in Mice

    EPA Science Inventory

    Although air pollution is a complex mixture consisting of multiple gaseous and particulate components, current regulations and research approaches often focus on single pollutants. To better assess the impact of air pollution mixtures on respiratory health, we investigated the ef...

  17. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.

    PubMed

    Brown, D R; Bailey, J M; Oliveri, A N; Levin, E D; Di Giulio, R T

    2016-01-01

    Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry.

    PubMed

    Meijster, Tim; Burstyn, Igor; Van Wendel De Joode, Berna; Posthumus, Maarten A; Kromhout, Hans

    2004-08-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations. Principal component analyses (PCA) and linear regression were used to determine the emission sources of different chemicals found in the air samples. We showed that complex mixtures of chemicals were released, but most concentrations were below Dutch exposure limits. Based on the results of the principal component analyses, the chemicals found were divided into three groups. The first group consisted of short chain aliphatic hydrocarbons (C2-C6). The second group included larger hydrocarbons (C9-C11) and some cyclic hydrocarbons. The third group contained all aromatic and two aliphatic hydrocarbons. Regression analyses showed that emission of the first group of chemicals was associated with cleaning activities and the use of epoxy resins. The second and third group showed strong association with the type of tape used in the new tape winding process. High levels of CO and HCN (above exposure limits) were measured on one occasion when a different brand of impregnated polypropylene sulphide tape was used in the tape winding process. Plans exist to drastically increase production with the new tape winding process. This will cause exposure levels to rise and therefore further control measures should be installed to reduce release of these chemicals.

  19. Environmental nitration processes enhance the mutagenic potency of aromatic compounds.

    PubMed

    Bonnefoy, Aurélie; Chiron, Serge; Botta, Alain

    2012-05-01

    This work is an attempt to establish if aromatic nitration processes are always associated with an increase of genotoxicity. We determined the mutagenic and genotoxic effects of Benzene (B), Nitrobenzene (NB), Phenol (P), 2-Nitrophenol (2-NP), 2,4-Dinitrophenol (2,4-DNP), Pyrene (Py), 1-Nitropyrene (1-NPy), 1,3-Dinitropyrene (1,3-DNPy), 1,6-Dinitropyrene (1,6-DNPy), and 1,8-Dinitropyrene (1,8-DNPy). The mutagenic activities were evaluated with umuC test in presence and in absence of metabolic activation with S9 mix. Then, we used both cytokinesis-blocked micronucleus (CBMN) assay, in combination with fluorescent in situ hybridization (FISH) of human pan-centromeric DNA probes on human lymphocytes in order to evaluate the genotoxic effects. Analysis of all results shows that nitro polycyclic aromatic hydrocarbons (PAHs) are definitely environmental genotoxic/mutagenic hazards and confirms that environmental aromatic nitration reactions lead to an increase in genotoxicity and mutagenicity properties. Particularly 1-NPy and 1,8-DNPy can be considered as human potential carcinogens. They seem to be significant markers of the genotoxicity, mutagenicity, and potential carcinogenicity of complex PAHs mixtures present in traffic emission and industrial environment. In prevention of environmental carcinogenic risk 1-NPy and 1,8-DNPy must therefore be systematically analyzed in environmental complex mixtures in association with combined umuC test, CBMN assay, and FISH on cultured human lymphocytes. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012. Copyright © 2010 Wiley Periodicals, Inc.

  20. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.« less

  1. Synthesis and Evaluation of a Novel Adenosine-Ribose Probe for Global-Scale Profiling of Nucleoside and Nucleotide-Binding Proteins

    PubMed Central

    Mahajan, Shikha; Manetsch, Roman; Merkler, David J.; Stevens Jr., Stanley M.

    2015-01-01

    Proteomics is a powerful approach used for investigating the complex molecular mechanisms of disease pathogenesis and progression. An important challenge in modern protein profiling approaches involves targeting of specific protein activities in order to identify altered molecular processes associated with disease pathophysiology. Adenosine-binding proteins represent an important subset of the proteome where aberrant expression or activity changes of these proteins have been implicated in numerous human diseases. Herein, we describe an affinity-based approach for the enrichment of adenosine-binding proteins from a complex cell proteome. A novel N 6-biotinylated-8-azido-adenosine probe (AdoR probe) was synthesized, which contains a reactive group that forms a covalent bond with the target proteins, as well as a biotin tag for affinity enrichment using avidin chromatography. Probe specificity was confirmed with protein standards prior to further evaluation in a complex protein mixture consisting of a lysate derived from mouse neuroblastoma N18TG2 cells. Protein identification and relative quantitation using mass spectrometry allowed for the identification of small variations in abundance of nucleoside- and nucleotide-binding proteins in these samples where a significant enrichment of AdoR-binding proteins in the labeled proteome from the neuroblastoma cells was observed. The results from this study demonstrate the utility of this method to enrich for nucleoside- and nucleotide-binding proteins in a complex protein mixture, pointing towards a unique set of proteins that can be examined in the context of further understanding mechanisms of disease, or fundamental biological processes in general. PMID:25671571

  2. The role of phospholipid as a solubility- and permeability-enhancing excipient for the improved delivery of the bioactive phytoconstituents of Bacopa monnieri.

    PubMed

    Saoji, Suprit D; Dave, Vivek S; Dhore, Pradip W; Bobde, Yamini S; Mack, Connor; Gupta, Deepak; Raut, Nishikant A

    2017-10-15

    In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (>97%) in comparison to the pure SCE (~42%), or the physical mixture (~47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (>90%), compared to the pure SBE (~21%), or the physical mixture (~24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Solid phase excitation-emission fluorescence method for the classification of complex substances: Cortex Phellodendri and other traditional Chinese medicines as examples.

    PubMed

    Gu, Yao; Ni, Yongnian; Kokot, Serge

    2012-09-13

    A novel, simple and direct fluorescence method for analysis of complex substances and their potential substitutes has been researched and developed. Measurements involved excitation and emission (EEM) fluorescence spectra of powdered, complex, medicinal herbs, Cortex Phellodendri Chinensis (CPC) and the similar Cortex Phellodendri Amurensis (CPA); these substances were compared and discriminated from each other and the potentially adulterated samples (Caulis mahoniae (CM) and David poplar bark (DPB)). Different chemometrics methods were applied for resolution of the complex spectra, and the excitation spectra were found to be the most informative; only the rank-ordering PROMETHEE method was able to classify the samples with single ingredients (CPA, CPC, CM) or those with binary mixtures (CPA/CPC, CPA/CM, CPC/CM). Interestingly, it was essential to use the geometrical analysis for interactive aid (GAIA) display for a full understanding of the classification results. However, these two methods, like the other chemometrics models, were unable to classify composite spectral matrices consisting of data from samples of single ingredients and binary mixtures; this suggested that the excitation spectra of the different samples were very similar. However, the method is useful for classification of single-ingredient samples and, separately, their binary mixtures; it may also be applied for similar classification work with other complex substances.

  4. Computational Docking of the Isomers of Nonylphenol to the Ligand Binding Domain of the Estrogen Receptor

    EPA Science Inventory

    Nonylphenols are environmentally persistent endocrine disrupting chemicals. They exist in the environment as complex mixtures containing many nonylphenol isomers. Environmental mixtures of nonylphenols, along with a few single isomers have been tested for their capacity to inte...

  5. Quantitative structure - mesothelioma Potency Model Optimization for Complex Mixtures of Elongated Particles in Rat Pleura

    EPA Science Inventory

    Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including fibers from asbestos, are influenced by changes in fiber dose composition, bioavailability and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and com...

  6. Biologically-Based Lumping Methodology (BBLM) To Investigate Toxicological Interactions of Complex Chemical Mixtures

    EPA Science Inventory

    Many cases of environmental contamination result in concurrent or sequential exposure to more than one chemical. Limitations of available resources prevent experimental toxicology from providing health risk information about all the possible mixtures to which humans or other spec...

  7. Proteomic analysis of a model fish species exposed to individual pesticides and a binary mixture

    EPA Science Inventory

    Aquatic organisms are often exposed to multiple pesticides simultaneously. Due to the relatively poor characterization of mixture constituent interactions and the potential for highly complex exposure scenarios, there is considerable uncertainty in understanding the toxicity of m...

  8. PHOTOCHEMICAL PRODUCTS IN URBAN MIXTURES ENHANCE INFLAMMATORY RESPONSES IN LUNG CELLS

    EPA Science Inventory

    Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concent...

  9. Chloramination of Concentrated Drinking Water for Disinfection Byproduct Mixtures Creation- Indianapolis

    EPA Science Inventory

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  10. Synergism and antagonism in extracting local anesthetics from aqueous media with mixtures of solvents

    NASA Astrophysics Data System (ADS)

    Sukhanov, P. T.; Chibisova, T. V.; Korenman, Ya. I.

    2014-12-01

    The extraction of local anesthetics from aqueous media with mixtures of solvent is examined and its synergistic and antagonistic effects are determined. Synergism parameters, separation factors, constants for the formation of anesthetic complexes, and solvate numbers are calculated.

  11. Effects of Isoprene- and Toluene-Generated Smog on Allergic Inflammation in Mice

    EPA Science Inventory

    Reactions of organic compounds with nitric oxide (NO) and sunlight produce complex mixtures of pollutants including secondary organic aerosol (SOA), ozone (O3), nitrogen dioxide (NO2), and reactive aldehydes. The health effects of these photochemical smog mixtures in susceptible ...

  12. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures

    NASA Astrophysics Data System (ADS)

    Islam, Saidul; Bučar, Dejan-Krešimir; Powner, Matthew W.

    2017-06-01

    A central problem for the prebiotic synthesis of biological amino acids and nucleotides is to avoid the concomitant synthesis of undesired or irrelevant by-products. Additionally, multistep pathways require mechanisms that enable the sequential addition of reactants and purification of intermediates that are consistent with reasonable geochemical scenarios. Here, we show that 2-aminothiazole reacts selectively with two- and three-carbon sugars (glycolaldehyde and glyceraldehyde, respectively), which results in their accumulation and purification as stable crystalline aminals. This permits ribonucleotide synthesis, even from complex sugar mixtures. Remarkably, aminal formation also overcomes the thermodynamically favoured isomerization of glyceraldehyde into dihydroxyacetone because only the aminal of glyceraldehyde separates from the equilibrating mixture. Finally, we show that aminal formation provides a novel pathway to amino acids that avoids the synthesis of the non-proteinogenic α,α-disubstituted analogues. The common physicochemical mechanism that controls the proteinogenic amino acid and ribonucleotide assembly from prebiotic mixtures suggests that these essential classes of metabolite had a unified chemical origin.

  13. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture

    PubMed Central

    Kumar, Ranjeet; Pradhan, Ajay; Khan, Faisal Ahmad; Lindström, Pia; Ragnvaldsson, Daniel; Ivarsson, Per; Olsson, Per-Erik; Jass, Jana

    2015-01-01

    Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention. PMID:26168046

  14. Mixture-based gatekeeping procedures in adaptive clinical trials.

    PubMed

    Kordzakhia, George; Dmitrienko, Alex; Ishida, Eiji

    2018-01-01

    Clinical trials with data-driven decision rules often pursue multiple clinical objectives such as the evaluation of several endpoints or several doses of an experimental treatment. These complex analysis strategies give rise to "multivariate" multiplicity problems with several components or sources of multiplicity. A general framework for defining gatekeeping procedures in clinical trials with adaptive multistage designs is proposed in this paper. The mixture method is applied to build a gatekeeping procedure at each stage and inferences at each decision point (interim or final analysis) are performed using the combination function approach. An advantage of utilizing the mixture method is that it enables powerful gatekeeping procedures applicable to a broad class of settings with complex logical relationships among the hypotheses of interest. Further, the combination function approach supports flexible data-driven decisions such as a decision to increase the sample size or remove a treatment arm. The paper concludes with a clinical trial example that illustrates the methodology by applying it to develop an adaptive two-stage design with a mixture-based gatekeeping procedure.

  15. Biomarkers of Cytotoxic, Genotoxic and Apoptotic Effects in Cyprinus carpio Exposed to Complex Mixture of Contaminants from Hospital Effluents.

    PubMed

    Olvera-Néstor, Corina G; Morales-Avila, Enrique; Gómez-Olivan, Leobardo M; Galár-Martínez, Marcela; García-Medina, Sandra; Neri-Cruz, Nadia

    2016-03-01

    Hospital wastewater is an important source of emerging contaminants. Recent studies emphasize the importance of assessing the effects of mixtures of contaminants rather than environmental risk of their individual components, as well as the determination of intrinsic toxicity of wastewater. Mixtures of pollutants has possible interactions that have notable environmental side effects. The aim of this study is an attempt to characterize biomarkers in Cyprinus carpio related to the exposure to a complex mixture of contaminants found in hospital wastewater. Results of a particular hospital effluent show the presence of traces of heavy metals, high chlorine concentration and emerging contaminants such as non-steroidal anti-inflammatory drugs. The LC50 was of 5.49 % at 96 h. The cytotoxic, genotoxic and apoptotic biomarkers increase when fishes were exposed to wastewater (1/10 CL50) from hospital wastewater. This study emphasizes the importance of identifying and quantifying the effects of contaminants as pharmaceuticals, disinfectants and surfactants in order to design and implement an ecotoxicological plan.

  16. Prospective power calculations for the Four Lab study of a multigenerational reproductive/developmental toxicity rodent bioassay using a complex mixture of disinfection by-products in the low-response region.

    PubMed

    Dingus, Cheryl A; Teuschler, Linda K; Rice, Glenn E; Simmons, Jane Ellen; Narotsky, Michael G

    2011-10-01

    In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA's Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss.

  17. Prospective Power Calculations for the Four Lab Study of A Multigenerational Reproductive/Developmental Toxicity Rodent Bioassay Using A Complex Mixture of Disinfection By-Products in the Low-Response Region

    PubMed Central

    Dingus, Cheryl A.; Teuschler, Linda K.; Rice, Glenn E.; Simmons, Jane Ellen; Narotsky, Michael G.

    2011-01-01

    In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA’s Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss. PMID:22073030

  18. Multidimensional profiling of components in complex mixtures of natural products for metabolic analysis, proof of concept: application to Quillaja saponins.

    PubMed

    Bankefors, Johan; Nord, Lars I; Kenne, Lennart

    2010-02-01

    A method for separation and detection of major and minor components in complex mixtures has been developed, utilising two-dimensional high-performance liquid chromatography (2D-HPLC) combined with electrospray ionisation ion-trap multiple-stage mass spectrometry (ESI-ITMS(n)). Chromatographic conditions were matched with mass spectrometric detection to maximise the number of components that could be separated. The described procedure has proven useful to discern several hundreds of saponin components when applied to Quillaja saponaria Molina bark extracts. The discrimination of each saponin component relies on the fact that three coordinates (x, y, z) for each component can be derived from the retention time of the two chromatographic steps (x, y) and the m/z-values from the multiple-stage mass spectrometry (z(n), n=1, 2, ...). Thus an improved graphical representation was obtained by combining retention times from the two-stage separation with +MS(1) (z(1)) and the additional structural information from the second mass stage +MS(2) (z(2), z(3)) corresponding to the main fragment ions. By this approach three-dimensional plots can be made that reveal both the chromatographic and structural properties of a specific mixture which can be useful in fingerprinting of complex mixtures. 2009 Elsevier B.V. All rights reserved.

  19. Application of Biologically-Based Lumping To Investigate the ...

    EPA Pesticide Factsheets

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these experiments, though this simplification provides little insight into the impact of a mixture's chemical composition on toxicologically-relevant metabolic interactions that may occur among its constituents. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically-based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate performance of our PBPK model. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course kinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for the 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 non-target chemicals. Application of this biologic

  20. The glatiramoid class of immunomodulator drugs.

    PubMed

    Varkony, Haim; Weinstein, Vera; Klinger, Ety; Sterling, Jeffrey; Cooperman, Helena; Komlosh, Turi; Ladkani, David; Schwartz, Rivka

    2009-03-01

    Glatiramer acetate (GA) is a complex heterogenous mixture of polypeptides with immunomodulatory activity approved for treatment of relapsing-remitting multiple sclerosis. GA is the first, and was until recently, the only member of the glatiramoids, a family of synthetic copolymer mixtures comprising the four amino acids, L-glutamic acid, L-alanine, L-lysine and L-tyrosine, in a defined molar ratio. Another glatiramoid, protiramer, was recently evaluated in preclinical studies and in two small Phase II clinical trials with relapsing-remitting multiple sclerosis patients. Due to the complexity and heterogeneity of GA and other glatiramoids, the clinically active epitopes within the mixture cannot be identified and the consistency of polypeptide sequences within the mixture is dependent on a tightly controlled manufacturing process. Although no two glatiramoids can be proved identical, it is possible to differentiate among members of the glatiramoid class using analytical methods and immunological and biological markers. Even slight differences in the distribution of molecular masses or in the composition of antigenic polypeptide sequences among glatiramoids can significantly influence their efficacy, toxicity and immunogenicity profiles. Experience with GA may be instructive regarding important safety and efficacy considerations for new glatiramoid mixtures now in development.

  1. Efficient Reservoir Simulation with Cubic Plus Association and Cross-Association Equation of State for Multicomponent Three-Phase Compressible Flow with Applications in CO2 Storage and Methane Leakage

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2017-12-01

    We present novel simulation tools to model multiphase multicomponent flow and transport in porous media for mixtures that contain non-polar hydrocarbons, self-associating polar water, and cross-associating molecules like methane, ethane, unsaturated hydrocarbons, CO2 and H2S. Such mixtures often occur when CO2 is injected and stored in saline aquifers, or when methane is leaking into groundwater. To accurately predict the species transfer between aqueous, gaseous and oleic phases, and the subsequent change in phase properties, the self- and cross-associating behavior of molecules needs to be taken into account, particularly at the typical temperatures and pressures in deep formations. The Cubic-Plus-Association equation-of-state (EOS) has been demonstrated to be highly accurate for such problems but its excessive computational cost has prevented widespread use in reservoir simulators. We discuss the thermodynamical framework and develop sophisticated numerical algorithms that allow reservoir simulations with efficiencies comparable to a simple cubic EOS. This approach improves our predictive powers for highly nonlinear fluid behavior related to geological carbon sequestration, such as density driven flow and natural convection (solubility trapping), evaporation of water into the CO2-rich gas phase, and competitive dissolution-evaporation when CO2 is injected in, e.g., methane saturated aquifers. Several examples demonstrate the accuracy and robustness of this EOS framework for complex applications.

  2. Complex formation and vectorization of a phosphorothioate oligonucleotide with an amphipathic leucine- and lysine-rich peptide: study at molecular and cellular levels.

    PubMed

    Boukhalfa-Heniche, Fatima-Zohra; Hernández, Belén; Gaillard, Stéphane; Coïc, Yves-Marie; Huynh-Dinh, Tam; Lecouvey, Marc; Seksek, Olivier; Ghomi, Mahmoud

    2004-04-15

    Optical spectroscopic techniques such as CD, Raman scattering, and fluorescence imaging allowed us to analyze the complex formation and vectorization of a single-stranded 20-mer phosphorothioate oligodeoxynucleotide with a 15-mer amphipathic peptide at molecular and cellular levels. Different solvent mixtures (methanol and water) and molecular ratios of peptide/oligodeoxynucleotide complexes were tested in order to overcome the problems related to solubility. Optimal conditions for both spectroscopic and cellular experiments were obtained with the molecular ratio peptide/oligodeoxynucleotide equal to 21:4, corresponding to a 7:5 ratio for their respective +/- charge ratio. At the molecular level, CD and Raman spectra were consistent with a alpha-helix conformation of the peptide in water or in a methanol-water mixture. The presence of methanol increased considerably the solubility of the peptide without altering its alpha-helix conformation, as evidenced by CD and Raman spectroscopies. UV absorption melting profile of the oligodeoxynucleotide gave rise to a flat melting profile, corresponding to its random structure in solution. Raman spectra of oligodeoxynucleotide/peptide complexes could only be studied in methanol/water mixture solutions. Drastic changes observed in Raman spectra have undoubtedly shown: (a) the perturbation occurred in the peptide secondary structure, and (b) possible interaction between the lysine residues of the peptide and the oligodeoxynucleotide. At the cellular level, the complex was prepared in a mixture of 10% methanol and 90% cell medium. Cellular uptake in optimal conditions for the oligodeoxynucleotide delivery with low cytotoxicity was controlled by fluorescence imaging allowing to specifically locate the compacted oligonucleotide labeled with fluorescein at its 5'-terminus with the peptide into human glioma cells after 1 h of incubation at 37 degrees C. Copyright 2004 Wiley Periodicals, Inc.

  3. Band-selective excited ultrahigh resolution PSYCHE-TOCSY: fast screening of organic molecules and complex mixtures.

    PubMed

    Kakita, Veera Mohana Rao; Vemulapalli, Sahithya Phani Babu; Bharatam, Jagadeesh

    2016-04-01

    Precise assignments of (1) H atomic sites and establishment of their through-bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using (1) H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of (1) H-(1) H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure-shift), particularly, Morris's advanced broadband pure-shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE-TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE-TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band-selective analog of the broadband PSYCHE-TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band-selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE-PSYCHE-TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE-TOCSY. Furthermore, unlike the earlier homonuclear band-selective decoupling, the BSE-PSYCHE-decoupling provides fully decoupled pure-shift spectra for all the individual chemical sites within the excited band. The BSE-PSYCHE-TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Quantitative structure - mesothelioma potency model optimization for complex mixtures of elongated particles in rat pleura: A retrospective study

    EPA Science Inventory

    Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including asbestos fibers, are influenced by changes in fiber dose composition, bioavailability, and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and compreh...

  5. METHODOLOGICAL ISSUES IN HUMAN EXPOSURE STUDIES OF LOW LEVEL SOLVENT MIXTURES

    EPA Science Inventory

    The design of appropriate studies to assess the sensory irritant and neurobehavioral-effects of exposure to complex VOC mixtures poses a variety of methodological challenges, particularly at the low levels found in new buildings. or instance, Otto et al (1989) exposed subjects to...

  6. CONCENTRATION AND TREATMENT OF DRINKING WATERS IN THE FOUR LAB STUDY

    EPA Science Inventory

    The purpose of the four lab study was to address concerns related to potential health effects from exposure to complex mixtures of DBPs that cannot be addressed directly from toxicological studies of individual disinfection by-products (DBPs) or simple DBP mixtures. In order to ...

  7. INTEGRATED DISINFECTION BYPRODUCTS MIXTURES RESEARCH: COMPREHENSIVE CHARACTERIZATION OF WATER CONCENTRATES PREPARED FROM CHLORINATED AND OZONATED/POSTCHLORINATED DRINKING WATER

    EPA Science Inventory

    This article describes the disinfection byproduct (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking water concentrates containing highly complex mixtures of DBP. This project, called the Four...

  8. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  9. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams

    USGS Publications Warehouse

    Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.

    2018-01-01

    Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.

  10. Quantitative trace analysis of complex mixtures using SABRE hyperpolarization.

    PubMed

    Eshuis, Nan; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2015-01-26

    Signal amplification by reversible exchange (SABRE) is an emerging nuclear spin hyperpolarization technique that strongly enhances NMR signals of small molecules in solution. However, such signal enhancements have never been exploited for concentration determination, as the efficiency of SABRE can strongly vary between different substrates or even between nuclear spins in the same molecule. The first application of SABRE for the quantitative analysis of a complex mixture is now reported. Despite the inherent complexity of the system under investigation, which involves thousands of competing binding equilibria, analytes at concentrations in the low micromolar range could be quantified from single-scan SABRE spectra using a standard-addition approach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O:C. We did not find any dependence of LLPS on the complexity of the mixture. Overall, the RH range of coexistence of two liquid phases depends in first place on the O:C ratio of the particles and in second place also on the specific organic functionalities.

  12. Component spectra extraction from terahertz measurements of unknown mixtures.

    PubMed

    Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X

    2015-10-20

    The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.

  13. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment.

    PubMed

    Hernández, Antonio F; Tsatsakis, Aristidis M

    2017-05-01

    Little is known about the potential adverse effects from longterm exposure to complex mixtures at low doses, close to health-based reference values. Traditional chemical-specific risk assessment based on animal testing may be insufficient and the lack of toxicological studies on chemical mixtures remains a major regulatory challenge. Hence, new methodologies on cumulative risk assessment are being developed but still present major limitations. Evaluation of chemical mixture effects requires an integrated and systematic approach and close collaboration across different scientific fields, particularly toxicology, epidemiology, exposure science, risk assessment and statistics for a proper integration of data from all these disciplines. Well designed and conducted epidemiological studies can take advantage of this new paradigm and can provide insight to support the correlation between humans low-dose exposures and diseases, thus avoiding the uncertainty associated with extrapolation across species. In this regard, human epidemiology studies may play a significant role in the new vision of toxicity testing. However, this type of information has not been fully considered in risk assessment, mainly due to the inherent limitations of epidemiologic studies. An integrated approach of in vivo, in vitro and in silico data, together with systematic reviews or meta-analysis of high quality epidemiological studies will improve the robustness of risk assessment of chemical mixtures and will provide a stronger basis for regulatory decisions. The ultimate goal is that experimental and mechanistic data can lend support and biological plausibility to the human epidemiological observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Efficient Statistically Accurate Algorithms for the Fokker-Planck Equation in Large Dimensions

    NASA Astrophysics Data System (ADS)

    Chen, N.; Majda, A.

    2017-12-01

    Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method, which is based on an effective data assimilation framework, provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace. Therefore, it is computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from the traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has a significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O(100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.

  15. The Urtica dioica Agglutinin Is a Complex Mixture of Isolectins 1

    PubMed Central

    Van Damme, Els J. M.; Broekaert, Willem F.; Peumans, Willy J.

    1988-01-01

    Rhizomes of stinging nettle (Urtica dioica) contain a complex mixture of isolectins. Ion exchange chromatography with a high resolution fast protein liquid chromatography system revealed six isoforms which exhibit identical agglutination properties and carbohydrate-binding specificity and in addition have the same molecular structure and virtually identical biochemical properties. However, since the U. dioica agglutinin isolectins differ definitely with respect to their amino acid composition, it is likely that at least some of them are different polypeptides coded for by different genes. Images Fig. 3 PMID:16665952

  16. A cohort study evaluation of maternal PCB exposure related to time to pregnancy in daughters.

    PubMed

    Gennings, Chris; Carrico, Caroline; Factor-Litvak, Pam; Krigbaum, Nickilou; Cirillo, Piera M; Cohn, Barbara A

    2013-08-20

    Polychlorinated biphenyls (PCBs) remain ubiquitous environmental contaminants. Developmental exposures are suspected to impact reproduction. Analysis of mixtures of PCBs may be problematic as components have a complex correlation structure, and along with limited sample sizes, standard regression strategies are problematic. We compared the results of a novel, empirical method to those based on categorization of PCB compounds by (1) hypothesized biological activity previously proposed and widely applied, and (2) degree of ortho- substitution (mono, di, tri), in a study of the relation of maternal serum PCBs and daughter's time to pregnancy. We measured PCBs in maternal serum samples collected in the early postpartum in 289 daughters in the Child Health and Development Studies birth cohort. We queried time to pregnancy in these daughters 28-31 years later. We applied a novel weighted quantile sum approach to find the bad-actor compounds in the PCB mixture found in maternal serum. The approach includes empirical estimation of the weights through a bootstrap step which accounts for the variation in the estimated weights. Bootstrap analyses indicated the dominant functionality groups associated with longer TTP were the dioxin-like, anti-estrogenic group (average weight, 22%) and PCBs not previously classified by biological activity (54%). In contrast, the unclassified PCBs were not important in the association with shorter TTP, where the anti-estrogenic groups and the PB-inducers group played a more important role (60% and 23%, respectively). The highly chlorinated PCBs (average weight, 89%) were mostly associated with longer TTP; in contrast, the degree of chlorination was less discriminating for shorter TTP. Finally, PCB 56 was associated with the strongest relationship with TTP with a weight of 47%. Our empirical approach found some associations previously identified by two classification schemes, but also identified other bad actors. This empirical method can generate hypotheses about mixture effects and mechanisms and overcomes some of the limitations of standard regression techniques.

  17. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE PAGES

    Geier, Mitra C.; James Minick, D.; Truong, Lisa; ...

    2018-04-01

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  18. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, Mitra C.; James Minick, D.; Truong, Lisa

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  19. Aspects of High-Resolution Gas Chromatography as Applied to the Analysis of Hydrocarbon Fuels and Other Complex Organic Mixtures. Volume 2. Survey of Sample Insertion Techniques.

    DTIC Science & Technology

    1985-06-01

    packed column, with low liquid loading (2. 0 mm ID, 4% liquid phase loading on diatomaceous earth *) 0.3 Medium bore analytical packed column, with...moderate liquid loading (4. 5 mm ID, 8%16 liquid phase loading on diatomaceous earth *) 3.0 -3 * diatomaceous earth density 0.24 gm cm 12 associated with the...hydrocarbon fuels. Certain injector inserts have contained packed chromatographic media, e.g., stationary phases coated onto diatomaceous earth . This type

  20. Associations of welding and manganese exposure with Parkinson disease

    PubMed Central

    Borenstein, Amy R.; Nelson, Lorene M.

    2012-01-01

    Objective: To examine associations of welding and manganese exposure with Parkinson disease (PD) using meta-analyses of data from cohort, case-control, and mortality studies. Methods: Epidemiologic studies related to welding or manganese exposure and PD were identified in a PubMed search, article references, published reviews, and abstracts. Inclusion criteria were 1) cohort, case-control, or mortality study with relative risk (RR), odds ratio (OR), or mortality OR (MOR) and 95 confidence intervals (95% CI); 2) RR, OR, and MOR matched or adjusted for age and sex; 3) valid study design and analysis. When participants of a study were a subgroup of those in a larger study, only results of the larger study were included to assure independence of datasets. Pooled RR/OR estimates and 95% CIs were obtained using random effects models; heterogeneity of study effects were evaluated using the Q statistic and I2 index in fixed effect models. Results: Thirteen studies met inclusion criteria for the welding meta-analysis and 3 studies for the manganese exposure meta-analysis. The pooled RR for the association between welding and PD for all study designs was 0.86 (95% CI 0.80–0.92), with absence of between-study heterogeneity (I2 = 0.0). Effect measures for cohort, case-control, and mortality studies were similar (0.91, 0.82, 0.87). For the association between manganese exposure and PD, the pooled OR was 0.76 (95% CI 0.41–1.42). Conclusions: Welding and manganese exposure are not associated with increased PD risk. Possible explanations for the inverse association between welding and PD include confounding by smoking, healthy worker effect, and hormesis. PMID:22965675

  1. Utility of controlled human exposure studies for assessing the health effects of complex mixtures and indoor air pollutants.

    PubMed Central

    McDonnell, W F

    1993-01-01

    The study of health effects induced by exposure to mixtures of pollutants is a complex task. The purpose of this paper is to identify areas of research in which the conduct of human controlled exposure (clinical) studies may contribute to better understanding health effects of exposure to indoor air and other mixtures. The strengths and weaknesses of clinical studies in general are reviewed, as well as examples from the literature of approaches that have been used. Human chamber studies play an important role alongside epidemiologic and animal toxicologic studies in such research. Human chamber studies are limited with regard to assessing chronic effects, rare effects, or effects from long-duration exposures but are powerful in assessing acute, reversible effects from short-duration exposures in humans. The areas in which human chamber studies are most likely to contribute include identification of effects or markers of effects for exposure to a given pollutant or mix of pollutants; direct dose-response assessment of effects for individual compounds and mixtures of set composition; identification of individual compounds responsible for the effects of a mixture; study of the joint effects of a binary mixture; development of markers of acute exposure for particular compounds; development of outcome measurements to be used in the field; and identification, characterization, and testing of sensitive subpopulations. PMID:8206031

  2. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    PubMed

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  3. Study of decolorisation of binary dye mixture by response surface methodology.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Separating spectral mixtures in hyperspectral image data using independent component analysis: validation with oral cancer tissue sections

    NASA Astrophysics Data System (ADS)

    Duann, Jeng-Ren; Jan, Chia-Ing; Ou-Yang, Mang; Lin, Chia-Yi; Mo, Jen-Feng; Lin, Yung-Jiun; Tsai, Ming-Hsui; Chiou, Jin-Chern

    2013-12-01

    Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p<0.001).

  5. Computational estimation of errors generated by lumping of physiologically-based pharmacokinetic (PBPK) interaction models of inhaled complex chemical mixtures

    EPA Science Inventory

    Many cases of environmental contamination result in concurrent or sequential exposure to more than one chemical. However, limitations of available resources make it unlikely that experimental toxicology will provide health risk information about all the possible mixtures to which...

  6. ELECTROSTATIC PRECIPITATION AN AN ALTERNATIVE METHOD FOR /IN VITRO/ EXPOSURES TO MIXTURES OF GASES AND PARTICLES

    EPA Science Inventory

    There is an increasing interest in examining complex urban air pollution mixtures that include both particulate and gaseous components. Conventional methodologies are unable to expose lung cells in vitro simultaneously to both particulate and gaseous pollutants that are being for...

  7. Conceptual Model for Assessing Criteria Air Pollutants in a Multipollutant Context: A Modified Adverse Outcome Pathway Approach

    EPA Science Inventory

    Background: Air pollution consists of a complex mixture of particulate and gaseous components. Individual criteria and other hazardous air pollutants have been linked to adverse respiratory and cardiovascular health outcomes. However, assessing risk of air pollutant mixtures is d...

  8. From the lab bench: Mixtures of grasses and legumes; a good or bad thing?

    USDA-ARS?s Scientific Manuscript database

    A column was written to discuss the advantages of complex mixtures of grasses and legumes. Historically, Kentucky pastures have been primarily composed of toxic endophyte-infected tall fescue, but Kentucky bluegrass and other grasses are presently encroaching tall fescue pastures. These other gras...

  9. Gene Expression Responses in Male Fathead Minnows Exposed to Binary Mixtures of an Estrogen and Antiestrogen

    EPA Science Inventory

    Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen...

  10. Chloraminated Concentrated Drinking Water for Disinfection Byproduct Mixtures Research: Evaluating Free Chlorine Contact Times

    EPA Science Inventory

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) present in the source water. Since 1974, over 600 DBPs have been identified in drinking water, yet a large portio...

  11. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  12. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  13. The perception of odor objects in everyday life: a review on the processing of odor mixtures

    PubMed Central

    Thomas-Danguin, Thierry; Sinding, Charlotte; Romagny, Sébastien; El Mountassir, Fouzia; Atanasova, Boriana; Le Berre, Elodie; Le Bon, Anne-Marie; Coureaud, Gérard

    2014-01-01

    Smelling monomolecular odors hardly ever occurs in everyday life, and the daily functioning of the sense of smell relies primarily on the processing of complex mixtures of volatiles that are present in the environment (e.g., emanating from food or conspecifics). Such processing allows for the instantaneous recognition and categorization of smells and also for the discrimination of odors among others to extract relevant information and to adapt efficiently in different contexts. The neurophysiological mechanisms underpinning this highly efficient analysis of complex mixtures of odorants is beginning to be unraveled and support the idea that olfaction, as vision and audition, relies on odor-objects encoding. This configural processing of odor mixtures, which is empirically subject to important applications in our societies (e.g., the art of perfumers, flavorists, and wine makers), has been scientifically studied only during the last decades. This processing depends on many individual factors, among which are the developmental stage, lifestyle, physiological and mood state, and cognitive skills; this processing also presents striking similarities between species. The present review gathers the recent findings, as observed in animals, healthy subjects, and/or individuals with affective disorders, supporting the perception of complex odor stimuli as odor objects. It also discusses peripheral to central processing, and cognitive and behavioral significance. Finally, this review highlights that the study of odor mixtures is an original window allowing for the investigation of daily olfaction and emphasizes the need for knowledge about the underlying biological processes, which appear to be crucial for our representation and adaptation to the chemical environment. PMID:24917831

  14. Health Impacts of Estrogens in the Environment, Considering Complex Mixture Effects

    PubMed Central

    Filby, Amy L.; Neuparth, Teresa; Thorpe, Karen L.; Owen, Richard; Galloway, Tamara S.; Tyler, Charles R.

    2007-01-01

    Background Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. Objectives We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). Methods Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17α-ethinyl-estradiol (EE2)], and to EE2 alone. Results In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. Conclusion These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures. PMID:18087587

  15. A rapid, ideal, and eco-friendlier protocol for quantifying proline.

    PubMed

    Shabnam, Nisha; Tripathi, Indu; Sharmila, P; Pardha-Saradhi, P

    2016-11-01

    Proline, a stress marker, is routinely quantified by a protocol that essentially uses hazardous toluene. Negative impacts of toluene on human health prompted us to develop a reliable alternate protocol for proline quantification. Absorbance of the proline-ninhydrin condensation product formed by reaction of proline with ninhydrin at 100 °C in the reaction mixture was significantly higher than that recorded after its transfer to toluene, revealing that toluene lowers sensitivity of this assay. λ max of the proline-ninhydrin complex in the reaction mixture and toluene were 508 and 513 nm, respectively. Ninhydrin in glacial acetic acid yielded higher quantity of the proline-ninhydrin condensation product compared to ninhydrin in mixture of glacial acetic acid and H 3 PO 4 , indicating negative impact of H 3 PO 4 on proline quantification. Further, maximum yield of the proline-ninhydrin complex with ninhydrin in glacial acetic acid and ninhydrin in mixture of glacial acetic acid and H 3 PO 4 was achieved within 30 and 60 min, respectively. This revealed that H 3 PO 4 has negative impact on the reaction rate and quantity of the proline-ninhydrin complex formed. In brief, our proline quantification protocol involves reaction of a 1-ml proline sample with 2 ml of 1.25 % ninhydrin in glacial acetic acid at 100 °C for 30 min, followed by recording absorbance of the proline-ninhydrin condensation product in the reaction mixture itself at 508 nm. Amongst proline quantification protocols known till date, our protocol is the most simple, rapid, reliable, cost-effective, and eco-friendlier.

  16. The effects of binary UV filter mixtures on the midge Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-06-15

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China.

    PubMed

    Ji, Cuicui; Jia, Yonghong; Gao, Zhihai; Wei, Huaidong; Li, Xiaosong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement.

  18. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China

    PubMed Central

    Jia, Yonghong; Gao, Zhihai; Wei, Huaidong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement. PMID:29240777

  19. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays.

    PubMed

    Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J

    2017-05-01

    Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.

  20. Primary light-harvesting system: phycobilisomes and associated membranes. Progress report, January 1, 1981-December 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantt, E.

    1981-01-01

    Phycobilisomes, serving as primary light harvesting complexes in cyanobacteria and red algae, were investigated. Structurally the phycobilisomes of both groups have the same fundamental phycobiliprotein arrangement. Allophycocyanin is in the center near the thylakoid. Stacked rods composed of phycocyanin, or phycocyanin-phycoerythrin radiate peripherally from the allophycocyanin core. Phycobilisomes of Nostoc sp. and Fremyella diplosiphon, after separation into separate allophycocyanin and phycoerythrin-phycocyanin fractions have been associated in vitro. Hybrid phycobilisomes, derived from mixtures of phycobiliprotein from these species were also obtained. The interaction is specific since reassociation was not obtained with phycobiliprotein complexes of some other algae. Phycobilisomes, whether native, ormore » associated in vitro, were similar in their sedimentation, absorption, fluorescence excitation, fluorescence emission, and by electron microscopy. Furthermore, many of the colorless polypeptides were also highly similar between Nostoc and Fremyella. The similarity formed may reflect an evolutionary relationship between the two species. The polypeptide composition of Porphyridium cruentum phycobilisomes is the most complex of any thus far examined. The phycobiliprotein containing polypeptides comprised 84% of the total stainable protein, while the remaining were colorless. Most of the colorless polypeptides occurred in a pelletable fraction, which was enriched in allophycocyanin and phycocyanin, it is probable that some are involved in the linking of these phycobiliproteins.« less

  1. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics?

    PubMed Central

    Horowitz, Michal

    2017-01-01

    The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce “ON CALL” molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance—HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower “doses” of the stressor, which induce adaptation to higher “doses” of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the associated cellular and molecular mechanisms leading to HACT and its difference from short-acting cross-tolerance strategies will be discussed. PMID:28804462

  2. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics?

    PubMed

    Horowitz, Michal

    2017-01-01

    The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce "ON CALL" molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance-HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower "doses" of the stressor, which induce adaptation to higher "doses" of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca +2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the associated cellular and molecular mechanisms leading to HACT and its difference from short-acting cross-tolerance strategies will be discussed.

  3. Wisconsin mixture characterization using the asphalt mixture performance tester (AMPT) on historical aggregate structures.

    DOT National Transportation Integrated Search

    2010-01-01

    This research evaluated the stiffness and permanent deformation properties of typical Wisconsin Department of : Transportation (WisDOT) asphalt mixtures using the Asphalt Mixture Performance Tester (AMPT) and associated test and : analysis procedures...

  4. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  5. The coordination structure of the extracted copper(II) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi

    2017-09-01

    In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing L and HDNNS in the non-polar organic phase, the structures of the two copper(II) complexes were further investigated by Fourier transform infrared spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS), and the results indicated that the extracted copper(II) complex in the non-polar organic phase might possess a similar coordination structure as the copper(II) synergist complex.

  6. GMM-based speaker age and gender classification in Czech and Slovak

    NASA Astrophysics Data System (ADS)

    Přibil, Jiří; Přibilová, Anna; Matoušek, Jindřich

    2017-01-01

    The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.

  7. Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR.

    PubMed

    D'Agostino, Carmine; Gladden, Lynn F; Mantle, Mick D; Abbott, Andrew P; Ahmed, Essa I; Al-Murshedi, Azhar Y M; Harris, Robert C

    2015-06-21

    Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.

  8. Insight into Signal Response of Protein Ions in Native ESI-MS from the Analysis of Model Mixtures of Covalently Linked Protein Oligomers.

    PubMed

    Root, Katharina; Wittwer, Yves; Barylyuk, Konstantin; Anders, Ulrike; Zenobi, Renato

    2017-09-01

    Native ESI-MS is increasingly used for quantitative analysis of biomolecular interactions. In such analyses, peak intensity ratios measured in mass spectra are treated as abundance ratios of the respective molecules in solution. While signal intensities of similar-size analytes, such as a protein and its complex with a small molecule, can be directly compared, significant distortions of the peak ratio due to unequal signal response of analytes impede the application of this approach for large oligomeric biomolecular complexes. We use a model system based on concatenated maltose binding protein units (MBPn, n = 1, 2, 3) to systematically study the behavior of protein mixtures in ESI-MS. The MBP concatamers differ from each other only by their mass while the chemical composition and other properties remain identical. We used native ESI-MS to analyze model mixtures of MBP oligomers, including equimolar mixtures of two proteins, as well as binary mixtures containing different fractions of the individual components. Pronounced deviation from a linear dependence of the signal intensity with concentration was observed for all binary mixtures investigated. While equimolar mixtures showed linear signal dependence at low concentrations, distinct ion suppression was observed above 20 μM. We systematically studied factors that are most often used in the literature to explain the origin of suppression effects. Implications of this effect for quantifying protein-protein binding affinity by native ESI-MS are discussed in general and demonstrated for an example of an anti-MBP antibody with its ligand, MBP. Graphical Abstract ᅟ.

  9. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  10. Drug Release Kinetics and Front Movement in Matrix Tablets Containing Diltiazem or Metoprolol/λ-Carrageenan Complexes

    PubMed Central

    Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla

    2014-01-01

    In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer. PMID:25045689

  11. Drug release kinetics and front movement in matrix tablets containing diltiazem or metoprolol/λ-carrageenan complexes.

    PubMed

    Bettini, Ruggero; Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla

    2014-01-01

    In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.

  12. Construction of "Toxin Complex" in a Mutant Serotype C Strain of Clostridium botulinum Harboring a Defective Neurotoxin Gene.

    PubMed

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2017-01-01

    A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.

  13. Heat detection and compositions and devices therefor

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1975-01-01

    Temperature change of a substrate such as a microelectronic component is sensed and detected by means of a mixture of a weak molecular complex of an electron donor compound such as an organic amine and an electron acceptor compound such as nitroaromatic compound. The mixture is encapsulated in a clear binder such as a vinyl resin.

  14. Identification and evaluation of composition in food powder using point-scan Raman spectral imaging

    USDA-ARS?s Scientific Manuscript database

    This study used Raman spectral imaging coupled with self-modeling mixture analysis (SMA) for identification of three components mixed into a complex food powder mixture. Vanillin, melamine, and sugar were mixed together at 10 different concentration levels (spanning 1% to 10%, w/w) into powdered non...

  15. Cumulative assessment of steroid receptor mediated activity of contaminants in water samples using in vitro bioassays.

    EPA Science Inventory

    Cell-based assays could serve as a useful tool in the regulatory screening toolbox due to their high sensitivity and the ability to assess complex mixtures in which unknown compounds may be present. We have completed 3 major projects in collaboration with USGS: 1) Chemical Mixtur...

  16. Assessment of reproductive effects on complex mixtures of disinfection by-products in a multigenerational rat bioassay of drinking water concentrates

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  17. Assessment of Reproductive Effects of Complex Mixtures of Disinfection By-Products in a Multi-Generational Rat Bioassay of Drinking Water Concentrates - Monterey

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  18. Modern analytics for synthetically derived complex drug substances: NMR, AFFF-MALS, and MS tests for glatiramer acetate.

    PubMed

    Rogstad, Sarah; Pang, Eric; Sommers, Cynthia; Hu, Meng; Jiang, Xiaohui; Keire, David A; Boyne, Michael T

    2015-11-01

    Glatiramer acetate (GA) is a mixture of synthetic copolymers consisting of four amino acids (glutamic acid, lysine, alanine, and tyrosine) with a labeled molecular weight range of 5000 to 9000 Da. GA is marketed as Copaxone™ by Teva for the treatment of multiple sclerosis. Here, the agency has evaluated the structure and composition of GA and a commercially available comparator, Copolymer-1. Modern analytical technologies which can characterize these complex mixtures are desirable for analysis of their comparability and structural "sameness." In the studies herein, a molecular fingerprinting approach is taken using mass-accurate mass spectrometry (MS) analysis, nuclear magnetic resonance (NMR) (1D-(1)H-NMR, 1D-(13)C-NMR, and 2D NMR), and asymmetric field flow fractionation (AFFF) coupled with multi-angle light scattering (MALS) for an in-depth characterization of three lots of the marketplace drug and a formulated sample of the comparator. Statistical analyses were applied to the MS and AFFF-MALS data to assess these methods' ability to detect analytical differences in the mixtures. The combination of multiple orthogonal measurements by liquid chromatography coupled with MS (LC-MS), AFFF-MALS, and NMR on the same sample set was found to be fit for the intended purpose of distinguishing analytical differences between these complex mixtures of peptide chains.

  19. Differential Attenuation of NMR Signals by Complementary Ion-Exchange Resin Beads for De Novo Analysis of Complex Metabolomics Mixtures.

    PubMed

    Zhang, Bo; Yuan, Jiaqi; Brüschweiler, Rafael

    2017-07-12

    A primary goal of metabolomics is the characterization of a potentially very large number of metabolites that are part of complex mixtures. Application to biofluids and tissue samples offers insights into biochemical metabolic pathways and their role in health and disease. 1D 1 H and 2D 13 C- 1 H HSQC NMR spectra are most commonly used for this purpose. They yield quantitative information about each proton of the mixture, but do not tell which protons belong to the same molecule. Interpretation requires the use of NMR spectral databases, which naturally limits these investigations to known metabolites. Here, a new method is presented that uses complementary ion exchange resin beads to differentially attenuate 2D NMR cross-peaks that belong to different metabolites. Based on their characteristic attenuation patterns, cross-peaks could be clustered and assigned to individual molecules, including unknown metabolites with multiple spin systems, as demonstrated for a metabolite model mixture and E. coli cell lysate. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spectroscopic and thermodynamic study of charge transfer interaction between vitamin B 6 and p-chloranil in aqueous ethanol mixtures of varying composition

    NASA Astrophysics Data System (ADS)

    Datta, Kakali; Roy, Dalim Kumar; Mukherjee, Asok K.

    2008-07-01

    Charge transfer complexes of 1:1 stoichiometry have been found to form between vitamin B 6 (pyridoxine hydrochloride) and a series of electron acceptors including p-chloranil. Since vitamin B 6 is soluble in water while the electron acceptors are insoluble in water but soluble in ethanol, the medium chosen for study is water-ethanol mixture. From the trends in the CT absorption bands the vertical ionization potential of vitamin B 6 has been determined to be 8.12 eV. The enthalpy and entropy of formation of the complex between p-chloranil and vitamin B 6 have been determined by estimating the formation constant ( K) spectroscopically at four different temperatures in 75% ethanol-water mixture. Again, the magnitude of K has been found to decrease noticeably with decrease in dielectric constant of the medium (as the percentage of ethanol in the aqueous-ethanol mixture is increased). A plausible explanation for this has been given in terms of hydrolysis of pyridoxine hydrochloride.

  1. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.

    PubMed

    Radak, Zsolt; Ishihara, Kazunari; Tekus, Eva; Varga, Csaba; Posa, Aniko; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2017-08-01

    It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Gas chromatography: Possible application of advanced instrumentation developed for solar system exploration to space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1985-01-01

    Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.

  3. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    NASA Astrophysics Data System (ADS)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-11-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (ΔF/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ΔF/Fm‧.

  4. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  5. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    PubMed Central

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm′) by 50% at concentrations ranging from 3.5 μg l−1 (ametryn) to 132 μg l−1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm′. PMID:26616444

  6. Acute and additive toxicity of ten photosystem-II herbicides to seagrass.

    PubMed

    Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P

    2015-11-30

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.

  7. Bayesian mixture analysis for metagenomic community profiling.

    PubMed

    Morfopoulou, Sofia; Plagnol, Vincent

    2015-09-15

    Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated produces an opportunity to detect species even at very low levels, provided that computational tools can effectively profile the relevant metagenomic communities. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture model framework for resolving complex metagenomic mixtures. We show that the use of parallel Monte Carlo Markov chains for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. We demonstrate the greater accuracy of metaMix compared with relevant methods, particularly for profiling complex communities consisting of several related species. We designed metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on viral pathogen detection; however, the principles are generally applicable to all types of metagenomic mixtures. metaMix is implemented as a user friendly R package, freely available on CRAN: http://cran.r-project.org/web/packages/metaMix sofia.morfopoulou.10@ucl.ac.uk Supplementary data are available at Bionformatics online. © The Author 2015. Published by Oxford University Press.

  8. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-04-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modeling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggest the Umov effect may also be observed in more complex mixtures.

  9. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-07-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modelling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggests the Umov effect may also be observed in more complex mixtures.

  10. The reactivity of sodium alanates with O[2], H[2]O, and CO[2] : an investigation of complex metal hydride contamination in the context of automotive systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dedrick, Daniel E.; Bradshaw, Robert W.; Behrens, Richard, Jr.

    2007-08-01

    Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowingmore » for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.« less

  11. Method for the determination of chromium in feed matrix by HPLC.

    PubMed

    Umesh, Balakrishnan; Rajendran, Rajendra Moorthy; Manoharan, Muthu Tamizh

    2015-11-01

    An improved method for the chromatographic separation and determination of chromium (III) and (VI) [ CRIII AND CRVI: ] in mineral mixtures and feed samples has been developed. The method uses precolumn derivatization using ammonium pyrrolidinedithiocarbamate ( APD: ) followed by reversed-phase liquid chromatography to separate the chromium ions. Both Cr(III) and Cr(VI) species are chelated with ammonium pyrrolidinedithiocarbamate prior to separation by mixing with acetonitrile and 0.5 mmol acetate buffer (pH 4.5). Optimum chromatographic separations were obtained with a polymer-based reversed-phase column (Kinetex, 5 μ, 250 × 4.5 mm, Phenomenex, Torrance, CA) and a mobile phase containing acetonitrile and water (7:3). Both Cr(III) and Cr(VI) ion concentrations were directly determined from the corresponding areas in the chromatogram. The effect of analytical parameters, including pH, concentration of ligand, incubation temperature, and mobile phase, was optimized for both chromium complexes. The range of the procedure was found to be linear for Cr(III) and Cr(VI) concentrations between 0.125 and 4 μg/mL (r² = 0.9926) and 0.1 and 3.0 μg/mL (r² = 0.9983), respectively. Precision was evaluated by replicate analysis in which the percentage relative standard deviation values for chromium complex were found to be below 4.0. The recoveries obtained (85-115%) for both Cr(III) and Cr(VI) complexes indicated the accuracy of the developed method. The degradation products, as well as the excipients, were well resolved from the chromium complex peak in the chromatogram. Finally, the new method proved to be suitable for routine analysis of Cr(III) and Cr(VI) species in raw materials, mineral mixtures, and feed samples. © 2015 Poultry Science Association Inc.

  12. Headspace versus direct immersion solid phase microextraction in complex matrixes: investigation of analyte behavior in multicomponent mixtures.

    PubMed

    Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz

    2015-08-18

    This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in vivo SPME strategies in quantitative metabolomics studies of complex plant-based systems.

  13. Manganese-dependent carboanhydrase activity of photosystem II proteins.

    PubMed

    Shitov, A V; Pobeguts, O V; Smolova, T N; Allakhverdiev, S I; Klimov, V V

    2009-05-01

    Four sources of carbonic anhydrase (CA) activity in submembrane preparations of photosystem II (PS II) isolated from pea leaves were examined. Three of them belong to the hydrophilic proteins of the oxygen-evolving complex of PS II with molecular mass 33 kDa (protein PsbO), 24 kDa (protein PsbP), and 18 kDa (protein PsbQ). The fourth source of CA activity is associated with a pigment-protein complex of PS II after removing three hydrophilic proteins by salt treatment. Except for protein PsbQ, the CA activity of all these proteins depends on the presence of Mn2+: the purified protein PsbO did not show CA activity before adding Mn2+ into the medium (concentration of Mn2+ required for 50% effect, EC(50), was 670 microM); CA activity of protein mixture composed of PsbP and PsbQ increased more than 5-fold upon adding Mn2+ (EC(50) was 45 microM). CA activity of purified protein PsbP increased 2-fold in the presence of 200 microM Mn2+. As indicated for the mixture of two proteins (PsbP and PsbQ), Mg2+, Ca2+, and Zn2+, in contrast to Mn2+, suppressed CA activity (both initial and Mn2+-induced activity). Since the found sources of CA activity demonstrated properties different from ones of typical CA (need for Mn2+, insensitivity or low sensitivity to acetazolamide or ethoxyzolamide) and such CA activity was found only among PS II proteins, we cannot exclude that they belong to the type of Mn-dependent CA associated with PS II.

  14. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  15. Effective Ion Mobility Peak Width as a New Isomeric Descriptor for the Untargeted Analysis of Complex Mixtures Using Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Paupy, Benoit; Marceau, Sabrina; Riches, Eleanor; Afonso, Carlos; Giusti, Pierre

    2017-07-01

    Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques.

  16. Synthesis and structural characterisation of Pd(II) and Pt(II) complexes with a flexible, ferrocene-based P,S-donor amidophosphine ligand.

    PubMed

    Tauchman, Jiří; Císařová, Ivana; Stěpnička, Petr

    2014-01-28

    1'-Diphenylphosphino-1-{[(2-(methylthio)ethyl)amino]carbonyl}ferrocene (1), accessible via amidation of 1'-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) with 2-(methylthio)ethylamine, reacts with [PdCl2(cod)] (cod = cycloocta-1,5-diene) at a 1 : 1 metal-to-ligand ratio to give trans-[PdCl2(1-κ(2)P,S)] (trans-2) as the sole product. A similar reaction with [PtCl2(cod)] affords a mixture of cis- and trans-[PtCl2(1-κ(2)P,S)] (cis- and trans-3), which can be separated by fractional crystallisation. Complexation reactions performed with 2 equiv. of the ligand are less selective, yielding mixtures of the expected bis-phosphine complexes (i.e., trans-[PdCl2(1-κP)2], or a mixture of cis- and trans-[PtCl2(-κP)2]) with the respective monophosphine complexes. The structures of 1, trans-2, cis-3 and trans-3 determined by X-ray diffraction demonstrate the ability of the title ligand to act as a flexible cis- or trans-P,S-chelate donor (the ligand bite angles are 174.03(2)/173.05(2)° for trans-2/3 and 92.86(2)° for cis-3).

  17. Novel selective TOCSY method enables NMR spectral elucidation of metabolomic mixtures

    NASA Astrophysics Data System (ADS)

    MacKinnon, Neil; While, Peter T.; Korvink, Jan G.

    2016-11-01

    Complex mixture analysis is routinely encountered in NMR-based investigations. With the aim of component identification, spectral complexity may be addressed chromatographically or spectroscopically, the latter being favored to reduce sample handling requirements. An attractive experiment is selective total correlation spectroscopy (sel-TOCSY), which is capable of providing tremendous spectral simplification and thereby enhancing assignment capability. Unfortunately, isolating a well resolved resonance is increasingly difficult as the complexity of the mixture increases and the assumption of single spin system excitation is no longer robust. We present TOCSY optimized mixture elucidation (TOOMIXED), a technique capable of performing spectral assignment particularly in the case where the assumption of single spin system excitation is relaxed. Key to the technique is the collection of a series of 1D sel-TOCSY experiments as a function of the isotropic mixing time (τm), resulting in a series of resonance intensities indicative of the underlying molecular structure. By comparing these τm -dependent intensity patterns with a library of pre-determined component spectra, one is able to regain assignment capability. After consideration of the technique's robustness, we tested TOOMIXED firstly on a model mixture. As a benchmark we were able to assign a molecule with high confidence in the case of selectively exciting an isolated resonance. Assignment confidence was not compromised when performing TOOMIXED on a resonance known to contain multiple overlapping signals, and in the worst case the method suggested a follow-up sel-TOCSY experiment to confirm an ambiguous assignment. TOOMIXED was then demonstrated on two realistic samples (whisky and urine), where under our conditions an approximate limit of detection of 0.6 mM was determined. Taking into account literature reports for the sel-TOCSY limit of detection, the technique should reach on the order of 10 μ M sensitivity. We anticipate this technique will be highly attractive to various analytical fields facing mixture analysis, including metabolomics, foodstuff analysis, pharmaceutical analysis, and forensics.

  18. The scent of mixtures: rules of odour processing in ants

    PubMed Central

    Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia

    2015-01-01

    Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects. PMID:25726692

  19. Tributyltin synergizes with 20-hydroxyecdysone to produce endocrine toxicity.

    PubMed

    Wang, Ying H; Kwon, Gwijun; Li, Hong; Leblanc, Gerald A

    2011-09-01

    One of the great challenges facing modern toxicology is in predicting the hazard associated with chemical mixtures. The development of effective means of predicting the toxicity of chemical mixtures requires an understanding of how chemicals interact to produce nonadditive outcomes (e.g., synergy). We hypothesized that tributyltin would elicit toxicity in daphnids (Daphnia magna) by exaggerating physiological responses to 20-hydroxyecdysone signaling via synergistic activation of the retinoid X receptor (RXR):ecdysteroid receptor (EcR) complex. Using reporter gene assays, we demonstrated that RXR, alone, is activated by a variety of ligands including tributyltin, whereas RXR:EcR heterodimers were not activated by tributyltin. However, tributyltin, in combination with the daphnid EcR ligand 20-hydroxyecdysone, caused concentration-dependent, synergistic activation of the RXR:EcR reporter. Electrophoretic mobility shift assays revealed that tributyltin did not enhance the activity of 20-hydroxyecdysone by increasing binding of the receptor complex to a DR-4 DNA-binding site. Exposure of daphnids to elevated concentrations of 20-hydroxyecdysone caused premature and incomplete ecdysis resulting in death. Tributyltin exaggerated this effect of exogenous 20-hydroxyecdysone. Further, exposure of daphnids to tributyltin enhanced the inductive effects of 20-hydroxyecdysone on expression of the 20-hydroxyecdysone-inducible gene HR3. Continuous, prolonged exposure of maternal daphnids to concentrations of tributyltin resulted in mortality concurrent with molting. Taken together, these results demonstrate that xenobiotics, such as tributyltin, can interact with RXR to influence gene expression regulated by the heterodimeric partner to RXR. The result of such interactions can be toxicity due to inappropriate or exaggerated hormonal signaling. The application of the in vitro/in vivo approach used in this study is discussed in relation to modeling of nonadditive interactions among constituents of chemical mixtures.

  20. Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka.

    PubMed

    Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme

    2014-12-01

    In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.

Top