Sample records for complex molecular cloning

  1. Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.

    PubMed

    Abe, Koichiro; Yu, Philipp

    2009-02-01

    One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.

  2. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    PubMed

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  3. Immersing Undergraduate Students in the Research Experience: A Practical Laboratory Module on Molecular Cloning of Microbial Genes

    ERIC Educational Resources Information Center

    Wang, Jack T. H.; Schembri, Mark A.; Ramakrishna, Mathitha; Sagulenko, Evgeny; Fuerst, John A.

    2012-01-01

    Molecular cloning skills are an essential component of biological research, yet students often do not receive this training during their undergraduate studies. This can be attributed to the complexities of the cloning process, which may require many weeks of progressive design and experimentation. To address this issue, we incorporated an…

  4. Positional cloning in maize (Zea mays subsp. mays, Poaceae)1

    PubMed Central

    Gallavotti, Andrea; Whipple, Clinton J.

    2015-01-01

    • Premise of the study: Positional (or map-based) cloning is a common approach to identify the molecular lesions causing mutant phenotypes. Despite its large and complex genome, positional cloning has been recently shown to be feasible in maize, opening up a diverse collection of mutants to molecular characterization. • Methods and Results: Here we outline a general protocol for positional cloning in maize. While the general strategy is similar to that used in other plant species, we focus on the unique resources and approaches that should be considered when applied to maize mutants. • Conclusions: Positional cloning approaches are appropriate for maize mutants and quantitative traits, opening up to molecular characterization the large array of genetic diversity in this agronomically important species. The cloning approach described should be broadly applicable to other species as more plant genomes become available. PMID:25606355

  5. Fusarium diversity in soil using a specific molecular approach and a cultural approach.

    PubMed

    Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian

    2015-04-01

    Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1α) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1α gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples. Published by Elsevier B.V.

  6. Transmission of molecularly undetectable circulating parasite clones leads to high infection complexity in mosquitoes post feeding.

    PubMed

    Grignard, Lynn; Gonçalves, Bronner P; Early, Angela M; Daniels, Rachel F; Tiono, Alfred B; Guelbéogo, Wamdaogo M; Ouédraogo, Alphonse; van Veen, Elke M; Lanke, Kjerstin; Diarra, Amidou; Nebie, Issa; Sirima, Sodiomon B; Targett, Geoff A; Volkman, Sarah K; Neafsey, Daniel E; Wirth, Dyann F; Bousema, Teun; Drakeley, Chris

    2018-05-05

    Plasmodium falciparum malaria infections often comprise multiple distinct parasite clones. Few datasets have directly assessed infection complexity in humans and mosquitoes they infect. Examining parasites using molecular tools may provide insights into the selective transmissibility of isolates. Using capillary electrophoresis genotyping and next generation amplicon sequencing, we analysed complexity of parasite infections in human blood and in the midguts of mosquitoes that became infected in membrane feeding experiments using the same blood material in two West African settings. Median numbers of clones in humans and mosquitoes were higher in samples from Burkina Faso (4.5, interquartile range 2-8 for humans; and 2, interquartile range 1-3 for mosquitoes) than in The Gambia (2, interquartile range 1-3 and 1, interquartile range 1-3, for humans and mosquitoes, respectively). Whilst the median number of clones was commonly higher in human blood samples, not all transmitted alleles were detectable in the human peripheral blood. In both study sample sets, additional parasite alleles were identified in mosquitoes compared with the matched human samples (10-88.9% of all clones/feeding assay, n = 73 feeding assays). The results are likely due to preferential amplification of the most abundant clones in peripheral blood but confirm the presence of low density clones that produce transmissible sexual stage parasites. Copyright © 2018. Published by Elsevier Ltd.

  7. Direct Analysis of Genes Encoding 16S rRNA from Complex Communities Reveals Many Novel Molecular Species within the Human Gut

    PubMed Central

    Suau, Antonia; Bonnet, Régis; Sutren, Malène; Godon, Jean-Jacques; Gibson, Glenn R.; Collins, Matthew D.; Doré, Joel

    1999-01-01

    The human intestinal tract harbors a complex microbial ecosystem which plays a key role in nutrition and health. Although this microbiota has been studied in great detail by culture techniques, microscopic counts on human feces suggest that 60 to 80% of the observable bacteria cannot be cultivated. Using comparative analysis of cloned 16S rRNA gene (rDNA) sequences, we have investigated the bacterial diversity (both cultivated and noncultivated bacteria) within an adult-male fecal sample. The 284 clones obtained from 10-cycle PCR were classified into 82 molecular species (at least 98% similarity). Three phylogenetic groups contained 95% of the clones: the Bacteroides group, the Clostridium coccoides group, and the Clostridium leptum subgroup. The remaining clones were distributed among a variety of phylogenetic clusters. Only 24% of the molecular species recovered corresponded to described organisms (those whose sequences were available in public databases), and all of these were established members of the dominant human fecal flora (e.g., Bacteroides thetaiotaomicron, Fusobacterium prausnitzii, and Eubacterium rectale). However, the majority of generated rDNA sequences (76%) did not correspond to known organisms and clearly derived from hitherto unknown species within this human gut microflora. PMID:10543789

  8. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  9. HIGH-THROUGHPUT IDENTIFICATION OF THE PREDOMINANT MALARIA PARASITE CLONE IN COMPLEX BLOOD STAGE INFECTIONS USING A MULTI-SNP MOLECULAR HAPLOTYPING ASSAY

    PubMed Central

    COLE-TOBIAN, JENNIFER L.; ZIMMERMAN, PETER A.; KING, CHRISTOPHER L.

    2013-01-01

    Individuals living in malaria endemic areas are often infected with multiple parasite clones. Currently used single nucleotide polymorphism (SNP) genotyping methods for malaria parasites are cumbersome; furthermore, few methods currently exist that can rapidly determine the most abundant clone in these complex infections. Here we describe an oligonucleotide ligation assay (OLA) to distinguish SNPs in the Plasmodium vivax Duffy binding protein gene (Pvdbp) at 14 polymorphic residues simultaneously. Allele abundance is determined by the highest mean fluorescent intensity of each allele. Using mixtures of plasmids encoding known haplotypes of the Pvdbp, single clones of P. vivax parasites from infected Aotus monkeys, and well-defined mixed infections from field samples, we were able to identify the predominant Pvdbp genotype with > 93% accuracy when the dominant clone is twice as abundant as a lesser genotype and > 97% of the time if the ratio was 5:1 or greater. Thus, the OLA can accurately, reproducibly, and rapidly determine the predominant parasite haplotype in complex blood stage infections. PMID:17255222

  10. Inferring Higher Functional Information for RIKEN Mouse Full-Length cDNA Clones With FACTS

    PubMed Central

    Nagashima, Takeshi; Silva, Diego G.; Petrovsky, Nikolai; Socha, Luis A.; Suzuki, Harukazu; Saito, Rintaro; Kasukawa, Takeya; Kurochkin, Igor V.; Konagaya, Akihiko; Schönbach, Christian

    2003-01-01

    FACTS (Functional Association/Annotation of cDNA Clones from Text/Sequence Sources) is a semiautomated knowledge discovery and annotation system that integrates molecular function information derived from sequence analysis results (sequence inferred) with functional information extracted from text. Text-inferred information was extracted from keyword-based retrievals of MEDLINE abstracts and by matching of gene or protein names to OMIM, BIND, and DIP database entries. Using FACTS, we found that 47.5% of the 60,770 RIKEN mouse cDNA FANTOM2 clone annotations were informative for text searches. MEDLINE queries yielded molecular interaction-containing sentences for 23.1% of the clones. When disease MeSH and GO terms were matched with retrieved abstracts, 22.7% of clones were associated with potential diseases, and 32.5% with GO identifiers. A significant number (23.5%) of disease MeSH-associated clones were also found to have a hereditary disease association (OMIM Morbidmap). Inferred neoplastic and nervous system disease represented 49.6% and 36.0% of disease MeSH-associated clones, respectively. A comparison of sequence-based GO assignments with informative text-based GO assignments revealed that for 78.2% of clones, identical GO assignments were provided for that clone by either method, whereas for 21.8% of clones, the assignments differed. In contrast, for OMIM assignments, only 28.5% of clones had identical sequence-based and text-based OMIM assignments. Sequence, sentence, and term-based functional associations are included in the FACTS database (http://facts.gsc.riken.go.jp/), which permits results to be annotated and explored through web-accessible keyword and sequence search interfaces. The FACTS database will be a critical tool for investigating the functional complexity of the mouse transcriptome, cDNA-inferred interactome (molecular interactions), and pathome (pathologies). PMID:12819151

  11. Pydna: a simulation and documentation tool for DNA assembly strategies using python.

    PubMed

    Pereira, Filipa; Azevedo, Flávio; Carvalho, Ângela; Ribeiro, Gabriela F; Budde, Mark W; Johansson, Björn

    2015-05-02

    Recent advances in synthetic biology have provided tools to efficiently construct complex DNA molecules which are an important part of many molecular biology and biotechnology projects. The planning of such constructs has traditionally been done manually using a DNA sequence editor which becomes error-prone as scale and complexity of the construction increase. A human-readable formal description of cloning and assembly strategies, which also allows for automatic computer simulation and verification, would therefore be a valuable tool. We have developed pydna, an extensible, free and open source Python library for simulating basic molecular biology DNA unit operations such as restriction digestion, ligation, PCR, primer design, Gibson assembly and homologous recombination. A cloning strategy expressed as a pydna script provides a description that is complete, unambiguous and stable. Execution of the script automatically yields the sequence of the final molecule(s) and that of any intermediate constructs. Pydna has been designed to be understandable for biologists with limited programming skills by providing interfaces that are semantically similar to the description of molecular biology unit operations found in literature. Pydna simplifies both the planning and sharing of cloning strategies and is especially useful for complex or combinatorial DNA molecule construction. An important difference compared to existing tools with similar goals is the use of Python instead of a specifically constructed language, providing a simulation environment that is more flexible and extensible by the user.

  12. Advanced Cloning Tools for Construction of Designer Cellulosomes.

    PubMed

    Kahn, Amaranta; Bayer, Edward A; Moraïs, Sarah

    2018-01-01

    Cellulose deconstruction is achieved in nature through two main enzymatic paradigms, i.e., free enzymes and enzymatic complexes (called cellulosomes). Gaining insights into the mechanism of action and synergy among the different cellulases is of high interest, notably in the field of renewable energy, and specifically, for the conversion of cellulosic biomass to soluble sugars, en route to biofuels. In this context, designer cellulosomes are artificially assembled, chimaeric protein complexes that are used as a tool to comparatively study cellulose degradation by different enzymatic paradigms, and could also serve to improve cellulose deconstruction. Various molecular biology techniques are employed in order to design and engineer the various components of designer cellulosomes. In this chapter, we describe the cloning processes through which the appropriate modules are selected and assembled at the molecular level.

  13. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly.

    PubMed

    Thind, Anupriya Kaur; Wicker, Thomas; Šimková, Hana; Fossati, Dario; Moullet, Odile; Brabant, Cécile; Vrána, Jan; Doležel, Jaroslav; Krattinger, Simon G

    2017-08-01

    Cereal crops such as wheat and maize have large repeat-rich genomes that make cloning of individual genes challenging. Moreover, gene order and gene sequences often differ substantially between cultivars of the same crop species. A major bottleneck for gene cloning in cereals is the generation of high-quality sequence information from a cultivar of interest. In order to accelerate gene cloning from any cropping line, we report 'targeted chromosome-based cloning via long-range assembly' (TACCA). TACCA combines lossless genome-complexity reduction via chromosome flow sorting with Chicago long-range linkage to assemble complex genomes. We applied TACCA to produce a high-quality (N50 of 9.76 Mb) de novo chromosome assembly of the wheat line CH Campala Lr22a in only 4 months. Using this assembly we cloned the broad-spectrum Lr22a leaf-rust resistance gene, using molecular marker information and ethyl methanesulfonate (EMS) mutants, and found that Lr22a encodes an intracellular immune receptor homologous to the Arabidopsis thaliana RPM1 protein.

  14. Molecular mapping within the mouse albino-deletion complex.

    PubMed Central

    Johnson, D K; Hand, R E; Rinchik, E M

    1989-01-01

    Induced germ-line deletion mutations in the mouse provide a malleable experimental system for in-depth molecular and functional analysis of large segments of the mammalian genome. To obtain an initial bank of molecular probes for the region of mouse chromosome 7 associated with the albino-deletion complex, random anonymous DNA clones, derived from a library constructed from flow-sorted chromosomes, were screened on DNAs from Mus musculus-Mus spretus F1 hybrids carrying large, multilocus, lethal albino deletions. Clones falling within a given deletion interval can easily be recognized because hybridization bands that represent restriction fragment length polymorphisms specific for the mutant (deleted) chromosome inherited from the M. musculus parent will be absent. Among 72 informative clones used as probes, one, which defines the locus D7OR1, mapped within two deletions that are 6-11 centimorgans in length. Submapping of this anonymous clone across a panel of 27 smaller deletions localized D7OR1 distal to a chromosomal subregion important for survival of the preimplantation embryo, proximal to globin [beta-chain (Hbb)], and near the shaker-1 (sh-1) locus. The results of these deletion-mapping experiments were also confirmed by standard three-point linkage analysis. This strategy for selection and rapid mapping of anonymous DNA probes to chromosomal segments corresponding to germ-line deletion mutations should contribute to the generation of more detailed physical and functional maps of genomic regions associated with mutant developmental phenotypes. Images PMID:2813427

  15. Recombination-assisted megaprimer (RAM) cloning

    PubMed Central

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  16. Combination of multilocus sequence typing and pulsed-field gel electrophoresis reveals an association of molecular clonality with the emergence of extensive-drug resistance (XDR) in Salmonella.

    PubMed

    Cao, Yongzhong; Shen, Yongxiu; Cheng, Lingling; Zhang, Xiaorong; Wang, Chao; Wang, Yan; Zhou, Xiaohui; Chao, Guoxiang; Wu, Yantao

    2018-03-01

    Salmonellae is one of the most important foodborne pathogens and becomes resistant to multiple antibiotics, which represents a significant challenge to food industry and public health. However, a molecular signature that can be used to distinguish antimicrobial resistance profile, particularly multi-drug resistance or extensive-drug resistance (XDR). In the current study, 168 isolates from the chicken and pork production chains and ill chickens were characterized by serotyping, antimicrobial susceptibility test, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The results showed that these isolates belonged to 13 serotypes, 14 multilocus sequence types (STs), 94 PFGE genotypes, and 70 antimicrobial resistant profiles. S. Enteritidis, S. Indiana, and S. Derby were the predominant serotypes, corresponding to the ST11, ST17, and ST40 clones, respectively and the PFGE Cluster A, Cluster E, and Cluster D, respectively. Among the ST11-S. Enteritidis (Cluster A) and the ST40-S. Derby (Cluster D) clones, the majority of isolates were resistant to 4-8 antimicrobial agents, whereas in the ST17S. Indiana (Cluster E) clone, isolates showed extensive-drug resistance (XDR) to 9-16 antimicrobial agents. The bla TEM-1-like gene was prevalent in the ST11 and ST17 clones corresponding to high ampicillin resistance. The bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR gene complex was highly prevalent among isolates of ST17, corresponding to an XDR phenotype. These results demonstrated the association of the resistant phenotypes and genotypes with ST clone and PFGE cluster. Our results also indicated that the newly identified gene complex comprising bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR, was responsible for the emergence of the ST17S. Indiana XDR clone. ST17 could be potentially used as a molecular signature to distinguish S. Indiana XDR clone. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Rapid one-step construction of a Middle East Respiratory Syndrome (MERS-CoV) infectious clone system by homologous recombination.

    PubMed

    Nikiforuk, Aidan M; Leung, Anders; Cook, Bradley W M; Court, Deborah A; Kobasa, Darwyn; Theriault, Steven S

    2016-10-01

    Viral Infectious clone systems serve as robust platforms to study viral gene or replicative function by reverse genetics, formulate vaccines and adapt a wild type-virus to an animal host. Since the development of the first viral infectious clone system for the poliovirus, novel strategies of viral genome construction have allowed for the assembly of viral genomes across the identified viral families. However, the molecular profiles of some viruses make their genome more difficult to construct than others. Two factors that affect the difficulty of infectious clone construction are genome length and genome complexity. This work examines the available strategies for overcoming the obstacles of assembling the long and complex RNA genomes of coronaviruses and reports one-step construction of an infectious clone system for the Middle East Respiratory Syndrome coronavirus (MERS-CoV) by homologous recombination in S. cerevisiae. Future use of this methodology will shorten the time between emergence of a novel viral pathogen and construction of an infectious clone system. Completion of a viral infectious clone system facilitates further study of a virus's biology, improvement of diagnostic tests, vaccine production and the screening of antiviral compounds. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnerty, W.R.

    We have sought the structural elucidation of the glycolipid biosurfactant. The extracellular glycolipid consists of 1 major component (>90%) plus 6--7 minor molecular species. The deacylated water-soluble backbone is common to all molecular species of the glycolipid. A complex fatty acid composition characterizes the glycolipid and contributes to its surface active character. The water soluble backbone consists of glycerol, trehalose and 3--5 glucose residues. FTIR spectroscopy has confirmed the presence of these polyhydric components. The next major objective has been to clone the genes for glycolipid biosynthesis in Rhodococcus sp. H13-A. Improvements in the E. coli-Rhodococcus shuttle vector, pMVS301, weremore » made prior to the construction and screening of a genomic library in Rhodococcus. A system is being developed for transpositional mutagenesis in Rhodococcus, using Tn917 containing plasmids used successfully in Bacillus sp. for the isolation and analysis of sporulation and developmental genes. We are also actively assessing the utility of this cloning and transformation system which we have developed for Rhodococcus, for use in mycobacterium, a related Actinomycete for which there exists no systems for plasmid transformation or molecular cloning. 8 refs., 1 fig.« less

  19. Neisseria meningitidis; clones, carriage, and disease.

    PubMed

    Read, R C

    2014-05-01

    Neisseria meningitidis, the cause of meningococcal disease, has been the subject of sophisticated molecular epidemiological investigation as a consequence of the significant public health threat posed by this organism. The use of multilocus sequence typing and whole genome sequencing classifies the organism into clonal complexes. Extensive phenotypic, genotypic and epidemiological information is available on the PubMLST website. The human nasopharynx is the sole ecological niche of this species, and carrier isolates show extensive genetic diversity as compared with hyperinvasive lineages. Horizontal gene exchange and recombinant events within the meningococcal genome during residence in the human nasopharynx result in antigenic diversity even within clonal complexes, so that individual clones may express, for example, more than one capsular polysaccharide (serogroup). Successful clones are capable of wide global dissemination, and may be associated with explosive epidemics of invasive disease. © 2014 The Author Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  20. Global Molecular Epidemiology of IMP-Producing Enterobacteriaceae.

    PubMed

    Matsumura, Yasufumi; Peirano, Gisele; Motyl, Mary R; Adams, Mark D; Chen, Liang; Kreiswirth, Barry; DeVinney, Rebekah; Pitout, Johann D D

    2017-04-01

    International data on the molecular epidemiology of Enterobacteriaceae with IMP carbapenemases are lacking. We performed short-read (Illumina) whole-genome sequencing on a global collection of 38 IMP-producing clinical Enterobacteriaceae (2008 to 2014). IMP-producing Enterobacteriaceae (7 varieties within 11 class 1 integrons) were mainly present in the South Pacific and Asia. Specific bla IMP -containing integrons (In809 with bla IMP-4 , In722 with bla IMP-6 , and In687 with bla IMP-14 ) were circulating among different bacteria in countries such as Australia, Japan, and Thailand. In1312 with bla IMP-1 was present in Klebsiella pneumoniae from Japan and Citrobacter freundii from Brazil. Klebsiella pneumoniae ( n = 22) was the most common species; clonal complex 14 (CC14) from Philippines and Japan was the most common clone and contained In1310 with bla IMP-26 and In1321 with bla IMP-6 The Enterobacter cloacae complex ( n = 9) consisted of Enterobacter hormaechei and E. cloacae cluster III. CC78 (from Taiwan) containing In73 with bla IMP-8 was the most common clone among the E. cloacae complex. This study highlights the importance of surveillance programs using the latest molecular techniques for providing insight into the characteristics and global distribution of Enterobacteriaceae with bla IMP genes. Copyright © 2017 American Society for Microbiology.

  1. Global Molecular Epidemiology of IMP-Producing Enterobacteriaceae

    PubMed Central

    Peirano, Gisele; Motyl, Mary R.; Adams, Mark D.; Chen, Liang; Kreiswirth, Barry; DeVinney, Rebekah

    2017-01-01

    ABSTRACT International data on the molecular epidemiology of Enterobacteriaceae with IMP carbapenemases are lacking. We performed short-read (Illumina) whole-genome sequencing on a global collection of 38 IMP-producing clinical Enterobacteriaceae (2008 to 2014). IMP-producing Enterobacteriaceae (7 varieties within 11 class 1 integrons) were mainly present in the South Pacific and Asia. Specific blaIMP-containing integrons (In809 with blaIMP-4, In722 with blaIMP-6, and In687 with blaIMP-14) were circulating among different bacteria in countries such as Australia, Japan, and Thailand. In1312 with blaIMP-1 was present in Klebsiella pneumoniae from Japan and Citrobacter freundii from Brazil. Klebsiella pneumoniae (n = 22) was the most common species; clonal complex 14 (CC14) from Philippines and Japan was the most common clone and contained In1310 with blaIMP-26 and In1321 with blaIMP-6. The Enterobacter cloacae complex (n = 9) consisted of Enterobacter hormaechei and E. cloacae cluster III. CC78 (from Taiwan) containing In73 with blaIMP-8 was the most common clone among the E. cloacae complex. This study highlights the importance of surveillance programs using the latest molecular techniques for providing insight into the characteristics and global distribution of Enterobacteriaceae with blaIMP genes. PMID:28167555

  2. Molecular cloning and expression of a gene for a factor which stabilizes formation of inhibitor-mitochondrial ATPase complex from Saccharomyces cerevisiae.

    PubMed

    Akashi, A; Yoshida, Y; Nakagoshi, H; Kuroki, K; Hashimoto, T; Tagawa, K; Imamoto, F

    1988-10-01

    Stabilizing factor, a 9 kDa protein, stabilizes and facilitates formation of the complex between mitochondrial ATP synthase and its intrinsic inhibitor protein. A clone containing the gene encoding the 9 kDa protein was selected from a yeast genomic library to determine the structure of its precursor protein. As deduced from the nucleotide sequence, the precursor of the yeast 9 kDa stabilizing factor contains 86 amino acid residues and has a molecular weight of 10,062. From the predicted sequence we infer that the stabilizing factor precursor contains a presequence of 23 amino acid residues at its amino terminus. We also used S1 mapping to determine the initiation site of transcription under glucose-repressed or derepressed conditions. These experiments suggest that transcription of this gene starts at three different sites and that only one of them is not affected by the presence of glucose.

  3. RAPD of controlled crosses and clones from the field suggests that hybrids are rare in the Salix alba-Salix fragilis complex.

    PubMed

    Triest, L; De Greef, B; De Bondt, R; Van Slycken, J

    2000-05-01

    The polyploid Salix alba-Salix fragilis hybrid complex is rather difficult to study when using only morphological characters. Most of the features have a low diagnostic value for unambiguously identifying the hybrids, introgression patterns and population structures, though morphological traits have proved to be useful in making a hybrid index. Morphology and molecular variation from RAPDs were investigated in several case studies on willows from Belgium. A thorough screening of full-sib progenies of interspecific controlled crosses was made to select homologous amplification products. The selected amplified products proved to be useful in a principal coordinate analysis for the estimation of variability of hybrid progenies. On the basis of genetic similarities and ordination analysis, a method for the identification of clones in the field was established using presumed pure species and presumed introgressants. The chosen reference clones were checked against additional European samples of putative pure species to ensure the reliability of the method beyond a regional scale. The RAPDs suggested that both species have kept their gene pools well separated and that hybridization actually does not seem to be a dominating process. The observation that molecular markers do not always follow the morphological traits or allozyme data is discussed.

  4. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.

    PubMed

    Wickramasinghe, Gammadde Hewa Ishan Maduka; Rathnayake, Pilimathalawe Panditharathna Attanayake Mudiyanselage Samith Indika; Chandrasekharan, Naduviladath Vishvanath; Weerasinghe, Mahindagoda Siril Samantha; Wijesundera, Ravindra Lakshman Chundananda; Wijesundera, Wijepurage Sandhya Sulochana

    2017-06-21

    Cellulose, a linear polymer of β 1-4, linked glucose, is the most abundant renewable fraction of plant biomass (lignocellulose). It is synergistically converted to glucose by endoglucanase (EG) cellobiohydrolase (CBH) and β-glucosidase (BGL) of the cellulase complex. BGL plays a major role in the conversion of randomly cleaved cellooligosaccharides into glucose. As it is well known, Saccharomyces cerevisiae can efficiently convert glucose into ethanol under anaerobic conditions. Therefore, S.cerevisiae was genetically modified with the objective of heterologous extracellular expression of the BGLI gene of Trichoderma virens making it capable of utilizing cellobiose to produce ethanol. The cDNA and a genomic sequence of the BGLI gene of Trichoderma virens was cloned in the yeast expression vector pGAPZα and separately transformed to Saccharomyces cerevisiae. The size of the BGLI cDNA clone was 1363 bp and the genomic DNA clone contained an additional 76 bp single intron following the first exon. The gene was 90% similar to the DNA sequence and 99% similar to the deduced amino acid sequence of 1,4-β-D-glucosidase of T. atroviride (AC237343.1). The BGLI activity expressed by the recombinant genomic clone was 3.4 times greater (1.7 x 10 -3  IU ml -1 ) than that observed for the cDNA clone (5 x 10 -4  IU ml -1 ). Furthermore, the activity was similar to the activity of locally isolated Trichoderma virens (1.5 x 10 -3  IU ml -1 ). The estimated size of the protein was 52 kDA. In fermentation studies, the maximum ethanol production by the genomic and the cDNA clones were 0.36 g and 0.06 g /g of cellobiose respectively. Molecular docking results indicated that the bare protein and cellobiose-protein complex behave in a similar manner with considerable stability in aqueous medium. The deduced binding site and the binding affinity of the constructed homology model appeared to be reasonable. Moreover, it was identified that the five hydrogen bonds formed between the amino acid residues of BGLI and cellobiose are mainly involved in the integrity of enzyme-substrate association. The BGLI activity was remarkably higher in the genomic DNA clone compared to the cDNA clone. Cellobiose was successfully fermented into ethanol by the recombinant S.cerevisiae genomic DNA clone. It has the potential to be used in the industrial production of ethanol as it is capable of simultaneous saccharification and fermentation of cellobiose. Homology modeling, docking studies and molecular dynamics simulation studies will provide a realistic model for further studies in the modification of active site residues which could be followed by mutation studies to improve the catalytic action of BGLI.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jung-Il; Cho, Young Keun; Cho, Seong-Keun

    The potential medical applications of animal cloning include xenotransplantation, but the complex molecular cascades that control porcine organ development are not fully understood. Still, it has become apparent that organs derived from cloned pigs may be suitable for transplantation into humans. In this study, we examined the pancreas of an adult cloned pig developed through somatic cell nuclear transfer (SCNT) using two-dimensional electrophoresis (2-DE) and Western blotting. Proteomic analysis revealed 69 differentially regulated proteins, including such apoptosis-related species as annexins, lamins, and heat shock proteins, which were unanimously upregulated in the SCNT sample. Among the downregulated proteins in SCNT pancreasmore » were peroxiredoxins and catalase. Western blot results indicate that several antioxidant enzymes and the anti-apoptotic protein were downregulated in SCNT pancreas, whereas several caspases were upregulated. Together, these data suggest that the accumulation of reactive oxygen species (ROS) in the pancreas of an adult cloned pig leads to apoptosis.« less

  6. Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome.

    PubMed Central

    Serino, G; Tsuge, T; Kwok, S; Matsui, M; Wei, N; Deng, X W

    1999-01-01

    The pleiotropic constitutive photomorphogenic/deetiolated/fusca (cop/det/fus) mutants of Arabidopsis exhibit features of light-grown seedlings when grown in the dark. Cloning and biochemical analysis of COP9 have revealed that it is a component of a multiprotein complex, the COP9 signalosome (previously known as the COP9 complex). Here, we compare the immunoaffinity and the biochemical purification of the COP9 signalosome from cauliflower and confirm its eight-subunit composition. Molecular cloning of subunit 4 of the complex revealed that it is a proteasome-COP9 complex-eIF3 domain protein encoded by a gene that maps to chromosome 5, near the chromosomal location of the cop8 and fus4 mutations. Genetic complementation tests showed that the cop8 and fus4 mutations define the same locus, now designated as COP8. Molecular analysis of the subunit 4-encoding gene in both cop8 and fus4 mutants identified specific molecular lesions, and overexpression of the subunit 4 cDNA in a cop8 mutant background resulted in complete rescue of the mutant phenotype. Thus, we conclude that COP8 encodes subunit 4 of the COP9 signalosome. Examination of possible molecular interactions by using the yeast two-hybrid assay indicated that COP8 is capable of strong self-association as well as interaction with COP9, FUS6/COP11, FUS5, and Arabidopsis JAB1 homolog 1, the latter four proteins being previously defined subunits of the Arabidopsis COP9 signalosome. A comparative sequence analysis indicated that COP8 is highly conserved among multicellular eukaryotes and is also similar to a subunit of the 19S regulatory particle of the 26S proteasome. PMID:10521526

  7. A universal mini-vector and an annealing of PCR products (APP)-based cloning strategy for convenient molecular biological manipulations.

    PubMed

    Liu, Xia; Li, Tuoping; Hart, Darren J; Gao, Song; Wang, Hongling; Gao, Herui; Xu, Shumin; Zhang, Yifeng; Liu, Yifei; An, Yingfeng

    2018-03-18

    Currently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…

  9. Global epidemiology of capsular group W meningococcal disease (1970-2015): Multifocal emergence and persistence of hypervirulent sequence type (ST)-11 clonal complex.

    PubMed

    Mustapha, Mustapha M; Marsh, Jane W; Harrison, Lee H

    2016-03-18

    Following an outbreak in Mecca Saudi Arabia in 2000, meningococcal strains expressing capsular group W (W) emerged as a major cause of invasive meningococcal disease (IMD) worldwide. The Saudi Arabian outbreak strain (Hajj clone) belonging to the ST-11 clonal complex (cc11) is similar to W cc11 causing occasional sporadic disease before 2000. Since 2000, W cc11 has caused large meningococcal disease epidemics in the African meningitis belt and endemic disease in South America, Europe and China. Traditional molecular epidemiologic typing suggested that a majority of current W cc11 burden represented global spread of the Hajj clone. However, recent whole genome sequencing (WGS) analyses revealed significant genetic heterogeneity among global W cc11 strains. While continued spread of the Hajj clone occurs in the Middle East, the meningitis belt and South Africa have co-circulation of the Hajj clone and other unrelated W cc11 strains. Notably, South America, the UK, and France share a genetically distinct W cc11 strain. Other W lineages persist in low numbers in Europe, North America and the meningitis belt. In summary, WGS is helping to unravel the complex genomic epidemiology of group W meningococcal strains. Wider application of WGS and strengthening of global IMD surveillance is necessary to monitor the continued evolution of group W lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of New Approaches for Breast Cancer Therapy and Diagnosis Based on Angiogenesis

    DTIC Science & Technology

    1997-10-01

    Immune complexes were incubated for two hours at 4°C with rabbit anti-mouse IgG and then were precipitated upon addition of proteinA - Sepharose 4B...from the cloned hybridomas. These studies are just getting underway. CONCLUSIONS The main objective of this grant is identify specific molecular

  11. Molecular Cloning and Sequence of Channel Catfish (Ictalurus punctatus, Rafinesque 1818) Cathepsin S gene

    USDA-ARS?s Scientific Manuscript database

    Cathepsin S is a lysosomal cysteine endopeptidase of the papain family. This enzyme digests the invariant chain molecules so that antigenic peptides are able to load on the class II-associated invariant chain peptide of MHC. The complexes can subsequently be presented to the CD4 cell surface. In ...

  12. Molecular cloning and functional expression of Lewis type α1,3/α1,4-fucosyltransferase cDNAs from Mangifera indica L.

    PubMed

    Okada, Takahiro; Ihara, Hideyuki; Ito, Ritsu; Ikeda, Yoshitaka

    2017-12-01

    In higher plants, complex type N-glycans contain characteristic carbohydrate moieties that are not found in mammals. In particular, the attachment of the Lewis a (Le a ) epitope is currently the only known outer chain elongation that is present in plant N-glycans. Such a modification is of great interest in terms of the biological function of complex type N-glycans in plant species. However, little is known regarding the exact molecular basis underlying their Le a expression. In the present study, we cloned two novel Lewis type fucosyltransferases (MiFUT13) from mango fruit, Mangifera indica L., heterologously expressed the proteins and structurally and functionally characterized them. Using an HPLC-based assay, we demonstrated that the recombinant MiFUT13 proteins mediate the α1,4-fucosylation of acceptor tetrasaccharides with a strict preference for type I-based structure to type II. The results and other findings suggest that MiFUT13s are involved in the biosynthesis of Le a containing glycoconjugates in mango fruits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  14. Molecular characteristics of Multidrug Resistant Acinetobacter baumannii Isolates from US soldiers from Iraq at the National Naval Medical Center

    USDA-ARS?s Scientific Manuscript database

    Background: Infections with A. baumannii-calcoaceticus complex (ABC) have complicated the care of combat casualties, and the spread and global dissemination of imipenem resistant (IR) clones of ABC have been reported in recent years. However, the epidemiological features of the IR-ABCs in military t...

  15. Molecular Typing and Virulence Characteristic of Methicillin-Resistant Staphylococcus Aureus Isolates from Pediatric Patients in Bucaramanga, Colombia

    PubMed Central

    Machuca, Mayra Alejandra; Sosa, Luis Miguel; González, Clara Isabel

    2013-01-01

    Background Staphylococcus aureus is among the most common global nosocomial pathogens. The emergence and spread of methicillin-resistant Staphylococcus aureus (MRSA) is a public health problem worldwide that causes nosocomial and community infections. The goals of this study were to establish the clonal complexes (CC) of the isolates of MRSA obtained from pediatric patients in a university hospital in Colombia and to investigate its molecular characteristics based on the virulence genes and the genes of staphylococcal toxins and adhesins. Methods A total of 53 MRSA isolates from pediatric patients with local or systemic infections were collected. The MRSA isolates were typed based on the SCCmec, MLST, spa and agr genes. The molecular characterization included the detection of Panton-Valentine Leukocidin, superantigenic and exfoliative toxins, and adhesin genes. The correlation between the molecular types identified and the profile of virulence factors was determined for all isolates. Results Four CC were identified, including CC8, CC5, CC80 and CC78. The ST8-MRSA-IVc-agrI was the predominant clone among the isolates, followed by the ST5-MRSA-I-agrII and ST5-MRSA-IVc-agrII clones. Twelve spa types were identified, of which t10796 and t10799 were new repeat sequences. The isolates were carriers of toxin genes, and hlg (100%), sek (92%) and pvl (88%) were the most frequent. Ten toxin gene profiles were observed, and the most frequent were seq-sek-hlg (22.6%), sek-hlg (22.6%), seb-seq-sek-hlg (18.9%) and seb-sek-hlg (15.1%). The adhesion genes were present in most of the MRSA isolates, including the following: clf-A (89%), clf-B (87%), fnb-A (83%) and ica (83%). The majority of the strains carried SCCmec-IVc and were identified as causing nosocomial infection. No significant association between a molecular type and the virulence factors was found. Conclusion Four major MRSA clone complexes were identified among the isolates. ST8-MRSA-IVc-agrI pvl+ (USA300-LV) was the most frequent, confirming the presence of community-associated MRSA in Colombian hospitals. PMID:24058415

  16. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    PubMed Central

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  17. Development of concepts on the interaction of drugs with opioid receptors

    NASA Astrophysics Data System (ADS)

    Kuzmina, N. E.; Kuzmin, V. S.

    2011-02-01

    The development of concepts on the molecular mechanisms of the action of medicinal drugs on the opioid receptors is briefly surveyed. The modern point of view on the mechanism of activation of opioid receptors is given based on the data from chimeric and site-directed mutagenesis of the cloned opioid receptors and the computer-aided simulations of the reception zone and ligand-receptor complexes. Three-dimensional models of the opioid pharmacophore derived by both conventional methods and a comparative analysis of molecular fields are described in detail.

  18. Shigeru Tsuiki: a pioneer in the research fields of complex carbohydrates and protein phosphatases.

    PubMed

    Miyagi, Taeko; Kikuchi, Kunimi; Tamura, Shinri

    2011-11-01

    Dr Tsuiki made three major contributions during his illustrious career as a biochemist. First, he developed the procedure for mucin isolation from bovine submaxillary glands. His work became the basis for mucin biochemistry. Second, he identified four distinct molecular species of mammalian sialidase. Subsequent studies based on his work led to the discovery that sialidase plays a unique role as an intracellular signalling factor involved in the regulation of a variety of cellular functions. Finally, he established the molecular basis for the diversity of mammalian protein phosphatases through protein purification and molecular cloning. His work prompted the functional studies of protein phosphatases.

  19. Programmable assembly of nanoarchitectures using genetically engineered viruses.

    PubMed

    Huang, Yu; Chiang, Chung-Yi; Lee, Soo Kwan; Gao, Yan; Hu, Evelyn L; De Yoreo, James; Belcher, Angela M

    2005-07-01

    Biological systems possess inherent molecular recognition and self-assembly capabilities and are attractive templates for constructing complex material structures with molecular precision. Here we report the assembly of various nanoachitectures including nanoparticle arrays, hetero-nanoparticle architectures, and nanowires utilizing highly engineered M13 bacteriophage as templates. The genome of M13 phage can be rationally engineered to produce viral particles with distinct substrate-specific peptides expressed on the filamentous capsid and the ends, providing a generic template for programmable assembly of complex nanostructures. Phage clones with gold-binding motifs on the capsid and streptavidin-binding motifs at one end are created and used to assemble Au and CdSe nanocrytals into ordered one-dimensional arrays and more complex geometries. Initial studies show such nanoparticle arrays can further function as templates to nucleate highly conductive nanowires that are important for addressing/interconnecting individual nanostructures.

  20. Cloning of murine RNA polymerase I-specific TAF factors: conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1.

    PubMed

    Heix, J; Zomerdijk, J C; Ravanpay, A; Tjian, R; Grummt, I

    1997-03-04

    Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP-TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein-protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP-TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription.

  1. Molecular identification of bacteria on the tongue dorsum of subjects with and without halitosis.

    PubMed

    Riggio, M P; Lennon, A; Rolph, H J; Hodge, P J; Donaldson, A; Maxwell, A J; Bagg, J

    2008-04-01

    Compare the microbial profiles on the tongue dorsum in patients with halitosis and control subjects in a UK population using culture-independent techniques. Halitosis patients were screened according to our recently developed recruitment protocol. Scrapings from the tongue dorsum were obtained for 12 control subjects and 20 halitosis patients. Bacteria were identified by PCR amplification, cloning and sequencing of 16S rRNA genes. The predominant species found in the control samples were Lysobacter-type species, Streptococcus salivarius, Veillonella dispar, unidentified oral bacterium, Actinomyces odontolyticus, Atopobium parvulum and Veillonella atypica. In the halitosis samples, Lysobacter-type species, S. salivarius, Prevotella melaninogenica, unidentified oral bacterium, Prevotella veroralis and Prevotella pallens were the most commonly found species. For the control samples, 13-16 (4.7-5.8%) of 276 clones represented uncultured species, whereas in the halitosis samples, this proportion increased to 6.5-9.6% (36-53 of 553 clones). In the control samples, 22 (8.0%) of 276 clones represented potentially novel phylotypes, and in the halitosis samples, this figure was 39 (7.1%) of 553 clones. The microflora associated with the tongue dorsum is complex in both the control and halitosis groups, but several key species predominate in both groups.

  2. Genomic epidemiology of global VIM-producing Enterobacteriaceae.

    PubMed

    Matsumura, Yasufumi; Peirano, Gisele; Devinney, Rebekah; Bradford, Patricia A; Motyl, Mary R; Adams, Mark D; Chen, Liang; Kreiswirth, Barry; Pitout, Johann D D

    2017-08-01

    International data on the molecular epidemiology of Enterobacteriaceae with VIM carbapenemases are limited. We performed short read (Illumina) WGS on a global collection of 89 VIM-producing clinical Enterobacteriaceae (2008-14). VIM-producing (11 varieties within 21 different integrons) isolates were mostly obtained from Europe. Certain integrons with bla VIM were specific to a country in different species and clonal complexes (CCs) (In 87 , In 624 , In 916 and In 1323 ), while others had spread globally among various Enterobacteriaceae species (In 110 and In 1209 ). Klebsiella pneumoniae was the most common species ( n  = 45); CC147 from Greece was the most prevalent clone and contained In 590 -like integrons with four different bla VIM s. Enterobacter cloacae complex was the second most common species and mainly consisted of Enterobacter hormaechei ( Enterobacter xiangfangensis , subsp. steigerwaltii and Hoffmann cluster III). CC200 (from Croatia and Turkey), CC114 (Croatia, Greece, Italy and the USA) and CC78 (from Greece, Italy and Spain) containing bla VIM-1 were the most common clones among the E. cloacae complex. This study highlights the importance of surveillance programmes using the latest molecular techniques in providing insight into the characteristics and global distribution of Enterobacteriaceae with bla VIM s. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Advances in cereal genomics and applications in crop breeding.

    PubMed

    Varshney, Rajeev K; Hoisington, David A; Tyagi, Akhilesh K

    2006-11-01

    Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.

  4. Cryptic deletions and inversions of chromosome 21 in a phenotypically normal infant with transient abnormal myelopoiesis: a molecular cytogenetic study.

    PubMed

    Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R

    1998-11-01

    A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.

  5. Burkholderia cepacia complex in Serbian patients with cystic fibrosis: prevalence and molecular epidemiology.

    PubMed

    Vasiljevic, Z V; Novovic, K; Kojic, M; Minic, P; Sovtic, A; Djukic, S; Jovcic, B

    2016-08-01

    The Burkholderia cepacia complex (Bcc) organisms remain significant pathogens in patients with cystic fibrosis (CF). This study was performed to evaluate the prevalence, epidemiological characteristics, and presence of molecular markers associated with virulence and transmissibility of the Bcc strains in the National CF Centre in Belgrade, Serbia. The Bcc isolates collected during the four-year study period (2010-2013) were further examined by 16 s rRNA gene, pulsed-field gel electrophoresis of genomic DNA, multilocus sequence typing analysis, and phylogenetic analysis based on concatenated sequence of seven alleles. Fifty out of 184 patients (27.2 %) were colonized with two Bcc species, B. cenocepacia (n = 49) and B. stabilis (n = 1). Thirty-four patients (18.5 %) had chronic colonization. Typing methods revealed a high level of similarity among Bcc isolates, indicating a person-to-person transmission or acquisition from a common source. New sequence types (STs) were identified, and none of the STs with an international distribution were found. One centre-specific ST, B. cenocepacia ST856, was highly dominant and shared by 48/50 (96 %) patients colonized by Bcc. This clone was characterized by PCR positivity for both the B. cepacia epidemic strain marker and cable pilin, and showed close genetic relatedness to the epidemic strain CZ1 (ST32). These results indicate that the impact of Bcc on airway colonization in the Serbian CF population is high and virtually exclusively limited to a single clone of B. cenocepacia. The presence of a highly transmissible clone and probable patient-to-patient spread was observed.

  6. Bacteriophage lambda: early pioneer and still relevant

    PubMed Central

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  7. Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: a systematic review

    PubMed Central

    Abdulgader, Shima M.; Shittu, Adebayo O.; Nicol, Mark P.; Kaba, Mamadou

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are a serious global problem, with considerable impact on patients and substantial health care costs. This systematic review provides an overview on the clonal diversity of MRSA, as well as the prevalence of Panton-Valentine leukocidin (PVL)-positive MRSA in Africa. A search on the molecular characterization of MRSA in Africa was conducted by two authors using predefined terms. We screened for articles published in English and French through to October 2014 from five electronic databases. A total of 57 eligible studies were identified. Thirty-four reports from 15 countries provided adequate genotyping data. CC5 is the predominant clonal complex in the healthcare setting in Africa. The hospital-associated MRSA ST239/ST241-III [3A] was identified in nine African countries. This clone was also described with SCCmec type IV [2B] in Algeria and Nigeria, and type V [5C] in Niger. In Africa, the European ST80-IV [2B] clone was limited to Algeria, Egypt and Tunisia. The clonal types ST22-IV [2B], ST36-II [2A], and ST612-IV [2B] were only reported in South Africa. No clear distinctions were observed between MRSA responsible for hospital and community infections. The community clones ST8-IV [2B] and ST88-IV [2B] were reported both in the hospital and community settings in Angola, Cameroon, Gabon, Ghana, Madagascar, Nigeria, and São Tomé and Príncipe. The proportion of PVL-positive MRSA carriage and/or infections ranged from 0.3 to 100% in humans. A number of pandemic clones were identified in Africa. Moreover, some MRSA clones are limited to specific countries or regions. We strongly advocate for more surveillance studies on MRSA in Africa. PMID:25983721

  8. Bioinformatics and expressional analysis of cDNA clones from floral buds

    NASA Astrophysics Data System (ADS)

    Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew

    2017-08-01

    The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.

  9. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    ERIC Educational Resources Information Center

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  10. Identification and molecular epidemiology of dermatophyte isolates by repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system in Turkey.

    PubMed

    Koc, A Nedret; Atalay, Mustafa A; Inci, Melek; Sariguzel, Fatma M; Sav, Hafize

    2017-05-01

    Dermatophyte species, isolation and identification in clinical samples are still difficult and take a long time. The identification and molecular epidemiology of dermatophytes commonly isolated in a clinical laboratory in Turkey by repetitive sequence-based PCR (rep-PCR) were assessed by comparing the results with those of reference identification. A total of 44 dermatophytes isolated from various clinical specimens of 20 patients with superficial mycoses in Kayseri and 24 patients in Hatay were studied. The identification of dermatophyte isolates was based on the reference identification and rep-PCR using the DiversiLab System (BioMerieux). The genotyping of dermatophyte isolates from different patients was determined by rep-PCR. In the identification of dermatophyte isolates, agreement between rep-PCR and conventional methods was 87.8 % ( 36 of 41). The dermatophyte strains belonged to four clones (A -D) which were determined by the use of rep-PCR. The dermatophyte strains in Clone B, D showed identical patterns with respect to the region. In conclusion, rep-PCR appears to be useful for evaluation of the identification and clonal relationships between Trichophyton rubrum species complex and Trichophyton mentagrophytes species complex isolates. The similarity and diversity of these isolates may be assessed according to different regions by rep-PCR. © 2017 Blackwell Verlag GmbH.

  11. Cloning of murine RNA polymerase I-specific TAF factors: Conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1

    PubMed Central

    Heix, Jutta; Zomerdijk, Joost C. B. M.; Ravanpay, Ali; Tjian, Robert; Grummt, Ingrid

    1997-01-01

    Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP–TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein–protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP–TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription. PMID:9050847

  12. Molecular dynamics reveal BCR-ABL1 polymutants as a unique mechanism of resistance to PAN-BCR-ABL1 kinase inhibitor therapy

    PubMed Central

    Gibbons, Don L.; Pricl, Sabrina; Posocco, Paola; Laurini, Erik; Fermeglia, Maurizio; Sun, Hanshi; Talpaz, Moshe; Donato, Nicholas; Quintás-Cardama, Alfonso

    2014-01-01

    The acquisition of mutations within the BCR-ABL1 kinase domain is frequently associated with tyrosine kinase inhibitor (TKI) failure in chronic myeloid leukemia. Sensitive sequencing techniques have revealed a high prevalence of compound BCR-ABL1 mutations (polymutants) in patients failing TKI therapy. To investigate the molecular consequences of such complex mutant proteins with regards to TKI resistance, we determined by cloning techniques the presence of polymutants in a cohort of chronic-phase patients receiving imatinib followed by dasatinib therapy. The analysis revealed a high frequency of polymutant BCR-ABL1 alleles even after failure of frontline imatinib, and also the progressive exhaustion of the pool of unmutated BCR-ABL1 alleles over the course of sequential TKI therapy. Molecular dynamics analyses of the most frequent polymutants in complex with TKIs revealed the basis of TKI resistance. Modeling of BCR-ABL1 in complex with the potent pan-BCR-ABL1 TKI ponatinib highlighted potentially effective therapeutic strategies for patients carrying these recalcitrant and complex BCR-ABL1 mutant proteins while unveiling unique mechanisms of escape to ponatinib therapy. PMID:24550512

  13. Multiple-clone infections of Plasmodium vivax: definition of a panel of markers for molecular epidemiology.

    PubMed

    de Souza, Aracele M; de Araújo, Flávia C F; Fontes, Cor J F; Carvalho, Luzia H; de Brito, Cristiana F A; de Sousa, Taís N

    2015-08-25

    Plasmodium vivax infections commonly contain multiple genetically distinct parasite clones. The detection of multiple-clone infections depends on several factors, such as the accuracy of the genotyping method, and the type and number of the molecular markers analysed. Characterizing the multiplicity of infection has broad implications that range from population genetic studies of the parasite to malaria treatment and control. This study compared and evaluated the efficiency of neutral and non-neutral markers that are widely used in studies of molecular epidemiology to detect the multiplicity of P. vivax infection. The performance of six markers was evaluated using 11 mixtures of DNA with well-defined proportions of two different parasite genotypes for each marker. These mixtures were generated by mixing cloned PCR products or patient-derived genomic DNA. In addition, 51 samples of natural infections from the Brazil were genotyped for all markers. The PCR-capillary electrophoresis-based method was used to permit direct comparisons among the markers. The criteria for differentiating minor peaks from artifacts were also evaluated. The analysis of DNA mixtures showed that the tandem repeat MN21 and the polymorphic blocks 2 (msp1B2) and 10 (msp1B10) of merozoite surface protein-1 allowed for the estimation of the expected ratio of both alleles in the majority of preparations. Nevertheless, msp1B2 was not able to detect the majority of multiple-clone infections in field samples; it identified only 6 % of these infections. The merozoite surface protein-3 alpha and microsatellites (PvMS6 and PvMS7) did not accurately estimate the relative clonal proportions in artificial mixtures, but the microsatellites performed well in detecting natural multiple-clone infections. Notably, the use of a less stringent criterion to score rare alleles significantly increased the sensitivity of the detection of multi-clonal infections. Depending on the type of marker used, a considerable amplification bias was observed, which may have serious implications for the characterization of the complexity of a P. vivax infection. Based on the performance of markers in artificial mixtures of DNA and natural infections, a minimum panel of four genetic markers (PvMS6, PvMS7, MN21, and msp1B10) was defined, and these markers are highly informative regarding the genetic variability of P. vivax populations.

  14. Assessment of mitochondrial functions in Daphnia pulex clones using high-resolution respirometry.

    PubMed

    Kake-Guena, Sandrine A; Touisse, Kamal; Vergilino, Roland; Dufresne, France; Blier, Pierre U; Lemieux, Hélène

    2015-06-01

    The objectives of our study were to adapt a method to measure mitochondrial function in intact mitochondria from the small crustacean Daphnia pulex and to validate if this method was sensitive enough to characterize mitochondrial metabolism in clones of the pulex complex differing in ploidy levels, mitochondrial DNA haplotypes, and geographic origins. Daphnia clones belonging to the Daphnia pulex complex represent a powerful model to delineate the link between mitochondrial DNA evolution and mitochondrial phenotypes, as single genotypes with divergent mtDNA can be grown under various experimental conditions. Our study included two diploid clones from temperate environments and two triploid clones from subarctic environments. The whole animal permeabilization and measurement of respiration with high-resolution respirometry enabled the measurement of the functional capacity of specific mitochondrial complexes in four clones. When expressing the activity as ratios, our method detected significant interclonal variations. In the triploid subarctic clone from Kuujjurapik, a higher proportion of the maximal physiological oxidative phosphorylation (OXPHOS) capacity of mitochondria was supported by complex II, and a lower proportion by complex I. The triploid subarctic clone from Churchill (Manitoba) showed the lowest proportion of the maximal OXPHOS supported by complex II. Additional studies are required to determine if these differences in mitochondrial functions are related to differences in mitochondrial haplotypes or ploidy level and if they might be associated with fitness divergences and therefore selective value. © 2015 Wiley Periodicals, Inc.

  15. Prototypical Recombinant Multi-Protease-Inhibitor-Resistant Infectious Molecular Clones of Human Immunodeficiency Virus Type 1

    PubMed Central

    Varghese, Vici; Mitsuya, Yumi; Fessel, W. Jeffrey; Liu, Tommy F.; Melikian, George L.; Katzenstein, David A.; Schiffer, Celia A.; Holmes, Susan P.

    2013-01-01

    The many genetic manifestations of HIV-1 protease inhibitor (PI) resistance present challenges to research into the mechanisms of PI resistance and the assessment of new PIs. To address these challenges, we created a panel of recombinant multi-PI-resistant infectious molecular clones designed to represent the spectrum of clinically relevant multi-PI-resistant viruses. To assess the representativeness of this panel, we examined the sequences of the panel's viruses in the context of a correlation network of PI resistance amino acid substitutions in sequences from more than 10,000 patients. The panel of recombinant infectious molecular clones comprised 29 of 41 study-defined PI resistance amino acid substitutions and 23 of the 27 tightest amino acid substitution clusters. Based on their phenotypic properties, the clones were classified into four groups with increasing cross-resistance to the PIs most commonly used for salvage therapy: lopinavir (LPV), tipranavir (TPV), and darunavir (DRV). The panel of recombinant infectious molecular clones has been made available without restriction through the NIH AIDS Research and Reference Reagent Program. The public availability of the panel makes it possible to compare the inhibitory activities of different PIs with one another. The diversity of the panel and the high-level PI resistance of its clones suggest that investigational PIs active against the clones in this panel will retain antiviral activity against most if not all clinically relevant PI-resistant viruses. PMID:23796938

  16. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora

    PubMed Central

    Marraccini, Pierre; Vinecky, Felipe; Alves, Gabriel S.C.; Ramos, Humberto J.O.; Elbelt, Sonia; Vieira, Natalia G.; Carneiro, Fernanda A.; Sujii, Patricia S.; Alekcevetch, Jean C.; Silva, Vânia A.; DaMatta, Fábio M.; Ferrão, Maria A.G.; Leroy, Thierry; Pot, David; Vieira, Luiz G.E.; da Silva, Felipe R.; Andrade, Alan C.

    2012-01-01

    The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora. PMID:22511801

  17. Cloning, expression and crystallisation of SGT1 co-chaperone protein from Glaciozyma antarctica

    NASA Astrophysics Data System (ADS)

    Yusof, Nur Athirah; Bakar, Farah Diba Abu; Beddoe, Travis; Murad, Abdul Munir Abdul

    2013-11-01

    Studies on psycrophiles are now in the limelight of today's post genomic era as they fascinate the research and development industries. The discovery from Glaciozyma antarctica, an extreme cold adapted yeast from Antarctica shows promising future to provide cost effective natural sustainable energy and create wider understanding of the property that permits this organisms to adapt to extreme temperature downshift. In plants and yeast, studies show the interaction between SGT1 and HSP90 are essential for disease resistance and heat stress by activating a number of resistance proteins. Here we report for the first time cloning, expression and crystallization of the recombinant SGT1 protein of G. antarctica (rGa_SGT1), a highly conserved eukaryotic protein that interacts with the molecular chaperones HSP90 (heat shock protein 90) apparently associated in a role of co-chaperone that may play important role in cold adaptation. The sequence analysis of rGa_SGT1 revealed the presence of all the characteristic features of SGT1 protein. In this study, we present the outlines and results of protein structural study of G. antarctica SGT1 protein. We validate this approach by starting with cloning the target insert into Ligation Independent Cloning system proceeded with expression using E. coli system, and crystallisation of the target rGA_SGT1 protein. The work is still on going with the target subunit of the complex proteins yielded crystals. These results, still ongoing, open a platform for better understanding of the uniqueness of this crucial molecular machine function in cold adaptation.

  18. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymier, Martin J., E-mail: mdeymie@emory.edu; Claiborne, Daniel T., E-mail: dclaibo@emory.edu; Ende, Zachary, E-mail: zende@emory.edu

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmittedmore » genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.« less

  19. Pathogenicity of Leishmania donovani is associated with the high expression of a group low molecular weight proteins

    PubMed Central

    Mitra, Partha

    2015-01-01

    Background: With few exceptions, members of the Leishmania donovani complex such as L. donovani, L. infantum and L. chagashi are the etiological agents of visceral leishmaniasis or kala-azar. Promastigotes of Leishmania spp. lose their Pathogenicity; the ability to establish infection in a susceptible host, after prolonged culture. The molecular basis of this evolution of pathogenic to nonpathogenic culture has not been very well understood. It has been proposed that the loss of pathogenicity is associated with the gradual disappearance of selective parasite proteins. An alternative hypothesis is that during prolonged culture, the pathogenic clonal population of the parasite is deleted from the mixed population due to their selection pressure. This clonal deletion is proposed to be responsible for the emergence of the nonpathogenic population. Study Methodology and Results: We have a done a series of two-dimensional polyacrylamide gel electrophoresis followed by western blot experiments to study the antigenic profile of few L. donovani isolates of Indian origin. We observed a gradual and significant downregulation of expression of a group of low molecular weight proteins (LMW, molecular weight 20–30 kDa) which are associated with loss of pathogenicity. These proteins are recognized only by antiserum raised against the whole cell extract of one of the pathogenic Indian L. donovani isolates, Ag83, and remained undetected by antiserum raised against the nonpathogenic AG83 isolates. These LMW proteins were also present in the nonpathogenic extract in very low levels and remained undetected by the virulent serum, indicating a phenomenon of simultaneous downregulation of the expression and altered immunogenicity. LMW proteins were universally expressed in all early passage Indian isolate we tested and also detected in two clones obtained from pathogenic parasite culture. The antigenic patterns of none of the eight clones obtained from nonpathogenic culture were not exactly similar with the pathogenic clones. Conclusion: Therefore, our data strongly support the hypothesis that the loss of pathogenicity of L. donovani is associated with a change in antigenic profile, but not due the selective deletion of pathogenic clones. PMID:26629453

  20. Pathogenicity of Leishmania donovani is associated with the high expression of a group low molecular weight proteins.

    PubMed

    Mitra, Partha

    2015-01-01

    With few exceptions, members of the Leishmania donovani complex such as L. donovani, L. infantum and L. chagashi are the etiological agents of visceral leishmaniasis or kala-azar. Promastigotes of Leishmania spp. lose their Pathogenicity; the ability to establish infection in a susceptible host, after prolonged culture. The molecular basis of this evolution of pathogenic to nonpathogenic culture has not been very well understood. It has been proposed that the loss of pathogenicity is associated with the gradual disappearance of selective parasite proteins. An alternative hypothesis is that during prolonged culture, the pathogenic clonal population of the parasite is deleted from the mixed population due to their selection pressure. This clonal deletion is proposed to be responsible for the emergence of the nonpathogenic population. We have a done a series of two-dimensional polyacrylamide gel electrophoresis followed by western blot experiments to study the antigenic profile of few L. donovani isolates of Indian origin. We observed a gradual and significant downregulation of expression of a group of low molecular weight proteins (LMW, molecular weight 20-30 kDa) which are associated with loss of pathogenicity. These proteins are recognized only by antiserum raised against the whole cell extract of one of the pathogenic Indian L. donovani isolates, Ag83, and remained undetected by antiserum raised against the nonpathogenic AG83 isolates. These LMW proteins were also present in the nonpathogenic extract in very low levels and remained undetected by the virulent serum, indicating a phenomenon of simultaneous downregulation of the expression and altered immunogenicity. LMW proteins were universally expressed in all early passage Indian isolate we tested and also detected in two clones obtained from pathogenic parasite culture. The antigenic patterns of none of the eight clones obtained from nonpathogenic culture were not exactly similar with the pathogenic clones. Therefore, our data strongly support the hypothesis that the loss of pathogenicity of L. donovani is associated with a change in antigenic profile, but not due the selective deletion of pathogenic clones.

  1. Enhanced surveillance of invasive listeriosis in the Lombardy region, Italy, in the years 2006-2010 reveals major clones and an increase in serotype 1/2a

    PubMed Central

    2013-01-01

    Background Invasive listeriosis is a rare, life-threatening foodborne disease. Lombardy, an Italian region accounting for 16% of the total population, reported 55% of all listeriosis cases in the years 2006-2010. The aim of our study was to provide a snapshot of listeriosis epidemiology in this region after the implementation of a voluntary laboratory-based surveillance system. Methods We characterized by serotyping, pulsed-field gel electrophoresis, multilocus sequence typing and detection of epidemic clone markers, 134 isolates from 132 listeriosis cases, including 15 pregnancy-related cases, occurring in the years 2006-2010 in Lombardy. Demographic and clinical characteristics of cases have also been described. Results The mean age of non pregnancy-associated cases was 64.7 years, with 55.9% of cases being older than 65 years. Cases having no underlying medical conditions accounted for 11.6%. The all-cause fatality rate of 83 cases with a known survival outcome was 25.3%. Serotypes 1/2a and 4b comprised 52.2% and 38.8% of isolates, respectively. Seventy-three AscI pulsotypes and 25 sequence types assigned to 23 clonal complexes were recognized. Moreover, 53 (39.5%) isolates tested positive for the epidemic clone markers. Twelve molecular subtype clusters including at least three isolates were detected, with cluster 11 (1/2a/ST38) including 31 isolates identified during the entire study period. No outbreaks were notified to public health authorities during this period. Conclusions The findings of our study proved that epidemiology of listeriosis in Lombardy is characterized by a high prevalence of major clones and the increasing role of serotype 1/2a. Molecular subtyping is an essential tool in the epidemiology and surveillance of listeriosis. Rapid molecular cluster detection could alert about putative outbreaks, thus increasing the chance of detecting and inactivating routes of transmission. PMID:23530941

  2. Enhanced surveillance of invasive listeriosis in the Lombardy region, Italy, in the years 2006-2010 reveals major clones and an increase in serotype 1/2a.

    PubMed

    Mammina, Caterina; Parisi, Antonio; Guaita, Anna; Aleo, Aurora; Bonura, Celestino; Nastasi, Antonino; Pontello, Mirella

    2013-03-26

    Invasive listeriosis is a rare, life-threatening foodborne disease. Lombardy, an Italian region accounting for 16% of the total population, reported 55% of all listeriosis cases in the years 2006-2010. The aim of our study was to provide a snapshot of listeriosis epidemiology in this region after the implementation of a voluntary laboratory-based surveillance system. We characterized by serotyping, pulsed-field gel electrophoresis, multilocus sequence typing and detection of epidemic clone markers, 134 isolates from 132 listeriosis cases, including 15 pregnancy-related cases, occurring in the years 2006-2010 in Lombardy. Demographic and clinical characteristics of cases have also been described. The mean age of non pregnancy-associated cases was 64.7 years, with 55.9% of cases being older than 65 years. Cases having no underlying medical conditions accounted for 11.6%. The all-cause fatality rate of 83 cases with a known survival outcome was 25.3%.Serotypes 1/2a and 4b comprised 52.2% and 38.8% of isolates, respectively. Seventy-three AscI pulsotypes and 25 sequence types assigned to 23 clonal complexes were recognized. Moreover, 53 (39.5%) isolates tested positive for the epidemic clone markers. Twelve molecular subtype clusters including at least three isolates were detected, with cluster 11 (1/2a/ST38) including 31 isolates identified during the entire study period. No outbreaks were notified to public health authorities during this period. The findings of our study proved that epidemiology of listeriosis in Lombardy is characterized by a high prevalence of major clones and the increasing role of serotype 1/2a. Molecular subtyping is an essential tool in the epidemiology and surveillance of listeriosis. Rapid molecular cluster detection could alert about putative outbreaks, thus increasing the chance of detecting and inactivating routes of transmission.

  3. Construction and characterization of a full-length infectious molecular clone from the HIV type 1 subtype Thai-B isolated in Henan province, China.

    PubMed

    Wang, Zheng; Li, Jinyun; Li, Lin; Feng, Fuming; Li, Hanping; Bao, Zuoyi

    2008-02-01

    Among the various subtypes of the M group of human immunodeficiency virus type 1 (HIV-1), subtype Thai-B is the most prevalent in China, particularly in the country's central region. Here we report on the construction of an infectious molecular clone (CNHN24) of this HIV-1 subtype. We show that the viral stock obtained after transfection of CHNH24 could replicate efficiently in PBMC and MT4 cells. Unlike other previously reported HIV infectious clones, CNHN24 was constructed with the low copy plasmid pLG338, allowing for the HIV genome to be very stable during the process of molecular manipulation. Given the prevalence of subtype Thai-B in China's HIV epidemic, the availability of pCNHN24 as the first infectious molecular clone of this subtype provides a useful tool for a wide range of studies including antiviral drug and vaccine research as related to this subtype of viruses.

  4. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells.

    DTIC Science & Technology

    1997-08-01

    enzyme) into the multiple cloning site (MCS). This template will not only replicate inside a mammalian cell (utilizing the E-B virus origin), and...Maniatis, T. Commonly used techniques in molecular cloning . In: Molecular cloning : REFERENCES a laboratory manual, 2nd edition. Cold Spring Harbor...A vatit"Y Of DNA synthesis and the typt of DNA replica~tion Products " celular prca including DNA rsplicatlon. DNA repsair. R~NA formed in experiments

  5. NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits.

    PubMed Central

    Fearnley, I M; Finel, M; Skehel, J M; Walker, J E

    1991-01-01

    The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859

  6. High throughput generation and characterization of replication-competent clade C transmitter-founder simian human immunodeficiency viruses

    PubMed Central

    Dutta, Debashis; Johnson, Samuel; Dalal, Alisha; Deymier, Martin J.; Hunter, Eric

    2018-01-01

    Traditional restriction endonuclease-based cloning has been routinely used to generate replication-competent simian-human immunodeficiency viruses (SHIV) and simian tropic HIV (stHIV). This approach requires the existence of suitable restriction sites or the introduction of nucleotide changes to create them. Here, using an In-Fusion cloning technique that involves homologous recombination, we generated SHIVs and stHIVs based on epidemiologically linked clade C transmitted/founder HIV molecular clones from Zambia. Replacing vif from these HIV molecular clones with vif of SIVmac239 resulted in chimeric genomes used to generate infectious stHIV viruses. Likewise, exchanging HIV env genes and introducing N375 mutations to enhance macaque CD4 binding site and cloned into a SHIVAD8-EO backbone. The generated SHIVs and stHIV were infectious in TZMbl and ZB5 cells, as well as macaque PBMCs. Therefore, this method can replace traditional methods and be a valuable tool for the rapid generation and testing of molecular clones of stHIV and SHIV based on primary clinical isolates will be valuable to generate rapid novel challenge viruses for HIV vaccine/cure studies. PMID:29758076

  7. [A review of the genomic and gene cloning studies in trees].

    PubMed

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  8. Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmer, Nicholas J., E-mail: nic@cryst.bioc.cam.ac.uk; King, Jerry D.; Department of Veterinary Medicine, Cambridge CB3 0ES

    2007-08-01

    The expression, purification, and crystallisation of the short-chain dehydrogenases WbmF, WbmG and WbmH from B. bronchiseptica are described. Native diffraction data to 1.5, 2.0, and 2.2 Å were obtained for the three proteins, together with complexes with nucleotides. The short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica were cloned into Escherichia coli expression vectors, overexpressed and purified to homogeneity. Crystals of all three wild-type enzymes were obtained using vapour-diffusion crystallization with high-molecular-weight PEGs as a primary precipitant at alkaline pH. Some of the crystallization conditions permitted the soaking of crystals with cofactors and nucleotides or nucleotide sugars, whichmore » are possible substrate compounds, and further conditions provided co-complexes of two of the proteins with these compounds. The crystals diffracted to resolutions of between 1.50 and 2.40 Å at synchrotron X-ray sources. The synchrotron data obtained were sufficient to determine eight structures of the three enzymes in complex with a variety of cofactors and substrate molecules.« less

  9. Distribution of Serogroups and Genotypes among Disease-Associated and Carried Isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway

    PubMed Central

    Yazdankhah, Siamak P.; Kriz, Paula; Tzanakaki, Georgina; Kremastinou, Jenny; Kalmusova, Jitka; Musilek, Martin; Alvestad, Torill; Jolley, Keith A.; Wilson, Daniel J.; McCarthy, Noel D.; Caugant, Dominique A.; Maiden, Martin C. J.

    2004-01-01

    The distribution of serogroups and multilocus sequence types (STs) in collections of disease-associated and carried meningococci from the period 1991 to 2000 in three European countries (the Czech Republic, Greece, and Norway) was investigated. A total of 314 patient isolates and 353 isolates from asymptomatic carriers were characterized. The frequency distributions of serogroups and clone complexes differed among countries and between disease and carrier isolate collections. Highly significant differentiation was seen at each housekeeping locus. A marked positive association of serogroup C with disease was evidenced. The ST-11 complex was strongly positively associated with disease; associations for other clone complexes were weaker. The genetic diversity of the clone complexes differed. A single ST dominated the ST-11 clone complex, while the ST-41/44 complex exhibited greater levels of diversity. These data robustly demonstrated differences in the distribution of meningococcal genotypes in disease and carrier isolates and among countries. Further, they indicated that differences in genotype diversity and pathogenicity exist between meningococcal clone complexes. PMID:15528708

  10. Genetic testing for patients with renal disease: procedures, pitfalls, and ethical considerations.

    PubMed

    Korf, B R

    1999-07-01

    The Human Genome Project is rapidly producing insights into the molecular basis of human genetic disorders. The most immediate clinical benefit is the advent of new diagnostic methods. Molecular diagnostic tools are available for several genetic renal disorders and are in development for many more. Two general approaches to molecular diagnosis are linkage-based testing and direct mutation detection. The former is used when the gene has not been cloned but has been mapped in relation to polymorphic loci. Linkage-based testing is also helpful when a large diversity of mutations makes direct detection difficult. Limitations include the need to study multiple family members, the need for informative polymorphisms, and genetic heterogeneity. Direct mutation detection is limited by genetic heterogeneity and the need to distinguish nonpathogenic allelic variants from pathogenic mutations. Molecular testing raises a number of complex ethical issues, including those associated with prenatal or presymptomatic diagnosis. In addition, there are concerns about informed consent, privacy, genetic discrimination, and technology transfer for newly developed tests. Health professionals need to be aware of the technical and ethical implications of these new methods of testing, as well as the complexities in test interpretation, as molecular approaches are increasingly integrated into medical practice.

  11. Molecular analysis of microflora associated with dentoalveolar abscesses.

    PubMed Central

    Dymock, D; Weightman, A J; Scully, C; Wade, W G

    1996-01-01

    The microflora associated with three dentoalveolar abscesses was determined by cultural and molecular methods. 16S rRNA genes were randomly amplified by means of conserved eubacterial primers and cloned. Restriction fragment length polymorphism analysis of the clones and amplified genes encoding 16S rRNA from the cultured bacteria was used to detect putative unculturable bacteria. Clones representative of five predominant groups of uncultured organisms were sequenced. Two were identified as Porphyromonas gingivalis and Prevotella oris, and one was found to be closely related to Peptostreptococcus micros. The remaining two clones did not correspond to known, previously sequenced organisms. One was related to Zoogloea ramigera, a species of aerobic waterborne organisms, while the other was distantly related to the genus Prevotella. This study has demonstrated the possibility of the characterization of microflora associated with human infection by molecular methods without the inherent biases of culture. PMID:8904410

  12. Molecular Detection of Eukaryotes in a Single Human Stool Sample from Senegal

    PubMed Central

    Hamad, Ibrahim; Sokhna, Cheikh; Raoult, Didier; Bittar, Fadi

    2012-01-01

    Background Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective. Methodology/Principal Finding In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%), corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2%) corresponded to 9 different species of plants; 59 sequences (6%) belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5%) were related to human 18S rRNA sequences. Conclusion Our results revealed a complex eukaryotic community in the volunteer’s gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease. PMID:22808282

  13. Epidemiological and molecular characterization of Staphylococcus haemolyticus strains, from a hematology ward, with decreased susceptibility to glycopeptides.

    PubMed

    Ma, Xiao Xue; Sun, Dan Dan; Hu, Jian; Wang, En Hua; Luo, En Jie

    2011-06-01

    In the present study, we report on the reduced susceptibility to teicoplanin among clinical isolates of Staphylococcus haemolyticus in a hematology ward of a teaching hospital. The molecular characterization of 17 S. haemolyticus strains was performed using mec gene complex classification, pulsed-field gel electrophoresis analysis, and minimum inhibitory concentration examination. Pulsotype A strains carrying a class C2 mec gene complex were the most prevalent strains, at 64.7%. In vivo selection of stepwise increase in resistance to vancomycin and teicoplanin was observed in three S. haemolyticus strains serially isolated from a case patient. The results of the present study suggest the regional spread of certain S. haemolyticus clones with diminished susceptibility to glycopeptides, emphasizing the need for continuous monitoring of minimum inhibitory concentration levels of vancomycin and teicoplanin in S. haemolyticus strains, and the importance of infection control practices to prevent its transmission.

  14. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.

    PubMed

    Folmes, Clifford D L; Martinez-Fernandez, Almudena; Perales-Clemente, Ester; Li, Xing; McDonald, Amber; Oglesbee, Devin; Hrstka, Sybil C; Perez-Terzic, Carmen; Terzic, Andre; Nelson, Timothy J

    2013-07-01

    Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA), known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multilineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts, the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA, resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. On comparative differentiation of iPSC clones, improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared with isogenic clones with high heteroplasmy. Thus, mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny, and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases. Copyright © 2013 AlphaMed Press.

  15. [Molecular typing characterization of food-borne methicillin-resistant Staphylococcus aureus in China].

    PubMed

    Bai, Y; Wang, W; Yan, L; Yang, S R; Yan, S F; Dong, Y P; Zhao, B C; Zhao, Y Y; Xu, J; Hu, Y J; Li, F Q

    2018-04-06

    Objective: To analyses the antimicrobial resistance and molecular characterization of 21 MRSA isolates cultured from retail foods from different provinces in China, and evaluate the molecular typing methods. Methods: Twenty-one MRSA isolates were obtained from national foodborne pathogen surveillance network in 2012 (Chinese salad, n= 3; milk, n= 1; cake, n= 2; rice, n= 1; cold noodle, n= 1; spiced beef, n= 1; dumpling, n= 1; packed meal, n= 1; salad, n= 1; raw pork, n= 9). The antimicrobial resistance of 21 strains to 12 antimicrobial agents was tested by broth dilution method. Polymerase chain reaction (PCR) and DNA sequencing were performed to obtain the genetic types of MLST (ST) and spa typing. The clonal complex (CC) was assigned by eBURST soft and the MLVA type (MT) and MLVA complex (MC) were identified via the database of the MLVA website (http://www.mlva.net). Sma I pulsed-field gel electrophoresis ( Sma Ⅰ-PFGE) was also carried out to obtain the PFGE patterns of 21 strains. The genetic diversity and discriminatory power of typing were calculated by the Simpson's index of diversity (diversity index, DI) to find out the best genotyping method for MRSA. Results: All MRSA isolates showed multi-drug resistance(MDR), and were resistant to oxacillin, benzylpenicillin, clindamycin and erythromycin, and 71.4% (15/21), 47.6% (10/21), 42.9% (9/21) and 28.6% (6/21) of the MRSA isolates were resistant to tetracycline, ciprofloxacin, trimethoprim/sulfamethoxazole and gentamicin, respectively. Moreover, one strain was found to be resistant to all three antimicrobials of levofloxacin, moxifloxacin and rifampicin. Great diversity was found in these food-associated MRSA (6 STs, 7 spa types, and 9 MTs). PFGE patterns were more diverse than those of other three molecular typing methods (19 pulse types). The index of diversity (DI) of PFGE, MLVA, spa typing and MLST was 0.99, 0.80, 0.73, and 0.61, respectively. Among the MRSA isolates, CC9-ST9-t899-MT929-MC2236 (PFGE Cluster Ⅴ) was the most prevalent clone, which were all cultured from raw pork (9 isolates). Besides, two MRSA were identified as CC59-ST338-t437-MT621-MC621 (PFGE Cluster Ⅳ). Different clone had their own resistance spectrum profiles. Conclusion: The food-borne MRSA isolates were all MDR in this study. Different clones had their own resistance spectrum profiles. MLVA represented a promising tool for molecular epidemiology tracing of MRSA in foodborne disease events.

  16. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; hide

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  17. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  18. Contiguous deletion of the NDP, MAOA, MAOB, and EFHC2 genes in a patient with Norrie disease, severe psychomotor retardation and myoclonic epilepsy.

    PubMed

    Rodriguez-Revenga, L; Madrigal, I; Alkhalidi, L S; Armengol, L; González, E; Badenas, C; Estivill, X; Milà, M

    2007-05-01

    Norrie disease (ND) is an X-linked disorder, inherited as a recessive trait that, therefore, mostly affects males. The gene responsible for ND, called NDP, maps to the short arm of chromosome X (Xp11.4-p11.3). We report here an atypical case of ND, consisting of a patient harboring a large submicroscopic deletion affecting not only the NDP gene but also the MAOA, MAOB, and EFHC2 genes. Microarray comparative genomic hybridization (CGH) analysis showed that 11 consecutive bacterial artificial chromosome (BAC) clones, mapping around the NDP gene, were deleted. These clones span a region of about 1 Mb on Xp11.3. The deletion was ascertained by fluorescent in situ hybridization (FISH) analysis with different BAC clones located within the region. Clinical features of the proband include bilateral retinal detachment, microcephaly, severe psychomotor retardation without verbal language skills acquired, and epilepsy. The identification and molecular characterization of this case reinforces the idea of a new contiguous gene syndrome that would explain the complex phenotype shared by atypical ND patients.

  19. Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex.

    PubMed

    Laqueyrerie, A; Militzer, P; Romain, F; Eiglmeier, K; Cole, S; Marchal, G

    1995-10-01

    Effective protection against a virulent challenge with Mycobacterium tuberculosis is induced mainly by previous immunization with living attenuated mycobacteria, and it has been hypothesized that secreted proteins serve as major targets in the specific immune response. To identify and purify molecules present in culture medium filtrate which are dominant antigens during effective vaccination, a two-step selection procedure was used to select antigens able to interact with T lymphocytes and/or antibodies induced by immunization with living bacteria and to counterselect antigens interacting with the immune effectors induced by immunization with dead bacteria. A Mycobacterium bovis BCG 45/47-kDa antigen complex, present in BCG culture filtrate, has been previously identified and isolated (F. Romain, A. Laqueyrerie, P. Militzer, P. Pescher, P. Chavarot, M. Lagranderie, G. Auregan, M. Gheorghiu, and G. Marchal, Infect. Immun. 61:742-750, 1993). Since the cognate antibodies recognize the very same antigens present in M. tuberculosis culture medium filtrates, a project was undertaken to clone, express, and sequence the corresponding gene of M. tuberculosis. An M. tuberculosis shuttle cosmid library was transferred in Mycobacterium smegmatis and screened with a competitive enzyme-linked immunosorbent assay to detect the clones expressing the proteins. A clone containing a 40-kb DNA insert was selected, and by means of subcloning in Escherichia coli, a 2-kb fragment that coded for the molecules was identified. An open reading frame in the 2,061-nucleotide sequence codes for a secreted protein with a consensus signal peptide of 39 amino acids and a predicted molecular mass of 28,779 Da. The gene was referred to as apa because of the high percentages of proline (21.7%) and alanine (19%) in the purified protein. Southern hybridization analysis of digested total genomic DNA from M. tuberculosis (reference strains H37Rv and H37Ra) indicated that the apa gene was present as a single copy on the genome. The N-terminal identity or homology of the M. tuberculosis and M. bovis BCG purified molecules and their similar global and deduced amino acid compositions demonstrated the perfect correspondence between the molecular and chemical analyses. The presence of a high percentage of proline (21.7%) was confirmed and explained the apparent higher molecular mass (45/47 kDa) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis resulting from the increased rigidity of molecules due to proline residues.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Molecular evolution of calcification genes in morphologically similar but phylogenetically unrelated scleractinian corals.

    PubMed

    Wirshing, Herman H; Baker, Andrew C

    2014-08-01

    Molecular phylogenies of scleractinian corals often fail to agree with traditional phylogenies derived from morphological characters. These discrepancies are generally attributed to non-homologous or morphologically plastic characters used in taxonomic descriptions. Consequently, morphological convergence of coral skeletons among phylogenetically unrelated groups is considered to be the major evolutionary process confounding molecular and morphological hypotheses. A strategy that may help identify cases of convergence and/or diversification in coral morphology is to compare phylogenies of existing "neutral" genetic markers used to estimate genealogic phylogenetic history with phylogenies generated from non-neutral genes involved in calcification (biomineralization). We tested the hypothesis that differences among calcification gene phylogenies with respect to the "neutral" trees may represent convergent or divergent functional strategies among calcification gene proteins that may correlate to aspects of coral skeletal morphology. Partial sequences of two nuclear genes previously determined to be involved in the calcification process in corals, "Cnidaria-III" membrane-bound/secreted α-carbonic anhydrase (CIII-MBSα-CA) and bone morphogenic protein (BMP) 2/4, were PCR-amplified, cloned and sequenced from 31 scleractinian coral species in 26 genera and 9 families. For comparison, "neutral" gene phylogenies were generated from sequences from two protein-coding "non-calcification" genes, one nuclear (β-tubulin) and one mitochondrial (cytochrome b), from the same individuals. Cloned CIII-MBSα-CA sequences were found to be non-neutral, and phylogenetic analyses revealed CIII-MBSα-CAs to exhibit a complex evolutionary history with clones distributed between at least 2 putative gene copies. However, for several coral taxa only one gene copy was recovered. With CIII-MBSα-CA, several recovered clades grouped taxa that differed from the "non-calcification" loci. In some cases, these taxa shared aspects of their skeletal morphology (i.e., convergence or diversification relative to the "non-calcification" loci), but in other cases they did not. For example, the "non-calcification" loci recovered Atlantic and Pacific mussids as separate evolutionary lineages, whereas with CIII-MBSα-CA, clones of two species of Atlantic mussids (Isophyllia sinuosa and Mycetophyllia sp.) and two species of Pacific mussids (Acanthastrea echinata and Lobophyllia hemprichii) were united in a distinct clade (except for one individual of Mycetophyllia). However, this clade also contained other taxa which were not unambiguously correlated with morphological features. BMP2/4 also contained clones that likely represent different gene copies. However, many of the sequences showed no significant deviation from neutrality, and reconstructed phylogenies were similar to the "non-calcification" tree topologies with a few exceptions. Although individual calcification genes are unlikely to precisely explain the diverse morphological features exhibited by scleractinian corals, this study demonstrates an approach for identifying cases where morphological taxonomy may have been misled by convergent and/or divergent molecular evolutionary processes in corals. Studies such as this may help illuminate our understanding of the likely complex evolution of genes involved in the calcification process, and enhance our knowledge of the natural history and biodiversity within this central ecological group. Published by Elsevier Inc.

  1. Using Microarrays to Facilitate Positional Cloning: Identification of Tomosyn as an Inhibitor of Neurosecretion

    PubMed Central

    Dybbs, Michael; Ngai, John; Kaplan, Joshua M

    2005-01-01

    Forward genetic screens have been used as a powerful strategy to dissect complex biological pathways in many model systems. A significant limitation of this approach has been the time-consuming and costly process of positional cloning and molecular characterization of the mutations isolated in these screens. Here, the authors describe a strategy using microarray hybridizations to facilitate positional cloning. This method relies on the fact that premature stop codons (i.e., nonsense mutations) constitute a frequent class of mutations isolated in screens and that nonsense mutant messenger RNAs are efficiently degraded by the conserved nonsense-mediated decay pathway. They validate this strategy by identifying two previously uncharacterized mutations: (1) tom-1, a mutation found in a forward genetic screen for enhanced acetylcholine secretion in Caenorhabditis elegans, and (2) an apparently spontaneous mutation in the hif-1 transcription factor gene. They further demonstrate the broad applicability of this strategy using other known mutants in C. elegans, Arabidopsis, and mouse. Characterization of tom-1 mutants suggests that TOM-1, the C. elegans ortholog of mammalian tomosyn, functions as an endogenous inhibitor of neurotransmitter secretion. These results also suggest that microarray hybridizations have the potential to significantly reduce the time and effort required for positional cloning. PMID:16103915

  2. Variation in the nrDNA ITS of Pinus subsection Cembroides: implications for molecular systematic studies of pine species complexes.

    PubMed

    Gernandt, D S; Liston, A; Piñero, D

    2001-12-01

    The pinyon pines (Pinus subsection Cembroides), distributed in semiarid regions of the western United States and Mexico, include a mixture of relictual and more recently evolved taxa. To investigate relationships among the pinyons, we screened and partially sequenced 3000-bp clones of the nuclear ribosomal DNA internal transcribed spacer (ITS) region for 16 taxa from subsect. Cembroides and nine representatives from four other subsections of subgenus Strobus. Restriction digests of clones reveal within-individual heterogeneity, suggesting that concerted evolution is operating slowly on the ITS in pine species. Two ITS clones were identified as pseudogenes. Tandem subrepeats in the ITS1 form stem loops comparable to those in other genera of Pinaceae and may be promoting recombination between rDNA repeats, resulting in ITS1 chimeras. Within the pinyon clade, phylogenetic structure is present, but different clones from the same (or different) individuals of a species are polyphyletic, indicating that coalescence of ITS copies within individual genomes predates evolutionary divergence in the group. At the level of subsection and above, the ITS region corresponds well with morphological and cpDNA evidence. Except for P. nelsonii, the pinyons are monophyletic, with both subsect. Cembroides and P. nelsonii forming a clade with the foxtail and bristlecone pines (subsect. Balfourianae) of western North America.

  3. Construction and characterization of HIV type 1 CRF07_BC infectious molecular clone from men who have sex with men.

    PubMed

    Jiang, Yan-Ling; Bai, Wen-Wei; Qu, Fan-Wei; Ma, Hua; Jiang, Run-Sheng; Shen, Bao-Sheng

    2016-03-01

    This study aimed to investigate the biological characterization of HIV type 1 (HIV-1) CRF07_BC infection among men who have sex with men (MSM). From November 2011 to November 2013, a total of 66 blood samples were collected from MSM with acute HIV-1 infection with CRF07_BC subgroup strains. Deletion in the gag p6 region was detected by sequence alignment and comparative analysis. Peripheral blood mononuclear cells (PBMCs) of HNXX1301-1307 samples were separated by density gradient centrifugation. Nested polymerase chain reaction (nPCR) was used to amplify the viral DNA. The near full-length HIV-1 DNA products were ligated to the long terminal repeat (LTR) vector plasmid (07BCLTR) to construct a full-length HIV clone. The molecular clone was transfected into HEK-293T cells, TZM-b1 cells and patients' PBMCs. The pregenome of an infectious molecular clone of HIV-1 (pNL4-3) was amplified, and a subclone with CRF07_BC was developed to construct the full-length chimeric molecular clone pNL4-3/07BCLTR. Detection of p24 antigen and luciferase activity was used to measure the in vitro infectivity of pNL4-3/07BCLTR. Among the 66 MSM patients infected with CRF07_BC strains, deletion mutations of the Gag P6 proteins were found in 7 of 18CRF07_BC strains; deletion mutations of 2-13 amino acids in different regions were discovered in 6 strains; and the remaining 42 strains did not show deletions. Seven strains with amino acids deficiency in the P6 protein accounted for 27% of all strains and 75% of all deletion genotype strains. A total of 186 full-length molecular clones of CRF07_BC were constructed. There were 5, 9, 10 and 11 clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 that resulted in p24-positive supernatant when transfected into HEK-293T cells. Full-length clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 showed slight infection in the transfected TZM-b1 cells, as judged by the fluorescence values of TZM-b1 cells 48h post-transfection. However, we were unable to transfect the patients' PMBCs with the above four clones. The phylogenetic tree of the C2V3 segment of the Env gene showed that a significant gene cluster was formed by all of the chimeric full-length HNXX1306 clones, and the bootstrap value for this cluster was 97.5%. Patients' PBMCs could be infected by 1306N6, 1306N13 and 1306N22 chimeric full-length clones. The CRF07_BC subtype (6889-7407 nucleotide residues of HXB2) is one of the most prevalent epidemic HIV-1 virus strains among the MSM population. The full-length chimeric molecular clone pNL4-3/07BCLTR may significantly improve the in vitro infectivity of the CRF07_BC strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications

    USDA-ARS?s Scientific Manuscript database

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-based clones to expres...

  5. [Research progress on the cloning of Mendel's gene in pea (Pisum sativum L.) and its application in genetics teaching].

    PubMed

    He, Feng-Hua; Zhu, Bi-Yan; Gao, Feng; Li, Shao-Shan; Li, Niang-Hui

    2013-07-01

    One hundred and fifty years ago, Gregor Mendel investigated the segregation of seven traits in pea (Pisum sativum) and established the law of segregation and the law of independent assortment in genetics. After the two laws of genetics were rediscovered in 1900, the seven traits have been extensively investigated in the fields of plant physiology and biochemistry as well as in the cell and molecular levels. Recently, with the development of molecular technology in genetics, four genes for seed shape (R), stem length (Le), cotyledon colour (I), and flower colour (A) have been cloned and sequenced; and another three genes for immature pod colour (Gp), fasciation (Fa) and pod form (V) have been located in the linkage groups, respectively. The identification and cloning of the four Mendel's genes will help deeply understand the basic concept of gene in many respects: like the diversity of gene function, the different origins for gene mutation in molecular level, and the molecular nature of a dominant gene or a recessive gene. In teaching of genetics, the introduction of most recent research advancements of cloning of Mendel's genes to the students and the interpretation of the Mendel's laws in molecular level will help students promote their learning interests in genetics and help students grasp the whole content from classical genetics to molecular genetics and the developmental direction of this subject.

  6. Physical mapping of complex genomes

    DOEpatents

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.

  7. Cloning Expeditions: Risky but Rewarding

    PubMed Central

    2013-01-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478

  8. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China.

    PubMed

    Yuan, Zhi-Lin; Zhang, Chu-Long; Lin, Fu-Cheng; Kubicek, Christian P

    2010-03-01

    Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.

  9. Climbing Mount Efficiency--small steps, not giant leaps towards higher cloning success in farm animals.

    PubMed

    Oback, Björn

    2008-07-01

    Despite more than a decade of research efforts, farm animal cloning by somatic cell nuclear transfer (SCNT) is still frustratingly inefficient. Inefficiency manifests itself at different levels, which are currently not well integrated. At the molecular level, it leads to widespread genetic, epigenetic and transcriptional aberrations in cloned embryos. At the organismal level, these genome-wide abnormalities compromise development of cloned foetuses and offspring. Specific molecular defects need to be causally linked to specific cloned phenotypes, in order to design specific treatments to correct them. Cloning efficiency depends on the ability of the nuclear donor cell to be fully reprogrammed into an embryonic state and the ability of the enucleated recipient cell to carry out the reprogramming reactions. It has been postulated that reprogrammability of the somatic donor cell epigenome is influenced by its differentiation status. However, direct comparisons between cells of divergent differentiation status within several somatic lineages have found no conclusive evidence for this. Choosing somatic stem cells as donors has not improved cloning efficiency, indicating that donor cell type may be less critical for cloning success. Different recipient cells, on the other hand, vary in their reprogramming ability. In bovine, using zygotes instead of oocytes has increased cloning success. Other improvements in livestock cloning efficiency include better coordinating donor cell type with cell cycle stage and aggregating cloned embryos. In the future, it will be important to demonstrate if these small increases at every step are cumulative, adding up to an integrated cloning protocol with greatly improved efficiency.

  10. Molecular Cloning and Analysis of the Tryptophan oxygenase Gene in the Silkworm, Bombyx mori

    PubMed Central

    Yan, Liu; Zhi-Qi, Meng; Bao-Long, Niu; Li-Hua, He; Hong-Biao, Weng; Wei-Feng, Shen

    2008-01-01

    A Bombyx mori L. (Lepidoptera: Bombycidae) gene encoding tryptophan oxygenase has been molecularly cloned and analyzed. The tryptophan oxygenase cDNA had 1374 nucleotides that encoded a 401 amino acid protein with an estimated molecular mass of 46.47 kDa and a PI of 5.88. RT-PCR analysis showed that the B. mori tryptophan oxygenase gene was transcribed in all examined stages. Tryptophan oxygenase proteins are relatively well conserved among different orders of arthropods. PMID:20331401

  11. Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection

    PubMed Central

    Lopker, Michael J.; Del Prete, Gregory Q.; Estes, Jacob D.; Li, Hui; Reid, Carolyn; Newman, Laura; Lipkey, Leslie; Camus, Celine; Easlick, Juliet L.; Wang, Shuyi; Decker, Julie M.; Bar, Katharine J.; Learn, Gerald; Pal, Ranajit; Weiss, Deborah E.; Hahn, Beatrice H.; Lifson, Jeffrey D.; Shaw, George M.

    2016-01-01

    ABSTRACT Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4+ T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel “bar-coded” challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. IMPORTANCE Nonhuman primate research has relied on only a few infectious molecular clones for a myriad of diverse research projects, including pathogenesis, preclinical vaccine evaluations, transmission, and host-versus-pathogen interactions. With new data suggesting a selected phenotype of the virus that causes infection (i.e., the transmitted/founder virus), we sought to generate and characterize infectious molecular clones from two widely used simian immunodeficiency virus lineages (SIVmac251 and SIVsmE660). Although the exact requirements necessary to be a T/F virus are not yet fully understood, we generated cloned viruses with all the necessary characteristic of a successful T/F virus. The cloned viruses revealed typical acute and set point viral-load dynamics with pathological immune activation, lymphoid tissue damage progressing to significant immunodeficiency, and AIDS-defining clinical endpoints in some animals. These T/F clones represent a new molecular platform for studies requiring authentic T/F viruses. PMID:27412591

  12. Characterization of a Highly Pathogenic Molecular Clone of Feline Immunodeficiency Virus Clade C

    PubMed Central

    de Rozières, Sohela; Mathiason, Candace K.; Rolston, Matthew R.; Chatterji, Udayan; Hoover, Edward A.; Elder, John H.

    2004-01-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4+-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV. PMID:15308694

  13. Characterization of a highly pathogenic molecular clone of feline immunodeficiency virus clade C.

    PubMed

    de Rozières, Sohela; Mathiason, Candace K; Rolston, Matthew R; Chatterji, Udayan; Hoover, Edward A; Elder, John H

    2004-09-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.

  14. A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning.

    PubMed Central

    Zeiner, M; Gehring, U

    1995-01-01

    In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues. Images Fig. 2 Fig. 3 Fig. 4 PMID:8524784

  15. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis.

    PubMed

    Sloma, A; Rufo, G A; Theriault, K A; Dwyer, M; Wilson, S W; Pero, J

    1991-11-01

    We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation.

  16. Microbiological investigation of an industrial ultra pure supply water plant using cultivation-based and cultivation-independent methods.

    PubMed

    Bohus, Veronika; Tóth, Erika M; Székely, Anna J; Makk, Judit; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Márialigeti, Károly

    2010-12-01

    Ultra pure waters (UPW), characterized by extremely low salt and nutrient concentrations, can suffer from microbial contamination which causes biofouling and biocorrosion, possibly leading to reduced lifetime and increased operational costs. Samples were taken from an ultra pure supply water producing plant of a power plant. Scanning electron microscopic examination was carried out on the biofilms formed in the system. Biofilm, ion exchange resin, and water samples were characterized by culture-based methods and molecular fingerprinting (terminal restriction fragment length polymorphism [T-RFLP] analysis and molecular cloning). Identification of bacteria was based on 16S rDNA sequence comparison. A complex microbial community structure was revealed. Nearly 46% of the clones were related to as yet uncultured bacteria. The community profiles of the water samples were the most diverse and most of bacteria were recruited from bacterial communities of tube surface and ion exchange resin biofilms. Microbiota of different layers of the mixed bed ion exchange resin showed the highest similarity. Most of the identified taxa (dominated by β-Proteobacteria) could take part in microbially influenced corrosion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Mapping Flagellar Genes in Chlamydomonas Using Restriction Fragment Length Polymorphisms

    PubMed Central

    Ranum, LPW.; Thompson, M. D.; Schloss, J. A.; Lefebvre, P. A.; Silflow, C. D.

    1988-01-01

    To correlate cloned nuclear DNA sequences with previously characterized mutations in Chlamydomonas and, to gain insight into the organization of its nuclear genome, we have begun to map molecular markers using restriction fragment length polymorphisms (RFLPs). A Chlamydomonas reinhardtii strain (CC-29) containing phenotypic markers on nine of the 19 linkage groups was crossed to the interfertile species Chlamydomonas smithii. DNA from each member of 22 randomly selected tetrads was analyzed for the segregation of RFLPs associated with cloned genes detected by hybridization with radioactive DNA probes. The current set of markers allows the detection of linkage to new molecular markers over approximately 54% of the existing genetic map. This study focused on mapping cloned flagellar genes and genes whose transcripts accumulate after deflagellation. Twelve different molecular clones have been assigned to seven linkage groups. The α-1 tubulin gene maps to linkage group III and is linked to the genomic sequence homologous to pcf6-100, a cDNA clone whose corresponding transcript accumulates after deflagellation. The α-2 tubulin gene maps to linkage group IV. The two β-tubulin genes are linked, with the β-1 gene being approximately 12 cM more distal from the centromere than the β-2 gene. A clone corresponding to a 73-kD dynein protein maps to the opposite arm of the same linkage group. The gene corresponding to the cDNA clone pcf6-187, whose mRNA accumulates after deflagellation, maps very close to the tightly linked pf-26 and pf-1 mutations on linkage group V. PMID:2906025

  18. CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE

    PubMed Central

    Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.

    2006-01-01

    SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499

  19. Depletion of Unwanted Nucleic Acid Templates by Selective Cleavage: LNAzymes, Catalytically Active Oligonucleotides Containing Locked Nucleic Acids, Open a New Window for Detecting Rare Microbial Community Members

    PubMed Central

    Dolinšek, Jan; Dorninger, Christiane; Lagkouvardos, Ilias; Wagner, Michael

    2013-01-01

    Many studies of molecular microbial ecology rely on the characterization of microbial communities by PCR amplification, cloning, sequencing, and phylogenetic analysis of genes encoding rRNAs or functional marker enzymes. However, if the established clone libraries are dominated by one or a few sequence types, the cloned diversity is difficult to analyze by random clone sequencing. Here we present a novel approach to deplete unwanted sequence types from complex nucleic acid mixtures prior to cloning and downstream analyses. It employs catalytically active oligonucleotides containing locked nucleic acids (LNAzymes) for the specific cleavage of selected RNA targets. When combined with in vitro transcription and reverse transcriptase PCR, this LNAzyme-based technique can be used with DNA or RNA extracts from microbial communities. The simultaneous application of more than one specific LNAzyme allows the concurrent depletion of different sequence types from the same nucleic acid preparation. This new method was evaluated with defined mixtures of cloned 16S rRNA genes and then used to identify accompanying bacteria in an enrichment culture dominated by the nitrite oxidizer “Candidatus Nitrospira defluvii.” In silico analysis revealed that the majority of publicly deposited rRNA-targeted oligonucleotide probes may be used as specific LNAzymes with no or only minor sequence modifications. This efficient and cost-effective approach will greatly facilitate tasks such as the identification of microbial symbionts in nucleic acid preparations dominated by plastid or mitochondrial rRNA genes from eukaryotic hosts, the detection of contaminants in microbial cultures, and the analysis of rare organisms in microbial communities of highly uneven composition. PMID:23263968

  20. Optimal quantum cloning based on the maximin principle by using a priori information

    NASA Astrophysics Data System (ADS)

    Kang, Peng; Dai, Hong-Yi; Wei, Jia-Hua; Zhang, Ming

    2016-10-01

    We propose an optimal 1 →2 quantum cloning method based on the maximin principle by making full use of a priori information of amplitude and phase about the general cloned qubit input set, which is a simply connected region enclosed by a "longitude-latitude grid" on the Bloch sphere. Theoretically, the fidelity of the optimal quantum cloning machine derived from this method is the largest in terms of the maximin principle compared with that of any other machine. The problem solving is an optimization process that involves six unknown complex variables, six vectors in an uncertain-dimensional complex vector space, and four equality constraints. Moreover, by restricting the structure of the quantum cloning machine, the optimization problem is simplified as a three-real-parameter suboptimization problem with only one equality constraint. We obtain the explicit formula for a suboptimal quantum cloning machine. Additionally, the fidelity of our suboptimal quantum cloning machine is higher than or at least equal to that of universal quantum cloning machines and phase-covariant quantum cloning machines. It is also underlined that the suboptimal cloning machine outperforms the "belt quantum cloning machine" for some cases.

  1. Limited number of immunoglobulin VH regions expressed in the mutant rabbit "Alicia".

    PubMed

    DiPietro, L A; Short, J A; Zhai, S K; Kelus, A S; Meier, D; Knight, K L

    1990-06-01

    A unique feature of rabbit Ig is the presence of VH region allotypic specificities. In normal rabbits, more than 80% of circulating immunoglobulin molecules bear the VHa allotypic specificities, al, a2 or a3; the remaining 10% to 20% of immunoglobulin molecules lack VHa allotypic specificities and are designated VHa-. A mutant rabbit designated Alicia, in contrast, has predominantly serum immunoglobulin molecules that lack the VHa allotypic specificities (Kelus and Weiss, Proc. Natl. Acad. Sci. USA 1986. 83: 4883). To study the nature and molecular complexity of VHa- molecules, we cloned and determined the nucleotide sequence of seven cDNA prepared from splenic RNA of an Alicia rabbit. Six of the clones appeared to encode VHa- molecules; the framework regions encoded by these clones were remarkably similar to each other, each having an unusual insertion of four amino acids at position 10. This insertion of four amino acids has been seen in only 2 of 54 sequenced rabbit VH genes. The similarity of the sequences of the six VHa- clones to each other and their dissimilarity to most other VH genes leads us to suggest that the VHa- molecules in Alicia rabbits are derived predominantly from one or a small number of very similar VH genes. Such preferential utilization of a small number of VH genes may explain the allelic inheritance of VH allotypes.

  2. Creating libraries for commercial yeast strains through miniaturization of cloning and transformations using the BioRAPTR FRD Microfluidic workstation

    USDA-ARS?s Scientific Manuscript database

    The ability to miniaturize molecular reactions can lead to significant cost savings when creating libraries of thousands of clones. For this application Beckman Coulter partnered with the USDA to provide a low-volume automated solution for library cloning for use in the development of yeast strains...

  3. Characterization of three types of human alpha s1-casein mRNA transcripts.

    PubMed Central

    Johnsen, L B; Rasmussen, L K; Petersen, T E; Berglund, L

    1995-01-01

    Here we report the molecular cloning and sequencing of three types of human alpha s1-casein transcripts and present evidence indicating that exon skipping is responsible for deleted mRNA transcripts. The largest transcript comprised 981 bp encoding a signal peptide of 15 amino acids followed by the mature alpha s1-casein sequence of 170 amino acids. Human alpha s1-casein has been reported to exist naturally as a multimer in complex with kappa-casein in mature human milk, thereby being unique among alpha s1-caseins [Rasmussen, Due and Petersen (1995) Comp. Biochem. Physiol., in the press]. The present demonstration of three cysteines in the mature protein provides a molecular explanation of the interactions in this complex. Tissue-specific expression of human alpha s1-casein was indicated by Northern-blot analysis. In addition, two cryptic exons were localized in the bovine alpha s1-casein gene. Images Figure 3 PMID:7619062

  4. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.

  5. Molecular Evidence for Zoonotic Transmission of an Emergent, Highly Pathogenic Campylobacter jejuni Clone in the United States

    PubMed Central

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J.; Kwan, Patrick; Plummer, Paul J.; Han, Jing; Yaeger, Michael J.

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  6. Animal cloning: problems and prospects.

    PubMed

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer acceptance. Future improvements in animal cloning will largely arise from a greater understanding of the molecular mechanisms of reprogramming.

  7. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone.

    PubMed

    Weger-Lucarelli, James; Duggal, Nisha K; Bullard-Feibelman, Kristen; Veselinovic, Milena; Romo, Hannah; Nguyen, Chilinh; Rückert, Claudia; Brault, Aaron C; Bowen, Richard A; Stenglein, Mark; Geiss, Brian J; Ebel, Gregory D

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease. Copyright © 2016 American Society for Microbiology.

  8. Physical mapping of complex genomes

    DOEpatents

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  9. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    PubMed Central

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  10. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    PubMed

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  11. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector /lambda/pSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB/sup +/ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA/sup +/ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmidsmore » consistently transduced the markers thrB/sup +/ and lysA/sup +/. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes.« less

  12. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  13. pYEMF, a pUC18-derived XcmI T-vector for efficient cloning of PCR products.

    PubMed

    Gu, Jingsong; Ye, Chunjiang

    2011-03-01

    A 1330-bp DNA sequence with two XcmI cassettes was inserted into pUC18 to construct an efficient XcmI T-vector parent plasmid, pYEMF. The large size of the inserted DNA fragment improved T-vector cleavage efficiency, and guaranteed good separation of the molecular components after restriction digestion. The pYEMF-T-vector generated from parent plasmid pYEMF permits blue/white colony screening; cloning efficiency analysis showed that most white colonies (>75%) were putative transformants which carried the cloning product. The sequence analysis and design approach presented here will facilitate applications in the fields of molecular biology and genetic engineering.

  14. Evidence for a Posttranscriptional Role of a TFIIICα-like Protein in Chironomus tentans

    PubMed Central

    Sabri, Nafiseh; Farrants, Ann-Kristin Östlund; Hellman, Ulf; Visa, Neus

    2002-01-01

    We have cloned and sequenced a cDNA that encodes for a nuclear protein of 238 kDa in the dipteran Chironomus tentans. This protein, that we call p2D10, is structurally similar to the α subunit of the general transcription factor TFIIIC. Using immunoelectron microscopy we have shown that a fraction of p2D10 is located at sites of transcription, which is consistent with a possible role of this protein in transcription initiation. We have also found that a large fraction of p2D10 is located in the nucleoplasm and in the nuclear pore complexes. Using gel filtration chromatography and coimmunoprecipitation methods, we have identified and characterized two p2D10-containing complexes that differ in molecular mass and composition. The heavy p2D10-containing complex contains at least one other component of the TFIIIC complex, TFIIIC-ε. Based on its molecular mass and composition, the heavy p2D10-containing complex may be the Pol III holoenzyme. The light p2D10-containing complex contains RNA together with at least two proteins that are thought to be involved in mRNA trafficking, RAE1 and hrp65. The observations reported here suggest that this new TFIIIC-α-like protein is involved in posttranscriptional steps of premRNA metabolism in Chironomus tentans. PMID:12006668

  15. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    PubMed Central

    Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn

    2009-01-01

    Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672

  16. Optimal Cloning of PCR Fragments by Homologous Recombination in Escherichia coli

    PubMed Central

    Jacobus, Ana Paula; Gross, Jeferson

    2015-01-01

    PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories. PMID:25774528

  17. Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges.

    PubMed

    Sekiguchi, Y; Kamagata, Y; Ohashi, A; Harada, H

    2002-01-01

    The microbial community structure of mesophilic (35 degrees C) and thermophilic (55 degrees C) methanogenic granular sludges was surveyed by using both cultivation-independent molecular approach and conventional cultivation technique in order to address the fundamental questions on the microbial populations, i.e. who are present, where they are located, and what they are doing there. To elucidate the microbial constituents within both sludges, we first constructed 16S ribosomal DNA clone libraries, and partial sequencing of the clones was conducted for phylogenetic analysis. In this experiment, we found a number of unidentifiable clones within the domain Bacteria as well as clones that were closely related with 16S rDNAs of cultured microbes. The unidentifiable clones accounted for approximately 60-70% of the total clones in both mesophilic and thermophilic libraries. 16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was subsequently employed to examine where the uncultured populations were located within sludge granules. Spatial organization of uncultured microbes was visualized in thin-sections of both types of granules using fluorescent oligonucleotide probes, which were designed based on the clone sequences of certain novel clusters. This resulted in the detection of two types of uncultured cells in specific locations inside the granules. Finally, the goal-directed conventional cultivation technique was employed to recover such uncultured anaerobes and uncover their physiology and functions. In this approach, a total of five new species of thermophilic microorganisms were isolated, including several types of syntrophs and a novel sugar-fermenting bacterium. In the previous molecular approaches, all of these isolates were suggested to be significant populations within thermophilic granular sludge, hence obtaining these isolates in pure culture decreased the fraction of unknown clones in the previous thermophilic clone library from 70% to 40%. In conclusion, these approaches successfully revealed biodiversity and spatial organization of microbes of interest in sludge granules, and enlarged the fundamental knowledge of microbial constituents functioning as significant populations in the UASB processes.

  18. An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2.

    PubMed

    Han, Yonghua; Zhang, Zhonghua; Huang, Sanwen; Jin, Weiwei

    2011-01-27

    Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.). In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed. Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.

  19. Simplified methods for the construction of RNA and DNA virus infectious clones.

    PubMed

    Nagata, Tatsuya; Inoue-Nagata, Alice Kazuko

    2015-01-01

    Infectious virus clones are one of the most powerful tools in plant pathology, molecular biology, and biotechnology. The construction of infectious clones of RNA and DNA viruses, however, usually requires laborious cloning and subcloning steps. In addition, instability of the RNA virus genome is frequently reported after its introduction into the vector and transference to Escherichia coli. These difficulties hamper the cloning procedures, making it tedious and cumbersome. This chapter describes two protocols for a simple construction of infectious viruses, an RNA virus, the tobamovirus Pepper mild mottle virus, and a DNA virus, a bipartite begomovirus. For this purpose, the strategy of overlap-extension PCR was used for the construction of infectious tobamovirus clone and of rolling circle amplification (RCA) for the construction of a dimeric form of the begomovirus clone.

  20. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis.

    PubMed Central

    Sloma, A; Rufo, G A; Theriault, K A; Dwyer, M; Wilson, S W; Pero, J

    1991-01-01

    We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation. Images FIG. 1 PMID:1938892

  1. Development of RAPD-SCAR markers for different Ganoderma species authentication by improved RAPD amplification and molecular cloning.

    PubMed

    Fu, J J; Mei, Z Q; Tania, M; Yang, L Q; Cheng, J L; Khan, M A

    2015-05-25

    The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.

  2. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    PubMed

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  3. Molecular Modeling of Estrogen Receptor alpha Mutated Breast Cancer to Guide New Therapeutic Strategies

    DTIC Science & Technology

    2017-10-01

    cancer cell lines that contain heterozygous ER LBD mutations and their wildtype controls. We first started this project using the standard CRISPR /Cas9...5’ HOM 3’ HOM Neomycin P Flag STOP CRISPR -mediated homologous recombination *mutant or WT ER Single cell cloning Screening MCF-7 D538G clones 6...Zannel Blanchard Grad. student ZBLANCHARD 12 Responsible for the molecular biology, CRISPR /Cas9 work. None Spencer Arnesen Grad. student

  4. Molecular markers shared by diverse apomictic Pennisetum species.

    PubMed

    Lubbers, E L; Arthur, L; Hanna, W W; Ozias-Akins, P

    1994-11-01

    Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).

  5. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    PubMed

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  6. Functional metagenomics to decipher food-microbe-host crosstalk.

    PubMed

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  7. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  8. RNAseq Reveals Complex Response of Campylobacter jejuni to Ovine Bile and In vivo Gallbladder Environment

    PubMed Central

    Kreuder, Amanda J.; Schleining, Jennifer A.; Yaeger, Michael; Zhang, Qijing; Plummer, Paul J.

    2017-01-01

    Colonization of the gallbladder by enteric pathogens such as Salmonella typhi, Listeria monocytogenes, and Campylobacter jejuni is thought to play a key role in transmission and persistence of these important zoonotic agents; however, little is known about the molecular mechanisms that allow for bacterial survival within this harsh environment. Recently, a highly virulent C. jejuni sheep abortion (SA) clone represented by the clinical isolate IA3902 has emerged as the dominant cause for sheep abortion in the United States. Previous studies have indicated that the C. jejuni clone SA can frequently be isolated from the gallbladders of otherwise healthy sheep, suggesting that the gallbladder may serve as an important reservoir for infection. To begin to understand the molecular mechanisms associated with survival in the host gallbladder, C. jejuni IA3902 was exposed for up to 24 h to both the natural ovine host in vivo gallbladder environment, as well as ovine bile in vitro. Following exposure, total RNA was isolated from the bile and high throughput deep sequencing of strand specific rRNA-depleted total RNA was used to characterize the transcriptome of IA3902 under these conditions. Our results demonstrated for the first time the complete transcriptome of C. jejuni IA3902 during exposure to an important host environment, the sheep gallbladder. Exposure to the host environment as compared to in vitro bile alone provided a more robust picture of the complexity of gene regulation required for survival in the host gallbladder. A subset of genes including a large number of protein coding genes as well as seven previously identified non-coding RNAs were confirmed to be differentially expressed within our data, suggesting that they may play a key role in adaptation upon exposure to these conditions. This research provides valuable insights into the molecular mechanisms that may be utilized by C. jejuni IA3902 to colonize and survive within the inhospitable gallbladder environment. PMID:28611744

  9. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics.

    PubMed

    Beres, Stephen B; Carroll, Ronan K; Shea, Patrick R; Sitkiewicz, Izabela; Martinez-Gutierrez, Juan Carlos; Low, Donald E; McGeer, Allison; Willey, Barbara M; Green, Karen; Tyrrell, Gregory J; Goldman, Thomas D; Feldgarden, Michael; Birren, Bruce W; Fofanov, Yuriy; Boos, John; Wheaton, William D; Honisch, Christiane; Musser, James M

    2010-03-02

    Understanding the fine-structure molecular architecture of bacterial epidemics has been a long-sought goal of infectious disease research. We used short-read-length DNA sequencing coupled with mass spectroscopy analysis of SNPs to study the molecular pathogenomics of three successive epidemics of invasive infections involving 344 serotype M3 group A Streptococcus in Ontario, Canada. Sequencing the genome of 95 strains from the three epidemics, coupled with analysis of 280 biallelic SNPs in all 344 strains, revealed an unexpectedly complex population structure composed of a dynamic mixture of distinct clonally related complexes. We discovered that each epidemic is dominated by micro- and macrobursts of multiple emergent clones, some with distinct strain genotype-patient phenotype relationships. On average, strains were differentiated from one another by only 49 SNPs and 11 insertion-deletion events (indels) in the core genome. Ten percent of SNPs are strain specific; that is, each strain has a unique genome sequence. We identified nonrandom temporal-spatial patterns of strain distribution within and between the epidemic peaks. The extensive full-genome data permitted us to identify genes with significantly increased rates of nonsynonymous (amino acid-altering) nucleotide polymorphisms, thereby providing clues about selective forces operative in the host. Comparative expression microarray analysis revealed that closely related strains differentiated by seemingly modest genetic changes can have significantly divergent transcriptomes. We conclude that enhanced understanding of bacterial epidemics requires a deep-sequencing, geographically centric, comparative pathogenomics strategy.

  10. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    PubMed

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Reprogramming somatic cell differentiation and the Hayflick Limit: contrasting two modern molecular bioengineering aims and their impact on the future of mankind.

    PubMed

    Sills, E S; Takeuchi, T; Rosenwaks, Z; Palermo, G D

    2001-08-01

    The molecular biology of human cloning and aging research depend on the closely related laboratory techniques supported by a thorough understanding of cell-signaling processes. Unfortunately, the link between these two research fields has received only marginal attention in the lay press. Cloning is possible when somatic cell differentiation is successfully reprogrammed, and clinical control of cellular senescence depends on a proper reconfiguration of the predetermined number of divisions permitted during the cell life-cycle (the so-called "Hayflick Limit"). In this paper, we discuss these two concepts and compare the impact likely to be associated with bioengineering studies that facilitate both human cloning and longevity therapy.

  12. Dermatoxin and phylloxin from the waxy monkey frog, Phyllomedusa sauvagei: cloning of precursor cDNAs and structural characterization from lyophilized skin secretion.

    PubMed

    Chen, Tianbao; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-07-15

    Amphibian skin is a morphologically, biochemically and physiologically complex organ that performs the wide range of functions necessary for amphibian survival. Here we describe the primary structures of representatives of two novel classes of amphibian skin antimicrobials, dermatoxin and phylloxin, from the skin secretion of Phyllomedusa sauvagei, deduced from their respective precursor encoding cDNAs cloned from a lyophilized skin secretion library. A degenerate primer, designed to a highly conserved domain in the 5'-untranslated region of analogous peptide precursor cDNAs from Phyllomedusa bicolor, was employed in a 3'-RACE reaction. Peptides with molecular masses coincident with precursor-deduced mature toxin peptides were identified in LC/MS fractions of skin secretion and primary structures were confirmed by MS/MS fragmentation. This integrated experimental approach can thus rapidly expedite the primary structural characterization of amphibian skin peptides in a manner that circumvents specimen sacrifice whilst preserving robustness of scientific data.

  13. High-Resolution Genotyping of Streptococcus pyogenes Serotype M1 Isolates by Fluorescent Amplified-Fragment Length Polymorphism Analysis

    PubMed Central

    Desai, Meeta; Efstratiou, Androulla; George, Robert; Stanley, John

    1999-01-01

    We have used fluorescent amplified-fragment length polymorphism (FAFLP) analysis to subtype clinical isolates of Streptococcus pyogenes serotype M1. Established typing methods define most M1 isolates as members of a clone that has a worldwide distribution and that is strongly associated with invasive diseases. FAFLP analysis simultaneously sampled 90 to 120 loci throughout the M1 genome. Its discriminatory power, precision, and reproducibility were compared with those of other molecular typing methods. Irrespective of disease symptomatology or geographic origin, the majority of the clinical M1 isolates shared a single ribotype, pulsed-field gel electrophoresis macrorestriction profile, and emm1 gene sequence. Nonetheless, among these isolates, FAFLP analysis could differentiate 17 distinct profiles, including seven multi-isolate groups. The FAFLP profiles of M1 isolates reproducibly exhibited between 1 and more than 20 amplified fragment differences. The high discriminatory power of genotyping by FAFLP analysis revealed genetic microheterogeneity and differentiated otherwise “identical” M1 isolates as members of a clone complex. PMID:10325352

  14. Identification of molecular performance from oil palm clones based on SSR markers

    NASA Astrophysics Data System (ADS)

    Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.

    2018-03-01

    In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.

  15. Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli.

    PubMed

    Campanacci, Valérie; Veesler, David; Lichière, Julie; Blangy, Stéphanie; Sciara, Giuliano; Moineau, Sylvain; van Sinderen, Douwe; Bron, Patrick; Cambillau, Christian

    2010-10-01

    We report here the characterization of several large structural protein complexes forming the baseplates (or part of them) of Siphoviridae phages infecting Lactococcus lactis: TP901-1, Tuc2009 and p2. We revisited a "block cloning" expression strategy and extended this approach to genomic fragments encoding proteins whose interacting partners have not yet been clearly identified. Biophysical characterization of some of these complexes using circular dichroism and size exclusion chromatography, coupled with on-line light scattering and refractometry, demonstrated that the over-produced recombinant proteins interact with each other to form large (up to 1.9MDa) and stable baseplate assemblies. Some of these complexes were characterized by electron microscopy confirming their structural homogeneity as well as providing a picture of their overall molecular shapes and symmetry. Finally, using these results, we were able to highlight similarities and differences with the well characterized much larger baseplate of the myophage T4.

  16. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more radioresistant to all radiations used when compared to the parental cell line HBEC3KT. Furthermore, within days of their exposure to low and high LET radiations they exhibit enhanced cellular transformation over the parental cells. Moreover, HZE radiations are many fold more effective at initiating cellular transformation. Gene expression analysis identified several pathways that support oncogenic growth as overrepresented in the progressed cells. With continual culture some clones undergo epithelial to mesenchymal transition, change morphology and express markers associated with EMT. And, at least one clone is oncogenic forming highly aggressive tumors in an immune compromised mouse strain. It is important to note that HBEC3KTR53 cells will not form tumors in mice, however, this irradiated clone has moved through the multi-step process of carcinogenesis. We are now examining the molecular alterations that led to oncogenesis in this clone.

  17. International Symposium on Positive Strand RNA Viruses (2nd) Held in Vienna, Austria on June 26-30, 1989. Abstracts

    DTIC Science & Technology

    1989-07-01

    DEAE dextran-treated chicken embryo Iosdr specific probe hybridised in -olont bluis to a fiibroblasts (CEF). VEE antigens were demonstrated in 1,1...P 13 P 14 MOLECULAR CLONING ANDOEXPRESSION OF ARNA-DEPENDENT MOLECULAR CLONING OF DEFECTIVE-LIKE RNA OF TWO RNA POLYMERASE OF PLUM POX VIRUS IN...Mokhosi PpO)TEINS. RNA STIMULATED ATyase ACffVITY OF PLUM Dept of Microbiologo, RihodvoJs sv POX POTYVIROS C1 PROTEIN. GRAHiAMSTOWN, South Af~ir . Sonia

  18. A molecular model for illegitimate recombination in Bacillus subtilis.

    PubMed

    Temeyer, K B; Hopkins, K M; Chapman, L F

    1991-01-01

    The recombinant DNA junctions at which pUB110 and Bacillus subtilis chromosomal DNA were joined to form the plasmid pKBT1 were cloned and sequenced. From the sequencing data we conclude that the pUB110 sequence is intact in the pair of cloned pKBT1 fragments and pTL12 sequences are not present. A molecular model for the formation of pKBT1 based on structural motifs characteristic of the joint sites is presented.

  19. Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum.

    PubMed

    Geffroy, V; Sicard, D; de Oliveira, J C; Sévignac, M; Cohen, S; Gepts, P; Neema, C; Langin, T; Dron, M

    1999-09-01

    The recent cloning of plant resistance (R) genes and the sequencing of resistance gene clusters have shed light on the molecular evolution of R genes. However, up to now, no attempt has been made to correlate this molecular evolution with the host-pathogen coevolution process at the population level. Cross-inoculations were carried out between 26 strains of the fungal pathogen Colletotrichum lindemuthianum and 48 Phaseolus vulgaris plants collected in the three centers of diversity of the host species. A high level of diversity for resistance against the pathogen was revealed. Most of the resistance specificities were overcome in sympatric situations, indicating an adaptation of the pathogen to the local host. In contrast, plants were generally resistant to allopatric strains, suggesting that R genes that were efficient against exotic strains but had been overcome locally were maintained in the plant genome. These results indicated that coevolution processes between the two protagonists led to a differentiation for resistance in the three centers of diversity of the host. To improve our understanding of the molecular evolution of these different specificities, a recombinant inbred (RI) population derived from two representative genotypes of the Andean (JaloEEP558) and Mesoamerican (BAT93) gene pools was used to map anthracnose specificities. A gene cluster comprising both Andean (Co-y; Co-z) and Mesoamerican (Co-9) host resistance specificities was identified, suggesting that this locus existed prior to the separation of the two major gene pools of P. vulgaris. Molecular analysis revealed a high level of complexity at this locus. It harbors 11 restriction fragment length polymorphisms when R gene analog (RGA) clones are used. The relationship between the coevolution process and diversification of resistance specificities at resistance gene clusters is discussed.

  20. Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos)

    PubMed Central

    2012-01-01

    Background Methanogens that populate the gastrointestinal tract of livestock ruminants contribute significantly to methane emissions from the agriculture industry. There is a great need to analyze archaeal microbiomes from a broad range of host species in order to establish causal relationships between the structure of methanogen communities and their potential for methane emission. In this report, we present an investigation of methanogenic archaeal populations in the foregut of alpacas. Results We constructed individual 16S rRNA gene clone libraries from five sampled animals and recovered a total of 947 sequences which were assigned to 51 species-level OTUs. Individuals were found to each have between 21 and 27 OTUs, of which two to six OTUs were unique. As reported in other host species, Methanobrevibacter was the dominant genus in the alpaca, representing 88.3% of clones. However, the alpaca archaeal microbiome was different from other reported host species, as clones showing species-level identity to Methanobrevibacter millerae were the most abundant. Conclusion From our analysis, we propose a model to describe the population structure of Methanobrevibacter-related methanogens in the alpaca and in previously reported host species, which may contribute in unraveling the complexity of symbiotic archaeal communities in herbivores. PMID:22221383

  1. Telomere length regulation during cloning, embryogenesis and ageing.

    PubMed

    Schaetzlein, S; Rudolph, K L

    2005-01-01

    Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes with an essential role in chromosome capping. Owing to the end-replication problem of DNA polymerase, telomeres shorten during each cell division. When telomeres become critically short, they loose their capping function, which in turn induces a DNA damage-like response. This mechanism inhibits cell proliferation at the senescence stage and there is evidence that it limits the regenerative capacity of tissues and organs during chronic diseases and ageing. The holoenzyme telomerase synthesises telomeric DNA de novo, but, in humans, it is active only during embryogenesis, in immature germ cells and in a subset of stem/progenitor cells during postnatal life. Telomere length can be maintained or increased by telomerase, a process that appears to be regulated by a variety of telomere-binding proteins that control telomerase recruitment and activity at the telomeres. During embryogenesis, telomerase is strongly activated at the morula/blastocyst transition. At this transition, telomeres are significantly elongated in murine and bovine embryos. Early embryonic telomere elongation is telomerase dependent and leads to a rejuvenation of telomeres in cloned bovine embryos. Understanding of the molecular mechanisms underlying this early embryonic telomere elongation programme is of great interest for medical research in the fields of regeneration, cell therapies and therapeutic cloning.

  2. Distinct T cell interactions with HLA class II tetramers characterize a spectrum of TCR affinities in the human antigen-specific T cell response.

    PubMed

    Reichstetter, S; Ettinger, R A; Liu, A W; Gebe, J A; Nepom, G T; Kwok, W W

    2000-12-15

    The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.

  3. Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions.

    PubMed

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2014-12-01

    We evaluated the genetic stabilization of artificial intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae × S. kudriavzevii) hybrids under wine fermentative conditions. Large-scale transitions in genome size and genome reorganizations were observed during this process. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns recovered among the derived clones was observed for intraspecific hybrids, particularly for those obtained by rare-mating. Molecular marker analyses revealed that unstable clones could change during the industrial process to obtain active dry yeast. When no changes in molecular markers and ploidy were observed after this process, no changes in genetic composition were confirmed by comparative genome hybridization, considering the clone as a stable hybrid. According to our results, under these conditions, fermentation steps 3 and 5 (30-50 generations) would suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. Polymorphism of Paramecium pentaurelia (Ciliophora, Oligohymenophorea) strains revealed by rDNA and mtDNA sequences.

    PubMed

    Przyboś, Ewa; Tarcz, Sebastian; Greczek-Stachura, Magdalena; Surmacz, Marta

    2011-05-01

    Paramecium pentaurelia is one of 15 known sibling species of the Paramecium aurelia complex. It is recognized as a species showing no intra-specific differentiation on the basis of molecular fingerprint analyses, whereas the majority of other species are polymorphic. This study aimed at assessing genetic polymorphism within P. pentaurelia including new strains recently found in Poland (originating from two water bodies, different years, seasons, and clones of one strain) as well as strains collected from distant habitats (USA, Europe, Asia), and strains representing other species of the complex. We compared two DNA fragments: partial sequences (349 bp) of the LSU rDNA and partial sequences (618 bp) of cytochrome B gene. A correlation between the geographical origin of the strains and the genetic characteristics of their genotypes was not observed. Different genotypes were found in Kraków in two types of water bodies (Opatkowice-natural pond; Jordan's Park-artificial pond). Haplotype diversity within a single water body was not recorded. Likewise, seasonal haplotype differences between the strains within the artificial water body, as well as differences between clones originating from one strain, were not detected. The clustering of some strains belonging to different species was observed in the phylogenies. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. From Cloning Neural Development Genes to Functional Studies in Mice, 30 Years of Advancements.

    PubMed

    Joyner, Alexandra L

    2016-01-01

    The invention of new mouse molecular genetics techniques, initiated in the 1980s, has repeatedly expanded our ability to tackle exciting developmental biology problems. The brain is the most complex organ, and as such the more sophisticated the molecular genetics technique, the more impact they have on uncovering new insights into how our brain functions. I provide a general time line for the introduction of new techniques over the past 30 years and give examples of new discoveries in the neural development field that emanated from them. I include a look to what the future holds and argue that we are at the dawn of a very exciting age for young scientists interested in studying how the nervous system is constructed and functions with such precision. © 2016 Elsevier Inc. All rights reserved.

  6. Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli.

    PubMed

    Robeson, J P; Barletta, R G; Curtiss, R

    1983-01-01

    Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.

  7. A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    PubMed Central

    Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284

  8. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    PubMed

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  9. [A study of urine concentrating mechanism--a molecular biological approach].

    PubMed

    Marumo, F

    1994-07-01

    Human urine can be concentrated up to four times higher than that of the plasma. Urine concentrating mechanism has attracted for a long time. However, studies in the field are now picking up momentum due to recent breakthrough discoveries using molecular biology techniques. Vasopressin-regulated water channel in the apical membrane of the collecting duct and water channel in the basolateral side of the membrane were cloned. cloned. Osmolality-dependent chloride channel in the thin ascending limb of Henle was also cloned. In addition, vasopressin-regulated urea transporter was found in the collecting duct. These newly discovered channels and transporter should be playing important physiological roles in urine concentrating mechanism. Furthermore, recent findings on osmolytes and their transporters also add to the list of urine concentrating mechanisms.

  10. Molecular cloning of a novel receptor tyrosine kinase, tif, highly expressed in human ovary and testis.

    PubMed

    Dai, W; Pan, H; Hassanain, H; Gupta, S L; Murphy, M J

    1994-03-01

    Using a combination of polymerase chain reaction and conventional cDNA library screening approaches, we have cloned and characterized a putative receptor tyrosine kinase termed tif. The extracellular domain of tif has an immunoglobulin-like loop and a fibronectin type III structure. The intracellular domain contains a tyrosine kinase domain. Compared with ryk, a ubiquitously expressed receptor tyrosine kinase, tif expression is tissue-specific with human ovary and testis containing the highest amount of tif mRNA. Many other tested human tissues such as heart, liver, pancreas and thymus do not contain detectable levels of tif mRNA. The molecular cloning and characterization of tif cDNA will facilitate the identification of a potential ligand(s) for the putative receptor and the study of its biological role.

  11. Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease

    PubMed Central

    Fearns, Rachel; Graham, Barney S.

    2016-01-01

    Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies. PMID:24362682

  12. An efficient and rapid influenza gene cloning strategy for reverse genetics system.

    PubMed

    Shao, Hongxia; Fan, Zhonglei; Wan, Zhimin; Tian, Xiaoyan; Chen, Hongjun; Perez, Daniel R; Qin, Aijian; Ye, Jianqiang

    2015-09-15

    Influenza reverse genetics plays vital roles in understanding influenza molecular characteristics and vaccine development. However, current influenza reverse genetics heavily depends on restriction enzyme and ligation for gene cloning. The traditional cloning process of influenza eight fragments for virus rescuing generally requires considerable work. To simplify and increase the pace of gene cloning for influenza reverse genetics system, we developed a rapid restriction enzyme-free ExnaseTM II-based in vitro recombination approach for influenza gene cloning. We used this strategy rapidly and successfully to clone influenza eight genes both from viruses PR8 and H9N2 for virus rescuing. Our data demonstrate that the strategy developed here can accelerate the process of influenza gene cloning into reverse genetics system, and shows high potential for applications in both influenza basic and applied research. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Small Laccase from "Streptomyces Coelicolor"--An Ideal Model Protein/Enzyme for Undergraduate Laboratory Experience

    ERIC Educational Resources Information Center

    Cook, Ryan; Hannon, Drew; Southard, Jonathan N.; Majumdar, Sudipta

    2018-01-01

    A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students…

  14. Molecular structure of P2X receptors.

    PubMed

    Egan, Terrance M; Cox, Jane A; Voigt, Mark M

    2004-01-01

    P2X receptors are ligand-gated ion channels that transduce many of the physiological effects of extracellular ATP. There has been a dramatic increase in awareness of these receptors over the past 5 or so years, in great part due to their molecular cloning and characterization. The availability of cDNA clones for the various subunits has led to rapid progress in identifying their tissue-specific expression, resulting in new ideas concerning the functional roles these receptors might play in physiological and pathophysiological processes. In addition, molecular approaches have yielded much information regarding the structure and function of the receptor proteins themselves. In this review we seek to review recent findings concerning the molecular determinants of receptor-channel function, with particular focus on ligand binding and gating, ion selectivity, and subunit assembly.

  15. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology

    PubMed Central

    Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology. PMID:27116033

  16. A triallelic genetic male sterility locus in Brassica napus: an integrative strategy for its physical mapping and possible local chromosome evolution around it

    PubMed Central

    Lu, Wei; Liu, Jun; Xin, Qiang; Wan, Lili; Hong, Dengfeng; Yang, Guangsheng

    2013-01-01

    Background and Aims Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5. Methods A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5. Key Results BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence. Conclusions This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus. PMID:23243189

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, O.; Departamento de Fisica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Casilla 170, Antofagasta; Bergou, J.

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  18. Molecular mechanisms of antibiotic resistance in Acinetobacter baumannii with a special focus on its epidemiology in Lebanon.

    PubMed

    Jamal, Sabah; Atrouni, Ahmad Al; Rafei, Rayane; Dabboussi, Fouad; Hamze, Monzer; Osman, Marwan

    2018-05-30

    Acinetobacter baumannii is an opportunistic bacterium involved in several types of infection with high mortality and morbidity, especially in intensive care units. Treatment of these infections remains a challenge due to the worldwide emergence of broad-spectrum resistance to many antibiotics. Following the implementation of molecular techniques to study A. baumannii outbreaks, it has been shown that they are mainly caused by specific clones like international clone 1, 2 and 3. The present work aims to review the available data on the mechanisms underlying the antimicrobial resistance in A. baumannii with a special focus on the molecular epidemiology of this species in Lebanon. Copyright © 2018. Published by Elsevier Ltd.

  19. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    PubMed Central

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  20. A unique circovirus-like genome detected in pig feces

    USDA-ARS?s Scientific Manuscript database

    Using a metagenomic approach and molecular cloning methods, we identified, cloned, and sequenced the complete genome of a novel circular DNA virus, porcine stool-associated virus (PoSCV4), from pig feces. Phylogenetic analysis of the deduced replication initiator protein showed that PoSCV4 is most r...

  1. Molecular Cloning and Sequencing of Hemoglobin-Beta Gene of Channel Catfish, Ictalurus Punctatus Rafinesque

    USDA-ARS?s Scientific Manuscript database

    : Hemoglobin-y gene of channel catfish , lctalurus punctatus, was cloned and sequenced . Total RNA from head kidneys was isolated, reverse transcribed and amplified . The sequence of the channel catfish hemoglobin-y gene consists of 600 nucleotides . Analysis of the nucleotide sequence reveals one o...

  2. Molecular Characterization of Kastamonu Garlic: An Economically Important Garlic Clone in Turkey

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to assess genetic relationship of Kastamonu garlic, which is very popular in Turkey due to its high quality features, along with some previously characterized garlic clones collected from different regions of the world using AFLP and locus specific DNA markers. UPGMA cluste...

  3. Scientist | Center for Cancer Research

    Cancer.gov

    KEY ROLES/RESPONSIBILITIES The Scientist I will support research efforts to define the role of transcriptional regulators in myeloid cell development, and their potential role in leukemogenesis.  This work will be accomplished performing both molecular and stem cell biology techniques, cloning and construction of retroviral vectors, quantitative RT-PCR, cloning of conditional

  4. Cloning, expression, purification, crystallization and preliminary X-ray studies of argininosuccinate lyase (Rv1659) from Mycobacterium tuberculosis

    PubMed Central

    Paul, A.; Mishra, A.; Surolia, A.; Vijayan, M.

    2013-01-01

    The last enzyme in the arginine-biosynthesis pathway, argininosuccinate lyase, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized, and preliminary X-ray studies have been carried out on the crystals. The His-tagged tetrameric enzyme with a subunit molecular weight of 50.9 kDa crystallized with two tetramers in the asymmetric unit of the orthorhombic unit cell, space group P212121. Molecular-replacement calculations and self-rotation calculations confirmed the space group and the tetrameric nature of the molecule. PMID:24316845

  5. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease.

    PubMed

    Caugant, D A; Frøholm, L O; Bøvre, K; Holten, E; Frasch, C E; Mocca, L F; Zollinger, W D; Selander, R K

    1986-07-01

    Strains of Neisseria meningitidis responsible for an epidemic of meningococcal disease occurring in Norway since the mid-1970s and for recent increases in the incidence of disease in several other parts of Europe have been identified by multilocus enzyme electrophoresis as members of a distinctive group of 22 closely related clones (the ET-5 complex). Clones of this complex have also colonized South Africa, Chile, Cuba, and Florida, where they have been identified as the causative agents of recent outbreaks of meningococcal disease. There is strong circumstantial evidence that outbreaks of disease occurring in Miami in 1981 and 1982 were caused in large part by bacteria that reached Florida via human immigrants from Cuba.

  6. [Therapeutic cloning. Biology, perspectives and alternatives].

    PubMed

    Maddox-Hyttel, Poul

    2003-02-24

    Certain diseases are caused by or cause irreversible loss of cells and may in the future be treated by cell-based therapies where spare cells are introduced into the body. Therapeutic cloning constitutes a scientifically and ethically challenging route to the generation of autologous patient specific spare cells: Stem cells for subsequent differentiation and transplantation are isolated from one week old embryos, which are produced by cloning by nuclear transfer from normal cells retrieved from a patient. Research in therapeutic cloning should be pursued in line with alternative strategies for obtaining stem cells. Finally, the molecular biology of cloning by nuclear transfer may hold the key to understanding trans-differentiation, which ultimately may allow for de-differentiation and subsequent re-differentiation of adult somatic cells for therapeutic purposes.

  7. Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini?

    PubMed

    Peintner, Ursula; Iotti, Mirco; Klotz, Petra; Bonuso, Enrico; Zambonelli, Alessandra

    2007-04-01

    A study was conducted in a Castanea sativa forest that produces large quantities of the edible mushroom porcini (Boletus edulis sensu lato). The primary aim was to study porcini mycelia in the soil, and to determine if there were any possible ecological and functional interactions with other dominant soil fungi. Three different approaches were used: collection and morphological identification of fruiting bodies, morphological and molecular identification of ectomycorrhizae by rDNA-ITS sequence analyses and molecular identification of the soil mycelia by ITS clone libraries. Soil samples were taken directly under basidiomes of Boletus edulis, Boletus aestivalis, Boletus aereus and Boletus pinophilus. Thirty-nine ectomycorrhizal fungi were identified on root tips whereas 40 fungal species were found in the soil using the cloning technique. The overlap between above- and below-ground fungal communities was very low. Boletus mycelia, compared with other soil fungi, were rare and with scattered distribution, whereas their fruiting bodies dominated the above-ground fungal community. Only B. aestivalis ectomycorrhizae were relatively abundant and detected as mycelia in the soil. No specific fungus-fungus association was found. Factors triggering formation of mycorrhizae and fructification of porcini appear to be too complex to be simply explained on the basis of the amount of fungal mycelia in the soil.

  8. Cloning of endangered mammalian species: any progress?

    PubMed

    Loi, Pasqualino; Galli, Cesare; Ptak, Grazyna

    2007-05-01

    Attempts through somatic cell nuclear transfer to expand wild populations that have shrunk to critical numbers is a logical extension of the successful cloning of mammals. However, although the first mammal was cloned 10 years ago, nuclear reprogramming remains phenomenological, with abnormal gene expression and epigenetic deregulation being associated with the cloning process. In addition, although cloning of wild animals using host oocytes from different species has been successful, little is known about the implication of partial or total mitochondrial DNA heteroplasmy in cloned embryos, fetuses and offspring. Finally, there is a need for suitable foster mothers for inter-intra specific cloned embryos. Considering these issues, the limited success achieved in cloning endangered animals is not surprising. However, optimism comes from the rapid gain in the understanding of the molecular clues underlying nuclear reprogramming. If it is possible to achieve a controlled reversal of the differentiated state of a cell then it is probable that other issues that impair the cloning of endangered animals, such as the inter-intra species oocyte or womb donor, will be overcome in the medium term.

  9. Identification of genes that mediate protection against soybean pathogens

    USDA-ARS?s Scientific Manuscript database

    In the last twenty years, over 40 resistance genes (R-genes) have been cloned and characterized from plants. Of these, only three have been cloned in soybean. Cloning of resistance genes in soybean has been hampered by a complex, duplicated genome, clustering of R-genes, and lack of tools to charac...

  10. Biological and immunological characterization of a simian rotavirus SA11 variant with an altered genome segment 4.

    PubMed

    Burns, J W; Chen, D; Estes, M K; Ramig, R F

    1989-04-01

    We have studied a variant virus isolated from a stock of SA11 virus (H. G. Pereira, R. S. Azeredo, A. M. Fialho, and M. N. P. Vidal, 1984, J. Gen. Virol. 65, 815-818). This virus, designated 4F, was initially identified by its faster electrophoretic mobility for genome segment 4. The variant was analyzed to determine if the altered electrophoretic mobility of genome segment 4 could be correlated with phenotypic changes. Comparison of our standard laboratory SA11 virus (clone 3) with the 4F variant showed the following: (i) The 4F variant possesses a viral hemagglutinin (VP4) with a higher apparent molecular weight than clone 3. (ii) The 4F variant produces large plaques when assayed in vitro, as compared to clone 3. (iii) The 4F variant produces plaques in the absence of proteolytic enzymes, whereas clone 3 does not. (iv) The 4F variant reacts with serotype-specific neutralizing monoclonal antibodies to VP7, but fails to react with several neutralizing anti-VP4 monoclonal antibodies generated to SA11 clone 3. (v) The 4F variant grows to a higher titer and is more stable than clone 3. (vi) The 4F variant produces a VP4 that appears to be more susceptible to cleavage by trypsin than is the VP4 of clone 3. Further analyses with the 4F variant may lead to an understanding of the molecular basis for these altered phenotypes that appear to be related, at least in part, to the product of genome segment 4.

  11. The Australian scincid lizard Menetia greyii: a new instance of widespread vertebrate parthenogenesis.

    PubMed

    Adams, Mark; Foster, Ralph; Hutchinson, Mark N; Hutchinson, Rhonda G; Donnellan, Steve C

    2003-11-01

    Molecular data derived from allozymes and mitochondrial nucleotide sequences, in combination with karyotypes, sex ratios, and inheritance data, have revealed the widespread Australian lizard Menetia greyii to be a complex of sexual and triploid unisexual taxa. Three sexual species, three presumed parthenogenetic lineages, and one animal of uncertain status were detected amongst 145 animals examined from south-central Australia, an area representing less than one-seventh of the total distribution of the complex. Parthenogenesis appears to have originated via interspecific hybridization, although presumed sexual ancestors could only be identified in two cases. The allozyme and mtDNA data reveal the presence of many distinct clones within the presumed parthenogenetic lineages. This new instance of vertebrate parthenogenesis is a first for the Scincidae and only the second definitive case of unisexuality in an indigenous Australian vertebrate.

  12. Medicolegal and ethical issues of cloning: do we need to think again and again?

    PubMed

    Sharma, B R

    2004-06-01

    Research on the cloning of human cells holds the promise of medical benefits, but cloning humans is a far more complex and ethically disturbing issue. Some have argued strenuously that human cloning should be banned permanently. They have called it immoral, repugnant, and abhorrent. Most European countries have already banned it, and others are considering a proscription. While allowing fundamental research in the field to progress, we need a wide debate on human cloning. We need to think about what, if any, circumstances might warrant cloning, as well as the circumstances under which it should never be allowed.

  13. Bacterial biodiversity from an anaerobic up flow bioreactor with ANAMMOX activity inoculated with swine sludge

    USDA-ARS?s Scientific Manuscript database

    The present study aimed to identify organisms with ANAMMOX activity in a reactor maintained in a laboratory. Molecular methods as fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) and cloning of 16S-rDNA genes probing for Planctomycetes were performed. Seventeen clones were ...

  14. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    USDA-ARS?s Scientific Manuscript database

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  15. Molecular cloning and functional expression of the guinea pig alpha(1a)-adrenoceptor.

    PubMed

    González-Espinosa, C; Romero-Avila, M T; Mora-Rodríguez, D M; González-Espinosa, D; García-Sáinz, J A

    2001-08-31

    In the present paper, the cloning and expression of the guinea pig alpha(1A)-adrenoceptor is presented. The nucleotide sequence had an open reading frame of 1401 bp that encoded a 466 amino-acid protein with an estimated molecular mass of approximately 51.5 kDa. When the clone was expressed in Cos-1 cells, specific high-affinity binding of [(3)H]prazosin and [(3)H]tamsulosin was observed. Chloroethylclonidine treatment of membranes slightly decreased the total binding with both radioligands. Binding competition experiments using [(3)H]tamsulosin showed the following potency order: (a) for agonists: oxymetazoline >epinephrine>norepinephrine>methoxamine, and (b) for antagonists: prazosin> or 5-methyl-urapidil=benoxathian>phentolamine>BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7,9-dione). Photoaffinity labeling using [(125)I-aryl]azido-prazosin revealed a major broad band with a molecular mass between 70 and 80 kDa. The receptor was functional, as evidenced by an epinephrine-increased production of [(3)H]inositol phosphates that was blocked by prazosin.

  16. Molecular cloning and characterization of arginine kinase gene of Toxocara canis.

    PubMed

    Sahu, Shivani; Samanta, S; Harish, D R; Sudhakar, N R; Raina, O K; Shantaveer, S B; Madhu, D N; Kumar, Ashok

    2015-06-01

    Toxocara canis is an important gastrointestinal nematode of dogs and also a causative agent of visceral larva migrans in humans. Arginine kinase (AK) gene is one of the important biomolecule of phosphagen kinase of T. canis which is emerging as an exciting novel diagnostic target in toxocarosis. The present study was carried out to clone and characterize AK gene of T. canis for future utilization as a diagnostic molecule. Total RNA was extracted from intact adult worms and reverse transcription was done with oligo dT primers to obtain complementary DNA (cDNA). Polymerase chain reaction (PCR) was carried out using cDNA as template with specific primers which amplified a product of 1,202 bp. The amplicon was cloned into pDrive cloning vector and clone was confirmed by colony PCR and restriction endonuclease analysis. Sequence analysis of the gene showed 99.8 and 77.9 % homology with the published AK gene of T. canis (EF015466.1) and Ascaris suum respectively. Structural analysis shown that the mature AK protein consist of 400 amino acids with a molecular wt of 45360.73 Da. Further expression studies are required for producing the recombinant protein for its evaluation in the diagnosis of T. canis infection in humans as well as in adult dogs.

  17. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  18. Acute myeloid leukaemia genomics.

    PubMed

    Medinger, Michael; Passweg, Jakob R

    2017-11-01

    Acute myeloid leukaemia (AML) is a biologically complex, molecularly and clinically heterogeneous disease. Despite major advances in understanding the genetic landscape of AML and its impact on the pathophysiology and biology of the disease, standard treatment options have not significantly changed during the past three decades. AML is characterized by multiple somatically acquired mutations that affect genes of different functional categories. Mutations in genes encoding epigenetic modifiers, such as DNMT3A, ASXL1, TET2, IDH1, and IDH2, are commonly acquired early and are present in the founding clone. By contrast, mutations involving NPM1 or signalling molecules (e.g., FLT3, RAS gene family) are typically secondary events that occur later during leukaemogenesis. This review aims to provide an overview of advances in new prognostic markers, including targetable mutations that will probably guide the development and use of novel molecularly targeted therapies. © 2017 John Wiley & Sons Ltd.

  19. Use of electroporation for high-molecular-weight DNA-mediated gene transfer.

    PubMed

    Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R

    1987-08-01

    Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.

  20. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  1. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  2. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea.

    PubMed

    Park, Soo-Je; Park, Byoung-Joon; Pham, Vinh Hoa; Yoon, Dae-No; Kim, Si-Kwan; Rhee, Sung-Keun

    2008-06-01

    Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.

  3. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.

    PubMed

    Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin

    2011-07-01

    Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration. 2011 Elsevier B.V. All rights reserved.

  4. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    PubMed

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  6. Molecular cloning, molecular evolution and gene expression of cDNAs encoding thyrotropin-releasing hormone receptor subtypes in a teleost, the sockeye salmon (Oncorhynchus nerka).

    PubMed

    Saito, Yuichi; Mekuchi, Miyuki; Kobayashi, Noriaki; Kimura, Makoto; Aoki, Yasuhiro; Masuda, Tomohiro; Azuma, Teruo; Fukami, Motohiro; Iigo, Masayuki; Yanagisawa, Tadashi

    2011-11-01

    Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons

    PubMed Central

    Landeweert, Renske; Leeflang, Paula; Kuyper, Thom W.; Hoffland, Ellis; Rosling, Anna; Wernars, Karel; Smit, Eric

    2003-01-01

    Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (≥99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had ≥98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil. PMID:12514012

  8. The molecular epidemiology of cholera in Latin America.

    PubMed

    Wachsmuth, I K; Evins, G M; Fields, P I; Olsvik, O; Popovic, T; Bopp, C A; Wells, J G; Carrillo, C; Blake, P A

    1993-03-01

    To explain the sudden appearance and rapid spread of cholera in Latin America in January 1991, molecular techniques were used to define Vibrio cholerae O1 isolates from around the world. Restriction fragment length polymorphisms of rRNA and ctxA genes, DNA sequence of cholera toxin B subunit gene ctxB, and multilocus enzyme electrophoresis data were used to characterize 197 isolates. Worldwide, there are at least four distinct toxigenic El Tor V. cholerae O1 clones: the seventh pandemic (Eastern Hemisphere), US Gulf Coast, Australian, and Latin American. Nontoxigenic V. cholerae O1 previously isolated in Brazil, Mexico, and Peru are unlike current toxigenic isolates. The Latin American clone probably represents an extension of the seventh pandemic into the Western Hemisphere, while the US Gulf Coast clone most likely evolved separately. These data will be useful in monitoring the spread of cholera, determining the origin of outbreaks in both hemispheres, and implicating specific vehicles of transmission.

  9. Functional cDNA expression cloning: Pushing it to the limit

    PubMed Central

    OKAYAMA, Hiroto

    2012-01-01

    The 1970s and the following decade are the era of the birth and early development of recombinant DNA technologies, which have entirely revolutionized the modern life science by providing tools that enable us to know the structures of genes and genomes and to dissect their components and understand their functions at the molecular and submolecular levels. One major objective of the life sciences is to achieve molecular and chemical understandings of the functions of genes and their encoded proteins, which are responsible for the manifestation of all biological phenomena in organisms. In the early 1980s, I developed, together with Paul Berg, a new technique that enables the cloning of full-length complementary DNAs (cDNAs) on the basis of their functional expression in a given cell of interest. I review the development, application and future implications in the life sciences of this gene-cloning technique. PMID:22450538

  10. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio bloch) as revealed by RAPD assays.

    PubMed

    Zhou, L; Wang, Y; Gui, J F

    2000-11-01

    Sex evolution has been a debating focus in evolutionary genetics. In lower vertebrates of reptiles, amphibians, and fish, a species or a bioform reproduces either sexually or asexually but never both. A few species were found to consist of all females in fish. These all-female species can propagate by asexual reproduction modes, such as gynogenesis and hybridogenesis. However, the coexistence of sexuality and asexuality in a single species was recently noted only in a cyprinid fish silver crucian carp, Carassius auratus gibelio. This fish had been demonstrated to be capable of gynogenesis stimulated by sperm from other related species. Surprisingly, natural populations of this fish consist of a minor but significant portion (approx. 20%) of males. As different clones with specific phenotypic and genetic characteristics have been found, and RAPD markers specific to each clone have recently been identified, this fish offers many advantages for analyzing whether or not genetic recombination occurs between different clones. In this study, artificial propagation was performed in clone F and clone D. Ovulated eggs from clone F were divided into two parts and respectively inseminated with sperm from a clone D male and from a red common carp (Cyprinus carpio) male. The control clone D individuals were selected from gynogenetic offspring of clone D activated by sperm of red common carp. The phenotype and sex ratio in the experimental groups were also observed. Using RAPD molecular markers, which allow for reliable discrimination and genetic analysis of different clones, we have revealed direct molecular evidence for gonochoristic reproduction in the gynogenetic silver crucian carp and confirmed a previous hypothesis that the silver crucian carp might reproduce both gynogenetically and gonochoristically. Therefore, we conclude that the silver crucian carp possesses two reproductive modes, i.e., gynogenetic and gonochoristic reproduction. The response mechanism of two reproductive development modes may be the first discovery in vertebrates. Additionally, we discuss the evolutionary implication between gynogenetic and gonochoristic reproduction modes and the contribution of the minor proportion of males to genetic flexibility in the gynogenetic silver crucian carp.

  11. Molecular cloning and expressional analysis of five sucrose transporter (SUT) genes in sugarcane

    USDA-ARS?s Scientific Manuscript database

    The sucrose transport and accumulation in sugarcane internodes are very complicated processes and how sugarcane sucrose transporter (SUT) genes function in these processes remains unclear. In this study, five sugarcane SUT genes, namely, SoSUT1, SoSUT2, SoSUT3, SoSUT4 and SoSUT5, were cloned and the...

  12. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    USDA-ARS?s Scientific Manuscript database

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  13. Enhancement and Analysis of Human Antiaflatoxin B1 (AFB1) scFv Antibody-Ligand Interaction Using Chain Shuffling.

    PubMed

    Rangnoi, Kuntalee; Choowongkomon, Kiattawee; O'Kennedy, Richard; Rüker, Florian; Yamabhai, Montarop

    2018-06-06

    A human antiaflatoxin B1 (AFB1) scFv antibody (yAFB1-c3), selected from a naı̈ve human phage-displayed scFv library, was used as a template for improving and analysis of antibody-ligand interactions using the chain-shuffling technique. The variable-heavy and variable-light (VH/VL)-shuffled library was constructed from the VH of 25 preselected clones recombined with the VL of yAFB1-c3 and vice versa. Affinity selection from these libraries demonstrated that the VH domain played an important role in the binding of scFv to free AFB1. Therefore, in the next step, VH-shuffled scFv library was constructed from variable-heavy (VH) chain repertoires, amplified from the naı̈ve library, recombined with the variable-light (VL) chain of the clone yAFB1-c3. This library was then used to select a specific scFv antibody against soluble AFB1 by a standard biopanning method. Three clones that showed improved binding properties were isolated. Amino acid sequence analysis indicated that the improved clones have amino acid mutations in framework 1 (FR1) and the complementarity determining region (CDR1) of the VH chain. One clone, designated sAFH-3e3, showed 7.5-fold improvement in sensitivity over the original scFv clone and was selected for molecular binding studies with AFB1. Homology modeling and molecular docking were used to compare the binding of this and the original clones. The results confirmed that VH is more important than VL for AFB1 binding.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, O.; Roa, Luis; Delgado, A.

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability ismore » higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.« less

  15. Production of cloned calves using roscovitine-treated adult somatic cells as donors.

    PubMed

    Miyoshi, Kazuchika; Arat, Sezen; Stice, Steven L

    2006-01-01

    The stage of the donor cell cycle is a major factor in the success of cloning. Quiescent cells arrested in the G0/G1 phases of the cell cycle by either serum starvation or growth arrest when cultured cells reach confluence have been used as donors to produce cloned animals. Recently, we have developed a novel and effective method using roscovitine to synchronize adult bovine granulosa cells in the G0/G1 cell cycle stage. The resulting fetal and calf survival after transfer of cloned embryos was enhanced in the roscovitine-treated group compared with serum-starved controls. The methods described in this chapter outline (1) the preparation of donor cells, (2) the preparation of recipient oocytes, and (3) the production of cloned embryos. The first section involves methods for the preparation of donor cell stocks from isolated granulosa cells and the roscovitine treatment of the cells before nuclear transfer. The second section explains procedures of in vitro maturation of recipient oocytes. The last section involves methods for the production of cell-oocyte complexes, the fusion of the complexes, and the activation, in vitro culture, and transfer into recipient females of cloned embryos.

  16. Biochemical and molecular characterization of the venom from the Cuban scorpion Rhopalurus junceus.

    PubMed

    García-Gómez, B I; Coronas, F I V; Restano-Cassulini, R; Rodríguez, R R; Possani, L D

    2011-07-01

    This communication describes the first general biochemical, molecular and functional characterization of the venom from the Cuban blue scorpion Rhopalurus junceus, which is often used as a natural product for anti-cancer therapy in Cuba. The soluble venom of this arachnid is not toxic to mice, injected intraperitoneally at doses up to 200 μg/20 g body weight, but it is deadly to insects at doses of 10 μg per animal. The venom causes typical alpha and beta-effects on Na+ channels, when assayed using patch-clamp techniques in neuroblastoma cells in vitro. It also affects K+ currents conducted by ERG (ether-a-go-go related gene) channels. The soluble venom was shown to display phospholipase, hyaluronidase and anti-microbial activities. High performance liquid chromatography of the soluble venom can separate at least 50 components, among which are peptides lethal to crickets. Four such peptides were isolated to homogeneity and their molecular masses and N-terminal amino acid sequence were determined. The major component (RjAa12f) was fully sequenced by Edman degradation. It contains 64 amino acid residues and four disulfide bridges, similar to other known scorpion toxins. A cDNA library prepared from the venomous glands of one scorpion allowed cloning 18 genes that code for peptides of the venom, including RjA12f and eleven other closely related genes. Sequence analyses and phylogenetic reconstruction of the amino acid sequences deduced from the cloned genes showed that this scorpion contains sodium channel like toxin sequences clearly segregated into two monophyletic clusters. Considering the complex set of effects on Na+ currents verified here, this venom certainly warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Two Distinct Clones of Methicillin-Resistant Staphylococcus aureus (MRSA) with the Same USA300 Pulsed-Field Gel Electrophoresis Profile: a Potential Pitfall for Identification of USA300 Community-Associated MRSA▿

    PubMed Central

    Larsen, Anders Rhod; Goering, Richard; Stegger, Marc; Lindsay, Jodi A.; Gould, Katherine A.; Hinds, Jason; Sørum, Marit; Westh, Henrik; Boye, Kit; Skov, Robert

    2009-01-01

    Analysis of methicillin-resistant Staphylococcus aureus (MRSA) characterized as USA300 by pulsed-field gel electrophoresis identified two distinct clones. One was similar to community-associated USA300 MRSA (ST8-IVa, t008, and Panton-Valentine leukocidin positive). The second (ST8-IVa, t024, and PVL negative) had different molecular characteristics and epidemiology, suggesting independent evolution. We recommend spa typing and/or PCR to discriminate between the two clones. PMID:19759225

  18. SCREENING OF PROTEASE INHIBITORS RESISTANCE MUTATIONS IN HEPATITIS C VIRUS ISOLATES INFECTING ROMANIAN PATIENTS UNEXPOSED TO TRIPLE THERAPY.

    PubMed

    Dinu, Sorin; Calistru, Petre-Iacob; Ceauşu, Emanoil; Târdeil, Graţiela; Oprişan, Gabriela

    2015-01-01

    Although the European recommendations include the use of new antiviral drugs for the treatment of hepatitis C, in Romania the current treatment remains interferon plus ribavirin. First generation viral protease inhibitors (i.e. boceprevir, telaprevir), which have raised the chances of obtaining viral clearance in up to 70% of infection cases produced by genotype 1 isolates, have not been introduced yet as standard treatment in our country. The success of these new antivirals is limited by the occurrence and selection of resistance mutations during therapy. We set-up a molecular study aiming to detect any resistance mutations to boceprevir and telaprevir harbored by hepatitis C isolates infecting Romanian patients naïve to viral protease inhibitors. Since these new antivirals are efficient and approved for genotype 1 infection, viral samples were genotyped following a protocol previously developed by our research group. We analyzed by both population sequencing and molecular cloning and sequencing the NS3 protease region of hepatitis C virus isolates infecting patients which were not previously exposed to boceprevir and telaprevir. All the analyzed samples were subtype 1b and resembled the samples collected in recent years from Romanian patients. Molecular cloning followed by sequencing showed great intra-host diversity, which is known to represent the source of isolates with different resistance phenotypes. Both population sequencing and molecular cloning followed by clone sequencing revealed two boceprevir resistance mutations (T54S and V55A), respectively, a telaprevir resistance mutation (T54S) in the sequences obtained from a patient with chronic hepatitis C. To our knowledge, this is the first study indicating the existence of pre-treatment resistance mutations to boceprevir and telaprevir in hepatitis C virus isolates infecting Romanian patients.

  19. Heterogeneity of Vaginal Microbial Communities within Individuals▿ #

    PubMed Central

    Kim, Tae Kyung; Thomas, Susan M.; Ho, Mengfei; Sharma, Shobha; Reich, Claudia I.; Frank, Jeremy A.; Yeater, Kathleen M.; Biggs, Diana R.; Nakamura, Noriko; Stumpf, Rebecca; Leigh, Steven R.; Tapping, Richard I.; Blanke, Steven R.; Slauch, James M.; Gaskins, H. Rex; Weisbaum, Jon S.; Olsen, Gary J.; Hoyer, Lois L.; Wilson, Brenda A.

    2009-01-01

    Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota. 16S rRNA gene clone libraries were prepared from samples obtained from different locations (cervix, fornix, outer vaginal canal) and by different methods (swabbing, scraping, lavaging) from the vaginal tracts of eight clinically healthy, asymptomatic women. The data reveal that the vaginal microbiota is not homogenous throughout the vaginal tract but differs significantly within an individual with regard to anatomical site and sampling method used. Thus, this study illuminates the complex structure of the vaginal ecosystem and calls for the consideration of microenvironments when sampling vaginal microbiota as a clinical predictor of vaginal health. PMID:19158255

  20. A cAMP-Regulated Chloride Channel in Lymphocytes that is Affected in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Chen, Jennifer H.; Schulman, Howard; Gardner, Phyllis

    1989-02-01

    A defect in regulation of a chloride channel appears to be the molecular basis for cystic fibrosis (CF), a common lethal genetic disease. It is shown here that a chloride channel with kinetic and regulatory properties similar to those described for secretory epithelial cells is present in both T and B lymphocyte cell lines. The regulation of the channels by adenosine 3',5'-monophosphate (cAMP)--dependent protein kinase in transformed B cells from CF patients is defective. Thus, lymphocytes may be an accessible source of CF tissue for study of this defect, for cloning of the chloride channel complex, and for diagnosis of the disease.

  1. Human cloning, stem cell research. An Islamic perspective.

    PubMed

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  2. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza(*), codes for an oleate-selective isozyme: molecular cloning and protein purification studies.

    PubMed

    Nishida, I; Sugiura, M; Enju, A; Nakamura, M

    2000-12-01

    A new isogene for acyl-(acyl-carrier-protein):glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) in squash has been cloned and the gene product was identified as oleate-selective GPAT. Using PCR primers that could hybridise with exons for a previously cloned squash GPAT, we obtained two PCR products of different size: one coded for a previously cloned squash GPAT corresponding to non-selective isoforms AT2 and AT3, and the other for a new isozyme, probably the oleate-selective isoform AT1. Full-length amino acid sequences of respective isozymes were deduced from the nucleotide sequences of genomic genes and cDNAs, which were cloned by a series of PCR-based methods. Thus, we designated the new gene CmATS1;1 and the other one CmATS1;2. Genome blot analysis revealed that the squash genome contained the two isogenes at non-allelic loci. AT1-active fractions were partially purified, and three polypeptide bands were identified as being AT1 polypeptides, which exhibited relative molecular masses of 39.5-40.5 kDa, pI values of 6.75-7.15, and oleate selectivity over palmitate. Partial amino-terminal sequences obtained from two of these bands verified that the new isogene codes for AT1 polypeptides.

  3. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less

  4. Long-Term, Low-Frequency Cluster of a German-Imipenemase-1-Producing Enterobacter hormaechei ssp. steigerwaltii ST89 in a Tertiary Care Hospital in Germany.

    PubMed

    Wendel, Andreas F; Meyer, Sebastian; Deenen, René; Köhrer, Karl; Kolbe-Busch, Susanne; Pfeffer, Klaus; Willmann, Matthias; Kaasch, Achim J; MacKenzie, Colin R

    2018-05-11

    Enterobacter cloacae complex is a common cause of hospital outbreaks. A retrospective and prospective molecular analysis of carbapenem-resistant clinical isolates in a tertiary care center demonstrated an outbreak of a German-imipenemase-1 (GIM-1) metallo-beta-lactamase-producing Enterobacter hormaechei ssp. steigerwaltii affecting 23 patients between 2009 and 2016. Thirty-three isolates were sequence type 89 by conventional multilocus sequence typing (MLST) and displayed a maximum difference of 49 out of 3,643 targets in the ad-hoc core-genome MLST (cgMLST) scheme (SeqSphere+ software; Ridom, Münster, Germany). The relatedness of all isolates was confirmed by further maximum-likelihood phylogeny. One clonal complex of highly related isolates (≤15 allele difference in cgMLST) contained 17 patients, but epidemiological data only suggested five transmission events. The bla GIM-1 -gene was embedded in a class-1-integron (In770) and the Tn21-subgroup transposon Tn6216 (KC511628) on a 25-kb plasmid. Environmental screening detected one colonized sink trap in a service room. The outbreak was self-limited as no further bla GIM-1 -positive E. hormaechei has been isolated since 2016. Routine molecular screening of carbapenem-nonsusceptible gram-negative isolates detected a long-term, low-frequency outbreak of a GIM-1-producing E. hormaechei ssp. steigerwaltii clone. This highlights the necessity of molecular surveillance.

  5. Evolving Concepts and Translational Relevance of Enteroendocrine Cell Biology.

    PubMed

    Drucker, Daniel J

    2016-03-01

    Classical enteroenteroendocrine cell (EEC) biology evolved historically from identification of scattered hormone-producing endocrine cells within the epithelial mucosa of the stomach, small and large intestine. Purification of functional EEC hormones from intestinal extracts, coupled with molecular cloning of cDNAs and genes expressed within EECs has greatly expanded the complexity of EEC endocrinology, with implications for understanding the contribution of EECs to disease pathophysiology. Pubmed searches identified manuscripts highlighting new concepts illuminating the molecular biology, classification and functional role(s) of EECs and their hormonal products. Molecular interrogation of EECs has been transformed over the past decade, raising multiple new questions that challenge historical concepts of EEC biology. Evidence for evolution of the EEC from a unihormonal cell type with classical endocrine actions, to a complex plurihormonal dynamic cell with pleiotropic interactive functional networks within the gastrointestinal mucosa is critically assessed. We discuss gaps in understanding how EECs sense and respond to nutrients, cytokines, toxins, pathogens, the microbiota, and the microbial metabolome, and highlight the expanding translational relevance of EECs in the pathophysiology and therapy of metabolic and inflammatory disorders. The EEC system represents the largest specialized endocrine network in human physiology, integrating environmental and nutrient cues, enabling neural and hormonal control of metabolic homeostasis. Updating EEC classification systems will enable more accurate comparative analyses of EEC subpopulations and endocrine networks in multiple regions of the gastrointestinal tract.

  6. Identification and characterization of a serpin from Eimeria acervulina.

    PubMed

    Fetterer, R H; Miska, K B; Jenkins, M C; Barfield, R C; Lillehoj, H

    2008-12-01

    Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria spp. A serpin from Eimeria acervulina was cloned, expressed and characterized. Random screening of an E.acervulina sporozoite cDNA library identified a single clone (D14) whose coding region shared high similarity to consensus structure of serpins. Clone D14 contained an entire open reading frame (ORF) consisting of 1,245 nts that encode a peptide 413 amino acids in length with a predicted molecular weight of 45.5 kDa and containing a signal peptide 28 residues in length. By Western blot analysis, polyclonal antiserum to the recombinant serpin (rbSp) recognized a major 55 kDa protein band in unsporulated oocysts and in oocysts sporulated up to 24 hr (fully sporulated). The anti-rbSp detected bands of 55 kDa and 48 kDa in sporozoites (SZ) and merozoites (MZ) respectively. Analysis of MZ secretion products revealed a single protein of 48 kDa which may correspond to secreted serpin. By immuno-staining the serpin was located in granules distributed throughout both the SZ and MZ but granules appeared to be concentrated in the parasite's anterior. Analysis of the structure predicts that the E. acervulina serpin should be an active inhibitor. However, rbSp was without inhibitory activity against common serine proteases. By Western blot analysis the endogenous serpin in MZ extracts did not form the expected high molecular weight complex when coincubated with either trypsin or subtilisin. The results demonstrate that E. acervulina contains a serpin gene and expresses a protein with structural properties similar to an active serine protease inhibitor. Although the function of the E. acervulina serpin remains unknown the results further suggest that serpin is secreted by the parasite where it may be involved in cell invasion and other basic developmental processes.

  7. Cloned animal products in the human food chain: FDA should protect American consumers.

    PubMed

    Butler, Jennifer E F

    2009-01-01

    Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology.

  8. Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches

    PubMed Central

    Piñar, Guadalupe; Garcia-Valles, Maite; Gimeno-Torrente, Domingo; Fernandez-Turiel, Jose Luis; Ettenauer, Jörg; Sterflinger, Katja

    2013-01-01

    We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by wavelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database. Similarity values ranged from 89 to 100% to known bacteria and fungi. Biological activity in both sites was evidenced in the form of orange patinas, bio-pitting, and mineral precipitation. Analyses revealed complex bacterial communities consisting of members of the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Fungi showed less diversity than bacteria, and species of the genera Cladosporium and Phoma were dominant. The detected Actinobacteria and fungi may be responsible for the observed bio-pitting phenomenon. Moreover, some of the detected bacteria are known for their mineral precipitation capabilities. Sequence results also showed similarities with bacteria commonly found on deteriorated stone monuments, supporting the idea that medieval stained glass biodeterioration in the Mediterranean area shows a pattern comparable to that on stone. PMID:24092957

  9. Wide spread of OXA-23-producing carbapenem-resistant Acinetobacter baumannii belonging to clonal complex II in different hospitals in Lebanon.

    PubMed

    Al Atrouni, Ahmad; Hamze, Monzer; Jisr, Tamima; Lemarié, Carole; Eveillard, Matthieu; Joly-Guillou, Marie-Laure; Kempf, Marie

    2016-11-01

    To investigate the molecular epidemiology of Acinetobacter baumannii strains isolated from different hospitals in Lebanon. A total of 119 non-duplicate Acinetobacter strains were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and partial rpoB gene sequencing. Antibiotic susceptibility testing was performed by disc diffusion method and all identified carbapenem-resistant isolates were investigated by PCR assays for the presence of the carbapenemase-encoding genes. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were used for molecular typing. Of the 119 A. baumannii isolates, 76.5% were resistant to carbapenems. The most common carbapenemase was the OXA-23-type, found in 82 isolates. The study of population structure using MLST revealed the presence of 30 sequence types (STs) including 18 new ones, with ST2 being the most commonly detected, accounting for 61% of the isolates typed. PFGE performed on all strains of ST2 identified a major cluster of 53 isolates, in addition to three other minor clusters and ten unique profiles. This study highlights the wide dissemination of highly related OXA-23-producing carbapenem-resistant A. baumannii belonging to the international clone II in Lebanon. Thus, appropriate infection control measures are recommended in order to control the geographical spread of this clone in this country. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Molecular characterization of the stomach microbiota in patients with gastric cancer and controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dicksved, J.; Lindberg, M.; Rosenquist, M.

    2009-01-15

    Persistent infection of the gastric mucosa by Helicobacter pylori, can initiate an inflammatory cascade that progresses into atrophic gastritis, a condition associated with reduced capacity for secretion of gastric acid and an increased risk in developing gastric cancer. The role of H. pylori as an initiator of inflammation is evident but the mechanism for development into gastric cancer has not yet been proven. A reduced capacity for gastric acid secretion allows survival and proliferation of other microbes that normally are killed by the acidic environment. It has been postulated that some of these species may be involved in the developmentmore » of gastric cancer, however their identities are poorly defined. In this study, the gastric microbiota from ten patients with gastric cancer was characterized and compared with five dyspeptic controls using the molecular profiling approach, terminal-restriction fragment length polymorphism (T-RFLP), in combination with 16S rRNA gene cloning and sequencing. T-RFLP analysis revealed a complex bacterial community in the cancer patients that was not significantly different from the controls. Sequencing of 140 clones revealed 102 phylotypes, with representatives from five bacterial phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria). The data revealed a relatively low abundance of H. pylori and showed that the gastric cancer microbiota was instead dominated by different species of the genera Streptococcus, Lactobacillus, Veillonella and Prevotella. The respective role of these species in development of gastric cancer remains to be determined.« less

  11. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    PubMed Central

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  12. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. Copyright © 2010 Wiley Periodicals, Inc.

  13. Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes.

    PubMed Central

    Pérez-Gonzalez, J A; De Graaff, L H; Visser, J; Ramón, D

    1996-01-01

    Two Aspergillus nidulans genes, xlnA and xlnB, encoding the X22 and X24 xylanases from this fungus, respectively, have been cloned and sequenced. Their cDNAs have been expressed in a laboratory Saccharomyces cerevisiae strain under the control of a constitutive yeast promoter, resulting in the construction of recombinant xylanolytic yeast strains. PMID:8787417

  14. Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2.

    PubMed

    Sitkiewicz, Izabela; Nagiec, Michal J; Sumby, Paul; Butler, Stephanie D; Cywes-Bentley, Colette; Musser, James M

    2006-10-24

    The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.

  15. Cloning of Plasmodium falciparum by single-cell sorting.

    PubMed

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  16. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    PubMed Central

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  17. Alimentary Tract Bacteria Isolated and Identified with API-20E and Molecular Cloning Techniques from Australian Tropical Fruit Flies, Bactrocera cacuminata and B. tryoni

    PubMed Central

    Thaochan, N.; Drew, R. A. I.; Hughes, J. M.; Vijaysegaran, S.; Chinajariyawong, A.

    2010-01-01

    Bacteria were isolated from the crop and midgut of field collected Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Two methods were used, firstly isolation onto two types of bacteriological culture media (PYEA and TSA) and identification using the API-20E diagnostic kit, and secondly, analysis of samples using the 16S rRNA gene molecular diagnostic method. Using the API-20E method, 10 genera and 17 species of bacteria in the family Enterobacteriaceae were identified from cultures growing on the nutrient agar. The dominant species in both the crop and midgut were Citrobacter freundii, Enterobacter cloacae and Klebsiella oxytoca. Providencia rettgeri, Klebsiella pneumoniae ssp ozaenae and Serratia marcescens were isolated from B. tryoni only. Using the molecular cloning technique that is based on 16S rRNA gene sequences, five bacteria classes were dignosed — Alpha-, Beta-, Gamma- and Delta- Proteobacteria and Firmicutes — including five families, Leuconostocaceae, Enterococcaceae, Acetobacteriaceae, Comamonadaceae and Enterobacteriaceae. The bacteria affiliated with Firmicutes were found mainly in the crop while the Gammaproteobacteria, especially the family Enterobacteriaceae, was dominant in the midgut. This paper presents results from the first known application of molecular cloning techniques to study bacteria within tephritid species and the first record of Firmicutes bacteria in these flies. PMID:20883132

  18. Clonal development and organization of the adult Drosophila central brain.

    PubMed

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-04-22

    The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A comparative study of Cutibacterium (Propionibacterium) acnes clones from acne patients and healthy controls.

    PubMed

    Lomholt, H B; Scholz, C F P; Brüggemann, H; Tettelin, H; Kilian, M

    2017-10-01

    Cutibacterium (Propionibacterium) acnes is assumed to play an important role in the pathogenesis of acne. To examine if clones with distinct virulence properties are associated with acne. Multiple C. acnes isolates from follicles and surface skin of patients with moderate to severe acne and healthy controls were characterized by multilocus sequence typing. To determine if CC18 isolates from acne patients differ from those of controls in the possession of virulence genes or lack of genes conducive to a harmonious coexistence the full genomes of dominating CC18 follicular clones from six patients and five controls were sequenced. Individuals carried one to ten clones simultaneously. The dominating C. acnes clones in follicles from acne patients were exclusively from the phylogenetic clade I-1a and all belonged to clonal complex CC18 with the exception of one patient dominated by the worldwide-disseminated and often antibiotic resistant clone ST3. The clonal composition of healthy follicles showed a more heterogeneous pattern with follicles dominated by clones representing the phylogenetic clades I-1a, I-1b, I-2 and II. Comparison of follicular CC18 gene contents, allelic versions of putative virulence genes and their promoter regions, and 54 variable-length intragenic and inter-genic homopolymeric tracts showed extensive conservation and no difference associated with the clinical origin of isolates. The study supports that C. acnes strains from clonal complex CC18 and the often antibiotic resistant clone ST3 are associated with acne and suggests that susceptibility of the host rather than differences within these clones may determine the clinical outcome of colonization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase.

    PubMed

    Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.

  1. Hot Fusion: An Efficient Method to Clone Multiple DNA Fragments as Well as Inverted Repeats without Ligase

    PubMed Central

    Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825

  2. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    ERIC Educational Resources Information Center

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  3. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38).

    PubMed Central

    Luzio, J P; Brake, B; Banting, G; Howell, K E; Braghetta, P; Stanley, K K

    1990-01-01

    Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. Images Fig. 1. Fig. 3. PMID:2204342

  4. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  5. A sequencing-based linkage map of cucumber

    USDA-ARS?s Scientific Manuscript database

    Genetic maps are important tools for molecular breeding, gene cloning, and study of meiotic recombination. In cucumber (Cucumis sativus L.), the marker density, resolution and genome coverage of previously developed genetic maps using PCR-based molecular markers are relatively low. In this study we ...

  6. Avian influenza virus RNA extraction

    USDA-ARS?s Scientific Manuscript database

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  7. Mammalian Otolin: A Multimeric Glycoprotein Specific to the Inner Ear that Interacts with Otoconial Matrix Protein Otoconin-90 and Cerebellin-1

    PubMed Central

    Deans, Michael R.; Peterson, Jonathan M.; Wong, G. William

    2010-01-01

    Background The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits. Principal Findings Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane. Conclusion Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction. PMID:20856818

  8. Positional cloning of disease genes on chromosome 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doggett, N.; Bruening, M.; Callen, D.

    1996-04-01

    The project seeks to elucidate the molecular basis of an important genetic disease (Batten`s disease) by molecular cloning of the affected gene by utilizing an overlapping clone map of chromosome 16. Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a recessively inherited neurodegenerative disorder of childhood characterized by progressive loss of vision, seizures, and psychomoter disturbances. The Batten disease gene was genetically mapped to the chromosome region 16p 12.1 in close linkage with the genetic markers D16S299 and D16S298. Exon amplification of a cosmid containing D16S298 yielded a candidate gene that was disrupted by a 1 kb genomicmore » deletion in all patients containing the most common haplotype for the disease. Two separate deletions and a point mutation altering a splice site in three unrelated families have confirmed the gene as the Batten disease gene. The disease gene encodes a novel 438 amino acid membrane binding protein of unknown function.« less

  9. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    PubMed

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  10. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB-responsive gene associated with loss of cell anchorage. There is also a range of aneuploidy amongst the transformed clones and ongoing chromosomal analysis by array-based comparative genomic hybridization has identified single or two copy loss of the tumor suppressor gene FHIT, in 8 of 15 transformed clones. This is accompanied by a 6-fold reduction, overall, in FHIT gene expression amongst the 15 clones under examination. Interestingly, in spite of these changes at the molecular level, when implanted subcutaneously into immune-compromised mice, the transformed clones from the HBEC3 KT cell line do not form tumors. This suggests that additional hits are required for oncogenesis, at least in a subcutaneous model, and/or, 2-D tissue culture models to not adequately reflect the underlying biology. We have therefore, begun to examine transformation in a 3-D tissue culture model, bronchocysts, where HBEC cells ultimately differentiate and stop cycling. We have shown that cells in 3-D have reduced gene expression of key DNA repair genes, and are less effective at repairing complex damage. We are now irradiating at dose rates as low as 0.2 cGy/min to test the notion of an inverse dose rate effect for carcinogenesis by HZE particles. In our early experiments we have shown that as the dose rate dropped from 20 cGy/min to 0.2 cGy/min, for the same total dose (0.25 and 0.50 Gy) an increasing percentage of bronchocysts become mis-shapen, suggesting that some cells within the cyst have de-differentiated and have reentered the cell cycle. We are now testing whether those cells are, in fact, cycling and wherther they are transformed by disaggregating the cyst and placing the cells into soft agar culture.

  11. Cloning and Characterization of the Lipooligosaccharide Galactosyltransferase II Gene of Haemophilus ducreyi

    PubMed Central

    Sun, Shuhua; Schilling, Birgit; Tarantino, Laurie; Tullius, Michael V.; Gibson, Bradford W.; Munson, Robert S.

    2000-01-01

    Haemophilus ducreyi is the etiologic agent of chancroid, a genital ulcer disease. The lipooligosaccharide (LOS) is considered to be a major virulence determinant and has been implicated in the adherence of H. ducreyi to keratinocytes. Strain A77, an isolate from the Paris collection, is serum sensitive, poorly adherent to fibroblasts, and deficient in microcolony formation. Structural analysis indicates that the LOS of strain A77 lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS as well as the sialic acid substitution. From an H. ducreyi 35000HP genomic DNA library, a clone complementing the defect in A77 was identified by immunologic screening with monoclonal antibody (MAb) 3F11, a MAb which recognizes the N-acetyllactosamine portion of strain 35000HP LOS. The clone contained a 4-kb insert that was sequenced. One open reading frame which encodes a protein with a molecular weight of 33,400 was identified. This protein has homology to glycosyltransferases of Haemophilus influenzae, Haemophilus somnus, Neisseria species, and Pasteurella haemolytica. The putative H. ducreyi glycosyltransferase gene was insertionally inactivated, and an isogenic mutant of strain 35000HP was constructed. The most complex LOS glycoform produced by the mutant has a mobility on sodium dodecyl sulfate-polyacrylamide gel identical to that of the LOS of strain A77 and lacks the 3F11-binding epitope. Structural studies confirm that the most complex glycoform of the LOS isolated from the mutant lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS. Although previously published data suggested that the serum-sensitive phenotype of A77 was due to the LOS mutation, we observed that the complemented A77 strain retained its serum-sensitive phenotype and that the galactosyltransferase mutant retained its serum-resistant phenotype. Thus, the serum sensitivity of strain A77 cannot be attributed to the galactosyltransferase mutation in strain A77. PMID:10735874

  12. An investigative graduate laboratory course for teaching modern DNA techniques.

    PubMed

    de Lencastre, Alexandre; Thomas Torello, A; Keller, Lani C

    2017-07-08

    This graduate-level DNA methods laboratory course is designed to model a discovery-based research project and engages students in both traditional DNA analysis methods and modern recombinant DNA cloning techniques. In the first part of the course, students clone the Drosophila ortholog of a human disease gene of their choosing using Gateway ® cloning. In the second part of the course, students examine the expression of their gene of interest in human cell lines by reverse transcription PCR and learn how to analyze data from quantitative reverse transcription PCR (qRT-PCR) experiments. The adaptability of the Gateway ® cloning system is ideally suited for students to design and create different types of expression constructs to achieve a particular experimental goal (e.g., protein purification, expression in cell culture, and/or subcellular localization), and the genes chosen can be aligned to the research interests of the instructor and/or ongoing research in a department. Student evaluations indicate that the course fostered a genuine excitement for research and in depth knowledge of both the techniques performed and the theory behind them. Our long-term goal is to incorporate this DNA methods laboratory as the foundation for an integrated laboratory sequence for the Master of Science degree program in Molecular and Cellular Biology at Quinnipiac University, where students use the reagents and concepts they developed in this course in subsequent laboratory courses, including a protein methods and cell culture laboratory. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):351-359, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  13. Technical advances and pitfalls on the way to human cloning.

    PubMed

    Mollard, Richard; Denham, Mark; Trounson, Alan

    2002-03-01

    There exists a widespread consensus that the cloning of human beings to term would be detrimental to both the mother and child and of little value to society. However, the ambition of a few organisations and the recent advances in cellular and molecular technologies that led to the cloning of Dolly the sheep, for example, have meant that such a procedure will be possible if not illegal in the near future. The science associated with the cloning technologies practiced in other mammalian species reported to date provide important advances in our understanding of how cells function during early developmental processes and commit themselves to specific developmental pathways. However, many technological insufficiencies remain. Both technological advances and several of the associated insufficiencies are outlined in this review.

  14. Construction and characterization of a human T-cell lymphotropic virus type 3 infectious molecular clone.

    PubMed

    Chevalier, Sébastien Alain; Ko, Nga Ling; Calattini, Sara; Mallet, Adeline; Prévost, Marie-Christine; Kehn, Kylene; Brady, John N; Kashanchi, Fatah; Gessain, Antoine; Mahieux, Renaud

    2008-07-01

    We and others have uncovered the existence of human T-cell lymphotropic virus type 3 (HTLV-3). We have now generated an HTLV-3 proviral clone. We established that gag, env, pol, pro, and tax/rex as well as minus-strand mRNAs are present in cells transfected with the HTLV-3 clone. HTLV-3 p24(gag) protein is detected in the cell culture supernatant. Transfection of 293T-long terminal repeat (LTR)-green fluorescent protein (GFP) cells with the HTLV-3 clone promotes formation of syncytia, a hallmark of Env expression, together with the appearance of fluorescent cells, demonstrating that Tax is expressed. Viral particles are visible by electron microscopy. These particles are infectious, as demonstrated by infection experiments with purified virions.

  15. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    PubMed

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Wei

    Biomacromolecules play an important role in the control of hard tissue structure and function via specific molecular recognition interactions between proteins of the matrix and inorganic species of the biomineral phase. During the construction of the tissue, biomacromolecules are usually folded into a certain comformation, analogous to a "lock" for fitting with other proteins or smaller molecules as a "key". Currently, the rational design of molecular recognition in biomacro-molecules is still hard to accomplish because the protein conformation is too complex to precisely predict based on the existing conformational information of proteins found in biological systems. In the past two decades, the combinatorial approach (e.g. phage display techniques) has been used to select short binding peptides with molecular recognition to an inorganic target material without a prior knowledge of the amino acid sequence required for the specific binding. The technique has been referred to as "biopanning" because bacteriophages are used to "screen" for peptides that exhibit strong binding to a target material of interest. In this study, two diverse applications were chosen to demonstrate the utility of the biopanning approach. In one project, phage display techniques were used to pan for Indium Zinc Oxide (InZnO) binding peptides to serve as linkers between transducer devices and biosensing elements for demonstration of the feasibility of reversibly electro-activated biosensors. The amorphous InZnO, with its homogeneous surface, led to three consensus peptide sequences, AGFPNSTHSSNL, SHAPDSTWFALF, and TNSSSQFVVAIP. In addition, it was demonstrated that some selected phage clones of the InZnO binding peptides were able to be released from the InZnO surface after applying a voltage of 1400 mV on an electro-activated releasing device. In the second project, phage display techniques were used to select phage clones that bind specifically to francolite mineral in order to achieve separation of francolite particles from dolomitic particles within Florida phosphate ore. A phage clone with a 12-mer francolite binding peptide of WSITTYHDRAIV was able to concentrate the content of francolite from 25% to 42% in a bench-top flotation process of mixed minerals. The first system demonstrates an advanced technology application of the biopanning approach for the development of novel biosensors, while the second system demonstrates application of the biotechnology approach to a commodity industry.

  17. Molecular Typing and Epidemiology of Human Listeriosis Cases, Denmark, 2002-2012.

    PubMed

    Jensen, Anne Kvistholm; Björkman, Jonas T; Ethelberg, Steen; Kiil, Kristoffer; Kemp, Michael; Nielsen, Eva Møller

    2016-04-01

    Denmark has a high incidence of invasive listeriosis (0.9 cases/100,000 population in 2012). We analyzed patient data, clinical outcome, and trends in pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) of Listeria monocytogenes strains isolated in Denmark during 2002-2012. We performed 2-enzyme PFGE and serotyping on 559 isolates and MLST on 92 isolates and identified some correlation between molecular type and clinical outcome and patient characteristics. We found 178 different PFGE types, but isolates from 122 cases belonged to just 2 closely related PFGE types, clonal complex 8 and sequence type 8. These 2 types were the main cause of a peak in incidence of invasive listeriosis during 2005-2009, possibly representing an outbreak or the presence of a highly prevalent clone. However, current typing methods could not fully confirm these possibilities, highlighting the need for more refined discriminatory typing methods to identify outbreaks within frequently occurring L. monocytogenes PFGE types.

  18. Molecular Typing and Epidemiology of Human Listeriosis Cases, Denmark, 2002–20121

    PubMed Central

    Björkman, Jonas T.; Ethelberg, Steen; Kiil, Kristoffer; Kemp, Michael; Nielsen, Eva Møller

    2016-01-01

    Denmark has a high incidence of invasive listeriosis (0.9 cases/100,000 population in 2012). We analyzed patient data, clinical outcome, and trends in pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) of Listeria monocytogenes strains isolated in Denmark during 2002–2012. We performed 2-enzyme PFGE and serotyping on 559 isolates and MLST on 92 isolates and identified some correlation between molecular type and clinical outcome and patient characteristics. We found 178 different PFGE types, but isolates from 122 cases belonged to just 2 closely related PFGE types, clonal complex 8 and sequence type 8. These 2 types were the main cause of a peak in incidence of invasive listeriosis during 2005–2009, possibly representing an outbreak or the presence of a highly prevalent clone. However, current typing methods could not fully confirm these possibilities, highlighting the need for more refined discriminatory typing methods to identify outbreaks within frequently occurring L. monocytogenes PFGE types. PMID:26982714

  19. UV Radiation–Sensitive Norin 1 Rice Contains Defective Cyclobutane Pyrimidine Dimer Photolyase

    PubMed Central

    Hidema, Jun; Kumagai, Tadashi; Sutherland, Betsy M.

    2000-01-01

    Norin 1, a progenitor of many economically important Japanese rice strains, is highly sensitive to the damaging effects of UVB radiation (wavelengths 290 to 320 nm). Norin 1 seedlings are deficient in photorepair of cyclobutane pyrimidine dimers. However, the molecular origin of this deficiency was not known and, because rice photolyase genes have not been cloned and sequenced, could not be determined by examining photolyase structural genes or upstream regulatory elements for mutations. We therefore used a photoflash approach, which showed that the deficiency in photorepair in vivo resulted from a functionally altered photolyase. These results were confirmed by studies with extracts, which showed that the Norin 1 photolyase–dimer complex was highly thermolabile relative to the wild-type Sasanishiki photolyase. This deficiency results from a structure/function alteration of photolyase rather than of nonspecific repair, photolytic, or regulatory elements. Thus, the molecular origin of this plant DNA repair deficiency, resulting from a spontaneously occurring mutation to UV radiation sensitivity, is defective photolyase. PMID:11006332

  20. Novel epidemic clones of Listeria monocytogenes, United States, 2011

    USDA-ARS?s Scientific Manuscript database

    This study determined whether four clinical and five food/environmental isolates associated with the 2011 U.S. cantaloupe listeriosis outbreak were previously identified outbreak strains, if they belonged to previously observed clonal complexes (CCs), to one of the five known epidemic clones (ECs) o...

  1. Geotemporal Analysis of Neisseria meningitidis Clones in the United States: 2000–2005

    PubMed Central

    Wiringa, Ann E.; Shutt, Kathleen A.; Marsh, Jane W.; Cohn, Amanda C.; Messonnier, Nancy E.; Zansky, Shelley M.; Petit, Susan; Farley, Monica M.; Gershman, Ken; Lynfield, Ruth; Reingold, Arthur; Schaffner, William; Thompson, Jamie; Brown, Shawn T.; Lee, Bruce Y.; Harrison, Lee H.

    2013-01-01

    Background The detection of meningococcal outbreaks relies on serogrouping and epidemiologic definitions. Advances in molecular epidemiology have improved the ability to distinguish unique Neisseria meningitidis strains, enabling the classification of isolates into clones. Around 98% of meningococcal cases in the United States are believed to be sporadic. Methods Meningococcal isolates from 9 Active Bacterial Core surveillance sites throughout the United States from 2000 through 2005 were classified according to serogroup, multilocus sequence typing, and outer membrane protein (porA, porB, and fetA) genotyping. Clones were defined as isolates that were indistinguishable according to this characterization. Case data were aggregated to the census tract level and all non-singleton clones were assessed for non-random spatial and temporal clustering using retrospective space-time analyses with a discrete Poisson probability model. Results Among 1,062 geocoded cases with available isolates, 438 unique clones were identified, 78 of which had ≥2 isolates. 702 cases were attributable to non-singleton clones, accounting for 66.0% of all geocoded cases. 32 statistically significant clusters comprised of 107 cases (10.1% of all geocoded cases) were identified. Clusters had the following attributes: included 2 to 11 cases; 1 day to 33 months duration; radius of 0 to 61.7 km; and attack rate of 0.7 to 57.8 cases per 100,000 population. Serogroups represented among the clusters were: B (n = 12 clusters, 45 cases), C (n = 11 clusters, 27 cases), and Y (n = 9 clusters, 35 cases); 20 clusters (62.5%) were caused by serogroups represented in meningococcal vaccines that are commercially available in the United States. Conclusions Around 10% of meningococcal disease cases in the U.S. could be assigned to a geotemporal cluster. Molecular characterization of isolates, combined with geotemporal analysis, is a useful tool for understanding the spread of virulent meningococcal clones and patterns of transmission in populations. PMID:24349182

  2. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    PubMed

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  3. Molecular analysis of RAPD DNA based markers: their potential use for the detection of genetic variability in jojoba (Simmondsia chinensis L Schneider).

    PubMed

    Amarger, V; Mercier, L

    1995-01-01

    We have applied the recently developed technique of random amplified polymorphic DNA (RAPD) for the discrimination between two jojoba clones at the genomic level. Among a set of 30 primers tested, a simple reproducible pattern with three distinct fragments for clone D and two distinct fragments for clone E was obtained with primer OPB08. Since RAPD products are the results of arbitrarily priming events and because a given primer can amplify a number of non-homologous sequences, we wondered whether or not RAPD bands, even those of similar size, were derived from different loci in the two clones. To answer this question, two complementary approaches were used: i) cloning and sequencing of the amplification products from clone E; and ii) complementary Southern analysis of RAPD gels using cloned or amplified fragments (directly recovered from agarose gels) as RFLP probes. The data reported here show that the RAPD reaction generates multiple amplified fragments. Some fragments, although resolved as a single band on agarose gels, contain different DNA species of the same size. Furthermore, it appears that the cloned RAPD products of known sequence that do not target repetitive DNA can be used as hybridization probes in RFLP to detect a polymorphism among individuals.

  4. Molecular cloning, developmental expression, and cellular localization of the 70-kDa RPA-1 subunit of Drosophila melanogaster.

    PubMed

    Perdigão, J; Logarinho, E; Avides, M C; Sunkel, C E

    1999-12-01

    Replication protein A (RPA) is a highly conserved multifunctional heterotrimeric complex, involved in DNA replication, repair, recombination, and possibly transcription. Here, we report the cloning of the gene that codes for the largest subunit of the Drosophila melanogaster RPA homolog, dmRPA70. In situ hybridization showed that dmRPA70 RNA is present in developing embryos during the first 16 cycles. After this point, dm-RPA70 expression is downregulated in cells that enter a G1 phase and exit the mitotic cycle, becoming restricted to brief bursts of accumulation from late G1 to S phase. This pattern of regulated expression is also observed in the developing eye imaginal disc. In addition, we have shown that the presence of cyclin E is necessary and sufficient to drive the expression of dmRPA70 in embryonic cells arrested in G1 but is not required in tissues undergoing endoreduplication. Immunolocalization showed that in early developing embryos, the dmRPA70 protein associates with chromatin from the end of mitosis until the beginning of the next prophase in a dynamic speckled pattern that is strongly suggestive of its association with replication foci.

  5. Molecular cloning, expression and characterization of a serine proteinase inhibitor gene from Entamoeba histolytica.

    PubMed

    Riahi, Yael; Siman-Tov, Rama; Ankri, Serge

    2004-02-01

    Serine proteinase inhibitors (serpins) are irreversible suicide inhibitors of proteinases that regulate a wide range of biological processes, including pathogen evasion of the host defence system. We report the cloning and characterization of a gene encoding a serpin from the protozoan parasite Entamoeba histolytica (Ehserp) that may function in this manner. The protein encoded by Ehserp contains 371 amino acids with a predicted mass of 42.6 kDa. Antibodies to a 42 kDa recombinant Ehserp react specifically with two bands of 42 and 49 kDa in trophozoite extracts. Ehserp has a cytoplasmic localization and is secreted by trophozoites incubated in the presence of mammalian cells, but not by resting trophozoites. A panel of mammalian serine proteinases was screened, but none of them was inhibited by the recombinant Ehserp. In contrast, the 49 kDa Ehserp present in the secretion product (SP) of activated macrophages interacted with human neutrophil cathepsin G to form a complex resistant to sodium dodecyl sulphate. We discuss the nature of the 42 and 49 kDa Ehserp and the possible roles that Ehserp may play in the survival of the parasite inside the host.

  6. Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials.

    PubMed

    Ishiguro, T; Nakajima, M; Naito, M; Muto, T; Tsuruo, T

    1996-02-15

    B16-F10 and B16-BL6 are B16 mouse melanoma sublines that preferentially metastasize to the lung following i.v. and s.c. injections, respectively. To study molecular mechanisms underlying the different metastatic behaviors exhibited by the B16 melanoma sublines, we performed differential hybridization of the genes transcribed in these cells and compared their expression levels. We isolated four genes that were highly expressed in B16-F10 cells but not in B16-BL6 cells: TI-225 (polyubiquitin), TI-229 (pyruvate kinase), TI-241 (LRF-1 homologue), and TI-227 (novel gene). Triosephosphate isomerase, 10-formyltetrahydrofolate dehydrogenase, tyrosinase-related protein 2, cytochrome c oxidase, ATP synthetase alpha subunit, RNA helicase, and ribosomal protein (L37, J1, acidic phosphoprotein), however, showed higher expression in B16-BL6 cells than in B16-F10 cells. Among these clones, transfection of TI-241 into the low metastatic clone F1 converted the parental cells from low- into high-metastatic cells. TI-241 may regulate the expression of various genes as a transcription factor in the complex process of metastasis.

  7. Molecular cloning and functional characterization of the promoter region of the human uncoupling protein-2 gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U

    1999-11-19

    As a member of the uncoupling protein family, UCP2 is ubiquitously expressed in rodents and humans, implicating a major role in thermogenesis. To analyze promoter function and regulatory motifs involved in the transcriptional regulation of UCP2 gene expression, 3.3 kb of 5'-flanking region of the human UCP2 (hUCP2) gene have been cloned. Sequence analysis showed that the promoter region of hUCP2 lacks a classical TATA or CAAT box, however, appeared GC-rich resulting in the presence of several Sp-1 motifs and Ap-1/-2 binding sites near the transcription initiation site. Functional characterization of human UCP2 promoter-CAT fusion constructs in transient expression assays showed that minimal promoter activity was observed within 65 bp upstream of the transcriptional start site (+1). 75 bp further upstream (from nt -141 to -66) a strong cis-acting regulatory element (or enhancer) was identified, which significantly enhanced basal promoter activity. The regulation of human UCP2 gene expression involves complex interactions among positive and negative regulatory elements distributed over a minimum of 3.3 kb of the promoter region. Copyright 1999 Academic Press.

  8. A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector.

    PubMed

    Junqueira, Bruna Rayane Teodoro; Nicolini, Cícero; Lucinda, Natalia; Orílio, Anelise Franco; Nagata, Tatsuya

    2014-03-01

    Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes.

    PubMed

    Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-07-24

    Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A + , candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A + , F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as "chemokine signaling pathway", "Toll-like receptor signaling pathway" and others, were remarkably much more than those from clone A + and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A + . In contrast to strong immune defense in resistant clone H, susceptible clone A + showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A + failed to resist virus offensive and evidently induced apoptosis or death. Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp.

  10. Unexpected heterogeneity derived from Cas9 ribonucleoprotein-introduced clonal cells at the HPRT1 locus.

    PubMed

    Sakuma, Tetsushi; Mochida, Keiji; Nakade, Shota; Ezure, Toru; Minagawa, Sachi; Yamamoto, Takashi

    2018-04-01

    Single-cell cloning is an essential technique for establishing genome-edited cell clones mediated by programmable nucleases such as CRISPR-Cas9. However, residual genome-editing activity after single-cell cloning may cause heterogeneity in the clonal cells. Previous studies showed efficient mutagenesis and rapid degradation of CRISPR-Cas9 components in cultured cells by introducing Cas9 ribonucleoproteins (RNPs). In this study, we investigated how the timing for single-cell cloning of Cas9 RNP-transfected cells affected the heterogeneity of the resultant clones. We carried out transfection of Cas9 RNPs targeting several loci in the HPRT1 gene in HCT116 cells, followed by single-cell cloning at 24, 48, 72 hr and 1 week post-transfection. After approximately 3 weeks of incubation, the clonal cells were collected and genotyped by high-resolution microchip electrophoresis and Sanger sequencing. Unexpectedly, long-term incubation before single-cell cloning resulted in highly heterogeneous clones. We used a lipofection method for transfection, and the media containing transfectable RNPs were not removed before single-cell cloning. Therefore, the active Cas9 RNPs were considered to be continuously incorporated into cells during the precloning incubation. Our findings provide a warning that lipofection of Cas9 RNPs may cause continuous introduction of gene mutations depending on the experimental procedures. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. cDNA Clones with Rare and Recurrent Mutations Found in Cancers | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at UT- MD Anderson Cancer Center has developed High-Throughput Mutagenesis and Molecular Barcoding (HiTMMoB)1,2 pipeline to construct mutant alleles open reading frame expression clones that are either recurrent or rare in cancers. These barcoded genes can be used for context-specific functional validation, detection of novel biomarkers (pathway activation) and targets (drug sensitivity).

  12. Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting

    PubMed Central

    Guo, Yan; Zhang, Jinliang; Yan, Yongfeng; Wu, Jian; Zhu, Nengwu; Deng, Changyan

    2015-01-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost. PMID:25925066

  13. Hsp25, a member of the Hsp30 family, promotes inclusion formation in response to stress.

    PubMed

    Katoh, Yumiko; Fujimoto, Mitsuaki; Nakamura, Kosuke; Inouye, Sachiye; Sugahara, Kazuma; Izu, Hanae; Nakai, Akira

    2004-05-07

    Protein aggregates are oligomeric complexes of misfolded proteins, and serve as the seeds of inclusion bodies termed aggresomes in the cells. Heat shock proteins (Hsps) prevent misfolding and aggregate formation. Here, we found that only avian Hsp25 dominantly accumulated in the aggresomes induced by proteasome inhibition. Molecular cloning of chicken Hsp25 (cHsp25) revealed that it belongs to the Hsp30 family, which is a subfamily of the alpha-crystallin/small Hsp gene family. Unexpectedly, overexpression of cHsp25 into HeLa cells promoted inclusion formation whereas overexpression of mouse Hsp27 and its chicken homologue did not. These results suggest that cHsp25 acts differently from other small Hsps on protein aggregates.

  14. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru, E-mail: tostars@mail.ru, E-mail: ugama@yandex.ru; Abramchik, Yu. A.; Zhukhlistova, N. E.

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sitesmore » were shown to be identical in both proteins.« less

  15. Preparation and screening of an arrayed human genomic library generated with the P1 cloning system.

    PubMed Central

    Shepherd, N S; Pfrogner, B D; Coulby, J N; Ackerman, S L; Vaidyanathan, G; Sauer, R H; Balkenhol, T C; Sternberg, N

    1994-01-01

    We describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophage P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight, and stored at -70 degrees C. The resulting library, designated DMPC-HFF#1 series A, consists of approximately 130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date we have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human alpha-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, beta-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. Images PMID:8146166

  16. Molecular physiology of weight regulation in mice and humans

    PubMed Central

    Leibel, RL

    2009-01-01

    Evolutionary considerations relating to efficiency in reproduction, and survival in hostile environments, suggest that body energy stores are sensed and actively regulated, with stronger physiological and behavioral responses to loss than gain of stored energy. Many physiological studies support this inference, and suggest that a critical axis runs between body fat and the hypothalamus. The molecular cloning of leptin and its receptor—projects based explicitly on the search for elements in this axis—confirmed the existence of this axis and provided important tools with which to understand its molecular physiology. Demonstration of the importance of this soma-brain reciprocal connection in body weight regulation in humans has been pursued using both classical genetic approaches and studies of physiological responses to experimental weight perturbation. This paper reviews the history of the rationale and methodology of the cloning of leptin (Lep) and the leptin receptor (Lepr), and describes some of the clinical investigation characterizing this axis. PMID:19136999

  17. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China.

    PubMed

    Li, Ling-Fei; Li, Tao; Zhang, Yan; Zhao, Zhi-Wei

    2010-03-01

    The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of Bothriochloa pertusa, Cajanus cajan and Heteropogon contortus in a fallow land (FL) and an undisturbed land (UL) were characterized. The large subunit rDNA genes of AMF from roots were amplified and cloned. A total of 2353 clones were screened by restriction fragment length polymorphism, and 428 clones were subsequently sequenced. A total of 393 AMF sequences, which were grouped into 100 operational taxonomic units, were obtained. Phylogenetic analysis revealed that the AMF sequences belonged to Glomus, Acaulospora and Scutellospora, and that Glomus was the dominant genus. Of the 393 AMF sequences, 81% were novel. The diversity of AMF colonizing the same plant species was higher in the UL than in the FL, which confirmed strongly from the molecular evidence that soil disturbance reduced AMF population and species richness. The results revealed that AMF communities were significantly different among host-plant species and between the two habitats. The similarity of AMF communities colonizing different plant species within a habitat was higher than that of the same plant species from different habitats. The molecular evidence supported our previous hypothesis based on morphological analyses that AMF communities were more influenced by habitats compared with host preference.

  18. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function[OPEN

    PubMed Central

    2018-01-01

    Plants have many, highly variable resistance (R) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize (Zea mays) Hm1, was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. PMID:29382771

  19. Molecular cloning of the Coch gene of guinea pig inner ear and its expression analysis in cultured fibrocytes of the spiral ligament.

    PubMed

    Li, Lishu; Ikezono, Tetsuo; Sekine, Kuwon; Shindo, Susumu; Matsumura, Tomohiro; Pawankar, Ruby; Ichimiya, Issei; Yagi, Toshiaki

    2010-08-01

    We have cloned guinea pig Coch cDNA and the sequence information will be useful for future molecular study combined with physiological experiments. Proper Coch gene expression appears to be dependent on the unique extracellular micro-environment of the inner ear in vivo. These results provide insight into the Coch gene expression and its regulation. To characterize the guinea pig Coch gene, we performed molecular cloning and expression analysis in the inner ear and cultured fibrocytes of the spiral ligament. The Coch cDNA was isolated using RACE. Cochlin isofoms were studied by Western blot using three different types of mammalian inner ear. The cochlear fibrocytes were cultured and characterized by immunostaining. Coch gene expression in the fibrocytes was investigated and the influence of cytokine stimulation was evaluated. The full-length 1991 bp Coch cDNA that encodes a 553 amino acid protein was isolated. The sequence had significant homology with other mammals, and the sizes of the Cochlin isoforms were identical. In the cultured fibrocytes, Coch mRNA was expressed in a very small amount and the isoform production was different, compared with the results in vivo. Cytokine stimulation did not alter the level of mRNA expression or isoform formation.

  20. Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes.

    PubMed Central

    Bigler, J; Eisenman, R N

    1994-01-01

    Thyroid hormone (T3) receptor (TR) is a ligand-dependent transcription factor that acts through specific binding sites in the promoter region of target genes. In order to identify new genes that are regulated by T3, we used anti-TR antiserum to immunoprecipitate TR-DNA complexes from GH4 cell nuclei that had previously been treated with a restriction enzyme. Screening of the immunopurified, cloned DNA for TR binding sites by electrophoretic mobility shift assay yielded 53 positive clones. A subset of these clones was specifically immunoprecipitated with anti-TR antiserum and may therefore represent biologically significant binding sites. One of these clones, clone 122, was characterized in detail. It includes sequences highly related to the NICER long terminal repeat-like element and contains three TR binding sites as determined by DNase I footprinting. Two of the clone 122 TR binding sites are located upstream of the TATA box, and one is located downstream. The TR binding site downstream from the promoter was necessary and sufficient to confer T3-dependent regulation in transient transfection experiments. Expression of a reporter construct under the control of the clone 122 promoter region was activated by TR in the absence of ligand and returned to basal levels after T3 addition. Clone 122 sequences hybridize to at least two different mRNAs of approximately 6 and 10 kb from GH4 cells. The levels of both of these mRNAs increased upon removal of T3. Our studies suggest that specific immunoprecipitation of chromatin allows identification of binding sites and target genes for transcription factors. Images PMID:7935476

  1. Stoichiometric differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex.

    PubMed

    Weider, Lawrence J; Jeyasingh, Punidan D; Looper, Karen G

    2008-11-01

    The maintenance of genetic and species diversity in an assemblage of genotypes (clones) in the Daphnia pulex species complex (Cladocera: Anomopoda) in response to variation in the carbon:phosphorus ratio (quantity and quality) of the green alga, Scenedesmus acutus, was examined in a 90-day microcosm competition experiment. Results indicated that mixed assemblages of seven distinct genotypes (representing clonal lineages of D. pulex, D. pulicaria and interspecific hybrids) showed rapid loss of genetic diversity in all treatments (2 x 2 factorial design, high vs. low quantity, and high vs. low quality). However, the erosion of diversity (measured as the effective number of clones) was slowest under the poorest food conditions (i.e., low quantity, low quality) and by the conclusion of the experiment (90 days) had resulted in the (low, low) treatment having significantly greater genetic diversity than the other three treatments. In addition, significant genotype (clone) x (food) environment interactions were observed, with a different predominant species/clone found under low food quality versus high food quality (no significant differences were detected for the two food quantities). A clone of D. pulex displaced the other clones under low food quality conditions, while a clone of D. pulicaria displaced the other clones in the high food quality treatments. Subsequent life-history experiments were not sufficient to predict the outcome of competitive interactions among members of this clonal assemblage. Our results suggest that genetic diversity among herbivore species such as Daphnia may be impacted not only by differences in food quantity but also by those in food quality and could be important in the overall maintenance of genetic diversity in natural populations.

  2. Benefits and problems with cloning animals.

    PubMed Central

    Smith, L C; Bordignon, V; Babkine, M; Fecteau, G; Keefer, C

    2000-01-01

    Animal cloning is becoming a useful technique for producing transgenic farm animals and is likely to be used to produce clones from valuable adults. Other applications will also undoubtedly be discovered in the near future, such as for preserving endangered breeds and species. Although cloning promises great advantages for commerce and research alike, its outcome is not always certain due to high pregnancy losses and high morbidity and mortality during the neonatal period. Research into the mechanisms involved in the reprogramming of the nucleus is being conducted throughout the world in an attempt to better understand the molecular and cellular mechanisms involved in correcting these problems. Although the cause of these anomalies remains mostly unknown, similar phenotypes have been observed in calves derived through in vitro fertilization, suggesting that culture conditions are involved in these phenomena. In the meantime, veterinarians and theriogenologists have an important role to play in improving the efficiency of cloning by finding treatments to assure normal gestation to term and to develop preventative and curative care for cloned neonates. Images Figure 1. PMID:11143925

  3. History of the molecular biology of cytomegaloviruses.

    PubMed

    Stinski, Mark F

    2014-01-01

    The history of the molecular biology of cytomegaloviruses from the purification of the virus and the viral DNA to the cloning and expression of the viral genes is reviewed. A key genetic element of cytomegalovirus (the CMV promoter) contributed to our understanding of eukaryotic cell molecular biology and to the development of lifesaving therapeutic proteins. The study of the molecular biology of cytomegaloviruses also contributed to the development of antivirals to control the viral infection.

  4. Shifts in the Clonal Distribution of Methicillin-Resistant Staphylococcus aureus in Kuwait Hospitals: 1992-2010

    PubMed Central

    Boswihi, Samar S.; Udo, Edet E.; Al-Sweih, Noura

    2016-01-01

    Background As the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) is constantly changing globally, determining the prevailing MRSA clones in a local healthcare facility is important for better management of infections. This study investigated clonal composition and distribution of MRSA isolates in Kuwait’s hospitals using a combination of molecular typing methods. Materials and Methods In total, 400 non-repeat MRSA isolates were obtained between 1992 and 2010 in 13 public hospitals and were characterized using antibiogram, SCCmec typing, spa typing, and multilocus-sequence typing. Clonal assignment and detection of virulence factors and antibiotic resistance genes were performed by DNA microarray. Results The isolates were resistant to kanamycin (74.2%), erythromycin (69.5%), tetracycline (66.7%), gentamicin (61%), ciprofloxacin, (61%), fusidic acid (53.5%), clindamycin (41.5%), high-level mupirocin resistance (5.2%) and carried aphA3, aacA-aphD, ermA, ermC, mupA, tetK, tetM, fusC and far1. Molecular typing revealed 31 different MRSA clones consisting of ST239-MRSA-III (52.2%), ST22-MRSA-IV (9.2%), ST80-MRSA-IV (7.5%), ST5-MRSA-II/IV/V/VI (6.5%), ST30-MRSA-IV (3.5%), ST241-MRSA-III (2.7%), ST6-MRSA-IV (2.2%), ST36-MRSA-II (2%) and ST772-MRSA-V (1.75%). The isolates differed in the carriage of genes for enterotoxins, Panton–Valentine leukocidin (PVL), toxic shock syndrome toxin (tst-1), arginine catabolic mobile element (ACME) and exfoliative toxins. The number of clones increased from one (ST239-III-t037) in 1992 to 30 in 2010 including ST8-IV-t008 [PVL+] [ACME+] (USA300), ST772-V (Bengal Bay clone) and ST2816 identified for the first time in Kuwait. Conclusion The study revealed that the MRSA isolates belonged to diverse clones that changed in numbers and diversity overtime. Although ST239-MRSA-III, a healthcare-associated clone remained the dominant MRSA clone overtime, the newly emerged clones consisted mostly of community-associated. PMID:27631623

  5. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.

    PubMed

    Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi

    2014-04-01

    To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.

  6. Comparative Analysis of Growth and Photosynthetic Characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) Hybrid Clones of Different Ploidides

    PubMed Central

    Bian, Xiuyan; Liu, Mengran; Sun, Yanshuang; Jiang, Jing; Wang, Fuwei; Li, Shuchun; Cui, Yonghong; Liu, Guifeng; Yang, Chuanping

    2015-01-01

    To evaluate differences among poplar clones of various ploidies, 12 hybrid poplar clones (P. simonii × P. nigra) × (P. nigra × P. simonii) with different ploidies were used to study phenotypic variation in growth traits and photosynthetic characteristics. Analysis of variance showed remarkable differences for each of the investigated traits among these clones (P < 0.01). Coefficients of phenotypic variation (PCV) ranged from 2.38% to 56.71%, and repeatability ranged from 0.656 to 0.987. The Pn (photosynthetic rate) photosynthetic photon flux density (PPFD) curves of the 12 clones were S-shaped, but the Pn-ambient CO2 (Ca) curves were shaped like an inverted “V”. The stomatal conductance (Gs)-PPFD and transpiration rate (Tr)-PPFD curves had an upward tendency; however, with increasing PFFD, the intercellular CO2 concentration (Ci)-PPFD curves had a downward tendency in all of the clones. The Pn-PPFD and Pn-Ca curves followed the pattern of a quadratic equation. The average light saturation point and light compensation point of the triploid clones were the highest and lowest, respectively, among the three types of clones. For Pn-Ca curves, diploid clones had a higher average CO2 saturation point and average CO2 compensation point compared with triploid and tetraploid clones. Correlation analyses indicated that all investigated traits were strongly correlated with each other. In future studies, molecular methods should be used to analyze poplar clones of different ploidies to improve our understanding of the growth and development mechanisms of polyploidy. PMID:25867100

  7. Cloning, sequence, and expression of a blood group B active recombinant alpha-D-galactosidase from pinto bean (Phaseolus vulgaris).

    PubMed

    Davis, M O; Hata, D J; Johnson, S A; Jones, D E; Harmata, M A; Evans, M L; Walker, J C; Smith, D S

    1997-07-01

    A cDNA encoding pinto bean alpha-D-galactosidase [E.C. 3.2.1.22] was obtained by amplification of cDNA using highly conserved sequences found in eucaryotic alpha-D-galactosidases. Subsequently a full length Phaseolus cDNA clone was obtained that is 1537 nt long and contains untranslated 5' and 3' sequences. The nucleotide sequence of the cDNA has a high degree of homology with other eucaryotic alpha-D-galactosidase genes. The recombinant alpha-D-galactosidase (rGal) was expressed in Escherichia coli and purified by ion exchange and affinity chromatography. Purified rGal was homogeneous by SDS-PAGE and had relative masses of 40.1 and 45.4 kDa under nonreducing and reducing conditions, respectively. The N-terminal sequence of the expressed protein contained the sequence GNGLGQTPPMG corresponding to that deduced from the cDNA sequence. The native molecular weight for rGal was determined to be 32.18 kDa by Sephacryl S-200 chromatography. The specific activity of the rGal was 349 mu moles of PNP-alpha-D-galactopyranoside hydrolyzed per mg of pure rGal per min. rGal was highly specific for alpha-D-galactosyl residues and degraded B oligosaccharide. No detectable hemagglutinin or protease activity was present in the preparations. Furthermore, rGal was active against the blood group B antigen on native human erythrocytes in cell suspension assays. The only detectable RBC phenotypic change was loss of the B and P1 epitopes. Recombinant Phaseolus vulgaris alpha-D-galactosidase may have useful biotechnical applications in the potential mass production of enzymatically converted, universally transfusable type O RBCs. alpha-D-galactosidase [E.C. 3.2.1.22] has been purified from a variety of procaryotic and eucaryotic species. Most alpha-D-galactosidases have similar low molecular weight substrate specificities, but activity against high molecular weight substrates is variable. Terminal alpha-D-galactoside residues are present in glycoproteins and glycolipids. Some alpha-D-galactosidases have activity against alpha-D-galactosyl residues on cell membrane glycoconjugates. Glycosidases with this property are useful for carbohydrate structural studies and biotechnical applications. Enzymes free of other glycosidase activities with activity near neutral pH are particularly useful for membrane modification studies on native cells. Complex sugar chains in glycolipids and glycoproteins have often been implicated in the growth and development of eucaryotes. In particular, complex sugar chains play an important role in the recognition of self in the immune system. Some alpha-D-galactosidases can modify certain carbohydrate membrane epitopes, thereby modulating the immune response. For example, the blood group B epitope expressed on erythrocytes contains a terminal alpha-D-galactosyl residue. Individuals lacking this antigen produce naturally occurring complement fixing antibodies to the B epitope. Hydrolysis of this terminal saccharide destroys the antigenic activity of the B determinant producing H antigen (blood type O) on erythrocytes. Only rare individuals produce clinically significant antibodies to the H antigen, and therefore, type O red blood cells are "universally" compatible and in great demand. Dhar purified alpha-D-galactosidase isozymes from Phaseolus vulgaris and characterized their activity. To our knowledge, our laboratory, in a brief report, is the first to describe the cloning of the gene and the use of recombinant enzyme for seroconverting blood type B to O cells. This paper describes the cloning, sequence, expression, purification, and characterization of recombinant alpha-D-galactosidase. Activity of the recombinant enzyme on the native human erythrocyte blood group B epitope is shown.

  8. Interaction of 4.1G and cGMP-gated channels in rod photoreceptor outer segments.

    PubMed

    Cheng, Christiana L; Molday, Robert S

    2013-12-15

    In photoreceptors, the assembly of signaling molecules into macromolecular complexes is important for phototransduction and maintaining the structural integrity of rod outer segments (ROSs). However, the molecular composition and formation of these complexes are poorly understood. Using immunoprecipitation and mass spectrometry, 4.1G was identified as a new interacting partner for the cyclic-nucleotide gated (CNG) channels in ROSs. 4.1G is a widely expressed multifunctional protein that plays a role in the assembly and stability of membrane protein complexes. Multiple splice variants of 4.1G were cloned from bovine retina. A smaller splice variant of 4.1G selectively interacted with CNG channels not associated with peripherin-2-CNG channel complex. A combination of truncation studies and domain-binding assays demonstrated that CNG channels selectively interacted with 4.1G through their FERM and CTD domains. Using immunofluorescence, labeling of 4.1G was seen to be punctate and partially colocalized with CNG channels in the ROS. Our studies indicate that 4.1G interacts with a subset of CNG channels in the ROS and implicate this protein-protein interaction in organizing the spatial arrangement of CNG channels in the plasma membrane of outer segments.

  9. Phenotypic and genetic characteristics of fluoroquinolone- and methicillin-resistant Staphylococcus aureus.

    PubMed

    Moreno-Flores, Antonio; Potel-Alvarellos, Carmen; Otero-Fernández, Susana; Álvarez-Fernández, Maximiliano

    2017-07-20

    Fluoroquinolone resistance in methicillin-resistant Staphylococcus aureus (MRSA) has increased in recent years. The objective of this study was to characterise two MRSA populations, one susceptible to fluoroquinolones and other resistant identifying the clonal types and the differential characteristics of both MRSA populations. Molecular typing using PFGE, MLST, spa and SSCmec was performed on 192 MRSA strains isolated from 2009 to 2011, 49 only oxacillin-resistant (OX-R) and 143 oxacillin and levofloxacin-resistant (OX-R-LEV-R). Mutations that conferred resistance to fluoroquinolones, hypermutable phenotypes and the presence of eight microbial surface components recognising adhesive matrix molecules (MSCRAMMs) were also studied. A statistically significant increase in the OX-R-LEV-R phenotype was observed (p<0.05). The most common clone of the OX-R isolates was sequence type (ST) 8 (32.6%), followed by ST72 (26.5%) and ST5 (26.5%). In the OX-R-LEV-R phenotype, the ST5 clone was the most common (65.7%), followed by ST72 (15.4%), and ST125 (12.6%). All isolates except the ST398 clone carried the SCCmecIVc. Clones ST5, ST72, ST125, and ST30 had hypermutable phenotypes. The ST72 clone and the ST30 clone in the OX-R phenotype harboured the highest number of MSCRAMMs. ST5 and ST72 clones were the most frequent clones identified in OX-R-LEV-R phenotype. Both clones showed a hypermutable phenotype that favours their selection as the fluoroquinolone resistant clones. The genetic relationships identified indicate that OX-R-LEV-R clones have evolved from OX-R MRSA clones. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  10. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field.

    PubMed

    Bailey, Bryan A; Melnick, Rachel L; Strem, Mary D; Crozier, Jayne; Shao, Jonathan; Sicher, Richard; Phillips-Mora, Wilberth; Ali, Shahin S; Zhang, Dapeng; Meinhardt, Lyndel

    2014-09-01

    Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  11. Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.

    PubMed

    Lv, Juan; Qian, Ying; Ni, Xiaoyan; Xu, Xiuping; Dong, Xuejun

    2017-03-01

    The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.

  12. Molecular analysis of the mouse agouti gene and the role of dominant agouti-locus mutations in obesity and insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.

    1994-09-01

    The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, thatmore » is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.« less

  13. Highly complex neutralization determinants on a monophyletic lineage of newly transmitted subtype C HIV-1 Env clones from India.

    PubMed

    Kulkarni, Smita S; Lapedes, Alan; Tang, Haili; Gnanakaran, S; Daniels, Marcus G; Zhang, Ming; Bhattacharya, Tanmoy; Li, Ming; Polonis, Victoria R; McCutchan, Francine E; Morris, Lynn; Ellenberger, Dennis; Butera, Salvatore T; Bollinger, Robert C; Korber, Bette T; Paranjape, Ramesh S; Montefiori, David C

    2009-03-15

    Little is known about the neutralization properties of HIV-1 in India to optimally design and test vaccines. For this reason, a functional Env clone was obtained from each of ten newly acquired, heterosexually transmitted HIV-1 infections in Pune, Maharashtra. These clones formed a phylogenetically distinct genetic lineage within subtype C. As Env-pseudotyped viruses the clones were mostly resistant to IgG1b12, 2G12 and 2F5 but all were sensitive to 4E10. When compared to a large multi-subtype panel of Env-pseudotyped viruses (subtypes B, C and CRF02_AG) in neutralization assays with a multi-subtype panel of HIV-1-positive plasma samples, the Indian Envs were remarkably complex. With the exception of the Indian Envs, results of a hierarchical clustering analysis showed a strong subtype association with the patterns of neutralization susceptibility. From these patterns we were able to identify 19 neutralization cluster-associated amino acid signatures in gp120 and 14 signatures in the ectodomain and cytoplasmic tail of gp41. We conclude that newly transmitted Indian Envs are antigenically complex in spite of close genetic similarity. Delineation of neutralization-associated amino acid signatures provides a deeper understanding of the antigenic structure of HIV-1 Env.

  14. Cloning, clones and clonal disease.

    PubMed

    Luzzatto, L

    2000-01-01

    In the past, cloning has been familiar to plant breeders because many plants can be easily reproduced in this way, bypassing the lengthy process of cross-fertilisation. Recently, the concept of cloning has become popular in human biology and medicine on two accounts. First, individual genes can be cloned from the enormous complexity of the DNA that makes up the human genetic material. It is expected that, within a few years, all the estimated 100,000 human genes will be isolated by this approach. This should make it possible to identify all the genes that determine the individual characteristics of human beings, including those responsible for causing human diseases or for making people more or less susceptible to pick up diseases from the environment. Cloned genes made into pharmaceutical products are already in use for treating a variety of diseases, from hormonal deficiencies to certain types of anaemia.

  15. Instability of plasmid DNA sequences: macro and micro evolution of the antibiotic resistance plasmid R6-5.

    PubMed

    Timmis, K N; Cabello, F; Andrés, I; Nordheim, A; Burkhardt, H J; Cohen, S N

    1978-11-16

    Detailed examination of the structure of cloned DNA fragments of the R6-5 antibiotic resistance plasmid has revealed a substantial degree of polynucleotide sequence heterogeneity and indicates that sequence rearrangements in plasmids and possible other replicons occur more frequently than has hitherto been appreciated. The sequences changes in cloned R6-5 fragments were shown in some instances to have occurred prior to cloning, i.e. existing in the original population of R6-5 molecules that was obtained from a single bacterial clone and by several different criteria judged to be homogeneous, and in others to have occurred either during the cloning procedure or during subsequent propagation of hybrid molecules. The molecular changes that are described involved insertion/deletion of the previously characterized IS2 insertion element, formation of a new inverted repeat structure probably by duplication of a preexisting R6-5 DNA sequence, sequence inversion, and loss and gain of restriction endonuclease cleavage sites.

  16. Trans-membrane Signaling in Photosynthetic State Transitions

    PubMed Central

    Singh, Sandeep K.; Hasan, S. Saif; Zakharov, Stanislav D.; Naurin, Sejuti; Cohn, Whitaker; Ma, Jia; Whitelegge, Julian P.; Cramer, William A.

    2016-01-01

    Trans-membrane signaling involving a serine/threonine kinase (Stt7 in Chlamydomonas reinhardtii) directs light energy distribution between the two photosystems of oxygenic photosynthesis. Oxidation of plastoquinol mediated by the cytochrome b6f complex on the electrochemically positive side of the thylakoid membrane activates the kinase domain of Stt7 on the trans (negative) side, leading to phosphorylation and redistribution (“state transition”) of the light-harvesting chlorophyll proteins between the two photosystems. The molecular description of the Stt7 kinase and its interaction with the cytochrome b6f complex are unknown or unclear. In this study, Stt7 kinase has been cloned, expressed, and purified in a heterologous host. Stt7 kinase is shown to be active in vitro in the presence of reductant and purified as a tetramer, as determined by analytical ultracentrifugation, electron microscopy, and electrospray ionization mass spectrometry, with a molecular weight of 332 kDa, consisting of an 83.41-kDa monomer. Far-UV circular dichroism spectra show Stt7 to be mostly α-helical and document a physical interaction with the b6f complex through increased thermal stability of Stt7 secondary structure. The activity of wild-type Stt7 and its Cys-Ser mutant at positions 68 and 73 in the presence of a reductant suggest that the enzyme does not require a disulfide bridge for its activity as suggested elsewhere. Kinase activation in vivo could result from direct interaction between Stt7 and the b6f complex or long-range reduction of Stt7 by superoxide, known to be generated in the b6f complex by quinol oxidation. PMID:27539852

  17. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center

    PubMed Central

    Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J.; Dijkshoorn, Lenie

    2016-01-01

    Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality. PMID:27223476

  18. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center.

    PubMed

    De Vos, Daniel; Pirnay, Jean-Paul; Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J; Dijkshoorn, Lenie

    2016-01-01

    Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality.

  19. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    USDA-ARS?s Scientific Manuscript database

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  20. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    USDA-ARS?s Scientific Manuscript database

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  1. Molecular Approach to Hypothalamic Rhythms

    DTIC Science & Technology

    1994-03-14

    in vitro to Targeted Cloning Strategy for reset or phase shift circadian rhythms of neuronal G Protein-Coupled Receptors activity in the SCN (Prosser...Kozak, M. (1984). Compilation and analysis of sequences up- nabe, S. (1992). Phase - resetting effect of 8-OH-DPAT, a seroto- Neuron 458 ninA receptor...JR, Lohse MJ, Kobilka BK. Caron MJ and Medanic M and Gillette MU (1992) Serotonin regulates the Lefkowitz. RJ (1988) The genomic clone G-21 which phase

  2. Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kalyan S.

    Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. In this paper, we present the conceptual simulation framework, algorithmic foundations, and runtime interface of CloneX, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a largemore » parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—delivering a speed up of over two orders of magnitude compared to replicated runs. Finally, the results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the CloneX interface.« less

  3. Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kalyan S.

    2018-01-31

    Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. In this paper, we present the conceptual simulation framework, algorithmic foundations, and runtime interface of CloneX, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a largemore » parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—delivering a speed up of over two orders of magnitude compared to replicated runs. Finally, the results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the CloneX interface.« less

  4. Introducing DNA concepts to Swiss high school students based on a Brazilian educational game.

    PubMed

    da S Cardona, Tânia; Spiegel, Carolina N; Alves, Gutemberg G; Ducommun, Jacques; Henriques-Pons, Andrea; Araújo-Jorge, Tania C

    2007-11-01

    Subjects such as techniques for genetic diagnosis, cloning, sequencing, and gene therapy are now part of our lives and raise important questions about ethics, future medical diagnosis, and such. Students from different countries observe this explosion of biotechnological applications regardless of their social, academic, or cultural backgrounds, although they are not usually familiar with their theoretical genetic bases. To introduce some molecular biology concepts for high school students, we developed a new problem for the Brazilian board game "Discovering the cell" ("Célula Adentro©" in Portuguese), a pedagogic tool based on inquiry-, cooperative-, and problem-based learning. This problem (Case) is based on the forensic DNA, which represents an interesting theme for students, as it recurrently appears on newspapers and television series. In this work, we tested this game with secondary students and teachers from Switzerland. Our results indicate that the game "Discovering the cell" is well accepted by both students and teachers and may represent a good pedagogical approach to help teaching complex themes in molecular biology, even with students from different socioeconomical, cultural, and academic backgrounds. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.

  5. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    PubMed

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  6. Echinostoma caproni: identification of enolase in excretory/secretory products, molecular cloning, and functional expression.

    PubMed

    Marcilla, Antonio; Pérez-García, Ana; Espert, Ana; Bernal, Dolores; Muñoz-Antolí, Carla; Esteban, José Guillermo; Toledo, Rafael

    2007-09-01

    In order to investigate molecules that could be involved in host-trematode relationships, we have analysed the excretory/secretory products (ESP) of Echinostoma caproni following a proteomic approach. Actin, Gluthathione S-transferase (GST) and enolase have been identified in the ESP. Enolase, observed to be one of the most abundant proteins, was further characterized. The molecular cloning and in vitro expression in Escherichia coli of E. caproni enolase allowed us to determine that the protein contains 431 amino acids and a theoretical MW of 46272 Da. E. caproni enolase shows high homology to other trematode enolases. The recombinant protein binds specifically to human plasminogen in vitro, as observed for the native protein, confirming its properties as a host-interacting molecule.

  7. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  8. Molecular cloning, expression pattern, and 3D structural prediction of the cold inducible RNA-binding protein (CIRP) in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2015-02-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.

  9. From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus

    PubMed Central

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Neto, José Diomedes; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-01-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  10. Molecular Characteristics of Staphylococcus aureus Causing Bovine Mastitis between 2014 and 2015.

    PubMed

    Li, Tianming; Lu, Huiying; Wang, Xing; Gao, Qianqian; Dai, Yingxin; Shang, Jun; Li, Min

    2017-01-01

    Staphylococcus aureus is highly pathogenic and can cause diseases in both humans and domestic animals. In animal species, including ruminants, S. aureus may cause severe or sub-clinical mastitis. This study aimed to investigate the molecular profile, antimicrobial resistance, and genotype/phenotype correlation of 212 S. aureus isolates recovered from cases of bovine mastitis from 2014 to 2015 in the Shanghai and Zhejiang areas of China. Nineteen sequence types (STs) were determined by multi-locus sequence typing, while the dominant ST was ST97, followed by ST520, ST188, ST398, ST7, and ST9. Within 14 methicillin-resistant S. aureus (MRSA) isolates and 198 methicillin-susceptible S. aureus (MSSA) isolates, ST97 was the predominant MSSA clone and ST9-MRSA-SCCmecXII-spa t899 was the most common MRSA clone. The MRSA strains showed much higher rates of resistance to multiple antibiotics than did MSSA strains. Compared with other MSSA strains, MSSA ST398 was more resistant to clindamycin, erythromycin, and ciprofloxacin. No isolates were resistant to vancomycin, teicoplanin, or linezolid. The molecular profiles of the virulence genes varied in different strains. ST520 strains carried seg-sei-sem-sen-seo genes, and ST9 and ST97 harbored sdrD-sdrE genes. Virulence phenotype analysis showed diversity in different clones. Biofilm formation ability was significantly enhanced in ST188 and ST7, and red blood cell lysis capacity was relatively strong in all S. aureus strains of animal origin except ST7. Our results indicate that MSSA was the predominant S. aureus strain causing bovine mastitis in eastern regions of China. However, the presence of multidrug resistant and toxigenic MRSA clone ST9 suggests that comprehensive surveillance of S. aureus infection should be implemented in the management of animal husbandry products.

  11. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences.

    PubMed

    Nasser, Waleed; Beres, Stephen B; Olsen, Randall J; Dean, Melissa A; Rice, Kelsey A; Long, S Wesley; Kristinsson, Karl G; Gottfredsson, Magnus; Vuopio, Jaana; Raisanen, Kati; Caugant, Dominique A; Steinbakk, Martin; Low, Donald E; McGeer, Allison; Darenberg, Jessica; Henriques-Normark, Birgitta; Van Beneden, Chris A; Hoffmann, Steen; Musser, James M

    2014-04-29

    We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.

  12. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences

    PubMed Central

    Nasser, Waleed; Beres, Stephen B.; Olsen, Randall J.; Dean, Melissa A.; Rice, Kelsey A.; Long, S. Wesley; Kristinsson, Karl G.; Gottfredsson, Magnus; Vuopio, Jaana; Raisanen, Kati; Caugant, Dominique A.; Steinbakk, Martin; Low, Donald E.; McGeer, Allison; Darenberg, Jessica; Henriques-Normark, Birgitta; Van Beneden, Chris A.; Hoffmann, Steen; Musser, James M.

    2014-01-01

    We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD+-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide. PMID:24733896

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahabieh, Matthew S., E-mail: dahabieh@interchange.ubc.ca; Ooms, Marcel, E-mail: marcel.ooms@mssm.edu; Malcolm, Tom, E-mail: tmalc1@yahoo.com

    Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutationsmore » in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.« less

  14. Molecular diagnostic development for begomovirus-betasatellite complexes undergoing diversification: A case study.

    PubMed

    Brown, Judith K; Ur-Rehman, Muhammad Zia; Avelar, Sofia; Chingandu, N; Hameed, Usman; Haider, Saleem; Ilyas, Muhammad

    2017-09-15

    At least five begomoviral species that cause leaf curl disease of cotton have emerged recently in Asia and Africa, reducing fiber quality and yield. The potential for the spread of these viruses to other cotton-vegetable growing regions throughout the world is extensive, owing to routine, global transport of alternative hosts of the leaf curl viruses, especially ornamentals. The research reported here describes the design and validation of polymerase chain reaction (PCR) primers undertaken to facilitate molecular detection of the two most-prevalent leaf curl-associated begomovirus-betasatellite complexes in the Indian Subcontinent and Africa, the Cotton leaf curl Kokhran virus-Burewala strain and Cotton leaf curl Gezira virus, endemic to Asia and Africa, respectively. Ongoing genomic diversification of these begomoviral-satellite complexes was evident based on nucleotide sequence alignments, and analysis of single nucleotide polymorphisms, both factors that created new challenges for primer design. The additional requirement for species and strain-specific, and betasatellite-specific primer design, imposes further constraints on primer design and validation due to the large number of related species and strains extant in 'core leaf curl virus complex', now with expanded distribution in south Asia, the Pacific region, and Africa-Arabian Peninsula that have relatively highly conserved coding and non-coding regions, which precludes much of the genome-betasatellite sequence when selecting primer 'targets'. Here, PCR primers were successfully designed and validated for detection of cloned viral genomes and betasatellites for representative 'core leaf curl' strains and species, distant relatives, and total DNA isolated from selected plant species. The application of molecular diagnostics to screen plant imports prior to export or release from ports of entry is expected to greatly reduce the likelihood of exotic leaf curl virus introductions that could dramatically affect the production of cotton as well as vegetable and ornamental crop hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification and sequencing of members of a drought-induced multigene family in Atriplex canescens (salt bush)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Chen; Cairney, J.; Newton, R.J.

    1991-05-01

    Atriplex canescens (Pursh.) Nutt. is known to have a high degree of morphological and physiological drought-tolerance, which appears to be related to molecular responses. A cDNA library, constructed from drought-induced messenger RNA, was differentially screened with radioactively labelled cDNA probes synthesized from mRNA extracted from stressed and non-stressed Atriplex. Two clones named 19-3 and 27-3, whose expression is induced by drought-stress, have been characterized. Sequence analysis shows that they are more than 96% homologous. Each clone has an open reading frame which specifies a protein of 95 amino acids (12.77 kDa and 12.74 kDa respectively.) In vitro transcription and translationmore » of each clone results in a single protein of apparent molecular weight 8.6 kDa. The disparity in size may be due to secondary structure, dictated, at least in part, by a highly charged carboxy terminus which may be important for the function of these proteins in drought tolerance.« less

  16. [cDNA library construction from panicle meristem of finger millet].

    PubMed

    Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B

    2014-01-01

    The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.

  17. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    PubMed

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.

  18. Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate.

    PubMed

    Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong

    2008-06-01

    A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.

  19. Molecular cloning, sequencing, and expression of Eimeria tenella HSP70 partial gene.

    PubMed

    Bogado, A L G; Martins, G F; Sasse, J P; Guimarães, J da S; Garcia, J L

    2017-03-15

    Members of the Eimeria genus are protozoan parasites of the subphylum Apicomplexa (Eimeriidae family), and belong to the coccidia group. Eimeria tenella is one of the most pathogenic species owing to its ability to penetrate the mucosa, and cause inflammation and damage. It is an obligate intracellular parasite that causes disease by destroying the host cells during multiplication. Heat shock protein 70 (HSP70) is a molecular chaperone that prevents cellular stress. The objective of this study was to clone, sequence, and express E. tenella HSP70 protein. After selecting the region of highest hydrophilicity in the hsp70 gene, we cloned complementary DNA (cDNA) into a pTrcHis2-TOPO vector and transformed it into TOP10 Escherichia coli cells; after induction, the bacteria expressed a 23-kDa protein with insoluble expression levels of approximately 5 mg/L. In summary, the partial hsp70 gene was successfully expressed in E. coli, producing a 23-kDa protein under insoluble conditions, and the antigen characteristics predicted by hydrophilicity analysis suggest the development of a vaccine for use in avian coccidiosis.

  20. Chapter 7. Cloning and analysis of natural product pathways.

    PubMed

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  1. Stable MSAP markers for the distinction of Vitis vinifera cv Pinot noir clones.

    PubMed

    Ocaña, Juan; Walter, Bernard; Schellenbaum, Paul

    2013-11-01

    Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as "stable" and "unstable." In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.

  2. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  3. Variation to cause host injury between Russian wheat aphid (Homoptera: Aphididae) clones virulent to Dn4 wheat.

    PubMed

    Shufran, K A; Mornhinweg, D W; Baker, C A; Porter, D R

    2007-10-01

    Biotypes are infraspecific classifications based on biological rather than morphological characteristics. Cereal aphids are managed primarily by host plant resistance, and they often develop biotypes that injure or kill previously resistant plants. Although molecular genetic variation within aphid biotypes has been well documented, little is known about phenotypic variation, especially virulence or the biotype's ability to cause injury to cultivars with specific resistance genes. Five clones (single maternal lineages) of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), determined to be injurious to wheat, Triticum aestivum L., with the Dn4 gene, were evaluated on resistant and susceptible wheat and barley, Hordeum vulgare L., for their ability to cause chlorosis, reduction in plant height, and reduction in shoot dry weight. Variation to cause injury on resistant 'Halt' wheat, susceptible 'Jagger' wheat, and resistant 'STARS-9301B' barley was found among the Dn4 virulent clones. One clone caused up to 30.0 and 59.5% more reduction in plant height and shoot dry weight, respectively, on resistant Halt than other clones. It also caused up to 29.9 and 55.5% more reduction in plant height and shoot dry weight, respectively, on susceptible Jagger wheat. Although STARS-9301B barley exhibited an equal resistant response to feeding by all five clones based on chlorosis, two clones caused approximately 20% more reduction in plant height and shoot dry weight than three other clones. The most injurious clones on wheat were not the most injurious clones on barley. This is the first report of variation to cause varying degrees of plant damage within an aphid biotype virulent to a single host resistance gene. A single aphid clone may not accurately represent the true virulent nature of a biotype population in the field.

  4. Molecular characterization and phylogenetic analysis of Citrus viroid VI variants from citrus in China

    USDA-ARS?s Scientific Manuscript database

    Citrus viroid VI (CVd-VI) was originally found from citrus and persimmon in Japan. We report here the identification and molecular characterization of CVd-VI from four production regions of China. A total of 90 cDNA clones from nine infected citrus cultivars were sequenced. The sequence homologies o...

  5. A New Molecular Platform for Authentic Transmitted/Founder Viruses | Poster

    Cancer.gov

    In the past, nonhuman primate research has relied on only a few infectious molecular clones for numerous diverse research projects including pathogenesis, preclinical vaccine evaluations, transmissions, and host vs. pathogen interactions. But new data suggests that there is a selected phenotype of the simian immunodeficiency virus (SIV) that causes infection.

  6. A Biochemistry and Molecular Biology Experiment and Evaluation System for Biotechnology Specialty Students: An Effective Evaluation System to Improve the Biochemistry and Molecular Biology Experiment Teaching

    ERIC Educational Resources Information Center

    Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing

    2010-01-01

    In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…

  7. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  8. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    PubMed

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  9. Molecular cloning and expression in streptomyces lividans of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J

    1983-11-30

    The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.

  10. A high-throughput screen for single gene activities: isolation of apoptosis inducers.

    PubMed

    Albayrak, Timur; Grimm, Stefan

    2003-05-16

    We describe a novel genetic screen that is performed by transfecting every individual clone of an expression library into a separate population of cells in a high-throughput mode. The screen allows one to achieve a hitherto unattained sensitivity in expression cloning which was exploited in a first read-out to clone apoptosis-inducing genes. This led to the isolation of several genes whose proteins induce distinct phenotypes of apoptosis in 293T cells. One of the isolated genes is the tumor suppressor cytochrome b(L) (cybL), a component of the respiratory chain complex II, that diminishes the activity of this complex for apoptosis induction. This gene is more efficient and specific for causing cell death than a drug with the same activity. These results suggest further applications, both of the isolated genes and the screen.

  11. Listeria monocytogenes source distribution analysis indicates regional heterogeneity and ecological niche preference among serotype 4b clones

    USDA-ARS?s Scientific Manuscript database

    Human illness due to the foodborne bacterial pathogen Listeria monocytogenes frequently involves certain widely disseminated clonal complexes (CCs), primarily of serotype 4b. CC1, CC2 and CC6, previously also designated epidemic clone (EC) I, Ia and II, respectively, have been frequently implicate...

  12. 'Lufkin Red' and 'Lufkin White' winter-hardy hibiscus (Hibiscus x laevis All.)

    USDA-ARS?s Scientific Manuscript database

    USDA ARS announces the release of ‘Lufkin Red’ and ‘Lufkin White’ winter-hardy native hibiscuses.Both clones have desirable horticultural traits in combination with demonstrated high levels of field resistance to the leaf spot complex that is problematic on winter-hardy hibiscus clones in areas wit...

  13. Molecular Mechanism of MART-1+/A*0201+ Human Melanoma Resistance to Specific CTL-Killing Despite Functional Tumor-CTL Interaction

    PubMed Central

    Jazirehi, Ali R.; Baritaki, Stavroula; Koya, Richard C.; Bonavida, Benjamin; Economou, James S.

    2014-01-01

    Durable responses in metastatic melanoma patients remain generally difficult to achieve. Adoptive cell therapy with ex vivo engineered lymphocytes expressing high affinity T cell receptors TCRα/β for the melanoma antigen MART-127-35/HLA A*0201 (recognized by F5 cytotoxic T lymphocytes [F5 CTLs]) has been found to benefit certain patients. However, many other patients are inherently unresponsive and/or relapse for unknown reasons. To analyze the basis for the acquired-resistance and strategies to reverse it, we established F5 CTLresistant (R) human melanoma clones from relatively sensitive parental lines under selective F5 CTL pressure. Surface MART-127-35/HLA-A*0201 in these clones was unaltered and F5 CTLs recognized and interacted with them similarly to the parental lines. Nevertheless, the R clones were resistant to F5 CTL killing, exhibited hyperactivation of the NF-κB survival pathway, and overexpression of the anti-apoptotic genes Bcl-2, Bcl-xL and Mcl-1. Sensitivity to F5 CTL-killing could be increased by pharmacological inhibition of the NF-κB pathway, Bcl-2 family members, or the proteasome, the latter of which reduced NF-κB activity and diminished anti-apoptotic gene expression. Specific gene-silencing (by siRNA) confirmed the protective role of anti-apoptotic factors by reversing R clone resistance. Together, our findings suggest that long-term immunotherapy may impose a selection for the development of resistant cells that are unresponsive to highly avid and specific melanoma-reactive CTLs, despite maintaining expression of functional peptide:MHC complexes, due to activation of anti-apoptotic signaling pathways. Though unresponsive to CTL, our results argue that resistant cells can be re-sensitized to immunotherapy with co-administration of targeted inhibitors to anti-apoptotic survival pathways. PMID:21159666

  14. Class 2 Integrons Dissemination Among Multidrug Resistance (MDR) Clones of Acinetobacter baumannii

    PubMed Central

    Ramírez, María Soledad; Morales, Amanda; Vilacoba, Elisabet; Márquez, Carolina

    2014-01-01

    Acinetobacter baumannii has emerged as a serious problem in the hospital environment at a global scale. Previous results from our laboratory showed a high frequency of class 2 integrons in A. baumannii strains from Argentina regarding the low rate of this element in A. baumannii isolates from the rest of the world. To reveal the current epidemiology of class 2 integrons, a molecular surveillance analyzing 78 multidrug resistant (MDR) A. baumannii isolates from Argentina and Uruguay was performed, exposing the presence of class 2 integron in the 36.61% of the isolates. Class 2 integron characterization showed that the typical Tn7::In2-7 array was present in 26 out of 27 intI2 positive isolates. All intI2 positive isolates contained at least one of the Tn7 transposition genes. In addition, we identified that 18 intI2 positive isolates possessed the Tn7::In2-7 within the attTn7 site. The molecular typing evidenced that clones I and IV that do not belong to widespread European clones I and II were found among the intI2 positive isolates. Our results exposed the widely dissemination of class 2 integron among MDR A. baumannii isolates from Argentina and Uruguay, also showing the persistence of two novel clones in our region, which could explain in part the high frequency of class 2 integron found in our region. PMID:22198473

  15. An Aspergillus oryzae acetyl xylan esterase: molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris.

    PubMed

    Koseki, Takuya; Miwa, Yozo; Akao, Takeshi; Akita, Osamu; Hashizume, Katsumi

    2006-02-10

    We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.

  16. Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

    PubMed Central

    Morin, Ryan D.; Chang, Elbert; Petrescu, Anca; Liao, Nancy; Griffith, Malachi; Kirkpatrick, Robert; Butterfield, Yaron S.; Young, Alice C.; Stott, Jeffrey; Barber, Sarah; Babakaiff, Ryan; Dickson, Mark C.; Matsuo, Corey; Wong, David; Yang, George S.; Smailus, Duane E.; Wetherby, Keith D.; Kwong, Peggy N.; Grimwood, Jane; Brinkley, Charles P.; Brown-John, Mabel; Reddix-Dugue, Natalie D.; Mayo, Michael; Schmutz, Jeremy; Beland, Jaclyn; Park, Morgan; Gibson, Susan; Olson, Teika; Bouffard, Gerard G.; Tsai, Miranda; Featherstone, Ruth; Chand, Steve; Siddiqui, Asim S.; Jang, Wonhee; Lee, Ed; Klein, Steven L.; Blakesley, Robert W.; Zeeberg, Barry R.; Narasimhan, Sudarshan; Weinstein, John N.; Pennacchio, Christa Prange; Myers, Richard M.; Green, Eric D.; Wagner, Lukas; Gerhard, Daniela S.; Marra, Marco A.; Jones, Steven J.M.; Holt, Robert A.

    2006-01-01

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization. PMID:16672307

  17. Molecular cloning and expression of rat brain endopeptidase 3.4.24.16.

    PubMed

    Dauch, P; Vincent, J P; Checler, F

    1995-11-10

    We have isolated by immunological screening of a lambda ZAPII cDNA library constructed from rat brain mRNAs a cDNA clone encoding endopeptidase 3.4.24.16. The longest open reading frame encodes a 704-amino acid protein with a theoretical molecular mass of 80,202 daltons and bears the consensus sequence of the zinc metalloprotease family. The sequence exhibits a 60.2% homology with those of another zinc metallopeptidase, endopeptidase 3.4.24.15. Northern blot analysis reveals two mRNA species of about 3 and 5 kilobases in rat brain, ileum, kidney, and testis. We have transiently transfected COS-7 cells with pcDNA3 containing the cloned cDNA and established the overexpression of a 70-75-kDa immunoreactive protein. This protein hydrolyzes QFS, a quenched fluorimetric substrate of endopeptidase 3.4.24.16, and cleaves neurotensin at a single peptide bond, leading to the formation of neurotensin (1-10) and neurotensin (11-13). QFS and neurotensin hydrolysis are potently inhibited by the selective endopeptidase 3.4.24.16 dipeptide blocker Pro-Ile and by dithiothreitol, while the enzymatic activity remains unaffected by phosphoramidon and captopril, the specific inhibitors of endopeptidase 3.4.24.11 and angiotensin-converting enzyme, respectively. Altogether, these physicochemical, biochemical, and immunological properties unambiguously identify endopeptidase 3.4.24.16 as the protein encoded by the isolated cDNA clone.

  18. Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae

    PubMed Central

    Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.

    2014-01-01

    The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917

  19. Molecular Characterization of Invasive Meningococcal Isolates from Countries in the African Meningitis Belt before Introduction of a Serogroup A Conjugate Vaccine

    PubMed Central

    Caugant, Dominique A.; Kristiansen, Paul A.; Wang, Xin; Mayer, Leonard W.; Taha, Muhamed-Kheir; Ouédraogo, Rasmata; Kandolo, Denis; Bougoudogo, Flabou; Sow, Samba; Bonte, Laurence

    2012-01-01

    Background The serogroup A conjugate meningococcal vaccine, MenAfriVac, was introduced in mass vaccination campaigns in December 2010 in Burkina Faso, Mali and Niger. In the coming years, vaccination will be extended to other African countries at risk of epidemics. To document the molecular characteristics of disease-causing meningococcal strains circulating in the meningitis belt of Africa before vaccine introduction, the World Health Organization Collaborating Centers on Meningococci in Europe and United States established a common strain collection of 773 isolates from cases of invasive meningococcal disease collected between 2004 and 2010 from 13 sub-Saharan countries. Methodology All isolates were characterized by multilocus sequence typing, and 487 (62%) were also analyzed for genetic variation in the surface antigens PorA and FetA. Antibiotic susceptibility was tested for part of the collection. Principal Findings Only 19 sequence types (STs) belonging to 6 clonal complexes were revealed. ST-5 clonal complex dominated with 578 (74.8%) isolates. All ST-5 complex isolates were remarkably homogeneous in their PorA (P1.20,9) and FetA (F3-1) and characterized the serogroup A strains which have been responsible for most epidemics during this time period. Sixty-eight (8.8%) of the 773 isolates belonged to the ST-11 clonal complex which was mainly represented by serogroup W135, while an additional 38 (4.9%) W135 isolates belonged to the ST-175 complex. Forty-eight (6.2%) serogroup X isolates from West Africa belonged to the ST-181 complex, while serogroup X cases in Kenya and Uganda were caused by an unrelated clone, ST-5403. Serogroup X, ST-181, emerged in Burkina Faso before vaccine introduction. Conclusions In the seven years preceding introduction of a new serogroup A conjugate vaccine, serogroup A of the ST-5 clonal complex was identified as the predominant disease-causing strain. PMID:23029368

  20. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  1. Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip.

    PubMed

    Xia, Yanling; Qu, Haomiao; Lu, Binshan; Zhang, Qiang; Li, Heping

    2018-04-01

    Molecular cloning and bioinformatics analysis of annexin A2 ( ANXA2 ) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer ( Cervus Nippon hortulorum ) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus . Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

  2. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    PubMed

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.

  3. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function.

    PubMed

    Kourelis, Jiorgos; van der Hoorn, Renier A L

    2018-02-01

    Plants have many, highly variable resistance ( R ) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize ( Zea mays ) Hm1 , was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. © 2018 American Society of Plant Biologists. All rights reserved.

  4. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    PubMed

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  5. Molecular cloning and immunoglobulin E reactivity of a natural rubber latex lecithinase homologue, the major allergenic component of Hev b 4.

    PubMed

    Sunderasan, E; Bahari, A; Arif, S A M; Zainal, Z; Hamilton, R G; Yeang, H Y

    2005-11-01

    Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information. We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding. The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients. The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue. The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.

  6. Panton-Valentine Leukocidin-Positive Staphylococcus aureus in Ireland from 2002 to 2011: 21 Clones, Frequent Importation of Clones, Temporal Shifts of Predominant Methicillin-Resistant S. aureus Clones, and Increasing Multiresistance

    PubMed Central

    Shore, Anna C.; Tecklenborg, Sarah C.; Brennan, Gráinne I.; Ehricht, Ralf; Monecke, Stefan

    2014-01-01

    There has been a worldwide increase in community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) infections. CA-MRSA isolates commonly produce the Panton-Valentine leukocidin toxin encoded by the pvl genes lukF-PV and lukS-PV. This study investigated the clinical and molecular epidemiologies of pvl-positive MRSA and methicillin-susceptible S. aureus (MSSA) isolates identified by the Irish National MRSA Reference Laboratory (NMRSARL) between 2002 and 2011. All pvl-positive MRSA (n = 190) and MSSA (n = 39) isolates underwent antibiogram-resistogram typing, spa typing, and DNA microarray profiling for multilocus sequence type, clonal complex (CC) and/or sequence type (ST), staphylococcal cassette chromosome mec type assignment, and virulence and resistance gene detection. Where available, patient demographics and clinical data were analyzed. The prevalence of pvl-positive MRSA increased from 0.2% to 8.8%, and that of pvl-positive MSSA decreased from 20% to 2.5% during the study period. The pvl-positive MRSA and MSSA isolates belonged to 16 and 5 genotypes, respectively, with CC/ST8-MRSA-IV, CC/ST30-MRSA-IV, CC/ST80-MRSA-IV, CC1/ST772-MRSA-V, CC30-MSSA, CC22-MSSA, and CC121-MSSA predominating. Temporal shifts in the predominant pvl-positive MRSA genotypes and a 6-fold increase in multiresistant pvl-positive MRSA genotypes occurred during the study period. An analysis of patient data indicated that pvl-positive S. aureus strains, especially MRSA strains, had been imported into Ireland several times. Two hospital and six family clusters of pvl-positive MRSA were identified, and 70% of the patient isolates for which information was available were from patients in the community. This study highlights the increased burden and changing molecular epidemiology of pvl-positive S. aureus in Ireland over the last decade and the contribution of international travel to the influx of genetically diverse pvl-positive S. aureus isolates into Ireland. PMID:24371244

  7. How weak values emerge in joint measurements on cloned quantum systems.

    PubMed

    Hofmann, Holger F

    2012-07-13

    A statistical analysis of optimal universal cloning shows that it is possible to identify an ideal (but nonpositive) copying process that faithfully maps all properties of the original Hilbert space onto two separate quantum systems, resulting in perfect correlations for all observables. The joint probabilities for noncommuting measurements on separate clones then correspond to the real parts of the complex joint probabilities observed in weak measurements on a single system, where the measurements on the two clones replace the corresponding sequence of weak measurement and postselection. The imaginary parts of weak measurement statics can be obtained by replacing the cloning process with a partial swap operation. A controlled-swap operation combines both processes, making the complete weak measurement statistics accessible as a well-defined contribution to the joint probabilities of fully resolved projective measurements on the two output systems.

  8. The cancer theory of pulmonary arterial hypertension

    PubMed Central

    Boucherat, Olivier; Vitry, Geraldine; Trinh, Isabelle; Paulin, Roxane; Provencher, Steeve; Bonnet, Sebastien

    2017-01-01

    Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells’ survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH. PMID:28597757

  9. Isolation and Characterization of an Equine Foamy Virus

    PubMed Central

    Tobaly-Tapiero, Joelle; Bittoun, Patricia; Neves, Manuel; Guillemin, Marie-Claude; Lecellier, Charles-Henri; Puvion-Dutilleul, Francine; Gicquel, Bernard; Zientara, Stephan; Giron, Marie-Louise; de Thé, Hugues; Saïb, Ali

    2000-01-01

    Foamy viruses (FVs) are complex retroviruses which have been isolated from different animal species including nonhuman primates, cattle, and cats. Here, we report the isolation and characterization of a new FV isolated from blood samples of horses. Similar to other FVs, the equine foamy virus (EFV) exhibits a highly characteristic ultrastructure and induces syncytium formation and subsequent cell lysis on a large number of cell lines. Molecular cloning of EFV reveals that the general organization is that of other known FVs, whereas sequence similarity with its bovine FV counterpart is only 40%. Interestingly, EFV buds exclusively from the plasma membrane and not from the endoplasmic reticulum (ER), as previously shown for other FVs. The absence of the ER retrieval dilysine motif in EFV Env is likely responsible for this unexpected sorting pathway. PMID:10756018

  10. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance

    PubMed Central

    Ivey, Adam; Huntly, Brian J. P.

    2016-01-01

    Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient’s AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response. PMID:26660431

  11. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.

  12. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.

  13. In vivo Elimination of Parental Clones in General and Site-directed Mutagenesis

    PubMed Central

    Holland, Erika G.; Acca, Felicity E.; Belanger, Kristina M.; Bylo, Mary E.; Kay, Brian K.; Weiner, Michael P.; Kiss, Margaret M.

    2015-01-01

    The Eco29k I restriction endonuclease is a Sac II isoschizomer that recognizes the sequence 5’-CCGCGG-3’ and is encoded, along with the Eco29k I methylase, in the Escherichia coli strain 29k. We have expressed the Eco29k I restriction-methylation system (RM2) in E. coli strain TG1 to produce the strain AXE688. We have developed a directed molecular evolution (DME) mutagenesis method that uses Eco29k I to restrict incoming parental DNA in transformed cells. Using our DME method, we have demonstrated that our AXE688 strain results in mutated directed molecular evolution libraries with diversity greater than 107 from a single transformation and with greater than 90% recombinant clones. PMID:25523926

  14. In vivo elimination of parental clones in general and site-directed mutagenesis.

    PubMed

    Holland, Erika G; Acca, Felicity E; Belanger, Kristina M; Bylo, Mary E; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2015-02-01

    The Eco29k I restriction endonuclease is a Sac II isoschizomer that recognizes the sequence 5'-CCGCGG-3' and is encoded, along with the Eco29k I methylase, in the Escherichia coli strain 29k. We have expressed the Eco29k I restriction-methylation system (RM2) in E. coli strain TG1 to produce the strain AXE688. We have developed a directed molecular evolution (DME) mutagenesis method that uses Eco29k I to restrict incoming parental DNA in transformed cells. Using our DME method, we have demonstrated that our AXE688 strain results in mutated directed molecular evolution libraries with diversity greater than 10(7) from a single transformation and with greater than 90% recombinant clones. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mapping and characterization of vicriviroc resistance mutations from HIV-1 isolated from treatment-experienced subjects enrolled in a phase II study (VICTOR-E1).

    PubMed

    McNicholas, Paul M; Mann, Paul A; Wojcik, Lisa; Qiu, Ping; Lee, Erin; McCarthy, Michael; Shen, Junwu; Black, Todd A; Strizki, Julie M

    2011-03-01

    In the phase 2 VICTOR-E1 study, treatment-experienced subjects receiving 20 mg or 30 mg of the CCR5 antagonist vicriviroc (VCV), with a boosted protease containing optimized background regimen, experienced significantly greater reductions in HIV-1 viral load compared with control subjects. Among the 79 VCV-treated subjects, 15 experienced virologic failure, and of these 5 had VCV-resistant virus. This study investigated the molecular basis for the changes in susceptibility to VCV in these subjects. Sequence analysis and phenotypic susceptibility testing was performed on envelope clones from VCV-resistant virus. For select clones, an exchange of mutations in the V3 loop was performed between phenotypically resistant clones and the corresponding susceptible clones. Phenotypic resistance was manifest by reductions in the maximum percent inhibition. Clonal analysis of envelopes from the 5 subjects identified multiple amino acid changes in gp160 that were exclusive to the resistant clones, however, none of the changes were conserved between subjects. Introduction of V3 loop substitutions from the resistant clones into the matched susceptible clones was not sufficient to reproduce the resistant phenotype. Likewise, changing the substitutions in the V3 loops from resistant clones to match susceptible clones only restored susceptibility in 1 clone. There were no clearly conserved patterns of mutations in gp160 associated with phenotypic resistance to VCV and mutations both within and outside of the V3 loop contributed to the resistance phenotype. These data suggest that genotypic tests for VCV susceptibility may require larger training sets and additional information beyond V3 sequences.

  16. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    ERIC Educational Resources Information Center

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  17. ACVP-02: Plasma SIV/SHIV RNA Viral Load Measurements through the AIDS and Cancer Virus Program Quantitative Molecular Diagnostics Core | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese

  18. Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio)

    USDA-ARS?s Scientific Manuscript database

    Induction of innate immune pathways is critical for early host defense but there is limited understanding of how teleost fish recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition rece...

  19. Intracellular population genetics: evidence for random drift of mitochondrial allele frequencies in Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Thrailkill, K M; Birky, C W

    1980-09-01

    We report evidence for random drift of mitochondrial allele frequencies in zygote clones of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Monofactorial and bifactorial crosses were done, using strains resistant or sensitive to erythromycin (alleles Er, Es), oligomycin (Or, Os), or diuron (Dr, Ds). The frequencies of resistant and sensitive cells (and thus the frequencies of the resistant and sensitive alleles) were determined for each of a number of clones of diploid cells arising from individual zygotes. Allele frequencies were extremely variable among these zygote clones; some clones were "uniparental," with mitochondrial alleles from only one parent present. These observations suggest random drift of the allele frequencies in the population of mitochondrial genes within an individual zygote and its diploid progeny. Drift would cease when all the cells in a clone become homoplasmic, due to segregation of the mitochondrial genomes during vegetative cell divisions. To test this, we delayed cell division (and hence segregation) for varying times by starving zygotes in order to give drift more time to operate. As predicted, delaying cell division resulted in an increase in the variance of allele frequencies among the zygote clones and an increase in the proportion of uniparental zygote clones. The changes in form of the allele frequency distributions resembled those seen during random drift in finite Mendelian populations. In bifactorial crosses, genotypes as well as individual alleles were fixed or lost in some zygote clones. However, the mean recombination frequency for a large number of clones did not increase when cell division was delayed. Several possible molecular mechanisms for intracellular random drift are discussed.

  20. Listeria monocytogenes Source Distribution Analysis Indicates Regional Heterogeneity and Ecological Niche Preference among Serotype 4b Clones.

    PubMed

    Lee, Sangmi; Chen, Yi; Gorski, Lisa; Ward, Todd J; Osborne, Jason; Kathariou, Sophia

    2018-04-17

    Biodiversity analysis of the foodborne pathogen Listeria monocytogenes recently revealed four serotype 4b major hypervirulent clonal complexes (CCs), i.e., CC1, CC2, CC4, and CC6. Hypervirulence was indicated by overrepresentation of these clones, and serotype 4b as a whole, among human clinical isolates in comparison to food. However, data on potential source-dependent partitioning among serotype 4b clones in diverse regions are sparse. We analyzed a panel of 347 serotype 4b isolates, primarily from North America, to determine the distribution of clones in humans, other animals, food, and water. CC1, CC2, CC4, and CC6 predominated, but surprisingly, only three clones, i.e., CC2 and the singleton sequence types (STs) ST382 and ST639, exhibited significant source-dependent associations, with higher propensity for food (CC2) or water (ST382 and ST639) than other sources. Pairwise comparisons between human and food isolates identified CC4 as the only serotype 4b clone significantly overrepresented among human isolates. Our analysis also revealed several serotype 4b clones emerging in North America. Two such emerging clones, ST382 (implicated in several outbreaks since 2014) and ST639, were primarily encountered among human and water isolates. Findings suggest that in spite of the ubiquity of CC1, CC2, CC4, and CC6, regional heterogeneity in serotype 4b is substantially larger than previously surmised. Analysis of even large strain panels from one region may not adequately predict clones unique to, and emerging in, other areas. Serotype 4b clonal complexes may differ in ecological niche preference, suggesting the need to further elucidate reservoirs and vehicles, especially for emerging clones. IMPORTANCE In Listeria monocytogenes , serotype 4b strains are leading contributors to human disease, but intraserotype distributions among different sources and regions remain poorly elucidated. Analysis of 347 serotype 4b isolates from four different sources, mostly from North America, confirmed the overall predominance of the major clones CC1, CC2, CC4, and CC6 but found that only CC4 was significantly associated with human disease, while CC2 was significantly associated with food. Remarkably, several emerging clones were identified among human isolates from North America, with some of these also exhibiting a propensity for surface water. The latter included the singleton clones ST382, implicated in several outbreaks in the United States since 2014, and ST639. These clones were noticeably underrepresented among much larger panels from other regions. Though associated with North America for the time being, they may eventually become globally disseminated through the food trade or other venues. Copyright © 2018 Lee et al.

  1. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA

    DTIC Science & Technology

    1989-04-01

    strain-specific identification of HAV in human fecal samples was a major aim of the original contract application, as clinical trials of live and...derived materials and human and primate fecal specimens. 4. We molecularly cloned and partially sequenced the genome of PA21 strain HAV, a virus...antibody. This approach revealed that 99% of the infectious virus particles present in disrupted cell lysates from the 23rd passage of persistently

  2. Molecular approach to annelid regeneration: cDNA subtraction cloning reveals various novel genes that are upregulated during the large-scale regeneration of the oligochaete, Enchytraeus japonensis.

    PubMed

    Myohara, Maroko; Niva, Cintia Carla; Lee, Jae Min

    2006-08-01

    To identify genes specifically activated during annelid regeneration, suppression subtractive hybridization was performed with cDNAs from regenerating and intact Enchytraeus japonensis, a terrestrial oligochaete that can regenerate a complete organism from small body fragments within 4-5 days. Filter array screening subsequently revealed that about 38% of the forward-subtracted cDNA clones contained genes that were upregulated during regeneration. Two hundred seventy-nine of these clones were sequenced and found to contain 165 different sequences (79 known and 86 unknown). Nine clones were fully sequenced and four of these sequences were matched to known genes for glutamine synthetase, glucosidase 1, retinal protein 4, and phosphoribosylaminoimidazole carboxylase, respectively. The remaining five clones encoded an unknown open-reading frame. The expression levels of these genes were highest during blastema formation. Our present results, therefore, demonstrate the great potential of annelids as a new experimental subject for the exploration of unknown genes that play critical roles in animal regeneration.

  3. Archaeal Diversity in Waters from Deep South African Gold Mines

    PubMed Central

    Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.

    2001-01-01

    A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932

  4. Cloning and characterization of Sdga gene encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex in Scoparia dulcis.

    PubMed

    Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2008-11-01

    A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.

  5. Functional Screening of Antibiotic Resistance Genes from a Representative Metagenomic Library of Food Fermenting Microbiota

    PubMed Central

    Devirgiliis, Chiara; Barile, Simona; Perozzi, Giuditta

    2014-01-01

    Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest. PMID:25243126

  6. Molecular cloning of a cDNA encoding the glycoprotein of hen oviduct microsomal signal peptidase.

    PubMed Central

    Newsome, A L; McLean, J W; Lively, M O

    1992-01-01

    Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common. Images Fig. 1. PMID:1546959

  7. Emergence of MPLW515 mutation in a patient with CALR deletion: Evidence of secondary acquisition of MPL mutation in the CALR clone.

    PubMed

    Partouche, Nicolas; Conejero, Carole; Barathon, Quentin; Moroch, Julien; Tulliez, Michel; Cordonnier, Catherine; Giraudier, Stephane

    2018-02-01

    Myeloproliferative neoplasms are characterized by transduction pathway recognized as mutually exclusive molecular abnormalities such as BCR-ABL translocation, JAK2V617F or JAK2 exon 12 mutations, MPL w515, and CALR mutations. However, in some rare cases, associations of such mutations are found in 1 patient. This can be related to 2 pathologies (at least 2 different clones harboring 2 mutations) or associated mutations in 1 clone. We describe here such an association of CALR and MPL mutations in a patient harboring the second mutation in a subclone during the phenotypic evolution of the myeloproliferative neoplasms. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Phylogeography: English elm is a 2,000-year-old Roman clone.

    PubMed

    Gil, Luis; Fuentes-Utrilla, Pablo; Soto, Alvaro; Cervera, M Teresa; Collada, Carmen

    2004-10-28

    The outbreak of Dutch elm disease in the 1970s ravaged European elm populations, killing more than 25 million trees in Britain alone; the greatest impact was on Ulmus procera, otherwise known as the English elm. Here we use molecular and historical information to show that this elm derives from a single clone that the Romans transported from Italy to the Iberian peninsula, and from there to Britain, for the purpose of supporting and training vines. Its highly efficient vegetative reproduction and its inability to set seeds have preserved this clone unaltered for 2,000 years as the core of the English elm population--and the preponderance of this susceptible variety may have favoured a rapid spread of the disease.

  9. Cloning, expression of, and evidence of positive selection for, the prolactin receptor gene in Chinese giant salamander (Andrias davidianus).

    PubMed

    Hu, Qiaomu; Meng, Yan; Tian, Haifeng; Chen, Songlin; Xiao, Hanbing

    2015-12-01

    Prolactin receptor (PRLR) is a protein associated with reproduction in mammals and with osmoregulation in fish. In this study, the complete length of Chinese giant salamander Andrias davidianus prolactin receptor (AD-prlr) was cloned. Andrias davidianus prlr expression was high in the kidney, pituitary, and ovary and low in other examined tissues. The AD-prlr levels were higher in ovary than in testis, and increased in ovaries with age from 1 to 6 years. To determine effect of exogenous androgen and aromatase inhibitor on AD-prlr expression, methyltestosterone (MT) and letrozole (LE) were injected, resulting in decreased AD-prlr in both brain and ovary, with MT repressing prlr transcription more rapidly than did LE. The molecular evolution of prlr was assessed, and found to have undergone a complex evolution process. The obranch-site test detected four positively selected sites in ancestral lineages prior to the separation of mammals and birds. Fourteen sites underwent positive selection in ancestral lineages of birds and six were positively selected in amphibians. The site model showed that 16, 7, and 30 sites underwent positive selection in extant mammals, amphibians, and birds, respectively. The positively selected sites in amphibians were located outside the transmembrane domain, with four in the extracellular and three in the intracellular domain, indicating that the transmembrane region might be conserved and essential for protein function. Our findings provide a basis for further studies of AD-prlr function and molecular evolution in Chinese giant salamander. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 707-719, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Identification and molecular cloning of novel transcripts of the human kallikrein-related peptidase 10 (KLK10) gene using next-generation sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamopoulos, Panagiotis G.; Kontos, Christos K.; Scorilas, Andreas

    Tissue kallikrein and kallikrein-related peptidases (KLKs) form the largest group of serine proteases in the human genome, sharing many structural and functional characteristics. Multiple alternative transcripts have been reported for the most human KLK genes, while many of them are aberrantly expressed in various malignancies, thus possessing significant prognostic and/or diagnostic value. Alternative splicing of cancer-related genes is a common cellular mechanism accounting for cancer cell transcriptome complexity, as it affects cell cycle control, proliferation, apoptosis, invasion, and metastasis. In this study, we describe the identification and molecular cloning of eight novel transcripts of the human KLK10 gene using 3′more » rapid amplification of cDNA ends (3′ RACE) and next-generation sequencing (NGS), as well as their expression analysis in a wide panel of cell lines, originating from several distinct cancerous and normal tissues. Bioinformatic analysis revealed that the novel KLK10 transcripts contain new alternative splicing events between already annotated exons as well as novel exons. In addition, investigation of their expression profile in a wide panel of cell lines was performed with nested RT-PCR using variant-specific pairs of primers. Since many KLK mRNA transcripts possess clinical value, these newly discovered alternatively spliced KLK10 transcripts appear as new potential biomarkers for diagnostic and/or prognostic purposes or as targets for therapeutic strategies. - Highlights: • NGS was used to identify novel transcripts of the human KLK10 gene. • 8 novel KLK10 transcripts were identified. • A novel 3′UTR was detected and characterized. • The expression profiles of all 8 novel KLK10 transcripts were identified.« less

  11. Molecular characterization of macrolide resistant Streptococcus pyogenes isolates from pharyngitis patients in Serbia.

    PubMed

    Opavski, Natasa; Gajic, Ina; Borek, Anna L; Obszańska, Katarzyna; Stanojevic, Maja; Lazarevic, Ivana; Ranin, Lazar; Sitkiewicz, Izabela; Mijac, Vera

    2015-07-01

    A steady increase in macrolide resistance in Streptococcus pyogenes, group A streptococci (GAS) was reported in Serbia during 2004-2009 (9.9%). However, there are no data on the molecular epidemiology of pharyngeal macrolide resistance GAS (MRGAS) isolates. Therefore, the aims of this first nationwide study were to examine the prevalence of macrolide resistance in Serbian GAS and to determine their resistance phenotypes, genotypes and clonal relationships. Overall 3893 non-duplicate pharyngeal S. pyogenes isolates from outpatients with GAS infection were collected throughout country during 2008 and 2009. Among 486 macrolide resistant pharyngeal isolates collected, 103 were further characterized. Macrolide resistance phenotypes and genotypes were determined by double-disk diffusion test and PCR, respectively. Strain relatedness was determined by emm typing, multilocus sequence typing (MLST), multilocus variable tandem repeat analysis (MLVA), phage profiling (PP) and virulence factor profiling (VFP). Overall, macrolide resistance among GAS isolates in Serbia was 12.5%. M phenotype was the most common (71.8%), followed by iMLS (18.4%) and cMLS (9.7%). Three clonal complexes--emm75/mefA/ST49, emm12/mefA/ST36 and emm77/ermA/tetO/ST63 comprised over 90% of the tested strains. Although MLVA, PP and VFP distinguished 10, 20 and 12 different patterns, respectively, cluster analysis disclosed only small differences between strains which belonged to the same emm/ST type. Our data indicate dominance of three major internationally widely disseminated macrolide resistant clones and a high genetic homogeneity among the Serbian MRGAS population. Continued surveillance of macrolide resistance and clonal composition in MRGAS in Serbia in future is necessary to determine stability of MRGAS clones and to guide therapy strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Construction of BAC Libraries from Flow-Sorted Chromosomes.

    PubMed

    Šafář, Jan; Šimková, Hana; Doležel, Jaroslav

    2016-01-01

    Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.

  13. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  14. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  15. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  16. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration

    PubMed Central

    2011-01-01

    Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior alleles in breeding programs. In addition, this study presents novel candidates that might control enzymatic tissue discoloration and tuber bruising. Their validation and characterization will increase the knowledge about the underlying biological processes. PMID:21208436

  17. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.

    PubMed

    Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  18. Applications of genomic medicine in endocrinology and post-genomic endocrine research.

    PubMed

    Stratakis, Constantine A

    2005-01-01

    In the mid 1980's, two advances revolutionized Medicine in a way that is comparable only to some of the most important events in the approximately 3,000 years of its history. The first was the introduction of the concept of "positional cloning", i.e. the idea that one can identify genes for human disease though knowing nothing or very little about their function. The second was the discovery of the method of polymerase chain reaction (PCR) which made DNA easier to work with for all biomedical researchers and clinicians. Fresh in the history of Endocrinology were the great discoveries of neuroendocrinology, and even more contemporary and potent, the influence of the then emerging field of molecular endocrinology. Cancer medicine and traditional human genetics were the fields that benefited most from the first applications of the new genomic concepts and technologies. Almost two decades later, and after the first successful applications of positional cloning in Endocrine Genetics with the identification of RET, menin, PTEN and PRKAR1A in the various forms of multiple endocrine tumor syndromes, and a number of other genes in developmental diseases affecting the pituitary, thyroid, parathyroid, pancreas, adrenal and gonadal glands, endocrinology has made a comeback to the forefront of "genomically"- influenced as well as post-genomic Medicine. This report, using the example of endocrine tumor genetics, presents the process and some of the accomplishments of positional cloning and discusses the influence of endocrinology on contemporary translational research. The author suggests that some of the most traditional endocrine concepts, established in the previous two centuries, could help us understand the complex pathways recently unraveled in cancer genetics and, consequently, other fields. It is suggested that "Endocrine" genes that control cellular signaling act as "conductor" since they regulate differentiation, growth and proliferation. Their complex function and resultant "transcriptomes" are now being investigated by post-genomic Medicine. In cancer research, endocrine genes defy classic definitions of tumor suppressors and oncogenes and regulate gatekeepers, caretakers, and landscapers. In the post-genomic, translational Medicine, Endocrinology once again could help us to understand cellular regulation and pathophysiology and to design new treatments.

  19. β-Adrenergic regulation of a novel isoform of NCX: sequence and expression of shark heart NCX in human kidney cells

    PubMed Central

    Janowski, Einsley; Day, Regina; Kraev, Alexander; Roder, John C.; Cleemann, Lars; Morad, Martin

    2009-01-01

    The function, regulation, and molecular structure of the cardiac Na+/Ca2+ exchangers (NCXs) vary significantly among vertebrates. We previously reported that β-adrenergic suppression of amphibian cardiac NCX1.1 is associated with specific molecular motifs. Here we investigated the bimodal, cAMP-dependent regulation of spiny dogfish shark (Squalus acanthias) cardiac NCX, exploring the effects of molecular structure, host cell environment, and ionic milieu. The shark cardiac NCX sequence (GenBank accession no. DQ 068478) revealed two novel proline/alanine-rich amino acid insertions. Wild-type and mutant shark NCXs were cloned and expressed in mammalian cells (HEK-293 and FlpIn-293), where their activities were measured as Ni2+-sensitive Ca2+ fluxes (fluo 4) and membrane (Na+/Ca2+ exchange) currents evoked by changes in extracellular Na+ concentration and/or membrane potential. Regardless of Ca2+ buffering, β-adrenergic stimulation of cloned wild-type shark NCX consistently produced bimodal regulation (defined as differential regulation of Ca2+-efflux and -influx pathways), with suppression of the Ca2+-influx mode and either no change or enhancement of the Ca2+-efflux mode, closely resembling results from parallel experiments with native shark cardiomyocytes. In contrast, mutant shark NCX, with deletion of the novel region 2 insertion, produced equal suppression of the inward and outward currents and Ca2+ fluxes, thereby abolishing the bimodal nature of the regulation. Control experiments with nontransfected and dog cardiac NCX-expressing cells showed no cAMP regulation. We conclude that bimodal β-adrenergic regulation is retained in cloned shark NCX and is dependent on the shark's unique molecular motifs. PMID:19395557

  20. Molecular cloning of pepsinogens A and C from adult newt (Cynops pyrrhogaster) stomach.

    PubMed

    Inokuchi, Tomofumi; Ikuzawa, Masayuki; Yamazaki, Shin; Watanabe, Yukari; Shiota, Koushiro; Katoh, Takuma; Kobayashi, Ken-Ichiro

    2013-08-01

    The full-length cDNAs of three pepsinogens (Pgs) were cloned from the stomach of newt, Cynops pyrrhogaster, and nucleotide sequences of the full-length cDNAs were determined. Molecular phylogenetic analysis showed that two Pgs, named PgC1 and PgC2, belong to the pepsinogen C group, and one Pg, named PgA, belongs to the pepsinogen A group. The sequences contain an open reading frame (ORF) encoding 385 amino acid residues for PgC1, 383 amino acid residues for PgC2 and 377 amino acid residues for PgA. In addition, all of the three amino acid sequences conserve some unique characteristics such as six cysteine residues and putative active site two aspartic acid residues. All of the pepsinogen mRNAs were detected in the stomach by RT-PCR but not in other organs. Although a slight difference at the time of the start of expression was seen among the three pepsinogen genes, all of them were expressed in the larval stage after hatching. This is the first report on cloning of pepsinogens from urodele stomach. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Molecular cloning, overexpression, purification, and sequence analysis of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide.

    PubMed

    Fu, L; Hou, Y L; Ding, X; Du, Y J; Zhu, H Q; Zhang, N; Hou, W R

    2016-08-30

    The complementary DNA (cDNA) of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide (FTL) gene was successfully cloned using reverse transcription-polymerase chain reaction technology. We constructed a recombinant expression vector containing FTL cDNA and overexpressed it in Escherichia coli using pET28a plasmids. The expressed protein was then purified by nickel chelate affinity chromatography. The cloned cDNA fragment was 580 bp long and contained an open reading frame of 525 bp. The deduced protein sequence was composed of 175 amino acids and had an estimated molecular weight of 19.90 kDa, with an isoelectric point of 5.53. Topology prediction revealed one N-glycosylation site, two casein kinase II phosphorylation sites, one N-myristoylation site, two protein kinase C phosphorylation sites, and one cell attachment sequence. Alignment indicated that the nucleotide and deduced amino acid sequences are highly conserved across several mammals, including Homo sapiens, Cavia porcellus, Equus caballus, and Felis catus, among others. The FTL gene was readily expressed in E. coli, which gave rise to the accumulation of a polypeptide of the expected size (25.50 kDa, including an N-terminal polyhistidine tag).

  2. Cloning and expression of a small heat and salt tolerant protein (Hsp22) from Chaetomium globosum.

    PubMed

    Aggarwal, Rashmi; Gupta, Sangeeta; Sharma, Sapna; Banerjee, Sagar; Singh, Priyanka

    2012-11-01

    The present study reports molecular characterization of small heat shock protein gene in Indian isolates of Chaetomium globosum, C. perlucidum, C. reflexum, C. cochlioides and C. cupreum. Six isolates of C. globosum and other species showed a band of 630bp using specific primers. Amplified cDNA product of C. globosum (Cg 1) cloned and sequenced showed 603bp open reading frame encoding 200 amino-acids. The protein sequence had a molecular mass of 22 kDa and was therefore, named Hsp22. BlastX analysis revealed that the gene codes for a protein homologous to previously characterized Hsp22.4 gene from C. globosum (AAR36902.1, XP 001229241.1) and shared 95% identity in amino acid sequence. It also showed varying degree of similarities with small Hsp protein from Neurospora spp. (60%), Myceliophthora sp. (59%), Glomerella sp. (50%), Hypocrea sp. (52%), and Fusarium spp. (51%). This gene was further cloned into pET28a (+) and transformed E. coli BL21 cells were induced by IPTG, and the expressed protein of 30 kDa was analyzed by SDS-PAGE. The IPTG induced transformants displayed significantly greater resistance to NaCl and Na2CO3 stresses.

  3. Universality of clone dynamics during tissue development

    NASA Astrophysics Data System (ADS)

    Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.

    2018-05-01

    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

  4. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    PubMed

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  5. Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA.

    PubMed

    Hurrelbrink, R J; Nestorowicz, A; McMinn, P C

    1999-12-01

    An infectious cDNA clone of Murray Valley encephalitis virus prototype strain 1-51 (MVE-1-51) was constructed by stably inserting genome-length cDNA into the low-copy-number plasmid vector pMC18. Designated pMVE-1-51, the clone consisted of genome-length cDNA of MVE-1-51 under the control of a T7 RNA polymerase promoter. The clone was constructed by using existing components of a cDNA library, in addition to cDNA of the 3' terminus derived by RT-PCR of poly(A)-tailed viral RNA. Upon comparison with other flavivirus sequences, the previously undetermined sequence of the 3' UTR was found to contain elements conserved throughout the genus FLAVIVIRUS: RNA transcribed from pMVE-1-51 and subsequently transfected into BHK-21 cells generated infectious virus. The plaque morphology, replication kinetics and antigenic profile of clone-derived virus (CDV-1-51) was similar to the parental virus in vitro. Furthermore, the virulence properties of CDV-1-51 and MVE-1-51 (LD(50) values and mortality profiles) were found to be identical in vivo in the mouse model. Through site-directed mutagenesis, the infectious clone should serve as a valuable tool for investigating the molecular determinants of virulence in MVE virus.

  6. Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes.

    PubMed Central

    Trapani, J A; Klein, J L; White, P C; Dupont, B

    1988-01-01

    A cDNA clone encoding a human serine esterase gene was isolated from a library constructed from poly(A)+ RNA of allogeneically stimulated, interleukin 2-expanded peripheral blood mononuclear cells. The clone, designated HSE26.1, represents a full-length copy of a 0.9-kilobase mRNA present in human cytotoxic cells but absent from a wide variety of noncytotoxic cell lines. Clone HSE26.1 contains an 892-base-pair sequence, including a single 741-base-pair open reading frame encoding a putative 247-residue polypeptide. The first 20 amino acids of the polypeptide form a leader sequence. The mature protein is predicted to have an unglycosylated Mr of approximately equal to 26,000 and contains a single potential site for N-linked glycosylation. The nucleotide and predicted amino acid sequences of clone HSE26.1 are homologous with all murine and human serine esterases cloned thus far but are most similar to mouse granzyme B (70% nucleotide and 68% amino acid identity). HSE26.1 protein is expressed weakly in unstimulated peripheral blood mononuclear cells but is strongly induced within 6-hr incubation in medium containing phytohemagglutinin. The data suggest that the protein encoded by HSE26.1 plays a role in cell-mediated cytotoxicity. Images PMID:3261871

  7. Design and construction of a first-generation high-throughput integrated molecular biology platform for production of optimized synthetic genes and improved industrial strains

    USDA-ARS?s Scientific Manuscript database

    The molecular biological techniques for plasmid-based assembly and cloning of synthetic assembled gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-bas...

  8. Diverse delayed effects in human lymphoblastoid cells surviving exposure to high-LET (56)Fe particles or low-LET (137)Cs gamma radiation

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Ricanati, M.; Diaz-Insua, M.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.

  9. Sequence Typing Confirms that a Predominant Listeria monocytogenes Clone Caused Human Listeriosis Cases and Outbreaks in Canada from 1988 to 2010

    PubMed Central

    Reimer, Aleisha; Verghese, Bindhu; Lok, Mei; Ziegler, Jennifer; Farber, Jeffrey; Pagotto, Franco; Graham, Morag; Nadon, Celine A.

    2012-01-01

    Human listeriosis outbreaks in Canada have been predominantly caused by serotype 1/2a isolates with highly similar pulsed-field gel electrophoresis (PFGE) patterns. Multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MVLST) each identified a diverse population of Listeria monocytogenes isolates, and within that, both methods had congruent subtypes that substantiated a predominant clone (clonal complex 8; virulence type 59; proposed epidemic clone 5 [ECV]) that has been causing human illness across Canada for more than 2 decades. PMID:22337989

  10. Animal cloning by somatic cell nuclear transfer.

    PubMed

    Smith, Lawrence C; Yoo, Jae-Gyu

    2009-01-01

    Animal cloning is becoming increasingly useful for its applications in biological inquiry and for its potential use in pharmaceutical, medical, and agricultural fields. Due to the complexity of the numerous steps required in reconstructing oocytes by nuclear transfer, detailed protocols are required to minimize the developmental damages inflicted during these manipulations and to standardize procedures across laboratories. Moreover, because oogenesis and early embryogenesis differ widely among mammalian species, it is essential that protocols be adapted according to each species concerned. Our objective here is to detail the protocols that have been most successful in producing laboratory and domestic animal clones.

  11. Non-susceptibility trends among Pseudomonas aeruginosa and other non-fermentative Gram-negative bacteria from bacteraemias in the UK and Ireland, 2001-06.

    PubMed

    Livermore, David M; Hope, Russell; Brick, Geraldine; Lillie, Mark; Reynolds, Rosy

    2008-11-01

    Pseudomonas and Acinetobacter spp. are important opportunists, notorious for resistance. Pseudomonas spp. are collected in the British Society for Antimicrobial Chemotherapy (BSAC) bacteraemia surveillance, with Acinetobacter spp. and Stenotrophomonas maltophilia well represented in the 'other Gram-negatives' group. Data for collected isolates were reviewed together with LabBase bacteraemia reports to the Health Protection Agency (HPA). Isolates with unusual resistances were subjected to molecular investigation. From 2001 to 2006, the BSAC surveillance collected 1226 Pseudomonas aeruginosa, 240 Acinetobacter spp.-125 of them Acinetobacter calcoaceticus/baumannii (Acb) complex-and 165 S. maltophilia. Among P. aeruginosa, non-susceptibility rates to beta-lactams and gentamicin fluctuated, without trend, below 10%; those to ciprofloxacin ranged from 16% to 22%. One P. aeruginosa isolate from 2001 had VIM-2 metallo-beta-lactamase. For Acb, the BSAC data indicated frequent non-susceptibility, except to imipenem, where only five non-susceptible isolates were collected, all after 2003, four of them belonging to the OXA-23 clone 1 lineage which is prevalent in Southeast England. Reports to the HPA indicated rising imipenem non-susceptibility in Acb (P < 0.0001). Co-trimoxazole retained near-universal activity against S. maltophilia. Among new antibiotics, doripenem MICs were /=16 mg/L for Acb OXA-23 clone 1. Ceftobiprole had higher MICs than ceftazidime for P. aeruginosa, but 81% of the isolates were inhibited at

  12. Detection of Epidemic USA300 Community-Associated Methicillin-Resistant Staphylococcus aureus Strains by Use of a Single Allele-Specific PCR Assay Targeting a Novel Polymorphism of Staphylococcus aureus pbp3

    PubMed Central

    Chadwick, Sean G.; Prasad, Aditya; Smith, W. Lamar; Mordechai, Eli; Adelson, Martin E.

    2013-01-01

    In recent years, the dramatic increase in community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections has become a significant health care challenge. Early detection of CA-MRSA is important because of its increased virulence associated with the arginine catabolic mobile element (ACME), Panton-Valentine leukocidin (PVL), and other toxins that may contribute to disease severity. In particular, the USA300 epidemic clone has emerged and now represents the cause of as much as 98% of CA-MRSA skin and soft tissue infections in the United States. Current diagnostic assays used to identify CA-MRSA strains are based on complex multiplex PCRs targeting the staphylococcal cassette chromosome mec (SCCmec) DNA junction, a multitude of genes, and noncoding DNA fragments or on a number of lengthy sequence-typing methods. Here, two nucleotide polymorphisms, G88A and G2047A, that were found to be in strict linkage disequilibrium in the S. aureus penicillin-binding protein 3 (pbp3) gene were also found to be highly associated with the USA300 clone of CA-MRSA. Clinical isolates that contained this pbp3 allele were also positive for the presence of SCCmec type IV, the ACME, and the PVL toxin gene and matched the t008 or t121 molecular spa types, which are associated specifically with the USA300 CA-MRSA clone. A single allele-specific PCR targeting the G88A polymorphism was developed and was found to be 100% sensitive and specific for the detection of USA300 CA-MRSA and 91.5% sensitive and 100% specific for the detection of all CA-MRSA isolates in this study. PMID:23698534

  13. Molecular characteristics of "Mycobacterium canettii" the smooth Mycobacterium tuberculosis bacilli.

    PubMed

    Fabre, Michel; Hauck, Yolande; Soler, Charles; Koeck, Jean-Louis; van Ingen, Jakko; van Soolingen, Dick; Vergnaud, Gilles; Pourcel, Christine

    2010-12-01

    Since the first discovery of the smooth tubercle (SmTB) bacilli "Mycobacterium canettii" less than 60 isolates have been reported, all but one originating from a limited geographical location, the Horn of Africa. In spite of its rarity, the SmTB lineage deserves special attention. Previous investigations suggested that SmTB isolates represent an ancestral lineage of the Mycobacterium tuberculosis complex (MTBC) and that consequently they might provide essential clues on the origin and evolution of the MTBC. There is evidence that unlike the rest of the MTBC, SmTB strains recombine chromosomal sequences with a yet unknown Mycobacterium species. This behavior contributes to the much larger genetic heterogeneity observed in the SmTB isolates compared to the other members of the MTBC. We have collected 59 SmTB isolates of which 14 were newly recovered since previous reports, and performed extensive phenotypical and genotypical characterization. We take advantage of these investigations to review the current knowledge of "M. canettii". Their characteristics and the apparent lack of human to human transmission are consistent with the previously proposed existence of non-human sources of infection. SmTB strains show remarkably common features together with secondary and taxonomically minor genetic differences such as the presence or absence of the CRISPR (Clustered Regularly Interspersed Palindromic Repeat) locus (usually called Direct Repeat or DR region) or number of IS sequences. Multiple Locus Variable number of tandem repeat Analysis (MLVA) and DR region analyses reveal one predominant clone, one minor clone and a number of more distantly related strains. This suggests that the two most frequent clones may represent successfully emerging lineages. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Molecular cloning, expression and purification of L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma.

    PubMed

    Kommoju, Phaneeswara Rao; Macheroux, Peter; Ghisla, Sandro

    2007-03-01

    A cDNA encoding LAAO from the Malayan pit viper (Calloselasma rhodostoma) was cloned into an expression vector of the methylotropic yeast Pichia pastoris. The LAAO open reading frame was inserted after the alpha-MF-signal sequence. Upon induction soluble and active LAAO is produced and exported into the culture supernatant at a concentration of up to 0.4 mg/L. Recombinant LAAO was purified from this by ion exchange and molecular sieve chromatography to yield apparently homogeneous protein in quantities of approximately 0.25 mg/L growth medium. Expressed LAAO exhibits the same electrophoretic mobility as native LAAO (62 kDa) and exhibits approximately the same extent of glycosylation as authentic LAAO from snake venom. Catalytic properties and substrate specificity of recombinant LAAO are similar to those of native enzyme.

  15. Purification of cold-shock-like proteins from Stigmatella aurantiaca - molecular cloning and characterization of the cspA gene.

    PubMed

    Stamm, I; Leclerque, A; Plaga, W

    1999-09-01

    Prominent low-molecular-weight proteins were isolated from vegetative cells of the myxobacterium Stigmatella aurantiaca and were found to be members of the cold-shock protein family. A first gene of this family (cspA) was cloned and sequenced. It encodes a protein of 68 amino acid residues that displays up to 71% sequence identity with other bacterial cold-shock(-like) proteins. A cysteine residue within the RNP-2 motif is a peculiarity of Stigmatella CspA. A cspA::(Deltatrp-lacZ) fusion gene construct was introduced into Stigmatella by electroporation, a method that has not been used previously for this strain. Analysis of the resultant transformants revealed that cspA transcription occurs at high levels during vegetative growth at 20 and 32 degrees C, and during fruiting body formation.

  16. High endemic levels of multidrug-resistant Acinetobacter baumannii among hospitals in southern Brazil.

    PubMed

    Martins, Andreza F; Kuchenbecker, Ricardo S; Pilger, Kátia O; Pagano, Mariana; Barth, Afonso L

    2012-03-01

    Most published data on multidrug-resistant Acinetobacter baumanii (MDR Ab) are derived from outbreaks. We report incidence trends on health care-acquired infections due to MDR Ab over a 12-month period in the city of Porto Alegre in southern Brazil. Clinical and epidemiologic data were obtained from the local health care information system of the municipal health department. Polymerase chain reaction was used to detect the presence of the genes bla(OXA-23-like), bla(OXA-24-like), bla(OXA-51), and bla(OXA-58), and repetitive sequence-based polymerase chain reaction and pulsed-field gel electrophoresis were performed for molecular typing. The highest rate of infection (9.0/1,000 inpatient-days) was identified in a trauma hospital. The gene bla(OXA-23-like) was identified in 99.0% of MDR Ab isolates. Eight main clonal groups were identified by molecular typing, and 3 of these were found in all hospitals. The presence of 3 clones in all hospitals demonstrates the ability of MDR Ab to spread among hospitals. Moreover, the occurrence of one particular clone (clone 4) throughout the study period suggests its increased ability to cause outbreaks and to remain in the environment. The monitoring of epidemic strains by molecular methods is of paramount importance to prevent or reduce the spread of MDR Ab. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Molecular Characterization of Mosquitocidal Toxin (Surface Layer Protein, SLP) from Bacillus cereus VCRC B540.

    PubMed

    Mani, Chinnasamy; Selvakumari, Jeyaperumal; Han, YeonSoo; Jo, YongHun; Thirugnanasambantham, Krishnaraj; Sundarapandian, Somaiah; Poopathi, Subbiah

    2018-04-01

    A marine Bacillus cereus (VCRC B540) with mosquitocidal effect was recently reported from red snapper fish (Lutjanus sanguineous) gut and surface layer protein (S-layer protein, SLP) was reported to be mosquito larvicidal factor. In this present study, the gene encoding the surface layer protein was amplified from the genomic DNA and functionally characterized. Amplification of SLP-encoding gene revealed 1,518 bp PCR product, and analysis of the sequence revealed the presence of 1482 bp open reading frame with coding capacity for a polypeptide of 493 amino acids. Phylogenetic analysis revealed with homology among closely related Bacillus cereus groups of organisms as well as Bacillus strains. Removal of nucleotides encoding signaling peptide revealed the functional cloning fragment of length 1398 bp. Theoretical molecular weight (51.7 kDa) and isoelectric point (5.99) of the deduced functional SLP protein were predicted using ProtParam. The amplified PCR product was cloned into a plasmid vector (pGEM-T), and the open reading frame free off signaling peptide was subsequently cloned inpET-28a(+) and expressed in Escherichia coli BL21 (DE3). The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant SLP was confirmed using western blotting, and functional SLP revealed mosquito larvicidal property. Therefore, the major findings revealed that SLP is a factor responsible for mosquitocidal activity, and the molecular characterization of this toxin was extensively studied.

  18. [Interest of new molecular typing method in the study of hospital transmitted Staphylococcus aureus population].

    PubMed

    Védy, S; Garnotel, E; Koeck, J-L; Simon, F; Molinier, S; Puidupin, A

    2007-11-01

    To determinate the origin of acquired S. aureus among hospitalised patients and to evaluate the transmission of strains between health care workers and hopistalised patients. The method chosen is a prospective study in risky clinical yards. Nasal swabing of patients and health care workers has been done to isolate bacterial samples. Caracterisation and comparaison of bacterial strains have been made using their antibiotic resistance profil and a recent molecular genotyping technic named MLVA (Multi Locus Variable Number of Tandem Repeat). It has never been used in such context. One hundred and fifty-seven strains have been isolated. They have been compared while realizing 1900 PCR and agar gel electrophoresis in 10 days. 15 clones were identified. One of them is mainly represented among patient's nasal carriage and acquired strains. As far as antibiotype and agr type are concerned, it is similar to hospital-acquired clone described in Europe with other technics (MRSA, Gentamicine-S agr 1). This clone appears to be also transmitted between health care workers and patients. Although it exists, we can't appreciate the intensity of this transmission. These results don't allow us to proceed to a systematic screening for nasal carriage among our health care workers. This study shows that MLVA could be a reliable molecular typing method, which could be used in every day practice. In our experience, it is as performing as PFGE, more didactic, faster and easier.

  19. Dominance of international 'high-risk clones' among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK.

    PubMed

    Wright, Laura L; Turton, Jane F; Livermore, David M; Hopkins, Katie L; Woodford, Neil

    2015-01-01

    Carbapenem-resistant isolates of Pseudomonas aeruginosa producing metallo-β-lactamases (MBLs) are increasingly reported worldwide and often belong to particular 'high-risk clones'. This study aimed to characterize a comprehensive collection of MBL-producing P. aeruginosa isolates referred to the UK national reference laboratory from multiple UK laboratories over a 10 year period. Isolates were referred to the UK national reference laboratory between 2003 and 2012 for investigation of resistance mechanisms and/or outbreaks. MBL genes were detected by PCR. Typing was carried out by nine-locus variable-number tandem repeat (VNTR) analysis and MLST. MBL-producing P. aeruginosa isolates were referred from 267 source patients and 89 UK laboratories. The most common isolation sites were urine (24%), respiratory (18%), wounds (17%) and blood (13%). VIM-type MBLs predominated (91% of all MBLs found), but a few IMP- and NDM-type enzymes were also identified. Diverse VNTR types were seen, but 86% of isolates belonged to six major complexes. MLST of representative isolates from each complex showed that they corresponded to STs 111, 233, 235, 357, 654 and 773, respectively. Isolates belonging to these complexes were received from between 9 and 25 UK referring laboratories each. The incidence of MBL-producing P. aeruginosa is increasing in the UK. The majority of these isolates belong to several 'high-risk clones', which have been previously reported internationally as host clones of MBLs. © Crown copyright 2014.

  20. Novel Variations of FANCA Gene Provokes Fanconi Anemia: Molecular Diagnosis in a Special Chinese Family.

    PubMed

    Li, Niu; Song, Aiyun; Ding, Lixia; Zhu, Hua; Li, Guoqiang; Miao, Yan; Wang, Jian; Li, Benshang; Chen, Jing

    2018-07-01

    Fanconi anemia (FA) is a rare autosomal recessive or X-linked disorder with highly variable clinical manifestations and an incidence of ∼1 to 5 in 1 million births. To date, 15 bona fide FA genes have been reported to be responsible for the known FA complementation groups and the FANCA gene accounts for almost 60%. In the present study, we report a special Chinese family, which has 2 children with classic FA characteristics. Via 2-step analysis of the whole-exome sequencing data and verification using multiplex ligation-dependent probe amplification test, one child was found to have a novel compound heterozygous mutation of a splicing variant (c.1471-1G>A) and a large intragenic deletion (exons 23-30 del) of the FANCA gene. The other child had the same splicing variant and another novel large deletion (exons 1-18 del) in the FANCA gene. Clone sequencing showed the c.1471-1G>A variant generate an altered transcript with 1 cryptic splice site in intron 15, resulting in a premature termination codon (p.Val490HisfsX6). This study not only shows the complexity of FA molecular diagnosis via comprehensively studying the FA pathogenic genes and the mutational spectrum, but also has significant reference value for the future molecular diagnosis of FA.

  1. Clonality Testing in Veterinary Medicine: A Review With Diagnostic Guidelines.

    PubMed

    Keller, S M; Vernau, W; Moore, P F

    2016-07-01

    The accurate distinction of reactive and neoplastic lymphoid proliferations can present challenges. Given the different prognoses and treatment strategies, a correct diagnosis is crucial. Molecular clonality assays assess rearranged lymphocyte antigen receptor gene diversity and can help differentiate reactive from neoplastic lymphoid proliferations. Molecular clonality assays are commonly used to assess atypical, mixed, or mature lymphoid proliferations; small tissue fragments that lack architecture; and fluid samples. In addition, clonality testing can be utilized to track neoplastic clones over time or across anatomic sites. Molecular clonality assays are not stand-alone tests but useful adjuncts that follow clinical, morphologic, and immunophenotypic assessment. Even though clonality testing provides valuable information in a variety of situations, the complexities and pitfalls of this method, as well as its dependency on the experience of the interpreter, are often understated. In addition, a lack of standardized terminology, laboratory practices, and interpretational guidelines hinders the reproducibility of clonality testing across laboratories in veterinary medicine. The objectives of this review are twofold. First, the review is intended to familiarize the diagnostic pathologist or interested clinician with the concepts, potential pitfalls, and limitations of clonality testing. Second, the review strives to provide a basis for future harmonization of clonality testing in veterinary medicine by providing diagnostic guidelines. © The Author(s) 2016.

  2. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    PubMed Central

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  3. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP).

    PubMed

    Bog, Manuela; Schneider, Philipp; Hellwig, Frank; Sachse, Svea; Kochieva, Elena Z; Martyrosian, Elena; Landolt, Elias; Appenroth, Klaus-J

    2013-01-01

    The genus Wolffia of the duckweed family (Lemnaceae) contains the smallest flowering plants. Presently, 11 species are recognized and categorized mainly on the basis of morphology. Because of extreme reduction of structure of all species, molecular methods are especially required for barcoding and identification of species and clones of this genus. We applied AFLP combined with Bayesian analysis of population structure to 66 clones covering all 11 species. Nine clusters were identified: (1) W. angusta and W. microscopica (only one clone), (2) W. arrhiza, (3) W. cylindracea (except one clone that might be a transition form), (4) W. australiana, (5) W. globosa, (6) W. globosa, W. neglecta, and W. borealis, (7) W. brasiliensis, and W. columbiana, (8) W. columbiana, (9) W. elongata. Furthermore, we investigated the sequences of plastidic regions rps16 (54 clones) and rpl16 (55 clones), and identified the following species: W. angusta, W. australiana, W. brasiliensis, W. cylindracea, W. elongata, W. microscopica, and W. neglecta. Wolffia globosa has been separated into two groups by both methods. One group which consists only of clones from North America and East Asia was labelled here "typical W. globosa". The other group of W. globosa, termed operationally "W. neglecta", contains also clones of W. neglecta and shows high similarity to W. borealis. None of the methods recognized W. borealis as a distinct species. Although each clone could be characterized individually by AFLP and plastidic sequences, and most species could be bar-coded, the presently available data are not sufficient to identify all taxa of Wolffia.

  4. Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient.

    PubMed

    Robin, Frédéric; Delmas, Julien; Schweitzer, Cédric; Tournilhac, Olivier; Lesens, Olivier; Chanal, Catherine; Bonnet, Richard

    2007-04-01

    Two clinical isolates of Escherichia coli, CF1179 and CF1295, were isolated from a patient hospitalized in the hematology unit of the University Hospital of Clermont-Ferrand, Clermont-Ferrand, France. They were resistant to penicillin-clavulanate combinations and to ceftazidime. The double-disk synergy test was positive only for isolate CF1179. Molecular comparison of the isolates showed that they were clonally related. E. coli recombinant strains exhibiting the resistance phenotype of the clinical strains were obtained by cloning. The clones corresponding to strains CF1179 and CF1295 produced TEM-type beta-lactamases with pI values of 5.7 and 5.3, respectively. Sequencing analysis revealed two novel blaTEM genes encoding closely related complex mutant TEM enzymes, designated TEM-151 (pI 5.3) and TEM-152 (pI 5.7). These two genes also harbored a new promoter region which presented a 9-bp deletion. The two novel beta-lactamases differed from the parental enzyme, TEM-1, by the substitution Arg164His, previously observed in extended-spectrum beta-lactamases (ESBLs), and by the substitutions Met69Val and Asn276Asp, previously observed in the inhibitor-resistant penicillinase TEM-36/IRT-7. They differed by two amino acid substitutions: TEM-152 harbored a Glu240Lys ESBL-type substitution and TEM-151 had an Ala284Gly substitution. Functional analysis of TEM-151 and TEM-152 showed that both enzymes had hydrolytic activity against ceftazidime (kcat, 5 and 16 s-1, respectively). TEM-152 was more resistant than TEM-151 to the inhibitor clavulanic acid (50% inhibitory concentrations, 1 versus 0.17 microM). These results confirm the evolution of TEM-type enzymes toward complex enzymes harboring the two kinds of substitutions which confer an extended spectrum of action against beta-lactam antibiotics and resistance to inhibitors.

  5. Random phage mimotopes recognized by monoclonal antibodies against the pyruvate dehydrogenase complex-E2 (PDC-E2).

    PubMed Central

    Cha, S; Leung, P S; Van de Water, J; Tsuneyama, K; Joplin, R E; Ansari, A A; Nakanuma, Y; Schatz, P J; Cwirla, S; Fabris, L E; Neuberger, J M; Gershwin, M E; Coppel, R L

    1996-01-01

    Dihydrolipoamide acetyltransferase, the E2 component of the pyruvate dehydrogenase complex (PDC-E2), is the autoantigen most commonly recognized by autoantibodies in primary biliary cirrhosis (PBC). We identified a peptide mimotope(s) of PDC-E2 by screening a phage-epitope library expressing random dodecapeptides in the pIII coat protein of fd phage using C355.1, a murine monoclonal antibody (mAb) that recognizes a conformation-dependent epitope in the inner lipoyl domain of PDC-E2 and uniquely stains the apical region of bile duct epithelium (BDE) only in patients with PBC. Eight different sequences were identified in 36 phage clones. WMSYPDRTLRTS was present in 29 clones; WESYPFRVGTSL, APKTYVSVSGMV, LTYVSLQGRQGH, LDYVPLKHRHRH, AALWGVKVRHVS, KVLNRIMAGVRH and GNVALVSSRVNA were singly represented. Three common amino acid motifs (W-SYP, TYVS, and VRH) were shared among all peptide sequences. Competitive inhibition of the immunohistochemical staining of PBC BDE was performed by incubating the peptides WMSYPDRTLRTS, WESYPDRTLRTS, APKTYVSVSGMV, and AALWGVKVRHVS with either C355.1 or a second PDC-E2-specific mAb, C150.1. Both mAbs were originally generated to PDC-E2 but map to distinct regions of PDC-E2. Two of the peptides, although selected by reaction with C355.1, strongly inhibited the staining of BDE by C150.1, whereas the peptide APKTYVSVSGMV consistently inhibited the staining of C355.1 on biliary duct epithelium more strongly than the typical mitochondrial staining of hepatocytes. Rabbit sera raised against the peptide WMSYPDRTLRTS stained BDE of livers and isolated bile duct epithelial cells of PBC patients more intensively than controls. The rabbit sera stained all size ducts in normals, but only small/medium-sized ductules in PBC livers. These studies provide evidence that the antigen present in BDE is a molecular mimic of PDC-E2, and not PDC-E2 itself. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855289

  6. Comparative analysis by polymerase chain reaction amplified minicircles of kinetoplast DNA of a stable strain of Trypanosoma cruzi from São Felipe, Bahia, its clones and subclones: possibility of predominance of a principal clone in this area.

    PubMed

    Campos, R F; Gonçalves, M S; dos Reis, E A; dos Reis, M G; Andrade, S G

    1999-01-01

    Molecular characterization of one stable strain of Trypanosoma cruzi, the 21 SF, representative of the pattern of strains isolated from the endemic area of São Felipe, State of Bahia, Brazil, maintained for 15 years in laboratory by serial passages in mice and classified as biodeme Type II and zymodeme 2 has been investigated. The kinetoplast DNA (kDNA) of parental strain, 5 clones and 14 subclones were analyzed. Schizodeme was established by comparative study of the fragments obtained from digestion of the 330-bp fragments amplified by polymerase chain reaction (PCR) from the variable regions of the minicircles, and digested by restriction endonucleases Rsa I and Hinf I. Our results show a high percentual of similarity between the restriction fragment length polymorphism (RFLP) for the parental strain and its clones and among these individual clones and their subclones at a level of 80 to 100%. This homology indicates a predominance of the same "principal clone" in the 21SF strain and confirms the homogeneity previously observed at biological and isozymic analysis. These results suggest the possibility that the T. cruzi strains with similar biological and isoenzymic patterns, circulating in this endemic area, are representative of one dominant clone. The presence of "principal clones" could be responsible for a predominant tropism of the parasites for specific organs and tissues and this could contribute to the pattern of clinico-pathological manifestations of Chagas's disease in one geographical area.

  7. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students.

    PubMed

    Campbell, A Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. © 2014 A. M. Campbell et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis)

    PubMed Central

    Lin, Jinke; Kudrna, Dave; Wing, Rod A.

    2011-01-01

    We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers. PMID:21234344

  9. Molecular Cloning and Characterization of Viruses Isolated from Chimpanzees with Pathogenic Human Immunodeficiency Virus Type 1 Infections

    PubMed Central

    Mwaengo, Dufton M.; Novembre, Francis J.

    1998-01-01

    We have previously described the development of AIDS in a chimpanzee (C499) infected with human immunodeficiency virus type 1 (HIV-1) and the subsequent pathogenic HIV-1 infection in another chimpanzee (C455) transfused with blood from C499 (F. J. Novembre et al., J. Virol. 71:4086–4091, 1997). In the present study, two virus isolates were derived from these animals: HIV-1JC from peripheral blood mononuclear cells (PBMC) of C499, and HIV-1NC from plasma of C455. These virus isolates were used to generate two infectious molecular clones, termed HIV-1JC16 and HIV-1NC7 (JC16 and NC7, respectively). Comparative analyses of the sequences of the two clones showed that they were highly interrelated but distinct. Based on heteroduplex mobility assays, JC16 and NC7 appear to represent dominant viruses in the uncloned stock population. Compared with amino acid sequences of the parental viruses HIV-1SF2, HIV-1LAV-1b, and HIV-1NDK, JC16 and NC7 showed a number of differences, including insertions, deletions, and point mutations spread throughout the genome. However, insertion/deletion footprints in several genes of both JC16 and NC7 suggested that recombination between SF2 and LAV-1b could have occurred, possibly contributing to the generation of a pathogenic virus. Comparative in vitro analyses of the molecular clones and the uncloned stocks of HIV-1JC and HIV-1NC revealed that these viruses had strikingly similar replicative abilities in mitogen-stimulated PBMC and in macrophages. Compared to the SF2 and LAV-1b isolates of HIV-1, HIV-1JC and HIV-1NC isolates were more similar to LAV-1b with respect to the ability to replicate in mitogen-stimulated PBMC and macrophages. These viruses should prove to be useful in mapping determinants of pathogenesis. PMID:9765443

  10. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis).

    PubMed

    Han, Hua; Sun, Xiaomei; Xie, Yunhui; Feng, Jian; Zhang, Shougong

    2014-11-26

    Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥ 2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined use of two important technologies as a powerful approach to advance research on non-model, but otherwise important, larch species.

  11. Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

    PubMed Central

    Nayak, Spurthi N.; Varghese, Nicy; Shah, Trushar M.; Penmetsa, R. Varma; Thirunavukkarasu, Nepolean; Gudipati, Srivani; Gaur, Pooran M.; Kulwal, Pawan L.; Upadhyaya, Hari D.; KaviKishor, Polavarapu B.; Winter, Peter; Kahl, Günter; Town, Christopher D.; Kilian, Andrzej; Cook, Douglas R.; Varshney, Rajeev K.

    2011-01-01

    Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes. PMID:22102885

  12. Phenotypic and molecular characterization of Neisseria gonorrhoeae isolates from Slovenia, 2006-12: rise and fall of the multidrug-resistant NG-MAST genogroup 1407 clone?

    PubMed

    Jeverica, Samo; Golparian, Daniel; Matičič, Mojca; Potočnik, Marko; Mlakar, Boštjan; Unemo, Magnus

    2014-06-01

    To determine the phenotypic and molecular characteristics of Neisseria gonorrhoeae isolates obtained between 2006 and 2012 in Slovenia. Gonococcal isolates obtained between 2006 and 2012 in Slovenia (n = 194) were investigated with Etest for susceptibility to cefixime, ceftriaxone, penicillin, ciprofloxacin, azithromycin, tetracycline, gentamicin and spectinomycin. All isolates were examined with N. gonorrhoeae multiantigen sequence typing for molecular epidemiology and sequencing of the major extended-spectrum cephalosporin (ESC) resistance determinants (penA, mtrR and penB) was performed. The overall prevalence of decreased susceptibility or resistance to cefixime and ceftriaxone (MIC ≥0.125 mg/L) was 11% and 5%, respectively. The decreased susceptibility or resistance showed an epidemic peak in 2011 (33% for cefixime and 11% for ceftriaxone), decreasing to 6% and 4%, respectively, in 2012. ST1407 (9% of isolates), ST21 (6%) and ST225 (6%) were the most common sequence types (STs) during 2006-12. Genogroup G1407 (ST1407 most prevalent ST), an internationally spread clone with decreased susceptibility or resistance to ESCs, was most prevalent (48%) in 2009. However, the G1407 prevalence then declined: in 2010, 30%; in 2011, 28%; and in 2012, 8%. Instead, in 2012 the ESC- and ciprofloxacin-susceptible G21 was the predominant genogroup (26%). The prevalence of gonococcal resistance to ESCs in Slovenia has been high, but fluctuating. Fortunately, in 2012 some ESC- and ciprofloxacin-susceptible clones, such as genogroups G21, G1195 and G2992, appeared to have mainly replaced the multidrug-resistant G1407 clone, a replacement also seen in several European countries. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Ammonia excretion and urea handling by fish gills: present understanding and future research challenges.

    PubMed

    Wilkie, Michael Patrick

    2002-08-01

    In fresh water fishes, ammonia is excreted across the branchial epithelium via passive NH(3) diffusion. This NH(3) is subsequently trapped as NH(4)(+) in an acidic unstirred boundary layer lying next to the gill, which maintains the blood-to-gill water NH(3) partial pressure gradient. Whole animal, in situ, ultrastructural and molecular approaches suggest that boundary layer acidification results from the hydration of CO(2) in the expired gill water, and to a lesser extent H(+) excretion mediated by apical H(+)-ATPases. Boundary layer acidification is insignificant in highly buffered sea water, where ammonia excretion proceeds via NH(3) diffusion, as well as passive NH(4)(+) diffusion due to the greater ionic permeability of marine fish gills. Although Na(+)/H(+) exchangers (NHE) have been isolated in marine fish gills, possible Na(+)/NH(4)(+) exchange via these proteins awaits evaluation using modern electrophysiological and molecular techniques. Although urea excretion (J(Urea)) was thought to be via passive diffusion, it is now clear that branchial urea handling requires specialized urea transporters. Four urea transporters have been cloned in fishes, including the shark kidney urea transporter (shUT), which is a facilitated urea transporter similar to the mammalian renal UT-A2 transporter. Another urea transporter, characterized but not yet cloned, is the basolateral, Na(+) dependent urea antiporter of the dogfish gill, which is essential for urea retention in ureosmotic elasmobranchs. In ureotelic teleosts such as the Lake Magadi tilapia and the gulf toadfish, the cloned mtUT and tUT are facilitated urea transporters involved in J(Urea). A basolateral urea transporter recently cloned from the gill of the Japanese eel (eUT) may actually be important for urea retention during salt water acclimation. A multi-faceted approach, incorporating whole animal, histological, biochemical, pharmacological, and molecular techniques is required to learn more about the location, mechanism of action, and functional significance of urea transporters in fishes. Copyright 2002 Wiley-Liss, Inc.

  14. Production of cloned mice by somatic cell nuclear transfer.

    PubMed

    Kishigami, Satoshi; Wakayama, Sayaka; Thuan, Nguyen Van; Ohta, Hiroshi; Mizutani, Eiji; Hikichi, Takafusa; Bui, Hong-Thuy; Balbach, Sebastian; Ogura, Atsuo; Boiani, Michele; Wakayama, Teruhiko

    2006-01-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning remains < 5%. Nevertheless, the techniques have potential as important tools for future research in basic biology. We have been able to develop a stable NT method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although manipulation of the piezo unit is complex, once mastered it is of great help not only in NT experiments but also in almost all other forms of micromanipulation. In addition to this technique, embryonic stem (ES) cell lines established from somatic cell nuclei by NT can be generated relatively easily from a variety of mouse genotypes and cell types. Such NT-ES cells can be used not only for experimental models of human therapeutic cloning but also as a backup of the donor cell's genome. Our most recent protocols for mouse cloning, as described here, will allow the production of cloned mice in > or = 3 months.

  15. The high diversity of MRSA clones detected in a university hospital in istanbul.

    PubMed

    Oksuz, Lutfiye; Dupieux, Celine; Tristan, Anne; Bes, Michele; Etienne, Jerome; Gurler, Nezahat

    2013-01-01

    To characterize the methicillin-resistant Staphylococcus aureus (MRSA) clones present in Istanbul, 102 MRSA isolates collected during a 5-year period at the Istanbul Medical Faculty Hospital were characterized using microarray analysis and phenotypic resistance profiles. Resistance to methicillin was detected with a cefoxitin disk diffusion assay and confirmed with a MRSA-agar and MRSA detection kit. Antimicrobial susceptibility testing was performed by a disk diffusion assay and interpreted according to the 2012 guidelines of the Antibiogram Committee of the French Society for Microbiology. Decreased susceptibility to glycopeptides was confirmed using the population analysis profile-area under the curve (PAP-AUC) method. The presence of the mecA gene was detected by polymerase chain reaction. Bacterial DNA was extracted according to the manufacturer's recommended protocol using commercial extraction kits. Strains were extensively characterized using the DNA microarray. Isolates were grouped into six clonal complexes. The most frequently detected clone was the Vienna/Hungarian/Brazilian clone (ST239-MRSA-III), which accounted for 53.9% of the isolates. These isolates were resistant to multiple antibiotics, particularly penicillin, tetracycline, rifampicin, kanamycin, tobramycin, gentamicin, levofloxacin, erythromycin, lincomycin and fosfomycin. Furthermore, three isolates were detected by population analysis profile as heterogeneous vancomycin-intermediate S. aureus (hVISA). The UK-EMRSA-15 clone (ST22-MRSA-IV PVL negative) was detected in 9.8% of the isolates and was mainly susceptible to all anti-staphylococcal antibiotics. Seven isolates (6.9%) were positive for PVL genes and were assigned to the CC80-MRSA-IV clone (European CA-MRSA clone, three isolates), ST8-MRSA-IV clone (USA300 clone, two isolates, one ACME-positive) or ST22-MRSA-IV clone ("Regensburg EMRSA" clone, two isolates). All other clones were detected in one to six isolates and corresponded to well-known clones (e.g., Pediatric clone, Dublin EMRSA clone, WA MRSA-54/63, WA MRSA-1/57). This work highlighted both the high prevalence of ST239-MRSA-III clone and the large diversity of the other MRSA clones detected in a university hospital in Istanbul.

  16. The High Diversity of MRSA Clones Detected in a University Hospital in Istanbul

    PubMed Central

    Oksuz, Lutfiye; Dupieux, Celine; Tristan, Anne; Bes, Michele; Etienne, Jerome; Gurler, Nezahat

    2013-01-01

    Background: To characterize the methicillin-resistant Staphylococcus aureus (MRSA) clones present in Istanbul, 102 MRSA isolates collected during a 5-year period at the Istanbul Medical Faculty Hospital were characterized using microarray analysis and phenotypic resistance profiles. Methods: Resistance to methicillin was detected with a cefoxitin disk diffusion assay and confirmed with a MRSA-agar and MRSA detection kit. Antimicrobial susceptibility testing was performed by a disk diffusion assay and interpreted according to the 2012 guidelines of the Antibiogram Committee of the French Society for Microbiology. Decreased susceptibility to glycopeptides was confirmed using the population analysis profile-area under the curve (PAP-AUC) method. The presence of the mecA gene was detected by polymerase chain reaction. Bacterial DNA was extracted according to the manufacturer's recommended protocol using commercial extraction kits. Strains were extensively characterized using the DNA microarray. Results: Isolates were grouped into six clonal complexes. The most frequently detected clone was the Vienna/Hungarian/Brazilian clone (ST239-MRSA-III), which accounted for 53.9% of the isolates. These isolates were resistant to multiple antibiotics, particularly penicillin, tetracycline, rifampicin, kanamycin, tobramycin, gentamicin, levofloxacin, erythromycin, lincomycin and fosfomycin. Furthermore, three isolates were detected by population analysis profile as heterogeneous vancomycin-intermediate S. aureus (hVISA). The UK-EMRSA-15 clone (ST22-MRSA-IV PVL negative) was detected in 9.8% of the isolates and was mainly susceptible to all anti-staphylococcal antibiotics. Seven isolates (6.9%) were positive for PVL genes and were assigned to the CC80-MRSA-IV clone (European CA-MRSA clone, three isolates), ST8-MRSA-IV clone (USA300 clone, two isolates, one ACME-positive) or ST22-MRSA-IV clone (“Regensburg EMRSA” clone, two isolates). All other clones were detected in one to six isolates and corresponded to well-known clones (e.g., Pediatric clone, Dublin EMRSA clone, WA MRSA-54/63, WA MRSA-1/57). Conclusions: This work highlighted both the high prevalence of ST239-MRSA-III clone and the large diversity of the other MRSA clones detected in a university hospital in Istanbul. PMID:24151444

  17. Molecular cloning of a small prostate protein, known as beta-microsemenoprotein, PSP94 or beta-inhibin, and demonstration of transcripts in non-genital tissues.

    PubMed

    Ulvsbäck, M; Lindström, C; Weiber, H; Abrahamsson, P A; Lilja, H; Lundwall, A

    1989-11-15

    In order to study the gene expression of the seminal plasma protein beta-microseminoprotein, also known as PSP94 and beta-inhibin, clones encoding this protein were isolated from a cDNA library constructed in lambda gt11. Nucleotide sequencing confirmed the structure of a previously cloned cDNA. By northern blot analysis identical sized transcripts were demonstrated in the prostate, the respiratory (tracheal, bronchial and lung) tissues and the antrum part of the gastric mucosa. Thus, the protein is not primarily associated with male reproductive function. Although probably of no physiological significance, a slight structural similarity to the ovarian inhibin beta-chains was identified in the C-terminal half of the molecule.

  18. Molecular cloning and characterization of Bacillus alvei thiol-dependent cytolytic toxin expressed in Escherichia coli.

    PubMed

    Geoffroy, C; Alouf, J E

    1988-07-01

    A chromosomal DNA fragment from Bacillus alvei, encoding a thiol-dependent haemolytic product known as alveolysin (Mr 60,000, pI 5.0) was cloned in Escherichia coli SK1592, using pBR322 as the vector plasmid. Only a single haemolysin-positive clone was identified, by testing for haemolysis on blood agar plates. The haemolytic material was associated with the host bacterial cell. It was released by ultrasonic disruption and purified 267-fold. A 64 kDa polypeptide of pI 8.2 cofractionated with haemolytic activity during gel filtration chromatography and isoelectric focusing. It behaved identically to alveolysin in its activation by thiols, inactivation by thiol group reagents, inhibition by cholesterol, and neutralization, immunoprecipitation and immunoblotting by immune sera raised against alveolysin and streptolysin O.

  19. Cloning and molecular characterization of the salt-regulated jojoba ScRab cDNA encoding a small GTP-binding protein.

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2002-10-01

    Salt stress results in a massive change in gene expression. An 837 bp cDNA designated ScRab was cloned from shoot cultures of the salt tolerant jojoba (Simmondsia chinesis). The cloned cDNA encodes a full length 200 amino acid long polypeptide that bears high homology to the Rab subfamily of small GTP binding proteins, particularly, the Rab5 subfamily. ScRab expression is reduced in shoots grown in the presence of salt compared to shoots from non-stressed cultures. His6-tagged ScRAB protein was expressed in E. coli, and purified to homogeneity. The purified protein bound radiolabelled GTP. The unlabelled guanine nucleotides GTP, GTP gamma S and GDP but not ATP, CTP or UTP competed with GTP binding.

  20. Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride

    PubMed Central

    Matroudi, S.; Zamani, M.R.; Motallebi, M.

    2008-01-01

    In this study Trichoderma atroviride was selected as over producer of chitinase enzyme among 30 different isolates of Trichoderma sp. on the basis of chitinase specific activity. From this isolate the genomic and cDNA clones encoding chit33 have been isolated and sequenced. Comparison of genomic and cDNA sequences for defining gene structure indicates that this gene contains three short introns and also an open reading frame coding for a protein of 321 amino acids. The deduced amino acid sequence includes a 19 aa putative signal peptide. Homology between this sequence and other reported Trichoderma Chit33 proteins are discussed. The coding sequence of chit33 gene was cloned in pEt26b(+) expression vector and expressed in E. coli. PMID:24031242

  1. Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display.

    PubMed

    Patel, Chirag A; Wang, Jinqing; Wang, Xinwei; Dong, Feng; Zhong, Pingyu; Luo, Peter P; Wang, Kevin C

    2011-09-01

    We created a cross-species display system that allows the display of the same antibody libraries on both prokaryotic phage and eukaryotic yeast without the need for molecular cloning. Using this cross-display system, a large, diverse library can be constructed once and subsequently used for display and selection in both phage and yeast systems. In this article, we performed the parallel phage and yeast selection of an antibody maturation library using this cross-display platform. This parallel selection allowed us to isolate more unique hits than single-species selection, with 162 unique clones from phage and 107 unique clones from yeast. In addition, we were able to shuttle yeast hits back to Escherichia coli cells for affinity characterization at a higher throughput.

  2. Molecular cloning of a Candida albicans gene (SSB1) coding for a protein related to the Hsp70 family.

    PubMed

    Maneu, V; Cervera, A M; Martinez, J P; Gozalbo, D

    1997-06-15

    We have cloned and sequenced a Candida albicans gene (SSB1) encoding a potential member of the heat-shock protein seventy (hsp70) family. The protein encoded by this gene contains 613 amino acids and shows a high degree (85%) of sequence identity to the ssb subfamily (ssb1 and ssb2) of the Saccharomyces cerevisiae hsp70 family. The transcribed mRNA (2.1 kb) is present in similar amounts both in yeast and germ tube cells of C. albicans.

  3. Molecular Cloning and Function of FAS/APO1 Associated Protein in Breast Cancer.

    DTIC Science & Technology

    1996-06-01

    Ariyama T, Abe T, Druck T, Ohta M, Huebner K, Yanagisawa J, Reed JC, Sato T: PTPN13, a Fas-associated protein tyrosine phosphatase, is located on...20. Yang, Q., and Tonks, N. K. (1991). Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology 7. Huebner, K., Druck , T...Acad. Sci. U.S.A. 91, 7477 (1994). Res. 53, 1945 (1993).(Fig. 3D ). In contrast to Jurkat cells which 13. The original description of PTP-BAS (12

  4. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  5. Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns

    Treesearch

    Luis F. Larrondo; Marcela Avila; Loreto Salas; Dan Cullen; Rafael Vicuna

    2003-01-01

    Analysis of genomic clones encoding a putative laccase in homokaryon strains of Ceriporiopsis subvermispora led to the identification of an allelic variant of the previously described lcs-1 gene. A cDNA clone corresponding to this gene was expressed in Aspergillus nidulans and in Aspergillus niger. Enzyme assays and Western blots showed that both hosts secreted active...

  6. Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and 12S Cloning

    PubMed Central

    Lucero, David E.; Ribera, Wilma; Pizarro, Juan Carlos; Plaza, Carlos; Gordon, Levi W.; Peña, Reynaldo; Morrissey, Leslie A.; Rizzo, Donna M.; Stevens, Lori

    2014-01-01

    Background In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia. Methodology/Principal Findings We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors). Conclusions/Significance We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors. PMID:25474154

  7. Wide but Variable Distribution of a Hypervirulent Campylobacter jejuni Clone in Beef and Dairy Cattle in the United States

    PubMed Central

    Tang, Yizhi; Meinersmann, Richard J.; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee Lawrence, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T.

    2017-01-01

    ABSTRACT Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the United States and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) dairy studies in 2002, 2007, and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter organisms was 72.2%, 82.1% of which were C. jejuni. Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces, including clone SA, suggesting that these birds may play a role in the transmission of Campylobacter. In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole-genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O) in the chromosome. These findings indicate that clone SA is widely distributed in both beef and dairy cattle and provide new insights into the molecular epidemiology of clone SA in ruminants. IMPORTANCE C. jejuni clone SA is a major cause of small-ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appear to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance studies conducted on a national scale, we found a wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of preharvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health, as it is a zoonotic pathogen causing disease in both ruminants and humans. PMID:28970227

  8. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the United States.

    PubMed

    Tang, Yizhi; Meinersmann, Richard J; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T; Zhang, Qijing

    2017-09-29

    Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here, we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the U.S. and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) Dairy Studies 2002, 2007 and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter was 72.2%, 82.1% of which were C. jejuni Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces including clone SA, suggesting it may play a role in the transmission of Campylobacter In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O ) in the chromosome. These findings indicate clone SA is widely distributed in both beef and dairy cattle, and provide new insights into the molecular epidemiology of clone SA in ruminants. Importance C. jejuni clone SA is a major cause of small ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appears to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance studies conducted on a national scale, this manuscript describes wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of pre-harvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health as it is a zoonotic pathogen causing disease in both ruminants and humans. Copyright © 2017 Tang et al.

  9. EF-hand proteins and the regulation of actin-myosin interaction in the eutardigrade Hypsibius klebelsbergi (tardigrada).

    PubMed

    Prasath, Thiruketheeswaran; Greven, Hartmut; D'Haese, Jochen

    2012-06-01

    Many tardigrade species resist harsh environmental conditions by entering anhydrobiosis or cryobiosis. Desiccation as well as freeze resistance probably leads to changes of the ionic balance that includes the intracellular calcium concentration. In order to search for protein modifications affecting the calcium homoeostasis, we studied the regulatory system controlling actin-myosin interaction of the eutardigrade Hypsibius klebelsbergi and identified full-length cDNA clones for troponin C (TnC, 824 bp), calmodulin (CaM, 1,407 bp), essential myosin light chain (eMLC, 1,015 bp), and regulatory myosin light chain (rMLC, 984 bp) from a cDNA library. All four proteins belong to the EF-hand superfamily typified by a calcium coordinating helix-loop-helix motif. Further, we cloned and obtained recombinant TnC and both MLCs. CaM and TnC revealed four and two potential calcium-binding domains, respectively. Gel mobility shift assays demonstrated calcium-induced conformational transition of TnC. From both MLCs, only the rMLC showed one potential N-terminal EF-hand domain. Additionally, sequence properties suggest phosphorylation of this myosin light chain. Based on our results, we suggest a dual-regulated system at least in somatic muscles for tardigrades with a calcium-dependent tropomyosin-troponin complex bound to the actin filaments and a phosphorylation of the rMLC turning on and off both actin and myosin. Our results indicate no special modifications of the molecular structure and function of the EF-hand proteins in tardigrades. Phylogenetic trees of 131 TnCs, 96 rMLCs, and 62 eMLCs indicate affinities to Ecdysozoa, but also to some other taxa suggesting that our results reflect the complex evolution of these proteins rather than phylogenetic relationships. © 2012 WILEY PERIODICALS, INC.

  10. Molecular cloning and characterization of rhesus monkey platelet glycoprotein Ibα, a major ligand-binding subunit of GPIb-IX-V complex.

    PubMed

    Qiao, Jianlin; Shen, Yang; Shi, Meimei; Lu, Yanrong; Cheng, Jingqiu; Chen, Younan

    2014-05-01

    Through binding to von Willebrand factor (VWF), platelet glycoprotein (GP) Ibα, the major ligand-binding subunit of the GPIb-IX-V complex, initiates platelet adhesion and aggregation in response to exposed VWF or elevated fluid-shear stress. There is little data regarding non-human primate platelet GPIbα. This study cloned and characterized rhesus monkey (Macaca Mullatta) platelet GPIbα. DNAMAN software was used for sequence analysis and alignment. N/O-glycosylation sites and 3-D structure modelling were predicted by online OGPET v1.0, NetOGlyc 1.0 Server and SWISS-MODEL, respectively. Platelet function was evaluated by ADP- or ristocetin-induced platelet aggregation. Rhesus monkey GPIbα contains 2,268 nucleotides with an open reading frame encoding 755 amino acids. Rhesus monkey GPIbα nucleotide and protein sequences share 93.27% and 89.20% homology respectively, with human. Sequences encoding the leucine-rich repeats of rhesus monkey GPIbα share strong similarity with human, whereas PEST sequences and N/O-glycosylated residues vary. The GPIbα-binding residues for thrombin, filamin A and 14-3-3ζ are highly conserved between rhesus monkey and human. Platelet function analysis revealed monkey and human platelets respond similarly to ADP, but rhesus monkey platelets failed to respond to low doses of ristocetin where human platelets achieved 76% aggregation. However, monkey platelets aggregated in response to higher ristocetin doses. Monkey GPIbα shares strong homology with human GPIbα, however there are some differences in rhesus monkey platelet activation through GPIbα engagement, which need to be considered when using rhesus monkey platelet to investigate platelet GPIbα function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. MacroBac: New Technologies for Robust and Efficient Large-Scale Production of Recombinant Multiprotein Complexes.

    PubMed

    Gradia, Scott D; Ishida, Justin P; Tsai, Miaw-Sheue; Jeans, Chris; Tainer, John A; Fuss, Jill O

    2017-01-01

    Recombinant expression of large, multiprotein complexes is essential and often rate limiting for determining structural, biophysical, and biochemical properties of DNA repair, replication, transcription, and other key cellular processes. Baculovirus-infected insect cell expression systems are especially well suited for producing large, human proteins recombinantly, and multigene baculovirus systems have facilitated studies of multiprotein complexes. In this chapter, we describe a multigene baculovirus system called MacroBac that uses a Biobricks-type assembly method based on restriction and ligation (Series 11) or ligation-independent cloning (Series 438). MacroBac cloning and assembly is efficient and equally well suited for either single subcloning reactions or high-throughput cloning using 96-well plates and liquid handling robotics. MacroBac vectors are polypromoter with each gene flanked by a strong polyhedrin promoter and an SV40 poly(A) termination signal that minimize gene order expression level effects seen in many polycistronic assemblies. Large assemblies are robustly achievable, and we have successfully assembled as many as 10 genes into a single MacroBac vector. Importantly, we have observed significant increases in expression levels and quality of large, multiprotein complexes using a single, multigene, polypromoter virus rather than coinfection with multiple, single-gene viruses. Given the importance of characterizing functional complexes, we believe that MacroBac provides a critical enabling technology that may change the way that structural, biophysical, and biochemical research is done. © 2017 Elsevier Inc. All rights reserved.

  12. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system.

    PubMed

    Wu, J H; Liu, W T; Tseng, I C; Cheng, S S

    2001-02-01

    The microbial composition and spatial distribution in a terephthalate-degrading anaerobic granular sludge system were characterized using molecular techniques. 16S rDNA clone library and sequence analysis revealed that 78.5% of 106 bacterial clones belonged to the delta subclass of the class Proteobacteria; the remaining clones were assigned to the green non-sulfur bacteria (7.5%), Synergistes (0.9%) and unidentified divisions (13.1%). Most of the bacterial clones in the delta-Proteobacteria formed a novel group containing no known bacterial isolates. For the domain Archaea, 81.7% and 18.3% of 72 archaeal clones were affiliated with Methanosaeta and Methanospirillum, respectively. Spatial localization of microbial populations inside granules was determined by transmission electron microscopy and fluorescent in situ hybridization with oligonucleotide probes targeting the novel delta-proteobacterial group, the acetoclastic Methanosaeta, and the hydrogenotrophic Methanospirillum and members of Methanobacteriaceae. The novel group included at least two different populations with identical rod-shape morphology, which made up more than 87% of the total bacterial cells, and were closely associated with methanogenic populations to form a nonlayered granular structure. This novel group was presumed to be the primary bacterial population involved in the terephthalate degradation in the methanogenic granular consortium.

  13. The Chromosome Microdissection and Microcloning Technique.

    PubMed

    Zhang, Ying-Xin; Deng, Chuan-Liang; Hu, Zan-Min

    2016-01-01

    Chromosome microdissection followed by microcloning is an efficient tool combining cytogenetics and molecular genetics that can be used for the construction of the high density molecular marker linkage map and fine physical map, the generation of probes for chromosome painting, and the localization and cloning of important genes. Here, we describe a modified technique to microdissect a single chromosome, paint individual chromosomes, and construct single-chromosome DNA libraries.

  14. Molecular identification of PpHDAC1, the first histone deacetylase fron the slime mold Physarum polycephalum.

    PubMed

    Brandtner, Eva-Maria; Lechner, Thomas; Loidl, Peter; Lusser, Alexandra

    2002-01-01

    The dynamic state of post-translational acetylation of eukaryotic histones is maintained by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs have been shown to be components of various regulatory protein complexes in the cell. Their enzymatic activities, intracellular localization and substrate specificities are regulated in a complex, cell cycle related manner. In the myxomycete Physarum polycephalum multiple HATs and HDACs can be distinguished in biochemical terms and they exhibit dynamic activity patterns depending on the cell cycle stage. Here we report on the cloning of the first P. polycephalum HDAC (PpHDAC1) related to the S. cerevisiae Rpd3 protein. The expression pattern of PpHDAC1 mRNA was analysed at different time points of the cell cycle and found to be largely constant. Treatment of macroplasmodia with the HDAC inhibitor trichostatin A at several cell cycle stages resulted in a significant delay in entry into mitosis of treated versus untreated plasmodia. No effect of TSA treatment could be observed on PpHDAC1 expression itself.

  15. Functional analysis of human foamy virus accessory reading frames.

    PubMed Central

    Baunach, G; Maurer, B; Hahn, H; Kranz, M; Rethwilm, A

    1993-01-01

    Foamy viruses belong to the retroviruses which possess a complex genome structure. The human foamy virus (HFV) isolate bears three open reading frames (the so-called bel genes) in the 3' region of the genome which have been reported to give rise to possibly six different proteins via alternative splicing (W. Muranyi and R. M. Flügel, J. Virol. 65:727-735, 1991). In order to analyze the requirements of these proteins for HFV replication in vitro, we constructed a set of single and combinatory bel gene mutants of an infectious molecular clone of HFV. The mutant which lacked the transacting activator, bel-1, was found to be replication incompetent. All other mutants replicated equally well and gave rise to comparable titers of infectious cell-free virus. When HFV proviruses were put under the control of a heterologous promoter (simian virus 40), none of the accessory gene products was found to be required for expression of structural (gag) proteins. There was no evidence for a posttranscriptional regulatory protein that is present in other complex retroviruses. Images PMID:8394455

  16. Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments.

    PubMed

    Desai, Chirayu; Madamwar, Datta

    2007-03-01

    PCR inhibitor-free metagenomic DNA of high quality and high yield was extracted from highly polluted sediments using a simple remediation strategy of adsorption and ion-exchange chromatography. Extraction procedure was optimized with series of steps, which involved gentle mechanical lysis, treatment with powdered activated charcoal (PAC) and ion-exchange chromatography with amberlite resin. Quality of the extracted DNA for molecular diversity analysis was tested by amplifying bacterial 16S rDNA (16S rRNA gene) with eubacterial specific universal primers (8f and 1492r), cloning of the amplified 16S rDNA and ARDRA (amplified rDNA restriction analysis) of the 16S rDNA clones. The presence of discrete differences in ARDRA banding profiles provided evidence for expediency of the DNA extraction protocol in molecular diversity studies. A comparison of the optimized protocol with commercial Ultraclean Soil DNA isolation kit suggested that method described in this report would be more efficient in removing metallic and organic inhibitors, from polluted sediment samples.

  17. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa.

    PubMed

    de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles

    2014-10-01

    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  18. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa

    PubMed Central

    de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles

    2014-01-01

    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea. PMID:25505843

  19. Language and values in the human cloning debate: a web-based survey of scientists and Christian fundamentalist pastors.

    PubMed

    Weasel, Lisa H; Jensen, Eric

    2005-04-01

    Over the last seven years, a major debate has arisen over whether human cloning should remain legal in the United States. Given that this may be the 'first real global and simultaneous news story on biotechnology' (Einsiedel et al., 2002, p.313), nations around the world have struggled with the implications of this newly viable scientific technology, which is often also referred to as somatic cell nuclear transfer. Since the successful cloning of Dolly the sheep in 1997, and with increasing media attention paid to the likelihood of a successful human reproductive clone coupled with research suggesting the medical potential of therapeutic cloning in humans, members of the scientific community and Christian fundamentalist leaders have become increasingly vocal in the debate over U.S. policy decisions regarding human cloning (Wilmut, 2000). Yet despite a surfeit of public opinion polls and widespread opining in the news media on the topic of human cloning, there have been no empirical studies comparing the views of scientists and Christian fundamentalists in this debate (see Evans, 2002a for a recent study of opinion polls assessing religion and attitudes toward cloning). In order to further investigate the values that underlie scientists' and Christian fundamentalist leader's understanding of human cloning, as well as their differential use of language in communicating about this issue, we conducted an open-ended, exploratory survey of practicing scientists in the field of molecular biology and Christian fundamentalist pastors. We then analyzed the responses from this survey using qualitative discourse analysis. While this was not necessarily a representative sample (in quantitative terms, see Gaskell & Bauer, 2000) of each of the groups and the response rate was limited, this approach was informative in identifying both commonalities between the two groups, such as a focus on ethical concerns about reproductive cloning and the use of scientific terminology, as well as significant differences including concerns over 'playing God' for the Christian pastors, focus on therapeutic cloning by scientists, and subtle but informative differences between the two groups in their use of scientific terminology and their interpretations of human cloning as scientific progress.

  20. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    PubMed

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  1. Interclonal Variations in the Molecular Karyotype of Trypanosoma cruzi: Chromosome Rearrangements in a Single Cell-Derived Clone of the G Strain

    PubMed Central

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. PMID:23667668

  2. Cloud Model-Based Artificial Immune Network for Complex Optimization Problem

    PubMed Central

    Wang, Mingan; Li, Jianming; Guo, Dongliang

    2017-01-01

    This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators—cloning, mutation, and suppression—are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications—finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning—are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm. PMID:28630620

  3. Cloud Model-Based Artificial Immune Network for Complex Optimization Problem.

    PubMed

    Wang, Mingan; Feng, Shuo; Li, Jianming; Li, Zhonghua; Xue, Yu; Guo, Dongliang

    2017-01-01

    This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators-cloning, mutation, and suppression-are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications-finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning-are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm.

  4. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  5. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  6. Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II Methanotrophs Whose Presence Was Suggested by Culture-Independent 16S Ribosomal DNA Analysis

    PubMed Central

    Wise, Mark G.; McArthur, J Vaun; Shimkets, Lawrence J.

    1999-01-01

    The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and tested. These primers were used to amplify directly extracted soil DNA, and the products were used to construct type I and type II clone libraries. The second molecular approach, based on denaturing gradient gel electrophoresis (DGGE), provided profiles of the methanotrophic community members as distinguished by sequence differences in variable region 3 of the 16S ribosomal DNA. For the culturing studies, an extinction-dilution technique was employed to isolate slow-growing but numerically dominant strains. The key variables of the series of enrichment conditions were initial pH (4.8 versus 6.8), air/CH4/CO2 headspace ratio (50:45:5 versus 90:9:1), and concentration of the medium (1× nitrate minimal salts [NMS] versus 0.2× NMS). Screening of the isolates showed that the nutrient-rich 1× NMS selected for type I methanotrophs, while the nutrient-poor 0.2× NMS tended to enrich for type II methanotrophs. Partial sequencing of the 16S rRNA gene from selected clones and isolates revealed some of the same novel sequence types. Phylogenetic analysis of the type I clone library suggested the presence of a new phylotype related to the Methylobacter-Methylomicrobium group, and this was confirmed by isolating two members of this cluster. The type II clone library also suggested the existence of a novel group of related species distinct from the validly published Methylosinus and Methylocystis genera, and two members of this cluster were also successfully cultured. Partial sequencing of the pmoA gene, which codes for the 27-kDa polypeptide of the particulate methane monooxygenase, reaffirmed the phylogenetic placement of the four isolates. Finally, not all of the bands separated by DGGE could be accounted for by the clones and isolates. This polyphasic assessment of community structure demonstrates that much diversity among the obligate methane oxidizers has yet to be formally described. PMID:10543800

  7. Cloning, expression and functional characterization of Schizosaccharomyces pombe TFIIB.

    PubMed

    Tamayo, Evelyn; Maldonado, Edio

    2002-09-27

    The transcription factor TFIIB has been identified and cloned from the yeast Schizosaccharomyces pombe. The cloned polypeptide is highly homologous to human TFIIB and to Saccharomyces cerevisiae TFIIB. S. pombe TFIIB is a 340-amino-acid-long protein and it possesses a repeated motif of 75 amino acids near the carboxy-terminal region. The purified recombinant protein is able to bind to the TBP-DNA promoter complex in gel retardation experiments. Recombinant S. pombe TFIIB is active in in vitro transcription assays, since it can complement the transcription activity of a S. pombe cell extract in which TFIIB was depleted by using antibodies.

  8. Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV)

    PubMed Central

    Lamp, Benjamin; Url, Angelika; Seitz, Kerstin; Eichhorn, Jürgen; Riedel, Christiane; Sinn, Leonie Janina; Indik, Stanislav; Köglberger, Hemma; Rümenapf, Till

    2016-01-01

    European honey bees are highly important in crop pollination, increasing the value of global agricultural production by billions of dollars. Current knowledge about virulence and pathogenicity of Deformed wing virus (DWV), a major factor in honey bee colony mortality, is limited. With this study, we close the gap between field research and laboratory investigations by establishing a complete in vitro model for DWV pathogenesis. Infectious DWV was rescued from a molecular clone of a DWV-A genome that induces DWV symptoms such as crippled wings and discoloration. The expression of DWV proteins, production of infectious virus progeny, and DWV host cell tropism could be confirmed using newly generated anti-DWV monoclonal antibodies. The recombinant RNA fulfills Koch’s postulates circumventing the need of virus isolation and propagation of pure virus cultures. In conclusion, we describe the development and application of a reverse genetics system for the study of DWV pathogenesis. PMID:27828961

  9. Molecular cloning and characterization of Echinostoma caproni heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts.

    PubMed

    Higón, M; Monteagudo, C; Fried, B; Esteban, J G; Toledo, R; Marcilla, A

    2008-10-01

    We cloned and expressed Echinostoma caproni HSP70 in Escherichia coli. This molecule presents an open reading frame (ORF) of 655 amino acids, and a theoretical molecular weight of 71 kDa. E. caproni HSP70 protein showed a high homology to other helminth molecules, major differences being located in the C-terminal region of the molecule, with a hydrophobic portion. Studies of protein and messenger RNA (mRNA) expression revealed a distinct pattern, depending on the host (low- or high-compatible). Specific polyclonal antisera raised against the recombinant protein expressed in Escherichia coli demonstrated its selective presence in excretory/secretory products (ESP) of adult parasites obtained from high-compatible hosts. Immunological studies showed clearly the association of HSP70 with the parasite surface and other structures, including eggs.

  10. Molecular and Microscopical Investigation of the Microflora Inhabiting a Deteriorated Italian Manuscript Dated from the Thirteenth Century

    PubMed Central

    Michaelsen, Astrid; Piñar, Guadalupe

    2010-01-01

    This case study shows the application of nontraditional diagnostic methods to investigate the microbial consortia inhabiting an ancient manuscript. The manuscript was suspected to be biologically deteriorated and SEM observations showed the presence of fungal spores attached to fibers, but classic culturing methods did not succeed in isolating microbial contaminants. Therefore, molecular methods, including PCR, denaturing gradient gel electrophoresis (DGGE), and clone libraries, were used as a sensitive alternative to conventional cultivation techniques. DGGE fingerprints revealed a high biodiversity of both bacteria and fungi inhabiting the manuscript. DNA sequence analysis confirmed the existence of fungi and bacteria in manuscript samples. A number of fungal clones identified on the manuscript showed similarity to fungal species inhabiting dry or saline environments, suggesting that the manuscript environment selects for osmophilic or xerophilic fungal species. Most of the bacterial sequences retrieved from the manuscript belong to phylotypes with cellulolytic activities. PMID:20449583

  11. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement.

    PubMed

    Jana, Arijit; Halder, Suman Kumar; Banerjee, Amrita; Paul, Tanmay; Pati, Bikash Ranjan; Mondal, Keshab Chandra; Das Mohapatra, Pradeep Kumar

    2014-04-01

    Tannin-rich materials are abundantly generated as wastes from several agroindustrial activities. Therefore, tannase is an interesting hydrolase, for bioconversion of tannin-rich materials into value added products by catalyzing the hydrolysis of ester and depside bonds and unlocked a new prospect in different industrial sectors like food, beverages, pharmaceuticals, etc. Microorganisms, particularly bacteria are one of the major sources of tannase. In the last decade, cloning and heterologous expression of novel tannase genes and structural study has gained momentum. In this article, we have emphasized critically on bacterial tannase that have gained worldwide research interest for their diverse properties. The present paper delineate the developments that have taken place in understanding the role of tannase action, microbial sources, various cultivation aspects, downstream processing, salient biochemical properties, structure and active sites, immobilization, efforts in cloning and overexpression and with special emphasis on recent molecular and biotechnological achievements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice.

    PubMed

    Hu, Jie; Xiao, Cong; He, Yuqing

    2016-12-01

    Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb. Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH resistance are discussed.

  13. Towards an understanding of British public attitudes concerning human cloning.

    PubMed

    Shepherd, Richard; Barnett, Julie; Cooper, Helen; Coyle, Adrian; Moran-Ellis, Jo; Senior, Victoria; Walton, Chris

    2007-07-01

    The ability of scientists to apply cloning technology to humans has provoked public discussion and media coverage. The present paper reports on a series of studies examining public attitudes to human cloning in the UK, bringing together a range of quantitative and qualitative methods to address this question. These included a nationally representative survey, an experimental vignette study, focus groups and analyses of media coverage. Overall the research presents a complex picture of attitude to and constructions of human cloning. In all of the analyses, therapeutic cloning was viewed more favourably than reproductive cloning. However, while participants in the focus groups were generally negative about both forms of cloning, and this was also reflected in the media analyses, quantitative results showed more positive responses. In the quantitative research, therapeutic cloning was generally accepted when the benefits of such procedures were clear, and although reproductive cloning was less accepted there was still substantial support. Participants in the focus groups only differentiated between therapeutic and reproductive cloning after the issue of therapeutic cloning was explicitly raised; initially they saw cloning as being reproductive cloning and saw no real benefits. Attitudes were shown to be associated with underlying values associated with scientific progress rather than with age, gender or education, and although there were a few differences in the quantitative data based on religious affiliation, these tended to be small effects. Likewise in the focus groups there was little direct appeal to religion, but the main themes were 'interfering with nature' and the 'status of the embryo', with the latter being used more effectively to try to close down further discussion. In general there was a close correspondence between the media analysis and focus group responses, possibly demonstrating the importance of media as a resource, or that the media reflect public discourse accurately. However, focus group responses did not simply reflect media coverage.

  14. Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes.

    PubMed

    Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Adérito L; Thomson, Jennifer A; Martin, Darren P; Varsani, Arvind

    2007-03-01

    Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.

  15. Clones identification of Sequoia sempervirens (D. Don) Endl. in Chile by using PCR-RAPDs technique.

    PubMed

    Toral Ibañez, Manuel; Caru, Margarita; Herrera, Miguel A; Gonzalez, Luis; Martin, Luis M; Miranda, Jorge; Navarro-Cerrillo, Rafael M

    2009-02-01

    A protocol of polymerase chain reaction-random amplified polymorphic DNAs (PCR-RAPDs) was established to analyse the gene diversity and genotype identification for clones of Sequoia sempervirens (D. Don) Endl. in Chile. Ten (out of 34) clones from introduction trial located in Voipir-Villarrica, Chile, were studied. The PCR-RAPDs technique and a modified hexadecyltrimethylammonium bromide (CTAB) protocol were used for genomic DNA extraction. The PCR tests were carried out employing 10-mer random primers. The amplification products were detected by electrophoresis in agarose gels. Forty nine polymorphic bands were obtained with the selected primers (BG04, BF07, BF12, BF13, and BF14) and were ordered according to their molecular size. The genetic similarity between samples was calculated by the Jaccard index and a dendrogram was constructed using a cluster analysis of unweighted pair group method using arithmetic averages (UPGMA). Of the primers tested, 5 (out of 60) RAPD primers were selected for their reproducibility and high polymorphism. A total of 49 polymorphic RAPD bands were detected out of 252 bands. The genetic similarity analysis demonstrates an extensive genetic variability between the tested clones and the dendrogram depicts the genetic relationships among the clones, suggesting a geographic relationship. The results indicate that the RAPD markers permitted the identification of the assayed clones, although they are derived from the same geographic origin.

  16. Clones identification of Sequoia sempervirens (D. Don) Endl. in Chile by using PCR-RAPDs technique*

    PubMed Central

    Toral Ibañez, Manuel; Caru, Margarita; Herrera, Miguel A.; Gonzalez, Luis; Martin, Luis M.; Miranda, Jorge; Navarro-Cerrillo, Rafael M.

    2009-01-01

    A protocol of polymerase chain reaction-random amplified polymorphic DNAs (PCR-RAPDs) was established to analyse the gene diversity and genotype identification for clones of Sequoia sempervirens (D. Don) Endl. in Chile. Ten (out of 34) clones from introduction trial located in Voipir-Villarrica, Chile, were studied. The PCR-RAPDs technique and a modified hexadecyltrimethylammonium bromide (CTAB) protocol were used for genomic DNA extraction. The PCR tests were carried out employing 10-mer random primers. The amplification products were detected by electrophoresis in agarose gels. Forty nine polymorphic bands were obtained with the selected primers (BG04, BF07, BF12, BF13, and BF14) and were ordered according to their molecular size. The genetic similarity between samples was calculated by the Jaccard index and a dendrogram was constructed using a cluster analysis of unweighted pair group method using arithmetic averages (UPGMA). Of the primers tested, 5 (out of 60) RAPD primers were selected for their reproducibility and high polymorphism. A total of 49 polymorphic RAPD bands were detected out of 252 bands. The genetic similarity analysis demonstrates an extensive genetic variability between the tested clones and the dendrogram depicts the genetic relationships among the clones, suggesting a geographic relationship. The results indicate that the RAPD markers permitted the identification of the assayed clones, although they are derived from the same geographic origin. PMID:19235269

  17. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells.

    PubMed

    Jantas, Danuta; Grygier, Beata; Gołda, Sławomir; Chwastek, Jakub; Zatorska, Justyna; Tertil, Magdalena

    2018-06-06

    The present study aimed to determine the role of metabotropic glutamate receptor 8 (mGluR8) in tumor biology. Using various molecular approaches (RNAi or GRM8 cDNA), cell clones with downregulated (human neuroblastoma SH-SY5Y and human glioma LN229) or overexpressed (human glioma U87-MG and LN18 cell lines) mGluR8 were generated. Next, comparative studies on cell proliferation and migration rates, induction of apoptosis and chemosensitivity were performed among these clones. The mGluR8-downregulated SH-SY5Y clones proliferated faster and were more resistant to cytotoxic action of staurosporine, doxorubicin, irinotecan and cisplatin when compared to control cells. Moreover, these clones were characterized by a lower activity of caspases, calpains and some kinases (GSK-3β, Akt and JNK). The mGluR8-downregulated LN229 clones migrated faster and were less prone to cell-damaging effect of staurosporine and irinotecan when compared with relevant control cells. In contrast, in GRM8-overexpressing U87-MG and LN18 clones, a decreased cell proliferation, increased apoptosis and elevated vulnerability to some cytotoxic agents were found. Altogether, our in vitro data for the first time evidenced a tumor suppressor and chemosensitizing role of mGluR8. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE PAGES

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; ...

    2015-01-14

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  19. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  20. Nuclear transfer to prevent mitochondrial DNA disorders: revisiting the debate on reproductive cloning.

    PubMed

    Bredenoord, A L; Dondorp, W; Pennings, G; De Wert, G

    2011-02-01

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount to reproductive cloning, one theoretical variant, blastomere transfer does. This seems the most challenging both technically and ethically. It is prohibited by many jurisdictions and also the scientific community seems to avoid it. Nevertheless, this paper examines the moral acceptability of blastomere transfer as a method to prevent mtDNA disorders. The reason for doing so is that most objections against reproductive cloning refer to reproductive adult cloning, while blastomere transfer would amount to reproductive embryo cloning. After clarifying this conceptual difference, this paper examines whether the main non-safety objections brought forward against reproductive cloning also apply in the context of blastomere transfer. The conclusion is that if this variant were to become safe and effective, dismissing it because it would involve reproductive cloning is unjustified. Nevertheless, as it may lead to more complex ethical appraisals than the other variants, researchers should initially focus on the development of the other types of nuclear transfer to prevent mtDNA disorders. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Vectors for co-expression of an unrestricted number of proteins

    PubMed Central

    Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad

    2007-01-01

    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810

  2. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    PubMed Central

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria. PMID:9572936

  3. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    NASA Astrophysics Data System (ADS)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (<20 yrs old) from six different sites along the ridge axis at 9°N, East Pacific Rise were examined for microbial life. Total DNA was extracted from the basalt glass and screened for the presence of both bacteria and archaea using the PCR. Repeated attempts with different primer sets yielded no bacterial genes, whereas archaeal genes were quite abundant. A genetic fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP), was used to compare the archaeal community compositions among the six different basalts. Filtered deep-sea water samples (~15 L) were examined in parallel to identify any overlap between rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal 16S rDNA for one basalt sample (Dive 3718) and its corresponding background water sample were constructed. The most abundant archaeal genes were closely related to uncultured Group I marine Crenarchaeota that have been previously identified from similar deep-sea habitats. These archaeal genes collectively correspond to the dominant T-RFLP peak present in both the rock and water samples. In a third study, we investigated the microbial community residing in a Hawaiian Scientific Drilling Program core collected near Hilo, Hawaii. Total microbial DNA was extracted from a depth of 1351 m in the drill core (ambient temperature in the drill hole ~16°C), where petrographic evidence suggested the presence of microbial alteration. Archaeal 16S rRNA genes were amplified, cloned, and twelve clones representing the most abundant groups were sequenced. Eleven out of the twelve clones were 97 to 99% similar to Group I marine Crenarchaeota, while the remaining clone was 95% similar to Euryarchaeota, based on BLAST searches of the GenBank database. Our community-level approach to studying microbes living in volcanic glasses has provided a greater understanding of the microbial communities that potentially alter these materials.

  4. Rise and fall of outbreak-specific clone inside endemic pulsotype of Salmonella 4,[5],12:i:-; insights from high-resolution molecular surveillance in Emilia-Romagna, Italy, 2012 to 2015.

    PubMed

    Morganti, Marina; Bolzoni, Luca; Scaltriti, Erika; Casadei, Gabriele; Carra, Elena; Rossi, Laura; Gherardi, Paola; Faccini, Fabio; Arrigoni, Norma; Sacchi, Anna Rita; Delledonne, Marco; Pongolini, Stefano

    2018-03-01

    Background and aimEpidemiology of human non-typhoid salmonellosis is characterised by recurrent emergence of new clones of the pathogen over time. Some clonal lines of Salmonella have shaped epidemiology of the disease at global level, as happened for serotype Enteritidis or, more recently, for Salmonella 4,[5],12:i:-, a monophasic variant of serotype Typhimurium. The same clonal behaviour is recognisable at sub-serotype level where single outbreaks or more generalised epidemics are attributable to defined clones. The aim of this study was to understand the dynamics of a clone of Salmonella 4,[5],12:i:- over a 3-year period (2012-15) in a province of Northern Italy where the clone caused a large outbreak in 2013. Furthermore, the role of candidate outbreak sources was investigated and the accuracy of multilocus variable-number tandem repeat analysis (MLVA) was evaluated. Methods: we retrospectively investigated the outbreak through whole genome sequencing (WGS) and further monitored the outbreak clone for 2 years after its conclusion. Results: The study showed the transient nature of the clone in the population, possibly as a consequence of its occasional expansion in a food-processing facility. We demonstrated that important weaknesses characterise conventional typing methods applied to clonal pathogens such as Salmonella 4,[5],12:i:-, namely lack of accuracy for MLVA and inadequate resolution power for PFGE to be reliably used for clone tracking. Conclusions : The study provided evidence for the remarkable prevention potential of whole genome sequencing used as a routine tool in systems that integrate human, food and animal surveillance.

  5. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    PubMed

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  6. USA300-related methicillin-resistant Staphylococcus aureus clone is the predominant cause of community and hospital MRSA infections in Colombian children.

    PubMed

    Márquez-Ortiz, Ricaurte Alejandro; Álvarez-Olmos, Martha I; Escobar Pérez, Javier Antonio; Leal, Aura Lucia; Castro, Betsy Esperanza; Mariño, Ana Cristina; Barrero, Esther Rocio; Mujica, Sandra Celina; Gaines, Sebastián; Vanegas, Natasha

    2014-08-01

    Community-genotype methicillin-resistant Staphylococcus aureus (CG-MRSA) isolates are known to be more virulent and clinically aggressive in children. The goal of the present study was characterize the molecular epidemiology of MRSA isolates causing infections in Colombian children. An observational and prospective study was conducted between April 2009 and June 2011 at 15 hospitals in Bogotá, Colombia. A detailed epidemiological profile was made of 162 children infected with MRSA. The isolates were subjected to antimicrobial susceptibility testing, molecular characterization including 21 virulence genes, SCCmec, spa and agr typing, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Among all isolates included in the study, 85.8% were obtained from patients whose infectious process was initiated in the community; of these, 69,8% occurred in patients without healthcare-associated risk factors. The molecular characterization of the isolates showed a high proportion (95.1%) containing a community-genotype profile with a high prevalence of SCCmec type IV, PVL-positives, and also related to CC8. Most CG-MRSA isolates (143, 92.9%) were genetically related to the pandemic clone USA300, differing by the presence of SCCmec IVc and the absence of the arginine catabolic mobile element (ACME). An increase in the frequency of CG-MRSA infections has been reported worldwide. In this study we found that almost all MRSA infections in our pediatric population were caused by community-genotype isolates, supporting the success of the CG-MRSA clones. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Amino acid sequence of bovine muzzle epithelial desmocollin derived from cloned cDNA: a novel subtype of desmosomal cadherins.

    PubMed

    Koch, P J; Goldschmidt, M D; Walsh, M J; Zimbelmann, R; Schmelz, M; Franke, W W

    1991-05-01

    Desmosomes are cell-type-specific intercellular junctions found in epithelium, myocardium and certain other tissues. They consist of assemblies of molecules involved in the adhesion of specific cell types and in the anchorage of cell-type-specific cytoskeletal elements, the intermediate-size filaments, to the plasma membrane. To explore the individual desmosomal components and their functions we have isolated DNA clones encoding the desmosomal glycoprotein, desmocollin, using antibodies and a cDNA expression library from bovine muzzle epithelium. The cDNA-deduced amino-acid sequence of desmocollin (presently we cannot decide to which of the two desmocollins, DC I or DC II, this clone relates) defines a polypeptide with a calculated molecular weight of 85,000, with a single candidate sequence of 24 amino acids sufficiently long for a transmembrane arrangement, and an extracellular aminoterminal portion of 561 amino acid residues, compared to a cytoplasmic part of only 176 amino acids. Amino acid sequence comparisons have revealed that desmocollin is highly homologous to members of the cadherin family of cell adhesion molecules, including the previously sequenced desmoglein, another desmosome-specific cadherin. Using riboprobes derived from cDNAs for Northern-blot analyses, we have identified an mRNA of approximately 6 kb in stratified epithelia such as muzzle epithelium and tongue mucosa but not in two epithelial cell culture lines containing desmosomes and desmoplakins. The difference may indicate drastic differences in mRNA concentration or the existence of cell-type-specific desmocollin subforms. The molecular topology of desmocollin(s) is discussed in relation to possible functions of the individual molecular domains.

  8. Molecular characterization of the Serratia marcescens OmpF porin, and analysis of S. marcescens OmpF and OmpC osmoregulation.

    PubMed

    Hutsul, J A; Worobec, E

    1997-08-01

    Serratia marcescens is a nosocomial pathogen with a high incidence of beta-lactam resistance. Reduced amounts of outer-membrane porins have been correlated with increased resistance to beta-lactams but only one porin, OmpC, has been characterized at the molecular level. In this study we present the molecular characterization of a second porin, OmpF, and an analysis of the expression of S. marcescens porins in response to various environmental changes. Two porins were isolated from the outer membrane using urea-SDS-PAGE and the relative amounts were shown to be influenced by the osmolarity of the medium and the presence of salicylate. From a S. marcescens genomic DNA library an 8 kb EcoRI fragment was isolated that hybridized with an oligonucleotide encoding the published N-terminal amino acid sequence of the S. marcescens 41 kDa porin. A 41 kDa protein was detected in the outer membrane of Escherichia coli NM522 carrying the cloned S. marcescens DNA. The cloned gene was sequenced and shown to code for a protein that shared 60-70% identity with other known OmpF and OmpC sequences. The upstream DNA sequence of the S. marcescens gene was similar to the corresponding E. coli ompF sequence; however, a regulatory element important in repression of E. coli ompF at high osmolarity was absent. The cloned S. marcescens OmpF in E. coli increased in expression in conditions of high osmolarity. The potential involvement of micF in the observed osmoregulation of S. marcescens porins is discussed.

  9. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing tomore » the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.« less

  10. Thermostable, salt tolerant, wide pH range novel chitobiase from Vibrio parahemolyticus: isolation, characterization, molecular cloning, and expression.

    PubMed

    Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y

    1992-07-01

    A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.

  11. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease).

    PubMed Central

    Muldoon, L. L.; Neuwelt, E. A.; Pagel, M. A.; Weiss, D. L.

    1994-01-01

    The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8178934

  12. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease).

    PubMed

    Muldoon, L L; Neuwelt, E A; Pagel, M A; Weiss, D L

    1994-05-01

    The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy.

  13. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.

    The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this proteinmore » are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.« less

  14. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates.

    PubMed Central

    Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G

    1995-01-01

    Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723

  15. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13.

    PubMed

    Graminho, Eduardo Rezende; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min(-1) mg(-1). The enzyme showed broad substrate specificity, but the highest activity was observed with phytic acid. The enzyme activity was strongly inhibited by Cu(2+), Zn(2+), Hg(2+), and iodoacetic acid, indicating the requirement of a thiol group for the activity. Genetic cloning reveals that the mature portion of this enzyme consists of 428 amino acids with a calculated molecular weight of 46 kDa. The amino acid sequence showed the highest similarity to the phytase produced by Hafnia alvei with 48% identity; it also contained histidine acid phosphatase (HAP) motifs (RHGXRXP and HD), indicating the classification of this enzyme in the HAP phytase family. We have successfully expressed the cloned gene in Escherichia coli from its putative initiation codon, showing that the gene actually encodes the phytase.

  16. Phylogenetic position of parabasalid symbionts from the termite Calotermes flavicollis based on small subunit rRNA sequences.

    PubMed

    Gerbod, D; Edgcomb, V P; Noël, C; Delgado-Viscogliosi, P; Viscogliosi, E

    2000-09-01

    Small subunit rDNA genes were amplified by polymerase chain reaction using specific primers from mixed-population DNA obtained from the whole hindgut of the termite Calotermes flavicollis. Comparative sequence analysis of the clones revealed two kinds of sequences that were both from parabasalid symbionts. In a molecular tree inferred by distance, parsimony and likelihood methods, and including 27 parabasalid sequences retrieved from the data bases, the sequences of the group II (clones Cf5 and Cf6) were closely related to the Devescovinidae/Calonymphidae species and thus were assigned to the Devescovinidae Foaina. The sequence of the group I (clone Cf1) emerged within the Trichomonadinae and strongly clustered with Tetratrichomonas gallinarum. On the basis of morphological data, the Monocercomonadidae Hexamastix termitis might be the most likely origin of this sequence.

  17. Case report: Concomitant Chronic Lymphocytic Leukaemia and Cytogenetically Normal de novo Acute Leukaemia in a Patient.

    PubMed

    Kajtár, Béla; Rajnics, Péter; Egyed, Miklós; Alizadeh, Hussain

    2015-01-01

    The simultaneous occurrence of acute myeloid leukaemia with untreated chronic lymphocytic leukemia is extremely rare. We report a case of a 74-year-old man who was evaluated for macrocytic anaemia. Based on the morphology and immunophenotyping analysis of peripheral blood, a diagnosis of chronic lymphocytic leukemia was established. Subsequently, the bone marrow examination revealed the presence of two distinct, coexisting CLL and AML clones. Cytogenetic and molecular genetic analysis detected deletion 13q14.3 and unmutated immunoglobulin variable heavy-chain in the CLL clone, only. The AML and CLL clones did not share clonality, and the AML did not involve the peripheral blood. A diagnosis of cytogenetically normal de novo AML occurring concurrently with untreated CLL has not been reported previously in English literature. © 2015 by the Association of Clinical Scientists, Inc.

  18. Molecular cloning and tissue distribution of peroxisome proliferator-activated receptor-alpha (PPARα) and gamma (PPARγ) in the pigeon (Columba livia domestica).

    PubMed

    Xie, P; Yuan, C; Wang, C; Zou, X-T; Po, Z; Tong, H-B; Zou, J-M

    2014-01-01

    1. Peroxisome proliferator-activated receptors (PPAR) are involved in lipid metabolism through transcriptional regulation of target gene expression. The objective of the current study was to clone and characterise the PPARα and PPARγ genes in pigeon. 2. The full-length of 1941-bp PPARα and 1653-bp PPARγ were cloned from pigeons. The two genes were predicted to encode 468 and 475 amino acids, respectively. Both proteins contained two C4-type zinc fingers, a nuclear hormone receptor DNA-binding region signature and a HOLI domain (ligand binding domain of hormone receptors), and had high identities with other corresponding avian genes. 3. Using quantitative real-time PCR, pigeon PPARα gene expression was shown to be high in kidney, liver, gizzard and duodenum whereas PPARγ was predominantly expressed in adipose tissue.

  19. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells

    PubMed Central

    Bradley, Karri K; Jaggar, Jonathan H; Bonev, Adrian D; Heppner, Thomas J; Flynn, Elaine RM; Nelson, Mark T; Horowitz, Burton

    1999-01-01

    The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques.RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found.Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and β-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations.Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+.The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes.Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle. PMID:10066894

  20. Emergence of Nasal Carriage of ST80 and ST152 PVL+ Staphylococcus aureus Isolates from Livestock in Algeria

    PubMed Central

    Agabou, Amir; Ouchenane, Zouleikha; Ngba Essebe, Christelle; Khemissi, Salim; Chehboub, Mohamed Tedj Eddine; Chehboub, Ilyes Bey; Dunyach-Remy, Catherine

    2017-01-01

    The spread of toxinogenic Staphylococcus aureus is a public health problem in Africa. The objectives of the study were to investigate the rate of S. aureus nasal carriage and molecular characteristics of these strains in livestock and humans in three Algerian provinces. Nasal samples were collected from camels, horses, cattle, sheep and monkeys, as well as humans in contact with them. S. aureus isolates were genotyped using DNA microarray. The rate of S. aureus nasal carriage varied between species: camels (53%), humans and monkeys (50%), sheep (44.2%), horses (15.2%) and cattle (15%). Nine methicillin-resistant S. aureus (MRSA) isolates (7.6%) were identified, isolated from camels and sheep. The S. aureus isolates belonged to 15 different clonal complexes. Among them, PVL+ (Panton–Valentine Leukocidin) isolates belonging to ST80-MRSA-IV and ST152-MSSA were identified in camels (n = 3, 13%) and sheep (n = 4, 21.1%). A high prevalence of toxinogenic animal strains was noted containing TSST-1- (22.2%), EDINB- (29.6%) and EtD- (11.1%) encoding genes. This study showed the dispersal of the highly human pathogenic clones ST152-MSSA and ST-80-MRSA in animals. It suggests the ability of some clones to cross the species barrier and jump between humans and several animal species. PMID:28946704

  1. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  2. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library

    NASA Astrophysics Data System (ADS)

    Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe

    The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.

  3. Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis.

    PubMed

    Shimokawa, Tomoko; Shibuya, Hajime; Nojiri, Masanobu; Yoshida, Shigeki; Ishihara, Mitsuro

    2008-09-01

    A family 12 endoglucanase with a molecular mass of 23,926 Da (EG-II) from the brown-rot basidiomycete Fomitopsis palustris was purified and characterized. One of the roles of EG-II in wood degradation is thought to be to loosen the polysaccharide network in cell walls by disentangling hemicelluloses that are associated with cellulose.

  4. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae)

    PubMed Central

    2010-01-01

    Background The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Findings Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. Conclusions This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species. PMID:20701751

  5. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Bellec, Arnaud; Blassiau, Christelle; Prat, Elisa; Helmstetter, Nicolas; Rambaud, Caroline; Huss, Brigitte; Hendriks, Theo; Bergès, Hélène; Quillet, Marie-Christine

    2010-08-11

    The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species.

  6. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    PubMed

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  7. Cloning and characterization of the canine receptor for advanced glycation end products.

    PubMed

    Murua Escobar, Hugo; Soller, Jan T; Sterenczak, Katharina A; Sperveslage, Jan D; Schlueter, Claudia; Burchardt, Birgit; Eberle, Nina; Fork, Melanie; Nimzyk, Rolf; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2006-03-15

    Metastasis is one of the major problems when dealing with malignant neoplasias. Accordingly, the finding of molecular targets, which can be addressed to reduce tumour metastasising, will have significant impact on the development of new therapeutic approaches. Recently, the receptor for advanced glycation end products (RAGE)-high mobility group B1 (HMGB1) protein complex has been shown to have significant influence on invasiveness, growth and motility of tumour cells, which are essential characteristics required for metastatic behaviour. A set of in vitro and in vivo approaches showed that blocking of this complex resulted in drastic suppression of tumour cell growth. Due to the similarities of human and canine cancer the dog has joined the common rodent animal model for therapeutic and preclinical studies. However, complete characterisation of the protein complex is a precondition to a therapeutic approach based on the blocking of the RAGE-HMGB1 complex to spontaneously occurring tumours in dogs. We recently characterised the canine HMGB1 gene and protein completely. Here we present the complete characterisation of the canine RAGE gene including its 1384 bp mRNA, the 1215 bp protein coding sequence, the 2835 bp genomic structure, chromosomal localisation, gene expression pattern, and its 404 amino acid protein. Furthermore we compared the CDS of six different canine breeds and screened them for single nucleotide polymorphisms.

  8. A strategy for clone selection under different production conditions.

    PubMed

    Legmann, Rachel; Benoit, Brian; Fedechko, Ronald W; Deppeler, Cynthia L; Srinivasan, Sriram; Robins, Russell H; McCormick, Ellen L; Ferrick, David A; Rodgers, Seth T; Russo, A Peter

    2011-01-01

    Top performing clones have failed at the manufacturing scale while the true best performer may have been rejected early in the screening process. Therefore, the ability to screen multiple clones in complex fed-batch processes using multiple process variations can be used to assess robustness and to identify critical factors. This dynamic ranking of clones' strategy requires the execution of many parallel experiments than traditional approaches. Therefore, this approach is best suited for micro-bioreactor models which can perform hundreds of experiments quickly and efficiently. In this study, a fully monitored and controlled small scale platform was used to screen eight CHO clones producing a recombinant monoclonal antibody across several process variations, including different feeding strategies, temperature shifts and pH control profiles. The first screen utilized 240 micro-bioreactors were run for two weeks for this assessment of the scale-down model as a high-throughput tool for clone evaluation. The richness of the outcome data enable to clearly identify the best and worst clone as well as process in term of maximum monoclonal antibody titer. The follow-up comparison study utilized 180 micro-bioreactors in a full factorial design and a subset of 12 clone/process combinations was selected to be run parallel in duplicate shake flasks. Good correlation between the micro-bioreactor predictions and those made in shake flasks with a Pearson correlation value of 0.94. The results also demonstrate that this micro-scale system can perform clone screening and process optimization for gaining significant titer improvements simultaneously. This dynamic ranking strategy can support better choices of production clones. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  9. Opioid receptor subtypes: fact or artifact?

    PubMed

    Dietis, N; Rowbotham, D J; Lambert, D G

    2011-07-01

    There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.

  10. Object-oriented design tools for supramolecular devices and biomedical nanotechnology.

    PubMed

    Lee, Stephen C; Bhalerao, Khaustaub; Ferrari, Mauro

    2004-05-01

    Nanotechnology provides multifunctional agents for in vivo use that increasingly blur the distinction between pharmaceuticals and medical devices. Realization of such therapeutic nanodevices requires multidisciplinary effort that is difficult for individual device developers to sustain, and identification of appropriate collaborations outside ones own field can itself be challenging. Further, as in vivo nanodevices become increasingly complex, their design will increasingly demand systems level thinking. System engineering tools such as object-oriented analysis, object-oriented design (OOA/D) and unified modeling language (UML) are applicable to nanodevices built from biological components, help logically manage the knowledge needed to design them, and help identify useful collaborative relationships for device designers. We demonstrate the utility of these systems engineering tools by reverse engineering an existing molecular device (the bacmid molecular cloning system) using them, and illustrate how object-oriented approaches identify fungible components (objects) in nanodevices in a way that facilitates design of families of related devices, rather than single inventions. We also explore the utility of object-oriented approaches for design of another class of therapeutic nanodevices, vaccines. While they are useful for design of current nanodevices, the power of systems design tools for biomedical nanotechnology will become increasingly apparent as the complexity and sophistication of in vivo nanosystems increases. The nested, hierarchical nature of object-oriented approaches allows treatment of devices as objects in higher-order structures, and so will facilitate concatenation of multiple devices into higher-order, higher-function nanosystems.

  11. The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system.

    PubMed

    Viggiano, Davide; Vallone, Daniela; Welzl, Hans; Sadile, Adolfo G

    2002-09-01

    The Naples High- (NHE) and Low-Excitability (NLE) rat lines have been selected since 1976 on the basis of behavioral arousal to novelty (Làt-maze). Selective breeding has been conducted under continuous genetic pressure, with no brother-sister mating. The behavioral analyses presented here deal with (1) activity in environments of different complexity, i.e., holeboard and Làt maze; (2) maze learning in hexagonal tunnel, Olton, and Morris water mazes and; (3) two-way active avoidance and conditioned taste aversion tests. Morphometric analyses deal with central dopaminergic systems at their origin and target sites, as well as the density of dopamine transporter immunoreactivity. Molecular biology analyses are also presented, dealing with recent experiments on the prefrontal cortex (PFc), cloning and identifying differentially expressed genes using subtractive libraries and RNAase protection. The divergence between NLE and NHE rats varies as a function of the complexity level of the environment, with an impaired working and reference memory in both lines compared to random bred (NRB) controls. Moreover, data from the PFc of NHE rats show a hyperdopaminergic innervation, with overexpression of mRNA species involved in basal metabolism, and down-regulation of dopamine D1 receptors. Altogether, the evidence gathered so far supports a hyperfunctioning mesocorticolimbic system that makes NHE rats a useful tool for the study of hyperactivity and attention deficit, learning and memory disabilities, and drug abuse.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Melanie A.; Udell, Christian M.; Pal, Gour Pada

    The crystallization and preliminary X-ray diffraction analysis of MraZ, formerly known as hypothetical protein YabB, from Escherichia coli K-12 is presented. The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest amore » molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein.« less

  13. Oligomeric properties of alpha-dendrotoxin-sensitive potassium ion channels purified from bovine brain.

    PubMed

    Parcej, D N; Scott, V E; Dolly, J O

    1992-11-17

    Neuronal acceptors for alpha-dendrotoxin (alpha-DTX) have recently been purified from mammalian brain and shown to consist of two classes of subunit, a larger (approximately 78,000 M(r)) protein (alpha) whose N-terminal sequence is identical to that of a cloned, alpha-DTX-sensitive K+ channel, and a novel M(r) 39,000 (beta) polypeptide of unknown function. However, little information is available regarding the oligomeric composition of these native molecules. By sedimentation analysis of alpha-DTX acceptors isolated from bovine cortex, two species have been identified. A minority of these oligomers contain only the larger protein, while the vast majority possess both subunits. Based on accurate determination of the molecular weights of these two forms it is proposed that alpha-DTX-sensitive K+ channels exist as alpha 4 beta 4 complexes because this combination gives the best fit to the experimental data.

  14. Molecular Evidence for Multiple Origins of Hybridogenetic Fish Clones (Poeciliidae: Poeciliopsis)

    PubMed Central

    Quattro, J. M.; Avise, J. C.; Vrijenhoek, R. C.

    1991-01-01

    Hybrid matings between the sexual species Poeciliopsis monacha and Poeciliopsis lucida produced a series of diploid all-female lineages of P. monacha-lucida that inhabit the Rio Fuerte of northwestern Mexico. Restriction site analyses of mitochondrial DNA (mtDNA) clearly revealed that P. monacha was the maternal ancestor of these hybrids. The high level of mtDNA diversity in P. monacha was mirrored by similarly high levels in P. monacha-lucida; thus hybridizations giving rise to unisexual lineages have occurred many times. However, mtDNA variability among P. monacha-lucida lineages revealed a geographical component. Apparently the opportunity for the establishment of unisexual lineages varies among tributaries of the Rio Fuerte. We hypothesize that a dynamic complex of sexual and clonal fishes appear to participate in a feedback process that maintains genetic diversity in both the sexual and asexual components. PMID:2004710

  15. A sequence-based survey of the complex structural organization of tumor genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison ofmore » the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.« less

  16. Genomic anatomy of the Tyrp1 (brown) deletion complex

    PubMed Central

    Smyth, Ian M.; Wilming, Laurens; Lee, Angela W.; Taylor, Martin S.; Gautier, Phillipe; Barlow, Karen; Wallis, Justine; Martin, Sancha; Glithero, Rebecca; Phillimore, Ben; Pelan, Sarah; Andrew, Rob; Holt, Karen; Taylor, Ruth; McLaren, Stuart; Burton, John; Bailey, Jonathon; Sims, Sarah; Squares, Jan; Plumb, Bob; Joy, Ann; Gibson, Richard; Gilbert, James; Hart, Elizabeth; Laird, Gavin; Loveland, Jane; Mudge, Jonathan; Steward, Charlie; Swarbreck, David; Harrow, Jennifer; North, Philip; Leaves, Nicholas; Greystrong, John; Coppola, Maria; Manjunath, Shilpa; Campbell, Mark; Smith, Mark; Strachan, Gregory; Tofts, Calli; Boal, Esther; Cobley, Victoria; Hunter, Giselle; Kimberley, Christopher; Thomas, Daniel; Cave-Berry, Lee; Weston, Paul; Botcherby, Marc R. M.; White, Sharon; Edgar, Ruth; Cross, Sally H.; Irvani, Marjan; Hummerich, Holger; Simpson, Eleanor H.; Johnson, Dabney; Hunsicker, Patricia R.; Little, Peter F. R.; Hubbard, Tim; Campbell, R. Duncan; Rogers, Jane; Jackson, Ian J.

    2006-01-01

    Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22-megabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene-poor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-mediated coat color mutant white-based brown (Bw). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis. PMID:16505357

  17. Spread of carbapenem-resistant international clones of Acinetobacter baumannii in Turkey and Azerbaijan: a collaborative study.

    PubMed

    Ahmed, S S; Alp, E; Ulu-Kilic, A; Dinc, G; Aktas, Z; Ada, B; Bagirova, F; Baran, I; Ersoy, Y; Esen, S; Guven, T G; Hopman, J; Hosoglu, S; Koksal, F; Parlak, E; Yalcin, A N; Yilmaz, G; Voss, A; Melchers, W

    2016-09-01

    Epidemic clones of Acinetobacter baumannii, described as European clones I, II, and III, are associated with hospital epidemics throughout the world. We aimed to determine the molecular characteristics and genetic diversity between European clones I, II, and III from Turkey and Azerbaijan. In this study, a total of 112 bloodstream isolates of carbapenem-resistant Acinetobacter spp. were collected from 11 hospitals across Turkey and Azerbaijan. The identification of Acinetobacter spp. using conventional and sensitivity tests was performed by standard criteria. Multiplex polymerase chain reaction (PCR) was used to detect OXA carbapenemase-encoding genes (bla OXA-23-like, bla OXA-24-like, bla OXA-51-like, and bla OXA-58-like). Pulsed-field gel electrophoresis (PFGE) typing was used to investigate genetic diversity. The bla OXA-51-like gene was present in all 112 isolates, 75 (67 %) carried bla OXA-23-like, 7 (6.2 %) carried bla OXA-58-like genes, and 5 (4.5 %) carried bla OXA-24-like genes. With a 90 % similarity cut-off value, 15 clones and eight unique isolates were identified. The largest clone was cluster D, with six subtypes. Isolates from clusters D and I were widely spread in seven different geographical regions throughout Turkey. However, F cluster was found in the northern and eastern regions of Turkey. EU clone I was grouped within J cluster with three isolates found in Antalya, Istanbul, and Erzurum. EU clone II was grouped in the U cluster with 15 isolates and found in Kayseri and Diyarbakır. The bla OXA-24-like gene in carbapenemases was identified rarely in Turkey and has been reported for the first time from Azerbaijan. Furthermore, this is the first multicenter study in Turkey and Azerbaijan to identify several major clusters belonging to European clones I and II of A. baumannii.

  18. [Microbial community in the Anammox process of thermal denitration tail liquid].

    PubMed

    Li, Jin; Yu, Deshuang; Zhao, Dan; Wang, Xiaochen

    2014-12-01

    An anaerobic sequencing batch reactor (ASBR) was used to treat thermal denitration tail liquid and microbial community was studied. Activated sludge was taken from the reactor for scanning electron microscope analysis. The images showed that the dominant cells in the flora were oval cocci. Its diameter was about 0.7 μm. Through a series of molecular biology methods such as extracting total DNA from the sludge, PCR amplification, positive clone authentication and sequencing, we obtained the 16S rDNA sequences of the flora. Phylogenetic tree and clone library were established. The universal bacteria primers of 27F-1492R PCR amplification system obtained 85 clones and could be divided into 21 OTUS. The proportions were as follows: Proteobacteria 61.18%; Acidobacteria 17.65%; Chlorobi 8.24%; Chlorofexi 5.88%; Gemmatimonadetes 3.53%; Nitrospirae 2.35% and Planctomycetes 1.18%. The specific anammox bacterial primers of pla46rc-630r and AMX368-AMX820 PCR amplification system obtained 45 clones. They were divided into 3 OTUS. Candidatus brocadia sp. occupied 95.6% and unknown strains occupied 4.4%.

  19. Biological properties of Beet soil-borne mosaic virus and Beet necrotic yellow vein virus cDNA clones produced by isothermal in vitro recombination: Insights for reassortant appearance.

    PubMed

    Laufer, Marlene; Mohammad, Hamza; Maiss, Edgar; Richert-Pöggeler, Katja; Dall'Ara, Mattia; Ratti, Claudio; Gilmer, David; Liebe, Sebastian; Varrelmann, Mark

    2018-05-01

    Two members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination. All 35S promoter-driven cDNA clones allowed production of recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa systemic infection and Polymyxa betae transmission and were compared to available BNYVV B-type clone. BNYVV and BSBMV RNA1 + 2 reassortants were viable and spread long-distance in N. benthamiana with symptoms dependent on the BNYVV type. Small genomic RNAs were exchangeable and systemically infected B. macrocarpa. These infectious clones represent a powerful tool for the identification of specific molecular host-pathogen determinants. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Efficient assembly of full-length infectious clone of Brazilian IBDV isolate by homologous recombination in yeast

    PubMed Central

    Silva, J.V.J.; Arenhart, S.; Santos, H.F.; Almeida-Queiroz, S.R.; Silva, A.N.M.R.; Trevisol, I.M.; Bertani, G.R.; Gil, L.H.V.G.

    2014-01-01

    The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world’s first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development. PMID:25763067

  1. Construction of a general human chromosome jumping library, with application to cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, F.S.; Drumm, M.L.; Cole, J.L.

    1987-02-27

    In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less

  2. Community-Acquired Methicillin-Resistant Staphylococcus aureus: The New Face of an Old Foe?

    PubMed Central

    Udo, Edet E.

    2013-01-01

    The burden of infections caused by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is increasing among different patient populations globally. As CA-MRSA has become established in healthcare facilities, the range of infections caused by them has also increased. Molecular characterization of CA-MRSA isolates obtained from different centers has revealed significant diversity in their genetic backgrounds. Although many CA-MRSA strains are still susceptible to non-β-lactam antibiotics, multiresistance to non-β-lactam agents has emerged in some clones, posing substantial problems for empirical and directed therapy of infections caused by these strains. Some CA-MRSA clones have acquired the capacity to spread locally and internationally. CA-MRSA belonging to ST80-MRSA-IV and ST30-MRSA-IV appear to be the dominant clones in the countries of the Gulf Cooperation Council (GCC). The emergence of pandemic CA-MRSA clones not only limits therapeutic options but also presents significant challenges for infection control. Continued monitoring of global epidemiology and emerging drug resistance data is critical for the effective management of these infections. PMID:24051949

  3. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana.

    PubMed

    Bi, Huiping; Zhang, Peng

    2012-03-01

    Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.

  4. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows.

    PubMed

    Lu, Dan; Liu, Shen; Ding, Fangrong; Wang, Haiping; Li, Jing; Li, Ling; Dai, Yunping; Li, Ning

    2016-03-10

    Human lysozyme is an important natural non-specific immune protein that is highly expressed in breast milk and participates in the immune response of infants against bacterial and viral infections. Considering the medicinal value and market demand for human lysozyme, an animal model for large-scale production of recombinant human lysozyme (rhLZ) is needed. In this study, we generated transgenic cloned cows with the marker-free vector pBAC-hLF-hLZ, which was shown to efficiently express rhLZ in cow milk. Seven transgenic cloned cows, identified by polymerase chain reaction, Southern blot, and western blot analyses, produced rhLZ in milk at concentrations of up to 3149.19 ± 24.80 mg/L. The purified rhLZ had a similar molecular weight and enzymatic activity as wild-type human lysozyme possessed the same C-terminal and N-terminal amino acid sequences. The preliminary results from the milk yield and milk compositions from a naturally lactating transgenic cloned cow 0906 were also tested. These results provide a solid foundation for the large-scale production of rhLZ in the future.

  5. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone.

    PubMed

    Liu, R; Zhang, H H; Chen, Z X; Shahid, M Q; Fu, X L; Liu, X D

    2015-10-29

    Oryza officinalis has proven to be a natural gene reservoir for the improvement of domesticated rice as it carries many desirable traits; however, the transfer of elite genes to cultivated rice by conventional hybridization has been a challenge for rice breeders. In this study, the conserved sequence of plant stress-related NAC transcription factors was selected as a probe to screen the O. officinalis genomic transformation-competent artificial chromosome library by Southern blot; 11 positive transformation-competent artificial chromosome clones were subsequently detected. By Agrobacterium-mediated transformation, an indica rice variety, Huajingxian 74 (HJX74), was transformed with a TAC clone harboring a NAC gene-positive genomic fragment from O. officinalis. Molecular analysis revealed that the O. officinalis genomic fragment was integrated into the genome of HJX74. The transgenic lines exhibited high tolerance to drought stress. Our results demonstrate that the introduction of stress-related transformation-competent artificial chromosome clones, coupled with a transgenic validation approach, is an effective method of transferring agronomically important genes from O. officinalis to cultivated rice.

  6. GABA(C) receptors: a molecular view.

    PubMed

    Enz, R

    2001-08-01

    In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.

  7. A novel cinnamyl alcohol dehydrogenase (CAD)-like reductase contributes to the structural diversity of monoterpenoid indole alkaloids in Rauvolfia.

    PubMed

    Geissler, Marcus; Burghard, Marie; Volk, Jascha; Staniek, Agata; Warzecha, Heribert

    2016-03-01

    Based on findings described herein, we contend that the reduction of vomilenine en route to antiarrhythmic ajmaline in planta might proceed via an alternative, novel sequence of biosynthetic steps. In the genus Rauvolfia, monoterpenoid indole alkaloids (MIAs) are formed via complex biosynthetic sequences. Despite the wealth of information about the biochemistry and molecular genetics underlying these processes, many reaction steps involving oxygenases and oxidoreductases are still elusive. Here, we describe molecular cloning and characterization of three cinnamyl alcohol dehydrogenase (CAD)-like reductases from Rauvolfia serpentina cell culture and R. tetraphylla roots. Functional analysis of the recombinant proteins, with a set of MIAs as potential substrates, led to identification of one of the enzymes as a CAD, putatively involved in lignin formation. The two remaining reductases comprise isoenzymes derived from orthologous genes of the investigated alternative Rauvolfia species. Their catalytic activity consists of specific conversion of vomilenine to 19,20-dihydrovomilenine, thus proving their exclusive involvement in MIA biosynthesis. The obtained data suggest the existence of a previously unknown bypass in the biosynthetic route to ajmaline further expanding structural diversity within the MIA family of specialized plant metabolites.

  8. Effect of pH on the stability of hemochromatosis factor E: a combined spectroscopic and molecular dynamics simulation-based study.

    PubMed

    Khan, Parvez; Shandilya, Ashutosh; Jayaram, B; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-05-01

    Hereditary hemochromatosis is an iron overburden condition, which is mainly governed by hereditary hemochromatosis factor E (HFE), a member of major histocompatibility complex class I. To understand the effect of pH on the structure and stability of HFE, we have cloned, expressed, and purified the HFE in the bacterial system and performed circular dichroism, fluorescence, and absorbance measurements at a wide pH range (pH 3.0-11.0). We found that HFE remains stable in the pH range 7.5-11.0 and gets completely acid denatured at low pH values. In this work, we also analyzed the contribution of salt bridges to the stability of HFE. We further performed molecular dynamics simulations for 80 ns at different pH values. An excellent agreement was observed between results from biophysical and MD simulation studies. At lower pH, HFE undergoes denaturation and may be driven toward a degradation pathway, such as ubiquitination. Hence, HFE is not available to bind again with transferrin receptor1 to negatively regulate iron homeostasis. Further we postulated that, might be low pH of cancerous cells helps them to meet their high iron requirement.

  9. Correlates of protection, antigen delivery and molecular epidemiology: basics for designing an HIV vaccine.

    PubMed

    Wagner, R; Shao, Y; Wolf, H

    1999-03-26

    Major obstacles in the development of HIV vaccines are the high variability of the virus and its complex interaction with the immune system. Recent studies demonstrated, that CTLs recognizing highly conserved epitopes in the group-specific antigen are capable of controlling HIV-replication in long-term nonprogressors. Necessary consequences for novel vaccine concepts are the presentation of a large repertoire of antigenic sites as well as the stimulation of different effectors of the immune system. Accordingly, different types of recombinant HIV-1 virus-like particles (VLPs) have been constructed stimulating the induction of neutralizing antibodies and HIV-specific CD8-positive CTL responses in preclinical studies. With respect to future vaccine trials, HIV vaccine formulations may need to be tailored to the local strains circulating within a geographical region. The expert group of the joint United Nations Programme on AIDS recently identified Yunnan, a southwestern province of China, as a region, in which the HIV epidemic is starting to gain speed, resembling to the situation in Thailand 10 years ago. A molecular clone of a representative virus strain is now available for the development of innovative antigen delivery systems aiming to be evaluated in future clinical vaccine trials throughout this area.

  10. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  11. Genetic engineering of microbial pesticides

    Treesearch

    Bruce C. Carlton

    1985-01-01

    Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.

  12. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    PubMed

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  13. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  14. Molecular cloning and characterization of markers and cytokines for equid myeloid cells.

    PubMed

    Steinbach, Falko; Stark, Robert; Ibrahim, Sherif; Gawad, Eman Abd-El; Ludwig, Hanns; Walter, Jakob; Commandeur, Ulrich; Mauel, Susanne

    2005-10-18

    The myeloid cell system comprises of monocytes, macrophages (MPhi), dendritic cells (DC), Kupffer cells, osteoclasts or microglia and is also known as the mononuclear phagocytic system (MPS). Essential cytokines to differentiate or activate these cells include GM-CSF or IL-4. Important markers for characterization include CD1, CD14, CD68, CD163 and CD206. All these markers, however, were not cloned or further characterized in equids by use of monoclonal antibodies earlier. To overcome this problem with the present study, two approaches were used. First, we cloned equine cytokines and markers, and second we analyzed cross-reactivity of human homologues or anti-human monoclonal antibodies. For cloning of equine cytokines and markers, we used degenerate primers delineated from other species, or equine-specific primers based on previous information in Genbank. Flow cytometry was used to determine the expression of markers on myeloid cells. Cross-reactivity could be shown for anti-human CD14, CD163 and mannose receptor (CD206) mAbs. Surface markers such as CD1 and CD68 that distinguish MPhi and DC were cloned and sequenced. According to blast homology, equine CD1a and CD1b could be identified and distinguished. With the resulting information, dendritic cells and macrophages of horses may be characterized.

  15. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  16. Purification, Molecular Cloning, and Enzymatic Properties of a Family 12 Endoglucanase (EG-II) from Fomitopsis palustris: Role of EG-II in Larch Holocellulose Hydrolysis▿

    PubMed Central

    Shimokawa, Tomoko; Shibuya, Hajime; Nojiri, Masanobu; Yoshida, Shigeki; Ishihara, Mitsuro

    2008-01-01

    A family 12 endoglucanase with a molecular mass of 23,926 Da (EG-II) from the brown-rot basidiomycete Fomitopsis palustris was purified and characterized. One of the roles of EG-II in wood degradation is thought to be to loosen the polysaccharide network in cell walls by disentangling hemicelluloses that are associated with cellulose. PMID:18658283

  17. Molecular Cloning of Human Gene(s) Directing the Synthesis of Nervous System Cholinesterases

    DTIC Science & Technology

    1987-09-01

    and shed light on the unknown physiological function of these serine hydrolases in proliferating and differentiating cells. In pheochromocytoma cells...Reiness, C.G., Reichardt, L.F. and Hall, Z.W. (1981) Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC12...melanogaster: Structural gene for acetylcholinesterase with an unusual 5’ leader. The EMBO J., 2949-2954. 99. Merken, L., Simons, M.J., Swillens, S

  18. Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.

    PubMed

    Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B

    2004-12-15

    cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.

  19. Development of an infectious clone and replicon system of norovirus GII.4.

    PubMed

    Oliveira, L M; Blawid, R; Orílio, A F; Andrade, B Y G; Souza, A C A; Nagata, T

    2018-08-01

    Human norovirus (HuNoV) is one of the main causes of acute gastroenteritis worldwide and is responsible for at least 20% of all cases. The detailed molecular mechanism of this norovirus remains unknown due to the lack of a suitable in vitro culturing system. An infectious clone of HuNoV would be a useful tool for elucidating the processes of viral infection and the mechanisms of replication. We developed an infectious cDNA clone of HuNoV using the rapid technique of Gibson Assembly. The complete genome of the HuNoV GII.4 Sydney subtype was cloned into a previously modified pcDNA3.1-based plasmid vector downstream from a cytomegaloviral promoter. We monitored the viral infection in vitro by inserting the reporter gene of the green fluorescent protein (GFP) between the NTPase and p22 genes, also by Gibson Assembly, to construct a HuNoV-GFP replicon. Human Caco-2 cells were transfected with the full-length genomic clone and the replicon containing GFP. The gene encoding the VP1/VP2 capsid protein was expressed, which was indirect evidence of the synthesis of subgenomic RNAs and thus the negative strand of the genome. We successfully constructed the infectious clone and its replicon containing GFP for the HuNoV GII.4 Sydney subtype, a valuable tool that will help the study of noroviral infection and replication. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Emergence of VIM-4 metallo-β-lactamase-producing Klebsiella pneumoniae ST15 clone in the Clinical Centre University of Pécs, Hungary.

    PubMed

    Melegh, S; Kovács, K; Gám, T; Nyul, A; Patkó, B; Tóth, A; Damjanova, I; Mestyán, G

    2014-01-01

    Since November 2009 carbapenemase-producing Klebsiella pneumoniae isolates have been detected in increasing numbers at the Clinical Centre University of Pécs. Molecular typing was performed for 102 clinical isolates originating from different time periods and various departments of the Clinical Centre. Pulsed-field gel electrophoresis revealed the predominance of a single clone (101/102), identified as sequence type ST15. PCR and sequencing showed the presence of blaCTX-M-15 and blaVIM-4 genes. The blaVIM-4 was located on a class 1 integron designated In238b. To our knowledge, this is the first description of a blaVIM-4 gene in the predominant CTX-M-15 extended spectrum β-lactamase-producing Hungarian Epidemic Clone/ST15. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

Top