The neural correlates of morphological complexity processing: Detecting structure in pseudowords.
Schuster, Swetlana; Scharinger, Mathias; Brooks, Colin; Lahiri, Aditi; Hartwigsen, Gesa
2018-06-01
Morphological complexity is a highly debated issue in visual word recognition. Previous neuroimaging studies have shown that speakers are sensitive to degrees of morphological complexity. Two-step derived complex words (bridging through bridge N > bridge V > bridging) led to more enhanced activation in the left inferior frontal gyrus than their 1-step derived counterparts (running through run V > running). However, it remains unclear whether sensitivity to degrees of morphological complexity extends to pseudowords. If this were the case, it would indicate that abstract knowledge of morphological structure is independent of lexicality. We addressed this question by investigating the processing of two sets of pseudowords in German. Both sets contained morphologically viable two-step derived pseudowords differing in the number of derivational steps required to access an existing lexical representation and therefore the degree of structural analysis expected during processing. Using a 2 × 2 factorial design, we found lexicality effects to be distinct from processing signatures relating to structural analysis in pseudowords. Semantically-driven processes such as lexical search showed a more frontal distribution while combinatorial processes related to structural analysis engaged more parietal parts of the network. Specifically, more complex pseudowords showed increased activation in parietal regions (right superior parietal lobe and left precuneus) relative to pseudowords that required less structural analysis to arrive at an existing lexical representation. As the two sets were matched on cohort size and surface form, these results highlight the role of internal levels of morphological structure even in forms that do not possess a lexical representation. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shepard, R.
2008-12-01
Microbial communities are architects of incredibly complex and diverse morphological structures. Each morphology is a snapshot that reflects the complex interactions within the microbial community and between the community and its environment. Characterizing morphology as an emergent property of microbial communities is thus relevant to understanding the evolution of multicellularity and complexity in developmental systems, to the identification of biosignatures, and to furthering our understanding of modern and ancient microbial ecology. Recently discovered cyanobacterial mats in Pavilion Lake, British Columbia construct unusual complex architecture on the scale of decimeters that incorporates significant void space. Fundamental mesoscale morphological elements include terraces, arches, bridges, depressions, domes, and pillars. The mats themselves also exhibit several microscale morphologies, with reticulate structures being the dominant example. The reticulate structures exhibit a diverse spectrum of morphologies with endmembers characterized by either angular or curvilinear ridges. In laboratory studies, aggregation into reticulate structures occurs as a result of the random gliding and colliding among motile cyanobacterial filaments. Likewise, when Pavilion reticulate mats were sampled and brought to the surface, cyanobacteria invariably migrated out of the mat onto surrounding surfaces. Filaments were observed to move rapidly in clumps, preferentially following paths of previous filaments. The migrating filaments organized into new angular and ropey reticulate biofilms within hours of sampling, demonstrating that cell motility is responsible for the reticulate patterns. Because the morphogenesis of reticulate structures can be linked to motility behaviors of filamentous cyanobacteria, the Willow Point mats provide a unique natural laboratory in which to elucidate the connections between a specific microbial behavior and the construction of complex microbial community morphology. To this end, we identified and characterized fundamental building blocks of the mesoscale morphologies, including bridges, anchors, and curved edges. These morphological building blocks were compared with the suite of motility behaviors and patterns observed in reticulate morphogenesis. Results of this comparison suggest that cyanobacterial motility plays a significant and often dominant role in the morphogenesis of the entire suite of morphologies observed in the microbial mats of Pavilion Lake.
Complex and oriented ZnO nanostructures.
Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang
2003-12-01
Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.
ERIC Educational Resources Information Center
Paradis, Johanne
2010-01-01
This study investigated whether bilingual-monolingual differences would be apparent in school-age children's use and knowledge of English verb morphology and whether differences would be influenced by amount of exposure to English, complexity of the morphological structure, or the type of task given. French-English bilinguals (mean age = 6;10)…
3D Numerical simulation of bed morphological responses to complex in-streamstructures
NASA Astrophysics Data System (ADS)
Xu, Y.; Liu, X.
2017-12-01
In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.
Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs
NASA Astrophysics Data System (ADS)
Çakar, Soner; Özacar, Mahmut
2016-06-01
In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.
Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.
2015-01-01
Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416
Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests
NASA Astrophysics Data System (ADS)
Zhirin, V. M.; Knyazeva, S. V.; Eydlina, S. P.
2017-12-01
The article deals with the results of a statistical analysis reflecting tendencies (trends) of the relationship between spectral characteristics of taiga forests, indicators of the morphological structure of forest canopy and illumination of the territory. The study was carried out on the example of the model forest territory of the Priangarskiy taiga region of Eastern Siberia (Krasnoyarsk krai) using historical data (forest inventory 1992, Landsat 5 TM 16.06.1989) and the digital elevation model. This article describes a method for determining the quantitative indicator of morphological structure of forest canopy based on taxation data, and the authors propose to subdivide the morphological structure into high complexity, medium complexity, and relatively simple. As a result of the research, dependences of average values of spectral brightness in near and short-wave infrared channels of a Landsat 5 TM image for dark-coniferous, light-coniferous and deciduous forests from the degree of complexity of the forest-canopy structure are received. A high level of variance and maximum brightness average values are marked in green moss (hilocominosa) dark-coniferous and various-grass (larioherbosa) dark-coniferous forests and light-coniferous forests with a complex structure of canopy. The parvifoliate forests are characterized by high values of brightness in stands with a relatively simple structure of the canopy and by a small variance in brightness of any degree of the structure of the canopy complexity. The increase in brightness for the lit slopes in comparison with shaded ones in all stands with a difficult morphological canopy structure is revealed. However, the brightness values of the lit and shaded slopes do not differ for stands with a medium complexity of the structure. It is noted that, in addition to the indicator of the forest-canopy structure, the possible impact on increasing the variance of spectral brightness for the taxation plot has a variability of the slope ratio of "microslopes" inside the forest plot if it exceeds 60%.
Sexual selection and the evolution of genital shape and complexity in water striders.
Rowe, Locke; Arnqvist, Göran
2012-01-01
Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
Park, Peter J; Bell, M A
2010-06-01
We tested the hypothesis that increased telencephalon size has evolved in threespine stickleback fish (Gasterosteus aculeatus) from structurally complex habitats using field-caught samples from one sea-run (ancestral) and 18 ecologically diverse freshwater (descendant) populations. Freshwater habitats ranged from shallow, structurally complex lakes with benthic-foraging stickleback (benthics), to deeper, structurally simple lakes in which stickleback depend more heavily on plankton for prey (generalists). Contrary to our expectations, benthics had smaller telencephala than generalists, but the shape of the telencephalon of the sea-run and benthic populations were more convex laterally. Convex telencephalon shape may indicate enlargement of the dorsolateral region, which is homologous with the tetrapod hippocampus. Telencephalon morphology is also sexually dimorphic, with larger, less convex telencephala in males. Freshwater stickleback from structurally complex habitats have retained the ancestral telencephalon morphology, but populations that feed more in open habitats on plankton have evolved larger, laterally concave telencephala.
Evidence for Early Morphological Decomposition: Combining Masked Priming with Magnetoencephalography
ERIC Educational Resources Information Center
Lehtonen, Minna; Monahan, Philip J.; Poeppel, David
2011-01-01
Are words stored as morphologically structured representations? If so, when during word recognition are morphological pieces accessed? Recent masked priming studies support models that assume early decomposition of (potentially) morphologically complex words. The electrophysiological evidence, however, is inconsistent. We combined masked…
Aspects of the Internal Structure of Nominalization: Roots, Morphology and Derivation
ERIC Educational Resources Information Center
Punske, Jeffrey
2012-01-01
This dissertation uses syntactic, semantic and morphological evidence from English nominalization to probe the interaction of event-structure and syntax, develop a typology of structural complexity within nominalization, and test hypotheses about the strict ordering of functional items. I focus on the widely assumed typology of nominalization…
Ziegler, Alexander; Faber, Cornelius; Bartolomaeus, Thomas
2009-06-09
The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. We therefore analyzed numerous species of almost all sea urchin orders by magnetic resonance imaging, dissection, histology, and transmission electron microscopy and compared the results with findings from published studies spanning almost two centuries. These combined analyses demonstrate that the axial complex is present in all sea urchin orders and has remained structurally conserved for a long time, at least in the "regular" species. Within the Irregularia, a considerable morphological variation of the axial complex can be observed with gradual changes in topography, size, and internal architecture. These modifications are related to the growing size of the gastric caecum as well as to the rearrangement of the morphology of the digestive tract as a whole. The structurally most divergent axial complex can be observed in the highly derived Atelostomata in which the reorganization of the digestive tract is most pronounced. Our findings demonstrate a structural interdependence of various internal organs, including digestive tract, mesenteries, and the axial complex.
Morphometric analysis of astrocytes in brainstem respiratory regions.
Sheikhbahaei, Shahriar; Morris, Brian; Collina, Jared; Anjum, Sommer; Znati, Sami; Gamarra, Julio; Zhang, Ruli; Gourine, Alexander V; Smith, Jeffrey C
2018-06-11
Astrocytes, the most abundant and structurally complex glial cells of the central nervous system, are proposed to play an important role in modulating the activities of neuronal networks, including respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) located in the ventrolateral medulla of the brainstem. However, structural properties of astrocytes residing within different brainstem regions are unknown. In this study astrocytes in the preBötC, an intermediate reticular formation (IRF) region with respiratory-related function, and a region of the nucleus tractus solitarius (NTS) in adult rats were reconstructed and their morphological features were compared. Detailed morphological analysis revealed that preBötC astrocytes are structurally more complex than those residing within the functionally distinct neighboring IRF region, or the NTS, located at the dorsal aspect of the medulla oblongata. Structural analyses of the brainstem microvasculature indicated no significant regional differences in vascular properties. We hypothesize that high morphological complexity of preBötC astrocytes reflects their functional role in providing structural/metabolic support and modulation of the key neuronal circuits essential for breathing, as well as constraints imposed by arrangements of associated neurons and/or other local structural features of the brainstem parenchyma. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schuler, Caleb G.; Havig, Jeff R.; Hamilton, Trinity L.
2017-11-01
Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA) of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate i) natural abundance δ13C values of biomass from these features (-11.0 to -24.3 ‰) are similar to those found in the rock record; ii) carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; iii) oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and iv) increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower. Our data highlight important differences in primary productivity between structures despite indistinguishable δ13C values of the biomass. Furthermore, low primary productivity by stromatolites compared to other structures underscores the need to consider a larger role for microbial mats and filaments in carbon fixation and O2 generation during the Archean and Proterozoic.
Self-organization of the reticular structure of polyurethane
NASA Astrophysics Data System (ADS)
Kiselev, M. R.; Roldugin, V. I.
2010-08-01
The morphology of block samples and coatings of reticular polyurethane were studied by transmission electron microscopy. The morphology was correlated with the internal stresses that appeared in the coatings during their formation. A scenario of the self-assembly of complex structures in reticular polymers was suggested. The boundary between the structural elements of the supermolecular level was found to be strained.
Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity
ERIC Educational Resources Information Center
Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten
2009-01-01
Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…
The scaling of complex craters
NASA Technical Reports Server (NTRS)
Croft, S. K.
1985-01-01
The empirical relation between the transient crater diameter (Dg) and final crater diameter (Dr) of complex craters and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient crater reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex crater morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient crater, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex craters to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.
New Evidence for Morphological Errors in Deep Dyslexia
ERIC Educational Resources Information Center
Rastle, Kathleen; Tyler, Lorraine K.; Marslen-Wilson, William
2006-01-01
Morphological errors in reading aloud (e.g., "sexist" [right arrow] "sexy") are a central feature of the symptom-complex known as deep dyslexia, and have historically been viewed as evidence that representations at some level of the reading system are morphologically structured. However, it has been proposed (Funnell, 1987) that morphological…
ERIC Educational Resources Information Center
Janke, Vikki; Kolokonte, Marina
2015-01-01
Three profoundly deaf individuals undertook a low-frequency backward lexical translation task (French/English), where morphological structure was manipulated and orthographic distance between test items was measured. Conditions included monomorphemic items (simplex), polymorphemic items (complex), items whose French morphological structure…
Seafloor morphology in the different domains of the Calabrian Arc subduction complex - Ionian Sea
NASA Astrophysics Data System (ADS)
Riminucci, F.; Polonia, A.; Torelli, L.; Mussoni, P.
2010-05-01
The Calabrian Arc (CA) is a subduction system that develops along the African-Eurasian plate boundary in the Ionian Sea and connects the E-W trending Sicilian Maghrebian belt with the NW-SE trending Southern Apennines. The first systematic geophysical investigation in the offshore region of the CA was conducted during the 70's by the Institute of Marine Geology (now ISMAR) with the R/V 'Bannock' [1]. In the last 30 years, further geophysical data (high penetration multichannel seismics, CHIRP and multibeam data) has been acquired in the offshore of the CA, down to the Ionian Abyssal Plain. The integrated interpretation of the existing geophysical data [2] has outlined the regional architecture of the subduction complex, the main tectonic features absorbing plate motion and variation of seafloor morphology in the different structural domains. Pre-stack depth migrated seismic profiles has revealed that the accretionary complex is constituted by two distinct wedges whose geometry, structural style and seafloor morphology widely vary. The outermost accretionary wedge has been emplaced in post-messinian times. It is a salt-bearing complex as pointed out by the internal structure of the wedge (acoustically transparent assemblage), very low taper angle and high seismic velocities. The seafloor shows a rough morphology, short wavelength folds and depressions superimposed on a rather constant gentle regional slope. Landward of the outer wedge, the evaporites are no longer present and the transition to the clastic rock assemblage is reflected in a different structural architecture, which shows steeper slopes and a succession of topographic scarps separated by sedimentary basins and mid slope terraces. The topographic scarps are controlled in depth by a series of high angle landward dipping reflectors, that we interpreted as out of sequence thrust faults absorbing shortening at the rear of the wedge. Landward of the inner wedge a mid slope terrace develops (inner plateau) between 1300 and 1600 m water depth. It is a relatively flat area of variable width ranging from 10 to 50 Km, represented by the forearc basin and the innermost accretionary wedge. Seafloor morphology is related to small undulation of the seafloor. A thick section of Plio-Quaternary and Messinian sediments is present below the flat terrace. Sediments appear to be folded and, in some regions highly disrupted along local sub-circular structures that affect the seafloor morphology as well. Geometry and seismic facies of these sub-circular swells rising from the surrounding suggest they are diapiric structures. Variation of seafloor morphology is strictly related to the progression of structural domains within the Calabrian Arc subduction complex. The integrated analysis of seafloor morphology and structural style through an integrated approach involving the interpretation of seismic data at different scales has been carried out in order to outline relationships between shallow tectonic processes and deep structures. Moreover, the analysis of morphobathymetric and seismic data, combined with well targeted sediment samples has the potential to reveal relationships between tectonics, sedimentation and fluid flow in the different portions of the accretionary wedge. References: 1 - Rossi S., Sartori R. 1981. A seismic reflection study of the External Calabrian Arc in the Northern Ionian Sea (Eastern Mediterranean). Marine Geoph. Res., 4, 403-426. 2 - Polonia A. et al., The Calabrian Arc subduction complex: plate convergence, active faults, and mud diapirism. New results from the CALAMARE-2008 cruise (N/R CNR Urania). Submitted to G3.
The Calvin impact crater and its associated oil production, Cass County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milstein, R.L.
1996-01-01
The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less
The Calvin impact crater and its associated oil production, Cass County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milstein, R.L.
1996-12-31
The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less
Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A
2018-03-01
Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.
Corallite skeletal morphological variation in Hawaiian Porites lobata
NASA Astrophysics Data System (ADS)
Tisthammer, Kaho H.; Richmond, Robert H.
2018-06-01
Due to their high morphological plasticity and complex evolutionary history, the species boundaries of many reef-building corals are poorly understood. The skeletal structures of corals have traditionally been used for species identification, but these structures can be highly variable, and currently we lack knowledge regarding the extent of morphological variation within species. Porites species are notorious for their taxonomic difficulties, both morphologically and genetically, and currently there are several unresolved species complexes in the Pacific. Despite its ubiquitous presence and broad use in coral research, Porites lobata belongs to one such unresolved species complex. To understand the degree of intraspecific variation in skeletal morphology, 120 corallites from the Hawaiian P. lobata were examined. A subset of samples from two genetically differentiated populations from contrasting high- and low-stress environments in Maunalua Bay, Hawaii, were then quantitatively analyzed using multivariate morphometrics. Our observations revealed high intraspecific variation in corallite morphology, as well as significant morphological differences between the two populations of P. lobata. Additionally, significant correlation was found between the morphological and genetic distances calculated from approximately 18,000 loci generated from restriction site-associated DNA sequencing. The unique morphological characters observed from the genetically differentiated population under environmental stress suggest that these characters may have adaptive values, but how such traits relate to fitness and how much plasticity they can exhibit remain to be determined by future studies. Relatively simple morphometric analyses used in our study can be useful in clarifying the existing ambiguity in skeletal architecture, thus contributing to resolving species issues in corals.
NASA Astrophysics Data System (ADS)
Sandhage, Kenneth H.
2010-06-01
The scalable fabrication of nano-structured materials with complex morphologies and tailorable chemistries remains a significant challenge. One strategy for such synthesis consists of the generation of a solid structure with a desired morphology (a “preform”), followed by reactive conversion of the preform into a new chemistry. Several gas/solid and liquid/solid reaction processes that are capable of such chemical conversion into new micro-to-nano-structured materials, while preserving the macroscopic-to-microscopic preform morphologies, are described in this overview. Such shape-preserving chemical transformation of one material into another could be considered a modern type of materials “alchemy.”
Structural complexities in the active layers of organic electronics.
Lee, Stephanie S; Loo, Yueh-Lin
2010-01-01
The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.
Sugitani, Kenichiro; Grey, Kathleen; Nagaoka, Tsutomu; Mimura, Koichi
2009-09-01
We recently reported a diverse assemblage of carbonaceous structures (thread-like, film-like, spheroidal, and spindle-like) from chert in the ca. 3.0 Ga Farrel Quartzite of the Gorge Creek Group in the Pilbara Craton, Western Australia. Results from a rigorous examination of occurrence, composition, morphological complexity, size distributions, and taphonomy provided presumptive evidence for biogenicity. In this study, we present new data of morphological and textural complexity of large (>15 microm) spheroidal and spindle-like structures, using an in-focus, 3-D image reconstruction system, which further raises the scale of credibility that these structures are microfossils. While many of the large spheroids are single-walled, and the wall is irregularly folded, a few specimens are partially blistered, double walled, or have a dimpled wall. The wall-surface texture varies from smooth and homogeneous (hyaline) to patchy, granular or reticulate. Such variation is best explained as resulting from taphonomic processes. Additionally, an inner solitary body, present in some large spheroids, is hollow and partially broken, which indicates a primary origin for this substructure. Spindle-like structures have two types of flange-like appendage; one is attached at the equatorial plane of the body, whereas the other appears to be attached peripherally. In both cases, the appendage tends to have a flat geometry, a tapering thickness, and constancy in shape, proportions, and dimensions. Spindle-wall surfaces are variously textured and heterogeneous. These morphological and textural complexities and heterogeneity refute potential abiogenic formation models for these structures, such as crystals coated with organic matter, fenestrae, and the diagenetic redistribution of carbonaceous matter. When coupled with other data from Raman spectroscopy, NanoSIMS analysis, and palynology, the evidence that these large carbonaceous structures are biogenic appears compelling, though it is still equivocal as to whether they are cells or outer envelopes of colonies of smaller cells.
Bryson, Mitch; Ferrari, Renata; Figueira, Will; Pizarro, Oscar; Madin, Josh; Williams, Stefan; Byrne, Maria
2017-08-01
Habitat structural complexity is one of the most important factors in determining the makeup of biological communities. Recent advances in structure-from-motion and photogrammetry have resulted in a proliferation of 3D digital representations of habitats from which structural complexity can be measured. Little attention has been paid to quantifying the measurement errors associated with these techniques, including the variability of results under different surveying and environmental conditions. Such errors have the potential to confound studies that compare habitat complexity over space and time. This study evaluated the accuracy, precision, and bias in measurements of marine habitat structural complexity derived from structure-from-motion and photogrammetric measurements using repeated surveys of artificial reefs (with known structure) as well as natural coral reefs. We quantified measurement errors as a function of survey image coverage, actual surface rugosity, and the morphological community composition of the habitat-forming organisms (reef corals). Our results indicated that measurements could be biased by up to 7.5% of the total observed ranges of structural complexity based on the environmental conditions present during any particular survey. Positive relationships were found between measurement errors and actual complexity, and the strength of these relationships was increased when coral morphology and abundance were also used as predictors. The numerous advantages of structure-from-motion and photogrammetry techniques for quantifying and investigating marine habitats will mean that they are likely to replace traditional measurement techniques (e.g., chain-and-tape). To this end, our results have important implications for data collection and the interpretation of measurements when examining changes in habitat complexity using structure-from-motion and photogrammetry.
NASA Astrophysics Data System (ADS)
Quartini, E.; Holt, J. W.; Brothers, T. C.
2011-03-01
The past depositional history of a lobate debris apron complex in eastern Hellas has been investigated by conducting a combined analysis of its surface morphology and subsurface structure using a CTX mosaic and orbital radar sounding data from SHARAD.
Functional Morphology of Eunicidan (Polychaeta) Jaws
NASA Astrophysics Data System (ADS)
Clemo, W. C.; Dorgan, K. M.
2016-02-01
Polychaetes exhibit diverse feeding strategies and diets, with some species possessing hardened teeth or jaws of varying complexity. Species in the order Eunicida have complex, rigidly articulated jaws consisting of multiple pairs of maxillae and a pair of mandibles. While all Eunicida possess this general jaw structure, a number of characteristics of the jaw parts vary considerably among families. These differences, described for fossilized and extant species' jaws, were used to infer evolutionary relationships, but current phylogeny shows that jaw structures that are similar among several families are convergent. Little has been done, however, to relate jaw functional morphology and feeding behavior to diet. To explore these relationships, we compared the jaw kinematics of two taxa with similar but evolutionarily convergent jaw structures: Diopatra (Onuphidae) and Lumbrineris (Lumbrineridae). Diopatra species are tube-dwelling and predominantly herbivorous, whereas Lumbrineris species are burrowing carnivores. Jaw kinematics were observed and analyzed by filming individuals biting or feeding and tracking tooth movements in videos. Differences in jaw structure and kinematics between Diopatra and Lumbrineris can be interpreted to be consistent with their differences in diet. Relating jaw morphology to diet would provide insight into early annelid communities by linking fossil teeth (scolecodonts) to the ecological roles of extant species with similar morphologies.
Barbosa, Ariane R; Fiorini, Cecília F; Silva-Pereira, Viviane; Mello-Silva, Renato; Borba, Eduardo L
2012-09-01
Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Φ(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.
Changing Places: A Cross-Language Perspective on Frequency and Family Size in Dutch and Hebrew
ERIC Educational Resources Information Center
Moscoso del Prado Martin, Fermin; Deutsch, Avital; Frost, Ram; Schreuder, Robert; De Jong, Nivja H.; Baayen, R. Harald
2005-01-01
This study uses the morphological family size effect as a tool for exploring the degree of isomorphism in the networks of morphologically related words in the Hebrew and Dutch mental lexicon. Hebrew and Dutch are genetically unrelated, and they structure their morphologically complex words in very different ways. Two visual lexical decision…
Morphology-preserving chemical conversion of bioorganic and inorganic templates
NASA Astrophysics Data System (ADS)
Vernon, Jonathan Paul
The generation of nanostructured assemblies with complex (three-dimensional, 3D) self-assembled morphologies and with complex (multicomponent) tailorable inorganic compositions is of considerable technological and scientific interest. This dissertation demonstrates self-assembled 3D organic templates of biogenic origin can be converted into replicas comprised of numerous other functional nanocrystalline inorganic materials. Nature provides a spectacular variety of biologically-assembled 3D organic structures with intricate, hierarchical (macro-to-micro-to-nanoscale) morphologies. Such processing on readily-available structurally complex templates provides a framework for chemical conversion of synthetic organic templates and, potentially, production of organic/inorganic composites. Four specific research thrusts are detailed in this document. First, chemical conversion of a nanostructured bioorganic template into a multicomponent oxide compound (tetragonal BaTiO3) via SSG coating and subsequent morphology-preserving microwave hydrothermal processing is demonstrated. Second, morphology-preserving chemical conversion of bioorganic templates into hierarchical photoluminescent microparticles is demonstrated to reveal both the dramatic change in properties such processing can provide, and the potential utility of chemically transformed templates in anti-counterfeiting / authentication applications. Third, determination of the reaction mechanism(s) for morphology-preserving microwave hydrothermal conversion of TiO2 to BaTiO3, through Au inert markers on single crystal rutile titania, is detailed. Finally, utilization of constructive coating techniques (SSG) and moderate temperature (< 500°C) heat treatments to modify and replicate structural color is coupled with deconstructive focused ion beam microsurgery to prepare samples for microscale structure interrogation. Specifically, the effects of coating thickness and composition on reflection spectra of structurally colored templates are examined. Also, the effects of the replacement of natural material with higher index of refraction inorganic materials on optical properties are discussed. The three processing research thrusts constituting chapters 1, 2 and 4 take advantage of moderate temperature processing to ensure nanocrystalline materials, either for shape preservation or to prevent scattering in optical applications. The research thrust detailed in chapter 3 examines hydrothermal conversion of TiO2 to BaTiO3, not only to identify the reaction mechanism(s) involved in hydrothermal conversion under morphology-preserving conditions, but also to introduce inert marker experiments to the field of microwave hydrothermal processing.
Lajus, Dmitry; Sukhikh, Natalia; Alekseev, Victor
2015-01-01
Interest in cryptic species has increased significantly with current progress in genetic methods. The large number of cryptic species suggests that the resolution of traditional morphological techniques may be insufficient for taxonomical research. However, some species now considered to be cryptic may, in fact, be designated pseudocryptic after close morphological examination. Thus the “cryptic or pseudocryptic” dilemma speaks to the resolution of morphological analysis and its utility for identifying species. We address this dilemma first by systematically reviewing data published from 1980 to 2013 on cryptic species of Copepoda and then by performing an in-depth morphological study of the former Eurytemora affinis complex of cryptic species. Analyzing the published data showed that, in 5 of 24 revisions eligible for systematic review, cryptic species assignment was based solely on the genetic variation of forms without detailed morphological analysis to confirm the assignment. Therefore, some newly described cryptic species might be designated pseudocryptic under more detailed morphological analysis as happened with Eurytemora affinis complex. Recent genetic analyses of the complex found high levels of heterogeneity without morphological differences; it is argued to be cryptic. However, next detailed morphological analyses allowed to describe a number of valid species. Our study, using deep statistical analyses usually not applied for new species describing, of this species complex confirmed considerable differences between former cryptic species. In particular, fluctuating asymmetry (FA), the random variation of left and right structures, was significantly different between forms and provided independent information about their status. Our work showed that multivariate statistical approaches, such as principal component analysis, can be powerful techniques for the morphological discrimination of cryptic taxons. Despite increasing cryptic species designations, morphological techniques have great potential in determining copepod taxonomy. PMID:26120427
Failure Analysis in Platelet Molded Composite Systems
NASA Astrophysics Data System (ADS)
Kravchenko, Sergii G.
Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.
Service, Elisabet; Maury, Sini
2015-01-01
Working memory (WM) has been described as an interface between cognition and action, or a system for access to a limited amount of information needed in complex cognition. Access to morphological information is needed for comprehending and producing sentences. The present study probed WM for morphologically complex word forms in Finnish, a morphologically rich language. We studied monomorphemic (boy), inflected (boy+’s), and derived (boy+hood) words in three tasks. Simple span, immediate serial recall of words, in Experiment 1, is assumed to mainly rely on information in the focus of attention. Sentence span, a dual task combining sentence reading with recall of the last word (Experiment 2) or of a word not included in the sentence (Experiment 3) is assumed to involve establishment of a search set in long-term memory for fast activation into the focus of attention. Recall was best for monomorphemic and worst for inflected word forms with performance on derived words in between. However, there was an interaction between word type and experiment, suggesting that complex span is more sensitive to morphological complexity in derivations than simple span. This was explored in a within-subjects Experiment 4 combining all three tasks. An interaction between morphological complexity and task was replicated. Both inflected and derived forms increased load in WM. In simple span, recall of inflectional forms resulted in form errors. Complex span tasks were more sensitive to morphological load in derived words, possibly resulting from interference from morphological neighbors in the mental lexicon. The results are best understood as involving competition among inflectional forms when binding words from input into an output structure, and competition from morphological neighbors in secondary memory during cumulative retrieval-encoding cycles. Models of verbal recall need to be able to represent morphological as well as phonological and semantic information. PMID:25642181
Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott
2018-05-01
The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.
Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed.
Kato, A; Ziegler, A; Higuchi, N; Nakata, K; Nakamura, H; Ohno, N
2014-01-01
The C-shaped root canal constitutes an unusual root morphology that can be found primarily in mandibular second permanent molars. Due to the complexity of their structure, C-shaped root canal systems may complicate endodontic interventions. A thorough understanding of root canal morphology is therefore imperative for proper diagnosis and successful treatment. This review aims to summarize current knowledge regarding C-shaped roots and root canals, from basic morphology to advanced endodontic procedures. To this end, a systematic search was conducted using the MEDLINE, BIOSIS, Cochrane Library, EMBASE, Google Scholar, Web of Science, PLoS and BioMed Central databases, and many rarely cited articles were included. Furthermore, four interactive 3D models of extracted teeth are introduced that will allow for a better understanding of the complex C-shaped root canal morphology. In addition, the present publication includes an embedded best-practice video showing an exemplary root canal procedure on a tooth with a pronounced C-shaped root canal. The survey of this unusual structure concludes with a number of suggestions concerning future research efforts. PMID:24483229
NASA Astrophysics Data System (ADS)
Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.
2018-05-01
The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.
ERIC Educational Resources Information Center
Suzuki, Yuichi
2017-01-01
This study examined optimal learning schedules for second language (L2) acquisition of a morphological structure. Sixty participants studied the simple and complex morphological rules of a novel miniature language system so as to use them for oral production. They engaged in four training sessions in either shorter spaced (3.3-day interval) or…
Cellulose microfibril structure: inspirations from plant diversity
NASA Astrophysics Data System (ADS)
Roberts, A. W.
2018-03-01
Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase catalytic subunits that associate to form cellulose synthesis complexes. Variation in the organization of these complexes underlies the variation in cellulose microfibril structure among diverse organisms. However, little is known about how the catalytic subunits interact to form complexes with different morphologies. We are using an evolutionary approach to investigate the roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis complexes.
Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications
Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia
2016-01-01
Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device. PMID:28335236
Studying Tonal Complexity, with a Special Reference to Mande Languages
ERIC Educational Resources Information Center
Konoshenko, Maria
2014-01-01
Linguists tend to believe that total complexity of human languages is invariable. In order to test this hypothesis empirically, we need to calculate the complexity in different domains of language structure: phonology, morphology, syntax, etc. In this paper I provide some guidelines for documenting tonal systems and evaluating their complexity. I…
Wang, Y; Xu, J; Wang, R M; Yu, D P
2004-01-01
Large-scale micro/nanosized Ga(2)O(3) structures were synthesized via a simple vapor p9hase growth method. The morphology of the as-grown structures varied from aligned arrays of smooth nano/microscale wires to composite and complex microdendrites. We present evidence that the formation of the observed structure depends strongly on its position relative to the source materials (the concentration distribution) and on the growth temperature. A growth model is proposed, based on the vapor-solid (VS) mechanism, which can explain the observed morphologies.
Ungar, Daniel; Oka, Toshihiko; Brittle, Elizabeth E.; Vasile, Eliza; Lupashin, Vladimir V.; Chatterton, Jon E.; Heuser, John E.; Krieger, Monty; Waters, M. Gerard
2002-01-01
Multiprotein complexes are key determinants of Golgi apparatus structure and its capacity for intracellular transport and glycoprotein modification. Three complexes that have previously been partially characterized include (a) the Golgi transport complex (GTC), identified in an in vitro membrane transport assay, (b) the ldlCp complex, identified in analyses of CHO cell mutants with defects in Golgi-associated glycosylation reactions, and (c) the mammalian Sec34 complex, identified by homology to yeast Sec34p, implicated in vesicular transport. We show that these three complexes are identical and rename them the conserved oligomeric Golgi (COG) complex. The COG complex comprises four previously characterized proteins (Cog1/ldlBp, Cog2/ldlCp, Cog3/Sec34, and Cog5/GTC-90), three homologues of yeast Sec34/35 complex subunits (Cog4, -6, and -8), and a previously unidentified Golgi-associated protein (Cog7). EM of ldlB and ldlC mutants established that COG is required for normal Golgi morphology. “Deep etch” EM of purified COG revealed an ∼37-nm-long structure comprised of two similarly sized globular domains connected by smaller extensions. Consideration of biochemical and genetic data for mammalian COG and its yeast homologue suggests a model for the subunit distribution within this complex, which plays critical roles in Golgi structure and function. PMID:11980916
NASA Astrophysics Data System (ADS)
McNeil, Mardi A.; Webster, Jody M.; Beaman, Robin J.; Graham, Trevor L.
2016-12-01
Halimeda bioherms occur as extensive geological structures on the northern Great Barrier Reef (GBR), Australia. We present the most complete, high-resolution spatial mapping of the northern GBR Halimeda bioherms, based on new airborne lidar and multibeam echosounder bathymetry data. Our analysis reveals that bioherm morphology does not conform to the previous model of parallel ridges and troughs, but is far more complex than previously thought. We define and describe three morphological sub-types: reticulate, annulate, and undulate, which are distributed in a cross-shelf pattern of reduced complexity from east to west. The northern GBR bioherms cover an area of 6095 km2, three times larger than the original estimate, exceeding the area and volume of calcium carbonate in the adjacent modern shelf-edge barrier reefs. We have mapped a 1740 km2 bioherm complex north of Raine Island in the Cape York region not previously recorded, extending the northern limit by more than 1° of latitude. Bioherm formation and distribution are controlled by a complex interaction of outer-shelf geometry, regional and local currents, coupled with the morphology and depth of continental slope submarine canyons determining the delivery of cool, nutrient-rich water upwelling through inter-reef passages. Distribution and mapping of Halimeda bioherms in relation to Great Barrier Reef Marine Park Authority bioregion classifications and management zones are inconsistent and currently poorly defined due to a lack of high-resolution data not available until now. These new estimates of bioherm spatial distribution and morphology have implications for understanding the role these geological features play as structurally complex and productive inter-reef habitats, and as calcium carbonate sinks which record a complete history of the Holocene post-glacial marine transgression in the northern GBR.
Morphological Structure in Native and Nonnative Language Processing
ERIC Educational Resources Information Center
Clahsen, Harald; Felser, Claudia; Neubauer, Kathleen; Sato, Mikako; Silva, Renita
2010-01-01
This article presents a selective overview of studies that have investigated how advanced adult second language (L2) learners process morphologically complex words. The studies reported here have used different kinds of experimental tasks (including speeded grammaticality judgments, lexical decision, and priming) to examine three domains of…
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
NASA Astrophysics Data System (ADS)
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-03-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.
Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M
2015-05-01
Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.
2017-01-01
The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.
Grundy, Lorena S; Lee, Victoria E; Li, Nannan; Sosa, Chris; Mulhearn, William D; Liu, Rui; Register, Richard A; Nikoubashman, Arash; Prud'homme, Robert K; Panagiotopoulos, Athanassios Z; Priestley, Rodney D
2018-05-08
Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morphology consisting of concentric shells or a disordered lamellar morphology when chain dynamics are sufficiently slow to prevent defect annealing during solvent exchange. Blends of homopolymer and block copolymer in the feed stream generate more complex internally structured colloids, such as those with hierarchically structured Janus and patchy morphologies, due to additional phase separation and kinetic trapping effects. The ability of the FNP process to generate such a wide range of morphologies using a simple and scalable setup provides a pathway to manufacturing internally structured colloids on an industrial scale.
NASA Astrophysics Data System (ADS)
Mostafa, Nasser Y.; Heiba, Zein K.; Ibrahim, Mohamed M.
2015-01-01
ZnO powders were synthesized using a solution microwave hydrothermal hydrolysis process and tris(ethylenediamine)zinc nitrate {[Zn(en)3](NO3)2} (en = ethylenediamine) as a precursor. Hydrolysis of the precursor complex at different pH produced zinc oxide with a diversity of well-defined morphologies. The effect of hydrolysis pH values on the structural and optical properties has been explored using XRD, SEM, and UV-visible diffuse reflectance spectroscopy (DRS). At pH = 7.0, randomly dispersed rods were formed. Whereas flower-like morphologies were obtained by treating the complex precursor in water at pH = 10.0 and 12.0. The ZnO4 tetrahedrons are greatly affected by the pH value. The band gap decreased sharply with increasing the pH value from 7.0 to 10.0, then slightly decreased with further increasing the pH to 12.0. The relationship between band gap and both structure and surface defects of the samples is also discussed.
Multiscale morphological filtering for analysis of noisy and complex images
NASA Astrophysics Data System (ADS)
Kher, A.; Mitra, S.
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Multiscale Morphological Filtering for Analysis of Noisy and Complex Images
NASA Technical Reports Server (NTRS)
Kher, A.; Mitra, S.
1993-01-01
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Pickering, Emily A.; Adler, Alyssa M.; Taylor, J. Christopher; Peterson, Charles H.
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed. PMID:28873447
NASA Astrophysics Data System (ADS)
Gutierrez, Sara-Jane
Males of the flightless tettigoniid Sphagniana sphagnorum generate a complex two-spectrum signal via stridulation, using acoustically adapted forewings (tegmina). Complex-wave rapidly decaying pulses in trains, made upon the distal half of the file, have a broad-band (17-25 kHz) spectrum; short, spaced, ultrasonic and strongly sinusoidal 35 kHz pulses are emitted as trains over the file's proximal half. I studied how S. sphagnorum tegminal morphology enables the production of these two different spectra with the same forewings. The storage of elastic energy in the scraper is hypothesized to play a key role in driving the scraper over the file at a necessary tooth-contact rate. Scraper morphology indicates structural adaptations enabling storage of elastic energy. Wax loading tested the role of scraper-pit flexibility in scraper movement. Sound levels in resonant spectra were more substantially affected than those associated with broadband generation. Morphology and alignment of pteralia during tegmino-tegminal stridulation is also investigated.
Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M
2015-01-01
Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. J. Comp. Neurol. 523:997–1037, 2015. © 2014 Wiley Periodicals, Inc. PMID:25380328
NASA Astrophysics Data System (ADS)
Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.
2017-07-01
Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.
Social scale and structural complexity in human languages.
Nettle, Daniel
2012-07-05
The complexity of different components of the grammars of human languages can be quantified. For example, languages vary greatly in the size of their phonological inventories, and in the degree to which they make use of inflectional morphology. Recent studies have shown that there are relationships between these types of grammatical complexity and the number of speakers a language has. Languages spoken by large populations have been found to have larger phonological inventories, but simpler morphology, than languages spoken by small populations. The results require further investigation, and, most importantly, the mechanism whereby the social context of learning and use affects the grammatical evolution of a language needs elucidation.
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-01-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611
Gómez, Africa; Serra, Manuel; Carvalho, Gary R; Lunt, David H
2002-07-01
Continental lake-dwelling zooplanktonic organisms have long been considered cosmopolitan species with little geographic variation in spite of the isolation of their habitats. Evidence of morphological cohesiveness and high dispersal capabilities support this interpretation. However, this view has been challenged recently as many such species have been shown either to comprise cryptic species complexes or to exhibit marked population genetic differentiation and strong phylogeographic structuring at a regional scale. Here we investigate the molecular phylogeny of the cosmopolitan passively dispersing rotifer Brachionus plicatilis (Rotifera: Monogononta) species complex using nucleotide sequence variation from both nuclear (ribosomal internal transcribed spacer 1, ITS1) and mitochondrial (cytochrome c oxidase subunit I, COI) genes. Analysis of rotifer resting eggs from 27 salt lakes in the Iberian Peninsula plus lakes from four continents revealed nine genetically divergent lineages. The high level of sequence divergence, absence of hybridization, and extensive sympatry observed support the specific status of these lineages. Sequence divergence estimates indicate that the B. plicatilis complex began diversifying many millions of years ago, yet has showed relatively high levels of morphological stasis. We discuss these results in relation to the ecology and genetics of aquatic invertebrates possessing dispersive resting propagules and address the apparent contradiction between zooplanktonic population structure and their morphological stasis.
Gibb, Heloise; Parr, Catherine L
2013-01-01
Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure.
Structure and engineering of celluloses.
Pérez, Serge; Samain, Daniel
2010-01-01
This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.
Are CORNER and BROTHER Morphologically Complex? Not in the Long Term
ERIC Educational Resources Information Center
Rueckl, Jay G.; Aicher, Karen A.
2008-01-01
Previous studies haves shown that under masked priming conditions, CORNER primes CORN as strongly as TEACHER primes TEACH and more strongly than BROTHEL primes BROTH. This result has been taken as evidence of a purely structural level of representation at which words are decomposed into morphological constituents in a manner that is independent of…
Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia
2016-10-01
Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tsuchiya, Youichi; Noguchi, Takao; Yoshihara, Daisuke; Roy, Bappaditya; Yamamoto, Tatsuhiro; Shinkai, Seiji
2016-11-29
Control of higher-order polymer structures attracts a great deal of interest for many researchers when they lead to the development of materials having various advanced functions. Among them, conjugated polymers that are useful as starting materials in the design of molecular wires are particularly attractive. However, an equilibrium existing between isolated chains and bundled aggregates is inevitable and has made their physical properties very complicated. As an attempt to simplify this situation, we previously reported that a polymer chain of a water-soluble polythiophene could be isolated through complexation with a helix-forming polysaccharide. More recently, a covalently self-threading polythiophene was reported, the main chain of which was physically protected from self-folding and chain-chain π-stacking. In this report, we wish to report a new strategy to isolate a water-soluble polythiophene and to control its higher-order structure by a supramolecular approach: that is, among a few bile acids, lithocholate can form stoichiometric complexes with cationic polythiophene to isolate the polymer chain, and the higher-order structure is changeable by the molar ratio. The optical and morphological studies have been thoroughly performed, and the resultant complex has been applied to the selective recognition of two AMP structural isomers.
NASA Astrophysics Data System (ADS)
Lee, Young-Woong; Reddy, M. Siva Pratap; Kim, Bo-Myung; Park, Chinho
2018-07-01
An ITO-Ag islands complex as a new transparent conducting electrode (TCE) structure (on the 5 nm-thick p-InGaN/90 nm-thick p-GaN) for achieving high-performance and more reliable GaN-based LEDs were fabricated. A normal LED with a conventional ITO TCE was also compared. The surface morphological, structural, electrical and optical properties of fabricated GaN-based light-emitting diodes using a complex electrode of submicron-scaled Ag islands and ITO thin films are explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) and output power-current (L-I) techniques. Surface morphology investigations revealed Ag islands formed uniformly on the p-InGaN/p-GaN surface during rapid thermal annealing at 400 °C for 1 min in N2 ambient. The ohmic properties and overall device-performance of the suggested contact and device structures were superior to those in the conventional ITO contact and normal ITO LED structures. Based on the results of XRD and XPS measurements, the formation of the intermetallic gallide phases (AgGa) is responsible for better performance characteristics of the ITO-Ag islands device. The significant improvements are described in terms of the conducting bridge influence, highly effective micro-mirror effect, and wider photon window via the roughened structure.
NASA Astrophysics Data System (ADS)
Burkhard, L. M.; Cameron, M. E.; Smith-Konter, B. R.; Seifert, F.; Pappalardo, R. T.; Collins, G. C.
2015-12-01
Ganymede's fractured surface reveals many large-scale, morphologically distinct regions of inferred distributed shear and strike-slip faulting that may be important to the structural development of its surface and in the transition from dark to light (grooved) materials. To better understand the role of strike-slip tectonism in shaping Ganymede's complex icy surface, we perform a detailed mapping of key examples of strike-slip morphologies (i.e., en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) from Galileo and Voyager images. We focus on complex structures associated with grooved terrain (e.g. Nun Sulcus, Dardanus Sulcus, Tiamat Sulcus, and Arbela Sulcus) and terrains transitional from dark to light terrain (e.g. the boundary between Nippur Sulcus and Marius Regio, including Byblus Sulcus and Philus Sulcus). Detailed structural interpretations suggest strong evidence of strike-slip faulting in some regions (i.e., Nun and Dardanus Sulcus); however, further investigation of additional strike-slip structures is required of less convincing regions (i.e., Byblus Sulcus). Where applicable, these results are synthesized into a global database representing an inferred sense of shear for many of Ganymede's fractures. Moreover, when combined with existing observations of extensional features, these results help to narrow down the range of possible principal stress directions that could have acted at the regional or global scale to produce grooved terrain on Ganymede.
Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve
2013-09-06
Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure.
Harvey, Todd Alan; Bostwick, Kimberly S.; Marschner, Steve
2013-01-01
Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure. PMID:23825113
Compound Words and Structure in the Lexicon
ERIC Educational Resources Information Center
Fiorentino, Robert; Poeppel, David
2007-01-01
The structure of lexical entries and the status of lexical decomposition remain controversial. In the psycholinguistic literature, one aspect of this debate concerns the psychological reality of the morphological complexity difference between compound words ("teacup") and single words ("crescent"). The present study investigates morphological…
Mesoscale behavior study of collector aggregations in a wet dust scrubber.
Li, Xiaochuan; Wu, Xiang; Hu, Haibin; Jiang, Shuguang; Wei, Tao; Wang, Dongxue
2018-01-01
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers. This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.
Classifying Structures in the ISM with Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Beaumont, Christopher; Goodman, A. A.; Williams, J. P.
2011-01-01
The processes which govern molecular cloud evolution and star formation often sculpt structures in the ISM: filaments, pillars, shells, outflows, etc. Because of their morphological complexity, these objects are often identified manually. Manual classification has several disadvantages; the process is subjective, not easily reproducible, and does not scale well to handle increasingly large datasets. We have explored to what extent machine learning algorithms can be trained to autonomously identify specific morphological features in molecular cloud datasets. We show that the Support Vector Machine algorithm can successfully locate filaments and outflows blended with other emission structures. When the objects of interest are morphologically distinct from the surrounding emission, this autonomous classification achieves >90% accuracy. We have developed a set of IDL-based tools to apply this technique to other datasets.
Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes.
Price, Samantha A; Tavera, Jose J; Near, Thomas J; Wainwright, Peter C
2013-02-01
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow-water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef-dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine-scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Histological assessment of the triangular fibrocartilage complex.
Semisch, M; Hagert, E; Garcia-Elias, M; Lluch, A; Rein, S
2016-06-01
The morphological structure of the seven components of triangular fibrocartilage complexes of 11 cadaver wrists of elderly people was assessed microscopically, after staining with Hematoxylin-Eosin and Elastica van Gieson. The articular disc consisted of tight interlaced fibrocartilage without blood vessels except in its ulnar part. Volar and dorsal radioulnar ligaments showed densely parallel collagen bundles. The subsheath of the extensor carpi ulnaris muscle, the ulnotriquetral and ulnolunate ligament showed mainly mixed tight and loose parallel tissue. The ulnolunate ligament contained tighter parallel collagen bundles and clearly less elastic fibres than the ulnotriquetral ligament. The ulnocarpal meniscoid had an irregular morphological composition and loose connective tissue predominated. The structure of the articular disc indicates a buffering function. The tight structure of radioulnar and ulnolunate ligaments reflects a central stabilizing role, whereas the ulnotriquetral ligament and ulnocarpal meniscoid have less stabilizing functions. © The Author(s) 2015.
The role of polyploidy in shaping morphological diversity in natural populations of Phlox amabilis.
Chansler, Matthew T; Ferguson, Carolyn J; Fehlberg, Shannon D; Prather, L Alan
2016-09-01
Studies of natural populations of polyploids increasingly highlight complex patterns of variation in ploidy and geographic distribution of cytotypes. As our understanding of the complexity of polyploidy grows, our understanding of the morphological correlates of polyploidy should expand as well. Here we examine in what ways, and to what degree, polyploidy affects the overall phenotype of a species across its distribution when there are three ploidies and geographic complexity in cytotype distribution. We measured 31 morphological traits from stems, leaves, and flowers from up to 25 individuals from 11 sites across the distribution of Phlox amabilis. Chromosome counts and flow cytometry confirmed and expanded upon earlier research documenting diploid, tetraploid, and hexaploid populations, and also identified a site with two ploidies. Univariate and multivariate statistics were used to characterize the morphological effects of polyploidy. We detected significant associations between morphology and ploidy in 11 traits spread across vegetative and reproductive structures. Generally, diploid individuals differed from polyploid individuals to a greater extent, and in different ways, than tetraploid and hexaploid plants differed from each other. Multivariate morphometrics demonstrated that the two primary axes of overall variation are driven by morphological traits associated with polyploidy, and individuals of different ploidies can be discriminated with 95% success. Polyploidy plays a major role in shaping overall morphological diversity in natural populations of P. amabilis. © 2016 Botanical Society of America.
Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin
2017-04-19
Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeednia, S., E-mail: sami_saeednia@yahoo.com; Iranmanesh, P.; Ardakani, M. Hatefi
Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM),more » X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.« less
Diversity in the Archean Biosphere: New Insights from NanoSIMS
NASA Astrophysics Data System (ADS)
Oehler, Dorothy Z.; Robert, François; Walter, Malcolm R.; Sugitani, Kenichiro; Meibom, Anders; Mostefaoui, Smail; Gibson, Everett K.
2010-05-01
The origin of organic microstructures in the ˜3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide ˜3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least ˜3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry.
Integration of motor proteins - towards an ATP fueled soft actuator.
Kakugo, Akira; Shikinaka, Kazuhiro; Gong, Jian Ping
2008-09-01
We present a soft bio-machine constructed from biological motors (actin/myosin). We have found that chemically cross-linked polymer-actin complex gel filaments can move on myosin coated surfaces with a velocity as high as that of native F-actin, by coupling to ATP hydrolysis. Additionally, it is shown that the velocity of polymer-actin complex gel depends on the species of polycations binding to the F-actins. Since the design of functional actuators of well-defined size and morphology is important, the structural behavior of polymer-actin complexes has been investigated. Our results show that the morphology and growth size of polymer-actin complex can be controlled by changes in the electrostatic interactions between F-actins and polycations. Our results indicate that bio actuators with desired shapes can be created by using a polymer-actin complex.
Self-Assembly and Responsiveness of Polypeptide-Based Star and Triblock Copolymers
NASA Astrophysics Data System (ADS)
Savin, Daniel
This study involves the bottom-up design and tunability of responsive, peptide-based block polymers. The self-assembly of amphiphilic block polymers is dictated primarily by the balance between the hydrophobic core volume and the hydrophilic corona. In these studies, amphiphilic triblock and star copolymers containing poly(lysine) (PK), poly(leucine) (PL) and poly(glutamic acid) (PE) were synthesized and their solution properties studied using dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The peptide block in these structures can serve to introduce pH responsiveness (in the case of PK and PE), or can facilitate the formation of elongated or kinetically-trapped structures (in the case of PL.) This talk will present some recent studies in solution morphology transitions that occur in these materials under varying solution conditions. As the topological complexity of the polymers increases from diblock to linear triblock or star polymers, the solution morphology and response becomes much more complex. We present a systematic series of structures, with increasing complexity, that have applications as passive and active delivery vehicles, hydrogels, and responsive viscosity modifiers. NSF CHE-1539347.
Andrés, Juan; Gracia, Lourdes; Gouveia, Amanda Fernandes; Ferrer, Mateus Meneghetti; Longo, Elson
2015-10-09
Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.
Morphological Variation in the Adult Hard Palate and Posterior Pharyngeal Wall
Lammert, Adam; Proctor, Michael; Narayanan, Shrikanth
2013-01-01
Purpose Adult human vocal tracts display considerable morphological variation across individuals, but the nature and extent of this variation has not been extensively studied for many vocal tract structures. There exists a need to analyze morphological variation and, even more basically, to develop a methodology for morphological analysis of the vocal tract. Such analysis will facilitate fundamental characterization of the speech production system, with broad implications from modeling to explaining inter-speaker variability. Method A data-driven methodology to automatically analyze the extent and variety of morphological variation is proposed and applied to a diverse subject pool of 36 adults. Analysis is focused on two key aspects of vocal tract structure: the midsagittal shape of the hard palate and the posterior pharyngeal wall. Result Palatal morphology varies widely in its degree of concavity, but also in anteriority and sharpness. Pharyngeal wall morphology, by contrast, varies mostly in terms of concavity alone. The distribution of morphological characteristics is complex, and analysis suggests that certain variations may be categorical in nature. Conclusion Major modes of morphological variation are identified, including their relative magnitude, distribution and categorical nature. Implications of these findings for speech articulation strategies and speech acoustics are discussed. PMID:23690566
Gibb, Heloise; Parr, Catherine L.
2013-01-01
Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure. PMID:23691137
Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod
2010-01-01
Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146
Tensorial Minkowski functionals of triply periodic minimal surfaces
Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus
2012-01-01
A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847
Morphological learning in a novel language: A cross-language comparison.
Havas, Viktória; Waris, Otto; Vaquero, Lucía; Rodríguez-Fornells, Antoni; Laine, Matti
2015-01-01
Being able to extract and interpret the internal structure of complex word forms such as the English word dance+r+s is crucial for successful language learning. We examined whether the ability to extract morphological information during word learning is affected by the morphological features of one's native tongue. Spanish and Finnish adult participants performed a word-picture associative learning task in an artificial language where the target words included a suffix marking the gender of the corresponding animate object. The short exposure phase was followed by a word recognition task and a generalization task for the suffix. The participants' native tongues vary greatly in terms of morphological structure, leading to two opposing hypotheses. On the one hand, Spanish speakers may be more effective in identifying gender in a novel language because this feature is present in Spanish but not in Finnish. On the other hand, Finnish speakers may have an advantage as the abundance of bound morphemes in their language calls for continuous morphological decomposition. The results support the latter alternative, suggesting that lifelong experience on morphological decomposition provides an advantage in novel morphological learning.
Complex Dynamic Development of Poliovirus Membranous Replication Complexes
Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie
2012-01-01
Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780
NASA Astrophysics Data System (ADS)
Wang, Shuaijun; Yan, Qingyun; Dong, Pei; Zhao, Chaocheng; Wang, Yongqiang; Liu, Fang; Li, Lin
2018-06-01
Graphitic carbon nitride (g-C3N4) microspheres (CNMS) were fabricated via a solvothermal method by using supramolecular complexes of dicyandiamide and cyanuric chloride as precursors. The effect of solvothermal temperature on the morphology, band structure, and activity was systematically investigated. Structural characterization results indicate that the samples prepared at 180 °C (CNMS-180) and 200 °C (CNMS-200) possess spherical morphology, while irregular bulk particles were obtained at 160 °C (CN-160). In addition, the band gap increased as the solvothermal temperature decreased from 200 to 160 °C. In comparison with CN-160 and CNMS-200, the valence band of CNMS-180 was more positive and thus gives higher photo-oxidation capability. Accordingly, CNMS-180 exhibits higher photocatalytic degradation efficiency on Rhodamine B, stronger photocurrent response, and lower charge transfer resistance. Additionally, CNMS-180 exhibits excellent stability after four runs. This work might provide a guidance for the regulation of morphology and band structure of g-C3N4-based materials prepared at low temperatures.
Digital Reef Rugosity Estimates Coral Reef Habitat Complexity
Dustan, Phillip; Doherty, Orla; Pardede, Shinta
2013-01-01
Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity. PMID:23437380
Digital reef rugosity estimates coral reef habitat complexity.
Dustan, Phillip; Doherty, Orla; Pardede, Shinta
2013-01-01
Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.
A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds
NASA Astrophysics Data System (ADS)
Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang
2017-04-01
3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.
Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby
2014-03-01
Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.
ERIC Educational Resources Information Center
Caplan, David; Waters, Gloria; Bertram, Julia; Ostrowski, Adam; Michaud, Jennifer
2016-01-01
The authors assessed 4,865 middle and high school students for the ability to recognize and understand written and spoken morphologically simple words, morphologically complex words, and the syntactic structure of sentences and for the ability to answer questions about facts presented in a written passage and to make inferences based on those…
Mousavi, S A; Montazerozohori, M; Masoudiasl, A; Mahmoudi, G; White, J M
2018-09-01
A nanostructured cationic zinc nitrate complex with a formula of [ZnLNO 3 ]NO 3 (where L = (N 2 E,N 2' E)-N 1 ,N 1' -(ethane-1,2-diyl)bis(N 2 -((E)-3-phenylallylidene)ethane-1,2-diamine)) was prepared by sonochemical process and characterized by single crystal X-ray crystallography, scanning electron microscopy (SEM), FT-IR and NMR spectroscopy and X-ray powder diffraction (XRPD). The X-ray analysis demonstrates the formation of a cationic complex that metal center is five-coordinated by four nitrogen atom from Schiff base ligand and one oxygen atom from nitrate group. The crystal packing analysis demonstrates the essential role of the nitrate groups in the organization of supramolecular structure. The morphology and size of ultrasound-assisted synthesized zinc nitrate complex have been investigated using scanning electron microscopy (SEM) by changing parameters such as the concentration of initial reactants, the sonication power and reaction temperature. In addition the calcination of zinc nitrate complex in air atmosphere led to production of zinc oxide nanoparticles. Copyright © 2018. Published by Elsevier B.V.
COMPUTER SIMULATIONS OF LUNG AIRWAY STRUCTURES USING DATA-DRIVEN SURFACE MODELING TECHNIQUES
ABSTRACT
Knowledge of human lung morphology is a subject critical to many areas of medicine. The visualization of lung structures naturally lends itself to computer graphics modeling due to the large number of airways involved and the complexities of the branching systems...
NASA Astrophysics Data System (ADS)
Kirner, S. V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; Krüger, J.; Solis, J.; Siegel, J.; Stratakis, E.; Bonse, J.
2017-12-01
Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials.
Liu, Yifei; Li, Dawei; Yan, Ling; Huang, Hongwen
2015-01-01
Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.
Lunar crater volumes - Interpretation by models of impact cratering and upper crustal structure
NASA Technical Reports Server (NTRS)
Croft, S. K.
1978-01-01
Lunar crater volumes can be divided by size into two general classes with distinctly different functional dependence on diameter. Craters smaller than approximately 12 km in diameter are morphologically simple and increase in volume as the cube of the diameter, while craters larger than about 20 km are complex and increase in volume at a significantly lower rate implying shallowing. Ejecta and interior volumes are not identical and their ratio, Schroeters Ratio (SR), increases from about 0.5 for simple craters to about 1.5 for complex craters. The excess of ejecta volume causing the increase, can be accounted for by a discontinuity in lunar crust porosity at 1.5-2 km depth. The diameter range of significant increase in SR corresponds with the diameter range of transition from simple to complex crater morphology. This observation, combined with theoretical rebound calculation, indicates control of the transition diameter by the porosity structure of the upper crust.
Pateyk, A V; Baranchugova, L M; Rusaeva, N S; Obydenko, V I; Kuznik, B I
2013-03-01
Investigations were carried out on chicks of different age. It was found that the most pronounced changes in the morphology of the thymus occurred after neonatal hypophysectomy. These changes are least pronounced in old chicks. Peptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly synthesized on the basis of amino acid composition of peptide complexes of the anterior and posterior pituitary lobes administered to hypophysectomized birds regardless of age promoted recovery of the morphological structures of the thymus. The anterior pituitary peptide (Lys-Glu-Asp-Gly) had more pronounced effect on the recovery of thymic structure than posterior pituitary peptide (Ala-Glu-Asp-Gly).
NASA Astrophysics Data System (ADS)
Sana, P.; Vázquez, Luis; Cuerno, Rodolfo; Sarkar, Subhendu
2017-11-01
We address experimentally the large-scale dynamics of Si(1 0 0) surfaces during the initial stages of anisotropic wet (KOH) chemical etching, which are characterized through atomic force microscopy. These systems are known to lead to the formation of characteristic pyramids, or hillocks, of typical sizes in the nanometric/micrometer scales, thus with the potential for a large number of applications that can benefit from the nanotexturing of Si surfaces. The present pattern formation process is very strongly disordered in space. We assess the space correlations in such a type of rough surface and elucidate the existence of a complex and rich morphological evolution, featuring at least three different regimes in just 10 min of etching. Such a complex time behavior cannot be consistently explained within a single formalism for dynamic scaling. The pyramidal structure reveals itself as the basic morphological motif of the surface throughout the dynamics. A detailed analysis of the surface slope distribution with etching time reveals that the texturing process induced by the KOH etching is rather gradual and progressive, which accounts for the dynamic complexity. The various stages of the morphological evolution can be accurately reproduced by computer-generated surfaces composed by uncorrelated pyramidal structures. To reach such an agreement, the key parameters are the average pyramid size, which increases with etching time, its distribution and the surface coverage by the pyramidal structures.
Milferstedt, Kim; Santa-Catalina, Gaëlle; Godon, Jean-Jacques; Escudié, Renaud; Bernet, Nicolas
2013-01-01
Many natural and engineered biofilm systems periodically face disturbances. Here we present how the recovery time of a biofilm between disturbances (expressed as disturbance frequency) shapes the development of morphology and community structure in a multi-species biofilm at the landscape scale. It was hypothesized that a high disturbance frequency favors the development of a stable adapted biofilm system while a low disturbance frequency promotes a dynamic biofilm response. Biofilms were grown in laboratory-scale reactors over a period of 55-70 days and exposed to the biocide monochloramine at two frequencies: daily or weekly pulse injections. One untreated reactor served as control. Biofilm morphology and community structure were followed on comparably large biofilm areas at the landscape scale using automated image analysis (spatial gray level dependence matrices) and community fingerprinting (single-strand conformation polymorphisms). We demonstrated that a weekly disturbed biofilm developed a resilient morphology and community structure. Immediately after the disturbance, the biofilm simplified but recovered its initial complex morphology and community structure between two biocide pulses. In the daily treated reactor, one organism largely dominated a morphologically simple and stable biofilm. Disturbances primarily affected the abundance distribution of already present bacterial taxa but did not promote growth of previously undetected organisms. Our work indicates that disturbances can be used as lever to engineer biofilms by maintaining a biofilm between two developmental states. PMID:24303024
NASA Astrophysics Data System (ADS)
Bodger, K. L.; Pettinga, J. R.; Barnes, P. M.
2006-12-01
More than 4000 km2 of high quality bathymetric and backscatter imaging of the Poverty Bay Indentation across the northern part of the Hikurangi subduction zone provide new insights into the relationship between seafloor morphology and active structures. The swath bathymetry extends from the edge of the continental shelf to the abyssal plain, at depths of between 100 to 3500 metres. The origin of the slope re-entrant is inferred to be related to multiple seamount impacts, and these collisions have initiated numerous large-scale gravitational collapse structures, multiple debris flow and avalanche deposits, which range in down-slope length from a few hundred metres to more than 40 km. The Poverty Bay Indentation has been simultaneously eroded by canyon systems that exhibit many of the features of incised river systems onshore. The swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as a limited number of core samples. Seismic reflection profiles and seafloor morphology are used to provide three morpho-structural sections. The comparison of these sections highlights the different effects of seamount subduction on the evolution of the margin and the re-entrant. The northern two sections are located to the north side of the re-entrant and reveal the role of seamount impact on the interrelationship between the structural evolution with respect to seafloor morphology. Here the development of an over-steepened margin with fault reactivation, inversion and over- printing leads to very complex structural styles of deformation and geometry in both seismic reflection profiles and seafloor morphology. There is evidence of an older, inactive thrust front buried beneath the upper and mid- slope basins. Beneath the mid-slope a subducted seamount is revealed by the presence of relief on the subduction interface and associated structural complexity in the over-riding wedge. The Poverty Bay canyon represents a structural transition zone coinciding with the re-entrant. The accretionary slope south of the re- entrant conforms more closely to the classic accretionary slope style of deformation. Backthrusts in this section propagate from a much shallower level than in the northern sections. Inversion is commonly observed in the mid slope and continental shelf basins, particularly to the south. Initial interpretations indicate that: i) seamount impact significantly influences the structural evolution, and submarine geomorphology of the inboard slope of the Hikurangi subduction zone, including the generation of large-scale gravitational collapse features; ii) the large gully systems located at the upper shelf slope boundary represent the most likely source areas for the multiple mega debris flows recognised from seafloor morphology and in seismic sections; iii) there exists a complex interaction between the evolving thrust-driven submarine ridges, ponded slope basins and the structural geometry and evolution of the near-surface fault zones (imbrication); iv) the submarine canyons may initiate complex patterns of fault zone segmentation and displacement transfer within the accretionary slope; and v) seamount subduction and subsequent instability of the margin may directly result in tsunami generation.
Sun, Keping; Kimball, Rebecca T.; Liu, Tong; Wei, Xuewen; Jin, Longru; Jiang, Tinglei; Lin, Aiqing; Feng, Jiang
2016-01-01
Palaeoclimatic oscillations and different landscapes frequently result in complex population-level structure or the evolution of cryptic species. Elucidating the potential mechanisms is vital to understanding speciation events. However, such complex evolutionary patterns have rarely been reported in bats. In China, the Rhinolophus macrotis complex contains a large form and a small form, suggesting the existence of a cryptic bat species. Our field surveys found these two sibling species have a continuous and widespread distribution with partial sympatry. However, their evolutionary history has received little attention. Here, we used extensive sampling, morphological and acoustic data, as well as different genetic markers to investigate their evolutionary history. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial data identified three reciprocally monophyletic lineages: one representing all small forms from Southwest China, and the other two containing all large forms from Central and Southeast China, respectively. The large form showed paraphyly with respect to the small form. However, clustering analyses of microsatellite and Chd1 gene sequences support two divergent clusters separating the large form and the small form. Moreover, morphological and acoustic analyses were consistent with nuclear data. This unusual pattern in the R. macrotis complex might be accounted for by palaeoclimatic oscillations, shared ancestral polymorphism and/or interspecific hybridization. PMID:27748429
On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats
NASA Astrophysics Data System (ADS)
Opitz, Martin; Go, Dennis; Lott, Philipp; Müller, Sandra; Stollenwerk, Jochen; Kuehne, Alexander J. C.; Roling, Bernhard
2017-09-01
Carbon-based materials are used as electrode materials in a wide range of electrochemical applications, e.g., in batteries, supercapacitors, and fuel cells. For these applications, the electronic conductivity of the materials plays an important role. Currently, porous carbon materials with complex morphologies and hierarchical pore structures are in the focus of research. The complex morphologies influence the electronic transport and may lead to an anisotropic electronic conductivity. In this paper, we unravel the influence of the morphology of rotationally spun carbon fiber mats on their electronic conductivity. By combining experiments with finite-element simulations, we compare and evaluate different electrode setups for conductivity measurements. While the "bar-type method" with two parallel electrodes on the same face of the sample yields information about the intrinsic conductivity of the carbon fibers, the "parallel-plate method" with two electrodes on opposite faces gives information about the electronic transport orthogonal to the faces. Results obtained for the van-der-Pauw method suggest that this method is not well suited for understanding morphology-transport relations in these materials.
Xu, Qingping; Traag, Bjørn A; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Grzechnik, Slawomir K; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Krishna, S Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A Mieke; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A; van Wezel, Gilles P
2009-09-11
SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.
The molten glass sewing machine
Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri
2017-01-01
We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model—and a methodology—to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373379
CryoTEM as an Advanced Analytical Tool for Materials Chemists.
Patterson, Joseph P; Xu, Yifei; Moradi, Mohammad-Amin; Sommerdijk, Nico A J M; Friedrich, Heiner
2017-07-18
Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us to design such complex materials with predetermined and potentially unique properties.
Processing of zero-derived words in English: an fMRI investigation.
Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C
2014-01-01
Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationality
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha
Jones, Victor A. S.
2017-01-01
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. PMID:28174248
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-08-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
Rzayev, Zakir M O; Söylemez, A Ernur
2011-04-01
We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organo-montmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(alpha,alpha'-dimethyl-alpha"-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT ... O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT ... O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure-composition-property relations show that the functional copolymer-organoclay hybrids prepared with reactive RAFT ... ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine of MMT clay in interlamellar copolymerization. This simple and versatile method can be applied to a wide range of functional monomer/comonomer systems and mono- and bifunctional RAFT compounds for preparation new generation of nanomaterials.
Scale-free networks of the earth’s surface
NASA Astrophysics Data System (ADS)
Liu, Gang; He, Jing; Luo, Kaitian; Gao, Peichao; Ma, Lei
2016-06-01
Studying the structure of real complex systems is of paramount importance in science and engineering. Despite our understanding of lots of real systems, we hardly cognize our unique living environment — the earth. The structural complexity of the earth’s surface is, however, still unknown in detail. Here, we define the modeling of graph topology for the earth’s surface, using the satellite images of the earth’s surface under different spatial resolutions derived from Google Earth. We find that the graph topologies of the earth’s surface are scale-free networks regardless of the spatial resolutions. For different spatial resolutions, the exponents of power-law distributions and the modularity are both quite different; however, the average clustering coefficient is approximately equal to a constant. We explore the morphology study of the earth’s surface, which enables a comprehensive understanding of the morphological feature of the earth’s surface.
Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale
Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.
2016-01-01
An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials. PMID:27928998
Native structure of a type IV secretion system core complex essential for Legionella pathogenesis.
Kubori, Tomoko; Koike, Masafumi; Bui, Xuan Thanh; Higaki, Saori; Aizawa, Shin-Ichi; Nagai, Hiroki
2014-08-12
Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.
ERIC Educational Resources Information Center
Deutsch, Avital; Dank, Maya
2011-01-01
A common characteristic of subject-predicate agreement errors (usually termed attraction errors) in complex noun phrases is an asymmetrical pattern of error distribution, depending on the inflectional state of the nouns comprising the complex noun phrase. That is, attraction is most likely to occur when the head noun is the morphologically…
Cetin Yuceer; Chuan-Yu Hsu; Nadir Erbilgin; Kier D. Klepzig
2011-01-01
The southern pine beetle (SPB) (Dendroctonus frontalis Zimmermann) is the most economically important pest of southern pine forests. Beetles carry fungal cells within specialised cuticular structures, called mycangia. Little is known about the mycangia ultrastructure or function. We used cryo-fracturing and scanning electron microscopy to examine the ultrastructural...
NASA Astrophysics Data System (ADS)
Pezzulo, Giovanni; Levin, Michael
2018-03-01
The free-energy principle (FEP) has been initially proposed as a theory of brain structure and function [1], but its scope is rapidly extending to explain biological phenomena at multiple levels of complexity, from simple life forms and their morphology [2] to complex societal and cultural dynamics [3].
Morphology and physical-chemical properties of celluloses obtained by different methods
NASA Astrophysics Data System (ADS)
Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.
2017-12-01
The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.
Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes) from a tropical stream.
Pagotto, J P A; Goulart, E; Oliveira, E F; Yamamura, C B
2011-05-01
The present study analysed the relationship between morphology and trophic structure of Siluriformes (Pisces, Osteichthyes) from the Caracu Stream (22º 45' S and 53º 15' W), a tributary of the Paraná River (Brazil). Sampling was carried out at three sites using electrofishing, and two species of Loricariidae and four of Heptapteridae were obtained. A cluster analysis revealed the presence of three trophic guilds (detritivores, insectivores and omnivores). Principal components analysis demonstrated the segregation of two ecomorphotypes: at one extreme there were the detritivores (Loricariidae) with morphological structures that are fundamental in allowing them to fix themselves to substrates characterised by rushing torrents, thus permitting them to graze on the detritus and organic materials encrusted on the substrate; at the other extreme of the gradient there were the insectivores and omnivores (Heptapteridae), with morphological characteristics that promote superior performance in the exploitation of structurally complex habitats with low current velocity, colonised by insects and plants. Canonical discriminant analysis revealed an ecomorphological divergence between insectivores, which have morphological structures that permit them to capture prey in small spaces among rocks, and omnivores, which have a more compressed body and tend to explore food items deposited in marginal backwater zones. Mantel tests showed that trophic structure was significantly related to the body shape of a species, independently of the phylogenetic history, indicating that, in this case, there was an ecomorphotype for each trophic guild. Therefore, the present study demonstrated that the Siluriformes of the Caracu Stream were ecomorphologically structured and that morphology can be applied as an additional tool in predicting the trophic structure of this group.
Rouillard, J; García-Ruiz, J-M; Gong, J; van Zuilen, M A
2018-05-01
Archean hydrothermal environments formed a likely site for the origin and early evolution of life. These are also the settings, however, were complex abiologic structures can form. Low-temperature serpentinization of ultramafic crust can generate alkaline, silica-saturated fluids in which carbonate-silica crystalline aggregates with life-like morphologies can self-assemble. These "biomorphs" could have adsorbed hydrocarbons from Fischer-Tropsch type synthesis processes, leading to metamorphosed structures that resemble carbonaceous microfossils. Although this abiogenic process has been extensively cited in the literature and has generated important controversy, so far only one specific biomorph type with a filamentous shape has been discussed for the interpretation of Archean microfossils. It is therefore critical to precisely determine the full distribution in morphology and size of these biomorphs, and to study the range of plausible geochemical conditions under which these microstructures can form. Here, a set of witherite-silica biomorph synthesis experiments in silica-saturated solutions is presented, for a range of pH values (from 9 to 11.5) and barium ion concentrations (from 0.6 to 40 mmol/L BaCl 2 ). Under these varying conditions, a wide range of life-like structures is found, from fractal dendrites to complex shapes with continuous curvature. The size, spatial concentration, and morphology of the biomorphs are strongly controlled by environmental parameters, among which pH is the most important. This potentially limits the diversity of environments in which the growth of biomorphs could have occurred on Early Earth. Given the variety of the observed biomorph morphologies, our results show that the morphology of an individual microstructure is a poor criterion for biogenicity. However, biomorphs may be distinguished from actual populations of cellular microfossils by their wide, unimodal size distribution. Biomorphs grown by diffusion in silica gel can be differentiated by their continuous gradient in size, spatial density, and morphology along the direction of diffusion. © 2018 The Authors. Geobiology Published by John Wiley & Sons Ltd.
Cell structure and function in the visual cortex of the cat
Kelly, J. P.; Van Essen, D. C.
1974-01-01
1. The organization of the visual cortex was studied with a technique that allows one to determine the physiology and morphology of individual cells. Micro-electrodes filled with the fluorescent dye Procion yellow were used to record intracellularly from cells in area 17 of the cat. The visual receptive field of each neurone was classified as simple, complex, or hypercomplex, and the cell was then stained by the iontophoretic injection of dye. 2. Fifty neurones were successfully examined in this way, and their structural features were compared to the varieties of cell types seen in Golgi preparations of area 17. The majority of simple units were stellate cells, whereas the majority of complex and hypercomplex units were pyramidal cells. Several neurones belonged to less common morphological types, such as double bouquet cells. Simple cells were concentrated in layer IV, hypercomplex cells in layer II + III, and complex cells in layers II + III, V and VI. 3. Electrically inexcitable cells that had high resting potentials but no impulse activity were stained and identified as glial cells. Glial cells responded to visual stimuli with slow graded depolarizations, and many of them showed a preference for a stimulus orientation similar to the optimal orientation for adjacent neurones. 4. The results show that there is a clear, but not absolute correlation between the major structural and functional classes of cells in the visual cortex. This approach, linking the physiological properties of a single cell to a given morphological type, will help in furthering our understanding of the cerebral cortex. ImagesPlate 4Plate 1Plate 2Plate 3 PMID:4136579
Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P.; Chait, Brian T.
2014-01-01
Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. PMID:25161197
Vassilieva, Anna B; Gogoleva, Svetlana S; Poyarkov, Nikolay A Jr
2016-06-24
We present new data on the distribution, reproduction, larval morphology and vocalization of Rhacophorus helenae (Rhacophoridae), a narrowly distributed frog from southern Vietnam. Two new populations of R. helenae were discovered during field surveys in the lowland monsoon forests in Dong Nai and Ba Ria-Vung Tau provinces in 2010-2013. Spawning was observed in May 2013. Egg clutches containing small (2.3±0.1 mm) unpigmented eggs were embedded in a foam nest and suspended high on trees above temporary ponds. The tadpoles of R. helenae have a morphology typical of pond-dwelling Rhacophorus larvae with a moderate tail length and a labial tooth row formula of 5(2-5)/3. Postmetamorphic juveniles differed from adult frogs in the features of their coloration and less developed webbing. The complex vocal repertoire of R. helenae included five types of tonal, wideband and pulsed calls and several transitional signal types differentiated by frequency and amplitude parameters. Calls were uttered as singular signals (pulsed calls) or within non-stereotyped series of variable duration (other call types). The complex structure of the advertisement call markedly distinguishes R. helenae from other members of the Rhacophorus reinwardtii species complex.
Nguyen, Tammy T; Lewandowska, Agnieszka; Choi, Jae-Yeon; Markgraf, Daniel F; Junker, Mirco; Bilgin, Mesut; Ejsing, Christer S; Voelker, Dennis R; Rapoport, Tom A; Shaw, Janet M
2012-01-01
In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against a primary role for ERMES in mitochondrial association with actin and mitochondrial movement. Finally, we show that ERMES complexes are long-lived, and do not depend on the presence of Gem1. Our findings suggest that the ERMES complex may have primarily a structural role in maintaining mitochondrial morphology. PMID:22409400
Alp, Murat; Cucinotta, Francis A
2018-03-01
Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen ( 16 O, 600 MeV/n) and titanium ( 48 Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions of morphometric parameters is described. An important conclusion of this study is that δ rays play a major role in neuron morphological changes due to the large spatial distribution of damage sites, which results in a reduced dependence on LET, including modest difference between 16 O and 48 Ti, compared to damages resulting from ED in localized damage sites.
Braun, Hans-Georg; Meyer, Evelyn
2013-01-01
The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233
Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; ...
2015-04-10
In this study, the nanoscale morphology of highly active Pt 3Ni 7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure playsmore » in surface area, activity, and durability.« less
Márquez, Samuel; Laitman, Jeffrey T
2008-11-01
Previous studies exploring the effects of climate on the nasal region have largely focused on external craniofacial linear parameters, using dry crania of modern human populations. This investigation augments traditional craniofacial morphometrics with internal linear and volumetric measures of the anatomic units comprising the nasal complex (i.e., internal nasal cavity depth, maxillary sinus volumes). The study focuses on macaques (i.e., Macaca mulatta and Macaca fascicularis) living at high and low altitudes, rather than on humans, since the short residency of migratory human populations may preclude using them as reliable models to test the long-term relationship of climate to nasal morphology. It is hypothesized that there will be significant differences in nasal complex morphology among macaques inhabiting different climates. This study integrated three different approaches: CT imaging, comparative anatomy, and morphometrics-in an effort to better understand the morphological structure and adaptive nature of the nasal complex. Results showed statistically significant differences when subsets of splanchnocranial and neurocranial variables were regressed against total maxillary sinus volume for particular taxa. For example, basion-hormion was significant for M. fascicularis, whereas choanal dimensions were significant only for M. mulatta. Both taxa revealed strong correlation between sinus volume and prosthion to staphylion distance, which essentially represents the length of the nasal cavity floor-and is by extension an indicator of the air conditioning capacity of the nasal region. These results clearly show that climatic effects play a major role in shaping the anatomy of the nasal complex in closely related species. The major influence upon these differing structures appears to be related to respiratory-related adaptations subserving differing climatic factors. In addition, the interdependence of the paranasal sinuses with other parts of the complex strongly indicates a functional role for them in nasal complex/upper respiratory functions. Copyright 2008 Wiley-Liss, Inc.
Nakano, Ryohei Thomas; Matsushima, Ryo; Nagano, Atsushi J.; Fukao, Yoichiro; Fujiwara, Masayuki; Kondo, Maki; Nishimura, Mikio; Hara-Nishimura, Ikuko
2012-01-01
The endoplasmic reticulum (ER) has a unique, network-like morphology. The ER structures are composed of tubules, cisternae, and three-way junctions. This morphology is highly conserved among eukaryotes, but the molecular mechanism that maintains ER morphology has not yet been elucidated. In addition, certain Brassicaceae plants develop a unique ER-derived organelle called the ER body. This organelle accumulates large amounts of PYK10, a β-glucosidase, but its physiological functions are still obscure. We aimed to identify a novel factor required for maintaining the morphology of the ER, including ER bodies, and employed a forward-genetic approach using transgenic Arabidopsis thaliana (GFP-h) with fluorescently-labeled ER. We isolated and investigated a mutant (designated endoplasmic reticulum morphology3, ermo3) with huge aggregates and abnormal punctate structures of ER. ERMO3 encodes a GDSL-lipase/esterase family protein, also known as MVP1. Here, we showed that, although ERMO3/MVP1/GOLD36 was expressed ubiquitously, the morphological defects of ermo3 were specifically seen in a certain type of cells where ER bodies developed. Coimmunoprecipitation analysis combined with mass spectrometry revealed that ERMO3/MVP1/GOLD36 interacts with the PYK10 complex, a huge protein complex that is thought to be important for ER body-related defense systems. We also found that the depletion of transcription factor NAI1, a master regulator for ER body formation, suppressed the formation of ER-aggregates in ermo3 cells, suggesting that NAI1 expression plays an important role in the abnormal aggregation of ER. Our results suggest that ERMO3/MVP1/GOLD36 is required for preventing ER and other organelles from abnormal aggregation and for maintaining proper ER morphology in a coordinated manner with NAI1. PMID:23155454
AFM Structural Characterization of Drinking Water Biofilm ...
Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.
2014-03-01
In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.
ORIGIN OF THE COMPLEX RADIO STRUCTURE IN BAL QSO 1045+352
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunert-Bajraszewska, Magdalena; Gawronski, Marcin P.; Janiuk, Agnieszka
2010-08-01
We present new, more sensitive, high-resolution radio observations of a compact broad absorption line (BAL) quasar, 1045+352, made with the EVN+MERLIN at 5 GHz. These observations allowed us to trace the connection between the arcsecond structure and the radio core of the quasar. The radio morphology of 1045+352 is dominated by a knotty jet showing several bends. We discuss possible scenarios that could explain such a complex morphology: galaxy merger, accretion disk instability, precession of the jet, and jet-cloud interactions. It is possible that we are witnessing an ongoing jet precession in this source due to internal instabilities within themore » jet flow; however, a dense environment detected in the submillimeter band and an outflowing material suggested by the X-ray absorption could strongly interact with the jet. It is difficult to establish the orientation between the jet axis and the observer in 1045+352 because of the complex structure. Nevertheless, taking into account the most recent inner radio structure, we conclude that the radio jet is oriented close to the line of sight, which can mean that the opening angle of the accretion disk wind can be large in this source. We also suggest that there is no direct correlation between the jet-observer orientation and the possibility of observing BALs.« less
Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.
Brayner, Roberta; Yéprémian, Claude; Djediat, Chakib; Coradin, Thibaud; Herbst, Fréderic; Livage, Jacques; Fiévet, Fernand; Couté, Alain
2009-09-01
Common Anabaena and Calothrix cyanobacteria and Klebsormidium green algae are shown to form intracellularly akaganeite beta-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy X-ray energy dispersive spectrometry (SEM-EDS) analyses are used to investigate particle structure, size, and morphology. A mechanism involving iron-siderophore complex formation is proposed and compared with iron biomineralization in magnetotactic bacteria.
A semi-empirical model relating micro structure to acoustic properties of bimodal porous material
NASA Astrophysics Data System (ADS)
Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine
2015-01-01
Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.
Controllable morphology of flux avalanches in microstructured superconductors
NASA Astrophysics Data System (ADS)
Motta, M.; Colauto, F.; Vestgârden, J. I.; Fritzsche, J.; Timmermans, M.; Cuppens, J.; Attanasio, C.; Cirillo, C.; Moshchalkov, V. V.; Van de Vondel, J.; Johansen, T. H.; Ortiz, W. A.; Silhanek, A. V.
2014-04-01
The morphology of abrupt bursts of magnetic flux into superconducting films with engineered periodic pinning centers (antidots) has been investigated. Guided flux avalanches of thermomagnetic origin develop a treelike structure, with the main trunk perpendicular to the borders of the sample, while secondary branches follow well-defined directions determined by the geometrical details of the underlying periodic pinning landscape. Strikingly, we demonstrate that in a superconductor with relatively weak random pinning the morphology of such flux avalanches can be fully controlled by proper combinations of lattice symmetry and antidot geometry. Moreover, the resulting flux patterns can be reproduced, to the finest details, by simulations based on a phenomenological thermomagnetic model. In turn, this model can be used to predict such complex structures and to estimate physical variables of more difficult experimental access, such as the local values of temperature and electric field.
Legault, Michel
2015-01-01
The North-east American Rainbow smelt (Osmerus mordax) is composed of two glacial races first identified through the spatial distribution of two distinct mtDNA lineages. Contemporary breeding populations of smelt in the St. Lawrence estuary comprise contrasting mixtures of both lineages, suggesting that the two races came into secondary contact in this estuary. The overall objective of this study was to assess the role of intraspecific genetic admixture in the morphological diversification of the estuarine rainbow smelt population complex. The morphology of mixed-ancestry populations varied as a function of the relative contribution of the two races to estuarine populations, supporting the hypothesis of genetic admixture. Populations comprising both ancestral mtDNA races did not exhibit intermediate morphologies relative to pure populations but rather exhibited many traits that exceeded the parental trait values, consistent with the hypothesis of transgressive segregation. Evidence for genetic admixture at the level of the nuclear gene pool, however, provided only partial support for this hypothesis. Variation at nuclear AFLP markers revealed clear evidence of the two corresponding mtDNA glacial races. The admixture of the two races at the nuclear level is only pronounced in mixed-ancestry populations dominated by one of the mtDNA lineages, the same populations showing the greatest degree of morphological diversification and population structure. In contrast, mixed-ancestry populations dominated by the alternate mtDNA lineage showed little evidence of introgression of the nuclear genome, little morphological diversification and little contemporary population genetic structure. These results only partially support the hypothesis of transgressive segregation and may be the result of the differential effects of natural selection acting on admixed genomes from different sources. PMID:25856193
Research on complex 3D tree modeling based on L-system
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.
Responsive polymer-based colloids for drug delivery and bioconversion
NASA Astrophysics Data System (ADS)
Kudina, Olena
Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles). Even more complex colloids are hybrid polymer-inorganic particles, the third RPBC group studied in dissertation. Material was designed as core--shell particles with superparamagnetic core engulfed by grafted polymer brushes. These particles were loaded with enzymes (cellulases), thus, are turned into enzymogels for cellulose bioconversion. The study demonstrates that such RPBCs can be used multiple times during hydrolysis and provide an about four-fold increase in glucose production in comparison to free enzymes.
Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min-Sun; Park, Sung Yong; Miller, Keith R.
2013-11-01
Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformationalmore » changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.« less
Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films
NASA Astrophysics Data System (ADS)
Patil, S. B.; Singh, A. K.
2010-02-01
In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density ( Jsc) and open circuit voltage ( Voc) i.e. 99 μA/cm 2 and 376 mV respectively, under 10 mW/cm 2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.
Single-crystalline dendritic bimetallic and multimetallic nanocubes.
Kuang, Yun; Zhang, Ying; Cai, Zhao; Feng, Guang; Jiang, Yingying; Jin, Chuanhong; Luo, Jun; Sun, Xiaoming
2015-12-01
Developing facial synthetic routes for fabrication of multimetallic nanocatalysts with open porous morphology, tunable composition and tailored crystalline structure is a big challenge for fabrication of low-cost electrocatalysts. Here we report on the synthesis of single-crystalline dendritic bimetallic and multimetallic nanocubes via a solvothermal co-reduction method. These cubes show highly porous, complex 3D inner connections but single-crystalline structure. Tuning the reduction kinetics of metal precursors and introducing galvanic reaction at the active sites during growth were believed to be the keys for the formation of such unique nanostructure. Electro-catalytic oxygen reduction (ORR) and methanol oxidation (MOR) on these catalysts showed dramatic enhancements for both cathodic and anodic electrocatalysis in fuel cells, which were attributed to their unique morphology and crystalline structure, as well as synergetic effect of the multi-metallic components. This work uncovers the formation mechanism of such complex single-crystalline dendritic multimetallic nanocrystals and offers a promising synthetic strategy for geometric and crystalline control of multimetallic nanocrystals with tailored physical and chemical properties, which will benefit the development of clean energy.
The Role of Argument Structure in Me'phaa Verbal Agreement
ERIC Educational Resources Information Center
Duncan, Philip T.
2017-01-01
This dissertation explores aspects of Me'phaa morphosyntax, from verb roots to verb-initial word orders. I argue that patterns of agreement map directly onto the syntax of argument structure, which in turn feed the language's unique manifestation of ergativity. Me'phaa agreement morphology is richly complex, and I show that this is due, in part,…
Ekdale, Eric G; Berta, Annalisa; Deméré, Thomas A
2011-01-01
Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history.
Recent advances on the functional and evolutionary morphology of the amniote respiratory apparatus.
Lambertz, Markus
2016-02-01
Increased organismic complexity in metazoans was achieved via the specialization of certain parts of the body involved in different faculties (structure-function complexes). One of the most basic metabolic demands of animals in general is a sufficient supply of all tissues with oxygen. Specialized structures for gas exchange (and transport) consequently evolved many times and in great variety among bilaterians. This review focuses on some of the latest advancements that morphological research has added to our understanding of how the respiratory apparatus of the primarily terrestrial vertebrates (amniotes) works and how it evolved. Two main components of the respiratory apparatus, the lungs as the "exchanger" and the ventilatory apparatus as the "active pump," are the focus of this paper. Specific questions related to the exchanger concern the structure of the lungs of the first amniotes and the efficiency of structurally simple snake lungs in health and disease, as well as secondary functions of the lungs in heat exchange during the evolution of sauropod dinosaurs. With regard to the active pump, I discuss how the unique ventilatory mechanism of turtles evolved and how understanding the avian ventilatory strategy affects animal welfare issues in the poultry industry. © 2016 New York Academy of Sciences.
Xu, Qingping; Traag, Bjørn A.; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D.; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A. Mieke; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.; van Wezel, Gilles P.
2009-01-01
SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 Å resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic “whirly” single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners. PMID:19567872
Tuning structure of oppositely charged nanoparticle and protein complexes
NASA Astrophysics Data System (ADS)
Kumar, Sugam; Aswal, V. K.; Callow, P.
2014-04-01
Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ˜ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.).
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha.
Jones, Victor A S; Dolan, Liam
2017-04-15
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. Mp WIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced Mp WIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. © 2017. Published by The Company of Biologists Ltd.
Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly
NASA Astrophysics Data System (ADS)
Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles
Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.
NASA Astrophysics Data System (ADS)
Kim, Sung-Jin; Jeong, Daun; Kim, SeongMin; Choi, Yeong Suk; Ihn, Soo-Ghang; Yun, Sungyoung; Lim, Younhee; Lee, Eunha; Park, Gyeong-Su
2016-02-01
Although the morphology of the active layer in bulk heterojunction organic photovoltaic (BHJ-OPV) cells is critical for determining the quantum efficiency (QE), predicting the real QE for a 3-dimensional (3D) morphology has long been difficult because structural information on the composition complexity of donor (D): acceptor (A) blends with small domain size is limited to 2D observations via various image-processing techniques. To overcome this, we reconstruct the 3D morphology by using an isotropic statistical approach based on 2D energy-filtered transmission electron microscopy (EF-TEM) images. This new reconstruction method is validated to obtain the internal QE by using a dynamic Monte Carlo simulation in the BHJ-OPV system with different additives such as 4 vol% 1-chloronaphthalene (CN) and 4 vol% 1,8-diiodooctane (DIO) (compared to the case of no additive); the resulting trend is compared with the experimental QE. Therefore, our developed method can be used to predict the real charge transport performance in the OPV system accurately.
Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P; Chait, Brian T
2014-11-01
Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼ 600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
ERIC Educational Resources Information Center
Fejzo, Anila
2016-01-01
The goal of this study was to explore the relationship between morphological awareness and the spelling of morphemes and morphologically complex words among 75 third- and fourth-grade Francophone students of low socio-economic status. To reach this objective, we administered a dictation comprised of morphologically complex words with prefixes,…
AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions
Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...
Morphological patterns of extrafloral nectaries in woody plant species of the Brazilian cerrado.
Machado, S R; Morellato, L P C; Sajo, M G; Oliveira, P S
2008-09-01
Extrafloral nectaries are nectar-secreting structures that are especially common among the woody flora of the Brazilian cerrado, a savanna-like vegetation. In this study, we provide morphological and anatomical descriptions of extrafloral nectaries (EFNs) occurring on vegetative and reproductive organs of several plant species from the cerrado, and discuss their function and ecological relevance. We describe the morphology and anatomy of EFNs of 40 species belonging to 15 woody families using scanning electron microscopy and light microscopy. We categorise EFNs following a structural-topographical classification, and characterise the vascularised and complex nectaries, amorphous nectaries and secretory trichomes. Fabaceae, Bignoniaceae, Malpighiaceae and Vochysiaceae were the plant families with the majority of species having EFNs. Ten species possess more than one morphotype of gland structure. Observations and experimental field studies in the cerrado support the anti-herbivore role of EFN-gathering ants in this habitat. Additional morphological studies of EFNs-bearing plants, including other growth forms (e.g. herbs and lianas), are being undertaken and will hopefully cast further light on the ecological relevance of these glands in the cerrado, especially with respect to their attractiveness to multiple visitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com
2014-08-15
Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parametersmore » and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.« less
NASA Astrophysics Data System (ADS)
Osmundsen, P. T.; Péron-Pinvidic, G.
2018-03-01
The large-magnitude faults that control crustal thinning and excision at rifted margins combine into laterally persistent structural boundaries that separate margin domains of contrasting morphology and structure. We term them breakaway complexes. At the Mid-Norwegian margin, we identify five principal breakaway complexes that separate the proximal, necking, distal, and outer margin domains. Downdip and lateral interactions between the faults that constitute breakaway complexes became fundamental to the evolution of the 3-D margin architecture. Different types of fault interaction are observed along and between these faults, but simple models for fault growth will not fully describe their evolution. These structures operate on the crustal scale, cut large thicknesses of heterogeneously layered lithosphere, and facilitate fundamental margin processes such as deformation coupling and exhumation. Variations in large-magnitude fault geometry, erosional footwall incision, and subsequent differential subsidence along the main breakaway complexes likely record the variable efficiency of these processes.
Mathematical morphology-based shape feature analysis for Chinese character recognition systems
NASA Astrophysics Data System (ADS)
Pai, Tun-Wen; Shyu, Keh-Hwa; Chen, Ling-Fan; Tai, Gwo-Chin
1995-04-01
This paper proposes an efficient technique of shape feature extraction based on the application of mathematical morphology theory. A new shape complexity index for preclassification of machine printed Chinese Character Recognition (CCR) is also proposed. For characters represented in different fonts/sizes or in a low resolution environment, a more stable local feature such as shape structure is preferred for character recognition. Morphological valley extraction filters are applied to extract the protrusive strokes from four sides of an input Chinese character. The number of extracted local strokes reflects the shape complexity of each side. These shape features of characters are encoded as corresponding shape complexity indices. Based on the shape complexity index, data base is able to be classified into 16 groups prior to recognition procedures. The performance of associating with shape feature analysis reclaims several characters from misrecognized character sets and results in an average of 3.3% improvement of recognition rate from an existing recognition system. In addition to enhance the recognition performance, the extracted stroke information can be further analyzed and classified its own stroke type. Therefore, the combination of extracted strokes from each side provides a means for data base clustering based on radical or subword components. It is one of the best solutions for recognizing high complexity characters such as Chinese characters which are divided into more than 200 different categories and consist more than 13,000 characters.
Wang, Honglei; Yoshida, Masaya; Thompson, Cynthia K.
2015-01-01
Individuals with agrammatic aphasia exhibit restricted patterns of impairment of functional morphemes, however, syntactic characterization of the impairment is controversial. Previous studies have focused on functional morphology in clauses only. This study extends the empirical domain by testing functional morphemes in English nominal phrases in aphasia and comparing patients’ impairment to their impairment of functional morphemes in English clauses. In the linguistics literature, it is assumed that clauses and nominal phrases are structurally parallel but exhibit inflectional differences. The results of the present study indicated that aphasic speakers evinced similar impairment patterns in clauses and nominal phrases. These findings are consistent with the Distributed Morphology Hypothesis (DMH), suggesting that the source of functional morphology deficits among agrammatics relates to difficulty implementing rules that convert inflectional features into morphemes. Our findings, however, are inconsistent with the Tree Pruning Hypothesis (TPH), which suggests that patients have difficulty building complex hierarchical structures. PMID:26379370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Yasuhiro; Fukatsu, Akinobu; Wang, Yangyang
2014-01-01
Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLLA gels were produced in solvents that induced complex crystals ( -crystals) with PLLA. Fibrous structure of PLLA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLLA in the DMF gel changed from -crystal to a-crystal, the major crystal form in common untreated PLLA films, but the morphology and high elastic modulus of the gel remainedmore » until the a-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLLA gels to be prepared in other useful solvents that do not induce -crystals without losing the morphology and mechanical properties.« less
Quantification of soil structure based on Minkowski functions
NASA Astrophysics Data System (ADS)
Vogel, H.-J.; Weller, U.; Schlüter, S.
2010-10-01
The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.
Capturing the Complexity of Additively Manufactured Microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2016-05-12
The underlying mechanisms and kinetics controlling damage nucleation and growth as a function of material microstructure and loading paths are discussed. These experiments indicate that structural features such as grain boundaries, grain size distribution, grain morphology crystallographic texture are all factors that influence mechanical behavior.
NASA Astrophysics Data System (ADS)
Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.
2017-12-01
Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.
Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale
Han, Lili; Meng, Qingping; Wang, Deli; ...
2016-12-08
An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-inducedmore » chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. As a result, this work characterizes the pathways that can control the morphology in binary oxide materials.« less
USDA-ARS?s Scientific Manuscript database
Black cherry (Prunus serotina) is a fruit tree native to North America, and almost all parts of this plant have some use. This species is a complex of five subspecies with morphological differences and distinctive habitats. The genetic structure of 18 natural populations of black cherry was evaluate...
Self-assembly of metal nanostructures on binary alloy surfaces
Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Barış; Evans, J. W.; Thiel, P. A.
2011-01-01
Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706
Large Impact Features on Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Moore, J. M.; Schenk, P. M.; Korycansky, D. G.
2017-01-01
Impact crater morphology can be a very useful tool for probing planetary interiors, but nowhere in the solar system is a greater variety of crater morphologies observed (Fig. 1) than on the large icy Galilean satellites Ganymede and Callisto [e.g., 1- 3]. As on the rocky terrestrial planets, impact crater morphology becomes more complex with increasing size on these satellites. With increasing size, however, these same craters become less like their counterparts on the rocky planets. Several impact landforms and structures (multiring furrows, palimpsests, and central domes, for example), have no obvious analogs on any other planets. Further, several studies [e.g., 4-6] have drawn attention to impact landforms on Europa which are unusual, even by Galilean satellite standards. These radical differences in morphology suggest that impact into icy lithospheres that are mechanically distinct from silicate lithospheres may be responsible. As such, large impact structures may be important probes of the interiors of these bodies over time [e.g., 7]. The first goal of this work is to integrate and correlate the detailed morphologic and morphometric measurements and observations of craters on icy Galilean satellites [e.g., 4, 8-12] with new detailed mapping of these structures from Galileo high-resolution images. As a result, we put forward a revised crater taxonomy for Ganymede and Callisto in order to simplify the nonuniform impact crater nomenclature cluttering the literature. We develop and present an integrated model for the development of these unusual crater morphologies and their implications for the thermal evolution of these bodies.
Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour
NASA Astrophysics Data System (ADS)
Prior, C.; Yeates, A. R.
2016-06-01
Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.
NASA Astrophysics Data System (ADS)
Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur
2018-03-01
Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Adam, Abdel Majid A.; Saad, Hosam A.
2015-04-01
The study of the complexing ability of macrocyclic compounds to organic and inorganic substances is of great interest. The aim of this work is to provide basic data that can be used to the assessment of macrocyclic crown ethers quantitatively based on charge-transfer (CT) complexation. This goal was achieved by preparing CT complexes of two interesting mixed nitrogen-oxygen crown ethers with acido acceptors (chloranilic and picric acid), which were fully structurally characterized. The crown ethers are 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (HDHC) and 1,4,10-trioxa-7,13-diaza-cyclopentadecane (TDPD). The obtained complexes were structurally characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. Thermal properties of these complexes were also studied, and their kinetic thermodynamic parameters were calculated. Furthermore, the microstructure properties of these complexes have also been investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM).
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-01-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
NASA Astrophysics Data System (ADS)
Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.
2013-11-01
In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.
Modeling bed load transport and step-pool morphology with a reduced-complexity approach
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Hassan, Marwan A.; Burlando, Paolo
2016-04-01
Steep mountain channels are complex fluvial systems, where classical methods developed for lowland streams fail to capture the dynamics of sediment transport and bed morphology. Estimations of sediment transport based on average conditions have more than one order of magnitude of uncertainty because of the wide grain-size distribution of the bed material, the small relative submergence of coarse grains, the episodic character of sediment supply, and the complex boundary conditions. Most notably, bed load transport is modulated by the structure of the bed, where grains are imbricated in steps and similar bedforms and, therefore, they are much more stable then predicted. In this work we propose a new model based on a reduced-complexity (RC) approach focused on the reproduction of the step-pool morphology. In our 2-D cellular-automaton model entrainment, transport and deposition of particles are considered via intuitive rules based on physical principles. A parsimonious set of parameters allows the control of the behavior of the system, and the basic processes can be considered in a deterministic or stochastic way. The probability of entrainment of grains (and, as a consequence, particle travel distances and resting times) is a function of flow conditions and bed topography. Sediment input is fed at the upper boundary of the channel at a constant or variable rate. Our model yields realistic results in terms of longitudinal bed profiles and sediment transport trends. Phases of aggradation and degradation can be observed in the channel even under a constant input and the memory of the morphology can be quantified with long-range persistence indicators. Sediment yield at the channel outlet shows intermittency as observed in natural streams. Steps are self-formed in the channel and their stability is tested against the model parameters. Our results show the potential of RC models as complementary tools to more sophisticated models. They provide a realistic description of complex morphological systems and help to better identify the key physical principles that rule their dynamics.
The Morphological Diversity of DIG in Halos of Edge-on Spirals as Revealed by HST/ACS
NASA Astrophysics Data System (ADS)
Rossa, J.; Dahlem, M.; Dettmar, R.-J.; van der Marel, R. P.
2012-09-01
We present new results on extraplanar DIG (eDIG), based on high spatial resolution narrowband imaging observations of four late-type, actively star-forming edge-on spirals, obtained with ACS on-board HST. Our Hα observations reveal a multitude of structures on both small and large scales. Whereas all four galaxies have been studied with ground-based telescopes before, here the small scale structure of the extended emission line gas is presented for the very first time at a spatial resolution of 0.05'', corresponding to 5 pc at the mean distance to our galaxies. The eDIG morphology is very different for all four targets, as a result of their different star formation activity and galaxy mass. There is a very smooth DIG morphology observed in two of the galaxies (NGC 4634 and NGC 5775), whereas the other two (NGC 4700 and NGC 7090) show a much more complex morphology with intricate filaments, and bubbles and supershells. We find that the morphology of the eDIG, in particular the break-up of diffuse emission into filaments in galaxy halos, shows a strong dependence on the level of star formation activity per unit area, and eDIG can be arranged into a morphological sequence.
Lee, Alex Pui-Wai; Fang, Fang; Jin, Chun-Na; Kam, Kevin Ka-Ho; Tsui, Gary K W; Wong, Kenneth K Y; Looi, Jen-Li; Wong, Randolph H L; Wan, Song; Sun, Jing Ping; Underwood, Malcolm J; Yu, Cheuk-Man
2014-01-01
The mitral valve (MV) has complex 3-dimensional (3D) morphology and motion. Advance in real-time 3D echocardiography (RT3DE) has revolutionized clinical imaging of the MV by providing clinicians with realistic visualization of the valve. Thus far, RT3DE of the MV structure and dynamics has adopted an approach that depends largely on subjective and qualitative interpretation of the 3D images of the valve, rather than objective and reproducible measurement. RT3DE combined with image-processing computer techniques provides precise segmentation and reliable quantification of the complex 3D morphology and rapid motion of the MV. This new approach to imaging may provide additional quantitative descriptions that are useful in diagnostic and therapeutic decision-making. Quantitative analysis of the MV using RT3DE has increased our understanding of the pathologic mechanism of degenerative, ischemic, functional, and rheumatic MV disease. Most recently, 3D morphologic quantification has entered into clinical use to provide more accurate diagnosis of MV disease and for planning surgery and transcatheter interventions. Current limitations of this quantitative approach to MV imaging include labor-intensiveness during image segmentation and lack of a clear definition of the clinical significance of many of the morphologic parameters. This review summarizes the current development and applications of quantitative analysis of the MV morphology using RT3DE.
Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe
2012-03-09
III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.
NASA Astrophysics Data System (ADS)
Dove, P. M.; Davis, K. J.; De Yoreo, J. J.; Orme, C. A.
2001-12-01
Deciphering the complex strategies by which organisms produce nanocrystalline materials with exquisite morphologies is central to understanding biomineralizing systems. One control on the morphology of biogenic nanoparticles is the specific interactions of their surfaces with the organic functional groups provided by the organism and the various inorganic species present in the ambient environment. It is now possible to directly probe the microscopic structural controls on crystal morphology by making quantitative measurements of the dynamic processes occurring at the mineral-water interface. These observations can provide crucial information concerning the actual mechanisms of growth that is otherwise unobtainable through macroscopic techniques. Here we use in situ molecular-scale observations of step dynamics and growth hillock morphology to directly resolve roles of principal impurities in regulating calcite surface morphologies. We show that the interactions of certain inorganic as well as organic impurities with the calcite surface are dependent upon the molecular-scale structures of step-edges. These interactions can assume a primary role in directing crystal morphology. In calcite growth experiments containing magnesium, we show that growth hillock structures become modified owing to the preferential inhibition of step motion along directions approximately parallel to the [010]. Compositional analyses have shown that Mg incorporates at different levels into the two types of nonequivalent steps, which meet at the hillock corner parallel to [010]. A simple calculation of the strain caused by this difference indicates that we should expect a significant retardation at this corner, in agreement with the observed development of [010] steps. If the low-energy step-risers produced by these [010] steps is perpendicular to the c-axis as seems likely from crystallographic considerations, this effect provides a plausible mechanism for the elongated calcite crystal habits found in natural environments that contain magnesium. In a separate study, step-specific interactions are also found between chiral aspartate molecules and the calcite surface. The L and D- aspartate enantiomers exhibit structure preferences for the different types of step-risers on the calcite surface. These site-specific interactions result in the transfer of asymmetry from the organic molecule to the crystal surface through the formation of chiral growth hillocks and surface morphologies. These studies yield direct experimental insight into the molecular-scale structural controls on nanocrystal morphology in biomineralizing systems.
Filippov, Alexander É; Wolff, Jonas O; Seiter, Michael; Gorb, Stanislav N
2017-10-07
Certain arachnids exhibit complex coatings of their exoskeleton, consisting of globular structures with complex surface features. This, so-called, cerotegument is formed by a multi-component colloidal secretion that self-assembles and cures on the body surface, and leads to high water repellency. Previous ultrastructural studies revealed the involvement of different glandular cells that contribute different components to the secretion mixture, but the overall process of self-assembly into the complex regular structures observed remained highly unclear. Here we study this process from a theoretical point of view, starting from the so-called Tammes-problem. We show that slight changes of simple parameters lead to a variety of morphologies that are highly similar to the ones observed in the species specific cerotegument structures of whip-spiders. These results are not only important for our understanding of the formation of globular hierarchical structures in nature, but also for the fabrication of novel surface coatings by colloidal lithography. Copyright © 2017 Elsevier Ltd. All rights reserved.
Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.
Mörschel, Konstantin; Breit, Markus; Queisser, Gillian
2017-07-01
Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.
Modeling complex flow structures and drag around a submerged plant of varied posture
NASA Astrophysics Data System (ADS)
Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.
2017-04-01
Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.
Electrophysiological evidence for the morpheme-based combinatoric processing of English compounds
Fiorentino, Robert; Naito-Billen, Yuka; Bost, Jamie; Fund-Reznicek, Ella
2014-01-01
The extent to which the processing of compounds (e.g., “catfish”) makes recourse to morphological-level representations remains a matter of debate. Moreover, positing a morpheme-level route to complex word recognition entails not only access to morphological constituents, but also combinatoric processes operating on the constituent representations; however, the neurophysiological mechanisms subserving decomposition, and in particular morpheme combination, have yet to be fully elucidated. The current study presents electrophysiological evidence for the morpheme-based processing of both lexicalized (e.g., “teacup”) and novel (e.g., “tombnote”) visually-presented English compounds; these brain responses appear prior to and are dissociable from the eventual overt lexical decision response. The electrophysiological results reveal increased negativities for conditions with compound structure, including effects shared by lexicalized and novel compounds, as well as effects unique to each compound type, which may be related to aspects of morpheme combination. These findings support models positing across-the-board morphological decomposition, counter to models proposing that putatively complex words are primarily or solely processed as undecomposed representations, and motivate further electrophysiological research toward a more precise characterization of the nature and neurophysiological instantiation of complex word recognition. PMID:24279696
Prigent, Gaïd; Parisse, Christophe; Leclercq, Anne-Lise; Maillart, Christelle
2015-01-01
The usage-based theory considers that the morphosyntactic productions of children with SLI are particularly dependent on input frequency. When producing complex syntax, the language of these children is, therefore, predicted to have a lower variability and to contain fewer infrequent morphosyntactic markers than that of younger children matched on morphosyntactic abilities. Using a spontaneous language task, the current study compared the complexity of the morphological and structural productions of 20 children with SLI and 20 language-matched peers (matched on both morphosyntactic comprehension and mean length of utterance). As expected, results showed that although basic structures were produced in the same way in both groups, several complex forms (i.e. tenses such as Imperfect, Future or Conditional and Conjunctions) were less frequent in the productions of children with SLI. Finally, we attempted to highlight complex linguistic forms that could be good clinical markers for these children.
Gels of sodium alginate‒chitosan interpolyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Brovko, O. S.; Palamarchuk, I. A.; Val'chuk, N. A.; Chukhchin, D. G.; Bogolitsyn, K. G.; Boitsova, T. A.
2017-08-01
Aspects of the formation of gels of interpolyelectrolyte complexes (IPECs) based on sodium alginate (NaAlg) and chitosan are studied. The effect the conditions of synthesis and complex composition have on the morphological structure and functional properties of these complexes is examined. It is established that complexation in this system proceeds according to a mechanism of electrostatic interaction between the oppositely charged carboxylic groups of the L-hyaluronic acid pyranose cycles of NaAlg proximal polymer chains and chitosan's amino groups, along with a multitude of hydrogen bonds and dispersion forces. We show that the mechanism of IPEC formation is strongly influenced by the conformational state of a lyophilizing component that is present in the system in excess. The inner surfaces of cryogels based on NaAlg‒chitosan IPECs is found to be strongly influenced by the degree of conversion between the parental polyelectrolytes. The most developed mesoporous structure is obtained when a denser gel forms in the system.
Murk, Kai; Blanco Suarez, Elena M; Cockbill, Louisa M R; Banks, Paul; Hanley, Jonathan G
2013-09-01
Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.
Wasupalli, Geeta Kumari; Verma, Devendra
2018-03-16
We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pH<6) exhibited nearly neutral surface charge, whereas PECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Chonghong; Li, Fuchun; Lv, Jiejie
2017-11-01
Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.
Rosas, Antonio; Bastir, Markus
2004-06-01
Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.
Morphology delimits more species than molecular genetic clusters of invasive Pilosella.
Moffat, Chandra E; Ensing, David J; Gaskin, John F; De Clerck-Floate, Rosemarie A; Pither, Jason
2015-07-01
• Accurate assessments of biodiversity are paramount for understanding ecosystem processes and adaptation to change. Invasive species often contribute substantially to local biodiversity; correctly identifying and distinguishing invaders is thus necessary to assess their potential impacts. We compared the reliability of morphology and molecular sequences to discriminate six putative species of invasive Pilosella hawkweeds (syn. Hieracium, Asteraceae), known for unreliable identifications and historical introgression. We asked (1) which morphological traits dependably discriminate putative species, (2) if genetic clusters supported morphological species, and (3) if novel hybridizations occur in the invaded range.• We assessed 33 morphometric characters for their discriminatory power using the randomForest classifier and, using AFLPs, evaluated genetic clustering with the program structure and subsequently with an AMOVA. The strength of the association between morphological and genotypic dissimilarity was assessed with a Mantel test.• Morphometric analyses delimited six species while genetic analyses defined only four clusters. Specifically, we found (1) eight morphological traits could reliably distinguish species, (2) structure suggested strong genetic differentiation but for only four putative species clusters, and (3) genetic data suggest both novel hybridizations and multiple introductions have occurred.• (1) Traditional floristic techniques may resolve more species than molecular analyses in taxonomic groups subject to introgression. (2) Even within complexes of closely related species, relatively few but highly discerning morphological characters can reliably discriminate species. (3) By clarifying patterns of morphological and genotypic variation of invasive Pilosella, we lay foundations for further ecological study and mitigation. © 2015 Botanical Society of America, Inc.
Wallace, Joseph M.; Orr, Bradford G.; Marini, Joan C.; Banaszak Holl, Mark M.
2010-01-01
Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype-phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen-ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity. PMID:20696252
From precision polymers to complex materials and systems
NASA Astrophysics Data System (ADS)
Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof
2016-05-01
Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.
NASA Astrophysics Data System (ADS)
Nie, Qiulin; Yuan, Qiuli; Chen, Weixiang; Xu, Zhude
2004-05-01
CdS nanocrystallites were synthesized by the hydrothermal method and characterized by XRD, TEM, and XPS, respectively. Different coordination agents were chosen as the template to investigate their effects on the product morphology. It was found that the CdS nanocrystallites displayed a rod-like shape when ethylenediamine or methylamine were employed as the template. In contrast, only nanoparticles of CdS were observed when ammonia or pyridine were used. Based on our experimental results, a complex structure-controlling mechanism is proposed.
A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia
NASA Technical Reports Server (NTRS)
Mckee, E. D.; Breed, C. S.
1973-01-01
A description and classification of major types of sand seas on the basis of morphological pattern and lineation are discussed. The steps involved in analyzing the patterns of deposits on ERTS-1 imagery, where the visible forms are mostly dune complexes rather than individual dunes are outlined. After completion of thematic maps portraying the pattern and lineation of the sand bodies, data on directions and intensity of prevailing and other winds are plotted on corresponding bases, as a preliminary to determination of internal structures through ground truth.
Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme
NASA Astrophysics Data System (ADS)
Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.
2018-05-01
Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.
Temporomandibular Joint Imaging.
Tamimi, Dania; Jalali, Elnaz; Hatcher, David
2018-01-01
The temporomandibular joint (TMJ) is an anatomically and biomechanically complex structure. Understanding how this structure grows and functions is essential to accurate radiographic evaluation. This article discusses the anatomy, function, and growth and development of the TMJ and how growth changes can affect the morphology of the craniofacial structures. Accordingly, the radiographic appearance of the entities that may alter the TMJ are discussed, including developmental, degenerative, inflammatory, and traumatic changes. Both osseous imaging and soft tissue imaging are shown. Copyright © 2017 Elsevier Inc. All rights reserved.
Nakao, Akito; Miyazaki, Naoyuki; Ohira, Koji; Hagihara, Hideo; Takagi, Tsuyoshi; Usuda, Nobuteru; Ishii, Shunsuke; Murata, Kazuyoshi; Miyakawa, Tsuyoshi
2017-12-12
Accumulating evidence suggests that subcellular-scale structures such as dendritic spine and mitochondria may be involved in the pathogenesis/pathophysiology of schizophrenia and intellectual disability. Previously, we proposed mice lacking Schnurri-2 (Shn2; also called major histocompatibility complex [MHC]-binding protein 2 [MBP-2], or human immunodeficiency virus type I enhancer binding protein 2 [HIVEP2]) as a schizophrenia and intellectual disability model with mild chronic inflammation. In the mutants' brains, there are increases in C4b and C1q genes, which are considered to mediate synapse elimination during postnatal development. However, morphological properties of subcellular-scale structures such as dendritic spine in Shn2 knockout (KO) mice remain unknown. In this study, we conducted three-dimensional morphological analyses in subcellular-scale structures in dentate gyrus granule cells of Shn2 KO mice by serial block-face scanning electron microscopy. Shn2 KO mice showed immature dendritic spine morphology characterized by increases in spine length and decreases in spine diameter. There was a non-significant tendency toward decrease in spine density of Shn2 KO mice over wild-type mice, and spine volume was indistinguishable between genotypes. Shn2 KO mice exhibited a significant reduction in GluR1 expression and a nominally significant decrease in SV2 expression, while PSD95 expression had a non-significant tendency to decrease in Shn2 KO mice. There were significant decreases in dendrite diameter, nuclear volume, and the number of constricted mitochondria in the mutants. Additionally, neuronal density was elevated in Shn2 KO mice. These results suggest that Shn2 KO mice serve as a unique tool for investigating morphological abnormalities of subcellular-scale structures in schizophrenia, intellectual disability, and its related disorders.
Erwin, Susannah O.; Jacobson, Robert B.
2015-01-01
The transition from drifting free embryo to exogenously feeding larvae has been identified as a potential life-stage bottleneck for the endangered Missouri River pallid sturgeon. Previous studies have indicated that river regulation and fragmentation may contribute to the mortality of larval pallid sturgeon by reducing the extent of free-flowing river available to free embryos to complete ontogenetic development. Calculations of total drift distance based on mean velocity, however, do not address the potential for complex channels and flow patterns to increase retention or longitudinal dispersion of free embryos. We use a one-dimensional advection–dispersion model to estimate total drift distance and employ the longitudinal dispersion coefficient as a metric to quantify the tendency towards dispersion or retention of passively drifting larvae. We describe the effects of different styles of channel morphology on larval dispersion and consider the implications of flow regime modifications on retention of free embryos within the Lower Missouri River. The results illustrate the complex interactions of local morphology, engineered structures, and hydraulics that determine patterns of dispersion in riverine environments and inform how changes to channel morphology and flow regime may alter dispersion of drifting organisms.
Environmental Influence on the Evolution of Morphological Complexity in Machines
Auerbach, Joshua E.; Bongard, Josh C.
2014-01-01
Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483
Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.
Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng
2014-11-04
A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.
Structural and morphological study of chemically synthesized CdSe thin films
NASA Astrophysics Data System (ADS)
Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.
2018-05-01
Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.
Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Oh, Soram; Gu, Yu; Lee, Seung-Pyo; Chang, Seok Woo; Lee, Woocheol; Baek, Seung-Ho; Zhu, Qiang; Kum, Kee-Yeon
2015-08-01
Micro-computed tomography (MCT) with alternative image reformatting techniques shows complex and detailed root canal anatomy. This study compared two-dimensional (2D) and 3D MCT image reformatting with standard tooth clearing for studying mandibular first molar mesial root canal morphology. Extracted human mandibular first molar mesial roots (n=31) were scanned by MCT (Skyscan 1172). 2D thin-slab minimum intensity projection (TS-MinIP) and 3D volume rendered images were constructed. The same teeth were then processed by clearing and staining. For each root, images obtained from clearing, 2D, 3D and combined 2D and 3D techniques were examined independently by four endodontists and categorized according to Vertucci's classification. Fine anatomical structures such as accessory canals, intercanal communications and loops were also identified. Agreement among the four techniques for Vertucci's classification was 45.2% (14/31). The most frequent were Vertucci's type IV and then type II, although many had complex configurations that were non-classifiable. Generally, complex canal systems were more clearly visible in MCT images than with standard clearing and staining. Fine anatomical structures such as intercanal communications, accessory canals and loops were mostly detected with a combination of 2D TS-MinIP and 3D volume-rendering MCT images. Canal configurations and fine anatomic structures were more clearly observed in the combined 2D and 3D MCT images than the clearing technique. The frequency of non-classifiable configurations demonstrated the complexity of mandibular first molar mesial root canal anatomy.
The multifunctional nuclear pore complex: a platform for controlling gene expression
Ptak, Christopher; Aitchison, John D.; Wozniak, Richard W.
2014-01-01
In addition to their established roles in nucleocytoplasmic transport, the intimate association of nuclear pore complexes (NPCs) with chromatin has long led to speculation that these structures influence peripheral chromatin structure and regulate gene expression. These ideas have their roots in morphological observations, however recent years have seen the identification of physical interactions between NPCs, chromatin, and the transcriptional machinery. Key insights into the molecular functions of specific NPC proteins have uncovered roles for these proteins in transcriptional activation and elongation, mRNA processing, as well as chromatin structure and localization. Here, we review recent studies that provide further molecular detail on the role of specific NPC components as distinct platforms for these chromatin dependent processes. PMID:24657998
Li, Yingxin; Li, Pengxiang; Gao, Caiji; Ding, Yu; Lan, Zhiyi; Shi, Zhixuan; Rui, Qingchen; Feng, Yihong; Liu, Yulong; Zhao, Yanxue; Wu, Chengyun; Zhang, Qian; Li, Yan; Jiang, Liwen
2016-01-01
Spatially and temporally regulated membrane trafficking events incorporate membrane and cell wall materials into the pollen tube apex and are believed to underlie the rapid pollen tube growth. In plants, the molecular mechanisms and physiological functions of intra-Golgi transport and Golgi integrity maintenance remain largely unclear. The conserved oligomeric Golgi (COG) complex has been implicated in tethering of retrograde intra-Golgi vesicles in yeast and mammalian cells. Using genetic and cytologic approaches, we demonstrate that T-DNA insertions in Arabidopsis COG complex subunits, COG3 and COG8, cause an absolute, male-specific transmission defect that can be complemented by expression of COG3 and COG8 from the LAT52 pollen promoter, respectively. No obvious abnormalities in the microgametogenesis of the two mutants are observed, but in vitro and in vivo pollen tube growth are defective. COG3 or COG8 proteins fused to green fluorescent protein (GFP) label the Golgi apparatus. In pollen of both mutants, Golgi bodies exhibit altered morphology. Moreover, γ-COP and EMP12 proteins lose their tight association with the Golgi. These defects lead to the incorrect deposition of cell wall components and proteins during pollen tube growth. COG3 and COG8 interact directly with each other, and a structural model of the Arabidopsis COG complex is proposed. We believe that the COG complex helps to modulate Golgi morphology and vesicle trafficking homeostasis during pollen tube tip growth. PMID:27448097
NASA Astrophysics Data System (ADS)
Adam, Abdel Majid A.
2013-03-01
4-Aminoantipyrine (4AAP) is widely used in the pharmaceutical industry, biochemical experiments and environmental monitoring. However, residual amounts of 4AAP in the environment may pose a threat to human health. To provide basic data that can be used to extract or eliminate 4AAP from the environment, the proton-transfer complexes of 4AAP with quinol (QL) and picric acid (PA) were synthesized and spectroscopically investigated. The interactions afforded two new proton-transfer salts named 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-4-hydroxyphenolate and 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-2,4,6-trinitrophenolate for QL and PA, respectively, via a 1:1 stoichiometry. Elemental analysis (CHN), electronic absorption, spectrophotometric titration, IR, Raman, 1H NMR and X-ray diffraction were used to characterize the new products. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). It was found that PA and 4AAP immediately formed a yellow precipitate with a remarkable sponge-like morphology and good thermal stability up to 180 °C. Finally, the biological activities of the newly synthesized CT complexes were tested for their antibacterial and antifungal activities. The results indicated that the [(4AAP)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.
Adam, Abdel Majid A
2013-03-01
4-Aminoantipyrine (4AAP) is widely used in the pharmaceutical industry, biochemical experiments and environmental monitoring. However, residual amounts of 4AAP in the environment may pose a threat to human health. To provide basic data that can be used to extract or eliminate 4AAP from the environment, the proton-transfer complexes of 4AAP with quinol (QL) and picric acid (PA) were synthesized and spectroscopically investigated. The interactions afforded two new proton-transfer salts named 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-4-hydroxyphenolate and 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-2,4,6-trinitrophenolate for QL and PA, respectively, via a 1:1 stoichiometry. Elemental analysis (CHN), electronic absorption, spectrophotometric titration, IR, Raman, (1)H NMR and X-ray diffraction were used to characterize the new products. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). It was found that PA and 4AAP immediately formed a yellow precipitate with a remarkable sponge-like morphology and good thermal stability up to 180°C. Finally, the biological activities of the newly synthesized CT complexes were tested for their antibacterial and antifungal activities. The results indicated that the [(4AAP)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs. Copyright © 2012 Elsevier B.V. All rights reserved.
Structure, Spatial and Temporal Distribution of the Culex pipiens Complex in Shanghai, China
Gao, Qiang; Xiong, Chenglong; Su, Fei; Cao, Hui; Zhou, Jianjun; Jiang, Qingwu
2016-01-01
Background: Culex pipiens molestus was first reported in Shanghai in 2010. The population structures and seasonal distributions of Culex pipiens subspecies C. p. molestus, Culex pipiens pallens, and Culex pipiens quinquefasciatus are not well known. Methods: From late February to November 2013, we conducted daily field surveillance of mosquitoes at eight sites at two green lands and three residential areas in downtown Shanghai. Morphological comparison and DV/D ratios (DV/D is an indicator of mosquito taxonomy) were used to identify adult mosquitoes. Results: The distribution curves of the Culex pipiens complex members indicated seasonal fluctuations. The temperature range of 20–25 °C was the most suitable for adult activity. Micro-environmental factors may differentiate the complex population structures. Hybridization between C. p. pallens and C. p. quinquefasciatus was common and neither “DV/D = 0.40” nor “DV/D = 0.50” can distinguish these subspecies and their hybrids. Conclusion: the population structure of the Culex pipiens complex is complex and characterized by significant hybridization. Measures other than DV/D ratios are needed for the discrimination of subspecies. The C. p. molestus invasion might result in the transmission of novel vector-borne diseases in Shanghai. PMID:27869687
Ekdale, Eric G.; Berta, Annalisa; Deméré, Thomas A.
2011-01-01
Background Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. Principal Findings The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. Significance This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history. PMID:21731700
Kringel, Dianini Hüttner; Antunes, Mariana Dias; Klein, Bruna; Crizel, Rosane Lopes; Wagner, Roger; de Oliveira, Roberto Pedroso; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-11-01
The aim of this study was to produce and characterize inclusion complexes (IC) between β-cyclodextrin (β-CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace-gas chromatography (SH-GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β-CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β-CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β-CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods. © 2017 Institute of Food Technologists®.
Mobayyen, Forouzan; de Almeida, Roberto G
2005-03-01
One hundred and forty normal undergraduate students participated in a Proactive Interference (PI) experiment with sentences containing verbs from four different semantic and morphological classes (lexical causatives, morphological causatives, and morphologically complex and simplex perception verbs). Past research has shown significant PI build-up effects for semantically and morphologically complex verbs in isolation (de Almeida & Mobayyen, 2004). The results of the present study show that, when embedded into sentence contexts, semantically and morphologically complex verbs do not produce significant PI build-up effects. Different verb classes, however, yield different recall patterns: sentences with semantically complex verbs (e.g., causatives) were recalled significantly better than sentences with semantically simplex verbs (e.g., perception verbs). The implications for the nature of both verb-conceptual representations and category-specific semantic deficits are discussed.
Modeling of additive manufacturing processes for metals: Challenges and opportunities
Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...
2017-01-09
Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.
Murk, Kai; Blanco Suarez, Elena M.; Cockbill, Louisa M. R.; Banks, Paul; Hanley, Jonathan G.
2013-01-01
Summary Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult. PMID:23843614
A Radio Study of the Seyfert Galaxy Markarian 6: Implications for Seyfert Life Cycles
NASA Astrophysics Data System (ADS)
Kharb, P.; O'Dea, C. P.; Baum, S. A.; Colbert, E. J. M.; Xu, C.
2006-11-01
We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales: ~7.5 kpc bubbles, ~1.5 kpc bubbles lying nearly orthogonal to them, and a ~1 kpc radio jet lying orthogonal to the kiloparsec-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 Msolar yr-1, an estimate much lower than the SFR of ~33 Msolar yr-1 derived assuming that the bubbles are a result of starburst winds energized by supernova explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We then present an energetically plausible model wherein the bubbles are a result of energy deposited by the kiloparsec-scale jet as it plows into the interstellar medium. Finally, we consider a model in which the complex radio structure is a result of an episodically powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology and is consistent with the energetics, the spectral index, and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy, which results from an accretion event.
Mapping Excitation in the Inner Regions of the Planetary Nebula NGC 5189 Using HST WFC3 Imaging
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz; Karovska, Margarita; Maksym, W. Peter; Montez, Rodolfo, Jr.
2018-01-01
The planetary nebula (PN) NGC 5189 around a Wolf–Rayet [WO] central star demonstrates one of the most remarkable complex morphologies among PNe with many multiscale structures, showing evidence of multiple outbursts from an asymptotic giant branch (AGB) progenitor. In this study, we use multiwavelength Hubble Space Telescope Wide Field Camera 3 observations to study the morphology of the inner 0.3 pc × 0.2 pc region surrounding the central binary that appears to be a relic of a more recent outburst of the progenitor AGB star. We applied diagnostic diagrams based on emission-line ratios of Hα λ6563, [O III] λ5007, and [S II] λ λ 6716,6731 images to identify the location and morphology of low-ionization structures within the inner nebula. We distinguished two inner, low-ionization envelopes from the ionized gas, within a radius of 55 arcsec (∼0.15 pc) extending from the central star: a large envelope expanding toward the northeast, and its smaller counterpart envelope in the opposite direction toward the southwest of the nebula. These low-ionization envelopes are surrounded by a highly ionized gaseous environment. We believe that these low-ionization expanding envelopes are a result of a powerful outburst from the post-AGB star that created shocked wind regions as they propagate through the previously expelled material along a symmetric axis. Our diagnostic mapping using high-angular resolution line-emission imaging can provide a novel approach to detection of low-ionization regions in other PNe, especially those showing a complex multiscale morphology.
Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook
2008-12-01
Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.
NASA Astrophysics Data System (ADS)
Brites Martins, Helena C.; Simões, Pedro P.; Abreu, Joana
2014-09-01
In northern Portugal, large volumes of granitoids were emplaced during the last stage (D3) of the Variscan orogeny and display a wide range of petrological signatures. We studied the morphologies and internal structures of zircons from syn-, late- and post-D3 granitoids. The sin-D3 granitoids include the Ucanha-Vilar, Lamego, Felgueiras, Sameiro, and Refoios do Lima plutons, the late- and post-D3 granitoids are represented by the Vieira do Minho and the Vila Pouca de Aguiar plutons, respectively. Typological investigations after Pupin (1980) along with scanning electron microprobe imaging reveal that the external morphology of zircon changes consistently with a decrease in the crystallization temperature. Zircon populations from the Refoios do Lima and the Vieira do Minho granites show gradual changes in the internal morphologies and their typologic evolution trends are consistent with their mainly crustal origin. The Sameiro, Felgueiras, Lamego and Ucanha-Vilar granites have more complex internal and external morphology and typological evolution trends that cross the domain of the calc-alkaline to the aluminous granites compatible with a mixing process. Finally, the morphological types of the Vila Pouca de Aguiar granites are found both in calc-alkaline and sub-alkaline granites and their typological evolutionary trends follow the calc-alkaline/sub-alkaline trend, suggesting crustal sources with some mantle contribution.
Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Choonho
2006-01-01
Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10 -3 m/sec and with a temperature gradient of 7.5 x 10 3 K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristicmore » spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.« less
Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J
2017-10-25
Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.
Insights into Penicillium roqueforti Morphological and Genetic Diversity
Gillot, Guillaume; Jany, Jean-Luc; Coton, Monika; Le Floch, Gaétan; Debaets, Stella; Ropars, Jeanne; López-Villavicencio, Manuela; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana; Coton, Emmanuel
2015-01-01
Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection. PMID:26091176
Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie
2010-03-01
Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.
Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark
2014-01-01
The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739
Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge
2014-03-24
Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.
NASA Astrophysics Data System (ADS)
Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge
2014-03-01
Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.
A phylogenetic delimitation of the "Sphagnum subsecundum complex" (Sphagnaceae, Bryophyta).
Shaw, A Jonathan; Boles, Sandra; Shaw, Blanka
2008-06-01
A seemingly obvious but sometimes overlooked premise of any evolutionary analysis is delineating the group of taxa under study. This is especially problematic in some bryophyte groups because of morphological simplicity and convergence. This research applies information from nucleotide sequences for eight plastid and nuclear loci to delineate a group of northern hemisphere peat moss species, the so-called Sphagnum subsecundum complex, which includes species known to be gametophytically haploid or diploid (i.e., sporophytically diploid-tetraploid). Despite the fact that S. subsecundum and several species in the complex have been attributed disjunct ranges that include all major continents, phylogenetic analyses suggest that the group is actually restricted to Europe and eastern North America. Plants from western North America, from California to Alaska, which are morphologically similar to species of the S. subsecundum complex in eastern N. America and Europe, actually belong to a different deep clade within Sphagnum section Subsecunda. One species often considered part of the S. subsecundum complex, S. contortum, likely has a reticulate history involving species in the two deepest clades within section Subsecunda. Nucleotide sequences have a strong geographic structure across the section Subsecunda, but shallow tip clades suggest repeated long-distance dispersal in the section as well.
The formation of blobs from a pure interchange process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, P., E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Sovinec, C. R.
2015-02-15
In this work, we focus on examining a pure interchange process in a shear-less slab configuration as a prototype mechanism for blob formation. We employ full magnetohydrodynamic simulations to demonstrate that the blob-like structures can emerge through the nonlinear development of a pure interchange instability originating from a pedestal-like transition region. In the early nonlinear stage, filamentary structures develop and extend in the direction of the effective gravity. The blob-like structures appear when the radially extending filaments break off and disconnect from the core plasma. The morphology and the dynamics of these filaments and blobs vary dramatically with a sensitivemore » dependence on the dissipation mechanisms in the system and the initial perturbation. Despite the complexity in morphology and dynamics, the nature of the entire blob formation process in the shear-less slab configuration remains strictly interchange without involving any change in magnetic topology.« less
Complexities in Managing the Child Care Industry: An Observation on Challenges and Potentials
ERIC Educational Resources Information Center
Zaman, Ahmed; Amin, Ruhul; Momjian, Ina Eduardovna; Lei, Ting
2012-01-01
The evolution of programmatic childcare since the American Recovery and Reinvestment Act of early 2009, as well as the increasing diversity of childcare recipients, call urgently for novel insight into the morphology of the childcare sector. This paper attempts such elucidation, focusing especially on the structure, accessibility, delivery…
Primary Cortical Folding in the Human Newborn: An Early Marker of Later Functional Development
ERIC Educational Resources Information Center
Dubois, J.; Benders, M.; Borradori-Tolsa, C.; Cachia, A.; Lazeyras, F.; Leuchter, R. Ha-Vinh; Sizonenko, S. V.; Warfield, S. K.; Mangin, J. F.; Huppi, P. S.
2008-01-01
In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be…
Body Structure and Physical Self-Concept in Early Adolescence
ERIC Educational Resources Information Center
Zsakai, Annamaria; Karkus, Zsolt; Utczas, Katinka; Bodzsar, Eva B.
2017-01-01
In adolescence, the complexity of human ontogenesis embraces biological growth and maturation as well as mental, affective, and cognitive progress, and adaptation to the requirements of society. To accept our morphological constellation as part of our gender may prove a problem even to a child of average rate of maturation. The main purposes of…
Video rate morphological processor based on a redundant number representation
NASA Astrophysics Data System (ADS)
Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.
1992-03-01
This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.
Patel, Jayesh D; Mighri, Frej; Ajji, Abdellah; Chaudhuri, Tapas K
2015-04-01
The present work deals with two different CdS nanostructures produced via hydrothermal and solvothermal decompositions of aminocaproic acid (ACA)-mixed Cd-thiourea complex precursor at 175 °C. Both nanostructures were extensively characterized for their structural, morphological and optical properties. The powder X-ray diffraction characterization showed that the two CdS nanostructures present a wurtzite morphology. Scanning electron microscopy and energy-dispersive X-ray characterizations revealed that the hydrothermal decomposition produced well-shaped CdS flowers composed of six dendritic petals, and the solvothermal decomposition produced CdS microspheres with close stoichiometric chemical composition. The UV-vis absorption and photoluminescence spectra of CdS dendritic flowers and microsphere nanostructures showed that both nanostructures present a broad absorption between 200 and 700 nm and exhibit strong green emissions at 576 and 520 nm upon excitations at 290 nm and 260 nm, respectively. The transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) characterizations confirmed that CdS microspheres were mesoporous and were composed of small nanocrystals. A possible growth mechanism in the formation of the CdS nanostructures was proposed based on morphology evolution as a function of the reaction time. Furthermore, the as-synthesized CdS nanostructures were found to exhibit highly efficient photocatalytic activities for the degradation of methyl orange (MeO) and rhodamine B (RhB) dyes.
Kratzer, Markus; Szajna, Konrad; Wrana, Domink; Belza, Wojciech; Krok, Franciszek; Teichert, Christian
2018-05-23
Control over organic thin film growth is a central issue in the development of organic electronics. The anisotropy and extended size of the molecular building blocks introduce a high degree of complexity within the formation of thin films. This complexity can be even increased for substrates with induced, sophisticated morphology and anisotropy. Thus, targeted structuring like ion beam mediated modification of substrates in order to create ripples, pyramids, or pit structures provides a further degree of freedom in manipulating the growth morphology of organic thin films. We provide a comprehensive review of recent work on para-hexaphenyl (C36H26, 6P) as a typical representative of the class of small, rod-like conjugated molecules and rutile TiO2(110) as an example for a transparent oxide electrode to demonstrate the effect of ion beam induced nanostructuring on organic thin film growth. Starting from molecular growth on smooth, atomically flat TiO2(110) (11) surfaces, we investigate the influence of the ripple size on the resulting 6P thin films. The achieved 6P morphologies are either crystalline nano-needles composed of flat lying molecules or islands consisting of upright standing 6P, which are elongated in ripple direction. The islands' length to width ratio can be controlled by tuning of the ripples' shape. © 2018 IOP Publishing Ltd.
Pepper, Mitzy; Doughty, Paul; Fujita, Matthew K.; Moritz, Craig; Keogh, J. Scott
2013-01-01
The isolated uplands of the Australian arid zone are known to provide mesic refuges in an otherwise xeric landscape, and divergent lineages of largely arid zone taxa have persisted in these regions following the onset of Miocene aridification. Geckos of the genus Heteronotia are one such group, and have been the subject of many genetic studies, including H. spelea, a strongly banded form that occurs in the uplands of the Pilbara and Central Ranges regions of the Australian arid zone. Here we assess the systematics of these geckos based on detailed examination of morphological and genetic variation. The H. spelea species complex is a monophyletic lineage to the exclusion of the H. binoei and H. planiceps species complexes. Within the H. spelea complex, our previous studies based on mtDNA and nine nDNA loci found populations from the Central Ranges to be genetically divergent from Pilbara populations. Here we supplement our published molecular data with additional data gathered from central Australian samples. In the spirit of integrative species delimitation, we combine multi-locus, coalescent-based lineage delimitation with extensive morphological analyses to test species boundaries, and we describe the central populations as a new species, H. fasciolatus sp. nov. In addition, within the Pilbara there is strong genetic evidence for three lineages corresponding to northeastern (type), southern, and a large-bodied melanic population isolated in the northwest. Due to its genetic distinctiveness and extreme morphological divergence from all other Heteronotia, we describe the melanic form as a new species, H. atra sp. nov. The northeastern and southern Pilbara populations are morphologically indistinguishable with the exception of a morpho-type in the southeast that has a banding pattern resembling H. planiceps from the northern monsoonal tropics. Pending more extensive analyses, we therefore treat Pilbara H. spelea as a single species with phylogenetic structure and morphological heterogeneity. PMID:24244289
Bim Automation: Advanced Modeling Generative Process for Complex Structures
NASA Astrophysics Data System (ADS)
Banfi, F.; Fai, S.; Brumana, R.
2017-08-01
The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.
[Skin changes in albinism in persons of the Negroid race (light- and electron-microscopy studies].
Semkin, V I; Mikhaĭlov, I N
1984-01-01
The skin of the negroid race albinos is studied light- and electron-microscopically. Morphological alterations, as compared to control, consist of the horny layer thickening, increase of the cellularity in the epidermis, appearance of numerous pronounced tonofibrillar-keratohyaline complexes in the granular cells and a well developed network of dense bundles of tonofibrils in the spinous layer. Melanocytes and Langerhans cells are similar by their structure and number to those in the control. The protein skeletons of melanosomes in keratinocytes and melanocytes are practically unchanged but they are completely deprived of melanine biopolymer. The dermal macrophages do not contain a melanin pigment. The morphological features of the albinos epidermis, particularly the horny layer thickening, increase of the cellularity and the presence of pronounced tonofibrillar-keratohyaline complexes represent most likely a compensatory protective mechanism against ultraviolet radiation.
The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.
Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T
2011-09-30
Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oehlert, A. M.; Hill, C. A.; Piggot, A. M.; Fouke, B. W.
2008-12-01
As one of the core reservoirs of primary production in the world's oceans, tropical coral reefs support a complex ecosystem that directly impacts over ninety percent of marine organisms at some point in their life cycle. Corals themselves are highly complex organisms and exhibit a range of growth forms that range from branching to massive, foliaceous, columnar, encrusting, free living and laminar coralla. Fierce competition over scarce resources available to each individual coral species creates niche specialization. Throughout the Phanerozic geological record, this has driven speciation events and created distinct skeletal growth morphologies that have differential abilities in feeding strategy. In turn, this has presumably led to the development of niche specialization that can be quantitatively measured through hierarchical morphological differences from the micrometer to the meter scale. Porter (1976) observed significant differences in skeletal morphology between Caribbean coral species that reflects an adaptive geometry based on feeding strategy. Within the Montastraea species complex there are four major morphologies; columnar, bouldering, irregular mounding, and skirted. Each morphotype can be found forming high abundance along the bathymetric gradient of coral reefs that grow along the leeward coast of Curacao, Netherlands Antilles. We have undertaken a study to determine the relative relationships amongst coral morphology, skeletal density and feeding strategy by comparing the morphometric measurements of individual polyps as well as the entire colony along spatial and bathymetric gradients. Polyp diameter, mouth size, interpolyp area, and interpolyp distance were measured from high-resolution images taken on a stereoscope, and evaluated with AxioVision image analysis software. These high-resolution optical analyses have also revealed new observations regarding folded tissue structures of the outer margin of polyps in the Montastrea complex. Skeletal densities were measured in vertical cross-sections of each whole corallum using standard X-ray techniques utilizing a calibrated step wedge to portray banding and overall density. The combination of the stereoscope and X-ray analyses across spatial and temporal gradients provide insight into how coral reef carbonate depositional facies are affected by changes in key environmental parameters, such as increased pollution, or changing photosynthetic activity with depth or sea surface temperature fluctuations.
Iorgu, Ionuţ Ştefan; Iorgu, Elena Iulia; Szövényi, Gergely; Orci, Kirill Márk
2017-01-01
A new, morphologically cryptic species of phaneropterine bush-crickets is described from the grasslands of the Romanian Eastern Carpathians. Despite the morphological and acoustic similarities with the recently described Isophya nagyi Szövényi, Puskás & Orci, I. bucovinensis sp. n. is characterized by a peculiar male calling song, with faster syllable repetition rate (160-220 syllables per minute, at 22-27°C) and less complex syllable structure (composed of only two elements instead of three observable in I. nagyi ). The morphological description of the new species is supplemented with an oscillographic and spectrographic analysis of the male calling song and male-female pair-forming acoustic duet. An acoustic signal-based identification key is provided for all the presently known species of the Isophya camptoxypha species group, including the new species.
Iorgu, Ionuţ Ştefan; Iorgu, Elena Iulia; Szövényi, Gergely; Orci, Kirill Márk
2017-01-01
Abstract A new, morphologically cryptic species of phaneropterine bush-crickets is described from the grasslands of the Romanian Eastern Carpathians. Despite the morphological and acoustic similarities with the recently described Isophya nagyi Szövényi, Puskás & Orci, I. bucovinensis sp. n. is characterized by a peculiar male calling song, with faster syllable repetition rate (160–220 syllables per minute, at 22–27°C) and less complex syllable structure (composed of only two elements instead of three observable in I. nagyi). The morphological description of the new species is supplemented with an oscillographic and spectrographic analysis of the male calling song and male–female pair-forming acoustic duet. An acoustic signal-based identification key is provided for all the presently known species of the Isophya camptoxypha species group, including the new species. PMID:28769716
The Cladophora complex (Chlorophyta): new views based on 18S rRNA gene sequences.
Bakker, F T; Olsen, J L; Stam, W T; van den Hoek, C
1994-12-01
Evolutionary relationships among species traditionally ascribed to the Siphonocladales/Cladophorales have remained unclear due to a lack of phylogenetically informative characters and extensive morphological plasticity resulting in morphological convergence. This study explores some of the diversity within the generic complex Cladophora and its siphonocladalaen allies. Twelve species of Cladophora representing 6 of the 11 morphological sections recognized by van den Hoek were analyzed along with 8 siphonocladalaen species using 18S rRNA gene sequences. The final alignment consisted of 1460 positions containing 92 phylogenetically informative substitutions. Weighting schemes (EOR weighting, combinatorial weighting) were applied in maximum parsimony analysis to correct for substitution bias. Stem characters were weighted 0.66 relative to single-stranded characters to correct for secondary structural constraints. Both weighting approaches resulted in greater phylogenetic resolution. Results confirm that there is no basis for the independent recognition of the Cladophorales and Siphonocladales. The Siphonocladales is polyphyletic, and Cladophora is paraphyletic. All analyses support two principal lineages, of which one contains predominantly tropical members including almost all siphonocladalean taxa, while the other lineage consists of mostly warm- to cold-temperate species of Cladophora.
NASA Astrophysics Data System (ADS)
Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.
2018-05-01
A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.
Biomimetic mineral self-organization from silica-rich spring waters.
García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver
2017-03-01
Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.
NASA Astrophysics Data System (ADS)
Franz, Guilherme; Delpey, Matthias T.; Brito, David; Pinto, Lígia; Leitão, Paulo; Neves, Ramiro
2017-09-01
Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.
Morphological Decomposition Based on the Analysis of Orthography
ERIC Educational Resources Information Center
Rastle, Kathleen; Davis, Matthew H.
2008-01-01
Recent theories of morphological processing have been dominated by the notion that morphologically complex words are decomposed into their constituents on the basis of their semantic properties. In this article we argue that the weight of evidence now suggests that the recognition of morphologically complex words begins with a rapid morphemic…
K-band observations of boxy bulges - I. Morphology and surface brightness profiles
NASA Astrophysics Data System (ADS)
Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.
2006-08-01
In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself contained within a thin outer disc. The inner disc likely formed secularly through bar-driven processes and is responsible for the steep inner region of the surface brightness profiles, traditionally associated with a classic bulge, while the bar is responsible for the flat intermediate region of the surface brightness profiles and the thick complex morphological structures observed. Those components are strongly coupled dynamically and are formed mostly of the same (disc) material, shaped by the weak but relentless action of the bar resonances. Any competing formation scenario for galaxies with a B/PS bulge, which represent at least 45 per cent of the local disc galaxy population, must explain equally well and self-consistently the above morphological and photometric properties, the complex gas and stellar kinematics observed, and the correlations between them.
Zalewski, Jenna K.; Mo, Joshua H.; Heber, Simone; ...
2016-10-10
Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here in this paper, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation ofmore » interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. In addition, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.« less
Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta
NASA Technical Reports Server (NTRS)
Ivanov, B. A.; Artemieva, N. A.; Pierazzo, E.
2004-01-01
The approx. 100 km in diameter, 35.7 0.2 Ma old Popigai structure [1], northern Siberia (Russia), is the best-preserved of the large terrestrial complex crater structures containing a central-peak ring [2- 4]. Although remotely located, the excellent outcrops, large number of drill cores, and wealth of geochemical data make Popigai ideal for the general study of the cratering processes. It is most famous for its impact-diamonds [2,5]. Popigai is the best candidate for the source crater of the worldwide late Eocene ejecta [6,7].
Fracture Testing of Integral Stiffened Structure
NASA Technical Reports Server (NTRS)
Newman, John A.; Smith, Stephen W.; Piascik, Robert S.; Dawicke, David S.; Johnston, William M.; Willard, Scott A.
2008-01-01
Laboratory testing was conducted to evaluate safety concerns for integrally-stiffened tanks that were found to have developed cracks during pressurization testing. Cracks occurred at fastener holes where additional stiffeners were attached to the integrally-stiffened tank structure. Tests were conducted to obtain material properties and to reproduce the crack morphologies that were observed in service to help determine if the tanks are safe for operation. Reproducing the cracking modes observed during pressurization testing required a complex loading state involving both a tensile load in the integrally-stiffened structure and a pin-load at a fastener hole.
Self-assembly of chlorophenols in water
Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe
1999-01-01
In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753
Ultra-small rhenium clusters supported on graphene.
Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José
2015-03-28
The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.
Ultra-small rhenium clusters supported on graphene
Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José
2015-01-01
The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.
2011-05-01
Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.
NASA Astrophysics Data System (ADS)
Slathia, Goldy; Bamzai, K. K.
2017-11-01
Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.
Werren, John H.; Cohen, Lorna B.; Gadau, Juergen; Ponce, Rita; Baudry, Emmanuelle; Lynch, Jeremy A.
2016-01-01
The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects. PMID:26721604
2014-01-01
Background Skipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Área de Conservación Guanacaste (ACG), northwestern Costa Rica. Results Although no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that “Urbanus belli” in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra- and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2. Conclusion These findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes. PMID:25005355
Doughty, Paul; Bourke, Gayleen; Tedeschi, Leonardo G; Pratt, Renae C; Oliver, Paul M; Palmer, Russell A; Moritz, Craig
2018-04-04
Recent advances in molecular genetic techniques and increased fine scale sampling in the Australian Monsoonal Tropics (AMT) have provided new impetus to reassess species boundaries in the Gehyra nana species complex, a clade of small-bodied, saxicolous geckos which are widely distributed across northern Australia. A recent phylogenomic analysis revealed eight deeply divergent lineages that occur as a series of overlapping distributions across the AMT and which, as a whole, are paraphyletic with four previously described species. Several of these lineages currently included in G. nana are phenotypically distinct, while others are highly conservative morphologically. Here we use an integrated approach to explore species delimitation in this complex. We redefine G. nana as a widespread taxon with complex genetic structure across the Kimberley of Western Australia and Top End of the Northern Territory, including a lineage with mtDNA introgressed from the larger-bodied G. multiporosa. We describe four new species with more restricted distributions within the G. nana complex. The new species are phylogenetically divergent and morphologically diagnosable, and include the relatively cryptic G. paranana sp. nov. from the western Northern Territory, the large-bodied G. pseudopunctata sp. nov. from the southern Kimberley ranges, G. granulum sp. nov., a small-bodied form with granules on the proximal lamellae from the north-west and southern Kimberley ranges and the small-bodied G. pluraporosa sp. nov. restricted to the northern Kimberley. Our revision largely stabilises the taxonomy of the G. nana complex, although further analyses of species limits among the remaining mostly parapatric lineages of G. nana sensu stricto are warranted.
NASA Astrophysics Data System (ADS)
Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.
2018-03-01
Two novel nano-complexes [(Cu)2(L) (NO3)2(OH2)] (CuH) and [Cu(HL) (OH2)2(NO3)] (CuCTH)were synthesized by hydrothermal method at 200 °C for 48 h in absence and presence of surfactant (CTAB), respectively. Introducing surfactant (CTAB) leads to changing stoichiometric metal/ligand ratio from binuclear (CuH) to mononuclear (CuCTH) nano-complexes. CuH shows irregular nano-flake shape while CuCTH have separately uniform nano-spherical morphology. Thermal analysis revealed that CuCTH is thermally stable in comparison with CuH Nano-complex. CuCTH absorption peak shifted to shorter wavelength (blue shift) and sharpness of the peak also decreased in presence of CTAB. The role of CTAB in the crystal growth is discussed. CuH and CuCTH nano-complexes were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (E.A.C.). Both nano-complexes effectively inhibited E.A.C. growth with IC50value of 37 and 25 μM for CuH and CuCTH, respectively. The high antitumor activity of CuCTH was attributed to several factors such as spherical morphology, smaller size, chemical structure, and geometry. The LD50 for high cytotoxic CuCTH nano-complex on mice was found to be 100 mg/kg with strong abscess in abdomen side effect. To overcome this side effect, different molar ratio of CuCTH and previously prepared ZnNano-complexes were tested for their in vitrocytotoxicity and in vivo toxicity. Obtained results show that the 2:8 M ratio between CuCTH and Zn nano-complexes gives very low toxicity without any side effects. Also, geometric optimization and conformational analysis were performed using semi-empirical PM3 method. Energy gap (ΔE), dipole moment, and structure activity relationship were performed and discussed.
Triest, L; De Greef, B; De Bondt, R; Van Slycken, J
2000-05-01
The polyploid Salix alba-Salix fragilis hybrid complex is rather difficult to study when using only morphological characters. Most of the features have a low diagnostic value for unambiguously identifying the hybrids, introgression patterns and population structures, though morphological traits have proved to be useful in making a hybrid index. Morphology and molecular variation from RAPDs were investigated in several case studies on willows from Belgium. A thorough screening of full-sib progenies of interspecific controlled crosses was made to select homologous amplification products. The selected amplified products proved to be useful in a principal coordinate analysis for the estimation of variability of hybrid progenies. On the basis of genetic similarities and ordination analysis, a method for the identification of clones in the field was established using presumed pure species and presumed introgressants. The chosen reference clones were checked against additional European samples of putative pure species to ensure the reliability of the method beyond a regional scale. The RAPDs suggested that both species have kept their gene pools well separated and that hybridization actually does not seem to be a dominating process. The observation that molecular markers do not always follow the morphological traits or allozyme data is discussed.
Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF-Guest Polyhedra.
Wang, Tiesheng; Kim, Hyun-Kyung; Liu, Yingjun; Li, Weiwei; Griffiths, James T; Wu, Yue; Laha, Sourav; Fong, Kara D; Podjaski, Filip; Yun, Chao; Kumar, R Vasant; Lotsch, Bettina V; Cheetham, Anthony K; Smoukov, Stoyan K
2018-05-16
Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal-organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF-guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF-guest candidates.
NASA Astrophysics Data System (ADS)
Dridi, Rihab; Dhieb, Cyrine; Cherni, Saoussen Namouchi; Boudjada, Nassira Chniba; Sadfi Zouaoui, Najla; Zid, Mohamed Faouzi
2018-01-01
A new chromium (III) complex 1,5-Naphthyridine Trans-diaquadioxalatochromate (III) dihydrate, had been synthesized by self-assembly of chromium (III) nitrate with oxalic acid and 1,5-Naphthyridine. The complex was characterized by X-ray diffraction, Fourier Transform Infrared spectroscopy, thermogravimetric analysis and UV-Visible spectroscopy. The crystal morphology was carried out using Bravais-Friedel-Donnay-Harker (BFDH) model. Single crystal X-Ray structure determination revealed that the complex posses two crystallographically independent Cr(III) centers. Each Cr(III) has a distorted octahedron geometry involving two axial O atoms from two water molecules and four equatorial O atoms from two oxalate dianions forming trans-[Cr(C2O4)2(H2O)2]- complex anions. The charge compensation is accomplished by the incorporation of 1,5-Naphthyridine cations. Connection between these entities is ensured by means of strong hydrogen bonds giving rise to 3D supramolecular architecture. Hirshfeld surface analysis and the related 2D fingerprint plots were used for decoding plausible intermolecular interactions in the crystal packing. The magnetic properties of the complex had been investigated and discussed in the context of its structure. The antimicrobial activity was evaluated by disc diffusion method highlighting an antagonistic effect of the synthesized complex against Gram-positive and Gram-negative species.
Stech, Michael; Veldman, Sarina; Larraín, Juan; Muñoz, Jesús; Quandt, Dietmar; Hassel, Kristian; Kruijer, Hans
2013-01-01
In bryophytes a morphological species concept is still most commonly employed, but delimitation of closely related species based on morphological characters is often difficult. Here we test morphological species circumscriptions in a species complex of the moss genus Racomitrium, the R. canescens complex, based on variable DNA sequence markers from the plastid (rps4-trnT-trnL region) and nuclear (nrITS) genomes. The extensive morphological variability within the complex has led to different opinions about the number of species and intraspecific taxa to be distinguished. Molecular phylogenetic reconstructions allowed to clearly distinguish all eight currently recognised species of the complex plus a ninth species that was inferred to belong to the complex in earlier molecular analyses. The taxonomic significance of intraspecific sequence variation is discussed. The present molecular data do not support the division of the R. canescens complex into two groups of species (subsections or sections). Most morphological characters, albeit being in part difficult to apply, are reliable for species identification in the R. canescens complex. However, misidentification of collections that were morphologically intermediate between species questioned the suitability of leaf shape as diagnostic character. Four partitions of the molecular markers (rps4-trnT, trnT-trnL, ITS1, ITS2) that could potentially be used for molecular species identification (DNA barcoding) performed almost equally well concerning amplification and sequencing success. Of these, ITS1 provided the highest species discrimination capacity and should be considered as a DNA barcoding marker for mosses, especially in complexes of closely related species. Molecular species identification should be complemented by redefining morphological characters, to develop a set of easy-to-use molecular and non-molecular identification tools for improving biodiversity assessments and ecological research including mosses. PMID:23341927
Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers
Henry, Michael M.; Jones, Matthew L.; Oosterhout, Stefan D.; ...
2017-11-08
We perform molecular dynamics simulations of poly(benzodithiophene-thienopyrrolodione) (BDT-TPD) oligomers in order to evaluate the accuracy with which unoptimized molecular models can predict experimentally characterized morphologies. The predicted morphologies are characterized using simulated grazing-incidence X-ray scattering (GIXS) and compared to the experimental scattering patterns. We find that approximating the aromatic rings in BDT-TPD with rigid bodies, rather than combinations of bond, angle, and dihedral constraints, results in 14% lower computational cost and provides nearly equivalent structural predictions compared to the flexible model case. The predicted glass transition temperature of BDT-TPD (410 +/- 32 K) is found to be in agreement withmore » experiments. Predicted morphologies demonstrate short-range structural order due to stacking of the chain backbones (p-p stacking around 3.9 A), and long-range spatial correlations due to the self-organization of backbone stacks into 'ribbons' (lamellar ordering around 20.9 A), representing the best-to-date computational predictions of structure of complex conjugated oligomers. We find that expensive simulated annealing schedules are not needed to predict experimental structures here, with instantaneous quenches providing nearly equivalent predictions at a fraction of the computational cost of annealing. We therefore suggest utilizing rigid bodies and fast cooling schedules for high-throughput screening studies of semiflexible polymers and oligomers to utilize their significant computational benefits where appropriate.« less
Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael M.; Jones, Matthew L.; Oosterhout, Stefan D.
We perform molecular dynamics simulations of poly(benzodithiophene-thienopyrrolodione) (BDT-TPD) oligomers in order to evaluate the accuracy with which unoptimized molecular models can predict experimentally characterized morphologies. The predicted morphologies are characterized using simulated grazing-incidence X-ray scattering (GIXS) and compared to the experimental scattering patterns. We find that approximating the aromatic rings in BDT-TPD with rigid bodies, rather than combinations of bond, angle, and dihedral constraints, results in 14% lower computational cost and provides nearly equivalent structural predictions compared to the flexible model case. The predicted glass transition temperature of BDT-TPD (410 +/- 32 K) is found to be in agreement withmore » experiments. Predicted morphologies demonstrate short-range structural order due to stacking of the chain backbones (p-p stacking around 3.9 A), and long-range spatial correlations due to the self-organization of backbone stacks into 'ribbons' (lamellar ordering around 20.9 A), representing the best-to-date computational predictions of structure of complex conjugated oligomers. We find that expensive simulated annealing schedules are not needed to predict experimental structures here, with instantaneous quenches providing nearly equivalent predictions at a fraction of the computational cost of annealing. We therefore suggest utilizing rigid bodies and fast cooling schedules for high-throughput screening studies of semiflexible polymers and oligomers to utilize their significant computational benefits where appropriate.« less
ERIC Educational Resources Information Center
Kiraz, George Anton
This book presents a tractable computational model that can cope with complex morphological operations, especially in Semitic languages, and less complex morphological systems present in Western languages. It outlines a new generalized regular rewrite rule system that uses multiple finite-state automata to cater to root-and-pattern morphology,…
[X-ray semiotics of the morphological and functional changes in chronic bronchitis].
Khomenko, A G; Dmitrieva, L I; Polak, J; Gapon'ko, G A; Starilova, I P
1985-01-01
The authors analysed structural disorders of a pulmonary pattern in patients with non-obstructive, obstructive and purulent bronchitis. Characteristic x-ray symptom-complexes were singled out for each clinical variant of the disease. In addition to roentgenomorphological changes functional disorders showing changes of biomechanics in patients with chronic bronchitis were revealed at roentgenopneumopolygraphy.
Liu, Lei; Jiang, Yunyao; Boyce, Mary; Ortiz, Christine; Baur, Jeffery; Song, Juha; Li, Yaning
2017-06-14
Irregular interdigitated morphology is prevalent in biological sutures in nature. Suture complexity index has long been recognized as the most important morphological parameter to govern the mechanical properties of biological sutures. However, the suture complexity index alone does not reflect all aspects of suture morphology. The goal of this investigation was to determine that besides suture complexity index, whether the degree of morphological irregularity of biological sutures has influences on the mechanical properties, and if there is any, how to quantify these influences. To explore these issues, theoretical and finite element (FE) suture models with the same suture complexity index but different levels of morphological irregularity were developed. The quasi-static stiffness, strength for damage initiation and post-failure process of irregular sutures were studied. It was shown that for the same suture complexity index, when the level of morphological irregularity increases, the overall strain to failure will increase while tensile stiffness is retained; also, the total energy to fracture increases with a sacrifice in strength to damage initiation. These results reveal that morphological irregularity is another important independent parameter to govern and balance the mechanical properties of biological sutures. Therefore, from the mechanics point of view, the prevalence of irregular suture morphology in nature is a merit, not a defect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cellular complexity captured in durable silica biocomposites
Kaehr, Bryan; Townson, Jason L.; Kalinich, Robin M.; Awad, Yasmine H.; Swartzentruber, B. S.; Dunphy, Darren R.; Brinker, C. Jeffrey
2012-01-01
Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions. PMID:23045634
Peckham, Don; Szanka, Szilvia; Gazso, Dorottya; Lovassy, Noemi; Ullman, Michael T.
2015-01-01
The contrast between regular and irregular inflectional morphology has been useful in investigating the functional and neural architecture of language. However, most studies have examined the regular/irregular distinction in non-agglutinative Indo-European languages (primarily English) with relatively simple morphology. Additionally, the majority of research has focused on verbal rather than nominal inflectional morphology. The present study attempts to address these gaps by introducing both plural and past tense production tasks in Hungarian, an agglutinative non-Indo-European language with complex morphology. Here we report results on these tasks from healthy Hungarian native-speaking adults, in whom we examine regular and irregular nominal and verbal inflection in a within-subjects design. Regular and irregular nouns and verbs were stem on frequency, word length, and phonological structure, and both accuracy and response times were acquired. The results revealed that the regular/irregular contrast yields similar patterns in Hungarian, for both nominal and verbal inflection, as in previous studies of non-agglutinative Indo-European languages: the production of irregular inflected forms was both less accurate and slower than of regular forms, both for plural and past-tense inflection. The results replicate and extend previous findings to an agglutinative language with complex morphology. Together with previous studies, the evidence suggests that the regular/irregular distinction yields a basic behavioral pattern that holds across language families and linguistic typologies. Finally, the study sets the stage for further research examining the neurocognitive substrates of regular and irregular morphology in an agglutinative non-Indo-European language. PMID:25769039
NASA Astrophysics Data System (ADS)
Hussain, Shadman; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
A common treatment for atherosclerosis is the opening of narrowed arteries resulting from obstructive lesions by angioplasty and stent implantation to restore unrestricted blood flow. ``Type-IV'' stent fractures involve complete transverse, linear fracture of stent struts, along with displacement of the stent fragments. Experimental data pertaining to secondary flows in the presence of stents that underwent ``Type-IV'' fractures in a bent artery model under physiological inflow conditions were obtained through a two-component, two-dimensional (2C-2D) PIV technique. Concomitant stent-induced flow perturbations result in secondary flow structures with complex, multi-scale morphologies and varying size-strength characteristics. Ultimately, these flow structures may have a role to play in restenosis and progression of atherosclerotic plaque. Vortex circulation thresholds were established with the goal of resolving and tracking iso-circulation secondary flow vortical structures and their morphological changes. This allowed for a parametric evaluation and quantitative representation of secondary flow structures undergoing deformation and spatial reorganization. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Oaki, Yuya; Kijima, Misako; Imai, Hiroaki
2011-06-08
Synthesis and morphogenesis of polypyrrole (PPy) with hierarchical structures from nanoscopic to macroscopic scales have been achieved by using hierarchically organized architectures of biominerals. We adopted biominerals, such as a sea urchin spine and nacreous layer, having hierarchical architectures based on mesocrystals as model materials used for synthesis of an organic polymer. A sea urchin spine led to the formation of PPy macroscopic sponge structures consisting of nanosheets less than 100 nm in thickness with the mosaic interior of the nanoparticles. The morphologies of the resultant PPy hierarchical architectures can be tuned by the structural modification of the original biomineral with chemical and thermal treatments. In another case, a nacreous layer provided PPy porous nanosheets consisting of the nanoparticles. Conductive pathways were formed in these PPy hierarchical architectures. The nanoscale interspaces in the mesocrystal structures of biominerals are used for introduction and polymerization of the monomers, leading to the formation of hierarchically organized polymer architectures. These results show that functional organic materials with complex and nanoscale morphologies can be synthesized by using hierarchically organized architectures as observed in biominerals.
Jeong, Hanbin; Park, Jumi; Jun, Youngsoo; Lee, Changwook
2017-01-01
The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) comprises mitochondrial distribution and morphology 12 (Mdm12), maintenance of mitochondrial morphology 1 (Mmm1), Mdm34, and Mdm10 and mediates physical membrane contact sites and nonvesicular lipid trafficking between the ER and mitochondria in yeast. Herein, we report two crystal structures of the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain of Mmm1 and the Mdm12–Mmm1 complex at 2.8 Å and 3.8 Å resolution, respectively. Mmm1 adopts a dimeric SMP structure augmented with two extra structural elements at the N and C termini that are involved in tight self-association and phospholipid coordination. Mmm1 binds two phospholipids inside the hydrophobic cavity, and the phosphate ion of the distal phospholipid is specifically recognized through extensive H-bonds. A positively charged concave surface on the SMP domain not only mediates ER membrane docking but also results in preferential binding to glycerophospholipids such as phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylglycerol (PG), and phosphatidylserine (PS), some of which are substrates for lipid-modifying enzymes in mitochondria. The Mdm12–Mmm1 structure reveals two Mdm12s binding to the SMP domains of the Mmm1 dimer in a pairwise head-to-tail manner. Direct association of Mmm1 and Mdm12 generates a 210-Å-long continuous hydrophobic tunnel that facilitates phospholipid transport. The Mdm12–Mmm1 complex binds all glycerophospholipids except for phosphatidylethanolamine (PE) in vitro. PMID:29078410
Advanced grazing-incidence techniques for modern soft-matter materials analysis
Hexemer, Alexander; Müller-Buschbaum, Peter
2015-01-01
The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less
Advanced grazing-incidence techniques for modern soft-matter materials analysis
Hexemer, Alexander; Müller-Buschbaum, Peter
2015-01-01
The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632
Bulusu, Kartik V; Plesniak, Michael W
2016-07-19
The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).
2012-01-01
16.64 Figure 3. Venation map of Manduca sexta forewing [11]. 2.4. Venation Insect wings are formed from a complex makeup of polymer based chains, Chitin ...for coloration, but may subtly influence flow patterns and boundary layer structure over wings [4, 24]. There is significant understanding of chitin ...biological specimen to vary the bonding chains, assemblage of nanofibers and crystalline structure, the material properties of chitin can vary over a
Quantification of Soil Pore Structure Based on Minkowski-Functions
NASA Astrophysics Data System (ADS)
Vogel, H.; Weller, U.; Schlüter, S.
2009-05-01
The porous structure in soils and other geologic media is typically a complex 3-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to this structure which can be directly observed using non-invasive techniques as e.g. X-ray tomography. It is an old dream and still a formidable challenge to related structural features of porous media to their physical properties. In this contribution we present a scale-invariant concept to quantify pore structure based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on pore size, pore surface area and pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the structure of an arable topsoil obtained by X-ray micro tomography. We also discuss the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale.
ERIC Educational Resources Information Center
Mobayyen, F.; de Almeida, R.G.
2005-01-01
One hundred and forty normal undergraduate students participated in a Proactive Interference (PI) experiment with sentences containing verbs from four different semantic and morphological classes (lexical causatives, morphological causatives, and morphologically complex and simplex perception verbs). Past research has shown significant PI build-up…
Evolutionary origin of the Asteraceae capitulum: Insights from Calyceraceae.
Pozner, Raúl; Zanotti, Christian; Johnson, Leigh A
2012-01-01
Phylogenies based on molecular data are revealing that generalizations about complex morphological structures often obscure variation and developmental patterns important for understanding the evolution of forms, as is the case for inflorescence morphology within the well-supported MGCA clade (Menyanthaceae + Goodeniaceae + Calyceraceae + Asteraceae). While the basal families share a basic thyrsic/thyrsoid structure of their inflorescences, Asteraceae possesses a capitulum that is widely interpreted as a racemose, condensed inflorescence. Elucidating the poorly known inflorescence structure of Calyceraceae, sister to Asteraceae, should help clarify how the Asteraceae capitulum evolved from thyrsic/thyrsoid inflorescences. The early development and structure of the inflorescence of eight species (five genera) of Calyceraceae were studied by SEM, and patterns of evolutionary change were interpreted via phylogenetic character mapping. The basic inflorescence structure of Calyceraceae is a cephalioid (a very condensed botryoid/thyrsoid). Optimization of inflorescence characters on a DNA sequence-derived tree suggests that the Asteraceae capitulum derives from a simple cephalioid through two morphological changes: loss of the terminal flower and suppression of the cymose branching pattern in the peripheral branches. Widely understood as a condensed raceme, the Asteraceae capitulum is the evolutionary result of a very reduced, condensed thyrsoid. Starting from that point, evolution worked separately only on the racemose developmental control/pattern within Asteraceae and mainly on the cymose developmental control/pattern within Calyceraceae, producing head-like inflorescences in both groups but with very different diversification potential. We also discuss possible remnants of the ancestral cephalioid structure in some Asteraceae.
NASA Astrophysics Data System (ADS)
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.
Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan
2014-10-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations
Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan
2014-01-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug ( S )-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Cruz, Julio C; Ferraro, Daiana P; Farías, Alejandro; Santos, Julio S; Recco-Pimentel, Shirlei M; Faivovich, Julián; Hermida, Gladys N
2016-07-01
This study describes the spermatozoa of 10 of the 15 species of the Neotropical frog genus Pleurodema through transmission electron microscopy. The diversity of oviposition modes coupled with a recent phylogenetic hypothesis of Pleurodema makes it an interesting group for the study of ultrastructural sperm evolution in relation to fertilization environment and egg-clutch structure. We found that Pleurodema has an unusual variability in sperm morphology. The more variable structures were the acrosomal complex, the midpiece, and the tail. The acrosomal complex has all the structures commonly reported in hyloid frogs but with different degree of development of the subacrosomal cone. Regarding the midpiece, the variability is given by the presence or absence of the mitochondrial collar. Finally, the tail is the most variable structure, ranging from single (only axoneme) to more complex (presence of paraxonemal rod, cytoplasmic sheath, and undulating membrane), with the absence of the typical axial fiber present in hyloid frogs, also shared with some other genera of Leiuperinae. J. Morphol. 277:957-977, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
From Cylindrical to Stretching Ridges and Wrinkles in Twisted Ribbons
NASA Astrophysics Data System (ADS)
Pham Dinh, Huy; Démery, Vincent; Davidovitch, Benny; Brau, Fabian; Damman, Pascal
2016-09-01
Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures.
Day, Robert W; Mankin, Max N; Lieber, Charles M
2016-04-13
One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.
Ischemic Ventricular Tachycardia Presenting as a Narrow Complex Tachycardia
Page, Stephen P; Watts, Troy; Yeo, Wee Tiong; Mehul, Dhinoja
2014-01-01
This report describes a patient presenting with a narrow complex tachycardia in the context of prior myocardial infarction and impaired ventricular function. Electrophysiological studies confirmed ventricular tachycardia and activation and entrainment mapping demonstrated a critical isthmus within an area of scar involving the His-Purkinje system accounting for the narrow QRS morphology. This very rare case shares some similarities with upper septal ventricular tachycardia seen in patients with structurally normal hearts, but to our knowledge has not been seen previously in patients with ischemic heart disease. PMID:25057222
Wiemer, A P; Sérsic, A N; Marino, S; Simões, A O; Cocucci, A A
2012-01-01
BACKGROUND AND AIMS The extreme complexity of asclepiad flowers (Asclepiadoideae-Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators. Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index. The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts. Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South Africa. A putative new function of nectar in asclepiads is presented, as it would be contributing to the pollination mechanism.
Ion energy/momentum effects during ion assisted growth of niobium nitride films
NASA Astrophysics Data System (ADS)
Klingenberg, Melissa L.
The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and closed-structured morphologies.
Sociolinguistic Typology and Sign Languages.
Schembri, Adam; Fenlon, Jordan; Cormier, Kearsy; Johnston, Trevor
2018-01-01
This paper examines the possible relationship between proposed social determinants of morphological 'complexity' and how this contributes to linguistic diversity, specifically via the typological nature of the sign languages of deaf communities. We sketch how the notion of morphological complexity, as defined by Trudgill (2011), applies to sign languages. Using these criteria, sign languages appear to be languages with low to moderate levels of morphological complexity. This may partly reflect the influence of key social characteristics of communities on the typological nature of languages. Although many deaf communities are relatively small and may involve dense social networks (both social characteristics that Trudgill claimed may lend themselves to morphological 'complexification'), the picture is complicated by the highly variable nature of the sign language acquisition for most deaf people, and the ongoing contact between native signers, hearing non-native signers, and those deaf individuals who only acquire sign languages in later childhood and early adulthood. These are all factors that may work against the emergence of morphological complexification. The relationship between linguistic typology and these key social factors may lead to a better understanding of the nature of sign language grammar. This perspective stands in contrast to other work where sign languages are sometimes presented as having complex morphology despite being young languages (e.g., Aronoff et al., 2005); in some descriptions, the social determinants of morphological complexity have not received much attention, nor has the notion of complexity itself been specifically explored.
NASA Astrophysics Data System (ADS)
Hu, Z. W.; Winarski, R. P.
2016-09-01
Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.
NASA Technical Reports Server (NTRS)
Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.
2000-01-01
Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.
Molecular characterization of organic electronic films.
DeLongchamp, Dean M; Kline, R Joseph; Fischer, Daniel A; Richter, Lee J; Toney, Michael F
2011-01-18
Organic electronics have emerged as a viable competitor to amorphous silicon for the active layer in low-cost electronics. The critical performance of organic electronic materials is closely related to their morphology and molecular packing. Unlike their inorganic counterparts, polymers combine complex repeat unit structure and crystalline disorder. This combination prevents any single technique from being able to uniquely solve the packing arrangement of the molecules. Here, a general methodology for combining multiple, complementary techniques that provide accurate unit cell dimensions and molecular orientation is described. The combination of measurements results in a nearly complete picture of the organic film morphology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remote sensing image denoising application by generalized morphological component analysis
NASA Astrophysics Data System (ADS)
Yu, Chong; Chen, Xiong
2014-12-01
In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.
NASA Astrophysics Data System (ADS)
Batmunkh, Munkhbaatar; Bugay, Alexander; Bayarchimeg, Lkhagvaa; Lkhagva, Oidov
2018-02-01
The present study is focused on the development of optimal models of neuron morphology for Monte Carlo microdosimetry simulations of initial radiation-induced events of heavy charged particles in the specific types of cells of the hippocampus, which is the most radiation-sensitive structure of the central nervous system. The neuron geometry and particles track structures were simulated by the Geant4/Geant4-DNA Monte Carlo toolkits. The calculations were made for beams of protons and heavy ions with different energies and doses corresponding to real fluxes of galactic cosmic rays. A simple compartmental model and a complex model with realistic morphology extracted from experimental data were constructed and compared. We estimated the distribution of the energy deposition events and the production of reactive chemical species within the developed models of CA3/CA1 pyramidal neurons and DG granule cells of the rat hippocampus under exposure to different particles with the same dose. Similar distributions of the energy deposition events and concentration of some oxidative radical species were obtained in both the simplified and realistic neuron models.
Koddenberg, Tim; Militz, Holger
2018-05-05
The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Fotis, A. T.; Curtis, P.
2016-12-01
Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in four co-dominant species (Acer rubrum, Fagus grandifolia, Pinus strobus and Quercus rubra) at different heights in plots with similar leaf area index (LAI) but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaves of F. grandifolia, Q. rubra, and P. strobus shifted towards sun-acclimation phenotypes with increasing canopy complexity while leaves of A. rubrum became more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further acclimation by increasing Narea and reducing Chlmass as LMA increased, while P. strobus showed no change in Narea and Chlmass with increasing LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy.
Preston R. Aldrich; George R. Parker; Charles H. Michler; Jeanne Romero-Severson
2003-01-01
The red oaks (Quercus section Lobatae) include important timber species, but we know little about their gene pools. Red oak species can be difficult to identify, possibly because of extensive interspecific hybridization, although most evidence of this is morphological. We used 15 microsatellite loci to examine the genetic...
The Lexical Status of the Root in Processing Morphologically Complex Words in Arabic
ERIC Educational Resources Information Center
Shalhoub-Awwad, Yasmin; Leikin, Mark
2016-01-01
This study investigated the effects of the Arabic root in the visual word recognition process among young readers in order to explore its role in reading acquisition and its development within the structure of the Arabic mental lexicon. We examined cross-modal priming of words that were derived from the same root of the target…
NASA Astrophysics Data System (ADS)
Moshtaghi, Saeed; Gholamrezaei, Sousan; Salavati Niasari, Masoud
2017-04-01
In this work, nanocubes of CaSnO3 have been prepared by a simple and green co-precipitation method. In this technique, for preparation of calcium stannate, we have used from a complex structure of calcium as a new precursor and the synthesis of CaSnO3 have been done in water as a green solvent. Using of complexing precursors were created a congestion in reaction medium. Different conditions have been studied in synthetic approaches and optimized the effect of different parameters on the morphology of product such as precipitation agent (alkaline), pH, temperature, the rate of stirrer, surfactants and the mole ratio of surfactants for preparation product and obtain the best product in terms of quality and morphology. By using of this CaSnO3, two types of azo dyes (acid blue 92 and acid brown 14) have been degraded at presence of ultraviolet light from aqueous solution. Results display that the powder shows appropriate catalytic behavior for degradation of dyes (77% acid brown 14 and 67% acid black 92). Therefore these nano-cube structures have been used as photocatalysts in presence of UV light for degradation of azo dyes.
Chapter 4. Cytomechanics of hair basics of the mechanical stability.
Popescu, Crisan; Höcker, Hartwig
2009-01-01
Hair is a complex "cornified" multicellular tissue composed of cuticle and cortex cells mechanically acting as a whole. The cuticle cells overlap and cortex cells interdigitate, all cells being composed of different morphological elements and separated by the cell membrane complex (CMC). The CMC and the morphological elements of the cortex cells, the macrofibrils, composed of microfibrils or intermediate filaments (IFs), and the intermacrofibrillar and intermicrofibrillar cement or the amorphous matrix material determine the mechanical properties of hair. The IFs consist of alpha-keratin molecules being arranged in a sophisticated way of two parallel monomers and antiparallel and shifted dimers rationalized by the amino acid composition and sequence. The mechanical properties of hair result from mechanical interlocking effects, hydrophobic effects, hydrogen bridges, Coulombic interactions, and (covalent) isodipeptide and, in particular, disulfide bridges on a molecular level. The mechanical models applied to hair are based on a simple two-component system, the microfibril/matrix structure. An important regime of the stress-strain curve is the transition of the molecules of the microfibrils from the alpha-helical to the beta-sheet structure. Due to the longitudinal orientation of the IF molecules the longitudinal swelling of the fibers in water is negligible, the radial swelling, however, is substantial.
QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology.
Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade
2015-05-21
The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.
QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology
Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade
2015-01-01
The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture. DOI: http://dx.doi.org/10.7554/eLife.06265.001 PMID:25997101
Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex.
Sorvina, Alexandra; Bader, Christie A; Darby, Jack R T; Lock, Mitchell C; Soo, Jia Yin; Johnson, Ian R D; Caporale, Chiara; Voelcker, Nicolas H; Stagni, Stefano; Massi, Massimiliano; Morrison, Janna L; Plush, Sally E; Brooks, Douglas A
2018-05-29
Mitochondrial morphology is important for the function of this critical organelle and, accordingly, altered mitochondrial structure is exhibited in many pathologies. Imaging of mitochondria can therefore provide important information about disease presence and progression. However, mitochondrial imaging is currently limited by the availability of agents that have the capacity to image mitochondrial morphology in both live and fixed samples. This can be particularly problematic in clinical studies or large, multi-centre cohort studies, where tissue archiving by fixation is often more practical. We previously reported the synthesis of an iridium coordination complex [Ir(ppy) 2 (MeTzPyPhCN)] + ; where ppy is a cyclometalated 2-phenylpyridine and TzPyPhCN is the 5-(5-(4-cyanophen-1-yl)pyrid-2-yl)tetrazolate ligand; and showed that this complex (herein referred to as IraZolve-Mito) has a high specificity for mitochondria in live cells. Here we demonstrate that IraZolve-Mito can also effectively stain mitochondria in both live and fixed tissue samples. The staining protocol proposed is versatile, providing a universal procedure for cell biologists and pathologists to visualise mitochondria.
NASA Astrophysics Data System (ADS)
Orlando, S.; Miceli, M.; Petruk, O.
2017-02-01
Supernova remnants (SNRs) are diffuse extended sources characterized by a complex morphology and a non-uniform distribution of ejecta. Such a morphology reflects pristine structures and features of the progenitor supernova (SN) and the early interaction of the SN blast wave with the inhomogeneous circumstellar medium (CSM). Deciphering the observations of SNRs might open the possibility to investigate the physical properties of both the interacting ejecta and the shocked CSM. This requires accurate numerical models which describe the evolution from the SN explosion to the remnant development and which connect the emission properties of the remnants to the progenitor SNe. Here we show how multi-dimensional SN-SNR hydrodynamic models have been very effective in deciphering observations of SNR Cassiopeia A and SN 1987A, thus unveiling the structure of ejecta in the immediate aftermath of the SN explosion and constraining the 3D pre-supernova structure and geometry of the environment surrounding the progenitor SN.
Tandem Repeat Proteins Inspired By Squid Ring Teeth
NASA Astrophysics Data System (ADS)
Pena-Francesch, Abdon
Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.
Han, Sang Kuy; Chen, Chao-Wei; Wierwille, Jerry; Chen, Yu; Hsieh, Adam H.
2014-01-01
The defining characteristic of the annulus fibrosus (AF) of the intervertebral disc (IVD) has long been the lamellar structures that consist of highly ordered collagen fibers arranged in alternating oblique angles from one layer to the next. However, a series of recent histologic studies have demonstrated that AF lamellae contain elastin- and type VI collagen-rich secondary “cross-bridge” structures across lamellae. In this study, we use optical coherence tomography (OCT) to elucidate the three-dimensional (3D) morphologies of these translamellar cross-bridge in AF tissues. Mesoscale volumetric images by OCT reveal a highly heterogeneous spatial network and distribution of 3-D translamellar cross-bridges. The results of this study confirm the translamellar cross-bridge is identified as a distinguishable structure, which is laid in the interbundle space of adjacent lamellae and crisscrosses multiple lamellae in the radial direction. In contrast to previously proposed models extrapolated from 2-D sections, results from this current study show that translamellar cross-bridges exist as a complex, interconnected network. We also found much greater variation in lengths of cross-bridges within the interbundle space of lamellae (0.8-1.4 mm from the current study versus 0.3-0.6 mm from 2-D sections). OCT-based 3-D morphology of translamellar cross-bridge provides novel insight into the AF structure. PMID:25564974
Borleffs, Elisabeth; Maassen, Ben A M; Lyytinen, Heikki; Zwarts, Frans
2017-01-01
This narrative review discusses quantitative indices measuring differences between alphabetic languages that are related to the process of word recognition. The specific orthography that a child is acquiring has been identified as a central element influencing reading acquisition and dyslexia. However, the development of reliable metrics to measure differences between language scripts hasn't received much attention so far. This paper therefore reviews metrics proposed in the literature for quantifying orthographic transparency, syllabic complexity, and morphological complexity of alphabetic languages. The review included searches of Web of Science, PubMed, PsychInfo, Google Scholar, and various online sources. Search terms pertained to orthographic transparency, morphological complexity, and syllabic complexity in relation to reading acquisition, and dyslexia. Although the predictive value of these metrics is promising, more research is needed to validate the value of the metrics discussed and to understand the 'developmental footprint' of orthographic transparency, morphological complexity, and syllabic complexity in the lexical organization and processing strategies.
Hopperdietzel, C; Hirschberg, R M; Hünigen, H; Wolter, J; Richardson, K; Plendl, J
2014-11-01
The primary objectives of this study were to document the macroscopic and histological structure of the alimentary tract (AT) of the convict cichlid Amatitlania nigrofasciata, because there are no data available for this omnivorous freshwater fish of the family Cichlidae. The morphology of the AT of A. nigrofasciata resembles that of related species. While having morphological criteria of the AT typical of most omnivorous fishes, such as a blind sac stomach and medium length intestine, A. nigrofasciata also has some structural peculiarities: the oesophagus is lined by a uniform stratified squamous epithelial layer with interspersed goblet cells along its entire length. Additionally, it has well-developed layers of the tunica muscularis including muscle fibre bundles that ascend into its mucosal folds. Occasionally, taste buds are present. In the transitional area between oesophagus and stomach, a prominent torus-like closure device is present. The mucosa of the stomach cannot be divided into different regions according to mucosal and morphological properties. The simple pattern of intestinal loops of A. nigrofasciata has few variations, irrespective of sex, mass and length of the individual fish. The first segment of the intestine is characterized by the largest mucososerosal ratio and the most complex mucosal surface architecture. A distinction of midgut and hindgut was not possible in A. nigrofasciata due to lack of defining structural components as described for other fish species. © 2014 The Fisheries Society of the British Isles.
Human bony labyrinth is an indicator of population history and dispersal from Africa
Ponce de León, Marcia S.; Koesbardiati, Toetik; Weissmann, John David; Milella, Marco; Reyna-Blanco, Carlos S.; Suwa, Gen; Kondo, Osamu; Malaspinas, Anna-Sapfo; White, Tim D.; Zollikofer, Christoph P. E.
2018-01-01
The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype–phenotype comparisons. PMID:29610337
Reaction-diffusion controlled growth of complex structures
NASA Astrophysics Data System (ADS)
Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna
2013-03-01
Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support
Bahía de Banderas, Mexico: Morphology, Magnetic Anomalies and Shallow Structure
NASA Astrophysics Data System (ADS)
Mortera Gutiérrez, Carlos A.; Bandy, William L.; Ponce Núñez, Francisco; Pérez Calderón, Daniel A.
2016-10-01
The Bahía de Banderas lies within a tectonically complex area at the northern end of the Middle America Trench. The structure, morphology, subsurface geology and tectonic history of the bay are essential for unraveling the complex tectonic processes occurring in this area. With this focus, marine geophysical data (multi-beam bathymetry, high resolution seismic reflection and total field magnetic data) were collected within the bay and adjacent areas during four campaigns aboard the B.O. EL PUMA conducted in 2006 and 2009. These data image the detailed morphology of, and sedimentation patterns within, the Banderas Canyon (a prominent submarine canyon situated on the south side of the bay) as well as the shallow subsurface structure of the northern part of the bay and the submarine Marietas Ridge, which bounds the bay to the west. We find that the Marietas Ridge is presently a transtensional feature; the course of the Banderas Canyon is controlled by extensive turbidite fan sedimentation in its eastern extremity and by structural lineaments to the west; the canyon floor is filled by sediments and exhibits almost no evidence for recent tectonic movements; the southern canyon wall is quite steep and a few sediments are deposited as submarine fans at the base of the southern wall; and extensive turbidite fans form the lower part of the northern canyon wall, producing a gently sloping lower northern wall. We find no evidence for a regional east-west striking lineament between the bay and the Middle America Trench, which casts doubts on the previous assertion that the Banderas Canyon is unequivocally related to the presence of a regional half-graben. Finally, a N71°E oriented normal fault offsets the seafloor reflector by 15 m within the central part of the bay, suggesting that the bay is currently being subjected to NNW-SSE extension.
Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila
Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less
Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions
Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila; ...
2017-02-02
Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less
Extrinsic curvature, geometric optics, and lamellar order on curved substrates
NASA Astrophysics Data System (ADS)
Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Direct femtosecond laser ablation of copper with an optical vortex beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anoop, K. K.; Rubano, A.; Marrucci, L.
Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N=1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (21000) and a deep crater is formed. The nanostructure variation with themore » laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application.« less
Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank
2007-01-01
Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344
Synthesis and Characterization of LaTiO2N
NASA Astrophysics Data System (ADS)
Rugen, Evan E.
Photocatalysts offer an excellent opportunity to shift the global energy landscape from a fossil fuel-dependent paradigm to sustainable and carbon-neutral solar fuels. Oxynitride materials such as LaTiO2N are potential photocatalysts for the water splitting reaction due to their high oxidative stability and their narrow band gaps, which are suitable for visible light absorption. However, facile synthetic routes to metal oxynitrides with controlled morphologies are rare, and the local structures of these materials are under-characterized. Ultrasonic spray synthesis (USS) offers a facile method toward complex metal oxides which can potentially be converted to oxynitrides with preservation of the microsphere structures that typify the products from such aerosol routes. Here, La-Ti-O microspheres were facilely produced by USS and converted by ammonolysis to LaTiO2N microspheres with porous shells and hollow interiors. This particle architecture is accounted for by coupling suitable combustion chemistry with the aerosol technique, producing precursor particles where the La3+ and Ti4+ are well-mixed at small length scales; this feature enables preservation of the microsphere morphology during nitridation despite the crystallographic changes that occur. The LaTiO2N microspheres are comparable oxygen evolving photocatalysts to samples produced by conventional solid state methods. Pair distribution function (PDF) analysis is a local probe designed to examine the structure of disordered crystalline materials, and is an ideal technique for characterizing the ordering of anions in oxynitrides. Preliminary studies using PDF analysis to determine the presence of anion ordering and local structure in LaTiO2N produced by solid state methods are presented here. Future experiments are proposed that will grant detailed insight into the factors driving the degree of anion ordering in these types of materials. These results demonstrate the utility of USS as a facile, potentially scalable route to complex photocatalytic materials and their precursors, and the feasibility of PDF analysis for the determination of local structures in complex oxynitrides.
Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies
NASA Technical Reports Server (NTRS)
Chen, Y.- J.; Davis, S. H.
1999-01-01
A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
Bryce, Nicole S; Reynolds, Albert B; Koleske, Anthony J; Weaver, Alissa M
2013-01-01
Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.
Gray matter volume of the anterior insular cortex and social networking.
Spagna, Alfredo; Dufford, Alexander J; Wu, Qiong; Wu, Tingting; Zheng, Weihao; Coons, Edgar E; Hof, Patrick R; Hu, Bin; Wu, Yanhong; Fan, Jin
2018-05-01
In human life, social context requires the engagement in complex interactions among individuals as the dynamics of social networks. The evolution of the brain as the neurological basis of the mind must be crucial in supporting social networking. Although the relationship between social networking and the amygdala, a small but core region for emotion processing, has been reported, other structures supporting sophisticated social interactions must be involved and need to be identified. In this study, we examined the relationship between morphology of the anterior insular cortex (AIC), a structure involved in basic and high-level cognition, and social networking. Two independent cohorts of individuals (New York group n = 50, Beijing group n = 100) were recruited. Structural magnetic resonance images were acquired and the social network index (SNI), a composite measure summarizing an individual's network diversity, size, and complexity, was measured. The association between morphological features of the AIC, in addition to amygdala, and the SNI was examined. Positive correlations between the measures of the volume as well as sulcal depth of the AIC and the SNI were found in both groups, while a significant positive correlation between the volume of the amygdala and the SNI was only found in the New York group. The converging results from the two groups suggest that the AIC supports network-level social interactions. © 2018 Wiley Periodicals, Inc.
Morphological Decomposition and Semantic Integration in Word Processing
ERIC Educational Resources Information Center
Meunier, Fanny; Longtin, Catherine-Marie
2007-01-01
In the present study, we looked at cross-modal priming effects produced by auditory presentation of morphologically complex pseudowords in order to investigate semantic integration during the processing of French morphologically complex items. In Experiment 1, we used as primes pseudowords consisting of a non-interpretable combination of roots and…
Yashchenko, S G; Rybalko, S Yu
Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.
Sazatornil, Federico D; Moré, Marcela; Benitez-Vieyra, Santiago; Cocucci, Andrea A; Kitching, Ian J; Schlumpberger, Boris O; Oliveira, Paulo E; Sazima, Marlies; Amorim, Felipe W
2016-11-01
A major challenge in evolutionary ecology is to understand how co-evolutionary processes shape patterns of interactions between species at community level. Pollination of flowers with long corolla tubes by long-tongued hawkmoths has been invoked as a showcase model of co-evolution. Recently, optimal foraging models have predicted that there might be a close association between mouthparts' length and the corolla depth of the visited flowers, thus favouring trait convergence and specialization at community level. Here, we assessed whether hawkmoths more frequently pollinate plants with floral tube lengths similar to their proboscis lengths (morphological match hypothesis) against abundance-based processes (neutral hypothesis) and ecological trait mismatches constraints (forbidden links hypothesis), and how these processes structure hawkmoth-plant mutualistic networks from five communities in four biogeographical regions of South America. We found convergence in morphological traits across the five communities and that the distribution of morphological differences between hawkmoths and plants is consistent with expectations under the morphological match hypothesis in three of the five communities. In the two remaining communities, which are ecotones between two distinct biogeographical areas, interactions are better predicted by the neutral hypothesis. Our findings are consistent with the idea that diffuse co-evolution drives the evolution of extremely long proboscises and flower tubes, and highlight the importance of morphological traits, beyond the forbidden links hypothesis, in structuring interactions between mutualistic partners, revealing that the role of niche-based processes can be much more complex than previously known. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Language deficits in Pre-Symptomatic Huntington's Disease: Evidence from Hungarian
Németh, Dezso; Dye, Cristina D.; Sefcsik, Tamás; Janacsek, Karolina; Turi, Zsolt; Londe, Zsuzsa; Klivenyi, Péter; Kincses, Tamás Zs.; Nikoletta, Szabó; Vecsei, László; Ullman, Michael T.
2012-01-01
A limited number of studies have investigated language in Huntington's disease (HD). These have generally reported abnormalities in rule-governed (grammatical) aspects of language, in both syntax and morphology. Several studies of verbal inflectional morphology in English and French have reported evidence of over-active rule processing, such as over-suffixation errors (e.g., walkeded) and over-regularizations (e.g., digged). Here we extend the investigation to noun inflection in Hungarian, a Finno-Ugric agglutinative language with complex morphology, and to genetically proven pre-symptomatic Huntington's disease (pre-HD). Although individuals with pre-HD have no clinical, motor or cognitive symptoms, the underlying pathology may already have begun, and thus sensitive behavioral measures might reveal already-present impairments. Indeed, in a Hungarian morphology production task, pre-HD patients made both over-suffixation and over-regularization errors. The findings suggest the generality of over-active rule processing in both HD and pre-HD, across languages from different families with different morphological systems, and for both verbal and noun inflection. Because the neuropathology in pre-HD appears to be largely restricted to the caudate nucleus and related structures, the findings further implicate these structures in language, and in rule-processing in particular. Finally, the need for effective treatments in HD, which will likely depend in part on the ability to sensitively measure early changes in the disease, suggests the possibility that inflectional morphology, and perhaps other language measures, may provide useful diagnostic, tracking, and therapeutic tools for assessing and treating early degeneration in pre-HD and HD. PMID:22538085
Functional morphology of the cranio-mandibular complex of the Guira cuckoo (Aves).
Pestoni, Sofía; Degrange, Federico Javier; Tambussi, Claudia Patricia; Demmel Ferreira, María Manuela; Tirao, Germán Alfredo
2018-06-01
The cranio-mandibular complex is an important structure involved in food capture and processing. Its morphology is related to the nature of the food item. Jaw muscles enable the motion of this complex and their study is essential for functional and evolutionary analysis. The present study compares available behavioral and dietary data obtained from the literature with novel results from functional morphological analyses of the cranio-mandibular complex of the Guira cuckoo (Guira guira) to understand its relationship with the zoophagous trophic habit of this species. The bite force was estimated based on muscle dissections, measurements of the physiological cross-sectional area, and biomechanical modeling of the skull. The results were compared with the available functional morphological data for other birds. The standardized bite force of G. guira is higher than predicted for exclusively zoophagous birds, but lower than for granivorous and/or omnivorous birds. Guira guira possesses the generalized jaw muscular system of neognathous birds, but some features can be related to its trophic habit. The external adductor muscles act mainly during food item processing and multiple aspects of this muscle group are interpreted to increase bite force, that is, their high values of muscle mass, their mechanical advantage (MA), and their perpendicular orientation when the beak is closed. The m. depressor mandibulae and the m. pterygoideus dorsalis et ventralis are interpreted to prioritize speed of action (low MA values), being most important during prey capture. The supposed ecological significance of these traits is the potential to widen the range of prey size that can be processed and the possibility of rapidly capturing agile prey through changes in the leverage of the muscles involved in opening and closing of the bill. This contributes to the trophic versatility of the species and its ability to thrive in different habitats, including urban areas. © 2018 Wiley Periodicals, Inc.
Interrogating viral capsid assembly with ion mobility-mass spectrometry
NASA Astrophysics Data System (ADS)
Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.
2011-02-01
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.
Structural basis for spectrin recognition by ankyrin.
Ipsaro, Jonathan J; Mondragón, Alfonso
2010-05-20
Maintenance of membrane integrity and organization in the metazoan cell is accomplished through intracellular tethering of membrane proteins to an extensive, flexible protein network. Spectrin, the principal component of this network, is anchored to membrane proteins through the adaptor protein ankyrin. To elucidate the atomic basis for this interaction, we determined a crystal structure of human betaI-spectrin repeats 13 to 15 in complex with the ZU5-ANK domain of human ankyrin R. The structure reveals the role of repeats 14 to 15 in binding, the electrostatic and hydrophobic contributions along the interface, and the necessity for a particular orientation of the spectrin repeats. Using structural and biochemical data as a guide, we characterized the individual proteins and their interactions by binding and thermal stability analyses. In addition to validating the structural model, these data provide insight into the nature of some mutations associated with cell morphology defects, including those found in human diseases such as hereditary spherocytosis and elliptocytosis. Finally, analysis of the ZU5 domain suggests it is a versatile protein-protein interaction module with distinct interaction surfaces. The structure represents not only the first of a spectrin fragment in complex with its binding partner, but also that of an intermolecular complex involving a ZU5 domain.
STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
NASA Astrophysics Data System (ADS)
Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia
2015-03-01
Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ipsaro, Jonathan J.; Harper, Sandra L.; Messick, Troy E.
2010-09-07
As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrinmore » fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in {alpha}-spectrin that occur upon binding to {beta}-spectrin, and it reports the first structure of the {beta}-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ipsaro; S Harper; T Messick
2011-12-31
As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrinmore » fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in {alpha}-spectrin that occur upon binding to {beta}-spectrin, and it reports the first structure of the {beta}-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.« less
STXM/C 1s-NEXAFS study of Eu(III) and Uranyl humic acid aggregates at different pH
NASA Astrophysics Data System (ADS)
Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.
2010-04-01
Humic acids (HA) are chemically heterogeneous and structurally ill-defined biopolymers which are able to bind traces of actinides or lanthanides. Due to their dimensions in the colloidal size range they may affect transport of these elements in aquatic systems. Eu(III)- and UO22+-HA aggregates have been investigated by Scanning Transmission X-ray Microscopy (STXM) and C 1s-NEXAFS under systematic variation of pH. In the Eu(III)- and UO22+-HA systems aggregate morphologies at near neutral pH were similar to those observed in previous studies: optically dense zones (high absorption at the carbon K-edge) are embedded in a matrix of less dense material. C 1s-NEXAFS signatures observed in the different zones, i.e., the intensity of the characteristic complexation feature previously experimentally described and recently theoretically characterized, strongly depends on sample pH. In the alkaline regime (pH 9) with added carbonate, co-precipitation of Eu(III)-carbonate (or ternary carbonate/(oxo)hydroxide complexes) with the Eu(III)-HA majority fraction is observed but Eu(III) binding to HA over carbonate in the dense zones seems to be favoured. The UO22+-HA system exhibits in alkaline solution more compact morphologies combined with a strong metal ion complexation effect in the NEXAFS. Eu(III) and UO22+ polyacrylic acid (PAA) aggregates used as HA model systems show similar spectral trends; these aggregates exhibit highly branched morphologies without segregation into zones with different NEXAFS signatures. The chemical environment such as pH or the type of metal cation strongly influences both HA aggregate morphologies and NEXAFS spectral signatures. These can, in turn, be used as indicators of the strength of lanthanide or actinide ion bound HA interaction.
Dynamic and Widespread lncRNA Expression in a Sponge and the Origin of Animal Complexity
Gaiti, Federico; Fernandez-Valverde, Selene L.; Nakanishi, Nagayasu; Calcino, Andrew D.; Yanai, Itai; Tanurdzic, Milos; Degnan, Bernard M.
2015-01-01
Long noncoding RNAs (lncRNAs) are important developmental regulators in bilaterian animals. A correlation has been claimed between the lncRNA repertoire expansion and morphological complexity in vertebrate evolution. However, this claim has not been tested by examining morphologically simple animals. Here, we undertake a systematic investigation of lncRNAs in the demosponge Amphimedon queenslandica, a morphologically simple, early-branching metazoan. We combine RNA-Seq data across multiple developmental stages of Amphimedon with a filtering pipeline to conservatively predict 2,935 lncRNAs. These include intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, long intergenic nonprotein coding RNAs, and precursors for small RNAs. Sponge lncRNAs are remarkably similar to their bilaterian counterparts in being relatively short with few exons and having low primary sequence conservation relative to protein-coding genes. As in bilaterians, a majority of sponge lncRNAs exhibit typical hallmarks of regulatory molecules, including high temporal specificity and dynamic developmental expression. Specific lncRNA expression profiles correlate tightly with conserved protein-coding genes likely involved in a range of developmental and physiological processes, such as the Wnt signaling pathway. Although the majority of Amphimedon lncRNAs appears to be taxonomically restricted with no identifiable orthologs, we find a few cases of conservation between demosponges in lncRNAs that are antisense to coding sequences. Based on the high similarity in the structure, organization, and dynamic expression of sponge lncRNAs to their bilaterian counterparts, we propose that these noncoding RNAs are an ancient feature of the metazoan genome. These results are consistent with lncRNAs regulating the development of animals, regardless of their level of morphological complexity. PMID:25976353
Gignac, P M; Santana, S E
2016-09-01
Over the past 40 years of research, two perspectives have dominated the study of ecomorphology at ontogenetic and evolutionary timescales. For key anatomical complexes (e.g., feeding apparatus, locomotor systems, sensory structures), morphological changes during ontogeny are often interpreted in functional terms and linked to their putative importance for fitness. Across larger timescales, morphological transformations in these complexes are examined through character stability or mutability during cladogenesis. Because the fittest organisms must pass through ontogenetic changes in size and shape, addressing transformations in morphology at different time scales, from life histories to macroevolution, has the potential to illuminate major factors contributing to phenotypic diversity. To date, most studies have relied on the assumption that organismal form is tightly constrained by the adult niche. Although this could be accurate for organisms that rapidly reach and spend a substantial portion of their life history at the adult phenotype (e.g., birds, mammals), it may not always hold true for species that experience substantial growth after one or more major fitness filters during their ontogeny (e.g., some fishes, reptiles). In such circumstances, examining the adult phenotype as the primary result of selective processes may be erroneous as it likely obscures the developmental configuration of morphology that was most critical to early survival. Given this discrepancy-and its potential to mislead interpretations of how selection may shape a taxon's phenotype-this symposium addresses the question: how do we identify such ontogenetic "inertia," and how do we integrate developmental information into our phylogenetic, ecological, and functional interpretations of complex phenotypes? © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge
2017-08-01
Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.
2012-09-13
2.1.1 Wing Morphology. Insect wings are formed from a complex makeup of polymer based chains, Chitin , that form the Cuticle, which provides the strong... Chitin , a long-chain polymer and a deriva- tive of glucose, is the main component of the exoskeletons and wings of insects . Due to the ability of the...biological specimen to vary the bonding chains, assemblage of nanofibers, and crystalline structure, the material properties of chitin can vary over a
Aggregation and Disaggregation of Senile Plaques in Alzheimer Disease
NASA Astrophysics Data System (ADS)
Cruz, L.; Urbanc, B.; Buldyrev, S. V.; Christie, R.; Gomez-Isla, T.; Havlin, S.; McNamara, M.; Stanley, H. E.; Hyman, B. T.
1997-07-01
We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.
3D bioprinting of structural proteins.
Włodarczyk-Biegun, Małgorzata K; Del Campo, Aránzazu
2017-07-01
3D bioprinting is a booming method to obtain scaffolds of different materials with predesigned and customized morphologies and geometries. In this review we focus on the experimental strategies and recent achievements in the bioprinting of major structural proteins (collagen, silk, fibrin), as a particularly interesting technology to reconstruct the biochemical and biophysical composition and hierarchical morphology of natural scaffolds. The flexibility in molecular design offered by structural proteins, combined with the flexibility in mixing, deposition, and mechanical processing inherent to bioprinting technologies, enables the fabrication of highly functional scaffolds and tissue mimics with a degree of complexity and organization which has only just started to be explored. Here we describe the printing parameters and physical (mechanical) properties of bioinks based on structural proteins, including the biological function of the printed scaffolds. We describe applied printing techniques and cross-linking methods, highlighting the modifications implemented to improve scaffold properties. The used cell types, cell viability, and possible construct applications are also reported. We envision that the application of printing technologies to structural proteins will enable unprecedented control over their supramolecular organization, conferring printed scaffolds biological properties and functions close to natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.
Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David
2017-04-01
Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional anatomy of gliding membrane muscles in the sugar glider (Petaurus breviceps).
Endo, H; Yokokawa, K; Kurohmaru, M; Hayashi, Y
1998-02-01
In order to clarify the morphological adaptation for gliding behavior in the marsupial mammals, the gliding membrane muscles in the sugar glider (Petaurus breviceps) were observed. Unlike the styliform cartilage in flying squirrels, the sugar glider has a well-developed tibiocarpalis muscle in the most lateral area of the gliding membrane. The gliding membrane substantially consists of the humerodorsalis and tibioabdominalis muscle complex. We believe that the thick tibiocarpalis bundle and the humerodorsalis and tibioabdominalis muscle complex may serve as a membrane controller in the gliding behavior. A characteristic thin membranous structure between the cutaneous and deeper muscles was observed. In addition to the direct powerful control exerted by trunk and limb movement, we suggest that indirect power conduction by this thin membranous structure may contribute to gliding membrane control.
Moribe, Kunikazu; Tozuka, Yuichi; Yamamoto, Keiji
2008-02-14
Supercritical fluid technique have been exploited in extraction, separation and crystallization processes. In the field of pharmaceutics, supercritical carbon dioxide (scCO(2)) has been used for the purpose of micronization, polymorphic control, and preparation of solid dispersion and complexes. Particle design of active pharmaceutical ingredients is important to make the solid dosage forms with suitable physicochemical properties. Control of the characteristic properties of particles, such as size, shape, crystal structure and morphology is required to optimize the formulation. For solubility enhancement of poorly water-soluble drugs, preparation of the solid dispersion or the complexation with proper drugs or excipients should be a promising approach. This review focuses on aspects of polymorphic control and complexation behavior of active pharmaceutical ingredients by scCO(2) processing.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
NASA Astrophysics Data System (ADS)
Jawoor, Shailaja S.; Patil, Sangamesh A.; Kumbar, Mahantesh; Ramawadgi, Prashant B.
2018-07-01
In the current involvement of our research work in coordination chemistry, novel transition metal complexes were synthesized from regular reflux method and hydrothermal method using Schiff base prepared via condensation of ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate with 8-carbaldehyde-7-hydroxy-4-methylcoumarin. All the synthesized compounds were interpreted using different analytical, physicochemical and spectral methods such as magnetic moment measurement, FT-IR, 1H and 13C NMR, GCMS/ESI-MS, UV/Vis spectroscopy and TGA. The size and morphology of the nano metal complexes were determined using atomic force microscope (AFM), field emission scanning electron spectroscopy (FE-SEM) and X-ray powder diffraction (PXRD). The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. The obtained FT-IR data supports the binding of metal ion to Schiff base. Elemental analysis study suggests [ML2(H2O)2] stoichiometry, here M = Co(II), Ni(II) and Cu(II), L = deprotonated ligand. Electronic spectral results reveal six-coordinated geometry for the synthesized metal complexes. All the tested compounds show good DNA cleavage (Calf Thymus DNA) and in vitro anticancer activity (PA-I cell line), the activity results for the tested compounds are prominent and compound 9 exhibited a little enhanced activity than the other tested compounds.
Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L
2016-03-01
We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. © 2015 Royal Botanic Garden Edinburgh. New Phytologist © 2015 New Phytologist Trust.
Isometric immersions and self-similar buckling in elastic sheets.
NASA Astrophysics Data System (ADS)
Gemmer, John
The edges of torn elastic sheets and growing leaves often display hierarchical self-similar like buckling patterns. On the one hand, such complex, self similar patterns are usually associated with a competition between two distinct energy scales, e.g. elastic sheets with boundary conditions that preclude the possibility of relieving in plane strains, or at alloy-alloy interfaces between distinct crystal structures. On the other hand, within the non-Euclidean plate theory this complex morphology can be understood as low bending energy isometric immersions of hyperbolic Riemannian metrics. In particular, many growth patterns generate residual in-plane strains which can be entirely relieved by the sheet forming part of a surface of revolution or a helix. In this talk we will show that this complex morphology (i) arises from isometric immersions (ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch-point (or monkey-saddle) singularities, in complex wrinkling patterns within the class of finite bending energy isometric immersions. Using these defects we will give an explicit construction of strain-free embeddings of hyperbolic surfaces that are fractal like and have lower elastic energy than their smooth counterparts US-Israel BSF Grant 2008432. NSF Grant DMS-0807501. NSF-RTG Grant DMS-1148284.
[Old English plant names from the linguistic and lexicographic viewpoint].
Sauer, Hans; Krischke, Ulrike
2004-01-01
Roughly 1350 Old English plant names have come down to us; this is a relatively large number considering that the attested Old English vocabulary comprises ca. 24 000 words. The plant names are not only interesting for botanists, historians of medicine and many others, but also for philologists and linguists; among other aspects they can investigate their etymology, their morphology (including word-formation) and their meaning and motivation. Practically all Old English texts where plant names occur have been edited (including glosses and glossaries), the names have been listed in the Old English dictionaries, and some specific studies have been devoted to them. Nevertheless no comprehensive systematic analysis of their linguistic structure has been made. Ulrike Krischke is preparing such an analysis. A proper dictionary of the Old English plant names is also a desideratum, especially since the Old English dictionaries available and in progress normally do not deal with morphological and semantic aspects, and many do not provide etymological information. A plant-name dictionary concentrating on this information is being prepared by Hans Sauer and Ulrike Krischke. In our article here, we sketch the state of the art (ch. 1), we deal with some problems of the analysis of Old English plant names (ch. 2), e.g. the delimitation of the word-field plant names, the identification of the plants, errors and problematic spellings in the manuscripts. In ch. 3 we sketch the etymological structure according to chronological layers (Indo-European, Germanic, West-Germanic, Old English) as well as according to the distinction between native words and loan-words; in the latter category, we also mention loan-formations based on Latin models. In ch. 4 we survey the morphological aspects (simplex vs. complex words); among the complex nouns, compounds are by far the largest group (and among those, the noun + noun compounds), but there are also a few suffix formations. We also briefly present some morphological peculiarities, e.g. formations with blocked (unique) morphemes, the question of homonyms, cases of obscuration and of popular etymology. In ch. 5 we outline semantic structures, and in ch. 6, we introduce the structure of the proposed dictionary of the Old English plant names, also providing several specimen entries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager
Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less
Tamakawa, Mitsuharu; Murakami, Gen; Takashima, Ken; Kato, Tomoyasu; Hareyama, Masato
2003-12-01
We investigated the topographical anatomy of the pelvic fasciae and autonomic nerves using macroscopic slices of five decalcified female pelves. The lateral aspect of the supravaginal cervix uteri and superior-most vagina issued abundant thick fiber bundles. These visceral fibrous tissues extended dorsolaterally, joined another fibrous tissue from the rectum (the actual lateral ligament of the rectum) and attached to the parietal fibrous tissues at and around the sciatic foramina (i.e. the sacrospinous ligament, thick fasciae of the coccygeus and piriformis and dorsal end of the covering fascia of the levator ani). The inferior or ventral vagina also issued thick fiber bundles communicating with the levator ani fascia. This connection between the vagina and levator fascia, when stretched, seemed to provide a macroscopic morphology called the arcus tendineus fasciae pelvis. The overall morphology of the visceroparietal fascial bridge exhibited a bilateral wing-like shape. The fascial bridge complex was adjacent but dorso-inferior to the internal iliac vascular sheath and located slightly ventral to the pelvic splanchnic nerve. However, the pelvic plexus and its peripheral branches were embedded in the fascial complex. The hypogastric nerve ran along and beneath the uterosacral peritoneal fold, which did not contain thick fibrous tissue. During surgery, in combination with the superficially located vascular sheath, the morphology of the visceroparietal fascial bridge and associated nerves seemed to be artificially changed and developed into the so-called cardinal, uterosacral, uterovesical and/or rectal lateral ligaments. The classical and original concepts of these pelvic fascial structures may need to be altered to adjust to these surgical observations.
Wang, Xiao-Dong; Chen, Yuncai; Wolf, Miriam; Wagner, Klaus V.; Liebl, Claudia; Scharf, Sebastian H.; Harbich, Daniela; Mayer, Bianca; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Müller, Marianne B.; Schmidt, Mathias V.
2011-01-01
Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders. PMID:21296667
NASA Astrophysics Data System (ADS)
Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.
2018-05-01
Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.
NASA Astrophysics Data System (ADS)
Fahem, Abeer A.
2012-03-01
Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L1) and 2:1 (L2) having bifunctional coordinated groups (NH2 and CHO groups, respectively) and their metal complexes with Ni(II) and UO2(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, 1H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L1)Cl2]·2.5H2O, [UO2(L1)(NO3)2]·2H2O, [Ni(L2)Cl2]·1.5H2O and [UO2(L2)(NO3)2] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: Dq, B, β and LFSE were calculated while, UO2(II) complexes are eight coordinate with dodecahedral geometry and the force constant, FUsbnd O and bond length, RUsbnd O were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO2(L2)(NO3)2] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO2(L2)(NO3)2] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.
NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.
2008-12-01
Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.
Fotis, Alexander T; Curtis, Peter S
2017-10-01
Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tuning the morphology of metastable MnS films by simple chemical bath deposition technique
NASA Astrophysics Data System (ADS)
Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.
2015-10-01
In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.
Processing verbal morphology in patients with congenital left-hemispheric brain lesions.
Knecht, Marion; Lidzba, Karen
2016-01-01
The goal of this study was to test whether children, teenagers and adults with congenital left-hemispheric brain lesions master the regularities of German verbal inflectional morphology. Thirteen patients and 35 controls without brain damage participated in three experiments. A grammaticality judgment task, a participle inflection task and a nonce-verb inflection task revealed significant differences between patients and controls. In addition, a main effect of verb type could be observed as patients and controls made more mistakes with irregular than with regular verbs. The findings indicate that the congenitally damaged brain not only has difficulties with complex syntactic structures during language development, as reported by earlier studies, but also has persistent deficits on the morphological level. These observations suggest that the plasticity of the developing brain cannot fully compensate for congenital brain damage which affects regions associated with language functions. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hannachi, Amira; Maghraoui-Meherzi, Hager
2017-03-01
Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.
Morphological elucidation of basal ganglia circuits contributing reward prediction
Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki
2015-01-01
Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor–critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913
Hippocampus in health and disease: An overview
Anand, Kuljeet Singh; Dhikav, Vikas
2012-01-01
Hippocampus is a complex brain structure embedded deep into temporal lobe. It has a major role in learning and memory. It is a plastic and vulnerable structure that gets damaged by a variety of stimuli. Studies have shown that it also gets affected in a variety of neurological and psychiatric disorders. In last decade or so, lot has been learnt about conditions that affect hippocampus and produce changes ranging from molecules to morphology. Progresses in radiological delineation, electrophysiology, and histochemical characterization have made it possible to study this archicerebral structure in greater detail. Present paper attempts to give an overview of hippocampus, both in health and diseases. PMID:23349586
NASA Astrophysics Data System (ADS)
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.
Cryptic Speciation Patterns in Iranian Rock Lizards Uncovered by Integrative Taxonomy
Ahmadzadeh, Faraham; Flecks, Morris; Carretero, Miguel A.; Mozaffari, Omid; Böhme, Wolfgang; Harris, D. James; Freitas, Susana; Rödder, Dennis
2013-01-01
While traditionally species recognition has been based solely on morphological differences either typological or quantitative, several newly developed methods can be used for a more objective and integrative approach on species delimitation. This may be especially relevant when dealing with cryptic species or species complexes, where high overall resemblance between species is coupled with comparatively high morphological variation within populations. Rock lizards, genus Darevskia, are such an example, as many of its members offer few diagnostic morphological features. Herein, we use a combination of genetic, morphological and ecological criteria to delimit cryptic species within two species complexes, D. chlorogaster and D. defilippii, both distributed in northern Iran. Our analyses are based on molecular information from two nuclear and two mitochondrial genes, morphological data (15 morphometric, 16 meristic and four categorical characters) and eleven newly calculated spatial environmental predictors. The phylogeny inferred for Darevskia confirmed monophyly of each species complex, with each of them comprising several highly divergent clades, especially when compared to other congeners. We identified seven candidate species within each complex, of which three and four species were supported by Bayesian species delimitation within D. chlorogaster and D. defilippii, respectively. Trained with genetically determined clades, Ecological Niche Modeling provided additional support for these cryptic species. Especially those within the D. defilippii-complex exhibit well-differentiated niches. Due to overall morphological resemblance, in a first approach PCA with mixed variables only showed the separation between the two complexes. However, MANCOVA and subsequent Discriminant Analysis performed separately for both complexes allowed for distinction of the species when sample size was large enough, namely within the D. chlorogaster-complex. In conclusion, the results support four new species, which are described herein. PMID:24324611
Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech
2018-04-01
Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).
Correia, Sandra M; Canhoto, Jorge M
2010-06-01
The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.
The effect of sign language structure on complex word reading in Chinese deaf adolescents.
Lu, Aitao; Yu, Yanping; Niu, Jiaxin; Zhang, John X
2015-01-01
The present study was carried out to investigate whether sign language structure plays a role in the processing of complex words (i.e., derivational and compound words), in particular, the delay of complex word reading in deaf adolescents. Chinese deaf adolescents were found to respond faster to derivational words than to compound words for one-sign-structure words, but showed comparable performance for two-sign-structure words. For both derivational and compound words, response latencies to one-sign-structure words were shorter than to two-sign-structure words. These results provide strong evidence that the structure of sign language affects written word processing in Chinese. Additionally, differences between derivational and compound words in the one-sign-structure condition indicate that Chinese deaf adolescents acquire print morphological awareness. The results also showed that delayed word reading was found in derivational words with two signs (DW-2), compound words with one sign (CW-1), and compound words with two signs (CW-2), but not in derivational words with one sign (DW-1), with the delay being maximum in DW-2, medium in CW-2, and minimum in CW-1, suggesting that the structure of sign language has an impact on the delayed processing of Chinese written words in deaf adolescents. These results provide insight into the mechanisms about how sign language structure affects written word processing and its delayed processing relative to their hearing peers of the same age.
Antipina, M N; Gaĭnutdinov, R V; Rakhnianskaia, A A; Sergeev-Cherenkov, A N; Tolstikhina, A L; Iurova, T V; Kislov, V V; Khomutov, G B
2003-01-01
The formation of DNA complexes with Langmuir monolayers of the cationic lipid octadecylamine (ODA) and the new amphiphilic polycation poly-4-vinylpyridine with 16% of cetylpyridinium groups (PVP-16) on the surface of an aqueous solution of native DNA of low ionic strength was studied. Topographic images of Langmuir-Blodgett films of DNA/ODA and DNA/PVP-16 complexes applied to micaceous substrates were investigated by the method of atomic force microscopy. It was found that films of the amphiphilic polycation have an ordered planar polycrystalline structure. The morphology of planar DNA complexes with the amphiphilic cation substantially depended on the incubation time and the phase state of the monolayer on the surface of the aqueous DNA solution. Complex structures and individual DNA molecules were observed on the surface of the amphiphilic monolayer. Along with quasi-linear individual bound DNA molecules, characteristic extended net-like structures and quasi-circular toroidal condensed conformations of planar DNA complexes were detected. Mono- and multilayer films of DNA/PVP-16 complexes were used as templates and nanoreactors for the synthesis of inorganic nanostructures via the binding of metal cations from the solution and subsequent generation of the inorganic phase. As a result, ultrathin polymeric composite films with integrated DNA building blocks and quasi-linear arrays of inorganic semiconductor (CdS) and iron oxide nanoparticles and nanowires were obtained. The nanostructures obtained were characterized by scanning probe microscopy and transmission electron microscopy techniques. The methods developed are promising for investigating the mechanisms of structural organization and transformation in DNA and polyelectrolyte complexes at the gas-liquid interface and for the design of new extremely thin highly ordered planar polymeric and composite materials, films, and coatings with controlled ultrastructure for applications in nanoelectronics and nanobiotechnology.
Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia
NASA Astrophysics Data System (ADS)
Fridovsky, Valery; Polufuntikova, Lena
2017-04-01
The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits combined aggregate and intergranular cleavage. The third cataclastic-segregation morphologic type (Cd from 3.0 to 4.5) is distinguished by a wide distribution of lentelliptical grains of rock-forming minerals in a finely-crystalline matrix and by intergranular cleavage. The rocks of the fourth segregation-striate morphologic type (Cd >5.0) contain lenticular segregations of quartz and feldspar in an intensely linearized mylonite groundmass.
Sociolinguistic Typology and Sign Languages
Schembri, Adam; Fenlon, Jordan; Cormier, Kearsy; Johnston, Trevor
2018-01-01
This paper examines the possible relationship between proposed social determinants of morphological ‘complexity’ and how this contributes to linguistic diversity, specifically via the typological nature of the sign languages of deaf communities. We sketch how the notion of morphological complexity, as defined by Trudgill (2011), applies to sign languages. Using these criteria, sign languages appear to be languages with low to moderate levels of morphological complexity. This may partly reflect the influence of key social characteristics of communities on the typological nature of languages. Although many deaf communities are relatively small and may involve dense social networks (both social characteristics that Trudgill claimed may lend themselves to morphological ‘complexification’), the picture is complicated by the highly variable nature of the sign language acquisition for most deaf people, and the ongoing contact between native signers, hearing non-native signers, and those deaf individuals who only acquire sign languages in later childhood and early adulthood. These are all factors that may work against the emergence of morphological complexification. The relationship between linguistic typology and these key social factors may lead to a better understanding of the nature of sign language grammar. This perspective stands in contrast to other work where sign languages are sometimes presented as having complex morphology despite being young languages (e.g., Aronoff et al., 2005); in some descriptions, the social determinants of morphological complexity have not received much attention, nor has the notion of complexity itself been specifically explored. PMID:29515506
Human bony labyrinth is an indicator of population history and dispersal from Africa.
Ponce de León, Marcia S; Koesbardiati, Toetik; Weissmann, John David; Milella, Marco; Reyna-Blanco, Carlos S; Suwa, Gen; Kondo, Osamu; Malaspinas, Anna-Sapfo; White, Tim D; Zollikofer, Christoph P E
2018-04-17
The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons. Copyright © 2018 the Author(s). Published by PNAS.
Transmission X-ray scattering as a probe for complex liquid-surface structures
Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; ...
2016-01-28
The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibilitymore » of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.« less
Morphology of the Nasal Apparatus in Pygmy (Kogia Breviceps) and Dwarf (K. Sima) Sperm Whales.
Thornton, Steven W; Mclellan, William A; Rommel, Sentiel A; Dillaman, Richard M; Nowacek, Douglas P; Koopman, Heather N; Pabst, D Ann
2015-07-01
Odontocete echolocation clicks are generated by pneumatically driven phonic lips within the nasal passage, and propagated through specialized structures within the forehead. This study investigated the highly derived echolocation structures of the pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales through careful dissections (N = 18 K. breviceps, 6 K. sima) and histological examinations (N = 5 K. breviceps). This study is the first to show that the entire kogiid sound production and transmission pathway is acted upon by complex facial muscles (likely derivations of the m. maxillonasolabialis). Muscles appear capable of tensing and separating the solitary pair of phonic lips, which would control echolocation click frequencies. The phonic lips are enveloped by the "vocal cap," a morphologically complex, connective tissue structure unique to kogiids. Extensive facial muscles appear to control the position of this structure and its spatial relationship to the phonic lips. The vocal cap's numerous air crypts suggest that it may reflect sounds. Muscles encircling the connective tissue case that surrounds the spermaceti organ may change its shape and/or internal pressure. These actions may influence the acoustic energy transmitted from the phonic lips, through this lipid body, to the melon. Facial and rostral muscles act upon the length of the melon, suggesting that the sound "beam" can be focused as it travels through the melon and into the environment. This study suggests that the kogiid echolocation system is highly tunable. Future acoustic studies are required to test these hypotheses and gain further insight into the kogiid echolocation system. © 2015 Wiley Periodicals, Inc.
Heterogeneity of Focal Adhesions and Focal Contacts in Motile Fibroblasts.
Gladkikh, Aleena; Kovaleva, Anastasia; Tvorogova, Anna; Vorobjev, Ivan A
2018-01-01
Cell-extracellular matrix (ECM) adhesion is an important property of virtually all cells in multicellular organisms. Cell-ECM adhesion studies, therefore, are very significant both for biology and medicine. Over the last three decades, biomedical studies resulted in a tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Based on morphological and molecular criteria, several different types of model cell-ECM adhesion structures including focal adhesions, focal complexes, fibrillar adhesions, podosomes, and three-dimensional matrix adhesions have been described. All the subcellular structures that mediate cell-ECM adhesion are quite heterogeneous, often varying in size, shape, distribution, dynamics, and, to a certain extent, molecular constituents. The morphological "plasticity" of cell-ECM adhesion perhaps reflects the needs of cells to sense, adapt, and respond to a variety of extracellular environments. In addition, cell type (e.g., differentiation status, oncogenic transformation, etc.) often exerts marked influence on the structure of cell-ECM adhesions. Although molecular, genetic, biochemical, and structural studies provide important maps or "snapshots" of cell-ECM adhesions, the area of research that is equally valuable is to study the heterogeneity of FA subpopulations within cells. Recently time-lapse observations on the FA dynamics become feasible, and behavior of individual FA gives additional information on cell-ECM interactions. Here we describe a robust method of labeling of FA using plasmids with fluorescent markers for paxillin and vinculin and quantifying the morphological and dynamical parameters of FA.
3D printing of biomimetic microstructures for cancer cell migration.
Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen
2014-02-01
To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10 T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10 T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10 T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10 T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies.
Zhou, Changqing; Kandemir, Irfan; Walsh, Douglas B; Zalom, Frank G; Lavine, Laura Corley
2012-01-01
The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st) and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years) migration of the western tarnished plant bug into agricultural habitats across the western United States. This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.
Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes
Motch Perrine, Susan M.; Stecko, Tim; Neuberger, Thomas; Jabs, Ethylin W.; Ryan, Timothy M.; Richtsmeier, Joan T.
2017-01-01
The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head. PMID:28790902
Morphodynamics of a growing microbial colony driven by cell death
NASA Astrophysics Data System (ADS)
Ghosh, Pushpita; Levine, Herbert
2017-11-01
Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.
Grammatical Impairments in PPA
Thompson, Cynthia K.; Mack, Jennifer E.
2015-01-01
Background Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. Aims We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. Main Contribution PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Conclusions Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in PPA, as well as the structural and functional neural correlates of grammatical impairments across linguistic domains. Few studies have examined the effects of treatment for grammatical impairments in PPA; research in this area is needed to better understand how (or if) grammatical processing ability can be improved, the potential for spared neural tissue to be recruited to support this, and whether the neural connections within areas of dysfunctional tissue required for grammatical processing can be enhanced using cortical stimulation. PMID:25642014
Grammatical Impairments in PPA.
Thompson, Cynthia K; Mack, Jennifer E
2014-09-01
Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in PPA, as well as the structural and functional neural correlates of grammatical impairments across linguistic domains. Few studies have examined the effects of treatment for grammatical impairments in PPA; research in this area is needed to better understand how (or if) grammatical processing ability can be improved, the potential for spared neural tissue to be recruited to support this, and whether the neural connections within areas of dysfunctional tissue required for grammatical processing can be enhanced using cortical stimulation.
Morphological diagnostics of star formation in molecular clouds
NASA Astrophysics Data System (ADS)
Beaumont, Christopher Norris
Molecular clouds are the birth sites of all star formation in the present-day universe. They represent the initial conditions of star formation, and are the primary medium by which stars transfer energy and momentum back to parsec scales. Yet, the physical evolution of molecular clouds remains poorly understood. This is not due to a lack of observational data, nor is it due to an inability to simulate the conditions inside molecular clouds. Instead, the physics and structure of the interstellar medium are sufficiently complex that interpreting molecular cloud data is very difficult. This dissertation mitigates this problem, by developing more sophisticated ways to interpret morphological information in molecular cloud observations and simulations. In particular, I have focused on leveraging machine learning techniques to identify physically meaningful substructures in the interstellar medium, as well as techniques to inter-compare molecular cloud simulations to observations. These contributions make it easier to understand the interplay between molecular clouds and star formation. Specific contributions include: new insight about the sheet-like geometry of molecular clouds based on observations of stellar bubbles; a new algorithm to disambiguate overlapping yet morphologically distinct cloud structures; a new perspective on the relationship between molecular cloud column density distributions and the sizes of cloud substructures; a quantitative analysis of how projection effects affect measurements of cloud properties; and an automatically generated, statistically-calibrated catalog of bubbles identified from their infrared morphologies.
RUIZ-RAMOS, MARGARITA; MÍNGUEZ, M. INÉS
2006-01-01
• Background Plant structural (i.e. architectural) models explicitly describe plant morphology by providing detailed descriptions of the display of leaf and stem surfaces within heterogeneous canopies and thus provide the opportunity for modelling the functioning of plant organs in their microenvironments. The outcome is a class of structural–functional crop models that combines advantages of current structural and process approaches to crop modelling. ALAMEDA is such a model. • Methods The formalism of Lindenmayer systems (L-systems) was chosen for the development of a structural model of the faba bean canopy, providing both numerical and dynamic graphical outputs. It was parameterized according to the results obtained through detailed morphological and phenological descriptions that capture the detailed geometry and topology of the crop. The analysis distinguishes between relationships of general application for all sowing dates and stem ranks and others valid only for all stems of a single crop cycle. • Results and Conclusions The results reveal that in faba bean, structural parameterization valid for the entire plant may be drawn from a single stem. ALAMEDA was formed by linking the structural model to the growth model ‘Simulation d'Allongement des Feuilles’ (SAF) with the ability to simulate approx. 3500 crop organs and components of a group of nine plants. Model performance was verified for organ length, plant height and leaf area. The L-system formalism was able to capture the complex architecture of canopy leaf area of this indeterminate crop and, with the growth relationships, generate a 3D dynamic crop simulation. Future development and improvement of the model are discussed. PMID:16390842
Merkel, Julia; Lieb, Bernhard; Wanninger, Andreas
2015-07-03
Entoprocta (Kamptozoa) is an enigmatic, acoelomate, tentacle-bearing phylum with indirect development, either via a swimming- or a creeping-type larva and still debated phylogenetic position within Lophotrochozoa. Recent morphological and neuro-anatomical studies on the creeping-type larva support a close relationship of Entoprocta and Mollusca, with a number of shared apomorphies including a tetraneurous nervous system and a complex serotonin-expressing apical organ. However, many morphological traits of entoproct larvae, in particular of the putative basal creeping-type larva, remain elusive. Applying fluorescent markers and 3D modeling, we found that this larval type has the most complex musculature hitherto described for any lophotrochozoan larva. The muscle systems identified include numerous novel and most likely creeping-type larva-specific structures such as frontal organ retractors, several other muscle fibers originating from the frontal organ, and longitudinal prototroch muscles. Interestingly, we found distinct muscle sets that are also present in several mollusks. These include paired sets of dorso-ventral muscles that intercross ventrally above the foot sole and a paired enrolling muscle that is distinct from the musculature of the body wall. Our data add further morphological support for an entoproct-mollusk relationship (Tetraneuralia) and strongly argue for the presence of an enrolling musculature as well as seriality (but not segmentation) in the last common tetraneuralian ancestor. The evolutionary driving forces that have led to the emergence of the extraordinarily complex muscular architecture in this short-lived, non-feeding entoproct larval type remain unknown, as are the processes that give rise to the highly different and much simpler muscular bodyplan of the adult entoproct during metamorphosis.
Esteve-Altava, Borja; Rasskin-Gutman, Diego
2015-07-20
Bone fusion has occurred repeatedly during skull evolution in all tetrapod lineages, leading to a reduction in the number of bones and an increase in their morphological complexity. The ontogeny of the human skull includes also bone fusions as part of its normal developmental process. However, several disruptions might cause premature closure of cranial sutures (craniosynostosis), reducing the number of bones and producing new skull growth patterns that causes shape changes. Here, we compare skull network models of a normal newborn with different craniosynostosis conditions, the normal adult stage, and phylogenetically reconstructed forms of a primitive tetrapod, a synapsid, and a placental mammal. Changes in morphological complexity of newborn-to-synostosed skulls are two to three times less than in newborn-to-adult; and even smaller when we compare them to the increases among the reconstructed ancestors in the evolutionary transitions. In addition, normal, synostosed, and adult human skulls show the same connectivity modules: facial and cranial. Differences arise in the internal structure of these modules. In the adult skull the facial module has an internal hierarchical organization, whereas the cranial module has a regular network organization. However, all newborn forms, normal and synostosed, do not reach such kind of internal organization. We conclude that the subtle changes in skull complexity at the developmental scale can change the modular substructure of the newborn skull to more integrated modules in the adult skull, but is not enough to generate radical changes as it occurs at a macroevolutionary scale. The timing of closure of craniofacial sutures, together with the conserved patterns of morphological modularity, highlights a potential relation between the premature fusion of bones and the evolution of the shape of the skull in hominids.
Bryce, Nicole S.; Reynolds, Albert B.; Koleske, Anthony J.; Weaver, Alissa M.
2013-01-01
Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis. PMID:23691243
Trigo, Tatiane C; Tirelli, Flávia P; de Freitas, Thales R O; Eizirik, Eduardo
2014-01-01
Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species.
Trigo, Tatiane C.; Tirelli, Flávia P.; de Freitas, Thales R. O.; Eizirik, Eduardo
2014-01-01
Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species. PMID:25250657
Krishna, Shivani; Keasar, Tamar
2018-06-06
Morphologically complex flowers are characterized by bilateral symmetry, tube-like shapes, deep corolla tubes, fused petals, and/or poricidal anthers, all of which constrain the access of insect visitors to floral nectar and pollen rewards. Only a subset of potential pollinators, mainly large bees, learn to successfully forage on such flowers. Thus, complexity may comprise a morphological filter that restricts the range of visitors and thereby increases food intake for successful foragers. Such pollinator specialization, in turn, promotes flower constancy and reduces cross-species pollen transfer, providing fitness benefits to plants with complex flowers. Since visual signals associated with floral morphological complexity are generally honest (i.e., indicate food rewards), pollinators need to perceive and process them. Physiological studies show that bees detect distant flowers through long-wavelength sensitive photoreceptors. Bees effectively perceive complex shapes and learn the positions of contours based on their spatial frequencies. Complex flowers require long handling times by naive visitors, and become highly profitable only for experienced foragers. To explore possible pathways towards the evolution of floral complexity, we discuss cognitive mechanisms that potentially allow insects to persist on complex flowers despite low initial foraging gains, suggest experiments to test these mechanisms, and speculate on their adaptive value.
Complexity: the organizing principle at the interface of biological (dis)order.
Bhat, Ramray; Pally, Dharma
2017-07-01
The term complexity means several things to biologists.When qualifying morphological phenotype, on the one hand, it is used to signify the sheer complicatedness of living systems, especially as a result of the multicomponent aspect of biological form. On the other hand, it has been used to represent the intricate nature of the connections between constituents that make up form: a more process-based explanation. In the context of evolutionary arguments, complexity has been defined, in a quantifiable fashion, as the amount of information, an informatic template such as a sequence of nucleotides or amino acids stores about its environment. In this perspective, we begin with a brief review of the history of complexity theory. We then introduce a developmental and an evolutionary understanding of what it means for biological systems to be complex.We propose that the complexity of living systems can be understood through two interdependent structural properties: multiscalarity of interconstituent mechanisms and excitability of the biological materials. The answer to whether a system becomes more or less complex over time depends on the potential for its constituents to interact in novel ways and combinations to give rise to new structures and functions, as well as on the evolution of excitable properties that would facilitate the exploration of interconstituent organization in the context of their microenvironments and macroenvironments.
Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias
2014-01-01
Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation. PMID:24810913
Evolution of Soot Particle Morphology and Mixing State in the Atmosphere
NASA Astrophysics Data System (ADS)
Mazzoleni, C.; China, S.; Sharma, N.; Gorkowski, K.; Dubey, M.; Aiken, A. C.; Zaveri, R. A.; Salvadori, N.; Chakrabarty, R. K.; Moosmuller, H.; Onasch, T. B.; Herndon, S.; Williams, L. R.; Liu, S.; Dzepina, K.; Helmig, D.; Hueber, J.; Fialho, P. J.; Mazzoleni, L. R.; kumar, S.; Dziobak, M.; Wright, K.
2013-12-01
Soot particles (aka black carbon) impact the environment and climate by affecting Earth's radiation balance, cloud microphysics, and atmospheric chemistry. The complex morphology and mixing state of soot particles influence their optical properties and therefore their radiative forcing, the particles' transport, lifecycle, and heterogeneous chemistry. How soot morphology and mixing state alter during transport from the source to remote areas is still not well understood. While aging, soot particles can change shape, oxidize and mix, and become coated by organic and inorganic materials. In this study, we investigate the morphological and mixing state evolution of single soot particles in different stages of their 'life' in the atmosphere. This analysis will include an overview of several samples collected in various locations and atmospheric conditions: 1) particles freshly emitted near freeway on-ramps in Southern Michigan (USA); 2) particles emitted in two biomass burning events in New Mexico (USA), one close to the sampling location and another hundreds of miles away; 3) particles in the urban atmosphere of Mexico City and in the uplifted boundary layer captured on the top of the Pico de Tres Padres Mountain (on the north edge of Mexico City); 4) particles collected in the Sacramento urban area and the Sierra Nevada foothills (CA, USA); 5) particles collected in Detling (UK), and mostly transported from London, and 6) long-range transported particles in the free troposphere and collected at the Pico Mountain Observatory, located near the top of the Pico Volcano in the Azores (Portugal). We analyzed a large number of individual particles using electron microscopy and X-ray spectroscopy followed by image analysis. The projected structural properties of soot particles were characterized using size (maximum length, maximum width, and area equivalent diameter) and shape descriptors (e.g., aspect ratio, roundness, and convexity). The particle mass-fractal dimensions were determined using the ensemble method. The mixing state was analyzed by classifying soot particles based on visual inspection of coating and morphology. Soot particles freshly emitted by anthropogenic sources show less coating and more open chain-like structures; on the other hand biomass burning and long-range transported soot particles appear to be mostly coated and exhibit very compacted shapes. However, soot processing in urban atmospheres results in a complex mixture of coated and uncoated particles with a variety of morphologies and mixing states.
Computer simulation of heterogeneous polymer photovoltaic devices
NASA Astrophysics Data System (ADS)
Kodali, Hari K.; Ganapathysubramanian, Baskar
2012-04-01
Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13-26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures.
Reconstructing the past: methods and techniques for the digital restoration of fossils
2016-01-01
During fossilization, the remains of extinct organisms are subjected to taphonomic and diagenetic processes. As a result, fossils show a variety of preservational artefacts, which can range from small breaks and cracks, disarticulation and fragmentation, to the loss and deformation of skeletal structures and other hard parts. Such artefacts can present a considerable problem, as the preserved morphology of fossils often forms the basis for palaeontological research. Phylogenetic and taxonomic studies, inferences on appearance, ecology and behaviour and functional analyses of fossil organisms strongly rely on morphological information. As a consequence, the restoration of fossil morphology is often a necessary prerequisite for further analyses. Facilitated by recent computational advances, virtual reconstruction and restoration techniques offer versatile tools to restore the original morphology of fossils. Different methodological steps and approaches, as well as software are outlined and reviewed here, and advantages and disadvantages are discussed. Although the complexity of the restorative processes can introduce a degree of interpretation, digitally restored fossils can provide useful morphological information and can be used to obtain functional estimates. Additionally, the digital nature of the restored models can open up possibilities for education and outreach and further research. PMID:27853548
Vargas-Muñiz, Jose M; Juvvadi, Praveen R; Steinbach, William J
2016-09-01
Septins are a conserved family of GTP-binding proteins that are distributed across different lineages of the eukaryotes, with the exception of plants. Septins perform a myriad of functions in fungal cells, ranging from controlling morphogenetic events to contributing to host tissue invasion and virulence. One key attribute of the septins is their ability to assemble into heterooligomeric complexes that organizse into higher order structures. In addition to the established role of septins in the model budding yeast, Saccharomyces cerevisiae, their importance in other fungi recently emerges. While newer roles for septins are being uncovered in these fungi, the mechanism of how septins assemble into a complex and their regulation is only beginning to be comprehended. In this review, we summarize recent findings on the role of septins in different fungi and focus on how the septin complexes of different fungi are organized in vitro and in vivo. Furthermore, we discuss on how phosphorylation/dephosphorylation can serve as an important mechanism of septin complex assembly and regulation.
Walker, C; Muniz, M F B; Rolim, J M; Martins, R R O; Rosenthal, V C; Maciel, C G; Mezzomo, R; Reiniger, L R S
2016-09-16
The objective of this study was to characterize species of the Cladosporium cladosporioides complex isolated from pecan trees (Carya illinoinensis) with symptoms of leaf spot, based on morphological and molecular approaches. Morphological attributes were assessed using monosporic cultures on potato dextrose agar medium, which were examined for mycelial growth, sporulation, color, and conidia and ramoconidia size. Molecular characterization comprised isolation of DNA and subsequent amplification of the translation elongation factor 1α (TEF-1α) region. Three species of the C. cladosporioides complex were identified: C. cladosporioides, Cladosporium pseudocladosporioides, and Cladosporium subuliforme. Sporulation was the most important characteristic differentiating species of this genus. However, morphological features must be considered together with molecular analysis, as certain characters are indistinguishable between species. TEF-1αcan be effectively used to identify and group isolates belonging to the C. cladosporioides complex. The present study provides an important example of a methodology to ascertain similarity between isolates of this complex causing leaf spot in pecan trees, which should facilitate future pathogenicity studies.
Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S
2015-01-01
Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.
Matias, Miguel G.; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S.
2015-01-01
Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats. PMID:26554924
NASA Astrophysics Data System (ADS)
Yamagiwa, Kiyofumi; Kuwano, Jun
2017-06-01
This paper describes a unique and innovative synthesis technique for carbon nanotubes (CNTs) by a one-step liquid-phase process under ambient pressure. Vertically aligned multi-walled CNT arrays with a maximum height of 100 µm are prepared on stainless steel substrates, which are submerged and electrically heated in straight-chain primary alcohols with n C = 1-4 (n C: number of C atoms in the molecule) containing an appropriate amount of cobalt-based organometallic complex as a catalyst precursor. Structural isomers of butanol were also used for the synthesis to examine the effects of structural factors on the morphology of the deposited products. Notably, 2-methyl-2-propanol, which is a tertiary alcohol, produced only a small amount of low-crystallinity carbonaceous deposits, whereas vertically aligned CNTs were grown from the other isomers of butanol. These results suggest that the presence or absence of β-hydrogen in the molecular structure is a key factor for understanding the dissociation behavior of the carbon source molecules on the catalyst.
Morphology and ultrastructure of retrovirus particles
Zhang, Wei; Cao, Sheng; Martin, Jessica L.; Mueller, Joachim D.; Mansky, Louis M.
2015-01-01
Retrovirus morphogenesis entails assembly of Gag proteins and the viral genome on the host plasma membrane, acquisition of the viral membrane and envelope proteins through budding, and formation of the core through the maturation process. Although in both immature and mature retroviruses, Gag and capsid proteins are organized as paracrystalline structures, the curvatures of these protein arrays are evidently not uniform within one or among all virus particles. The heterogeneity of retroviruses poses significant challenges to studying the protein contacts within the Gag and capsid lattices. This review focuses on current understanding of the molecular organization of retroviruses derived from the sub-nanometer structures of immature virus particles, helical capsid protein assemblies and soluble envelope protein complexes. These studies provide insight into the molecular elements that maintain the stability, flexibility and infectivity of virus particles. Also reviewed are morphological studies of retrovirus budding, maturation, infection and cell-cell transmission, which inform the structural transformation of the viruses and the cells during infection and viral transmission, and lead to better understanding of the interplay between the functioning viral proteins and the host cell. PMID:26448965
Transient features and growth behavior of artificial cracks during the initial damage period.
Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan
2017-02-01
The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.
Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.
2015-01-01
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037
Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A
2015-04-21
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).
Sexual dimorphism in bite performance drives morphological variation in chameleons.
da Silva, Jessica M; Herrel, Anthony; Measey, G John; Tolley, Krystal A
2014-01-01
Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal's foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal's performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance.
Sexual Dimorphism in Bite Performance Drives Morphological Variation in Chameleons
da Silva, Jessica M.; Herrel, Anthony; Measey, G. John; Tolley, Krystal A.
2014-01-01
Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance. PMID:24475183
Bai, Juan; Xiao, Xue; Xue, Yuan-Yuan; Jiang, Jia-Xing; Zeng, Jing-Hui; Li, Xi-Fei; Chen, Yu
2018-06-13
Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt 2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt 1 Rh 1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.
Yang, Feifei; Hingerl, Ferdinand F.; Xiao, Xianghui; ...
2015-06-03
The elevated level of atmospheric carbon dioxide (CO 2) has caused serious concern of the progression of global warming. Geological sequestration is considered as one of the most promising techniques for mitigating the damaging effect of global climate change. Investigations over wide range of length-scales are important for systematic evaluation of the underground formations from prospective CO 2 reservoir. Understanding the relationship between the micro morphology and the observed macro phenomena is even more crucial. Here we show Synchrotron based X-ray micro tomographic study of the morphological buildup of Sandstones. We present a numerical method to extract the pore sizesmore » distribution of the porous structure directly, without approximation or complex calculation. We have also demonstrated its capability in predicting the capillary pressure curve in a mercury intrusion porosimetry (MIP) measurement. The method presented in this work can be directly applied to the morphological studies of heterogeneous systems in various research fields, ranging from Carbon Capture and Storage, and Enhanced Oil Recovery to environmental remediation in the vadose zone.« less
Geomorphic characterization of the U.S. Atlantic continental margin
Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.
2013-01-01
The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.
Liu, Duo
2016-02-01
The processing of morphological information during Chinese word memorization was investigated in the present study. Participants were asked to study words presented to them on a computer screen in the studying phase and then judge whether presented words were old or new in the test phase. In addition to parent words (i.e. the words studied in the study phase), the test phase also included conjunction lures (constructed out of morphemes in the parent words) and new words (constructed out of entirely new morphemes). Three kinds of words (i.e. subordinate compounds, coordinative compounds, and single-morpheme words) were involved. In both two experiments, performance on lures worsened when both parent words and lures were coordinative compounds, compared to the condition when both were subordinate compounds. The different performance between compounds with different compounding structures in the test phase suggests the involvement of morphological information in the memorization of Chinese compound words. The spreading activation theory for memory and the interactive activation model for the processing of morphologically complex words were referred to for interpreting the results.
The Atomic to Molecular Transition in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Goldsmith, Paul F.
2012-01-01
Study of H2 in UV and IR continues to surprise us with complexity of excitation state, OPR, and role in astrochemistry. Atomic H in molecular clouds is a very powerful tool suggesting that they are not "young" but that it takes millions of years to convert primarily atomic hydrogen clouds to 99.9% molecular form. Laboratory data suggests that H2 formation is efficient over broader range of temperatures than thought to be the case a few years ago, but range is still limited. Issues of complex grain morphology and surface structure make this a very difficult field in which to obtain definitively meaningful results. Ongoing and future observations of CI and CII will improve our understanding of the structure of clouds, their total mass, and how they have evolved and will continue to do so.
Direct-Write 3D Nanoprinting of Plasmonic Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.
During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less
Direct-Write 3D Nanoprinting of Plasmonic Structures
Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.; ...
2016-11-23
During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less
NASA Astrophysics Data System (ADS)
Pawal, S. B.; Lolage, S. R.; Chavan, S. S.
2018-02-01
A new series of trinuclear complexes of the type Ni[R-C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (1a-c) and Zn[Rsbnd C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (2a-c) have been prepared from the reaction of trans-[RuCl(dppe)2Ctbnd Csbnd C6H3(OH)(CHO)] (1) with aniline, 4-nitroaniline and 4-methoxyaniline (R1-3) in presence of nickel acetate and zinc acetate in CH2Cl2/MeOH (1:1) mixture. The structural properties of the complexes have been characterized by elemental analyses and spectroscopic techniques viz. FTIR, UV-Visible, 1H NMR and 31P NMR spectral studies. The crystal structure and morphology of the hybrid complexes was investigated with the help of X-ray powder diffraction (XRPD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of 1a-c and 2a-c were studied by thermogravimetric (TG) analysis. The electrochemical behaviour of the complexes reveals that all complexes displayed a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) and Ni(II)/Ni(III) couples for 1a-c and only Ru(II)/Ru(III) couple for 2a-c. All complexes are emissive in solution at room temperature revealing the influence of substituents and solvent polarity on emission properties of the complexes.
Storlazzi, C.D.; Logan, J.B.; Field, M.E.
2003-01-01
High-resolution Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) laser-determined bathymetric data were used to define the morphology of spur-and-groove structures on the fringing reef off the south coast of Molokai, Hawaii. These data provide a basis for mapping and analyzing morphology of the reef with a level of precision and spatial coverage never before attained. An extensive fringing coral reef stretches along the central two-thirds of Molokai's south shore (???40 km); along the east and west ends there is only a thin veneer of living coral with no developed reef complex. In total, ???4800 measurements of spur-and-groove height and the distance between adjacent spur crests (wavelength) were obtained along four isobaths. Between the 5m and 15m isobaths, the mean spur height increased from 0.7 m to 1.6 m, whereas the mean wavelength increased from 71 m to 104 m. Reef flat width was found to exponentially decrease with increasing wave energy. Overall, mean spur-and-groove height and wavelength were shown to be inversely proportional to wave energy. In high-energy environments, spur-and-groove morphology remains relatively constant across all water depths. In low-energy environments, however, spur-and-groove structures display much greater variation; they are relatively small and narrow in shallow depths and develop into much larger and broader features in deeper water. Therefore, it appears that waves exert a primary control on both the small and large-scale morphology of the reef off south Molokai.
NASA Astrophysics Data System (ADS)
Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.
2017-12-01
The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river systems.
Wiemer, A. P.; Sérsic, A. N.; Marino, S.; Simões, A. O.; Cocucci, A. A.
2012-01-01
Background and Aims The extreme complexity of asclepiad flowers (Asclepiadoideae–Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators. Methods Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index. Key Results The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts. Conclusions Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South Africa. A putative new function of nectar in asclepiads is presented, as it would be contributing to the pollination mechanism. PMID:22025522
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Unbound Young Stellar Systems: Star Formation on the Loose
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.
2018-07-01
Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small few pc-size associations of newly formed stars to enormous few kpc-size complexes composed of stars few 100 Myr old. These stellar conglomerations are located within the disks and along the spiral arms and rings of star-forming disk galaxies, and they are the active star-forming centers of dwarf and starburst galaxies. Being associated with star-forming regions of various sizes, these stellar structures trace the regions where stars form at various length- and timescales, from compact clusters to whole galactic disks. Stellar associations, the prototypical unbound young systems, and their larger counterparts, stellar aggregates, and stellar complexes, have been the focus of several studies for quite a few decades, with special interest on their demographics, classification, and structural morphology. The compiled surveys of these loose young stellar systems demonstrate that the clear distinction of these systems into well-defined classes is not as straightforward as for stellar clusters, due to their low densities, asymmetric shapes and variety in structural parameters. These surveys also illustrate that unbound stellar structures follow a clear hierarchical pattern in the clustering of their stars across various scales. Stellar associations are characterized by significant sub-structure with bound stellar clusters being their most compact parts, while associations themselves are the brighter denser parts of larger stellar aggregates and stellar complexes, which are members of larger super-structures up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.
Morphological relationships in the chromospheric H-alpha fine structure
NASA Technical Reports Server (NTRS)
Foukal, P.
1971-01-01
A continuous relationship is proposed between the basic elements of the dark fine structure of the quiet and active chromosphere. A progression from chromospheric bushes to fibrils, then to chromospheric threads and active region filaments, and finally to diffuse quiescent filaments, is described. It is shown that the horizontal component of the field on opposite sides of an active region quiescent filament can be in the same direction and closely parallel to the filament axis. Consequently, it is unnecessary to postulate twisted or otherwise complex field configurations to reconcile the support mechanism of filaments with the observed motion along their axis.
Anikieva, L V; Kharin, V N; Spektor, E N
2004-01-01
Polymorphism and phenotypic diversity of a hostal ecoform of Proteocephalus longicollis from its typical host, the vendace, Coregonus albula L., were studied. A complex phenotypic structure of the parasite population and presence of morphologically different groupings were revealed. We distinguished four groupings based on the external characters and three groupings based on the feed and reproduction features; among latter groupings one has very specific variations of features. We conclude that P. longicollis has high intraspecific and intrapopulation heterogeneity, and the host plays a stabilising role in the parasite species formation.
Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits
Kollmer, Marius; Meinhardt, Katrin; Haupt, Christian; Liberta, Falk; Wulff, Melanie; Linder, Julia; Handl, Lisa; Heinrich, Liesa; Loos, Cornelia; Schmidt, Matthias; Syrovets, Tatiana; Simmet, Thomas; Westermark, Per; Westermark, Gunilla T.; Horn, Uwe; Schmidt, Volker; Walther, Paul; Fändrich, Marcus
2016-01-01
Electron tomography is an increasingly powerful method to study the detailed architecture of macromolecular complexes or cellular structures. Applied to amyloid deposits formed in a cell culture model of systemic amyloid A amyloidosis, we could determine the structural morphology of the fibrils directly in the deposit. The deposited fibrils are arranged in different networks, and depending on the relative fibril orientation, we can distinguish between fibril meshworks, fibril bundles, and amyloid stars. These networks are frequently infiltrated by vesicular lipid inclusions that may originate from the death of the amyloid-forming cells. Our data support the role of nonfibril components for constructing fibril deposits and provide structural views of different types of lipid–fibril interactions. PMID:27140609
Novel polyelectrolyte complex based carbon nanotube composite architectures
NASA Astrophysics Data System (ADS)
Razdan, Sandeep
This study focuses on creating novel architectures of carbon nanotubes using polyelectrolytes. Polyelectrolytes are unique polymers possessing resident charges on the macromolecular chains. This property, along with their biocompatibility (true for most polymers used in this study) makes them ideal candidates for a variety of applications such as membranes, drug delivery systems, scaffold materials etc. Carbon nanotubes are also unique one-dimensional nanoscale materials that possess excellent electrical, mechanical and thermal properties owing to their small size, high aspect ratio, graphitic structure and strength arising from purely covalent bonds in the molecular structure. The present study tries to investigate the synthesis processes and material properties of carbon nanotube composites comprising of polyelectrolyte complexes. Carbon nanotubes are dispersed in a polyelectrolyte and are induced into taking part in a complexation process with two oppositely charged polyelectrolytes. The resulting stoichiometric precipitate is then drawn into fiber form and dried as such. The material properties of the carbon nanotube fibers were characterized and related to synthesis parameters and material interactions. Also, an effort was made to understand and predict fiber morphology resulting from the complexation and drawing process. The study helps to delineate the synthesis and properties of the said polyelectrolyte complex-carbon nanotube architectures and highlights useful properties, such as electrical conductivity and mechanical strength, which could make these structures promising candidates for a variety of applications.
New self-limiting assembly model for Si quantum rings on Si(100).
Yu, L W; Chen, K J; Song, J; Xu, J; Li, W; Li, X F; Wang, J M; Huang, X F
2007-04-20
We propose a new self-limiting assembly model for Si quantum rings on Si(100) where the ring's formation and evolution are driven by a growth-etching competition mechanism. The as-grown ring structure in a plasma enhanced chemical vapor deposition system has excellent rotational symmetry and superior morphology with a typical diameter, edge width, and height of 150-300, 10, and 5 nm, respectively. Based on this model, the size and morphology can be controlled well by simply tuning the timing procedure. We suggest that this growth model is not limited to certain material system, but provides a general scheme to control and tailor the self-assembly nanostructures into the desired size, shape, and complexity.
On the evolutionary advantage of multi-cusped teeth
Bush, Mark B.; Barani, Amir; Lawn, Brian R.
2016-01-01
A hallmark of mammalian evolution is a progressive complexity in postcanine tooth morphology. However, the driving force for this complexity remains unclear: whether to expand the versatility in diet source, or to bolster tooth structural integrity. In this study, we take a quantitative approach to this question by examining the roles of number, position and height of multiple cusps in determining sustainable bite forces. Our approach is to use an extended finite-element methodology with due provision for step-by-step growth of an embedded crack to determine how fracture progresses with increasing occlusal load. We argue that multi-cusp postcanine teeth are well configured to withstand high bite forces provided that multiple cusps are contacted simultaneously to share the load. However, contact on a single near-wall cusp diminishes the strength. Location of the load points and cusp height, rather than cusp number or radius, are principal governing factors. Given these findings, we conclude that while complex tooth structures can enhance durability, increases in cusp number are more likely to be driven by the demands of food manipulation. Structural integrity of complex teeth is maintained when individual cusps remain sufficiently distant from the side walls and do not become excessively tall relative to tooth width. PMID:27558851
The supernova - supernova remnant connection through multi-dimensional magnetohydrodynamic modeling
NASA Astrophysics Data System (ADS)
Orlando, S.; Miceli, M.; Petruk, O.; Ono, M.
2017-10-01
Supernova remnants (SNRs) are diffuse extended sources often characterized by a rather complex morphology and a highly non-uniform distribution of ejecta. General consensus is that such a morphology reflects, on one hand, pristine structures and features of the progenitor supernova (SN) explosion and, on the other hand, the early interaction of the SN blast wave with the inhomogeneous circumstellar medium (CSM) formed in the latest stages of the progenitor star's evolution. Deciphering X-ray observations of SNRs, therefore, might open the possibility to reconstruct the ejecta structure as it was soon after the SN explosion and the structure and geometry of the medium immediately surrounding the progenitor star. This requires accurate and detailed models which describe the evolution from the on-set of the SN to the full remnant development and which connect the X-ray emission properties of the remnants to the progenitor SNe. Here we show how multi-dimensional SN-SNR magnetohydrodynamic models have been very effective in deciphering X-ray observations of SNR Cassiopeia A and SN 1987A. This has allowed us to unveil the average structure of ejecta in the immediate aftermath of the SN explosion and to constrain the 3D pre-supernova structure and geometry of the environment surrounding the progenitor SN.
Identification of vortex structures in a cohort of 204 intracranial aneurysms
Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-01-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q-criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction (vVF) and the surface vortex fraction (sVF). Computational fluid dynamics simulations showed that the sVF, but not the vVF, discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. PMID:28539480
Identification of vortex structures in a cohort of 204 intracranial aneurysms.
Varble, Nicole; Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-05-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q -criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction ( vVF ) and the surface vortex fraction ( sVF ). Computational fluid dynamics simulations showed that the sVF , but not the vVF , discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. © 2017 The Author(s).
Fischer-Baum, Simon; Englebretson, Robert
2016-08-01
Reading relies on the recognition of units larger than single letters and smaller than whole words. Previous research has linked sublexical structures in reading to properties of the visual system, specifically on the parallel processing of letters that the visual system enables. But whether the visual system is essential for this to happen, or whether the recognition of sublexical structures may emerge by other means, is an open question. To address this question, we investigate braille, a writing system that relies exclusively on the tactile rather than the visual modality. We provide experimental evidence demonstrating that adult readers of (English) braille are sensitive to sublexical units. Contrary to prior assumptions in the braille research literature, we find strong evidence that braille readers do indeed access sublexical structure, namely the processing of multi-cell contractions as single orthographic units and the recognition of morphemes within morphologically-complex words. Therefore, we conclude that the recognition of sublexical structure is not exclusively tied to the visual system. However, our findings also suggest that there are aspects of morphological processing on which braille and print readers differ, and that these differences may, crucially, be related to reading using the tactile rather than the visual sensory modality. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sloan, Jeremy; Hutchison, John L.; Tenne, Reshef; Feldman, Yishay; Tsirlina, Tatyana; Homyonfer, Moshe
1999-04-01
Complex tungsten oxides, consisting of nonstoichiometric oxides of the form WO3-xand stoichiometric lamellar oxides of the form {001}RWnO3n-1(n=3 to 6) have been observed incorporated within 2H-WX2(X=S or Se) inorganic fullerene-like (IF) structures by HRTEM. These encapsulates were formed from a gas-solid reaction between H2Xand disordered WO3-xprecursors exhibiting a range of particle sizes and morphologies. The microstructures of most of the encapsulated oxides could be described in terms of {hkl}Rcrystallographic shear (CS) structures formed relative to an ReO3-type (R) substructure. Smaller spheroidal WO3-xencapsulates were frequently found to exhibit random {103}RCS defects of the Wadsley type, while larger, needle encapsulates were found to form exclusively {001}RWnO3n-1type lamellar structures that were predominantely ordered. Spheriodal encapsulates with randomly spaced {001}RCS planes were also observed encapsulated inside 2H-WSe2IF structures. The growth and morphologies of the encapsulating 2H-WX2shells were profoundly influenced by those of the precursor oxides used in their formation. Ordering mechanisms were proposed with respect to the formation of the ordered encapsulated oxides from the disordered precursors.
Interfacial bioconjugation on emulsion droplet for biosensors.
Zhang, Qifan; Scigliano, Anita; Biver, Tarita; Pucci, Andrea; Swager, Timothy M
2018-04-13
Interfacial bioconjugation methods are developed for intact liquid emulsion droplets. Complex emulsion droplets having internal hydrocarbon and fluorocarbon immiscible structured phases maintain a dynamic interface for controlled interfacial reactivity. The internal morphological change after binding to biomolecules is readily visualized and detected by light transmission, which provides a platform for the formation of inexpensive and portable bio-sensing assays for enzymes, antibodies, nucleic acids and carbohydrates. Copyright © 2018. Published by Elsevier Ltd.
Block copolymer libraries: modular versatility of the macromolecular Lego system.
Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S
2004-12-21
The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.
Computational Modeling of Multi-Scale Material Features in Cement Paste - An Overview
2015-05-25
and concrete ; though commonly used are one of the most complex in terms of material morphology and structure than most materials, for example...across the multiple scales are required. In this paper, recent work from our research group on the nano to continuum level modeling of cementitious...of our research work consisting of, • Molecular Dynamics (MD) modeling for the nano scale features of the cementitious material chemistry. • Micro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, K.M.; Al-Jassim, M.M.; Williamson, D.L.
Over the last two decades extensive studies on the optical and electrical properties of hydrogenated amorphous Si (a-Si:H) have been reported. However, less attention was given to the structural characterization of this material partly due to the insensitivity to hydrogen of structural probes such as x-rays and electron diffraction. From a recent set of experiments, results on the solubility limit of hydrogen in a special type of a-Si:H and the characterization of hydrogen induced complexes or nanobubbles has been reported. In this study, we report TEM observations of the structural morphology of hydrogen related defects that support these recent measurementsmore » obtained by secondary ion mass spectrometry (SIMS) and small-angle x-ray scattering (SAXS).« less
Wing scale microstructures and nanostructures in butterflies--natural photonic crystals.
Vértesy, Z; Bálint, Zs; Kertész, K; Vigneron, J P; Lousse, V; Biró, L P
2006-10-01
The aim of our study was to investigate the correlation between structural colour and scale morphology in butterflies. Detailed correlations between blue colour and structure were investigated in three lycaenid subfamilies, which represent a monophylum in the butterfly family Lycaenidae (Lepidoptera): the Coppers (Lycaeninae), the Hairstreaks (Theclinae) and the Blues (Polyommatinae). Complex investigations such as spectral measurements and characterization by means of light microscopy, scanning electron microscopy and transmission electron microscopy enabled us to demonstrate that: (i) a wide array of nanostructures generate blue colours; (ii) monophyletic groups use qualitatively similar structures; and (iii) the hue of the blue colour is characteristic for the microstructure and nanostructure of the body of the scales.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Lee, Sang-Hoon
2015-12-01
Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.
Macromolecular metal carboxylates
NASA Astrophysics Data System (ADS)
Dzhardimalieva, G. I.; Pomogailo, A. D.
2008-03-01
Data on the synthesis and physicochemical studies of salts of mono- or dibasic unsaturated carboxylic acids and unsaturated metal oxo-carboxylates are generalised and described systematically. The structures and properties of the COO group in various compounds and characteristic features of the structures of carboxylate complexes are analysed. The main routes and kinetics of polymerisation transformations of unsaturated metal carboxylates are considered. The attention is focused on the effect of the metal ion on the monomer reactivity and the polymer morphology and structure. The possibility of stereochemical control of radical polymerisation of unsaturated metal carboxylates is demonstrated. The electronic, magnetic, optical, absorption and thermal properties of metal (co)polymers and nanocomposites and their main applications are considered.
Internal motions of HII regions and giant HII regions
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Kennicutt, Robert C., Jr.
1994-01-01
We report new echelle observations of the kinematics of 30 HII regions in the Large Magellanic Clouds (LMC), including the 30 Doradus giant HII region. All of the HII regions possess supersonic velocity dispersions, which can be attributed to a combination of turbulent motions and discrete velocity splitting produced by stellar winds and/or embedded supernova remnants (SNRs). The core of 30 Dor is unique, with a complex velocity structure that parallels its chaotic optical morphology. We use our calibrated echelle data to measure the physical properties and energetic requirements of these velocity structures. The most spectacular structures in 30 Dor are several fast expanding shells, which appear to be produced at least partially by SNRs.
Andermark, Vincent; Göke, Katrin; Kokoschka, Malte; Abu El Maaty, Mohamed A; Lum, Ching Tung; Zou, Taotao; Sun, Raymond Wai-Yin; Aguiló, Elisabet; Oehninger, Luciano; Rodríguez, Laura; Bunjes, Heike; Wölfl, Stefan; Che, Chi-Ming; Ott, Ingo
2016-07-01
Gold alkynyl complexes with phosphane ligands of the type (alkynyl)Au(I)(phosphane) represent a group of bioorganometallics, which has only recently been evaluated biologically in more detail. Structure-activity-relationship studies regarding the residues of the phosphane ligand (P(Ph)3, P(2-furyl)3, P(DAPTA)3, P(PTA)3, P(Et)3, P(Me)3) of complexes with an 4-ethynylanisole alkyne ligand revealed no strong differences concerning cytotoxicity. However, a relevant preference for the heteroatom free alkyl/aryl residues concerning inhibition of the target enzyme thioredoxin reductase was evident. Complex 1 with the triphenylphosphane ligand was selected for further studies, in which clear effects on cell morphology were monitored by time-lapse microscopy. Effects on cellular signaling were determined by ELISA microarrays and showed a significant induction of the phosphorylation of ERK1 (extracellular signal related kinase 1), ERK2 and HSP27 (heat shock protein 27) in HT-29 cells. Application of 1 in-vivo in a mouse xenograft model was found to be challenging due to the low solubility of the complex and required a formulation strategy based on a peanut oil nanoemulsion. Copyright © 2015 Elsevier Inc. All rights reserved.
Kivell, Tracy L; Skinner, Matthew M; Lazenby, Richard; Hublin, Jean-Jacques
2011-02-01
Micro-computed tomographic analyses of trabecular bone architecture have been used to clarify the link between positional behavior and skeletal anatomy in primates. However, there are methodological decisions associated with quantifying and comparing trabecular anatomy across taxa that vary greatly in body size and morphology that can affect characterizations of trabecular architecture, such as choice of the volume of interest (VOI) size and location. The potential effects of these decisions may be amplified in small, irregular-shaped bones of the hands and feet that have more complex external morphology and more heterogeneous trabecular structure compared to, for example, the spherical epiphysis of the femoral head. In this study we investigate the effects of changes in VOI size and location on standard trabecular parameters in two bones of the hand, the capitate and third metacarpal, in a diverse sample of nonhuman primates that vary greatly in morphology, body mass and positional behavior. Results demonstrate that changes in VOI location and, to a lesser extent, changes in VOI size had a dramatic affect on many trabecular parameters, especially trabecular connectivity and structure (rods vs. plates), degree of anisotropy, and the primary orientation of the trabeculae. Although previous research has shown that some trabecular parameters are susceptible to slight variations in methodology (e.g. VOI location, scan resolution), this study provides a quantification of these effects in hand bones of a diverse sample of primates. An a priori understanding of the inherent biases created by the choice of VOI size and particularly location is critical to robust trabecular analysis and functional interpretation, especially in small bones with complex arthroses. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.
Ma, Zhengwei; Zhang, Xizhong
2003-07-01
To investigate the long-term effect of dietary fiber complex (DFC) on intestinal structure and function in hypercholesterolemic rats, 60 healthy SD rats were feed with food rich in lipids and hypercholesterolemic animal models were established. The animals were randomly divided into 5 groups. Rats were fed DFC at levels of 4%, 16%, or 64% for three month in the experimental groups. Wheat fiber was used in the hypercholesterolemic control (HC) group and rats feeding on normal food were used as normal control (NC). Morphology of the small intestine, reticum and caecum were observed by light and electron microscope examination. Intestinal function was measured physically. The results showed that (1) compared with NC group, fecal weight was significantly raised in DFC group of higher level (group D and E, P < 0.05); (2) the weights of small intestine wall in D and E group were significantly higher than those of NC and HC group and weights of caecum wall in E group were significantly higher than those of NC and HC group (P < 0.05); (3) widen villi and thickened muscle layer of small intestine were observed in DFC group of higher level. No demonstrable changes in reticulum morphology in any group of animals were found under the observation of light microscope (4) microvilla becoming short and/or absent, mitochondria swelling, impairment of the integrity of the cristae were commonly observed in DFC groups. Conclusions Long-term intake of DFC composed mainly of Hippophae rhamnoides L, Bran, oat bran and guar gum at higher levels might induce some morphological changes of intestine and caecum. Therefore, DFC might be used at low level as an effective cholesterol-lowering agent.
Assessment of the need for a cardiac morphology curriculum for paediatric cardiology fellows.
Rogers, Lindsay S; Klein, Melissa; James, Jeanne; FitzGerald, Michael
2017-07-01
Expert knowledge of cardiac malformations is essential for paediatric cardiologists. Current cardiac morphology fellowship teaching format, content, and nomenclature are left up to the discretion of the individual fellowship programmes. We aimed to assess practices and barriers in morphology education, perceived effectiveness of current curricula, and preferences for a standardised fellow morphology curriculum. A web-based survey was developed de novo and administered anonymously via e-mail to all paediatric cardiology fellowship programme directors and associate directors in the United States of America; leaders were asked to forward the survey to fellows. A total of 35 directors from 32 programmes (51%) and 66 fellows responded. Curriculum formats varied: 28 (88%) programmes utilised pathological specimens, 25 (78%) invited outside faculty, and 16 (50%) utilised external conferences. Director nomenclature preferences were split - 6 (19%) Andersonian, 8 (25%) Van Praaghian, and 18 (56%) mixed. Barriers to morphology education included time and inconsistent nomenclature. One-third of directors reported that <90% of recent fellow graduates had adequate abilities to apply segmental anatomy, identify associated cardiac lesions, or communicate complex CHD. More structured teaching, protected time, and specimens were suggestions to improve curricula. Almost 75% would likely adopt/utilise an online morphology curriculum. Cardiac morphology training varies in content and format among fellowships. Inconsistent nomenclature exists, and inadequate morphology knowledge is perceived to contribute to communication failures, both have potential patient safety implications. There is an educational need for a common, online cardiac morphology curriculum that could allow for fellow assessment of competency and contribute to more standardised communication in the field of paediatric cardiology.
NASA Astrophysics Data System (ADS)
Caprarelli, G.; de Pablo Hernandez, M. A.
2014-12-01
The Martian region located immediately north of the dichotomy scarp, between latitudes 120°E and 135°E, is covered by fretted terrains, characterised by the presence of knobs and mesas formed by eroded and reworked material of highlands provenance, and the smoother terrains between them [1]. Topographic depressions of oblong shape, generally parallel to the scarp, of rough and chaotic appearance, are also observed. The high resolution (~ 6 m/pixel, [2]) Context Camera (CTX) on board Mars Reconnaissance Orbiter (MRO) makes it possible to examine the morphologies of these topographic depressions in great detail, unveiling their complex geological histories. Here we expand on our earlier work in the adjacent Nepenthes Mensae region [3] and present the results of our observations of morphologies of likely igneous origin. We identified a variety of shapes consistent with magmatic structures and constructs: dikes, collapsed lava tubes, and lava flows are observable in the smoother terrains. Most of the elevated structures in the areas are strongly eroded knobs and mesas covered by dust and debris. In some cases however, the morphological characteristics of 2-10 km-size structures are clear and sharp, which allowed us to identify features consistent with sub-ice volcanic constructs, such as tuyas and tindars [4]. Geological reconstructions involving magma-ice interaction are supported by the presence of lobate aprons around knobs and mesas, and of scalloped ejecta surrounding complex impact craters, suggesting the existence of ice both underground and on the surface of these low elevation areas at the time of formation of these constructs. [1] Tanaka et al. (2005) Geologic Map of the Northern Plains of Mars. USGS SIM 2888. [2] Malin et al. (2007) Context Camera investigation on board the Mars Reconnaissance Orbiter. JGR 112, E05S04, 10.1029/2006JE002808. [3] dePablo and Caprarelli (2010) Possible subglacial volcanoes in Nepenthes Mensae, eastern hemisphere, Mars. LPSC 41, 1584. [4] Jakobsson and Gudmundsson (2008) Subglacial and intraglacial volcanic formations in Iceland. Jökull 58, 179-196.
NASA Astrophysics Data System (ADS)
Dennielou, Bernard; Droz, Laurence; Babonneau, Nathalie; Jacq, Céline; Bonnel, Cédric; Picot, Marie; Le Saout, Morgane; Saout, Yohan; Bez, Martine; Savoye, Bruno; Olu, Karine; Rabouille, Christophe
2017-08-01
The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90×40 km; 2525 km2) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub-bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A conceptual lithostratigraphic model is proposed for five morpho-sedimentary environments: lobe rims, lobe body, distributaries, levees, feeding channel. This study shows that high-resolution bathymetry ROV observations are necessary to fully understand the build-up processes of modern channel-mouth lobes.
Characteristics of Eutectic α(Cr,Fe)-(Cr,Fe)23C6 in the Eutectic Fe-Cr-C Hardfacing Alloy
NASA Astrophysics Data System (ADS)
Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite
2017-01-01
A specific eutectic (Cr,Fe)-(Cr,Fe)23C6 structure had been previously reported in the research studies of Fe-Cr-C hardfacing alloys. In this study, a close observation and discussion of the eutectic (Cr,Fe)-(Cr,Fe)23C6 were conducted. The eutectic solidification occurred when the chromium content of the alloy exceeded 35 wt pct. The eutectic structure showed a triaxial radial fishbone structure which was the so called "complex regular structure." Lamellar costa plates showed local asymmetry at two sides of a spine. Individual costae were able to combine as one, and spines showed extra branches. Costae that were nearly parallel to the heat flow direction were longer than those that were vertical to the heat flow direction. The triaxial spines preferred to intersect at 120 deg, while the costae preferred to intersect the spine at 90 deg and 35.26 deg due to the lattice relationships. The solidified metal near the fusion boundary showed an irregular structure instead of a complex regular structure. The reason for the irregular morphology was the high growth rate near the fusion boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Hernandez-Hernandez; C Avila-Orta; B Hsiao
Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreasedmore » within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.« less
Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis
Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.
2011-01-01
Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052
Architecture and biogenesis of plus-strand RNA virus replication factories
Paul, David; Bartenschlager, Ralf
2013-01-01
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories. PMID:24175228
Jałoszyński, Paweł
2017-05-31
Status of subgenera established for Euconnus Thomson with three-segmented antennal club is clarified. Examination of the type species of Psomophus Casey, Spanioconnus Ganglbauer, Scydmaenites Croissandeau and Xestophus Casey led to the conclusion that differences in morphological structures between all these taxa are minor and represent character variability within one subgenus. Consequently, Spanioconnus is maintained as a junior synonym of Psomophus; Scydmaenites is synonymized with Psomophus; and Xestophus, already placed as a junior synonym of Psomophus by Franz and later resurrected by O'Keefe, is again synonymized with Psomophus. Based on small morphological differences (visible only in the antennal structure), it is suggested that in future Psomophus may be placed as a junior synonym of Euconnus s. str. An emended diagnosis of Psomophus is given, and lectotypes are designated for Euconnus callidus Casey, Euconnus kraatzi Reitter and Scydmaenus salinator LeConte.
Large-Scale Structure of the Carina Nebula.
Smith; Egan; Carey; Price; Morse; Price
2000-04-01
Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.
From iconic handshapes to grammatical contrasts: longitudinal evidence from a child homesigner
Coppola, Marie; Brentari, Diane
2014-01-01
Many sign languages display crosslinguistic consistencies in the use of two iconic aspects of handshape, handshape type and finger group complexity. Handshape type is used systematically in form-meaning pairings (morphology): Handling handshapes (Handling-HSs), representing how objects are handled, tend to be used to express events with an agent (“hand-as-hand” iconicity), and Object handshapes (Object-HSs), representing an object's size/shape, are used more often to express events without an agent (“hand-as-object” iconicity). Second, in the distribution of meaningless properties of form (morphophonology), Object-HSs display higher finger group complexity than Handling-HSs. Some adult homesigners, who have not acquired a signed or spoken language and instead use a self-generated gesture system, exhibit these two properties as well. This study illuminates the development over time of both phenomena for one child homesigner, “Julio,” age 7;4 (years; months) to 12;8. We elicited descriptions of events with and without agents to determine whether morphophonology and morphosyntax can develop without linguistic input during childhood, and whether these structures develop together or independently. Within the time period studied: (1) Julio used handshape type differently in his responses to vignettes with and without an agent; however, he did not exhibit the same pattern that was found previously in signers, adult homesigners, or gesturers: while he was highly likely to use a Handling-HS for events with an agent (82%), he was less likely to use an Object-HS for non-agentive events (49%); i.e., his productions were heavily biased toward Handling-HSs; (2) Julio exhibited higher finger group complexity in Object- than in Handling-HSs, as in the sign language and adult homesigner groups previously studied; and (3) these two dimensions of language developed independently, with phonological structure showing a sign language-like pattern at an earlier age than morphosyntactic structure. We conclude that iconicity alone is not sufficient to explain the development of linguistic structure in homesign systems. Linguistic input is not required for some aspects of phonological structure to emerge in childhood, and while linguistic input is not required for morphology either, it takes time to emerge in homesign. PMID:25191283
NASA Astrophysics Data System (ADS)
Lawrence, Joseph G.
Vapor grown carbon nanofibers which resemble carbon nanotubes in structure and properties, have been extensively manufactured and investigated in recent years. Carbon nanofibers have been used for producing multifunctional materials due to their excellent properties and low cost of production. Since, commercially available vapor grown carbon nanofibers are subjected to different processing and post processing conditions, the morphology and properties of these nanofibers are not well-known. In this study, we focus on the characterization of the morphology and properties of these nanofibers and the polymer nanocomposites made using these nanofibers as reinforcements. The morphology of the nanofibers was studied employing high resolution Transmission Electron Microscopy (TEM) images. The analysis showed that the nanofibers consist primarily of conical nanofibers, but can contain a significant amount of bamboo nanofibers. Most of the conical nanofibers were found to consist of an ordered inner layer and a disordered outer layer, with the cone angle distribution of the inner layers indicating that these cannot have a stacked cone structure but are compatible with a cone-helix structure. Nanofibers that were heat treated to temperatures above 1,500°C undergo a structural transformation with the ordered inner layers changing from a cone-helix structure to a highly ordered multiwall stacked cone structure. Due to the complexity in the structure of these nanofibers, a novel method to study the elastic properties and corresponding morphology of individual nanofibers has been developed combining Atomic Force Microscopy (AFM), TEM and Focused Ion Beam (FIB) technology. Employing the developed method, the elastic modulus of individual nanofibers and their corresponding dimensions and morphology were determined. The dependence of elastic properties on the wall thickness and the orientation of graphene sheets in the nanofibers were studied. The elastic modulus of these individual nanofibers was found to depend on the thickness of the nanofiber. In an effort to study the morphology and properties of polymer nanocomposites, the dispersion of the nanofibers in the polymer matrix was studied using a Scanning Electron Microscope (SEM). A mixing approach and an in situ polymerization approach, for carbon nanofiber polyimide nanocomposites preparation were investigated using pristine, oxidized and surface functionalized nanofibers. Two different solvents, methylene chloride and dimethylacetimide (DMAc) were compared in the mixing approach. The SEM micrographs indicated that the poor dispersion of nanofibers results in aggregation and settling of nanofibers in the nanocomposite sample. The results suggest that the nanocomposite preparation method had a greater effect on the dispersion of nanofibers compared to the extent of nanofiber functionalization. In addition, a modified nanoindentation approach to measure the interface width and elastic properties at the interface of carbon nanofiber polymer nanocomposites was developed. Using the developed method the elastic property variation at narrow interface regions for two different composites made from three different nanofibers was studied. A gradual change in elastic modulus values was observed at the interface region. Based on the variation in elastic modulus values, the width of the interface region was determined.
Qamhieh, Khawla; Nylander, Tommy; Black, Camilla F; Attard, George S; Dias, Rita S; Ainalem, Marie-Louise
2014-07-14
This study deals with the build-up of biomaterials consisting of biopolymers, namely DNA, and soft particles, poly(amido amine) (PAMAM) dendrimers, and how to model their interactions. We adopted and applied an analytical model to provide further insight into the complexation between DNA (4331 bp) and positively charged PAMAM dendrimers of generations 1, 2, 4, 6 and 8, previously studied experimentally. The theoretical models applied describe the DNA as a semiflexible polyelectrolyte that interacts with dendrimers considered as either hard (impenetrable) spheres or as penetrable and soft spheres. We found that the number of DNA turns around one dendrimer, thus forming a complex, increases with the dendrimer size or generation. The DNA penetration required for the complex to become charge neutral depends on dendrimer generation, where lower generation dendrimers require little penetration to give charge neutral complexes. High generation dendrimers display charge inversion for all considered dendrimer sizes and degrees of penetration. Consistent with the morphologies observed experimentally for dendrimer/DNA aggregates, where highly ordered rods and toroids are found for low generation dendrimers, the DNA wraps less than one turn around the dendrimer. Disordered globular structures appear for high generation dendrimers, where the DNA wraps several turns around the dendrimer. Particularly noteworthy is that the dendrimer generation 4 complexes, where the DNA wraps about one turn around the dendrimers, are borderline cases and can form all types of morphologies. The net-charges of the aggregate have been estimated using zeta potential measurements and are discussed within the theoretical framework.
Surendran, Sinnathamby N; Sarma, Devojit K; Jude, Pavilupillai J; Kemppainen, Petri; Kanthakumaran, Nadarajah; Gajapathy, Kanapathy; Peiris, Lalanthika B S; Ramasamy, Ranjan; Walton, Catherine
2013-08-30
Anopheles subpictus sensu lato is a major malaria vector in South and Southeast Asia. Based initially on polytene chromosome inversion polymorphism, and subsequently on morphological characterization, four sibling species A-D were reported from India. The present study uses molecular methods to further characterize and identify sibling species in Sri Lanka. Mosquitoes from Sri Lanka were morphologically identified to species and sequenced for the ribosomal internal transcribed spacer-2 (ITS2) and the mitochondrial cytochrome c oxidase subunit-I (COI) genes. These sequences, together with others from GenBank, were used to construct phylogenetic trees and parsimony haplotype networks and to test for genetic population structure. Both ITS2 and COI sequences revealed two divergent clades indicating that the Subpictus complex in Sri Lanka is composed of two genetically distinct species that correspond to species A and species B from India. Phylogenetic analysis showed that species A and species B do not form a monophyletic clade but instead share genetic similarity with Anopheles vagus and Anopheles sundaicus s.l., respectively. An allele specific identification method based on ITS2 variation was developed for the reliable identification of species A and B in Sri Lanka. Further multidisciplinary studies are needed to establish the species status of all chromosomal forms in the Subpictus complex. This study emphasizes the difficulties in using morphological characters for species identification in An. subpictus s.l. in Sri Lanka and demonstrates the utility of an allele specific identification method that can be used to characterize the differential bio-ecological traits of species A and B in Sri Lanka.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Sherif, Yousery E.
2015-02-01
Three new metal complexes derived from Pd(II), Ru(III) and Zr(IV) with (E)-2-amino-N-(1-(2-aminophenyl)ethylidene)benzohydrazide (2-AAB) have been synthesized. The isolated complexes were characterized by elemental analyses, FT-IR, UV-Vis, ES-MS, 1H NMR, XRD, thermal analyses (TGA and DTA) and conductance. The morphology and the particle size were determined by transmittance electron microscope (TEM). The results showed that, the ligand coordinates to Pd(II) in the enol form, while it coordinates to Ru(III) and Zr(IV) in the keto form. A square planar geometry is suggested for Pd(II) complex and octahedral geometries are suggested for Ru(III) and Zr(IV) complexes. The optical band gaps of the isolated complexes were measured and indicated the semi-conductivity nature of the complexes. The anti-inflammatory and analgesic activities of the ligand and its complexes showed that, Ru(III) complex has higher effect than the well known drug "meloxicam".
Gold nanocrystals with DNA-directed morphologies.
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun
2016-09-16
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Gold nanocrystals with DNA-directed morphologies
NASA Astrophysics Data System (ADS)
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun
2016-09-01
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Olave, Melisa; Avila, Luciano J; Sites, Jack W; Morando, Mariana
2017-02-01
Currently, Liolaemus is the second most species-rich reptile genus in the world (257 species), and predictions of its real diversity suggest that it may be the most diverse genus. Originally, Liolaemus species were described as widely distributed and morphologically variable taxa, but extensive sampling in previously unexplored geographic areas, coupled with molecular and more extensive morphological studies, have discovered an unexpectedly high number of previously undetected species. Here, we study the level of molecular vs. morphological divergence within the L. rothi complex, combining a total of 14 loci (2 mitochondrial and 12 nuclear loci) for 97 individuals, as well as morphological data (nine morphometric and 15 color pattern variables), that represent all six described species of the L. rothi complex, plus two candidate species. We use the multi-coalescent species delimitation program iBPP and resolve strong differences in molecular divergence; and each species is inferred as an independent lineage supported by high posterior probabilities. However, morphological differences are not that clear, and our modeling of morphological characters suggests differential selection pressures implying some level of morphological stasis. We discuss the role of natural selection on phenotypic traits, which may be an important factor in "hiding" the real diversity of the genus. Copyright © 2016. Published by Elsevier Inc.
Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.
Cheng, Xingguo; Gower, Laurie B
2006-01-01
Natural biominerals often have exquisite morphologies, where the cells exercise a high degree of crystallographic control through secretion of biological macromolecules and regulation of ion transport. One important example is the sea urchin spine. It has recently been shown to be formed through deposition of a transient amorphous calcium carbonate (ACC) precursor phase that later transforms to single-crystalline calcite, ultimately forming an elaborate three-dimensional microporous calcium carbonate structure with interconnected pores. Macromolecules associated with the mineral phase are thought to play a key role in regulating this transformation. The work described here mimics this type of morphological control by "molding" an amorphous calcium carbonate precursor within a porous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel that has been prepared as a negative replica from the void space of an urchin spine. Using an acidic biomimetic polymer as a process-directing agent, we show that polyaspartic acid induces amorphous calcium carbonate (ACC) nanoparticles, which have fluidic character and therefore are able to infiltrate the PHEMA hydrogel replica and coalesce into the convoluted morphology that replicates the original microporous structure of the sea urchin spine. By "molding" calcium carbonate into a complex morphology at room temperature, using a precursor process that is induced by a biomimetic acidic macromolecule, the PILP process is a useful in vitro model for examining different aspects of the amorphous-to-crystalline transformation process that is apparently used by a variety of biomineralizing organisms. For example, although we were able to replicate the overall morphology of the spine, it had polycrystalline texture; further studies with this system will focus on controlling the nucleation event, which may help to elucidate how such a convoluted structure can be prepared with single-crystalline texture via an amorphous precursor. Through a better understanding of the mechanisms used by organisms to regulate crystal properties, such biomimetic processes can lead to the synthesis of materials with superior electronic, mechanical, and optical properties.
NASA Technical Reports Server (NTRS)
De Hon, R. A.
1980-01-01
Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.
Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient
Gori, Andrea; Lopez-González, Pablo; Bramanti, Lorenzo; Rossi, Sergio; Gili, Josep-Maria; Abbiati, Marco
2016-01-01
Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30–40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations. PMID:27490900
Comparative morphology of changeable skin papillae in octopus and cuttlefish.
Allen, Justine J; Bell, George R R; Kuzirian, Alan M; Velankar, Sachin S; Hanlon, Roger T
2014-04-01
A major component of cephalopod adaptive camouflage behavior has rarely been studied: their ability to change the three-dimensionality of their skin by morphing their malleable dermal papillae. Recent work has established that simple, conical papillae in cuttlefish (Sepia officinalis) function as muscular hydrostats; that is, the muscles that extend a papilla also provide its structural support. We used brightfield and scanning electron microscopy to investigate and compare the functional morphology of nine types of papillae of different shapes, sizes and complexity in six species: S. officinalis small dorsal papillae, Octopus vulgaris small dorsal and ventral eye papillae, Macrotritopus defilippi dorsal eye papillae, Abdopus aculeatus major mantle papillae, O. bimaculoides arm, minor mantle, and dorsal eye papillae, and S. apama face ridge papillae. Most papillae have two sets of muscles responsible for extension: circular dermal erector muscles arranged in a concentric pattern to lift the papilla away from the body surface and horizontal dermal erector muscles to pull the papilla's perimeter toward its core and determine shape. A third set of muscles, retractors, appears to be responsible for pulling a papilla's apex down toward the body surface while stretching out its base. Connective tissue infiltrated with mucopolysaccharides assists with structural support. S. apama face ridge papillae are different: the contraction of erector muscles perpendicular to the ridge causes overlying tissues to buckle. In this case, mucopolysaccharide-rich connective tissue provides structural support. These six species possess changeable papillae that are diverse in size and shape, yet with one exception they share somewhat similar functional morphologies. Future research on papilla morphology, biomechanics and neural control in the many unexamined species of octopus and cuttlefish may uncover new principles of actuation in soft, flexible tissue.
Eldaroti, Hala H; Gadir, Suad A; Refat, Moamen S; Adam, Abdel Majid A
2014-04-01
Investigation of charge-transfer (CT) complexes of drugs has been recognized as an important phenomenon in understanding of the drug-receptor binding mechanism. Structural, thermal, morphological and biological behavior of CT complexes formed between drug quinidine (Qui) as a donor and quinol (QL), picric acid (PA) or dichlorodicyanobenzoquinone (DDQ) as acceptors were reported. The newly synthesized CT complexes have been spectroscopically characterized via elemental analysis; infrared (IR), Raman, 1 H NMR and electronic absorption spectroscopy; powder X-ray diffraction (PXRD); thermogravimetric (TG) analysis and scanning electron microscopy (SEM). It was found that the obtained complexes are nanoscale, semi-crystalline particles, thermally stable and spontaneous. The molecular composition of the obtained complexes was determined using spectrophotometric titration method and was found to be 1:1 ratios (donor:acceptor). Finally, the biological activities of the obtained CT complexes were tested for their antibacterial activities. The results obtained herein are satisfactory for estimation of drug Qui in the pharmaceutical form.
A new fabrication technique for complex refractive micro-optical systems
NASA Astrophysics Data System (ADS)
Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cabrini, Stefano; Cojoc, Dan; Di Fabrizio, Enzo
2006-01-01
We present a new method that allows to fabricate structures with tightly controlled three-dimensional profiles in the 10 nm to 100 μm scale range. This consists of a sequence of lithographic steps such as Electron Beam (EB) or Focused Ion Beam (FIB) lithography, alternated with isotropic wet etching processes performed on a quartz substrate. Morphological characterization by SEM and AFM shows that 3D structures with very accurate shape control and nanometer scale surface roughness can be realized. Quartz templates have been employed as complex system of micromirrors after metal coating of the patterned surface or used as stamps in nanoimprint, hot embossing or casting processes to shape complex plastic elements. Compared to other 3D micro and nanostructuring methods, in which a hard material is directly "sculptured" by energetic beams, our technique requires a much less intensive use of expensive lithographic equipments, for comparable volumes of structured material, resulting in dramatic increase of throughput. Refractive micro-optical elements have been fabricated and characterized in transmission and reflection modes with white and monochromatic light. The elements produce a distribution of sharp focal spots and lines in the three dimensional space, opening the route for applications of image reconstruction based on refractive optics.
Hoppins, Suzanne; Collins, Sean R.; Cassidy-Stone, Ann; Hummel, Eric; DeVay, Rachel M.; Lackner, Laura L.; Westermann, Benedikt; Schuldiner, Maya
2011-01-01
To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane–associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria. PMID:21987634
Horton, J. Wright; Ormo, J.; Powars, D.S.; Gohn, G.S.
2006-01-01
The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best-preserved "wet-target" craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ???85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials i n the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. ?? The Meteoritical Society, 2006.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Cui, Li; Miao, Jianjun
2006-03-01
A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.
Generative complexity of Gray-Scott model
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2018-03-01
In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).
Zeharia, Avraham; Friedman, Jonathan R; Tobar, Ana; Saada, Ann; Konen, Osnat; Fellig, Yacov; Shaag, Avraham; Nunnari, Jodi; Elpeleg, Orly
2016-12-01
The mitochondrial inner membrane possesses distinct subdomains including cristae, which are lamellar structures invaginated into the mitochondrial matrix and contain the respiratory complexes. Generation of inner membrane domains requires the complex interplay between the respiratory complexes, mitochondrial lipids and the recently identified mitochondrial contact site and cristae organizing system (MICOS) complex. Proper organization of the mitochondrial inner membrane has recently been shown to be important for respiratory function in yeast. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with a neurodegenerative disorder accompanied by hyperlactatemia, 3-methylglutaconic aciduria, disturbed hepatocellular function with abnormal cristae morphology in liver and cerebellar and vermis atrophy, which suggest mitochondrial dysfunction. Using homozygosity mapping and exome sequencing the patients were found to be homozygous for the p.(Gly15Glufs*75) variant in the QIL1/MIC13 (C19orf70) gene. QIL1/MIC13 is a constituent of MICOS, a six subunit complex that helps to form and/or stabilize cristae junctions and determine the placement, distribution and number of cristae within mitochondria. In patient fibroblasts both MICOS subunits QIL1/MIC13 and MIC10 were absent whereas MIC60 was present in a comparable abundance to that of the control. We conclude that QIL1/MIC13 deficiency in human, is associated with disassembly of the MICOS complex, with the associated aberration of cristae morphology and mitochondrial respiratory dysfunction. 3-Methylglutaconic aciduria is associated with variants in genes encoding mitochondrial inner membrane organizing determinants, including TAZ, DNAJC19, SERAC1 and QIL1/MIC13.
NASA Astrophysics Data System (ADS)
Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.
2017-11-01
Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1-x RE x SnO3 (RE = La and Sr) materials with x = 0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1-x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1-x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.
Star Formation Driven Outflows In Edge-On Spiral Galaxies Based on HST/ACS Observations
NASA Astrophysics Data System (ADS)
Rossa, Joern; Dahlem, M.; Dettmar, R.; van der Marel, R. P.
2007-12-01
We present new results on extraplanar diffuse ionized gas (eDIG) in four late-type, actively star-forming edge-on spirals. The high spatial resolution narrowband imaging observations were obtained with ACS on-board HST. Our H-alpha observations reveal a multitude of structures on both small and large scales. Whereas all four galaxies have been studied with ground-based telescopes before, here the small scale structure of the extended emission line gas is presented for the very first time at a spatial resolution of 0.05", corresponding to 5 pc at the mean distance to our galaxies. The eDIG morphology is very different for all four targets, as a result of their different star formation activity and galaxy mass. There is a very smooth DIG morphology observed in two of the galaxies (NGC4634 and NGC5775), whereas the other two (NGC4700 and NGC7090) show a much more complex morphology with intricate filaments, bubbles and supershells. We discuss how the morphology of the eDIG, in particular the break-up of diffuse emission into filaments in galaxy halos, depends on physical parameters such as galaxy mass and SF activity and other tracers as well as the galactic environment. Support for proposal 10416 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Resolving the Lophiostoma bipolare complex: Generic delimitations within Lophiostomataceae.
Hashimoto, A; Hirayama, K; Takahashi, H; Matsumura, M; Okada, G; Chen, C Y; Huang, J W; Kakishima, M; Ono, T; Tanaka, K
2018-06-01
Lophiostoma bipolare was taxonomically revised based on the morphological observations and phylogenetic analyses of molecular data from nuclear rDNA SSU-ITS-LSU, TUB , tef1 , and rpb2 genes. Twenty-nine strains were morphologically similar to Lo . bipolare . A total of 174 sequences were generated from the Lo . bipolare complex. Phylogenetic analyses based on TUB sequence revealed 11 distinct species within the Lo. bipolare complex. Morphological features of the ascospores and the anatomical structure of the ascomata from both field collections as well as axenic culture, which have been reported previously as variable features at intraspecific levels, were compared to evaluate the taxonomic reliability of these features. To clarify the generic position of the 11 species, phylogenetic analyses were done on SSU-ITS-LSU- tef1 - rpb2 gene sequences. The Lo . bipolare complex shared phylogenetic relationships with Pseudolophiostoma and Vaginatispora , and formed an additional five distinct clades from other members of Lophiostomataceae . According to its phylogenetic position, Lo. bipolare sensu stricto was distantly related to Lophiostoma s. str., and formed an independent clade within Lophiostomataceae. Lophiostoma bipolare s. str. could be distinguished from the other lophiostomataceous genera by the clypeus around the ostiolar neck and by the thin and uniformly thick peridium. A novel genus described as Lentistoma was established to accommodate this species, and the epitypification of Lentistoma bipolare (basionym: Massarina bipolaris ) was proposed. Other lineages of the Lo. bipolare complex could not be separated on the basis of the ascospore size and sheath variations, but were distinguished based on ascomatal features, such as the existence of the clypeus, brown hyphae surrounding the peridium, and the contexture of the peridium, which were stable indicators of generic boundaries in Lophiostomataceae . Four additional new genera with five new species were recognised based on these morphological differences: Crassiclypeus ( C . aquaticus ), Flabellascoma ( F . cycadicola and F . minimum ), Leptoparies ( Lep . palmarum ), and Pseudopaucispora ( Pseudop . brunneospora ). Three new species were added to Pseudolophiostoma ( Pseudol . cornisporum , Pseudol . obtusisporum , and Pseudol . tropicum ) and two new species were added to Vaginatispora ( V . amygdali and V . scabrispora ). The re-evaluation of the validity of several previously recognised genera resulted in the introduction of two new genera with new combinations for Lophiostoma pseudoarmatisporum as Parapaucispora pseudoarmatispora and Vaginatispora fuckelii as Neovaginatispora fuckelii .
Comparative morphology of stingray lateral line canal and electrosensory systems.
Jordan, Laura K
2008-11-01
Elasmobranchs (sharks, skates, and rays) possess a variety of sensory systems including the mechanosensory lateral line and electrosensory systems, which are particularly complex with high levels of interspecific variation in batoids (skates and rays). Rays have dorsoventrally compressed, laterally expanded bodies that prevent them from seeing their mouths and more often than not, their prey. This study uses quantitative image analysis techniques to identify, quantify, and compare structural differences that may have functional consequences in the detection capabilities of three Eastern Pacific stingray species. The benthic round stingray, Urobatis halleri, pelagic stingray, Pteroplatytrygon (Dasyatis) violacea, and benthopelagic bat ray, Myliobatis californica, show significant differences in sensory morphology. Ventral lateral line canals correlate with feeding ecology and differ primarily in the proportion of pored and nonpored canals and the degree of branching complexity. Urobatis halleri shows a high proportion of nonpored canals, while P. violacea has an intermediate proportion of pored and nonpored canals with almost no secondary branching of pored canals. In contrast, M. californica has extensive and highly branched pored ventral lateral line canals that extended laterally toward the wing tips on the anterior edge of the pectoral fins. Electrosensory morphology correlates with feeding habitat and prey mobility; benthic feeders U. halleri and M. californica, have greater electrosensory pore numbers and densities than P. violacea. The percentage of the wing surface covered by these sensory systems appears to be inversely related to swimming style. These methods can be applied to a broader range of species to enable further discussion of the relationship of phylogeny, ecology, and morphology, while the results provide testable predictions of detection capabilities.
Guerra, I; Cardell, C
2015-10-01
The novel Structural Chemical Analyser (hyphenated Raman spectroscopy and scanning electron microscopy equipped with an X-ray detector) is gaining popularity since it allows 3-D morphological studies and elemental, molecular, structural and electronic analyses of a single complex micro-sized sample without transfer between instruments. However, its full potential remains unexploited in painting heritage where simultaneous identification of inorganic and organic materials in paintings is critically yet unresolved. Despite benefits and drawbacks shown in literature, new challenges have to be faced analysing multifaceted paint specimens. SEM-Structural Chemical Analyser systems differ since they are fabricated ad hoc by request. As configuration influences the procedure to optimize analyses, likewise analytical protocols have to be designed ad hoc. This paper deals with the optimization of the analytical procedure of a Variable Pressure Field Emission scanning electron microscopy equipped with an X-ray detector Raman spectroscopy system to analyse historical paint samples. We address essential parameters, technical challenges and limitations raised from analysing paint stratigraphies, archaeological samples and loose pigments. We show that accurate data interpretation requires comprehensive knowledge of factors affecting Raman spectra. We tackled: (i) the in-FESEM-Raman spectroscopy analytical sequence, (ii) correlations between FESEM and Structural Chemical Analyser/laser analytical position, (iii) Raman signal intensity under different VP-FESEM vacuum modes, (iv) carbon deposition on samples under FESEM low-vacuum mode, (v) crystal nature and morphology, (vi) depth of focus and (vii) surface-enhanced Raman scattering effect. We recommend careful planning of analysis strategies prior to research which, although time consuming, guarantees reliable results. The ultimate goal of this paper is to help to guide future users of a FESEM-Structural Chemical Analyser system in order to increase applications. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Manual of praying mantis morphology, nomenclature, and practices (Insecta, Mantodea)
Brannoch, Sydney K.; Wieland, Frank; Rivera, Julio; Klass, Klaus-Dieter; Olivier Béthoux; Svenson, Gavin J.
2017-01-01
Abstract This study provides a comprehensive review of historical morphological nomenclature used for praying mantis (Mantodea) morphology, which includes citations, original use, and assignment of homology. All referenced structures across historical works correspond to a proposed standard term for use in all subsequent works pertaining to praying mantis morphology and systematics. The new standards are presented with a verbal description in a glossary as well as indicated on illustrations and images. In the vast majority of cases, originally used terms were adopted as the new standard. In addition, historical morphological topographical homology conjectures are considered with discussion on modern interpretations. A new standardized formulation to present foreleg femoral and tibial spines is proposed for clarity based on previous works. In addition, descriptions for methods of collection, curation, genital complex dissection, and labeling are provided to aid in the proper preservation and storage of specimens for longevity and ease of study. Due to the lack of consistent linear morphometric measurement practices in the literature, we have proposed a series of measurements for taxonomic and morphological research. These measurements are presented with figures to provide visual aids with homologous landmarks to ensure compatibility and comparability across the Order. Finally, our proposed method of pinning mantises is presented with a photographical example as well as a video tutorial available at http://mantodearesearch.com. PMID:29200926
Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties
NASA Astrophysics Data System (ADS)
Kim, Hwa-Jung; Choi, Seong-Ho; Park, Hae-Jun
2012-10-01
In this study, nano-silver (nano-Ag) complexes showing different properties have been synthesized as follows. Polypyrrolidone (PVP)-stabilized silver colloids (NAg), nano-Ag bound to silica (SiO2) (NSS), and nano-Ag bound to a complex of SiO2 and polyaniline (PANI) (NSSPAI) were prepared via γ-irradiation at room temperature. NAg and NSS used PVP as a colloidal stabilizer, while NSSPAI did not use PVP as a colloidal stabilizer. Interesting bonding properties occurred in the nano-Ag complex and anticipated structural changes were clearly shown through a surface analysis of x-ray photoelectron spectroscopy (XPS). The morphologies by field emission-scanning electron microscopy (FE-SEM) analysis showed that nano-Ag complexes have various particle sizes ranging from 10 to 30 nm. NSS (average, 10 nm) and NSSPAI (average, 30 nm) showed a uniformly spherical shape and size, while NAg did not. From the reflection peaks in the x-ray diffraction (XRD) patterns, surface crystallinity of the nano-Ag complexes was indicated to be in the same degree as that of NSSPAI>NSS>NAg. Also, in the contact angle (CA) determination, surface hydrophobicity of NSSPAI was stronger than those of NSS and NAg, relatively. The different nano-Ag complexes prepared by γ-irradiation can be applicable in various industry fields due to the increase in specific property.
NASA Astrophysics Data System (ADS)
Yuan, Jikang
Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.
Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata
2014-11-10
Supramolecular host-guest complexation between the nonsteroidal anti-inflammatory drug indomethacin (IMC) and molecular containers were investigated. The weakly fluorescent drug molecule becomes highly fluorescent on complexation with different molecular containers, and time-resolved fluorescence emission spectroscopy reveals that the lifetime components of IMC significantly increase in the presence of molecular containers, compared with the lifetimes in neat water. The respective solid host-guest complexes were synthesised and characterised by Fourier transform infrared and (1) H nuclear magnetic resonance spectroscopic analysis. Microscopy techniques were used to analyse modifications of the surface morphology, owing to the formation of supramolecular complexes. The effect of the molecular container on the optical properties of IMC has also been investigated to determine the effect of nanochannels of different size and structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Melt rheological properties of nucleated PET/MWCNT nanocomposites
NASA Astrophysics Data System (ADS)
Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.
2018-05-01
This work investigates the effect of precipitated Polyethylene Terephthalate (p-PET) and loading of Multiwalled carbon nanotubes (MWCNT) on morphology and rheology of Polyethylene Terephthalate (PET)/MWCNT nanocomposites. As received PET and Self-Nucleated PET (Nuc-PET) nanocomposites with different loadings of multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing technique. Synthesized reorganized PET crystallizes rapidly from the melt and it is used in small quantities as a self-nucleating agent to make Nuc-PET. In the present study, Rheological properties of nanocomposites are obtained and results show with increase in MWCNT loading complex viscosity of nanocomposites increases. Nonterminal solid like rheological behavior of PET nanocomposites were observed at low frequencies, which indicates the formation of the network like structures of MWCNT in nanocomposites. Morphological and rheological properties of self-nucleated PET nanocomposites improved significantly may be due to self-nucleating agent p-PET. Morphological properties were studied by Scanning Electron Microscopy (SEM). SEM shows better dispersion of MWCNT in Nuc-PET nanocomposites.
Modeling the Lexical Morphology of Western Handwritten Signatures
Diaz-Cabrera, Moises; Ferrer, Miguel A.; Morales, Aythami
2015-01-01
A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures. PMID:25860942
Hodge, Jennifer R; Alim, Chidera; Bertrand, Nick G; Lee, Wesley; Price, Samantha A; Tran, Binh; Wainwright, Peter C
2018-07-01
Antipredator defensive traits are thought to trade-off evolutionarily with traits that facilitate predator avoidance. However, complexity and scale have precluded tests of this prediction in many groups, including fishes. Using a macroevolutionary approach, we test this prediction in butterflyfishes, an iconic group of coral reef inhabitants with diverse social behaviours, foraging strategies and antipredator adaptations. We find that several antipredator traits have evolved adaptively, dependent primarily on foraging strategy. We identify a previously unrecognised axis of diversity in butterflyfishes where species with robust morphological defences have riskier foraging strategies and lack sociality, while species with reduced morphological defences feed in familiar territories, have adaptations for quick escapes and benefit from the vigilance provided by sociality. Furthermore, we find evidence for the constrained evolution of fin spines among species that graze solely on corals, highlighting the importance of corals, as both prey and structural refuge, in shaping fish morphology. © 2018 John Wiley & Sons Ltd/CNRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Koushik; Balog, Eva Rose M.; Sista, Prakash
We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca{sup 2+} or Cu{sup 2+}, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon themore » temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.« less
Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires
Zhang, Qian; Cui, Zhiguang; Wei, Zhiyong; ...
2017-05-08
Nanowires of complex morphologies, such as kinked wires, have been recently synthesized and demonstrated for novel devices and applications. However, the effects of these morphologies on thermal transport have not been well studied. Through systematic experimental measurements, we show in this paper that single-crystalline, defect-free kinks in boron carbide nanowires can pose a thermal resistance up to ~30 times larger than that of a straight wire segment of equivalent length. Analysis suggests that this pronounced resistance can be attributed to the combined effects of backscattering of highly focused phonons and required mode conversion at the kink. Interestingly, it is alsomore » found that instead of posing resistance, structural defects in the kink can actually assist phonon transport through the kink and reduce its resistance. Finally, given the common kink-like wire morphology in nanoelectronic devices and required low thermal conductivity for thermoelectric devices, these findings have important implications in precise thermal management of electronic devices and thermoelectrics.« less
Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qian; Cui, Zhiguang; Wei, Zhiyong
Nanowires of complex morphologies, such as kinked wires, have been recently synthesized and demonstrated for novel devices and applications. However, the effects of these morphologies on thermal transport have not been well studied. Through systematic experimental measurements, we show in this paper that single-crystalline, defect-free kinks in boron carbide nanowires can pose a thermal resistance up to ~30 times larger than that of a straight wire segment of equivalent length. Analysis suggests that this pronounced resistance can be attributed to the combined effects of backscattering of highly focused phonons and required mode conversion at the kink. Interestingly, it is alsomore » found that instead of posing resistance, structural defects in the kink can actually assist phonon transport through the kink and reduce its resistance. Finally, given the common kink-like wire morphology in nanoelectronic devices and required low thermal conductivity for thermoelectric devices, these findings have important implications in precise thermal management of electronic devices and thermoelectrics.« less
NASA Astrophysics Data System (ADS)
Wang, Hui; Sun, Hongyuan; He, Jieyu
2017-12-01
The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.
Unique Crystallization of Fullerenes: Fullerene Flowers
Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul
2016-01-01
Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)–mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization. PMID:27561446
Kirigami artificial muscles with complex biologically inspired morphologies
NASA Astrophysics Data System (ADS)
Sareh, Sina; Rossiter, Jonathan
2013-01-01
In this paper we present bio-inspired smart structures which exploit the actuation of flexible ionic polymer composites and the kirigami design principle. Kirigami design is used to convert planar actuators into active 3D structures capable of large out-of-plane displacement and that replicate biological mechanisms. Here we present the burstbot, a fluid control and propulsion mechanism based on the atrioventricular cuspid valve, and the vortibot, a spiral actuator based on Vorticella campanula, a ciliate protozoa. Models derived from biological counterparts are used as a platform for design optimization and actuator performance measurement. The symmetric and asymmetric fluid interactions of the burstbot are investigated and the effectiveness in fluid transport applications is demonstrated. The vortibot actuator is geometrically optimized as a camera positioner capable of 360° scanning. Experimental results for a one-turn spiral actuator show complex actuation derived from a single degree of freedom control signal.
High-resolution x-ray computed tomography to understand ruminant phylogeny
NASA Astrophysics Data System (ADS)
Costeur, Loic; Schulz, Georg; Müller, Bert
2014-09-01
High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.
Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences
Hibbett, David S.; Pine, Elizabeth M.; Langer, Ewald; Langer, Gitta; Donoghue, Michael J.
1997-01-01
Homobasidiomycete fungi display many complex fruiting body morphologies, including mushrooms and puffballs, but their anatomical simplicity has confounded efforts to understand the evolution of these forms. We performed a comprehensive phylogenetic analysis of homobasidiomycetes, using sequences from nuclear and mitochondrial ribosomal DNA, with an emphasis on understanding evolutionary relationships of gilled mushrooms and puffballs. Parsimony-based optimization of character states on our phylogenetic trees suggested that strikingly similar gilled mushrooms evolved at least six times, from morphologically diverse precursors. Approximately 87% of gilled mushrooms are in a single lineage, which we call the “euagarics.” Recently discovered 90 million-year-old fossil mushrooms are probably euagarics, suggesting that (i) the origin of this clade must have occurred no later than the mid-Cretaceous and (ii) the gilled mushroom morphology has been maintained in certain lineages for tens of millions of years. Puffballs and other forms with enclosed spore-bearing structures (Gasteromycetes) evolved at least four times. Derivation of Gasteromycetes from forms with exposed spore-bearing structures (Hymenomycetes) is correlated with repeated loss of forcible spore discharge (ballistospory). Diverse fruiting body forms and spore dispersal mechanisms have evolved among Gasteromycetes. Nevertheless, it appears that Hymenomycetes have never been secondarily derived from Gasteromycetes, which suggests that the loss of ballistospory has constrained evolution in these lineages. PMID:9342352
Effect of suspension property on granule morphology and compaction behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hae-Weon Lee, Guesup Song, In-Sik Suk
1995-12-31
Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.
da Silva, Marjorie; Noll, Fernando Barbosa; E Castro, Adriana C Morales-Corrêa
2018-01-01
Swarm-founding wasps are endemic and common representatives of neotropical fauna and compose an interesting social tribe of vespids, presenting both complex social characteristics and uncommon traits for a eusocial group, such as the absence of castes with distinct morphology. The paper wasp Protonectarina sylveirae (Saussure) presents a broad distribution from Brazil, Argentina and Paraguay, occurring widespread in the Atlantic rainforest and arboreal Caatinga, being absent in the Amazon region. Given the peculiar distribution among swarm-founding wasps, an integrative approach to reconstruct the evolutionary history of P. sylveirae in a spatial-temporal framework was performed to investigate: the presence of genetic structure and its relationship with the geography, the evolution of distinct morphologic lineages and the possible historical event(s) in Neotropical region, which could explain the observed phylogeographic pattern. Individuals of P. sylveirae were obtained from populations of 16 areas throughout its distribution for DNA extraction and amplification of mitochondrial genes 12S, 16S and COI. Analysis of genetic diversity, construction of haplotype net, analysis of population structure and dating analysis of divergence time were performed. A morphometric analysis was also performed using 8 measures of the body of the adult (workers) to test if there are morphological distinction among populations. Thirty-five haplotypes were identified, most of them exclusively of a group and a high population structure was found. The possibility of genetic divergence because of isolation by distance was rejected. Morphological analysis pointed to a great uniformity in phenotypes, with only a small degree of differentiation between populations of south and the remaining. Divergence time analysis showed a Middle/Late Miocene origin, a period where an extensive marine ingression occurred in South America. Divergence of haplogroups began from the Plio/Pleistocene boundary and the last glacial maximum most likely modeled the current distribution of species, even though it was not the cause of genetic breaks.
2018-01-01
Swarm-founding wasps are endemic and common representatives of neotropical fauna and compose an interesting social tribe of vespids, presenting both complex social characteristics and uncommon traits for a eusocial group, such as the absence of castes with distinct morphology. The paper wasp Protonectarina sylveirae (Saussure) presents a broad distribution from Brazil, Argentina and Paraguay, occurring widespread in the Atlantic rainforest and arboreal Caatinga, being absent in the Amazon region. Given the peculiar distribution among swarm-founding wasps, an integrative approach to reconstruct the evolutionary history of P. sylveirae in a spatial-temporal framework was performed to investigate: the presence of genetic structure and its relationship with the geography, the evolution of distinct morphologic lineages and the possible historical event(s) in Neotropical region, which could explain the observed phylogeographic pattern. Individuals of P. sylveirae were obtained from populations of 16 areas throughout its distribution for DNA extraction and amplification of mitochondrial genes 12S, 16S and COI. Analysis of genetic diversity, construction of haplotype net, analysis of population structure and dating analysis of divergence time were performed. A morphometric analysis was also performed using 8 measures of the body of the adult (workers) to test if there are morphological distinction among populations. Thirty-five haplotypes were identified, most of them exclusively of a group and a high population structure was found. The possibility of genetic divergence because of isolation by distance was rejected. Morphological analysis pointed to a great uniformity in phenotypes, with only a small degree of differentiation between populations of south and the remaining. Divergence time analysis showed a Middle/Late Miocene origin, a period where an extensive marine ingression occurred in South America. Divergence of haplogroups began from the Plio/Pleistocene boundary and the last glacial maximum most likely modeled the current distribution of species, even though it was not the cause of genetic breaks. PMID:29538451
Vesta Mineralogy after Dawn Global Observations
NASA Technical Reports Server (NTRS)
ChristinaDeSanctis, Maria; Ammannito, E.; Capaccioni, F.; Cparia, M. T.; Carraro, F.; Fonte, S.; Frigeri, A.; Longobardo, A.; Marchi, S.; Palomba, E.;
2012-01-01
The Dawn mission has completed its mapping phases at Vesta and millions of spectra have been acquired by the Visible and InfraRed Mapping Spectrometer, VIR(1). VIR characterizes and maps the mineral distribution on Vesta -strengthening the Vesta HED linkage- and provides new insights into Vesta s formation and evolution(2,3). VIR spectra are dominated by pyroxene absorptions near 0.9 and 2.0 m and large thermal emission beyond 3.5 m. Although almost all surface materials exhibit howardite-like spectra, some large regions can be interpreted to be richer in eucritic (basaltic) material and others richer in diogenititic (Mg-orthopyroxenitic) material. The Rheasilvia basin contains Mg-pyroxene-rich terrains for example. Vesta' s surface shows considerable diversity at local scales. Many bright and dark areas(3,4) are associated with various geological features and show remarkably different morphology. Moreover, VIR detected statistically significant, but weak, variations at 2.8 m that have been interpreted as indicating the presence of OH-bearing phases on the surface(5). The OH distribution is uneven with large regions lacking this absorption feature. Associations of 2.8 m band with morphological structures indicate complex process responsible for OH. Vesta exhibits large spectral variations that often correlate with geological structures, indicating a complex geological and evolutionary history, more similar to that of the terrestrial planets than to other asteroids visited by spacecrafts.
NASA Astrophysics Data System (ADS)
Gashaw Hone, Fekadu; Dejene, F. B.
2018-02-01
Polycrystalline lead sulphide (PbS) thin films were grown on glass substrates by chemical bath deposition route using ethanolamine (ETA) as a complexing agent. The effects of ETA molar concentration on the structural, morphological, electrical and optical properties of lead sulphide thin films were thoroughly studied. The XRD analyses revealed that all the deposited thin films were face center cubic crystal structure and their preferred orientations were varied along the (111) and (200) planes. The XRD results further confirmed that ETA concentration had a significant effects on the strain, average crystalline size and dislocation density of the deposited thin films. The SEM studies illustrated the evolution and transformation of surface morphology as ETA molar concentration increased from 0.41 M to 1.64 M. The energy dispersive x-ray analysis was used to verify the compositional elements of the deposited thin films. Optical spectroscopy investigation established that the band gap of the PbS thin films were reduced from 0.98 eV to 0.68 eV as ETA concentration increased. The photoluminescence spectra showed a well defined peak at 428 nm and shoulder around 468 nm for all PbS thin films. The electrical resistivity of the thin films found in the order of 103 Ω cm at room temperature and decreased as the ETA molar concentration was increased.
Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.
Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R
2010-04-16
We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.
Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution
Wilkins, Adam S.
2007-01-01
The extent to which “developmental constraints” in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a “network perspective” may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed. PMID:17494754
Between "design" and "bricolage": genetic networks, levels of selection, and adaptive evolution.
Wilkins, Adam S
2007-05-15
The extent to which "developmental constraints" in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a "network perspective" may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed.
Novel morphology change of Au-Methotrexate conjugates: From nanochains to discrete nanoparticles.
Wang, Wei-Yuan; Zhao, Xiu-Fen; Ju, Xiao-Han; Wang, Yu; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong
2016-12-30
A novel morphology change of Au-methotrexate (Au-MTX) conjugates that could transform from nanochains to discrete nanoparticles was achieved by a simple, one-pot, and hydrothermal growth method. Herein, MTX was used efficiently as a complex-forming agent, reducing agent, capping agent, and importantly a targeting anticancer drug. The formation mechanism suggested a similarity with the molecular imprinting technology. The Au-MTX complex induced the MTX molecules to selectively adsorb on different crystal facets of gold nanoparticles (AuNPs) and then formed gold nanospheres. Moreover, the abundantly binding MTX molecules promoted directional alignment of these gold nanospheres to further form nanochains. More interestingly, the linear structures gradually changed into discrete nanoparticles by adding different amount of ethylene diamine tetra (methylene phosphonic acid) (EDTMPA) into the initial reaction solution, which likely arose from the strong electrostatic effect of the negatively charged phosphonic acid groups. Compared with the as-prepared nanochains, the resultant discrete nanoparticles showed almost equal drug loading capacity but with higher drug release control, colloidal stability, and in vitro anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Vincenot, Lucie; Popa, Flavius; Laso, Francisco; Donges, Kathrin; Rexer, Karl-Heinz; Kost, Gerhard; Yang, Zhu L; Nara, Kazuhide; Selosse, Marc-André
2017-11-01
Purple Laccaria are ectomycorrhizal basidiomycetes associated with temperate forests all over the Northern Hemisphere in at least two taxa: Laccaria amethysteo-occidentalis in North America, and L. amethystina complex in Eurasia, as shown by Vincenot et al. (2012). Here, we combine a further study of the genetic structure of L. amethystina populations from Europe to southwestern China and Japan, using neutral Single Sequence Repeat (SSR; microsatellite) markers; and a systematic description of two novel Asian species, namely Laccaria moshuijun and Laccaria japonica, based on ecological, morphological, and molecular criteria (rDNA sequences). Population genetics provides evidence of the ancient isolation of three regional groups, with strong signal for speciation, and suggests a centre of origin of modern populations closest to present-day Chinese populations. Phylogenetic analyses confirm speciation at the molecular level, reflected in morphological features: L. moshuijun samples (from Yunnan, China) display strongly variable cheilocystidia, while L. japonica samples (from Japan) present distinctive globose to subglobose spores and clavate cheilocystidia. This study of a species complex primarily described with an extremely wide ecological and geographical range sheds new light on the biodiversity and biogeography of ectomycorrhizal fungi. Copyright © 2017 British Mycological Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Brockmann, Axel; Brückner, Dorothea
2001-01-01
Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.
Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences
Chandra, Govind; Chater, Keith F
2014-01-01
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321
Kivell, Tracy L
2016-04-01
Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past. © 2016 Anatomical Society.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films
Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.
2013-01-01
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.
Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S
2013-12-03
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.
Cametti, C
2008-10-01
This review focusses on recent developments in the experimental study of polyion-induced charged colloidal particle aggregation, with particular emphasis on the formation of cationic liposome clusters induced by the addition of anionic adsorbing polyions. These structures can be considered, under certain points of view, a new class of colloidal systems, with intriguing properties that opens interesting and promising new opportunities in various biotechnological applications. Lipidic structures of different morphologies and different structural complexities interacting with oppositely charged polyions give rise to a rich variety of self-assembled structures that present various orders of hierarchy in the sense that, starting from a basic level, for example a lipid bilayer, they arrange themselves into superstructures as, for example, multilamellar stacks or liquid-crystalline structures. These structures can be roughly divided into two classes according to the fact that the elementary structure, involved in building a more complex one, keeps or does not keeps its basic arrangement. To the first one, belong those aggregates composed by single structures that maintain their integrity, for example, lipidic vesicles assembled together by an appropriate external agent. The second one encompasses structures that do not resemble the ones of the original objects which form them, but, conversely, derive from a deep restructuring and rearrangement process, where the original morphology of the initial constitutive elements is completely lost. In this review, I will only briefly touch on higher level hierarchy structures and I will focus on the assembling processes involving preformed lipid bilayer vesicles that organize themselves into clusters, the process being induced by the adsorption of oppositely charged polyions. The scientific interest in polyion-induced liposome aggregates is two-fold. On the one hand, in soft-matter physics, they represent an interesting colloidal system, governed by a balance between long-range electrostatic repulsion and short-range attraction, resulting in relatively large, equilibrium clusters, whose size and overall charge can be continuously tunable by simple environmental parameters. These structures present a variety of behaviors with a not yet completely understood phenomenology. On the other hand, the resulting structures possess some peculiar properties that justify their employment as drug delivery systems. Bio-compatibility, stability and ability to deliver various bio-active molecules and, moreover, their environmental responsiveness make liposome-based clusters a versatile carrier, with possibility of efficient targeting to different organs and tissues. Among the different structures made possible by the aggregating mechanism (cationic particles stuck together by anionic polyions or conversely anionic particles stuck together by cationic polyions), I will review the main experimental evidences for the existence of cationic liposome clusters. Especial attention is paid to our own work, mainly aimed at the characterization of these novel structures from a physical point of view.
Freitas, Elyse S; Bauer, Aaron M; Siler, Cameron D; Broadley, Donald G; Jackman, Todd R
2018-06-02
The aridification of Africa resulted in the fragmentation of forests and the expansion of an arid corridor stretching from the northeast to southwest portion of sub-Saharan Africa, but the role this corridor has had in species-level diversification of southern African vertebrates is poorly understood. The skink species Mochlus afer and M. sundevallii inhabit wide areas of the arid corridor and are therefore an ideal species pair for studying patterns of genetic and phenotypic diversity associated with this landscape. However, species boundaries between these taxa have been controversial. Using multi-locus molecular and morphological datasets, we investigate diversification patterns of the M. afer-sundevallii Species Complex across the arid corridor. Although analyses of genetic data reveals some genetic structure among geographic populations, results of phylogenetic and morphological analyses provide little support for two distinct evolutionary lineages, suggesting that populations previously referred to as M. afer and M. sundevallii represent a single species, Mochlus sundevallii. Genetic diversity is unequally distributed across the arid corridor, with observed patterns consistent with aridification-facilitated diversification southward across southern Africa. Additional geographic and population-level sampling is necessary before more conclusive inferences can be drawn about the role historical climate transitions have played in skink diversification patterns across southern Africa. Copyright © 2018 Elsevier Inc. All rights reserved.
MacLachlan, Andrew J; Rath, Thomas; Cappel, Ute B; Dowland, Simon A; Amenitsch, Heinz; Knall, Astrid-Caroline; Buchmaier, Christine; Trimmel, Gregor; Nelson, Jenny; Haque, Saif A
2015-01-01
In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials. PMID:25866496
Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer
2016-01-01
AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690
NASA Astrophysics Data System (ADS)
Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.
2015-12-01
The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.