Sample records for complex movement patterns

  1. Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

    PubMed Central

    Peng, Zhen; Genewein, Tim; Braun, Daniel A.

    2014-01-01

    Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716

  2. Multi-segmental movement patterns reflect juggling complexity and skill level.

    PubMed

    Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella

    2017-08-01

    The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Movement pattern recognition in basketball free-throw shooting.

    PubMed

    Schmidt, Andrea

    2012-04-01

    The purpose of the present study was to analyze the movement patterns of free-throw shooters in basketball at different skill levels. There were two points of interest. First, to explore what information can be drawn from the movement pattern and second, to examine the methodological possibilities of pattern analysis. To this end, several qualitative and quantitative methods were employed. The resulting data were converged in a triangulation. Using a special kind of ANN named Dynamically Controlled Networks (DyCoN), a 'complex feature' consisting of several isolated features (angle displacements and velocities of the articulations of the kinematic chain) was calculated. This 'complex feature' was displayed by a trajectory combining several neurons of the network, reflecting the devolution of the twelve angle measures over the time course of each shooting action. In further network analyses individual characteristics were detected, as well as movement phases. Throwing patterns were successfully classified and the stability and variability of the realized pattern were established. The movement patterns found were clearly individually shaped as well as formed by the skill level. The triangulation confirmed the individual movement organizations. Finally, a high stability of the network methods was documented. Copyright © 2012. Published by Elsevier B.V.

  4. Cross-slope Movement Patterns in Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper-seated landslide was more complex. Though the dominant movement vector is downslope, there is evidence to suggest that there has been a cross-slope component of motion that corresponds to the bedding orientation.

  5. Feeding & Motor Functioning: Start at the Hips to Get to the Lips

    ERIC Educational Resources Information Center

    Donato, Jessica; Fox, Cathy; Mormon, Johnnie; Mormon, Mike

    2008-01-01

    Swallowing is one of the most complex movement patterns that people must use accurately throughout the day and night from the time they are born. These movement patterns are very closely integrated with breathing and movement of food through the aerodigestive tract. Malalignment or dysfunction in any part of these integrated patterns and systems…

  6. Entropic Movement Complexity Reflects Subjective Creativity Rankings of Visualized Hand Motion Trajectories

    PubMed Central

    Peng, Zhen; Braun, Daniel A.

    2015-01-01

    In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity. PMID:26733896

  7. Convergence of marine megafauna movement patterns in coastal and open oceans.

    PubMed

    Sequeira, A M M; Rodríguez, J P; Eguíluz, V M; Harcourt, R; Hindell, M; Sims, D W; Duarte, C M; Costa, D P; Fernández-Gracia, J; Ferreira, L C; Hays, G C; Heupel, M R; Meekan, M G; Aven, A; Bailleul, F; Baylis, A M M; Berumen, M L; Braun, C D; Burns, J; Caley, M J; Campbell, R; Carmichael, R H; Clua, E; Einoder, L D; Friedlaender, Ari; Goebel, M E; Goldsworthy, S D; Guinet, C; Gunn, J; Hamer, D; Hammerschlag, N; Hammill, M; Hückstädt, L A; Humphries, N E; Lea, M-A; Lowther, A; Mackay, A; McHuron, E; McKenzie, J; McLeay, L; McMahon, C R; Mengersen, K; Muelbert, M M C; Pagano, A M; Page, B; Queiroz, N; Robinson, P W; Shaffer, S A; Shivji, M; Skomal, G B; Thorrold, S R; Villegas-Amtmann, S; Weise, M; Wells, R; Wetherbee, B; Wiebkin, A; Wienecke, B; Thums, M

    2018-03-20

    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

  8. A musculoskeletal model of the elbow joint complex

    NASA Technical Reports Server (NTRS)

    Gonzalez, Roger V.; Barr, Ronald E.; Abraham, Lawrence D.

    1993-01-01

    This paper describes a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. Musculotendon parameters and the skeletal geometry were determined for the musculoskeletal model in the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing both isometric and ballistic elbow joint complex movements. In general, the model predicted kinematic and muscle excitation patterns similar to what was experimentally measured.

  9. Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.

    PubMed

    Andrews, T J; Coppola, D M

    1999-08-01

    Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.

  10. Discovering loose group movement patterns from animal trajectories

    USGS Publications Warehouse

    Wang, Yuwei; Luo, Ze; Xiong, Yan; Prosser, Diann J.; Newman, Scott H.; Takekawa, John Y.; Yan, Baoping

    2015-01-01

    The technical advances of positioning technologies enable us to track animal movements at finer spatial and temporal scales, and further help to discover a variety of complex interactive relationships. In this paper, considering the loose gathering characteristics of the real-life groups' members during the movements, we propose two kinds of loose group movement patterns and corresponding discovery algorithms. Firstly, we propose the weakly consistent group movement pattern which allows the gathering of a part of the members and individual temporary leave from the whole during the movements. To tolerate the high dispersion of the group at some moments (i.e. to adapt the discontinuity of the group's gatherings), we further scheme the weakly consistent and continuous group movement pattern. The extensive experimental analysis and comparison with the real and synthetic data shows that the group pattern discovery algorithms proposed in this paper are similar to the the real-life frequent divergences of the members during the movements, can discover more complete memberships, and have considerable performance.

  11. Complex movement patterns of greenback flounder (Rhombosolea tapirina) in the Murray River estuary and Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Earl, Jason; Fowler, Anthony J.; Ye, Qifeng; Dittmann, Sabine

    2017-04-01

    The greenback flounder Rhombosolea tapirina is a commercially-important flatfish species in southern Australia and New Zealand, whose population dynamics are poorly understood. Acoustic telemetry was used to assess movement patterns and area use for R. tapirina in the Murray River estuary and Coorong, South Australia. Twenty fish (221-313 mm total length) equipped with acoustic transmitters were monitored for up to seven months during a period of high freshwater inflow. Fish were detected over a large part of the system, but showed a strong preference for brackish and near-marine conditions in the inner estuary. Tagged fish exhibited complex movement patterns that differed among individuals, including: (1) within estuary movements; (2) dispersal from the estuary to the sea; and (3) return migrations between the estuary and the sea. A diurnal shift in fine-scale area use was observed in the part of the estuary where residency was highest, with individuals occupying deeper habitats during the day and shallower areas during the night. The results demonstrate the individualistic and often highly transient behaviour of this species and its ability to undertake regular movements over the spatial scale of 10s of km. Understanding such movement patterns can improve effective management of estuarine flatfish populations and ecosystems.

  12. Evaluating Treatment and Generalization Patterns of Two Theoretically Motivated Sentence Comprehension Therapies.

    PubMed

    Des Roches, Carrie A; Vallila-Rohter, Sofia; Villard, Sarah; Tripodis, Yorghos; Caplan, David; Kiran, Swathi

    2016-12-01

    The current study examined treatment outcomes and generalization patterns following 2 sentence comprehension therapies: object manipulation (OM) and sentence-to-picture matching (SPM). Findings were interpreted within the framework of specific deficit and resource reduction accounts, which were extended in order to examine the nature of generalization following treatment of sentence comprehension deficits in aphasia. Forty-eight individuals with aphasia were enrolled in 1 of 8 potential treatment assignments that varied by task (OM, SPM), complexity of trained sentences (complex, simple), and syntactic movement (noun phrase, wh-movement). Comprehension of trained and untrained sentences was probed before and after treatment using stimuli that differed from the treatment stimuli. Linear mixed-model analyses demonstrated that, although both OM and SPM treatments were effective, OM resulted in greater improvement than SPM. Analyses of covariance revealed main effects of complexity in generalization; generalization from complex to simple linguistically related sentences was observed both across task and across movement. Results are consistent with the complexity account of treatment efficacy, as generalization effects were consistently observed from complex to simpler structures. Furthermore, results provide support for resource reduction accounts that suggest that generalization can extend across linguistic boundaries, such as across movement type.

  13. [Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].

    PubMed

    Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario

    2011-07-30

    The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The "stiumulus positions," which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.

  14. Dance recognition system using lower body movement.

    PubMed

    Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C

    2014-02-01

    The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.

  15. The use of surface monitoring data for the interpretation of landslide movement patterns

    NASA Astrophysics Data System (ADS)

    Petley, D. N.; Mantovani, F.; Bulmer, M. H.; Zannoni, A.

    2005-03-01

    The Tessina landslide is a large, seasonally active slope failure located on the southern slopes of Mt. Teverone, in the Alpago valley of NE Italy, consisting of a complex system that has developed in Tertiary Flysch deposits. The landslide, which first became active in 1960, threatens two villages and is hence subject to detailed monitoring, with high quality data being collected using piezometers, inclinometers, extensometers, and through the use of a highly innovative, automated Electronic Distance Measurement (EDM) system, which surveys the location of a large number of reflector targets once every 6 h. These systems form the basis of a warning system that protects the villages, but they also provide a very valuable insight into the patterns of movement of the landslide. In this paper, analysis is presented of the movement of the landslide, concentrating on the EDM dataset, which provides a remarkable record of surface displacement patterns. It is proposed that four distinct movement patterns can be established, which correspond closely to independently defined morphological assessments of the landslide complex. Any given block of material transitions through the four phases of movement as it progresses down the landslide, with the style of movement being controlled primarily by the groundwater conditions. The analysis is augmented with modelling of the landslide, undertaken using the Itasca FLAC code. The modelling suggests that different landslide patterns are observed for different parts of the landslide, primarily as a result of variations in the groundwater conditions. The model suggests that when a movement event occurs, displacements occur initially at the toe of the landslide, then retrogress upslope.

  16. Evaluating Treatment and Generalization Patterns of Two Theoretically Motivated Sentence Comprehension Therapies

    PubMed Central

    Des Roches, Carrie A.; Vallila-Rohter, Sofia; Villard, Sarah; Tripodis, Yorghos; Caplan, David

    2016-01-01

    Purpose The current study examined treatment outcomes and generalization patterns following 2 sentence comprehension therapies: object manipulation (OM) and sentence-to-picture matching (SPM). Findings were interpreted within the framework of specific deficit and resource reduction accounts, which were extended in order to examine the nature of generalization following treatment of sentence comprehension deficits in aphasia. Method Forty-eight individuals with aphasia were enrolled in 1 of 8 potential treatment assignments that varied by task (OM, SPM), complexity of trained sentences (complex, simple), and syntactic movement (noun phrase, wh-movement). Comprehension of trained and untrained sentences was probed before and after treatment using stimuli that differed from the treatment stimuli. Results Linear mixed-model analyses demonstrated that, although both OM and SPM treatments were effective, OM resulted in greater improvement than SPM. Analyses of covariance revealed main effects of complexity in generalization; generalization from complex to simple linguistically related sentences was observed both across task and across movement. Conclusions Results are consistent with the complexity account of treatment efficacy, as generalization effects were consistently observed from complex to simpler structures. Furthermore, results provide support for resource reduction accounts that suggest that generalization can extend across linguistic boundaries, such as across movement type. PMID:27997950

  17. Area 18 of the cat: the first step in processing visual movement information.

    PubMed

    Orban, G A

    1977-01-01

    In cats, responses of area 18 neurons to different moving patterns were measured. The influence of three movement parameters--direction, angular velocity, and amplitude of movement--were tested. The results indicate that in area 18 no ideal movement detector exists, but that simple and complex cells each perform complementary operations of primary visual areas, i.e. analysis and detection of movement.

  18. Quantifying Postural Control during Exergaming Using Multivariate Whole-Body Movement Data: A Self-Organizing Maps Approach

    PubMed Central

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J.; Roerdink, Jos B. T. M; Verkerke, Gijsbertus J.; Lamoth, Claudine J. C.

    2015-01-01

    Background Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user’s balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Methods Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Conclusions Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training. PMID:26230655

  19. Quantifying Postural Control during Exergaming Using Multivariate Whole-Body Movement Data: A Self-Organizing Maps Approach.

    PubMed

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J; Roerdink, Jos B T M; Verkerke, Gijsbertus J; Lamoth, Claudine J C

    2015-01-01

    Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user's balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training.

  20. Postural Coordination during Socio-motor Improvisation

    PubMed Central

    Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  1. Postural Coordination during Socio-motor Improvisation.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  2. Simple models for studying complex spatiotemporal patterns of animal behavior

    NASA Astrophysics Data System (ADS)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  3. On the Characterization of Revisitation Patterns in Complex Human Dynamics - A Data Science Approach

    NASA Astrophysics Data System (ADS)

    Barbosa Filho, Hugo Serrano

    When it comes to visitation patterns, humans beings are extremely regular and predictable, with recurrent activities responsible for most of our movements. In recent years, we have seen scientists attempt to model and explain human dynamics and in particular human movement. Akin to other human behaviors, traveling patterns evolve from the convolution between internal and external factors. A better understanding on the mechanisms responsible for transforming and incorporating individual events into regular patterns is of fundamental importance. Many aspects of our complex lives are affected by human movements such as disease spread and epidemics modeling, city planning, wireless network development, and disaster relief, to name a few. Given the myriad of applications, it is clear that a complete understanding of how people move in space can lead to considerable benefits to our society. In most of the recent works, scientists have focused on the idea that people movements are biased towards frequently-visited locations. According to them, human movement is based on a exploration/exploitation dichotomy in which individuals choose new locations (exploration) or return to frequently-visited locations (exploitation). In this dissertation we present some of our contributions to the field, such as the presence of a recency effect in human mobility and Web browsing behaviors as well as the Returner vs. Explorers dichotomy in Web browsing trajectories.

  4. Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.

    PubMed

    Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan

    2016-12-01

    Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients.

    PubMed

    Garbade, Sven F; Greenberg, Cheryl R; Demirkol, Mübeccel; Gökçay, Gülden; Ribes, Antonia; Campistol, Jaume; Burlina, Alberto B; Burgard, Peter; Kölker, Stefan

    2014-09-01

    Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase and is characterized biochemically by an accumulation of putatively neurotoxic dicarboxylic metabolites. The majority of untreated patients develops a complex movement disorder with predominant dystonia during age 3-36 months. Magnetic resonance imaging (MRI) studies have demonstrated striatal and extrastriatal abnormalities. The major aim of this study was to elucidate the complex neuroradiological pattern of patients with GA-I and to associate the MRI findings with the severity of predominant neurological symptoms. In 180 patients, detailed information about the neurological presentation and brain region-specific MRI abnormalities were obtained via a standardized questionnaire. Patients with a movement disorder had more often MRI abnormalities in putamen, caudate, cortex, ventricles and external CSF spaces than patients without or with minor neurological symptoms. Putaminal MRI changes and strongly dilated ventricles were identified as the most reliable predictors of a movement disorder. In contrast, abnormalities in globus pallidus were not clearly associated with a movement disorder. Caudate and putamen as well as cortex, ventricles and external CSF spaces clearly collocalized on a two-dimensional map demonstrating statistical similarity and suggesting the same underlying pathomechanism. This study demonstrates that complex statistical methods are useful to decipher the age-dependent and region-specific MRI patterns of rare neurometabolic diseases and that these methods are helpful to elucidate the clinical relevance of specific MRI findings.

  6. Laban Movement Analysis towards Behavior Patterns

    NASA Astrophysics Data System (ADS)

    Santos, Luís; Dias, Jorge

    This work presents a study about the use of Laban Movement Analysis (LMA) as a robust tool to describe human basic behavior patterns, to be applied in human-machine interaction. LMA is a language used to describe and annotate dancing movements and is divided in components [1]: Body, Space, Shape and Effort. Despite its general framework is widely used in physical and mental therapy [2], it has found little application in the engineering domain. Rett J. [3] proposed to implement LMA using Bayesian Networks. However LMA component models have not yet been fully implemented. A study on how to approach behavior using LMA is presented. Behavior is a complex feature and movement chain, but we believe that most basic behavior primitives can be discretized in simple features. Correctly identifying Laban parameters and the movements the authors feel that good patterns can be found within a specific set of basic behavior semantics.

  7. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  8. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.

    PubMed

    Sims, David W; Humphries, Nicolas E; Bradford, Russell W; Bruce, Barry D

    2012-03-01

    1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting search patterns that are approximated as optimal in response to encountered changes in prey type and abundance, and across diverse marine habitats, from the surf zone to the deep ocean. 5. Our results provide some support for the LFF hypothesis. However, it is possible that the observed Lévy patterns of white sharks may not arise from an adaptive behaviour but could be an emergent property arising from simple, straight-line movements between complex (e.g. fractal) distributions of prey. Experimental studies are needed in vertebrates to test for the presence of Lévy behaviour patterns in the absence of complex prey distributions. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  9. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    PubMed Central

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  10. Outputs of paired Gabor filters summed across the background frame of reference predict the direction of movement

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1989-01-01

    A cortical neural network that computes the visibility of shifts in the direction of movement is proposed. The network computes: (1) the magnitude of the position difference between the test and background patterns, (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern, and (3) using global processes that pool the output from paired even- and odd-symmetric simple and complex cells across the spatial extent of the background frame of reference the direction a test pattern moved relative to a textured background. Evidence that magnocellular pathways are used to discriminate the direction of movement is presented. Since magnocellular pathways are used to discriminate the direction of movement, this task is not affected by small pattern changes such as jitter, short presentations, blurring, and different background contrasts that result when the veiling illumination in a scene changes.

  11. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks

    PubMed Central

    Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed. PMID:28796797

  12. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    PubMed

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  13. Lexical and Post-Lexical Complexity Effects on Eye Movements in Reading

    PubMed Central

    Warren, Tessa; Reichle, Erik D.; Patson, Nikole D.

    2011-01-01

    The current study investigated how a post-lexical complexity manipulation followed by a lexical complexity manipulation affects eye movements during reading. Both manipulations caused disruption in all measures on the manipulated words, but the patterns of spill-over differed. Critically, the effects of the two kinds of manipulations did not interact, and there was no evidence that post-lexical processing difficulty delayed lexical processing on the next word (c.f. Henderson & Ferreira, 1990). This suggests that post-lexical processing of one word and lexical processing of the next can proceed independently and likely in parallel. This finding is consistent with the assumptions of the E-Z Reader model of eye movement control in reading (Reichle, Warren, & McConnell, 2009). PMID:21603125

  14. Central Pattern Generation and the Motor Infrastructure for Suck, Respiration, and Speech

    ERIC Educational Resources Information Center

    Barlow, Steven M.; Estep, Meredith

    2006-01-01

    The objective of the current report is to review experimental findings on centrally patterned movements and sensory and descending modulation of central pattern generators (CPGs) in a variety of animal and human models. Special emphasis is directed toward speech production muscle systems, including the chest wall and orofacial complex during…

  15. Activity characteristics and movement patterns in people with and people without low back pain who participate in rotation-related sports

    PubMed Central

    Chimenti, Ruth L.; Scholtes, Sara A.

    2013-01-01

    Many risk factors have been identified as contributing to the development or persistence of low back pain (LBP). However, the juxtaposition of both high and low levels of physical activity being associated with LBP reflects the complexity of the relationship between a risk factor and LBP. Moreover, not everyone with an identified risk factor, such as a movement pattern of increased lumbopelvic rotation, has LBP. Objective The purpose of this study was to examine differences in activity level and movement patterns between people with and people without chronic or recurrent LBP who participate in rotation-related sports. Design Case Case-control study. Setting University laboratory environment. Participants 52 people with chronic or recurrent LBP and 25 people without LBP who all play a rotation-related sport. Main Outcome Measures Participants completed self-report measures including the Baecke Habitual Activity Questionnaire and a questionnaire on rotation-related sports. A 3-dimensional motion-capture system was used to collect movement-pattern variables during 2 lower-limb-movement tests. Results Compared with people without LBP, people with LBP reported a greater difference between the sport subscore and an average work and leisure composite subscore on the Baecke Habitual Activity Questionnaire (F = 6.55, P = .01). There were no differences between groups in either rotation-related-sport participation or movement-pattern variables demonstrated during 2 lower-limb movement tests (P > .05 for all comparisons). Conclusions People with and people without LBP who regularly play a rotation-related sport differed in the amount and nature of activity participation but not in movement pattern variables. An imbalance between level of activity during sport and daily functions may contribute to the development or persistence of LBP in people who play a rotation-related sport. PMID:23295458

  16. Integrating individual movement behaviour into dispersal functions.

    PubMed

    Heinz, Simone K; Wissel, Christian; Conradt, Larissa; Frank, Karin

    2007-04-21

    Dispersal functions are an important tool for integrating dispersal into complex models of population and metapopulation dynamics. Most approaches in the literature are very simple, with the dispersal functions containing only one or two parameters which summarise all the effects of movement behaviour as for example different movement patterns or different perceptual abilities. The summarising nature of these parameters makes assessing the effect of one particular behavioural aspect difficult. We present a way of integrating movement behavioural parameters into a particular dispersal function in a simple way. Using a spatial individual-based simulation model for simulating different movement behaviours, we derive fitting functions for the functional relationship between the parameters of the dispersal function and several details of movement behaviour. This is done for three different movement patterns (loops, Archimedean spirals, random walk). Additionally, we provide measures which characterise the shape of the dispersal function and are interpretable in terms of landscape connectivity. This allows an ecological interpretation of the relationships found.

  17. A dual-learning paradigm can simultaneously train multiple characteristics of walking

    PubMed Central

    Toliver, Alexis; Bastian, Amy J.

    2016-01-01

    Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100

  18. Motor set in Parkinson's disease.

    PubMed Central

    Robertson, C; Flowers, K A

    1990-01-01

    Three experiments employing a five-choice button-pressing task tested the ability of Parkinsonian patients to learn and generate sequences of movement, and to switch between alternative sequences at will. It was found that patients could learn and generate individual patterns of movement normally, even complex ones involving an incompatible stimulus-response relationship. They had difficulty, however, in maintaining a sequence if two different ones had been learnt and subjects were required to switch spontaneously from one to the other within a trial. Providing external cues at the start of each sequence to guide the ordering of movements improved the stability of patients' performance. Most errors in sequencing consisted of reverting to the alternative pattern of movement. Parkinsonian subjects thus show an impairment in motor set similar to that found previously in cognitive activity. Images PMID:2391523

  19. Emergence of oropharyngeal, laryngeal and swallowing activity in the developing fetal upper aerodigestive tract: an ultrasound evaluation.

    PubMed

    Miller, Jeri L; Sonies, Barbara C; Macedonia, Christian

    2003-02-01

    The developing fetal upper aerodigestive system provides the structural support for respiratory and ingestive functions necessary to sustain life at birth. This study investigated prenatal development of upper aerodigestive anatomy and the association of emerging functions as predictors of postnatal feeding skills. Biometric measures of oral, lingual, pharyngeal and laryngeal structures were obtained in fetuses 15-38 weeks gestational age using a four-plane sonographic technique. Accompanying ingestive behaviors were tallied across development. The data from 62 healthy controls were compared to seven cases at risk for postnatal feeding and swallowing dysfunction (Type II Arnold Chiari Malformation, trisomy 18, polyhydramnios, intrauterine growth restriction, Brachmann-de Lange Syndrome). Significant (p<0.001) linear regressions occurred in pharyngeal and lingual growth across gestation while ingestive behavior such as suckling emerged in a sequence of basic to complex movement patterns. Jaw and lip movements progressed from simple mouth opening to repetitive open-close movements important for postnatal suckling. Lingual movements increased in complexity from simple forward thrusting and cupping to anterior-posterior motions necessary for successful suckling at term. Laryngeal movements varied from shallow flutter-like movements along the lumen to more complex and complete adduction-abduction patterns. Fetal swallowing primarily occurred in the presence of concomitant oral-facial stimulatory activity. Significant variations (p<0.01) in the form and function of the ingestive system occurred in comparisons of gestational age-matched controls to at-risk cases. We postulate that prenatal developmental indices of emerging aerodigestive skills may guide postnatal decisions for feeding readiness and, ultimately, advance the care of the premature, medically fragile neonate.

  20. Neuromuscular-skeletal origins of predominant patterns of coordination in rhythmic two-joint arm movement.

    PubMed

    de Rugy, Aymar; Riek, Stephan; Carson, Richard G

    2006-01-01

    The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination- (SP) at the elbow-joint complex. Participants (N=10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. The result provides evidence that the predominance of the in-phase pattern originates in the influence of neuromuscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.

  1. Approximate Entropy Values Demonstrate Impaired Neuromotor Control of Spontaneous Leg Activity in Infants with Myelomeningocele

    PubMed Central

    Smith, Beth A.; Teulier, Caroline; Sansom, Jennifer; Stergiou, Nicholas; Ulrich, Beverly D.

    2012-01-01

    Purpose One obstacle to providing early intervention to infants with myelomeningocele (MMC) is the challenge of quantifying impaired neuromotor control of movements early in life. Methods We used the nonlinear analysis tool Approximate Entropy (ApEn) to analyze periodicity and complexity of supine spontaneous lower extremity movements of infants with MMC and typical development (TD) at 1, 3, 6 and 9 months of age. Results Movements of infants with MMC were more regular and repeatable (lower ApEn values) than movements of infants with TD indicating less adaptive and flexible movement patterns. For both groups ApEn values decreased with age, and the movements of infants with MMC were less complex than movements of infants with TD. Further, for infants with MMC, lesion level and age of walking onset correlated negatively with ApEn values. Conclusions Our study begins to demonstrate the feasibility of ApEn to identify impaired neuromotor control in infants with MMC. PMID:21829116

  2. Development and evaluation of a musculoskeletal model of the elbow joint complex

    NASA Technical Reports Server (NTRS)

    Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.

    1993-01-01

    This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.

  3. Understanding Activist Leadership Effort in the Movement Opposing Drinking and Driving

    PubMed Central

    Dorius, Cassandra R.; McCarthy, John D.

    2012-01-01

    Why do some social movement leaders work harder than others? And, how does gender affect the patterns we uncover? Utilizing historical case study evidence of local chapters in the emerging movement opposing drinking and driving we are able to develop and test theoretical expectations about predictors of weekly effort among MADD and RID leaders. Taken together, our model explains 45 percent of the variation in leadership effort. We find bureaucratic complexity and victim support activities are more powerful predictors of effort than are individual leader characteristics, although all are important. Further analysis reveals that gender almost wholly conditions the strong effect of bureaucratic complexity on leadership effort so that increasingly complex chapter structures are associated with substantial increases in work hours for women but not men. PMID:22993454

  4. High activity and Levy searches: jellyfish can search the water column like fish.

    PubMed

    Hays, Graeme C; Bastian, Thomas; Doyle, Thomas K; Fossette, Sabrina; Gleiss, Adrian C; Gravenor, Michael B; Hobson, Victoria J; Humphries, Nicolas E; Lilley, Martin K S; Pade, Nicolas G; Sims, David W

    2012-02-07

    Over-fishing may lead to a decrease in fish abundance and a proliferation of jellyfish. Active movements and prey search might be thought to provide a competitive advantage for fish, but here we use data-loggers to show that the frequently occurring coastal jellyfish (Rhizostoma octopus) does not simply passively drift to encounter prey. Jellyfish (327 days of data from 25 jellyfish with depth collected every 1 min) showed very dynamic vertical movements, with their integrated vertical movement averaging 619.2 m d(-1), more than 60 times the water depth where they were tagged. The majority of movement patterns were best approximated by exponential models describing normal random walks. However, jellyfish also showed switching behaviour from exponential patterns to patterns best fitted by a truncated Lévy distribution with exponents (mean μ=1.96, range 1.2-2.9) close to the theoretical optimum for searching for sparse prey (μopt≈2.0). Complex movements in these 'simple' animals may help jellyfish to compete effectively with fish for plankton prey, which may enhance their ability to increase in dominance in perturbed ocean systems.

  5. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.

  6. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  7. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2015-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal. PMID:25620928

  8. Seasonal movement, residency, and migratory patterns of Wilson's Snipe (Gallinago delicata)

    USGS Publications Warehouse

    Cline, Brittany B.; Haig, Susan M.

    2011-01-01

    Cross-seasonal studies of avian movement establish links between geographically distinct wintering, breeding, and migratory stopover locations, or assess site fidelity and movement between distinct phases of the annual cycle. Far fewer studies have investigated individual movement patterns within and among seasons over an annual cycle. Within western Oregon's Willamette Valley throughout 2007, we quantified intra- and interseasonal movement patterns, fidelity (regional and local), and migratory patterns of 37 radiomarked Wilson's Snipe (Gallinago delicata) to elucidate residency in a region of breeding- and wintering-range overlap. Telemetry revealed complex regional population structure, including winter residents (74%), winter transients (14%), summer residents (9%), and one year-round resident breeder (3%). Results indicated a lack of connectivity between winter and summer capture populations, some evidence of partial migration, and between-season fidelity to the region (winter-resident return; subsequent fall). Across seasons, the extent of movements and use of multiple wetland sites suggested that Wilson's Snipe were capable of exploratory movements but more regularly perceived local and fine-scale segments of the landscape as connected. Movements differed significantly by season and residency; individuals exhibited contracted movements during late winter and more expansive movements during precipitation-limited periods (late spring, summer, fall). Mean home-range size was 3.5 ± 0.93 km2 (100% minimum convex polygon [MCP]) and 1.6 ± 0.42 km2 (95% fixed kernel) and did not vary by sex; however, home range varied markedly by season (range of 100% MCPs: 1.04–7.56 km2). The results highlight the need to consider seasonal and interspecific differences in shorebird life histories and space-use requirements when developing regional wetland conservation plans.

  9. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks

    PubMed Central

    Gallivan, Jason P.; Johnsrude, Ingrid S.; Randall Flanagan, J.

    2016-01-01

    Object-manipulation tasks (e.g., drinking from a cup) typically involve sequencing together a series of distinct motor acts (e.g., reaching toward, grasping, lifting, and transporting the cup) in order to accomplish some overarching goal (e.g., quenching thirst). Although several studies in humans have investigated the neural mechanisms supporting the planning of visually guided movements directed toward objects (such as reaching or pointing), only a handful have examined how manipulatory sequences of actions—those that occur after an object has been grasped—are planned and represented in the brain. Here, using event-related functional MRI and pattern decoding methods, we investigated the neural basis of real-object manipulation using a delayed-movement task in which participants first prepared and then executed different object-directed action sequences that varied either in their complexity or final spatial goals. Consistent with previous reports of preparatory brain activity in non-human primates, we found that activity patterns in several frontoparietal areas reliably predicted entire action sequences in advance of movement. Notably, we found that similar sequence-related information could also be decoded from pre-movement signals in object- and body-selective occipitotemporal cortex (OTC). These findings suggest that both frontoparietal and occipitotemporal circuits are engaged in transforming object-related information into complex, goal-directed movements. PMID:25576538

  10. CUE: counterfeit-resistant usable eye movement-based authentication via oculomotor plant characteristics and complex eye movement patterns

    NASA Astrophysics Data System (ADS)

    Komogortsev, Oleg V.; Karpov, Alexey; Holland, Corey D.

    2012-06-01

    The widespread use of computers throughout modern society introduces the necessity for usable and counterfeit-resistant authentication methods to ensure secure access to personal resources such as bank accounts, e-mail, and social media. Current authentication methods require tedious memorization of lengthy pass phrases, are often prone to shouldersurfing, and may be easily replicated (either by counterfeiting parts of the human body or by guessing an authentication token based on readily available information). This paper describes preliminary work toward a counterfeit-resistant usable eye movement-based (CUE) authentication method. CUE does not require any passwords (improving the memorability aspect of the authentication system), and aims to provide high resistance to spoofing and shoulder-surfing by employing the combined biometric capabilities of two behavioral biometric traits: 1) oculomotor plant characteristics (OPC) which represent the internal, non-visible, anatomical structure of the eye; 2) complex eye movement patterns (CEM) which represent the strategies employed by the brain to guide visual attention. Both OPC and CEM are extracted from the eye movement signal provided by an eye tracking system. Preliminary results indicate that the fusion of OPC and CEM traits is capable of providing a 30% reduction in authentication error when compared to the authentication accuracy of individual traits.

  11. Implementation of Fractal Dimension and Self-Organizing Map to Detect Toxic Effects of Toluene on Movement Tracks of Daphnia magna.

    PubMed

    Liu, Yuedan; Xia, Chunlei; Fan, Zhongya; Wu, Renren; Chen, Xianglin; Liu, Zuoyi

    2018-01-01

    Movement behaviors of an indicator species, Daphnia magna , in response to contaminants have been implemented to monitor environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension and self-organizing map. The individual movement tracks of D. magna were continuously recorded for 24 hours before and after treatments with toluene at the concentration of 10 mg/L, respectively. The general complexity in movement tracks (10 minutes) was characterized by fractal dimension. Results showed that average fractal dimension of movement tracks was decreased from 1.62 to 1.22 after treatments. The instantaneous movement parameters of movement segments in 5 s were input into the self-organizing map to investigate the swimming pattern changes under stresses of toluene. Abnormal behaviors of D. magna are more frequently observed after treatments than before treatments. Computational methods in ecological informatics could be utilized to obtain the useful information in behavioral data of D. magna and would be further applied as an in situ monitoring tool in water environment.

  12. Permutation Entropy Applied to Movement Behaviors of Drosophila Melanogaster

    NASA Astrophysics Data System (ADS)

    Liu, Yuedan; Chon, Tae-Soo; Baek, Hunki; Do, Younghae; Choi, Jin Hee; Chung, Yun Doo

    Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.

  13. Hand Grasping Synergies As Biometrics.

    PubMed

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies-postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  14. Visual Data Mining: An Exploratory Approach to Analyzing Temporal Patterns of Eye Movements

    ERIC Educational Resources Information Center

    Yu, Chen; Yurovsky, Daniel; Xu, Tian

    2012-01-01

    Infant eye movements are an important behavioral resource to understand early human development and learning. But the complexity and amount of gaze data recorded from state-of-the-art eye-tracking systems also pose a challenge: how does one make sense of such dense data? Toward this goal, this article describes an interactive approach based on…

  15. A Comparative Study of the Writing/Spelling Performances of "Normal," Dyslexic, and Dysgraphic Children.

    ERIC Educational Resources Information Center

    Sovik, Nils; Arntzen, Oddvar

    1986-01-01

    General movement/feedback theory and a "two-routes" theoretical model were tested on 24 normal, 24 dyslexic, and 24 dysgraphic children. Familiarity of the test items and complexity and length of required movement pattern played an important role in the writing/spelling performance of the nine-year-old subjects defined as dyslexic or dysgraphic.…

  16. Dancing your moves away: How memory retrieval shapes complex motor action.

    PubMed

    Tempel, Tobias; Loran, Igor; Frings, Christian

    2015-09-01

    Human memory is subject to continuous change. Besides the accumulation of contents as a consequence of encoding new information, the accessing of memory influences later accessibility. The authors investigated how retrieval-related memory-shaping processes affect intentionally acquired complex motion patterns. Dance figures served as the material to be learned. The authors found that selectively retrieving a subset of dance moves facilitated later recall of the retrieved dance figures, whereas figures that were related to these but that did not receive selective practice suffered from forgetting. These opposing effects were shown in experiments with different designs involving either the learning of only 1 set of body movements or 2 sets of movements categorized into 2 dances. A 3rd experiment showed that selective restudy also entailed a recall benefit for restudied dance figures but did not induce forgetting for related nonrestudied dance figures. The results suggest that motor programs representing the motion patterns in a format closely corresponding to parameters of movement execution were affected. The reported experiments demonstrate how retrieval determines motor memory plasticity and emphasize the importance of separating restudy and retrieval practice when teaching people new movements. (c) 2015 APA, all rights reserved).

  17. Adaptive Variability in Skilled Human Movements

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutoshi; Ohtsuki, Tatsuyuki

    Human movements are produced in variable external/internal environments. Because of this variability, the same motor command can result in quite different movement patterns. Therefore, to produce skilled movements humans must coordinate the variability, not try to exclude it. In addition, because human movements are produced in redundant and complex systems, a combination of variability should be observed in different anatomical/physiological levels. In this paper, we introduce our research about human movement variability that shows remarkable coordination among components, and between organism and environment. We also introduce nonlinear dynamical models that can describe a variety of movements as a self-organization of a dynamical system, because the dynamical systems approach is a major candidate to understand the principle underlying organization of varying systems with huge degrees-of-freedom.

  18. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots

    PubMed Central

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps, leg damage adaptations, as well as climbing over high obstacles. Furthermore, we demonstrate that the newly developed recurrent network based approach to online forward models outperforms the adaptive neuron forward models, which have hitherto been the state of the art, to model a subset of similar walking behaviors in walking robots. PMID:26441629

  19. Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis) and theories of genitalic evolution.

    PubMed

    Eberhard, W G

    2001-01-01

    Males of Microsepsis eberhardi and M. armillata use their genitalic surstyli to rhythmically squeeze the female's abdomen with stereotyped movements during copulation. Squeezing movements did not begin until intromission had occurred and, contrary to predictions of the conflict-of-interest hypothesis for genitalic evolution, did not overcome morphological or behavioral female resistance. Contrary to predictions of the lock-and-key hypothesis, female morphology was uniform in the two species and could not mechanically exclude the genitalia of either species of male. The complex pattern of squeezing movements differed between the two species as predicted by the sexual selection hypothesis for genitalic evolution. Also, evolutionarily derived muscles and pseudoarticulations in the male's genitalic surstyli facilitated one type of movement, whose patterns were especially distinct. The data support the hypothesis that the male surstyli evolved to function as courtship devices.

  20. Fetal eye movements on magnetic resonance imaging.

    PubMed

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  1. Information processing in the hemisphere of the cerebellar cortex for control of wrist movement

    PubMed Central

    Tomatsu, Saeka; Ishikawa, Takahiro; Tsunoda, Yoshiaki; Lee, Jongho; Hoffman, Donna S.

    2015-01-01

    A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus. PMID:26467515

  2. Gene flow in complex landscapes: Testing multiple hypotheses with causal modeling

    Treesearch

    Samuel A. Cushman; Kevin S. McKelvey; Jim Hayden; Michael K. Schwartz

    2006-01-01

    Predicting population-level effects of landscape change depends on identifying factors that influence population connectivity in complex landscapes. However, most putative movement corridors and barriers have not been based on empirical data. In this study, we identify factors that influence connectivity by comparing patterns of genetic similarity among 146 black bears...

  3. Somatics in Action: How "I Feel Three-Dimensional and Real" Improves Dance Education and Training

    ERIC Educational Resources Information Center

    Kearns, Lauren W.

    2010-01-01

    The contemporary dance world, both in academic and professional settings, asks dancers to consistently engage with increasingly complex conceptual and physical dance work. Dancers in both settings must assimilate complex movement patterns, combine the technical nuances of multiple genres, reflect upon and critically assess their dancing, and…

  4. Animal movement in the absence of predation: environmental drivers of movement strategies in a partial migration system

    USGS Publications Warehouse

    Bastille-Rousseau, Guillaume; Gibbs, James P.; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Fredy; Rousseau, Louis-Philippe

    2016-01-01

    Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad-scale spatial-temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter-annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi-scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter-annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re-locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio-temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non-migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large-scale predictions for movement strategies, based on environmental structuring, with finer-scale analysis of space-use. Integrating different organizational levels of analysis provides a deeper understanding of the eco-evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.

  5. Deep Reinforcement Learning of Cell Movement in the Early Stage of C. elegans Embryogenesis.

    PubMed

    Wang, Zi; Wang, Dali; Li, Chengcheng; Xu, Yichi; Li, Husheng; Bao, Zhirong

    2018-04-25

    Cell movement in the early phase of C. elegans development is regulated by a highly complex process in which a set of rules and connections are formulated at distinct scales. Previous efforts have demonstrated that agent-based, multi-scale modeling systems can integrate physical and biological rules and provide new avenues to study developmental systems. However, the application of these systems to model cell movement is still challenging and requires a comprehensive understanding of regulatory networks at the right scales. Recent developments in deep learning and reinforcement learning provide an unprecedented opportunity to explore cell movement using 3D time-lapse microscopy images. We present a deep reinforcement learning approach within an agent-based modeling system to characterize cell movement in the embryonic development of C. elegans. Our modeling system captures the complexity of cell movement patterns in the embryo and overcomes the local optimization problem encountered by traditional rule-based, agent-based modeling that uses greedy algorithms. We tested our model with two real developmental processes: the anterior movement of the Cpaaa cell via intercalation and the rearrangement of the superficial left-right asymmetry. In the first case, the model results suggested that Cpaaa's intercalation is an active directional cell movement caused by the continuous effects from a longer distance (farther than the length of two adjacent cells), as opposed to a passive movement caused by neighbor cell movements. In the second case, a leader-follower mechanism well explained the collective cell movement pattern in the asymmetry rearrangement. These results showed that our approach to introduce deep reinforcement learning into agent-based modeling can test regulatory mechanisms by exploring cell migration paths in a reverse engineering perspective. This model opens new doors to explore the large datasets generated by live imaging. Source code is available at https://github.com/zwang84/drl4cellmovement. dwang7@utk.edu, baoz@mskcc.org. Supplementary data are available at Bioinformatics online.

  6. A Comparison of Spatial and Movement Patterns between Sympatric Predators: Bull Sharks (Carcharhinus leucas) and Atlantic Tarpon (Megalops atlanticus)

    PubMed Central

    Hammerschlag, Neil; Luo, Jiangang; Irschick, Duncan J.; Ault, Jerald S.

    2012-01-01

    Background Predators can impact ecosystems through trophic cascades such that differential patterns in habitat use can lead to spatiotemporal variation in top down forcing on community dynamics. Thus, improved understanding of predator movements is important for evaluating the potential ecosystem effects of their declines. Methodology/Principal Findings We satellite-tagged an apex predator (bull sharks, Carcharhinus leucas) and a sympatric mesopredator (Atlantic tarpon, Megalops atlanticus) in southern Florida waters to describe their habitat use, abundance and movement patterns. We asked four questions: (1) How do the seasonal abundance patterns of bull sharks and tarpon compare? (2) How do the movement patterns of bull sharks and tarpon compare, and what proportion of time do their respective primary ranges overlap? (3) Do tarpon movement patterns (e.g., straight versus convoluted paths) and/or their rates of movement (ROM) differ in areas of low versus high bull shark abundance? and (4) Can any general conclusions be reached concerning whether tarpon may mitigate risk of predation by sharks when they are in areas of high bull shark abundance? Conclusions/Significance Despite similarities in diet, bull sharks and tarpon showed little overlap in habitat use. Bull shark abundance was high year-round, but peaked in winter; while tarpon abundance and fishery catches were highest in late spring. However, presence of the largest sharks (>230 cm) coincided with peak tarpon abundance. When moving over deep open waters (areas of high shark abundance and high food availability) tarpon maintained relatively high ROM in directed lines until reaching shallow structurally-complex areas. At such locations, tarpon exhibited slow tortuous movements over relatively long time periods indicative of foraging. Tarpon periodically concentrated up rivers, where tracked bull sharks were absent. We propose that tarpon trade-off energetic costs of both food assimilation and osmoregulation to reduce predation risk by bull sharks. PMID:23049904

  7. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    ERIC Educational Resources Information Center

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  8. Hand Grasping Synergies As Biometrics

    PubMed Central

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K.; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies—postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security. PMID:28512630

  9. The Organization of Movement in Slime Mold Plasmodia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Peter A.

    1963-04-22

    At first sight, the noncellular slime mold plasmodia appear to be ideal organisms in which to study protoplasmic movement. They are large, easily manipulated, and display high speed protoplasmic streaming. After some experience with them, however, one is likely to become discouraged by the complexity and lability of their movement patterns. While the streaming movements necessarily follow the laws of hydrodynamics, it has not so far been possible to explain them satisfactorily in terms of any simple mechanism. The characteristics of plasmodial streaming which lead to confusion and frustration are outlined below as a substitute for direct observations and cine-photographicmore » records.« less

  10. Remote sensing and lake eutrophication

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Horne, A. J.

    1974-01-01

    An infrared photograph of part of Clear Lake, Cal., shows complex patterns of blue-green algal blooms which were not observed by conventional limnological techniques. Repeated observations of patterns such as these can be used to chart the surface movement of these buoyant algae and can also be used to help control algal scums in eutrophic lakes. Although it is believed that most of the observed patterns resulted from Aphanizomenon (a few were also observed which resulted from suspended sediment), spectral signatures of the algal patterns varied.

  11. Role of visual and non-visual cues in constructing a rotation-invariant representation of heading in parietal cortex

    PubMed Central

    Sunkara, Adhira

    2015-01-01

    As we navigate through the world, eye and head movements add rotational velocity patterns to the retinal image. When such rotations accompany observer translation, the rotational velocity patterns must be discounted to accurately perceive heading. The conventional view holds that this computation requires efference copies of self-generated eye/head movements. Here we demonstrate that the brain implements an alternative solution in which retinal velocity patterns are themselves used to dissociate translations from rotations. These results reveal a novel role for visual cues in achieving a rotation-invariant representation of heading in the macaque ventral intraparietal area. Specifically, we show that the visual system utilizes both local motion parallax cues and global perspective distortions to estimate heading in the presence of rotations. These findings further suggest that the brain is capable of performing complex computations to infer eye movements and discount their sensory consequences based solely on visual cues. DOI: http://dx.doi.org/10.7554/eLife.04693.001 PMID:25693417

  12. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    PubMed

    Hawkins, Jared B; Jones, Mark T; Plassmann, Paul E; Thorley-Lawson, David A

    2011-01-01

    Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  13. Classification of Animal Movement Behavior through Residence in Space and Time.

    PubMed

    Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R

    2017-01-01

    Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology.

  14. Chess players' eye movements reveal rapid recognition of complex visual patterns: Evidence from a chess-related visual search task.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2017-03-01

    To explore the perceptual component of chess expertise, we monitored the eye movements of expert and novice chess players during a chess-related visual search task that tested anecdotal reports that a key differentiator of chess skill is the ability to visualize the complex moves of the knight piece. Specifically, chess players viewed an array of four minimized chessboards, and they rapidly searched for the target board that allowed a knight piece to reach a target square in three moves. On each trial, there was only one target board (i.e., the "Yes" board), and for the remaining "lure" boards, the knight's path was blocked on either the first move (the "Easy No" board) or the second move (i.e., "the Difficult No" board). As evidence that chess experts can rapidly differentiate complex chess-related visual patterns, the experts (but not the novices) showed longer first-fixation durations on the "Yes" board relative to the "Difficult No" board. Moreover, as hypothesized, the task strongly differentiated chess skill: Reaction times were more than four times faster for the experts relative to novices, and reaction times were correlated with within-group measures of expertise (i.e., official chess ratings, number of hours of practice). These results indicate that a key component of chess expertise is the ability to rapidly recognize complex visual patterns.

  15. USING THE SELECTIVE FUNCTIONAL MOVEMENT ASSESSMENT AND REGIONAL INTERDEPENDENCE THEORY TO GUIDE TREATMENT OF AN ATHLETE WITH BACK PAIN: A CASE REPORT.

    PubMed

    Goshtigian, Gabriella R; Swanson, Brian T

    2016-08-01

    Despite the multidirectional quality of human movement, common measurement procedures used in physical therapy examination are often uni-planar and lack the ability to assess functional complexities involved in daily activities. Currently, there is no widely accepted, validated standard to assess movement quality. The Selective Functional Movement Assessment (SFMA) is one possible system to objectively assess complex functional movements. The purpose of this case report is to illustrate the application of the SFMA as a guide to the examination, evaluation, and management of a patient with non-specific low back pain (LBP). An adolescent male athlete with LBP was evaluated using the SFMA. It was determined that the patient had mobility limitations remote to the site of pain (thoracic spine and hips) which therapists hypothesized were leading to compensatory hypermobility at the lumbar spine. Guided by the SFMA, initial interventions focused on local (lumbar) symptom management, progressing to remote mobility deficits, and then addressing the local stability deficit. All movement patterns became functional/non-painful except the right upper extremity medial rotation-extension pattern. At discharge, the patient demonstrated increased soft tissue extensibility of hip musculature and joint mobility of the thoracic spine along with normalization of lumbopelvic motor control. Improvements in pain exceeded minimal clinically important differences, from 2-7/10 on a verbal analog scale at initial exam to 0-2/10 at discharge. Developing and progressing a plan of care for an otherwise healthy and active adolescent with non-specific LBP can be challenging. Human movement is a collaborative effort of muscle groups that are interdependent; the use of a movement-based assessment model can help identify weak links affecting overall function. The SFMA helped guide therapists to dysfunctional movements not seen with more conventional examination procedures. Level 4.

  16. The transfer of movement sequences: effects of decreased and increased load.

    PubMed

    Muehlbauer, Thomas; Panzer, Stefan; Shea, Charles H

    2007-06-01

    A number of recent experiments have demonstrated that a movement structure develops during the course of learning a movement sequence that provides the basis for transfer. After learning a movement sequence participants have been shown to be able to effectively produce the sequence when movement demands require that the sequence be rescaled in amplitude or produced with an unpractised set of effectors. The purpose of the present experiment was to determine whether participants, after learning a complex 16-element movement sequence with a 0.567-kg load, could also effectively produce the sequence when the load was decreased (0.0 kg) or increased (1.134 kg). The results indicated that participants were able to effectively compensate for decreased and increased load with virtually no changes in performance characteristics (displacement, velocity, acceleration, and pattern of element durations) while electromyographic (EMG) signals demonstrated that smaller (reduced load) or larger forces (increased load) were spontaneously generated to compensate for the change in load. The muscle activation patterns of the biceps and triceps as well as the level of coactivation appeared to be generally upscaled to generate and dissipate the changes in force requirement needed to compensate for the increased load.

  17. Maternal perception of fetal movements in the third trimester: A qualitative description.

    PubMed

    Bradford, Billie; Maude, Robyn

    2017-12-26

    Decreased fetal movements is a common reason for unscheduled antenatal assessment and is associated with adverse pregnancy outcome. Fetal movement counting has not been proven to reduce stillbirths in high-quality studies. The aim was to explore a qualitative account of fetal movements in the third trimester as perceived by pregnant women themselves. Using qualitative descriptive methodology, interviews were conducted with 19 women experiencing an uncomplicated first pregnancy, at two timepoints in their third trimester. Interview transcripts were later analysed using qualitative content analysis. Pregnant women described a sustained increase in strength, frequency and variation in types of fetal movements from quickening until 28-32 weeks. Patterns of fetal movement were consistently described as involving increased movement later in the day and as having an inverse relationship to the women's own activity and rest. At term, the most notable feature was increased strength. Kicking and jolting movements decreased whilst pushing and rolling movements increased. Maternal descriptions of fetal activity in this study were consistent with other qualitative studies and with ultrasound studies of fetal development. Pregnant women observe a complex range of fetal movement patterns, actions and responses that are likely to be consistent with normal development. Maternal perception of a qualitative change in fetal movements may be clinically important and should take precedence over any numeric definition of decreased fetal movement. Midwives may inform women that it is normal to perceive more fetal movement in the evening and increasingly strong movements as pregnancy advances. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  18. Fetal Eye Movements on Magnetic Resonance Imaging

    PubMed Central

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C.; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Objectives Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Methods Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. Results In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%. Conclusions In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations. PMID:24194885

  19. Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences

    PubMed Central

    Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard

    2016-01-01

    The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington’s disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements. PMID:26951661

  20. Quantification of fetal heart rate regularity using symbolic dynamics

    NASA Astrophysics Data System (ADS)

    van Leeuwen, P.; Cysarz, D.; Lange, S.; Geue, D.; Groenemeyer, D.

    2007-03-01

    Fetal heart rate complexity was examined on the basis of RR interval time series obtained in the second and third trimester of pregnancy. In each fetal RR interval time series, short term beat-to-beat heart rate changes were coded in 8bit binary sequences. Redundancies of the 28 different binary patterns were reduced by two different procedures. The complexity of these sequences was quantified using the approximate entropy (ApEn), resulting in discrete ApEn values which were used for classifying the sequences into 17 pattern sets. Also, the sequences were grouped into 20 pattern classes with respect to identity after rotation or inversion of the binary value. There was a specific, nonuniform distribution of the sequences in the pattern sets and this differed from the distribution found in surrogate data. In the course of gestation, the number of sequences increased in seven pattern sets, decreased in four and remained unchanged in six. Sequences that occurred less often over time, both regular and irregular, were characterized by patterns reflecting frequent beat-to-beat reversals in heart rate. They were also predominant in the surrogate data, suggesting that these patterns are associated with stochastic heart beat trains. Sequences that occurred more frequently over time were relatively rare in the surrogate data. Some of these sequences had a high degree of regularity and corresponded to prolonged heart rate accelerations or decelerations which may be associated with directed fetal activity or movement or baroreflex activity. Application of the pattern classes revealed that those sequences with a high degree of irregularity correspond to heart rate patterns resulting from complex physiological activity such as fetal breathing movements. The results suggest that the development of the autonomic nervous system and the emergence of fetal behavioral states lead to increases in not only irregular but also regular heart rate patterns. Using symbolic dynamics to examine the cardiovascular system may thus lead to new insight with respect to fetal development.

  1. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  2. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy

    PubMed Central

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. DOI: http://dx.doi.org/10.7554/eLife.14770.001 PMID:27288545

  3. Light-fuelled transport of large dendrimers and proteins.

    PubMed

    Koskela, Jenni E; Liljeström, Ville; Lim, Jongdoo; Simanek, Eric E; Ras, Robin H A; Priimagi, Arri; Kostiainen, Mauri A

    2014-05-14

    This work presents a facile water-based supramolecular approach for light-induced surface patterning. The method is based upon azobenzene-functionalized high-molecular weight triazine dendrimers up to generation 9, demonstrating that even very large globular supramolecular complexes can be made to move in response to light. We also demonstrate light-fuelled macroscopic movements in native biomolecules, showing that complexes of apoferritin protein and azobenzene can effectively form light-induced surface patterns. Fundamentally, the results establish that thin films comprising both flexible and rigid globular particles of large diameter can be moved with light, whereas the presented material concepts offer new possibilities for the yet marginally explored biological applications of azobenzene surface patterning.

  4. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  5. Event-related brain potentials preceding speech and nonspeech oral movements of varying complexity.

    PubMed

    Wohlert, A B

    1993-10-01

    Cortical preparation for movement is reflected in the readiness potential (RP) waveform preceding voluntary limb movements. In the case of oral movements, the RP may be affected by the complexity or linguistic nature of the tasks. In this experiment, EEG potentials before a nonspeech task (lip pursing), a speech-like task (lip rounding), and single word production were recorded from scalp electrodes placed at the cranial vertex (Cz) and over the left and right motor strips (C3' and C4'). Seven right-handed female subjects produced at least 70 repetitions of the three tasks, in each of five repeated sessions. EEG records were averaged with respect to EMG onset at the lip. The word task, as opposed to the other tasks, was associated with greater negative amplitude in the RP waveform at the vertex site. Differences between the waveforms recorded at the right- and left-hemisphere sites were insignificant. Although intersubject variability was high, individuals had relatively stable patterns of response across sessions. Results suggest that the RP recorded at the vertex site is sensitive to changes in task complexity. The RP did not reflect lateralized activity indicative of hemispheric dominance.

  6. Biotensegrity and myofascial chains: A global approach to an integrated kinetic chain.

    PubMed

    Dischiavi, S L; Wright, A A; Hegedus, E J; Bleakley, C M

    2018-01-01

    Human movement is a complex orchestration of events involving many different body systems. Understanding how these systems interact during musculoskeletal movements can directly inform a variety of research fields including: injury etiology, injury prevention and therapeutic exercise prescription. Traditionally scientists have examined human movement through a reductionist lens whereby movements are broken down and observed in isolation. The process of reductionism fails to capture the interconnected complexities and the dynamic interactions found within complex systems such as human movement. An emerging idea is that human movement may be better understood using a holistic philosophy. In this regard, the properties of a given system cannot be determined or explained by its components alone, rather, it is the complexity of the system as a whole, that determines how the individual component parts behave. This paper hypothesizes that human movement can be better understood through holism; and provides available observational evidence in musculoskeletal science, which help to frame human movement as a globally interconnected complex system. Central to this, is biotensegrity, a concept where the bones of the skeletal system are postulated to be held together by the resting muscle tone of numerous viscoelastic muscular chains in a tension dependent manner. The design of a biotensegrity system suggests that when human movement occurs, the entire musculoskeletal system constantly adjusts during this movement causing global patterns to occur. This idea further supported by recent anatomical evidence suggesting that the muscles of the human body can no longer by viewed as independent anatomical structures that simply connect one bone to another bone. Rather, the body consists of numerous muscles connected in series, and end to end, which span the entire musculoskeletal system, creating long polyarticular viscoelastic myofascial muscle chains. Although theoretical, the concept of the human body being connected by these muscular chains, within a biotensegrity design, could be a potential underpinning theory for analyzing human movement in a more holistic manner. Indeed, preliminary research has now used the concept of myofascial pathways to enhance musculoskeletal examination, and provides a vivid example of how range of motion at a peripheral joint, is dependent upon the positioning of the entire body, offering supportive evidence that the body's kinetic chain is globally interconnected. Theoretical models that introduce a complex systems approach should be welcomed by the movement science field in an attempt to help explain clinical questions that have been resistant to a linear model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Movement patterns of silvertip sharks ( Carcharhinus albimarginatus) on coral reefs

    NASA Astrophysics Data System (ADS)

    Espinoza, Mario; Heupel, Michelle. R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-09-01

    Understanding how sharks use coral reefs is essential for assessing risk of exposure to fisheries, habitat loss, and climate change. Despite a wide Indo-Pacific distribution, little is known about the spatial ecology of silvertip sharks ( Carcharhinus albimarginatus), compromising the ability to effectively manage their populations. We examined the residency and movements of silvertip sharks in the central Great Barrier Reef (GBR). An array of 56 VR2W acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Twenty-seven individuals tagged with acoustic transmitters were monitored from 70 to 731 d. Residency index to the study site ranged from 0.05 to 0.97, with a mean residency (±SD) of 0.57 ± 0.26, but most individuals were detected at or near their tagging reef. Clear seasonal patterns were apparent, with fewer individuals detected between September and February. A large proportion of the tagged population (>71 %) moved regularly between reefs. Silvertip sharks were detected less during daytime and exhibited a strong diel pattern in depth use, which may be a strategy for optimizing energetic budgets and foraging opportunities. This study provides the first detailed examination of the spatial ecology and behavior of silvertip sharks on coral reefs. Silvertip sharks remained resident at coral reef habitats over long periods, but our results also suggest this species may have more complex movement patterns and use larger areas of the GBR than common reef shark species. Our findings highlight the need to further understand the movement ecology of silvertip sharks at different spatial and temporal scales, which is critical for developing effective management approaches.

  8. Relationships Between Trunk Movement Patterns During Lifting Tasks Compared With Unloaded Extension From a Flexed Posture.

    PubMed

    Ogata, Yuta; Anan, Masaya; Takahashi, Makoto; Takeda, Takuya; Tanimoto, Kenji; Sawada, Tomonori; Shinkoda, Koichi

    The purpose of this study was to investigate between movement patterns of trunk extension from full unloaded flexion and lifting techniques, which could provide valuable information to physical therapists, doctors of chiropractic, and other manual therapists. A within-participant study design was used. Whole-body kinematic and kinetic data during lifting and full trunk flexion were collected from 16 healthy male participants using a 3-dimensional motion analysis system (Vicon Motion Systems). To evaluate the relationships of joint movement between lifting and full trunk flexion, Pearson correlation coefficients were calculated. There was no significant correlation between the amount of change in the lumbar extension angle during the first half of the lifting trials and lumbar movement during unloaded trunk flexion and extension. However, the amount of change in the lumbar extension angle during lifting was significantly negatively correlated with hip movement during unloaded trunk flexion and extension (P < .05). The findings that the maximum hip flexion angle during full trunk flexion had a greater influence on kinematics of lumbar-hip complex during lifting provides new insight into human movement during lifting. All study participants were healthy men; thus, findings are limited to this group. Copyright © 2018. Published by Elsevier Inc.

  9. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].

    PubMed

    Arshavsky, I; Deliagina, T G; Orlovsky, G N

    2015-01-01

    Central pattern generators (CPGs) are a set of interconnected neurons capable of generating a basic pattern of motor output underlying "automatic" movements (breathing, locomotion, chewing, swallowing, and so on) in the absence of afferent signals from the executive motor apparatus. They can be divided into the constitutive CPGs active throughout the entire lifetime (respiratory CPGs) and conditional CPGs controlling episodic movements (locomotion, chewing, swallowing, and others). Since a motor output of CPGs is determined by their internal organization, the activities of the conditional CPGs are initiated by simple commands coming from higher centers. We describe the structural and functional organization of the locomotor CPGs in the marine mollusk Clione limacina, lamprey, frog embryo, and laboratory mammals (cat, mouse, and rat), CPGs controlling the respiratory and swallowing movements in mammals, and CPGs controlling discharges of the electric organ in the gymnotiform fish. It is shown that in all these cases, the generation of rhythmic motor output is based both on the endogenous (pacemaker) activity of specific groups of interneurons and on interneural interactions. These two interrelated mechanisms complement each other, ensuring the high reliability of CPG functionality. We discuss how the experience obtained in studying CPGs can be used to understand mechanisms of more complex functions of the brain, including its cognitive functions.

  10. Microtubules and cellulose microfibrils: how intimate is their relationship?

    PubMed

    Emons, Anne Mie C; Höfte, Herman; Mulder, Bela M

    2007-07-01

    The recent visualization of the motion of fluorescently labeled cellulose synthase complexes by Alexander Paredez and colleagues heralds the start of a new era in the science of the plant cell wall. Upon drug-induced complete depolymerization, the movement of the complexes does not become disordered but instead establishes an apparently self-organized novel pattern. The ability to label complexes in vivo has provided us with the ideal tool for tackling the intriguing question of the underlying default mechanisms at play.

  11. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  12. Social network analysis of Equidae movements and its application to risk-based surveillance and to control of spread of potential Equidae diseases.

    PubMed

    Sánchez-Matamoros, A; Martínez-López, B; Sánchez-Vizcaíno, F; Sánchez-Vizcaíno, J M

    2013-10-01

    Movements of animals and animal products are one of the most important ways of disease introduction and spread between regions and countries. Maybe one of the most complex animal species in terms of diversity of uses, nature and extent of movements are equidae, for which animal movement records are usually not available. The study presented here is the first characterization of a complete and reliable network of equidae movements in Castile and Leon, which is one of the most important equidae production regions of Spain. Social network analysis and space-time cluster analysis were used to describe the contact patterns of the equidae network and to identify the most important premises, areas and time periods for potential disease introduction or spread into the region. The studied network was complex, with very heterogeneous types of premises and diverse nature and extent of the movements compared with other livestock species, which have important implications for prevention and control of equidae diseases. Centrality measures revealed that production and reproduction farms and centres of livestock competition were the most important type of premises in the studied network. Cluster analyses allowed to identify seventeen significant spatio-temporal clusters of premises at high risk of dispatching or receiving equidae, which formed four interconnected compartments. These clusters were mainly located in the north-west region and in the second part of the year. The results of this study may be useful to design risk-based surveillance and control programmes of equidae diseases and increase the speed of detection and control of potential secondary outbreaks in future epidemics. Consequently, these results will help to minimize the great economic and sanitary impact of equidae diseases. The analytical approach used here may be easily extended to characterize the equidae movement patterns in other countries and regions of the world. © 2012 Blackwell Verlag GmbH.

  13. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction.

    PubMed

    Hayhow, Bradleigh D; Hassan, Islam; Looi, Jeffrey C L; Gaillard, Francesco; Velakoulis, Dennis; Walterfang, Mark

    2013-01-01

    Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.

  14. The tarsal-metatarsal complex of caviomorph rodents: Anatomy and functional-adaptive analysis.

    PubMed

    Candela, Adriana M; Muñoz, Nahuel A; García-Esponda, César M

    2017-06-01

    Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal-metatarsal morphology. Here, the tarsal-metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional-adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal-metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal-metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies. © 2017 Wiley Periodicals, Inc.

  15. Identification of literary movements using complex networks to represent texts

    NASA Astrophysics Data System (ADS)

    Amancio, Diego Raphael; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano

    2012-04-01

    The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures.

  16. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    PubMed Central

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-01-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis. PMID:27658585

  17. Pattern formation and collective effects in populations of magnetic microswimmers

    NASA Astrophysics Data System (ADS)

    Vach, Peter J.; Walker, Debora; Fischer, Peer; Fratzl, Peter; Faivre, Damien

    2017-03-01

    Self-propelled particles are one prototype of synthetic active matter used to understand complex biological processes, such as the coordination of movement in bacterial colonies or schools of fishes. Collective patterns such as clusters were observed for such systems, reproducing features of biological organization. However, one limitation of this model is that the synthetic assemblies are made of identical individuals. Here we introduce an active system based on magnetic particles at colloidal scales. We use identical but also randomly-shaped magnetic micropropellers and show that they exhibit dynamic and reversible pattern formation.

  18. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D.; Breed, C. S.

    1973-01-01

    A description and classification of major types of sand seas on the basis of morphological pattern and lineation are discussed. The steps involved in analyzing the patterns of deposits on ERTS-1 imagery, where the visible forms are mostly dune complexes rather than individual dunes are outlined. After completion of thematic maps portraying the pattern and lineation of the sand bodies, data on directions and intensity of prevailing and other winds are plotted on corresponding bases, as a preliminary to determination of internal structures through ground truth.

  19. Octopus movement: push right, go left.

    PubMed

    Hooper, Scott L

    2015-05-04

    Octopus arms have essentially infinite degrees of freedom. New research shows that, despite this potentially great complexity, to locomote octopuses simply elongate one or more arms, thus pushing the body in the opposite direction, and do so without activating the arms in an ordered pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Interhemispheric Transmission Time in Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Heath, M.; Grierson, L.; Binsted, G.; Elliott, D.

    2007-01-01

    Background: The study of cerebral specialization in persons with Down syndrome (DS) has revealed an anomalous pattern of organization. Specifically, persons with DS elicit a right cerebral hemisphere lateralization for receptive language and a left cerebral hemisphere lateralization for the production of simple and complex movements: a pattern…

  1. Research and Studies Directory for Manpower, Personnel, and Training

    DTIC Science & Technology

    1989-05-01

    LOUIS MO 314-889-6805 CONTROL OF BIOSONAR BEHAVIOR BY THE AUDITORY CORTEX TANGNEY J AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 202-767-5021 A MODEL FOR...VISUAL ATTENTION AUDITORY PERCEPTION OF COMPLEX SOUNDS CONTROL OF BIOSONAR BEHAVIOR BY THE AUDITORY CORTEX EYE MOVEMENTS AND SPATIAL PATTERN VISION EYE

  2. Myosin Heavy Chain Composition of the Human Genioglossus Muscle

    ERIC Educational Resources Information Center

    Daugherty, Megan; Luo, Qingwei; Sokoloff, Alan J.

    2012-01-01

    Background: The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration, and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation, but whether this is accompanied by complex expression of muscle…

  3. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    PubMed

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  4. Evaluating In-Car Movements in the Design of Mindful Commute Interventions: Exploratory Study.

    PubMed

    Paredes, Pablo Enrique; Hamdan, Nur Al-Huda; Clark, Dav; Cai, Carrie; Ju, Wendy; Landay, James A

    2017-12-04

    The daily commute could be a right moment to teach drivers to use movement or breath towards improving their mental health. Long commutes, the relevance of transitioning from home to work, and vice versa and the privacy of commuting by car make the commute an ideal scenario and time to perform mindful exercises safely. Whereas driving safety is paramount, mindful exercises might help commuters decrease their daily stress while staying alert. Increasing vehicle automation may present new opportunities but also new challenges. This study aimed to explore the design space for movement-based mindful interventions for commuters. We used qualitative analysis of simulated driving experiences in combination with simple movements to obtain key design insights. We performed a semistructured viability assessment in 2 parts. First, a think-aloud technique was used to obtain information about a driving task. Drivers (N=12) were given simple instructions to complete movements (configural or breath-based) while engaged in either simple (highway) or complex (city) simulated urban driving tasks using autonomous and manual driving modes. Then, we performed a matching exercise where participants could experience vibrotactile patterns from the back of the car seat and map them to the prior movements. We report a summary of individual perceptions concerning different movements and vibrotactile patterns. Beside describing situations within a drive when it may be more likely to perform movement-based interventions, we also describe movements that may interfere with driving and those that may complement it well. Furthermore, we identify movements that could be conducive to a more relaxing commute and describe vibrotactile patterns that could guide such movements and exercises. We discuss implications for design such as the influence of driving modality on the adoption of movement, need for personal customization, the influence that social perception has on participants, and the potential role of prior awareness of mindful techniques in the adoption of new movement-based interventions. This exploratory study provides insights into which types of movements could be better suited to design mindful interventions to reduce stress for commuters, when to encourage such movements, and how best to guide them using noninvasive haptic stimuli embedded in the car seat. ©Pablo Enrique Paredes, Nur Al-Huda Hamdan, Dav Clark, Carrie Cai, Wendy Ju, James A Landay. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 04.12.2017.

  5. Evaluating In-Car Movements in the Design of Mindful Commute Interventions: Exploratory Study

    PubMed Central

    Hamdan, Nur Al-Huda; Clark, Dav; Cai, Carrie; Ju, Wendy; Landay, James A

    2017-01-01

    Background The daily commute could be a right moment to teach drivers to use movement or breath towards improving their mental health. Long commutes, the relevance of transitioning from home to work, and vice versa and the privacy of commuting by car make the commute an ideal scenario and time to perform mindful exercises safely. Whereas driving safety is paramount, mindful exercises might help commuters decrease their daily stress while staying alert. Increasing vehicle automation may present new opportunities but also new challenges. Objective This study aimed to explore the design space for movement-based mindful interventions for commuters. We used qualitative analysis of simulated driving experiences in combination with simple movements to obtain key design insights. Methods We performed a semistructured viability assessment in 2 parts. First, a think-aloud technique was used to obtain information about a driving task. Drivers (N=12) were given simple instructions to complete movements (configural or breath-based) while engaged in either simple (highway) or complex (city) simulated urban driving tasks using autonomous and manual driving modes. Then, we performed a matching exercise where participants could experience vibrotactile patterns from the back of the car seat and map them to the prior movements. Results We report a summary of individual perceptions concerning different movements and vibrotactile patterns. Beside describing situations within a drive when it may be more likely to perform movement-based interventions, we also describe movements that may interfere with driving and those that may complement it well. Furthermore, we identify movements that could be conducive to a more relaxing commute and describe vibrotactile patterns that could guide such movements and exercises. We discuss implications for design such as the influence of driving modality on the adoption of movement, need for personal customization, the influence that social perception has on participants, and the potential role of prior awareness of mindful techniques in the adoption of new movement-based interventions. Conclusions This exploratory study provides insights into which types of movements could be better suited to design mindful interventions to reduce stress for commuters, when to encourage such movements, and how best to guide them using noninvasive haptic stimuli embedded in the car seat. PMID:29203458

  6. KinG Is a Plant-Specific Kinesin That Regulates Both Intra- and Intercellular Movement of SHORT-ROOT.

    PubMed

    Spiegelman, Ziv; Lee, Chin-Mei; Gallagher, Kimberly L

    2018-01-01

    Both endogenous plant proteins and viral movement proteins associate with microtubules to promote their movement through plasmodesmata. The association of viral movement proteins with microtubules facilitates the formation of virus-associated replication complexes, which are required for the amplification and subsequent spread of the virus. However, the role of microtubules in the intercellular movement of plant proteins is less clear. Here we show that the SHORT-ROOT (SHR) protein, which moves between cells in the root to regulate root radial patterning, interacts with a type-14 kinesin, KINESIN G (KinG). KinG is a calponin homology domain kinesin that directly interacts with the SHR-binding protein SIEL (SHR-INTERACING EMBRYONIC LETHAL) and localizes to both microtubules and actin. Since SIEL and SHR associate with endosomes, we suggest that KinG serves as a linker between SIEL, SHR, and the plant cytoskeleton. Loss of KinG function results in a decrease in the intercellular movement of SHR and an increase in the sensitivity of SHR movement to treatment with oryzalin. Examination of SHR and KinG localization and dynamics in live cells suggests that KinG is a nonmotile kinesin that promotes the pausing of SHR-associated endosomes. We suggest a model in which interaction of KinG with SHR allows for the formation of stable movement complexes that facilitate the cell-to-cell transport of SHR. © 2018 American Society of Plant Biologists. All Rights Reserved.

  7. Three-dimensional lumbar segment movement characteristics during paediatric cerebral palsy gait.

    PubMed

    Kiernan, D; Malone, A; O'Brien, T; Simms, C K

    2017-03-01

    Kinematic analysis of the trunk during cerebral palsy (CP) gait has been well described. In contrast, movement of the lumbar spine is generally ignored. This is most likely due to the complex nature of the spine. As an alternative to using complex sensor protocols, this study modelled the lumbar region as a single segment and investigated characteristic patterns of movement during CP gait. In addition, the impact of functional level of impairment and the relationship with lower lumbar spinal loading were examined. Fifty-two children with CP (26 GMFCS I and 26 GMFCS II) and 26 controls were recruited. A full barefoot 3-dimensional kinematic and kinetic analysis were conducted. Lumbar segment movement demonstrated increased forward flexion for CP children. This movement became more pronounced according to GMFCS level with GMFCS II children demonstrating increases of up to 8°. In addition, a moderate correlation was present between lumbar flexion/extension and L5/S1 sagittal moments (r=0.427 in the global frame and r=0.448 with respect to the pelvis, p<0.01). Children with CP demonstrated increased movement of the lumbar region compared to TD, with movement becoming more excessive as GMFCS level increased. Excessive forward flexion and loading at the lumbar spine were linked. However, the moderate correlation suggests other contributors to increased loading were present. In conclusion, this study is a first step at identifying how lumbar segment movement is altered during CP gait. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identifying Anxiety Through Tracked Head Movements in a Virtual Classroom.

    PubMed

    Won, Andrea Stevenson; Perone, Brian; Friend, Michelle; Bailenson, Jeremy N

    2016-06-01

    Virtual reality allows the controlled simulation of complex social settings, such as classrooms, and thus provides an opportunity to test a range of theories in the social sciences in a way that is both naturalistic and controlled. Importantly, virtual environments also allow the body movements of participants in the virtual world to be tracked and recorded. In the following article, we discuss how tracked head movements were correlated with participants' reports of anxiety in a simulation of a classroom. Participants who reported a high sense of awareness of and concern about the other virtual people in the room showed different patterns of head movement (more lateral head movement, indicating scanning behavior) from those who reported a low level of concern. We discuss the implications of this research for understanding nonverbal behavior associated with anxiety and for the design of online educational systems.

  9. The Relation between Reading Skills and Eye Movement Patterns in Adolescent Readers: Evidence from a Regular Orthography

    PubMed Central

    Krieber, Magdalena; Bartl-Pokorny, Katrin D.; Pokorny, Florian B.; Einspieler, Christa; Langmann, Andrea; Körner, Christof; Falck-Ytter, Terje; Marschik, Peter B.

    2016-01-01

    Over the past decades, the relation between reading skills and eye movement behavior has been well documented in English-speaking cohorts. As English and German differ substantially with regard to orthographic complexity (i.e. grapheme-phoneme correspondence), we aimed to delineate specific characteristics of how reading speed and reading comprehension interact with eye movements in typically developing German-speaking (Austrian) adolescents. Eye movements of 22 participants (14 females; mean age = 13;6 years;months) were tracked while they were performing three tasks, namely silently reading words, texts, and pseudowords. Their reading skills were determined by means of a standardized German reading speed and reading comprehension assessment (Lesegeschwindigkeits- und -verständnistest für Klassen 6−12). We found that (a) reading skills were associated with various eye movement parameters in each of the three reading tasks; (b) better reading skills were associated with an increased efficiency of eye movements, but were primarily linked to spatial reading parameters, such as the number of fixations per word, the total number of saccades and saccadic amplitudes; (c) reading speed was a more reliable predictor for eye movement parameters than reading comprehension; (d) eye movements were highly correlated across reading tasks, which indicates consistent reading performances. Contrary to findings in English-speaking cohorts, the reading skills neither consistently correlated with temporal eye movement parameters nor with the number or percentage of regressions made while performing any of the three reading tasks. These results indicate that, although reading skills are associated with eye movement patterns irrespective of language, the temporal and spatial characteristics of this association may vary with orthographic consistency. PMID:26727255

  10. Unpredictability of escape trajectory explains predator evasion ability and microhabitat preference of desert rodents.

    PubMed

    Moore, Talia Y; Cooper, Kimberly L; Biewener, Andrew A; Vasudevan, Ramanarayan

    2017-09-05

    Mechanistically linking movement behaviors and ecology is key to understanding the adaptive evolution of locomotion. Predator evasion, a behavior that enhances fitness, may depend upon short bursts or complex patterns of locomotion. However, such movements are poorly characterized by existing biomechanical metrics. We present methods based on the entropy measure of randomness from Information Theory to quantitatively characterize the unpredictability of non-steady-state locomotion. We then apply the method by examining sympatric rodent species whose escape trajectories differ in dimensionality. Unlike the speed-regulated gait use of cursorial animals to enhance locomotor economy, bipedal jerboa (family Dipodidae) gait transitions likely enhance maneuverability. In field-based observations, jerboa trajectories are significantly less predictable than those of quadrupedal rodents, likely increasing predator evasion ability. Consistent with this hypothesis, jerboas exhibit lower anxiety in open fields than quadrupedal rodents, a behavior that varies inversely with predator evasion ability. Our unpredictability metric expands the scope of quantitative biomechanical studies to include non-steady-state locomotion in a variety of evolutionary and ecologically significant contexts.Biomechanical understanding of animal gait and maneuverability has primarily been limited to species with more predictable, steady-state movement patterns. Here, the authors develop a method to quantify movement predictability, and apply the method to study escape-related movement in several species of desert rodents.

  11. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.

  12. Coupling dynamics in speech gestures: amplitude and rate influences.

    PubMed

    van Lieshout, Pascal H H M

    2017-08-01

    Speech is a complex oral motor function that involves multiple articulators that need to be coordinated in space and time at relatively high movement speeds. How this is accomplished remains an important and largely unresolved empirical question. From a coordination dynamics perspective, coordination involves the assembly of coordinative units that are characterized by inherently stable coupling patterns that act as attractor states for task-specific actions. In the motor control literature, one particular model formulated by Haken et al. (Biol Cybern 51(5):347-356, 1985) or HKB has received considerable attention in the way it can account for changes in the nature and stability of specific coordination patterns between limbs or between limbs and external stimuli. In this model (and related versions), movement amplitude is considered a critical factor in the formation of these patterns. Several studies have demonstrated its role for bimanual coordination and similar types of tasks, but for speech motor control such studies are lacking. The current study describes a systematic approach to evaluate the impact of movement amplitude and movement duration on coordination stability in the production of bilabial and tongue body gestures for specific vowel-consonant-vowel strings. The vowel combinations that were used induced a natural contrast in movement amplitude at three speaking rate conditions (slow, habitual, fast). Data were collected on ten young adults using electromagnetic articulography, recording movement data from lips and tongue with high temporal and spatial precision. The results showed that with small movement amplitudes there is a decrease in coordination stability, independent from movement duration. These findings were found to be robust across all individuals and are interpreted as further evidence that principles of coupling dynamics operate in the oral motor control system similar to other motor systems and can be explained in terms of coupling mechanisms between neural oscillators (organized in networks) and effector systems. The relevance of these findings for understanding motor control issues in people with speech disorders is discussed as well.

  13. Scan patterns when viewing natural scenes: Emotion, complexity, and repetition

    PubMed Central

    Bradley, Margaret M.; Houbova, Petra; Miccoli, Laura; Costa, Vincent D.; Lang, Peter J.

    2011-01-01

    Eye movements were monitored during picture viewing and effects of hedonic content, perceptual composition, and repetition on scanning assessed. In Experiment 1, emotional and neutral pictures that were figure-ground compositions or more complex scenes were presented for a 6 s free viewing period. Viewing emotional pictures or complex scenes prompted more fixations and broader scanning of the visual array, compared to neutral pictures or simple figure-ground compositions. Effects of emotion and composition were independent, supporting the hypothesis that these oculomotor indices reflect enhanced information seeking. Experiment 2 tested an orienting hypothesis by repeatedly presenting the same pictures. Although repetition altered specific scan patterns, emotional, compared to neutral, picture viewing continued to prompt oculomotor differences, suggesting that motivationally relevant cues enhance information seeking in appetitive and defensive contexts. PMID:21649664

  14. Complex scaling behavior in animal foraging patterns

    NASA Astrophysics Data System (ADS)

    Premachandra, Prabhavi Kaushalya

    This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.

  15. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk

    USGS Publications Warehouse

    Breed, Greg A.; Golson, Emily A.; Tinker, M. Tim

    2017-01-01

    The home‐range concept is central in animal ecology and behavior, and numerous mechanistic models have been developed to understand home range formation and maintenance. These mechanistic models usually assume a single, contiguous home range. Here we describe and implement a simple home‐range model that can accommodate multiple home‐range centers, form complex shapes, allow discontinuities in use patterns, and infer how external and internal variables affect movement and use patterns. The model assumes individuals associate with two or more home‐range centers and move among them with some estimable probability. Movement in and around home‐range centers is governed by a two‐dimensional Ornstein‐Uhlenbeck process, while transitions between centers are modeled as a stochastic state‐switching process. We augmented this base model by introducing environmental and demographic covariates that modify transition probabilities between home‐range centers and can be estimated to provide insight into the movement process. We demonstrate the model using telemetry data from sea otters (Enhydra lutris) in California. The model was fit using a Bayesian Markov Chain Monte Carlo method, which estimated transition probabilities, as well as unique Ornstein‐Uhlenbeck diffusion and centralizing tendency parameters. Estimated parameters could then be used to simulate movement and space use that was virtually indistinguishable from real data. We used Deviance Information Criterion (DIC) scores to assess model fit and determined that both wind and reproductive status were predictive of transitions between home‐range centers. Females were less likely to move between home‐range centers on windy days, less likely to move between centers when tending pups, and much more likely to move between centers just after weaning a pup. These tendencies are predicted by theoretical movement rules but were not previously known and show that our model can extract meaningful behavioral insight from complex movement data.

  16. Modifying patterns of movement in people with low back pain -does it help? A systematic review.

    PubMed

    Laird, Robert A; Kent, Peter; Keating, Jennifer L

    2012-09-07

    Physiotherapy for people with low back pain frequently includes assessment and modification of lumbo-pelvic movement. Interventions commonly aim to restore normal movement and thereby reduce pain and improve activity limitation. The objective of this systematic review was to investigate: (i) the effect of movement-based interventions on movement patterns (muscle activation, lumbo-pelvic kinematics or postural patterns) of people with low back pain (LBP), and (ii) the relationship between changes in movement patterns and subsequent changes in pain and activity limitation. MEDLINE, Cochrane Central, EMBASE, AMI, CINAHL, Scopus, AMED, ISI Web of Science were searched from inception until January 2012. Randomised controlled trials or controlled clinical trials of people with LBP were eligible for inclusion. The intervention must have been designed to influence (i) muscle activity patterns, (ii) lumbo-pelvic kinematic patterns or (iii) postural patterns, and included measurement of such deficits before and after treatment, to allow determination of the success of the intervention on the lumbo-pelvic movement. Twelve trials (25% of retrieved studies) met the inclusion criteria. Two reviewers independently identified, assessed and extracted data. The PEDro scale was used to assess method quality. Intervention effects were described using standardised differences between group means and 95% confidence intervals. The included trials showed inconsistent, mostly small to moderate intervention effects on targeted movement patterns. There was considerable heterogeneity in trial design, intervention type and outcome measures. A relationship between changes to movement patterns and improvements in pain or activity limitation was observed in one of six studies on muscle activation patterns, one of four studies that examined the flexion relaxation response pattern and in two of three studies that assessed lumbo-pelvic kinematics or postural characteristics. Movement-based interventions were infrequently effective for changing observable movement patterns. A relationship between changes in movement patterns and improvement in pain or activity limitation was also infrequently observed. No independent studies confirm any observed relationships. Challenges for future research include defining best methods for measuring (i) movement aberrations, (ii) improvements in movements, and (iii) the relationship between changes in how people move and associated changes in other health indicators such as activity limitation.

  17. Neurodevelopmental perspectives on dance learning: Insights from early adolescence and young adulthood.

    PubMed

    Sumanapala, Dilini K; Walbrin, Jon; Kirsch, Louise P; Cross, Emily S

    2018-01-01

    Studies investigating human motor learning and movement perception have shown that similar sensorimotor brain regions are engaged when we observe or perform action sequences. However, the way these networks enable translation of complex observed actions into motor commands-such as in the context of dance-remains poorly understood. Emerging evidence suggests that the ability to encode specific visuospatial and kinematic movement properties encountered via different routes of sensorimotor experience may be an integral component of action learning throughout development. Using a video game-based dance training paradigm, we demonstrate that patterns of voxel activity in visual and sensorimotor brain regions when perceiving movements following training are related to the sensory modalities through which these movements were encountered during whole-body dance training. Compared to adolescents, young adults in this study demonstrated more distinctive patterns of voxel activity in visual cortices in relation to different types of sensorimotor experience. This finding suggests that cortical maturity might influence the extent to which prior sensorimotor experiences shape brain activity when watching others in action, and potentially impact how we acquire new motor skills. © 2018 Elsevier B.V. All rights reserved.

  18. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.

    PubMed

    Latash, M L; Goodman, S R

    1994-01-01

    The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.

  19. Low-Cost Robotic Assessment of Visuo-Motor Deficits in Alzheimer's Disease.

    PubMed

    Bartoli, Eleonora; Caso, Francesca; Magnani, Giuseppe; Baud-Bovy, Gabriel

    2017-07-01

    A low-cost robotic interface was used to assess the visuo-motor performance of patients with Alzheimer's disease (AD). Twenty AD patients and twenty age-matched controls participated in this work. The battery of tests included simple reaction times, position tracking, and stabilization tasks performed with both hands. The regularity, velocity, visual and haptic feedback were manipulated to vary movement complexity. Reaction times and movement tracking error were analyzed. Results show a marked group effect on a subset of conditions, in particular when the patients could not rely on the visual feedback of hand movement. The visuo-motor performance correlated with the measures of global cognitive functioning and with different memory-related abilities. Our results support the hypothesis that the ability to recall and use visuo-spatial associations might underlie the impairment in complex motor behavior that has been reported in AD patients. Importantly, the patients had preserved learning effects across sessions, which might relate to visuo-motor deficits being less evident in every-day life and clinical assessments. This robotic assessment, lasting less than 1 h, provides detailed information about the integrity of visuo-motor abilities. The data can aid the understanding of the complex pattern of deficits that characterizes this pervasive disease.

  20. Defensive Abdominal Rotation Patterns of Tenebrionid Beetle, Zophobas atratus, Pupae

    PubMed Central

    Ichikawa, Toshio; Nakamura, Tatsuya; Yamawaki, Yoshifumi

    2012-01-01

    Exarate pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have free appendages (antenna, palp, leg, and elytron) that are highly sensitive to mechanical stimulation. A weak tactile stimulus applied to any appendage initiated a rapid rotation of abdominal segments. High-speed photography revealed that one cycle of defensive abdominal rotation was induced in an all-or-none fashion by bending single or multiple mechanosensory hairs on a leg or prodding the cuticular surface of appendages containing campaniform sensilla. The direction of the abdominal rotation completely depended on the side of stimulation; stimulation of a right appendage induced a right-handed rotation about the anterior-posterior axis of the pupal body and vice versa. The trajectories of the abdominal rotations had an ellipsoidal or pear-shaped pattern. Among the trajectory patterns of the rotations induced by stimulating different appendages, there were occasional significant differences in the horizontal (right-left) component of abdominal rotational movements. Simultaneous stimulation of right and left appendages often induced variable and complex patterns of abdominal movements, suggesting an interaction between sensory signals from different sides. When an abdominal rotation was induced in a freely lying pupa, the rotation usually made the pupa move away from or turn its dorsum toward the source of stimulation with the aid of the caudal processes (urogomphi), which served as a fulcrum for transmitting the power of the abdominal rotation to the movement or turning of the whole body. Pattern generation mechanisms for the abdominal rotation were discussed. PMID:23448289

  1. Defensive abdominal rotation patterns of tenebrionid beetle, Zophobas atratus, pupae.

    PubMed

    Ichikawa, Toshio; Nakamura, Tatsuya; Yamawaki, Yoshifumi

    2012-01-01

    Exarate pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have free appendages (antenna, palp, leg, and elytron) that are highly sensitive to mechanical stimulation. A weak tactile stimulus applied to any appendage initiated a rapid rotation of abdominal segments. High-speed photography revealed that one cycle of defensive abdominal rotation was induced in an all-or-none fashion by bending single or multiple mechanosensory hairs on a leg or prodding the cuticular surface of appendages containing campaniform sensilla. The direction of the abdominal rotation completely depended on the side of stimulation; stimulation of a right appendage induced a right-handed rotation about the anterior-posterior axis of the pupal body and vice versa. The trajectories of the abdominal rotations had an ellipsoidal or pear-shaped pattern. Among the trajectory patterns of the rotations induced by stimulating different appendages, there were occasional significant differences in the horizontal (right-left) component of abdominal rotational movements. Simultaneous stimulation of right and left appendages often induced variable and complex patterns of abdominal movements, suggesting an interaction between sensory signals from different sides. When an abdominal rotation was induced in a freely lying pupa, the rotation usually made the pupa move away from or turn its dorsum toward the source of stimulation with the aid of the caudal processes (urogomphi), which served as a fulcrum for transmitting the power of the abdominal rotation to the movement or turning of the whole body. Pattern generation mechanisms for the abdominal rotation were discussed.

  2. Negative Influence of Motor Impairments on Upper Limb Movement Patterns in Children with Unilateral Cerebral Palsy. A Statistical Parametric Mapping Study

    PubMed Central

    Simon-Martinez, Cristina; Jaspers, Ellen; Mailleux, Lisa; Desloovere, Kaat; Vanrenterghem, Jos; Ortibus, Els; Molenaers, Guy; Feys, Hilde; Klingels, Katrijn

    2017-01-01

    Upper limb three-dimensional movement analysis (UL-3DMA) offers a reliable and valid tool to evaluate movement patterns in children with unilateral cerebral palsy (uCP). However, it remains unknown to what extent the underlying motor impairments explain deviant movement patterns. Such understanding is key to develop efficient rehabilitation programs. Although UL-3DMA has been shown to be a useful tool to assess movement patterns, it results in a multitude of data, challenging the clinical interpretation and consequently its implementation. UL-3DMA reports are often reduced to summary metrics, such as average or peak values per joint. However, these metrics do not take into account the continuous nature of the data or the interdependency between UL joints, and do not provide phase-specific information of the movement pattern. Moreover, summary metrics may not be sensitive enough to estimate the impact of motor impairments. Recently, Statistical Parametric Mapping (SPM) was proposed to overcome these problems. We collected UL-3DMA of 60 children with uCP and 60 typically developing children during eight functional tasks and evaluated the impact of spasticity and muscle weakness on UL movement patterns. SPM vector field analysis was used to analyze movement patterns at the level of five joints (wrist, elbow, shoulder, scapula, and trunk). Children with uCP showed deviant movement patterns in all joints during a large percentage of the movement cycle. Spasticity and muscle weakness negatively impacted on UL movement patterns during all tasks, which resulted in increased wrist flexion, elbow pronation and flexion, increased shoulder external rotation, decreased shoulder elevation with a preference for movement in the frontal plane and increased trunk internal rotation. Scapular position was altered during movement initiation, although scapular movements were not affected by muscle weakness or spasticity. In conclusion, we identified pathological movement patterns in children with uCP and additionally mapped the negative impact of spasticity and muscle weakness on these movement patterns, providing useful insights that will contribute to treatment planning. Last, we also identified a subset of the most relevant tasks for studying UL movements in children with uCP, which will facilitate the interpretation of UL-3DMA data and undoubtedly contribute to its clinical implementation. PMID:29051729

  3. A novel application of motion analysis for detecting stress responses in embryos at different stages of development.

    PubMed

    Tills, Oliver; Bitterli, Tabitha; Culverhouse, Phil; Spicer, John I; Rundle, Simon

    2013-02-01

    Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM. Spectral frequency analysis of these motion parameters was able to distinguish stage-specific effects of environmental stressors in most cases, including Xenopus laevis at stages 24, 32 and 34 exposed to a salinity of 20, Danio rerio at 33 hpf exposed to 1.5% ethanol, and Radix balthica at stages E4, E9 and E11 exposed to salinities of 5, 10 and 15. This technique was better able to distinguish embryos exposed to stressors than analysis of manual quantification of movement and within species distinguished most of the developmental stages studied in the control treatments. This innovative use of motion analysis incorporates data quantifying embryonic movements at a range of frequencies and so provides an holistic analysis of an embryo's movement patterns. This technique has potential applications for quantifying embryonic responses to environmental stressors such as exposure to pharmaceuticals or pollutants, and also as an automated tool for developmental staging of embryos.

  4. Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women.

    PubMed

    Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal; Nazare, Julie-Anne

    2017-01-01

    The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the "active transportation" cluster. The perceived environmental characteristics positively associated with "active transportation" included "high availability of destinations around home," "presence of bicycle paths," and "low traffic." A "positive image of walking/cycling," the "individual feeling of being physically active," and a "high use of active transport modes by relatives/friends" were positively related to "active transportation," identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups.

  5. Dynamical patterns of cattle trade movements.

    PubMed

    Bajardi, Paolo; Barrat, Alain; Natale, Fabrizio; Savini, Lara; Colizza, Vittoria

    2011-01-01

    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions.

  6. Dynamical Patterns of Cattle Trade Movements

    PubMed Central

    Bajardi, Paolo; Barrat, Alain; Natale, Fabrizio; Savini, Lara; Colizza, Vittoria

    2011-01-01

    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions. PMID:21625633

  7. Long-term movement patterns of a coral reef predator

    NASA Astrophysics Data System (ADS)

    Heupel, M. R.; Simpfendorfer, C. A.

    2015-06-01

    Long-term monitoring is required to fully define periodicity and patterns in animal movement. This is particularly relevant for defining what factors are driving the presence, location, and movements of individuals. The long-term movement and space use patterns of grey reef sharks, Carcharhinus amblyrhynchos, were examined on a whole of reef scale in the southern Great Barrier Reef to define whether movement and activity space varied through time. Twenty-nine C. amblyrhynchos were tracked for over 2 years to define movement patterns. All individuals showed high residency within the study site, but also had high roaming indices. This indicated that individuals remained in the region and used all of the monitored habitat (i.e., the entire reef perimeter). Use of space was consistent through time with high reuse of areas most of the year. Therefore, individuals maintained discrete home ranges, but undertook broader movements around the reef at times. Mature males showed greatest variation in movement with larger activity spaces and movement into new regions during the mating season (August-September). Depth use patterns also differed, suggesting behaviour or resource requirements varied between sexes. Examination of the long-term, reef-scale movements of C. amblyrhynchos has revealed that reproductive activity may play a key role in space use and activity patterns. It was unclear whether mating behaviour or an increased need for food to sustain reproductive activity and development played a greater role in these patterns. Reef shark movement patterns are becoming more clearly defined, but research is still required to fully understand the biological drivers for the observed patterns.

  8. Movement Pattern Variability in Stone Knapping: Implications for the Development of Percussive Traditions

    PubMed Central

    Rein, Robert; Nonaka, Tetsushi; Bril, Blandine

    2014-01-01

    The earliest direct evidence for tool-use by our ancestors are 2.6 million year old stone tools from Africa. These earliest artifacts show that, already, early hominins had developed the required advanced movement skills and cognitive capacities to manufacture stone tools. Currently, it is not well understood, however, which specific movement skills are required for successful stone knapping and accordingly it is unknown how these skills emerged during early hominin evolution. In particular, it is not clear which striking movements are indicative of skilled performance, how striking movement patterns vary with task and environmental constraints, and how movement patterns are passed on within social groups. The present study addresses these questions by investigating striking movement patterns and striking variability in 18 modern stone knappers (nine experienced and nine novices). The results suggest that no single movement pattern characterizes successful stone knapping. Participants showed large inter-individual movement variability of the elementary knapping action irrespective of knapping experience and knapping performance. Changes in task- and environmental constraints led knappers to adapt their elementary striking actions using a combination of individual and common strategies. Investigation of striking pattern similarities within social groups showed only partial overlap of striking patterns across related individuals. The results therefore suggest that striking movement patterns in modern stone knappers are largely specific to the individual and movement variability is not indicative of knapping performance. The implications of these results for the development of percussive traditions are discussed. PMID:25426630

  9. Scan patterns when viewing natural scenes: emotion, complexity, and repetition.

    PubMed

    Bradley, Margaret M; Houbova, Petra; Miccoli, Laura; Costa, Vincent D; Lang, Peter J

    2011-11-01

    Eye movements were monitored during picture viewing, and effects of hedonic content, perceptual composition, and repetition on scanning assessed. In Experiment 1, emotional and neutral pictures that were figure-ground compositions or more complex scenes were presented for a 6-s free viewing period. Viewing emotional pictures or complex scenes prompted more fixations and broader scanning of the visual array, compared to neutral pictures or simple figure-ground compositions. Effects of emotion and composition were independent, supporting the hypothesis that these oculomotor indices reflect enhanced information seeking. Experiment 2 tested an orienting hypothesis by repeatedly presenting the same pictures. Although repetition altered specific scan patterns, emotional, compared to neutral, picture viewing continued to prompt oculomotor differences, suggesting that motivationally relevant cues enhance information seeking in appetitive and defensive contexts. Copyright © 2011 Society for Psychophysiological Research.

  10. A Living Systems Model for Assessing and Promoting the Sustainability of Communities.

    ERIC Educational Resources Information Center

    Larrick, Steve

    A living systems model of community development has been synthesized from elements of three perspectives: (1) a global movement toward more sustainable patterns of human development that is identifying indicators of community health in a wide range of categories; (2) research on the complex interactions of living systems that make life on earth…

  11. Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.

    PubMed

    Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C

    2012-01-01

    The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.

  12. Associations between tongue movement pattern consistency and formant movement pattern consistency in response to speech behavioral modificationsa)

    PubMed Central

    Mefferd, Antje S.

    2016-01-01

    The degree of speech movement pattern consistency can provide information about speech motor control. Although tongue motor control is particularly important because of the tongue's primary contribution to the speech acoustic signal, capturing tongue movements during speech remains difficult and costly. This study sought to determine if formant movements could be used to estimate tongue movement pattern consistency indirectly. Two age groups (seven young adults and seven older adults) and six speech conditions (typical, slow, loud, clear, fast, bite block speech) were selected to elicit an age- and task-dependent performance range in tongue movement pattern consistency. Kinematic and acoustic spatiotemporal indexes (STI) were calculated based on sentence-length tongue movement and formant movement signals, respectively. Kinematic and acoustic STI values showed strong associations across talkers and moderate to strong associations for each talker across speech tasks; although, in cases where task-related tongue motor performance changes were relatively small, the acoustic STI values were poorly associated with kinematic STI values. These findings suggest that, depending on the sensitivity needs, formant movement pattern consistency could be used in lieu of direct kinematic analysis to indirectly examine speech motor control. PMID:27908069

  13. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague

    USGS Publications Warehouse

    Augustine, D.J.; Matchett, M.R.; Toombs, T.P.; Cully, J.F.; Johnson, T.L.; Sidle, John G.

    2008-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are a key component of the disturbance regime in semi-arid grasslands of central North America. Many studies have compared community and ecosystem characteristics on prairie dog colonies to grasslands without prairie dogs, but little is known about landscape-scale patterns of disturbance that prairie dog colony complexes may impose on grasslands over long time periods. We examined spatiotemporal dynamics in two prairie dog colony complexes in southeastern Colorado (Comanche) and northcentral Montana (Phillips County) that have been strongly influenced by plague, and compared them to a complex unaffected by plague in northwestern Nebraska (Oglala). Both plague-affected complexes exhibited substantial spatiotemporal variability in the area occupied during a decade, in contrast to the stability of colonies in the Oglala complex. However, the plague-affected complexes differed in spatial patterns of colony movement. Colonies in the Comanche complex in shortgrass steppe shifted locations over a decade. Only 10% of the area occupied in 1995 was still occupied by prairie dogs in 2006. In 2005 and 2006 respectively, 74 and 83% of the total area of the Comanche complex occurred in locations that were not occupied in 1995, and only 1% of the complex was occupied continuously over a decade. In contrast, prairie dogs in the Phillips County complex in mixed-grass prairie and sagebrush steppe primarily recolonized previously occupied areas after plague-induced colony declines. In Phillips County, 62% of the area occupied in 1993 was also occupied by prairie dogs in 2004, and 12% of the complex was occupied continuously over a decade. Our results indicate that plague accelerates spatiotemporal movement of prairie dog colonies, and have significant implications for landscape-scale effects of prairie dog disturbance on grassland composition and productivity. These findings highlight the need to combine landscape-scale measures of habitat suitability with long-term measures of colony locations to understand the role of plague-affected prairie dogs as a grassland disturbance process. ?? 2007 Springer Science+Business Media B.V.

  14. On the barn owl's visual pre-attack behavior: I. Structure of head movements and motion patterns.

    PubMed

    Ohayon, Shay; van der Willigen, Robert F; Wagner, Hermann; Katsman, Igor; Rivlin, Ehud

    2006-09-01

    Barn owls exhibit a rich repertoire of head movements before taking off for prey capture. These movements occur mainly at light levels that allow for the visual detection of prey. To investigate these movements and their functional relevance, we filmed the pre-attack behavior of barn owls. Off-line image analysis enabled reconstruction of all six degrees of freedom of head movements. Three categories of head movements were observed: fixations, head translations and head rotations. The observed rotations contained a translational component. Head rotations did not follow Listing's law, but could be well described by a second-order surface, which indicated that they are in close agreement with Donder's law. Head translations did not contain any significant rotational components. Translations were further segmented into straight-line and curved paths. Translations along an axis perpendicular to the line of sight were similar to peering movements observed in other animals. We suggest that these basic motion elements (fixations, head rotations, translations along a straight line, and translation along a curved trajectory) may be combined to form longer and more complex behavior. We speculate that these head movements mainly underlie estimation of distance during prey capture.

  15. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training

    PubMed Central

    Li, Chong; Bi, Sheng; Zhang, Xuemin; Huo, Jianfei

    2017-01-01

    Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient's functional ability by training the normal movement pattern. PMID:29065614

  16. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.

    PubMed

    Liu, Yali; Li, Chong; Ji, Linhong; Bi, Sheng; Zhang, Xuemin; Huo, Jianfei; Ji, Run

    2017-01-01

    Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient's functional ability by training the normal movement pattern.

  17. Scaling laws of marine predator search behaviour.

    PubMed

    Sims, David W; Southall, Emily J; Humphries, Nicolas E; Hays, Graeme C; Bradshaw, Corey J A; Pitchford, Jonathan W; James, Alex; Ahmed, Mohammed Z; Brierley, Andrew S; Hindell, Mark A; Morritt, David; Musyl, Michael K; Righton, David; Shepard, Emily L C; Wearmouth, Victoria J; Wilson, Rory P; Witt, Matthew J; Metcalfe, Julian D

    2008-02-28

    Many free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability. The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology. Lévy walks are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes. However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested. Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators-sharks, bony fishes, sea turtles and penguins-exhibit Lévy-walk-like behaviour close to a theoretical optimum. Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions.

  18. [Coordination patterns assessed by a continuous measure of joints coupling during upper limb repetitive movements].

    PubMed

    Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S

    2008-01-01

    We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements.

  19. The Endpoint Hypothesis: A Topological-Cognitive Assessment of Geographic Scale Movement Patterns

    NASA Astrophysics Data System (ADS)

    Klippel, Alexander; Li, Rui

    Movement patterns of individual entities at the geographic scale are becoming a prominent research focus in spatial sciences. One pertinent question is how cognitive and formal characterizations of movement patterns relate. In other words, are (mostly qualitative) formal characterizations cognitively adequate? This article experimentally evaluates movement patterns that can be characterized as paths through a conceptual neighborhood graph, that is, two extended spatial entities changing their topological relationship gradually. The central questions addressed are: (a) Do humans naturally use topology to create cognitive equivalent classes, that is, is topology the basis for categorizing movement patterns spatially? (b) Are ‘all’ topological relations equally salient, and (c) does language influence categorization. The first two questions are addressed using a modification of the endpoint hypothesis stating that: movement patterns are distinguished by the topological relation they end in. The third question addresses whether language has an influence on the classification of movement patterns, that is, whether there is a difference between linguistic and non-linguistic category construction. In contrast to our previous findings we were able to document the importance of topology for conceptualizing movement patterns but also reveal differences in the cognitive saliency of topological relations. The latter aspect calls for a weighted conceptual neighborhood graph to cognitively adequately model human conceptualization processes.

  20. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice

    PubMed Central

    Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo

    2011-01-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375

  1. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    PubMed

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  2. The movements made by performers in a skilled quartet: a distinctive pattern, and the function that it serves

    PubMed Central

    Glowinski, Donald; Mancini, Maurizio; Cowie, Roddy; Camurri, Antonio; Chiorri, Carlo; Doherty, Cian

    2013-01-01

    When people perform a task as part of a joint action, their behavior is not the same as it would be if they were performing the same task alone, since it has to be adapted to facilitate shared understanding (or sometimes to prevent it). Joint performance of music offers a test bed for ecologically valid investigations of the way non-verbal behavior facilitates joint action. Here we compare the expressive movement of violinists when playing in solo and ensemble conditions. The first violinists of two string quartets (SQs), professional and student, were asked to play the same musical fragments in a solo condition and with the quartet. Synchronized multimodal recordings were created from the performances, using a specially developed software platform. Different patterns of head movement were observed. By quantifying them using an appropriate measure of entropy, we showed that head movements are more predictable in the quartet scenario. Rater evaluations showed that the change does not, as might be assumed, entail markedly reduced expression. They showed some ability to discriminate between solo and ensemble performances, but did not distinguish them in terms of emotional content or expressiveness. The data raise provocative questions about joint action in realistically complex scenarios. PMID:24312065

  3. Facilitating insights with a user adaptable dashboard, illustrated by airport connectivity data

    NASA Astrophysics Data System (ADS)

    Dobraja, Ieva; Kraak, Menno-Jan; Engelhardt, Yuri

    2018-05-01

    Since the movement data exist, there have been approaches to collect and analyze them to get insights. This kind of data is often heterogeneous, multiscale and multi-temporal. Those interested in spatio-temporal patterns of movement data do not gain insights from textual descriptions. Therefore, visualization is required. As spatio-temporal movement data can be complex because size and characteristics, it is even challenging to create an overview of it. Plotting all the data on the screen will not be the solution as it likely will result into cluttered images where no data exploration is possible. To ensure that users will receive the information they are interested in, it is important to provide a graphical data representation environment where exploration to gain insights are possible not only in the overall level but at sub-levels as well. A dashboard would be a solution the representation of heterogeneous spatio- temporal data. It provides an overview and helps to unravel the complexity of data by splitting data in multiple data representation views. The adaptability of dashboard will help to reveal the information which cannot be seen in the overview.

  4. A novel approach to enhance ACL injury prevention programs.

    PubMed

    Gokeler, Alli; Seil, Romain; Kerkhoffs, Gino; Verhagen, Evert

    2018-06-18

    Efficacy studies have demonstrated decreased anterior cruciate ligament (ACL) injury rates for athletes participating in injury prevention programs. Typically, ACL injury prevention programs entail a combination of plyometrics, strength training, agility and balance exercises. Unfortunately, improvements of movement patterns are not sustained over time. The reason may be related to the type of instructions given during training. Encouraging athletes to consciously control knee movements during exercises may not be optimal for the acquisition of complex motor skills as needed in complex sports environments. In the motor learning domain, these types of instructions are defined as an internal attentional focus. An internal focus, on one's own movements results in a more conscious type of control that may hamper motor learning. It has been established in numerous studies that an external focus of attention facilitates motor learning more effectively due to the utilization of automatic motor control. Subsequently, the athlete has more recourses available to anticipate on situations on the field and take appropriate feed forward directed actions. The purpose of this manuscript was to present methods to optimize motor skill acquisition of athletes and elaborate on athletes' behavior.

  5. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    PubMed Central

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-01-01

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware. PMID:28208736

  6. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition.

    PubMed

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-02-08

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates ( F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware.

  7. Age-Related Variability in Tongue Pressure Patterns for Maximum Isometric and Saliva Swallowing Tasks

    ERIC Educational Resources Information Center

    Peladau-Pigeon, Melanie; Steele, Catriona M.

    2017-01-01

    Purpose: The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue…

  8. Neural basis for hand muscle synergies in the primate spinal cord.

    PubMed

    Takei, Tomohiko; Confais, Joachim; Tomatsu, Saeka; Oya, Tomomichi; Seki, Kazuhiko

    2017-08-08

    Grasping is a highly complex movement that requires the coordination of multiple hand joints and muscles. Muscle synergies have been proposed to be the functional building blocks that coordinate such complex motor behaviors, but little is known about how they are implemented in the central nervous system. Here we demonstrate that premotor interneurons (PreM-INs) in the primate cervical spinal cord underlie the spatiotemporal patterns of hand muscle synergies during a voluntary grasping task. Using spike-triggered averaging of hand muscle activity, we found that the muscle fields of PreM-INs were not uniformly distributed across hand muscles but rather distributed as clusters corresponding to muscle synergies. Moreover, although individual PreM-INs have divergent activation patterns, the population activity of PreM-INs reflects the temporal activation of muscle synergies. These findings demonstrate that spinal PreM-INs underlie the muscle coordination required for voluntary hand movements in primates. Given the evolution of neural control of primate hand functions, we suggest that spinal premotor circuits provide the fundamental coordination of multiple joints and muscles upon which more fractionated control is achieved by superimposed, phylogenetically newer, pathways.

  9. Anomalous Putamen Volume in Children with Complex Motor Stereotypies

    PubMed Central

    Mahone, E. Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H.; Singer, Harvey S.

    2016-01-01

    Introduction Complex motor stereotypies in children are repetitive, rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm/hand flapping, waving. They occur in both “primary” (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiological abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. Methods High-resolution anatomical MRI images, acquired at 3.0T, were analyzed in children ages 8–12 years (20 with primary complex motor stereotypies, 20 typically developing). Frontal lobe sub-regions and striatal structures were delineated for analysis. Results Significant reductions (p=0.045) in the stereotypies group were identified in total putamen volume, but not caudate, nucleus accumbens or frontal sub-regions. There were no group differences in total cerebral volume. Conclusion Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomical site in primary complex motor stereotypies. PMID:27751663

  10. Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks

    USGS Publications Warehouse

    Campbell Grant, Evan H.

    2011-01-01

    Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.

  11. Movement Pattern and Parameter Learning in Children: Effects of Feedback Frequency

    ERIC Educational Resources Information Center

    Goh, Hui-Ting; Kantak, Shailesh S.; Sullivan, Katherine J.

    2012-01-01

    Reduced feedback during practice has been shown to be detrimental to movement accuracy in children but not in young adults. We hypothesized that the reduced accuracy is attributable to reduced movement parameter learning, but not pattern learning, in children. A rapid arm movement task that required the acquisition of a motor pattern scaled to…

  12. Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women

    PubMed Central

    Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal

    2017-01-01

    The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the “active transportation” cluster. The perceived environmental characteristics positively associated with “active transportation” included “high availability of destinations around home,” “presence of bicycle paths,” and “low traffic.” A “positive image of walking/cycling,” the “individual feeling of being physically active,” and a “high use of active transport modes by relatives/friends” were positively related to “active transportation,” identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups. PMID:28717653

  13. Evidence of Levy walk foraging patterns in human hunter-gatherers.

    PubMed

    Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman

    2014-01-14

    When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.

  14. Movement patterns of limb coordination in infant rolling.

    PubMed

    Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro

    2016-12-01

    Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.

  15. Eye movements reflect and shape strategies in fraction comparison.

    PubMed

    Ischebeck, Anja; Weilharter, Marina; Körner, Christof

    2016-01-01

    The comparison of fractions is a difficult task that can often be facilitated by separately comparing components (numerators and denominators) of the fractions--that is, by applying so-called component-based strategies. The usefulness of such strategies depends on the type of fraction pair to be compared. We investigated the temporal organization and the flexibility of strategy deployment in fraction comparison by evaluating sequences of eye movements in 20 young adults. We found that component-based strategies could account for the response times and the overall number of fixations observed for the different fraction pairs. The analysis of eye movement sequences showed that the initial eye movements in a trial were characterized by stereotypical scanning patterns indicative of an exploratory phase that served to establish the kind of fraction pair presented. Eye movements that followed this phase adapted to the particular type of fraction pair and indicated the deployment of specific comparison strategies. These results demonstrate that participants employ eye movements systematically to support strategy use in fraction comparison. Participants showed a remarkable flexibility to adapt to the most efficient strategy on a trial-by-trial basis. Our results confirm the value of eye movement measurements in the exploration of strategic adaptation in complex tasks.

  16. From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest.

    PubMed

    Torney, Colin J; Hopcraft, J Grant C; Morrison, Thomas A; Couzin, Iain D; Levin, Simon A

    2018-05-19

    A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).

  17. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  18. Abnormal motor patterns in the framework of the equilibrium-point hypothesis: a cause for dystonic movements?

    PubMed

    Latash, M L; Gutman, S R

    1994-01-01

    Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.

  19. Forest Connectivity Regions of Canada Using Circuit Theory and Image Analysis

    PubMed Central

    Pelletier, David; Lapointe, Marc-Élie; Wulder, Michael A.; White, Joanne C.; Cardille, Jeffrey A.

    2017-01-01

    Ecological processes are increasingly well understood over smaller areas, yet information regarding interconnections and the hierarchical nature of ecosystems remains less studied and understood. Information on connectivity over large areas with high resolution source information provides for both local detail and regional context. The emerging capacity to apply circuit theory to create maps of omnidirectional connectivity provides an opportunity for improved and quantitative depictions of forest connectivity, supporting the formation and testing of hypotheses about the density of animal movement, ecosystem structure, and related links to natural and anthropogenic forces. In this research, our goal was to delineate regions where connectivity regimes are similar across the boreal region of Canada using new quantitative analyses for characterizing connectivity over large areas (e.g., millions of hectares). Utilizing the Earth Observation for Sustainable Development of forests (EOSD) circa 2000 Landsat-derived land-cover map, we created and analyzed a national-scale map of omnidirectional forest connectivity at 25m resolution over 10000 tiles of 625 km2 each, spanning the forested regions of Canada. Using image recognition software to detect corridors, pinch points, and barriers to movements at multiple spatial scales in each tile, we developed a simple measure of the structural complexity of connectivity patterns in omnidirectional connectivity maps. We then mapped the Circuitscape resistance distance measure and used it in conjunction with the complexity data to study connectivity characteristics in each forested ecozone. Ecozone boundaries masked substantial systematic patterns in connectivity characteristics that are uncovered using a new classification of connectivity patterns that revealed six clear groups of forest connectivity patterns found in Canada. The resulting maps allow exploration of omnidirectional forest connectivity patterns at full resolution while permitting quantitative analyses of connectivity over broad areas, informing modeling, planning and monitoring efforts. PMID:28146573

  20. Fractal analysis of narwhal space use patterns.

    PubMed

    Laidre, Kristin L; Heide-Jørgensen, Mads P; Logsdon, Miles L; Hobbs, Roderick C; Dietz, Rune; VanBlaricom, Glenn R

    2004-01-01

    Quantifying animal movement in response to a spatially and temporally heterogeneous environment is critical to understanding the structural and functional landscape influences on population viability. Generalities of landscape structure can easily be extended to the marine environment, as marine predators inhabit a patchy, dynamic system, which influences animal choice and behavior. An innovative use of the fractal measure of complexity, indexing the linearity of movement paths over replicate temporal scales, was applied to satellite tracking data collected from narwhals (Monodon monoceros) (n = 20) in West Greenland and the eastern Canadian high Arctic. Daily movements of individuals were obtained using polar orbiting satellites via the ARGOS data location and collection system. Geographic positions were filtered to obtain a daily good quality position for each whale. The length of total pathway was measured over seven different temporal length scales (step lengths), ranging from one day to one week, and a seasonal mean was calculated. Fractal dimension (D) was significantly different between seasons, highest during summer (D = 1.61, SE 0.04) and winter (D = 1.69, SE 0.06) when whales made convoluted movements in focal areas. Fractal dimension was lowest during fall (D = 1.34, SE 0.03) when whales were migrating south ahead of the forming sea ice. There were no significant effects of size category or sex on fractal dimension by season. The greater linearity of movement during the migration period suggests individuals do not intensively forage on patchy resources until they arrive at summer or winter sites. The highly convoluted movements observed during summer and winter suggest foraging or searching efforts in localized areas. Significant differences between the fractal dimensions on two separate wintering grounds in Baffin Bay suggest differential movement patterns in response to the dynamics of sea ice.

  1. Passive acoustic tracking of singing humpback whales (Megaptera novaeangliae) on a northwest Atlantic feeding ground.

    PubMed

    Stanistreet, Joy E; Risch, Denise; Van Parijs, Sofie M

    2013-01-01

    Passive acoustic tracking provides an unobtrusive method of studying the movement of sound-producing animals in the marine environment where traditional tracking methods may be costly or infeasible. We used passive acoustic tracking to characterize the fine-scale movements of singing humpback whales (Megaptera novaeangliae) on a northwest Atlantic feeding ground. Male humpback whales produce complex songs, a phenomenon that is well documented in tropical regions during the winter breeding season, but also occurs at higher latitudes during other times of year. Acoustic recordings were made throughout 2009 using an array of autonomous recording units deployed in the Stellwagen Bank National Marine Sanctuary. Song was recorded during spring and fall, and individual singing whales were localized and tracked throughout the array using a correlation sum estimation method on the time-synchronized recordings. Tracks were constructed for forty-three song sessions, revealing a high level of variation in movement patterns in both the spring and fall seasons, ranging from slow meandering to faster directional movement. Tracks were 30 min to 8 h in duration, and singers traveled distances ranging from 0.9 to 20.1 km. Mean swimming speed was 2.06 km/h (SD 0.95). Patterns and rates of movement indicated that most singers were actively swimming. In one case, two singers were tracked simultaneously, revealing a potential acoustic interaction. Our results provide a first description of the movements of singers on a northwest Atlantic feeding ground, and demonstrate the utility of passive acoustic tracking for studying the fine-scale movements of cetaceans within the behavioral context of their calls. These methods have further applications for conservation and management purposes, particularly by enhancing our ability to estimate cetacean densities using passive acoustic monitoring.

  2. Passive Acoustic Tracking of Singing Humpback Whales (Megaptera novaeangliae) on a Northwest Atlantic Feeding Ground

    PubMed Central

    Stanistreet, Joy E.; Risch, Denise; Van Parijs, Sofie M.

    2013-01-01

    Passive acoustic tracking provides an unobtrusive method of studying the movement of sound-producing animals in the marine environment where traditional tracking methods may be costly or infeasible. We used passive acoustic tracking to characterize the fine-scale movements of singing humpback whales (Megaptera novaeangliae) on a northwest Atlantic feeding ground. Male humpback whales produce complex songs, a phenomenon that is well documented in tropical regions during the winter breeding season, but also occurs at higher latitudes during other times of year. Acoustic recordings were made throughout 2009 using an array of autonomous recording units deployed in the Stellwagen Bank National Marine Sanctuary. Song was recorded during spring and fall, and individual singing whales were localized and tracked throughout the array using a correlation sum estimation method on the time-synchronized recordings. Tracks were constructed for forty-three song sessions, revealing a high level of variation in movement patterns in both the spring and fall seasons, ranging from slow meandering to faster directional movement. Tracks were 30 min to 8 h in duration, and singers traveled distances ranging from 0.9 to 20.1 km. Mean swimming speed was 2.06 km/h (SD 0.95). Patterns and rates of movement indicated that most singers were actively swimming. In one case, two singers were tracked simultaneously, revealing a potential acoustic interaction. Our results provide a first description of the movements of singers on a northwest Atlantic feeding ground, and demonstrate the utility of passive acoustic tracking for studying the fine-scale movements of cetaceans within the behavioral context of their calls. These methods have further applications for conservation and management purposes, particularly by enhancing our ability to estimate cetacean densities using passive acoustic monitoring. PMID:23593447

  3. Four not six: Revealing culturally common facial expressions of emotion.

    PubMed

    Jack, Rachael E; Sun, Wei; Delis, Ioannis; Garrod, Oliver G B; Schyns, Philippe G

    2016-06-01

    As a highly social species, humans generate complex facial expressions to communicate a diverse range of emotions. Since Darwin's work, identifying among these complex patterns which are common across cultures and which are culture-specific has remained a central question in psychology, anthropology, philosophy, and more recently machine vision and social robotics. Classic approaches to addressing this question typically tested the cross-cultural recognition of theoretically motivated facial expressions representing 6 emotions, and reported universality. Yet, variable recognition accuracy across cultures suggests a narrower cross-cultural communication supported by sets of simpler expressive patterns embedded in more complex facial expressions. We explore this hypothesis by modeling the facial expressions of over 60 emotions across 2 cultures, and segregating out the latent expressive patterns. Using a multidisciplinary approach, we first map the conceptual organization of a broad spectrum of emotion words by building semantic networks in 2 cultures. For each emotion word in each culture, we then model and validate its corresponding dynamic facial expression, producing over 60 culturally valid facial expression models. We then apply to the pooled models a multivariate data reduction technique, revealing 4 latent and culturally common facial expression patterns that each communicates specific combinations of valence, arousal, and dominance. We then reveal the face movements that accentuate each latent expressive pattern to create complex facial expressions. Our data questions the widely held view that 6 facial expression patterns are universal, instead suggesting 4 latent expressive patterns with direct implications for emotion communication, social psychology, cognitive neuroscience, and social robotics. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Movement and Movement Patterns of Early Childhood.

    ERIC Educational Resources Information Center

    Sinclair, Caroline B.

    This study was undertaken to determine the progressive development in movement and movement patterns (coordinated movements of body parts used involuntarily to achieve an objective) of children 2- to 6-years-old, to identify general characteristics which may be studied for appraisal of growth and development, and to study variations in movement…

  5. Inter-individual variability and pattern recognition of surface electromyography in front crawl swimming.

    PubMed

    Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J

    2016-12-01

    Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Physiological characterization of the hematophagy of Ornithodoros rostratus (Acari: Argasidae) on live hosts.

    PubMed

    Costa, Gabriel Cerqueira Alves; Soares, Adriana Coelho; Pereira, Marcos Horácio; Gontijo, Nelder Figueiredo; Sant'Anna, Maurício Roberto Viana; Araujo, Ricardo Nascimento

    2016-11-15

    Ornithodoros rostratus is an argasid tick and its importance is based on its hematophagy and the resulting transmission of pathogens such as Rickettsia rickettsii and Coxiella burnetii to its vertebrate hosts. In the face of a lack of physiological studies related to hematophagy in argasid ticks, this paper aims to identify and characterize the events that occur throughout the feeding by O. rostratus on live hosts. Electrical signals and alterations on the feeding site were monitored using intravital microscopy and electromyography. The analyses allowed for the characterization of four distinct events: suction, salivation, chelicerae movements and inactivity. Feeding was divided into two distinct phases: (1) penetration of mouthparts (when only salivation and chelicerae movements occurred) and the formation of the feeding pool (salivation and chelicerae movements with the first signs of suction) and (2) engorgement, during which chelicerae movements ceased and blood intake took place in feeding complexes (salivation followed by suction). Variations in patterns of the electrical signals, suction frequency and salivation showed four distinct sub-phases: (2a) suction with electrical signals of irregular shape, increased suction frequency and decreased salivation frequency throughout blood feeding; (2b) suction with electrical signals of symmetrical shape, high suction rates (3.8 Hz on average) and feeding complexes lasting for 7.7 s; (2c) suction with electrical signals of irregular shape, high suction frequency and feeding complex lasting 11.5 s; and (2d) electrical signals with no profile and the longest feeding complexes (14.5 s). Blood feeding ended with the withdrawal of the mouthparts from the host's skin. © 2016. Published by The Company of Biologists Ltd.

  7. Cool Headed Individuals Are Better Survivors: Non-Consumptive and Consumptive Effects of a Generalist Predator on a Sap Feeding Insect

    PubMed Central

    Horváth, Vivien; Marczali, Zsolt; Samu, Ferenc

    2015-01-01

    Non-consumptive effects (NCEs) of predators are part of the complex interactions among insect natural enemies and prey. NCEs have been shown to significantly affect prey foraging and feeding. Leafhopper's (Auchenorrhyncha) lengthy phloem feeding bouts may play a role in pathogen transmission in vector species and also exposes them to predation risk. However, NCEs on leafhoppers have been scarcely studied, and we lack basic information about how anti-predator behaviour influences foraging and feeding in these species. Here we report a study on non-consumptive and consumptive predator-prey interactions in a naturally co-occurring spider–leafhopper system. In mesocosm arenas we studied movement patterns during foraging and feeding of the leafhopper Psammotettix alienus in the presence of the spider predator Tibellus oblongus. Leafhoppers delayed feeding and fed much less often when the spider was present. Foraging movement pattern changed under predation risk: movements became more frequent and brief. There was considerable individual variation in foraging movement activity. Those individuals that increased movement activity in the presence of predators exposed themselves to higher predation risk. However, surviving individuals exhibited a ‘cool headed’ reaction to spider presence by moving less than leafhoppers in control trials. No leafhoppers were preyed upon while feeding. We consider delayed feeding as a “paradoxical” antipredator tactic, since it is not necessarily an optimal strategy against a sit-and-wait generalist predator. PMID:26295476

  8. Movement sense determination in sheared rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1985-01-01

    Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less

  9. Understanding the Impact of Expertise in Joint and Solo-Improvisation.

    PubMed

    Issartel, Johann; Gueugnon, Mathieu; Marin, Ludovic

    2017-01-01

    Joint-improvisation is not only an open-ended creative action that two or more people perform together in the context of an artistic performance (e.g., theatre, music or dance). Joint-improvisation also takes place in daily life activities when humans take part in collective performance such as toddlers at play or adults engaged in a conversation. In the context of this article, joint-improvisation has been looked at from a social motor coordination perspective. In the literature, the nature of the social motor coordination characteristics of joint-improvisation for either the creative aspect or daily life features of this motor performance remains unclear. Additionally, both solo-improvisation and joint-improvisation need to be studied conjointly to establish the influence of the social element of improvisation in the emergence of multi-agent motor coordination. In order to better understand those two types of improvisation, we compared three level of expertise - novice, intermediate and professional in dance improvisation to identify movement characteristics for each of the groups. Pairs of the same level were asked to improvise together. Each individual was also asked to perform an improvisation on his/her own. We found that each of the three groups present specific movement organization with movement complexity increasing with the level of expertise. Experts performed shorter movement duration in conjunction with an increase range of movement. The direct comparison of individual and paired Conditions highlighted that the joint-improvisation reduced the complexity of the movement organization and those for all three levels while maintaining the differences between the groups. This direct comparison amongst those three distinct groups provides an original insight onto the nature of movement patterns in joint-improvisation situation. Overall, it reveals the role of both individual and collective properties in the emergence of social coordination.

  10. Understanding the Impact of Expertise in Joint and Solo-Improvisation

    PubMed Central

    Issartel, Johann; Gueugnon, Mathieu; Marin, Ludovic

    2017-01-01

    Joint-improvisation is not only an open-ended creative action that two or more people perform together in the context of an artistic performance (e.g., theatre, music or dance). Joint-improvisation also takes place in daily life activities when humans take part in collective performance such as toddlers at play or adults engaged in a conversation. In the context of this article, joint-improvisation has been looked at from a social motor coordination perspective. In the literature, the nature of the social motor coordination characteristics of joint-improvisation for either the creative aspect or daily life features of this motor performance remains unclear. Additionally, both solo-improvisation and joint-improvisation need to be studied conjointly to establish the influence of the social element of improvisation in the emergence of multi-agent motor coordination. In order to better understand those two types of improvisation, we compared three level of expertise – novice, intermediate and professional in dance improvisation to identify movement characteristics for each of the groups. Pairs of the same level were asked to improvise together. Each individual was also asked to perform an improvisation on his/her own. We found that each of the three groups present specific movement organization with movement complexity increasing with the level of expertise. Experts performed shorter movement duration in conjunction with an increase range of movement. The direct comparison of individual and paired Conditions highlighted that the joint-improvisation reduced the complexity of the movement organization and those for all three levels while maintaining the differences between the groups. This direct comparison amongst those three distinct groups provides an original insight onto the nature of movement patterns in joint-improvisation situation. Overall, it reveals the role of both individual and collective properties in the emergence of social coordination. PMID:28713301

  11. Learning to play the violin: motor control by freezing, not freeing degrees of freedom.

    PubMed

    Konczak, Jürgen; Vander Velden, Heidi; Jaeger, Lukas

    2009-05-01

    Playing a violin requires precise patterns of limb coordination that are acquired over years of practice. In the present study, the authors investigated how motion at proximal arm joints influenced the precision of bow movements in novice learners and experts. The authors evaluated the performances of 11 children (4-12 years old), 3 beginning-to-advanced level adult players, and 2 adult concert violinists, using a musical work that all had mastered as their first violin piece. The authors found that learning to play the violin was not associated with a release or freeing of joint degrees of freedom. Instead, learning was characterized by an experience-dependent suppression of sagittal shoulder motion, as documented by an observed reduction in joint angular amplitude. This reduction in the amplitude of shoulder flexion-extension correlated highly with a decrease of bow-movement variability. The remaining mechanical degrees of freedom at the elbow and shoulder showed patterns of neither suppression nor freeing. Only violinists with more than 700 practice hr achieved sagittal shoulder range of motion comparable to experts. The findings imply that restricting joint amplitude at selected joint degrees of freedom, while leaving other degrees of freedom unconstrained, constitutes an appropriate strategy for learning complex, high-precision motor patterns in children and adults. The findings also highlight that mastering even seemingly simple bowing movements constitutes a prolonged learning process.

  12. Amphibian terrestrial habitat selection and movement patterns vary with annual life-history period

    USGS Publications Warehouse

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2017-01-01

    Identification of essential habitat is a fundamental component of amphibian conservation; however, species with complex life histories frequently move among habitats. To better understand dynamic habitat use, we evaluated Wood Frog (Lithobates sylvaticus (LeConte, 1825)) habitat selection and movement patterns during the spring migration and foraging periods and described the spatiotemporal variability of habitats used during all annual life-history periods. We radio-tracked 71 frogs in Maine during 2011–2013 and evaluated spring migration, foraging activity center (FAC), and within-FAC habitat selection. Telemetered frogs spent the greatest percentage of each field season in hibernacula (≥54.4%), followed by FACs (≥25.5%), migration habitat (≥16.9%), and breeding sites (≥4.5%). FACs ranged 49 – 1 335 m2 (568.0 ± 493.4 m2) and annual home ranges spanned 1 413 – 32 165 m2 (11 780.6 ± 12 506.1 m2). During spring migration, Wood Frogs exhibited different movement patterns (e.g., turn angles), selected different habitat features, and selected habitat features less consistently than while occupying FACs, indicating that the migration and foraging periods are ecologically distinct. Habitat-use studies that do not discriminate among annual life-history periods may obscure true ecological relationships and fail to identify essential habitat necessary for sustaining amphibian populations.

  13. Chemotactic-based adaptive self-organization during colonial development

    NASA Astrophysics Data System (ADS)

    Cohen, Inon; Czirók, Andras; Ben-Jacob, Eshel

    1996-02-01

    Bacterial colonies have developed sophisticated modes of cooperative behavior which enable them to respond to adverse growth conditions. It has been shown that such behavior can be manifested in the development of complex colonial patterns. Certain bacterial species exhibit formation of branching patterns during colony development. Here we present a generic model to describe such patterning of swimming (tumbling) bacteria on agar surfaces. The model incorporates: (1) food diffusion, (2) reproduction and sporulation of the cells, (3) movement of the bacterial cells within a self-produced wetting fluid and (4) chemotactic signaling. As a plausible explanation for transitions between different branching morphologies, we propose an interplay between chemotaxis towards food, self-produced short range chemoattractant and long range chemorepellent.

  14. Time-Series Analysis of Embodied Interaction: Movement Variability and Complexity Matching As Dyadic Properties

    PubMed Central

    Zapata-Fonseca, Leonardo; Dotov, Dobromir; Fossion, Ruben; Froese, Tom

    2016-01-01

    There is a growing consensus that a fuller understanding of social cognition depends on more systematic studies of real-time social interaction. Such studies require methods that can deal with the complex dynamics taking place at multiple interdependent temporal and spatial scales, spanning sub-personal, personal, and dyadic levels of analysis. We demonstrate the value of adopting an extended multi-scale approach by re-analyzing movement time-series generated in a study of embodied dyadic interaction in a minimal virtual reality environment (a perceptual crossing experiment). Reduced movement variability revealed an interdependence between social awareness and social coordination that cannot be accounted for by either subjective or objective factors alone: it picks out interactions in which subjective and objective conditions are convergent (i.e., elevated coordination is perceived as clearly social, and impaired coordination is perceived as socially ambiguous). This finding is consistent with the claim that interpersonal interaction can be partially constitutive of direct social perception. Clustering statistics (Allan Factor) of salient events revealed fractal scaling. Complexity matching defined as the similarity between these scaling laws was significantly more pronounced in pairs of participants as compared to surrogate dyads. This further highlights the multi-scale and distributed character of social interaction and extends previous complexity matching results from dyadic conversation to non-verbal social interaction dynamics. Trials with successful joint interaction were also associated with an increase in local coordination. Consequently, a local coordination pattern emerges on the background of complex dyadic interactions in the PCE task and makes joint successful performance possible. PMID:28018274

  15. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration.

    PubMed

    Roll, Jean-Pierre; Albert, Frédéric; Thyrion, Chloé; Ribot-Ciscar, Edith; Bergenheim, Mikael; Mattei, Benjamin

    2009-02-01

    In humans, tendon vibration evokes illusory sensation of movement. We developed a model mimicking the muscle afferent patterns corresponding to any two-dimensional movement and checked its validity by inducing writing illusory movements through specific sets of muscle vibrators. Three kinds of illusory movements were compared. The first was induced by vibration patterns copying the responses of muscle spindle afferents previously recorded by microneurography during imposed ankle movements. The two others were generated by the model. Sixteen different vibratory patterns were applied to 20 motionless volunteers in the absence of vision. After each vibration sequence, the participants were asked to name the corresponding graphic symbol and then to reproduce the illusory movement perceived. Results showed that the afferent patterns generated by the model were very similar to those recorded microneurographically during actual ankle movements (r=0.82). The model was also very efficient for generating afferent response patterns at the wrist level, if the preferred sensory directions of the wrist muscle groups were first specified. Using recorded and modeled proprioceptive patterns to pilot sets of vibrators placed at the ankle or wrist levels evoked similar illusory movements, which were correctly identified by the participants in three quarters of the trials. Our proprioceptive model, based on neurosensory data recorded in behaving humans, should then be a useful tool in fields of research such as sensorimotor learning, rehabilitation, and virtual reality.

  16. Diurnal changes in the power spectral characteristics of eye movements and heart rate variability in the human fetus at term.

    PubMed

    Morokuma, S; Horimoto, N; Nakano, H

    2001-08-01

    It is well known that 1/f characteristics in power spectral patterns exist in various biological factors including heart rate variability. In the present study, we tried to elucidate the diurnal variation in spectral properties of eye movement and heart rate variability in the human fetus at term, via continuous 24-h observation of both these parameters. Studied were five uncomplicated fetuses at term. We observed eye movement and fetal heart rate (FHR) with real-time ultrasound and Doppler cardiotocograph, respectively, and analyzed the diurnal change in spectral properties, using the maximum entropy method. In four of five cases, the slope values of power spectra for both eye movement frequency and FHR, ranging approximately between 0.5 and 1.8, indicated diurnal variation, where the slopes tended to have high values during the day and low values at night. These findings suggest that, in the human fetus at term, eye movement and FHR are under the control of a common central mechanism, and this center changes its complexity as seen through diurnal rhythm.

  17. Development and validation of an algorithm for the study of sleep using a biometric shirt in young healthy adults.

    PubMed

    Pion-Massicotte, Joëlle; Godbout, Roger; Savard, Pierre; Roy, Jean-François

    2018-02-23

    Portable polysomnography is often too complex and encumbering for recording sleep at home. We recorded sleep using a biometric shirt (electrocardiogram sensors, respiratory inductance plethysmography bands and an accelerometer) in 21 healthy young adults recorded in a sleep laboratory for two consecutive nights, together with standard polysomnography. Polysomnographic recordings were scored using standard methods. An algorithm was developed to classify the biometric shirt recordings into rapid eye movement sleep, non-rapid eye movement sleep and wake. The algorithm was based on breathing rate and heart rate variability, body movement, and included a correction for sleep onset and offset. The overall mean percentage of agreement between the two sets of recordings was 77.4%; when non-rapid eye movement and rapid eye movement sleep epochs were grouped together, it increased to 90.8%. The overall kappa coefficient was 0.53. Five of the seven sleep variables were significantly correlated. The findings of this pilot study indicate that this simple portable system could be used to estimate the general sleep pattern of young healthy adults. © 2018 European Sleep Research Society.

  18. Individual Movement Strategies Revealed through Novel Clustering of Emergent Movement Patterns

    NASA Astrophysics Data System (ADS)

    Valle, Denis; Cvetojevic, Sreten; Robertson, Ellen P.; Reichert, Brian E.; Hochmair, Hartwig H.; Fletcher, Robert J.

    2017-03-01

    Understanding movement is critical in several disciplines but analysis methods often neglect key information by adopting each location as sampling unit, rather than each individual. We introduce a novel statistical method that, by focusing on individuals, enables better identification of temporal dynamics of connectivity, traits of individuals that explain emergent movement patterns, and sites that play a critical role in connecting subpopulations. We apply this method to two examples that span movement networks that vary considerably in size and questions: movements of an endangered raptor, the snail kite (Rostrhamus sociabilis plumbeus), and human movement in Florida inferred from Twitter. For snail kites, our method reveals substantial differences in movement strategies for different bird cohorts and temporal changes in connectivity driven by the invasion of an exotic food resource, illustrating the challenge of identifying critical connectivity sites for conservation in the presence of global change. For human movement, our method is able to reliably determine the origin of Florida visitors and identify distinct movement patterns within Florida for visitors from different places, providing near real-time information on the spatial and temporal patterns of tourists. These results emphasize the need to integrate individual variation to generate new insights when modeling movement data.

  19. The complex network of global cargo ship movements.

    PubMed

    Kaluza, Pablo; Kölzsch, Andrea; Gastner, Michael T; Blasius, Bernd

    2010-07-06

    Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion.

  20. The complex network of global cargo ship movements

    PubMed Central

    Kaluza, Pablo; Kölzsch, Andrea; Gastner, Michael T.; Blasius, Bernd

    2010-01-01

    Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion. PMID:20086053

  1. Genetic assignment methods for gaining insight into the management of infectious disease by understanding pathogen, vector, and host movement.

    PubMed

    Remais, Justin V; Xiao, Ning; Akullian, Adam; Qiu, Dongchuan; Blair, David

    2011-04-01

    For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease.

  2. Granularity of the mirror neuron system: A complex endeavor. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by A. D'Ausilio et al.

    NASA Astrophysics Data System (ADS)

    Swinnen, S. P.; Alaerts, K.

    2015-03-01

    The review paper by D'Ausilio and coauthors [3] is very timely and addresses one of the long-standing issues with respect to the coding features of mirror neurons. Through the history of mirror neuron research, there has been some controversy with respect to the level of granularity of the mirror neuron system, as studied in animal and human systems. While some researchers have suggested that abstract (high level) features of movement are coded, others have claimed evidence for more muscle specific (low level) coding properties (for an example, see [1,2]). D'Ausilio et al. [3] take a strong position in their review, suggesting a convergence between basic mechanisms of movement control and the mirror neuron system. Their suggestion is inspired by Bernstein's influential work on the so-called degrees of freedom problem. Even though a goal can in principle be reached in an infinite number of ways, consistent and stereotypical patterns of kinematics and muscle activation are often observed [4]. This has led to the notion of movement synergies as the basic building blocks for movement control. Even though it is essentially possible to contract isolated muscles or even motor units, Bernstein suggested that control of complex movement relies on movement synergies or coordinative structures, referring to a group of muscles that behave as a functional unit. This reduces the computational demands of the central nervous system considerably by assigning more responsibility to the lower levels of the movement control system. Bernstein's approach has inspired the dynamical systems perspective that has focused on a better understanding of complex biological systems such as interlimb coordination in humans [8]. For example, the upper limbs behave as a coordinative structure whereby simultaneous activation of the homologous muscle groups constitutes the default or preferred coordination mode that has to be defied when alternative patterns of coordination need to be performed or learned [8,10]. Additional support for such larger building blocks or basic postures in the upper limbs has also been provided by electrical stimulation of motor cortical areas in nonhuman primates [6]. The important inference made by D'Ausilio et al. [3] is that research inspired by the mirror neuron system, such as noninvasive brain stimulation using TMS, should go beyond the registration of motor evoked potentials in single muscles and instead monitor activity in multiple muscles to reveal the operation of these motor synergies. We fully agree that this is an important methodological recommendation for future work because previous TMS research paradigms may have constrained our view on granularity of the mirror neuron system.

  3. Understanding eye movements in face recognition using hidden Markov models.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  4. Tourette Syndrome

    PubMed Central

    Murray, T. J.

    1982-01-01

    Tourette syndrome (Gilles de la Tourette disease) is a disorder of involuntary muscular tics, vocalizations and compulsive behavior. The tics and muscle movements vary in form and course; the complex repetitive patterns are eventually replaced by other patterns. The vocalization may be in the form of sounds, words or profanities and sometimes echolalia, echopraxia and palilalia. The onset may be from age two to 15 but is usually between ages eight and 12. Recent studies suggest that there is a hypersensitivity of dopamine receptors. Most patients respond well to haloperidol, but other drugs that may be of value include clonidine, pimozide, fluphenazine and trifluoroperazine. PMID:21286050

  5. Ankle joint movements are encoded by both cutaneous and muscle afferents in humans.

    PubMed

    Aimonetti, Jean-Marc; Roll, Jean-Pierre; Hospod, Valérie; Ribot-Ciscar, Edith

    2012-08-01

    We analyzed the cutaneous encoding of two-dimensional movements by investigating the coding of movement velocity for differently oriented straight-line movements and the coding of complex trajectories describing cursive letters. The cutaneous feedback was then compared with that of the underlying muscle afferents previously recorded during the same "writing-like" movements. The unitary activity of 43 type II cutaneous afferents was recorded in the common peroneal nerve in healthy subjects during imposed ankle movements. These movements consisted first of ramp-and-hold movements imposed at two different and close velocities in seven directions and secondly of "writing-like" movements. In both cases, the responses were analyzed using the neuronal population vector model. The results show that movement velocity encoding depended on the direction of the ongoing movement. Discriminating between two velocities therefore involved processing the activity of afferent populations located in the various skin areas surrounding the moving joint, as shown by the statistically significant difference observed in the amplitude of the sum vectors. Secondly, "writing-like" movements induced cutaneous neuronal patterns of activity, which were reproducible and specific to each trajectory. Lastly, the "cutaneous neuronal trajectories," built by adding the sum vectors tip-to-tail, nearly matched both the movement trajectories and the "muscle neuronal trajectories," built from previously recorded muscle afferents. It was concluded that type II cutaneous and the underlying muscle afferents show similar encoding properties of two-dimensional movement parameters. This similarity is discussed in relation to a central gating process that would for instance increase the gain of cutaneous inputs when muscle information is altered by the fusimotor drive.

  6. Running the Gauntlet: Regional Movement Patterns of Manta alfredi through a Complex of Parks and Fisheries

    PubMed Central

    Germanov, Elitza S.; Marshall, Andrea D.

    2014-01-01

    Manta rays (Genus Manta) are economically important for fisheries and tourism in Indonesia. These species have been listed by the International Union for the Conservation of Nature Red List as Vulnerable to extinction; therefore, human exploitation of manta rays must be regulated. A better understanding of the habitat use and movement patterns of manta rays in Indonesia is needed in order to employ effective conservation measures. To gain better insight into the movements of Manta alfredi we used ‘Manta Matcher’, an online database with an integrated automated matching algorithm, to compare photographs from 2,604 encounters of M. alfredi collected by recreational divers and dive operators throughout Indonesia over a nine-year period. This photographic comparison revealed that manta rays migrated between regional sanctuaries such as Nusa Penida, the Gili Islands, and the Komodo National Park (up to 450 km straight-line distance). The areas between these sanctuaries are heavily fished and trafficked by ships, and when manta rays travel through these regions they risk being fished and injured by ship strikes. These long-range manta ray movements suggest connectivity between M. alfredi populations in neighboring islands and raise concerns about the future management of regional populations. It is recommended that a national conservation strategy be developed to protect the remaining populations in the country. PMID:25337865

  7. Performing Complex Tasks by Users With Upper-Extremity Disabilities Using a 6-DOF Robotic Arm: A Study.

    PubMed

    Al-Halimi, Reem K; Moussa, Medhat

    2017-06-01

    In this paper, we report on the results of a study that was conducted to examine how users suffering from severe upper-extremity disabilities can control a 6 degrees-of-freedom (DOF) robotics arm to complete complex activities of daily living. The focus of the study is not on assessing the robot arm but on examining the human-robot interaction patterns. Three participants were recruited. Each participant was asked to perform three tasks: eating three pieces of pre-cut bread from a plate, drinking three sips of soup from a bowl, and opening a right-handed door with lever handle. Each of these tasks was repeated three times. The arm was mounted on the participant's wheelchair, and the participants were free to move the arm as they wish to complete these tasks. Each task consisted of a sequence of modes where a mode is defined as arm movement in one DOF. Results show that participants used a total of 938 mode movements with an average of 75.5 (std 10.2) modes for the eating task, 70 (std 8.8) modes for the soup task, and 18.7 (std 4.5) modes for the door opening task. Tasks were then segmented into smaller subtasks. It was found that there are patterns of usage per participant and per subtask. These patterns can potentially allow a robot to learn from user's demonstration what is the task being executed and by whom and respond accordingly to reduce user effort.

  8. Computer-aided axiography of asymptomatic individuals with Class II/2.

    PubMed

    Stamm, T; Vehring, A; Ehmer, U; Bollmann, F

    1998-01-01

    The condylar axiographic tracings of 23 asymptomatic adult volunteers (Helkimo-index DiO) with Class II/2 axiography relationships were compared to tracings of an analogous group (DiO; n = 30) with normal occlusion. The obtained measurements were evaluated statistically and discussed with respect to possible recording errors. The open-close movement proceeded uncharacteristically, differences existed only in protrusion, mediotrusion and their combined rotation component. In Class II/2 cases an approximately 7 degrees higher angle of the condylar path inclination (CPI) was measured. The Class II/2 group rotated to a significantly higher angle in protrusive and mediotrusive movements and showed longer condylar path lengths than the control group. Another significant difference was found in the location of maximum CPI values and maximum rotation angles within the condylar path, because in no case was isolated rotation or translation of the hinge axis observed. The temporomandibular joint of Class II/2 individuals shows a wider range of motion than joints of subjects with normal occlusion. The reduced capacity of motion which was assumed to exist in a so-called hack-bite could not be backed up for Class II/2 deep bite cases. The investigated differences cannot be seen as pathomechanisms, because all participants were clinically free of dysfunction. The neuromuscular engram to overcome the overbite controls a complex spatial motion pattern which cannot be described by a simplified mechanical abstraction of motion in the sagittal plane. The temporomandibular joint with its complex pattern of movement is able to create physiological mechanisms of compensation to react to different dental and skeletal features.

  9. Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate.

    PubMed

    Darling, John A; Herborg, Leif-Matthias; Davidson, Ian C

    2012-10-01

    Understanding the factors contributing to expansion of nonnative populations is a critical step toward accurate risk assessment and effective management of biological invasions. Nevertheless, few studies have attempted explicitly to test hypotheses regarding factors driving invasive spread by seeking correlations between patterns of vector movement and patterns of genetic connectivity. Herein, we describe such an attempt for the invasive tunicate Styela clava in the northeastern Pacific. We utilized microsatellite data to estimate gene flow between samples collected throughout the known range of S. clava in the region, and assessed correlation of these estimates with patterns of intracoastal commercial vessel traffic. Our results suggest that recent shipping patterns have contributed to the contemporary distribution of genetic variation. However, the analysis also indicates that other factors-including a complex invasion history and the influence of other vectors-have partially obscured genetic patterns associated with intracoastal population expansion.

  10. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anomalous Putamen Volume in Children With Complex Motor Stereotypies.

    PubMed

    Mahone, E Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H; Singer, Harvey S

    2016-12-01

    Complex motor stereotypies in children are repetitive rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm or hand flapping, waving. They occur in both "primary" (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiologic abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. High-resolution anatomic magnetic resonance images, acquired at 3.0 T, were analyzed in children aged eight to twelve years (20 with primary complex motor stereotypies and 20 typically developing). Frontal lobe subregions and striatal structures were delineated for analysis. Significant reductions (P = 0.045) in the stereotypies group were identified in total putamen volume but not in caudate, nucleus accumbens, or frontal subregions. There were no group differences in total cerebral volume. Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomic site in primary complex motor stereotypies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Eye movements reflect and shape strategies in fraction comparison

    PubMed Central

    Ischebeck, Anja; Weilharter, Marina; Körner, Christof

    2016-01-01

    The comparison of fractions is a difficult task that can often be facilitated by separately comparing components (numerators and denominators) of the fractions—that is, by applying so-called component-based strategies. The usefulness of such strategies depends on the type of fraction pair to be compared. We investigated the temporal organization and the flexibility of strategy deployment in fraction comparison by evaluating sequences of eye movements in 20 young adults. We found that component-based strategies could account for the response times and the overall number of fixations observed for the different fraction pairs. The analysis of eye movement sequences showed that the initial eye movements in a trial were characterized by stereotypical scanning patterns indicative of an exploratory phase that served to establish the kind of fraction pair presented. Eye movements that followed this phase adapted to the particular type of fraction pair and indicated the deployment of specific comparison strategies. These results demonstrate that participants employ eye movements systematically to support strategy use in fraction comparison. Participants showed a remarkable flexibility to adapt to the most efficient strategy on a trial-by-trial basis. Our results confirm the value of eye movement measurements in the exploration of strategic adaptation in complex tasks. PMID:26039819

  13. Multi-segmental movements as a function of experience in karate.

    PubMed

    Zago, Matteo; Codari, Marina; Iaia, F Marcello; Sforza, Chiarella

    2017-08-01

    Karate is a martial art that partly depends on subjective scoring of complex movements. Principal component analysis (PCA)-based methods can identify the fundamental synergies (principal movements) of motor system, providing a quantitative global analysis of technique. In this study, we aimed at describing the fundamental multi-joint synergies of a karate performance, under the hypothesis that the latter are skilldependent; estimate karateka's experience level, expressed as years of practice. A motion capture system recorded traditional karate techniques of 10 professional and amateur karateka. At any time point, the 3D-coordinates of body markers produced posture vectors that were normalised, concatenated from all karateka and submitted to a first PCA. Five principal movements described both gross movement synergies and individual differences. A second PCA followed by linear regression estimated the years of practice using principal movements (eigenpostures and weighting curves) and centre of mass kinematics (error: 3.71 years; R2 = 0.91, P ≪ 0.001). Principal movements and eigenpostures varied among different karateka and as functions of experience. This approach provides a framework to develop visual tools for the analysis of motor synergies in karate, allowing to detect the multi-joint motor patterns that should be restored after an injury, or to be specifically trained to increase performance.

  14. Complex auditory behaviour emerges from simple reactive steering

    NASA Astrophysics Data System (ADS)

    Hedwig, Berthold; Poulet, James F. A.

    2004-08-01

    The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.

  15. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  16. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    PubMed

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  17. The Flash-Preview Moving Window Paradigm: Unpacking Visual Expertise One Glimpse at a Time

    ERIC Educational Resources Information Center

    Litchfield, Damien; Donovan, Tim

    2017-01-01

    How we make sense of what we see and where best to look is shaped by our experience, our current task goals and how we first perceive our environment. An established way of demonstrating these factors work together is to study how eye movement patterns change as a function of expertise and to observe how experts can solve complex tasks after only…

  18. Learning and transfer in motor-respiratory coordination.

    PubMed

    Hessler, Eric E; Amazeen, Polemnia G

    2014-02-01

    Motor-respiratory coordination occurs naturally during exercise, but the number of coordination patterns performed between movement and breathing is limited. We investigated whether participants could acquire novel ratios (either 5:2 or 5:3). To examine complex temporal relationships between movement and breathing, we used lagged return plots that were produced by graphing relative phase against relative phase after a time delay. By the end of practice, participants performed 5:2 consistently and performed 5:3 using more stable ratios (3:2 and 2:1). Lagged return plots revealed that 5:3 learners harnessed the stable inphase and antiphase patterns to stabilize the required ratio. That strategy resulted in the performance of smaller-integer ratios in the production of 5:3 but not 5:2. Despite those differences, there was positive transfer to unpracticed ratios that was similar in both learning conditions. The time series analysis of lagged return plots revealed differences in ratio performance at transfer. Ratios whose component frequencies were farther apart, like 7:2, were performed consistently, while ratios whose component frequencies were more similar, like 5:4, elicited attraction to inphase and antiphase. The implication is that participants can combine more stable chunks of rhythmic behavior to produce more complex ratios. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Interaction between Central and Peripheral Processing in Chinese Handwritten Production: Evidence from the Effect of Lexicality and Radical Complexity

    PubMed Central

    Zhang, Qingfang; Feng, Chen

    2017-01-01

    The interaction between central and peripheral processing in written word production remains controversial. This study aims to investigate whether the effects of radical complexity and lexicality in central processing cascade into peripheral processing in Chinese written word production. The participants were asked to write characters and non-characters (lexicality) with different radical complexity (few- and many-strokes). The findings indicated that regardless of the lexicality, the writing latencies were longer for characters with higher complexity (the many-strokes condition) than for characters with lower complexity (the few-strokes condition). The participants slowed down their writing execution at the radicals' boundary strokes, which indicated a radical boundary effect in peripheral processing. Interestingly, the lexicality and the radical complexity affected the pattern of shift velocity and writing velocity during the execution of writing. Lexical processing cascades into peripheral processing but only at the beginning of Chinese characters. In contrast, the radical complexity influenced the execution of handwriting movement throughout the entire character, and the pattern of the effect interacted with the character frequency. These results suggest that the processes of the lexicality and the radical complexity function during the execution of handwritten word production, which suggests that central processing cascades over peripheral processing during Chinese characters handwriting. PMID:28348536

  20. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    PubMed

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  1. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    PubMed Central

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  2. Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry

    PubMed Central

    Wikelski, Martin; Moxley, Jerry; Eaton-Mordas, Alexander; López-Uribe, Margarita M.; Holland, Richard; Moskowitz, David; Roubik, David W.; Kays, Roland

    2010-01-01

    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators. PMID:20520813

  3. Seeking fluid possibility and solid ground: space and movement in mental health service users' experiences of 'crisis'.

    PubMed

    McGrath, Laura; Reavey, Paula

    2015-03-01

    Since the closure of the UK asylums, 'the community' has become short hand for describing a variety of disparate and complex spaces, in which service users manage their experiences of distress. An examination of such spaces here forms the basis of an analysis of the way in which service users move through and within space, to establish agency and dis/order while distressed. Seventeen participants, with various experiences of mental distress took part in a qualitative study, and a further textual analysis was conducted on eight published autobiographies. In the context of the interviews, participants presented drawings of the spaces they occupy during times of crisis, wellbeing and recovery. All texts were analysed using a thematic approach, informed by theories of embodiment and relational space. In this paper, the focus is directed towards two key patterns of movement, in order to explore ways in which participants experiencing various forms of mental health crisis used space in order to maintain and manage feelings of agency. Firstly, incidents where participants described moving towards fluid, outside spaces are explored, with agency being established through seeking, and utilising, greater possibilities for action and engaging others. In addition, the opposite pattern of movement is also explored, using incidents where participants described moving indoors, using the private space of the home to establish order and restore feelings of agency and strength, in contrast to overwhelming experiences in public space. Connections between these patterns of movement and particular forms of distress are discussed. It is argued that community and private spaces are integral to the ways in which selfhood, agency and action is experienced in mental distress, which in turn has implications for policy, treatment and community action. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Eye Movements during Silent and Oral Reading in a Regular Orthography: Basic Characteristics and Correlations with Childhood Cognitive Abilities and Adolescent Reading Skills

    PubMed Central

    Krieber, Magdalena; Bartl-Pokorny, Katrin D.; Pokorny, Florian B.; Zhang, Dajie; Landerl, Karin; Körner, Christof; Pernkopf, Franz; Pock, Thomas; Einspieler, Christa; Marschik, Peter B.

    2017-01-01

    The present study aimed to define differences between silent and oral reading with respect to spatial and temporal eye movement parameters. Eye movements of 22 German-speaking adolescents (14 females; mean age = 13;6 years;months) were recorded while reading an age-appropriate text silently and orally. Preschool cognitive abilities were assessed at the participants’ age of 5;7 (years;months) using the Kaufman Assessment Battery for Children. The participants’ reading speed and reading comprehension at the age of 13;6 (years;months) were determined using a standardized inventory to evaluate silent reading skills in German readers (Lesegeschwindigkeits- und -verständnistest für Klassen 6–12). The results show that (i) reading mode significantly influenced both spatial and temporal characteristics of eye movement patterns; (ii) articulation decreased the consistency of intraindividual reading performances with regard to a significant number of eye movement parameters; (iii) reading skills predicted the majority of eye movement parameters during silent reading, but influenced only a restricted number of eye movement parameters when reading orally; (iv) differences with respect to a subset of eye movement parameters increased with reading skills; (v) an overall preschool cognitive performance score predicted reading skills at the age of 13;6 (years;months), but not eye movement patterns during either silent or oral reading. However, we found a few significant correlations between preschool performances on subscales of sequential and simultaneous processing and eye movement parameters for both reading modes. Overall, the findings suggest that eye movement patterns depend on the reading mode. Preschool cognitive abilities were more closely related to eye movement patterns of oral than silent reading, while reading skills predicted eye movement patterns during silent reading, but less so during oral reading. PMID:28151950

  5. Not All Trees Sleep the Same—High Temporal Resolution Terrestrial Laser Scanning Shows Differences in Nocturnal Plant Movement

    PubMed Central

    Zlinszky, András; Molnár, Bence; Barfod, Anders S.

    2017-01-01

    Circadian leaf movements are widely known in plants, but nocturnal movement of tree branches were only recently discovered by using terrestrial laser scanning (TLS), a high resolution three-dimensional surveying technique. TLS uses a pulsed laser emitted in a regular scan pattern for rapid measurement of distances to the targets, thus producing three dimensional point cloud models of sub-centimeter resolution and accuracy in a few minutes. Here, we aim to gain an overview of the variability of circadian movement of small trees across different taxonomic groups, growth forms and leaf anatomies. We surveyed a series of 18 full scans over a 12-h night period to measure nocturnal changes in shape simultaneously for an experimental setup of 22 plants representing different species. Resulting point clouds were evaluated by comparing changes in height percentiles of laser scanning points belonging to the canopy. Changes in crown shape were observed for all studied trees, but clearly distinguishable sleep movements are apparently rare. Ambient light conditions were continuously dark between sunset (7:30 p.m.) and sunrise (6:00 a.m.), but most changes in movement direction occurred during this period, thus most of the recorded changes in crown shape were probably not controlled by ambient light. The highest movement amplitudes, for periodic circadian movement around 2 cm were observed for Aesculus and Acer, compared to non-periodic continuous change in shape of 5 cm for Gleditschia and 2 cm for Fargesia. In several species we detected 2–4 h cycles of minor crown movement of 0.5–1 cm, which is close to the limit of our measurement accuracy. We present a conceptual framework for interpreting observed changes as a combination of circadian rhythm with a period close to 12 h, short-term oscillation repeated every 2–4 h, aperiodic continuous movement in one direction and measurement noise which we assume to be random. Observed movement patterns are interpreted within this framework, and connections with morphology and taxonomy are proposed. We confirm the existence of overnight “sleep” movement for some trees, but conclude that circadian movement is a variable phenomenon in plants, probably controlled by a complex combination of anatomical, physiological, and morphological factors. PMID:29104583

  6. A guide to calculating habitat-quality metrics to inform conservation of highly mobile species

    USGS Publications Warehouse

    Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.

    2018-01-01

    Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic processes and population dynamics, and require the most data.More real-world examples applying occupancy-based, agent-based, and continuous-based metrics to seasonally migratory species are needed to better understand challenges and opportunities for applying these metrics more broadly.

  7. Patterns of Movement in Foster Care: An Optimal Matching Analysis

    PubMed Central

    Havlicek, Judy

    2011-01-01

    Placement instability remains a vexing problem for child welfare agencies across the country. This study uses child welfare administrative data to retrospectively follow the entire placement histories (birth to age 17.5) of 474 foster youth who reached the age of majority in the state of Illinois and to search for patterns in their movement through the child welfare system. Patterns are identified through optimal matching and hierarchical cluster analyses. Multiple logistic regression is used to analyze administrative and survey data in order to examine covariates related to patterns. Five distinct patterns of movement are differentiated: Late Movers, Settled with Kin, Community Care, Institutionalized, and Early Entry. These patterns suggest high but variable rates of movement. Implications for child welfare policy and service provision are discussed. PMID:20873020

  8. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.

    PubMed

    Dounskaia, Natalia; Shimansky, Yury

    2016-06-01

    Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed.

  9. Human activities recognition by head movement using partial recurrent neural network

    NASA Astrophysics Data System (ADS)

    Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.

    2003-06-01

    Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.

  10. Radiosteriometric analysis of movement in the sacroiliac joint during a single-leg stance in patients with long-lasting pelvic girdle pain.

    PubMed

    Kibsgård, Thomas J; Røise, Olav; Sturesson, Bengt; Röhrl, Stephan M; Stuge, Britt

    2014-04-01

    Chamberlain's projections (anterior-posterior X-ray of the pubic symphysis) have been used to diagnose sacroiliac joint mobility during the single-leg stance test. This study examined the movement in the sacroiliac joint during the single-leg stance test with precise radiostereometric analysis. Under general anesthesia, tantalum markers were inserted into the dorsal sacrum and the ilium of 11 patients with long-lasting and severe pelvic girdle pain. After two to three weeks, a radiostereometric analysis was conducted while the subjects performed a single-leg stance. Small movements were detected in the sacroiliac joint during the single-leg stance. In both the standing- and hanging-leg sacroiliac join, a total of 0.5 degree rotation was observed; however, no translations were detected. There were no differences in total movement between the standing- and hanging-leg sacroiliac joint. The movement in the sacroiliac joint during the single-leg stance is small and almost undetectable by the precise radiostereometric analysis. A complex movement pattern was seen during the test, with a combination of movements in the two joints. The interpretation of the results of this study is that, the Chamberlain examination likely is inadequate in the examination of sacroiliac joint movement in patients with pelvic girdle pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Movement patterns of Tenebrio beetles demonstrate empirically that correlated-random-walks have similitude with a Lévy walk.

    PubMed

    Reynolds, Andy M; Leprêtre, Lisa; Bohan, David A

    2013-11-07

    Correlated random walks are the dominant conceptual framework for modelling and interpreting organism movement patterns. Recent years have witnessed a stream of high profile publications reporting that many organisms perform Lévy walks; movement patterns that seemingly stand apart from the correlated random walk paradigm because they are discrete and scale-free rather than continuous and scale-finite. Our new study of the movement patterns of Tenebrio molitor beetles in unchanging, featureless arenas provides the first empirical support for a remarkable and deep theoretical synthesis that unites correlated random walks and Lévy walks. It demonstrates that the two models are complementary rather than competing descriptions of movement pattern data and shows that correlated random walks are a part of the Lévy walk family. It follows from this that vast numbers of Lévy walkers could be hiding in plain sight.

  12. The role of insect dispersal and migration in population processes

    NASA Technical Reports Server (NTRS)

    Rabb, R. L.; Stinner, R. E.

    1979-01-01

    Movement functions in the population dynamics of insects are discussed. Modes of movement, movement from a population view, and population patterns are described and predicted. A wide-area of spatial and temporal patterns are presented.

  13. An equilibrium-point model for fast, single-joint movement: I. Emergence of strategy-dependent EMG patterns.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-09-01

    We describe a model for the regulation of fast, single-joint movements, based on the equilibrium-point hypothesis. Limb movement follows constant rate shifts of independently regulated neuromuscular variables. The independently regulated variables are tentatively identified as thresholds of a length sensitive reflex for each of the participating muscles. We use the model to predict EMG patterns associated with changes in the conditions of movement execution, specifically, changes in movement times, velocities, amplitudes, and moments of limb inertia. The approach provides a theoretical neural framework for the dual-strategy hypothesis, which considers certain movements to be results of one of two basic, speed-sensitive or speed-insensitive strategies. This model is advanced as an alternative to pattern-imposing models based on explicit regulation of timing and amplitudes of signals that are explicitly manifest in the EMG patterns.

  14. The Effect of Core Stability Training on Functional Movement Patterns in Collegiate Athletes.

    PubMed

    Bagherian, Sajad; Ghasempoor, Khodayar; Rahnama, Nader; Wikstrom, Erik A

    2018-02-06

    Pre-participation examinations are the standard approach for assessing poor movement quality that would increase musculoskeletal injury risk. However, little is known about how core stability influences functional movement patterns. The primary purpose of this study was to determine the effect of an 8-week core stability program on functional movement patterns in collegiate athletes. The secondary purpose was to determine if the core stability training program would be more effective in those with worse movement quality (i.e. ≤14 baseline FMS score). Quasi-experimental design. Athletic Training Facility. One-hundred collegiate athletes. Functional movement patterns included the Functional Movement Screen (FMS), Lateral step down (LSD) and Y balance test (YBT) and were assessed before and after the 8-week program. Participants were placed into 1 of the 2 groups: intervention and control. The intervention group was required to complete a core stability training program that met 3 times per week for 8-week. Significant group x time interactions demonstrated improvements in FMS, LSD and YBT scores in the experimental group relative to the control group (p<0.001). Independent sample t-tests demonstrate that change scores were larger (greater improvement) for the FMS total score and Hurdle step (p<0.001) in athletes with worse movement quality. An 8-week core stability training program enhances functional movement patterns and dynamic postural control in collegiate athletes. The benefits are more pronounced in collegiate athletes with poor movement quality.

  15. Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes

    PubMed Central

    Pe'er, Guy; Henle, Klaus; Dislich, Claudia; Frank, Karin

    2011-01-01

    Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict. PMID:21829617

  16. Coarse-scale movement patterns of a small-bodied fish inhabiting a desert stream

    USGS Publications Warehouse

    Dzul, M.C.; Quist, M.C.; Dinsmore, S.J.; Gaines, D.B.; Bower, M.R.

    2013-01-01

    Located on the floor of Death Valley (CA, USA), Salt Creek harbors a single fish species, the Salt Creek pupfish, Cyprinodon salinus salinus, which has adapted to this extremely harsh environment. Salt Creek is fed by an underground spring and is comprised of numerous pools, runs, and marshes that exhibit substantial variability in temperature, salinity, and dissolved oxygen concentrations. In addition, the wetted area of Salt Creek is reduced throughout the summer months due to high rates of evaporation, with some reaches drying completely. Therefore, it seems logical that short- and long-term movement patterns may play an important role in Salt Creek pupfish population dynamics. The objective of this study was to describe coarse-scale movements of Salt Creek pupfish in Salt Creek during their breeding season from March to May. Sex ratios and length–frequency distributions varied spatially within Salt Creek, suggesting population segregation during the breeding season. Long-distance movements were generally rare, although two fish moved more than 1.2 km. Movement in upstream reaches was rare or absent, in contrast to the greater movement observed in downstream reaches (29% of recaptures). Temporal trends and demographic patterns in movement were not observed. Because the two most downstream habitats dry up in the summer, our results indicate that coarse-scale movements that re-populate downstream reaches likely occur during other times of year. Consequently, the importance of small- and large-scale movements is influenced by season. Further assessment of Salt Creek movement patterns conducted during other times of year may better illuminate long-distance movement patterns and source-sink dynamics.

  17. Interhemispheric Control of Unilateral Movement

    PubMed Central

    Beaulé, Vincent; Tremblay, Sara; Théoret, Hugo

    2012-01-01

    To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex or fatiguing, in childhood, and with increasing age. Lateralization of movement depends on complex interhemispheric communication between cortical (i.e., dorsal premotor cortex, supplementary motor area) and subcortical (i.e., basal ganglia) areas, probably coursing through the corpus callosum (CC). Here, we will focus on transcallosal interhemispheric inhibition (IHI), which facilitates complex unilateral movements and appears to play an important role in handedness, pathological conditions such as Parkinson's disease, and stroke recovery. PMID:23304559

  18. Contemporary movements and tectonics on Canada's west coast: A discussion

    NASA Astrophysics Data System (ADS)

    Riddihough, Robin P.

    1982-06-01

    Evidence from published tidal records and geodetic relevelling data in British Columbia indicates that there is a consistent pattern of contemporary uplift on the outer coast (2 mm/yr) and subsidence on the inner coast (1-2 mm/yr). The zero uplift contour or "hinge-line" runs through Hecate Strait, Georgia Strait and Victoria. This pattern continues southwards into Washington State but is interrupted to the north by considerable uplift in southeastern Alaska. Although glacio-isostatic recovery has dominated vertical movements in the region over the last 10,000 years, the distribution and trend of the observed contemporary movements are not compatible with the pattern to be expected from this source and are most probably tectonic in origin. There is, however, no clear distinction between the movements seen opposite the Queen Charlotte transform margin and the Vancouver Island convergent margin. Comparison with movements observed at other active plate margins show that the pattern is essentially similar to that seen in association with subduction and convergence. The paradox that the vertical movement rates are much too great to explain observed geology and topography may be soluble by assuming that discontinuous lateral shifts of the movement pattern occur on a scale of hundreds of thousands of years.

  19. Independent digit movements and precision grip patterns in 1-5-month-old human infants: hand-babbling, including vacuous then self-directed hand and digit movements, precedes targeted reaching.

    PubMed

    Wallace, Patricia S; Whishaw, Ian Q

    2003-01-01

    Previous work has described human reflexive grasp patterns in early infancy and visually guided reaching and grasping in late infancy. There has been no examination of hand movements in the intervening period. This was the purpose of the present study. We video recorded the spontaneous hand and digit movements made by alert infants over their first 5 months of age. Over this period, spontaneous hand and digit movements developed from fists to almost continuous, vacuous movements and then to self-directed grasping movements. Amongst the many hand and digit movements observed, four grasping patterns emerged during this period: fists, pre-precision grips associated with numerous digit postures, precision grips including the pincer grasp, and self-directed grasps. The finding that a wide range of independent digit movements and grasp patterns are displayed spontaneously by infants within their first 5 months of age is discussed in relation to the development of the motor system, including the suggestion that direct connections of the pyramidal tract are functional relatively early in infancy. It is also suggested that hand babbling, consisting of first vacuous and then self-directed movements, is preparatory to targeted reaching.

  20. Computer mouse movement patterns: A potential marker of mild cognitive impairment.

    PubMed

    Seelye, Adriana; Hagler, Stuart; Mattek, Nora; Howieson, Diane B; Wild, Katherine; Dodge, Hiroko H; Kaye, Jeffrey A

    2015-12-01

    Subtle changes in cognitively demanding activities occur in MCI but are difficult to assess with conventional methods. In an exploratory study, we examined whether patterns of computer mouse movements obtained from routine home computer use discriminated between older adults with and without MCI. Participants were 42 cognitively intact and 20 older adults with MCI enrolled in a longitudinal study of in-home monitoring technologies. Mouse pointer movement variables were computed during one week of routine home computer use using algorithms that identified and characterized mouse movements within each computer use session. MCI was associated with making significantly fewer total mouse moves ( p <.01), and making mouse movements that were more variable, less efficient, and with longer pauses between movements ( p <.05). Mouse movement measures were significantly associated with several cognitive domains ( p 's<.01-.05). Remotely monitored computer mouse movement patterns are a potential early marker of real-world cognitive changes in MCI.

  1. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury.

    PubMed

    Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin

    2015-02-13

    Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0.01). Deviations in muscular activity between injured and non-injured sides and between antagonistic muscular activity within injured as compared to non-injured sides indicated specific alterations in sensorimotor control of the lower limb in individuals with ACL rupture. Also, correlations between deviating muscular activity and specific altered movement patterns were suggested as indications of altered sensorimotor control. We therefore advocate that quantitative assessments of altered movement patterns should be considered in ACL-rehabilitation.

  2. Expertise and the spatio-temporal characteristics of anticipatory information pick-up from complex movement patterns.

    PubMed

    Müller, Sean; Abernethy, Bruce; Eid, Michael; McBean, Rohan; Rose, Matthew

    2010-01-01

    Groups of high- (n = 14), intermediate- (n = 12), and low-skilled (n = 15) cricket batsmen participated in two experiments to examine expertise-related differences in anticipatory information pick-up that combined temporal and spatial occlusion methodologies. In experiment 1 participants were shown video displays of a bowler delivering one of three different types of delivery with the display manipulated so that only selected local features of the bowler's movement pattern (bowling hand, bowling hand and arm, trunk, lower body, or whole body) were visible and then only for specific time periods prior to ball release. Only the highly-skilled players were able to produce better-than-chance predictions of ball type and then only under a limited set of display conditions. Information from bowling hand and arm cues was particularly critical although continuous visibility of these cues was apparently not essential for information pick-up. In experiment 2 the order in which particular features were made visible throughout the bowler's movement pattern was varied in an attempt to find the sequence of cues that was most favourable for effective information pick-up. The necessity in this experiment to switch vision between different features eliminated the highly-skilled players' capability to anticipate. Expert anticipation is dependent on sensitivity to information arising from a select set of local cues, and forced attentional switches between different cues negate effective information pick-up and, with it, the expert advantage.

  3. How multi segmental patterns deviate in spastic diplegia from typical developed.

    PubMed

    Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela

    2017-10-01

    The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Upstream migratory behaviour of wild and ranched Atlantic salmon Salmo salar at a natural obstacle in a coastal spate river.

    PubMed

    Kennedy, R J; Moffett, I; Allen, M M; Dawson, S M

    2013-09-01

    The upstream migratory behaviour of wild and ranched Atlantic salmon Salmo salar in a small Irish coastal spate river was investigated using acoustic telemetry. Prespawning migratory behaviour was investigated including movement patterns at a large natural waterfall in the lower reaches of the river. A strong diurnal pattern was observed for upstream migrants at the waterfall indicative of the need for daylight to ascend this complex natural obstacle to migration. Successful passage of the waterfall was also associated with distinct environmental conditions and no difference in migratory ability was detected between wild and ranched origin S. salar. Wild S. salar tended to exhibit a non-erratic, stepwise upstream migration pattern after ascending the waterfall while ranched S. salar had an increased probability of displaying more erratic migratory behaviour. Wild S. salar penetrated further into the river catchment than ranched S. salar, although male ranched S. salar exhibited the greatest cumulative distance moved prior to the spawning period. The management implications of escaped or released ranched S. salar and movement at natural obstacles are discussed. © 2013 The Fisheries Society of the British Isles.

  5. Context-aware pattern discovery for moving object trajectories

    NASA Astrophysics Data System (ADS)

    Sharif, Mohammad; Asghar Alesheikh, Ali; Kaffash Charandabi, Neda

    2018-05-01

    Movement of point objects are highly sensitive to the underlying situations and conditions during the movement, which are known as contexts. Analyzing movement patterns, while accounting the contextual information, helps to better understand how point objects behave in various contexts and how contexts affect their trajectories. One potential solution for discovering moving objects patterns is analyzing the similarities of their trajectories. This article, therefore, contextualizes the similarity measure of trajectories by not only their spatial footprints but also a notion of internal and external contexts. The dynamic time warping (DTW) method is employed to assess the multi-dimensional similarities of trajectories. Then, the results of similarity searches are utilized in discovering the relative movement patterns of the moving point objects. Several experiments are conducted on real datasets that were obtained from commercial airplanes and the weather information during the flights. The results yielded the robustness of DTW method in quantifying the commonalities of trajectories and discovering movement patterns with 80 % accuracy. Moreover, the results revealed the importance of exploiting contextual information because it can enhance and restrict movements.

  6. Multi-Dimensional Pattern Discovery of Trajectories Using Contextual Information

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Alesheikh, A. A.

    2017-10-01

    Movement of point objects are highly sensitive to the underlying situations and conditions during the movement, which are known as contexts. Analyzing movement patterns, while accounting the contextual information, helps to better understand how point objects behave in various contexts and how contexts affect their trajectories. One potential solution for discovering moving objects patterns is analyzing the similarities of their trajectories. This article, therefore, contextualizes the similarity measure of trajectories by not only their spatial footprints but also a notion of internal and external contexts. The dynamic time warping (DTW) method is employed to assess the multi-dimensional similarities of trajectories. Then, the results of similarity searches are utilized in discovering the relative movement patterns of the moving point objects. Several experiments are conducted on real datasets that were obtained from commercial airplanes and the weather information during the flights. The results yielded the robustness of DTW method in quantifying the commonalities of trajectories and discovering movement patterns with 80 % accuracy. Moreover, the results revealed the importance of exploiting contextual information because it can enhance and restrict movements.

  7. Cytoskeleton-mediated templating of complex cellulose-scaffolded extracellular structure and its association with oikosins in the urochordate Oikopleura.

    PubMed

    Sagane, Yoshimasa; Hosp, Julia; Zech, Karin; Thompson, Eric M

    2011-05-01

    Oriented cellulose deposition is critical to plant patterning and models suggest microtubules constrain cellulose synthase movements through the plasma membrane. Though widespread in plants, urochordates are the only animals that synthesize cellulose. We characterized the distinctive cellulose microfibril scaffold of the larvacean house and its interaction with house structural proteins (oikosins). Targeted disruption of cytoskeletal elements, secretory pathways, and plasma membrane organization, suggested a working model for templating extracellular cellulose microfibrils from animal cells that shows both convergence and differences to plant models. Specialized cortical F-actin arrays template microfibril orientation and glycosylphosphatidylinositol-anchored proteins in lipid rafts may act as scaffolding proteins in microfibril elongation. Microtubules deliver and maintain cellulose synthase complexes to specific cell membrane sites rather than orienting their movement through the membrane. Oikosins are incorporated into house compartments directly above their corresponding cellular field of expression and interact with the cellulose scaffold to a variable extent.

  8. Revisiting the concept of behavior patterns in animal behavior with an example from food-caching sequences in wolves (Canis lupus), coyotes (Canis latrans), and red foxes (Vulpes vulpes).

    PubMed

    Gadbois, Simon; Sievert, Olivia; Reeve, Catherine; Harrington, F H; Fentress, J C

    2015-01-01

    We discuss the history, conceptualization, and relevance of behavior patterns in modern ethology by explaining the evolution of the concepts of fixed action patterns and modal action patterns. We present the movement toward a more flexible concept of natural action sequences with significant degrees of (production and expressive) freedom. An example is presented with the food caching behavior of three Canidae species: red fox (Vulpes vulpes), coyote (Canis latrans) and gray wolf (Canis lupus). Evolutionary, ecological, and neuroecological/neuroethological arguments are presented to explain the difference in levels of complexity and stereotypy between Canis and Vulpes. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Social Experience Does Not Abolish Cultural Diversity in Eye Movements

    PubMed Central

    Kelly, David J.; Jack, Rachael E.; Miellet, Sébastien; De Luca, Emanuele; Foreman, Kay; Caldara, Roberto

    2011-01-01

    Adults from Eastern (e.g., China) and Western (e.g., USA) cultural groups display pronounced differences in a range of visual processing tasks. For example, the eye movement strategies used for information extraction during a variety of face processing tasks (e.g., identification and facial expressions of emotion categorization) differs across cultural groups. Currently, many of the differences reported in previous studies have asserted that culture itself is responsible for shaping the way we process visual information, yet this has never been directly investigated. In the current study, we assessed the relative contribution of genetic and cultural factors by testing face processing in a population of British Born Chinese adults using face recognition and expression classification tasks. Contrary to predictions made by the cultural differences framework, the majority of British Born Chinese adults deployed “Eastern” eye movement strategies, while approximately 25% of participants displayed “Western” strategies. Furthermore, the cultural eye movement strategies used by individuals were consistent across recognition and expression tasks. These findings suggest that “culture” alone cannot straightforwardly account for diversity in eye movement patterns. Instead a more complex understanding of how the environment and individual experiences can influence the mechanisms that govern visual processing is required. PMID:21886626

  10. Movement disorders in a twins pair: a casual expression or genetic determination?

    PubMed

    Gennaro, Leonarda; Russo, Luigi; Losito, Luciana; Zaccaria, Alessia; De Rinaldis, Marta; Trabacca, Antonio

    2010-01-01

    A twin study is an excellent means of assessing the contribution of heritability to motor behaviour. We present a movement video-analysis of a monozygotic twins pair with a motor repertoire which is almost totally constituted by persistent and subcontinuous motor stereotypies. The specific aim of this study is to verify the heritable quantum of motor behaviour and to determine which among the motor patterns we analysed are more likely to be conditioned by inheritance. Stereotyped movements were videotaped in two standardized sessions: at rest and in relation to preordained sensory stimulations. We estimated the concordance index (CI) between the observers to evaluate the reliability of the observations. The validity was accepted as being CI>0.80. The results showed a very high concordance rate (>90%) for all the stereotypies analysed. An almost superimposable trend of the stereotyped movements was found both at rest and in relation to the sensory stimulations. Such strong data suggest that genetic factors have a primary influence on all the movement disorders analysed. This study contributes to a better understanding of the complex relationships between genes and functions. 2010 Elsevier Ltd. All rights reserved.

  11. Recovery of facial expressions using functional electrical stimulation after full-face transplantation.

    PubMed

    Topçu, Çağdaş; Uysal, Hilmi; Özkan, Ömer; Özkan, Özlenen; Polat, Övünç; Bedeloğlu, Merve; Akgül, Arzu; Döğer, Ela Naz; Sever, Refik; Çolak, Ömer Halil

    2018-03-06

    We assessed the recovery of 2 face transplantation patients with measures of complexity during neuromuscular rehabilitation. Cognitive rehabilitation methods and functional electrical stimulation were used to improve facial emotional expressions of full-face transplantation patients for 5 months. Rehabilitation and analyses were conducted at approximately 3 years after full facial transplantation in the patient group. We report complexity analysis of surface electromyography signals of these two patients in comparison to the results of 10 healthy individuals. Facial surface electromyography data were collected during 6 basic emotional expressions and 4 primary facial movements from 2 full-face transplantation patients and 10 healthy individuals to determine a strategy of functional electrical stimulation and understand the mechanisms of rehabilitation. A new personalized rehabilitation technique was developed using the wavelet packet method. Rehabilitation sessions were applied twice a month for 5 months. Subsequently, motor and functional progress was assessed by comparing the fuzzy entropy of surface electromyography data against the results obtained from patients before rehabilitation and the mean results obtained from 10 healthy subjects. At the end of personalized rehabilitation, the patient group showed improvements in their facial symmetry and their ability to perform basic facial expressions and primary facial movements. Similarity in the pattern of fuzzy entropy for facial expressions between the patient group and healthy individuals increased. Synkinesis was detected during primary facial movements in the patient group, and one patient showed synkinesis during the happiness expression. Synkinesis in the lower face region of one of the patients was eliminated for the lid tightening movement. The recovery of emotional expressions after personalized rehabilitation was satisfactory to the patients. The assessment with complexity analysis of sEMG data can be used for developing new neurorehabilitation techniques and detecting synkinesis after full-face transplantation.

  12. Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta).

    PubMed

    Oromi, Neus; Jové, Mariona; Pascual-Pons, Mariona; Royo, Jose Luis; Rocaspana, Rafel; Aparicio, Enric; Pamplona, Reinald; Palau, Antoni; Sanuy, Delfi; Fibla, Joan; Portero-Otin, Manuel

    2017-01-01

    The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.

  13. Retention of movement pattern changes after a lower extremity injury prevention program is affected by program duration.

    PubMed

    Padua, Darin A; DiStefano, Lindsay J; Marshall, Stephen W; Beutler, Anthony I; de la Motte, Sarah J; DiStefano, Michael J

    2012-02-01

    Changes in movement patterns have been repeatedly observed immediately after completing a lower extremity injury prevention program. However, it is not known if movement pattern changes are maintained after discontinuing the training program. The ability to maintain movement pattern changes after training has ceased may be influenced by the program's duration. The authors hypothesized that among individuals who completed either a 3-month or 9-month training program and who demonstrated immediate movement pattern changes, only those who completed the 9-month training program would maintain movement pattern changes after a 3-month period of no longer performing the exercises. Cohort study; Level of evidence, 2. A total of 140 youth soccer athletes from 15 separate teams volunteered to participate. Athletes' movement patterns were assessed using the Landing Error Scoring System (LESS) at pretest, posttest, and 3 months after ceasing the program (retention test). Eighty-four of the original 140 participants demonstrated improvements in their LESS scores between pretest and posttest (change in LESS score >0) and were included in the final analyses for this study (n = 84; 20 boys and 64 girls; mean age, 14 ± 2 years; age range, 11-17 years). Teams performed 3-month (short-duration group) and 9-month (extended-duration group) injury prevention programs. The exercises performed were identical for both groups. Teams performed the programs as part of their normal warm-up routine. Although both groups improved their total LESS scores from pretest to posttest, only the extended-duration training group retained their improvements 3 months after ceasing the injury prevention program (F(2,137) = 3.38; P = .04). Results suggest that training duration may be an important factor to consider when designing injury prevention programs that facilitate long-term changes in movement control.

  14. Exploring patterns of movement suspension in pedestrian mobility.

    PubMed

    Orellana, Daniel; Wachowicz, Monica

    2011-01-01

    One of the main tasks in analyzing pedestrian movement is to detect places where pedestrians stop, as those places usually are associated with specific human activities, and they can allow us to understand pedestrian movement behavior. Very few approaches have been proposed to detect the locations of stops in positioning data sets, and they often are based on selecting the location of candidate stops as well as potential spatial and temporal thresholds according to different application requirements. However, these approaches are not suitable for analyzing the slow movement of pedestrians where the inaccuracy of a nondifferential global positioning system commonly used for movement tracking is so significant that it can hinder the selection of adequate thresholds. In this article, we propose an exploratory statistical approach to detect patterns of movement suspension using a local indicator of spatial association (LISA) in a vector space representation. Two different positioning data sets are used to evaluate our approach in terms of exploring movement suspension patterns that can be related to different landscapes: players of an urban outdoor mobile game and visitors of a natural park. The results of both experiments show that patterns of movement suspension were located at places such as checkpoints in the game and different attractions and facilities in the park. Based on these results, we conclude that using LISA is a reliable approach for exploring movement suspension patterns that represent the places where the movement of pedestrians is temporally suspended by physical restrictions (e.g., checkpoints of a mobile game and the route choosing points of a park).

  15. Consistency of performance of robot-assisted surgical tasks in virtual reality.

    PubMed

    Suh, I H; Siu, K-C; Mukherjee, M; Monk, E; Oleynikov, D; Stergiou, N

    2009-01-01

    The purpose of this study was to investigate consistency of performance of robot-assisted surgical tasks in a virtual reality environment. Eight subjects performed two surgical tasks, bimanual carrying and needle passing, with both the da Vinci surgical robot and a virtual reality equivalent environment. Nonlinear analysis was utilized to evaluate consistency of performance by calculating the regularity and the amount of divergence in the movement trajectories of the surgical instrument tips. Our results revealed that movement patterns for both training tasks were statistically similar between the two environments. Consistency of performance as measured by nonlinear analysis could be an appropriate methodology to evaluate the complexity of the training tasks between actual and virtual environments and assist in developing better surgical training programs.

  16. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.

    PubMed

    Hesse, S; Uhlenbrock, D; Sarkodie-Gyan, T

    1999-10-01

    To investigate to what extent and with how much therapeutic effort nonambulatory stroke patients could train a gait-like movement on a newly developed, machine-supported gait trainer. Open study comparing the movement on the gait trainer with assisted walking on the treadmill. Motion analysis laboratory of a rehabilitation centre. Fourteen chronic, nonambulatory hemiparetic patients. Complex gait analysis while training on the gait trainer and while walking on the treadmill. Gait kinematics, kinesiological EMG of several lower limb muscles and the required assistance. Patients could train a gait-like movement on the gait trainer, characterized kinematically by a perfect symmetry, larger hip extension during stance, less knee flexion and less ankle plantar flexion during swing as compared to treadmill walking (p <0.01). The pattern and amount of activation of relevant weight-bearing muscles was comparable with an even larger activation of the M. biceps femoris on the gait trainer (p <0.01). The tibialis anterior muscle of the nonaffected side, however, was less activated during swing (p <0.01). Two therapists assisted walking on the treadmill while only one therapist was necessary to help with weight shifting on the new device. The newly developed gait trainer offered severely disabled hemiparetic subjects the possibility of training a gait-like, highly symmetrical movement with a favourable facilitation of relevant anti-gravity muscles. At the same time, the effort required of the therapists was reduced.

  17. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  18. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  19. Eye Movements Index Implicit Memory Expression in Fear Conditioning

    PubMed Central

    Hopkins, Lauren S.; Schultz, Douglas H.; Hannula, Deborah E.; Helmstetter, Fred J.

    2015-01-01

    The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS). One exemplar of that item (e.g. a white pot) was paired with shock 100 percent of the time (CS+) while a second exemplar (e.g. a gray pot) was never paired with shock (CS-). The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial) each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with “dual process” models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness. PMID:26562298

  20. Interplay between type IV pili activity and exopolysaccharides secretion controls motility patterns in single cells of Myxococcus xanthus

    PubMed Central

    Hu, Wei; Gibiansky, Maxsim L.; Wang, Jing; Wang, Chuandong; Lux, Renate; Li, Yuezhong; Wong, Gerard C. L.; Shi, Wenyuan

    2016-01-01

    Myxococcus xanthus performs coordinated social motility of cell groups through the extension and retraction of type IV pili (TFP) on solid surfaces, which requires both TFP and exopolysaccharides (EPS). By submerging cells in a liquid medium containing 1% methylcellulose, M. xanthus TFP-driven motility was induced in isolated cells and independently of EPS. We measured and analyzed the movements of cells using community tracking algorithms, which combine single-cell resolution with statistics from large sample populations. Cells without significant multi-cellular social interactions have surprisingly complex behaviors: EPS− cells exhibited a pronounced increase in the tendency to stand vertically and moved with qualitatively different characteristics than other cells. A decrease in the EPS secretion of cells correlates with a higher instantaneous velocity, but with lower directional persistence in trajectories. Moreover, EPS− cells do not adhere to the surface as strongly as wild-type and EPS overproducing cells, and display a greater tendency to have large deviations between the direction of movement and the cell axis, with cell velocity showing only minimal dependence on the direction of movement. The emerging picture is that EPS does not simply provide rheological resistance to a single mechanism but rather that the availability of EPS impacts motility pattern. PMID:26821939

  1. Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia

    PubMed Central

    Furuya, Shinichi; Tominaga, Kenta; Miyazaki, Fumio; Altenmüller, Eckart

    2015-01-01

    Extensive training can bring about highly-skilled action, but may also impair motor dexterity by producing involuntary movements and muscular cramping, as seen in focal dystonia (FD) and tremor. To elucidate the underlying neuroplastic mechanisms of FD, the present study addressed the organization of finger movements during piano performance in pianists suffering from the condition. Principal component (PC) analysis identified three patterns of fundamental joint coordination constituting finger movements in both patients and controls. The first two coordination patterns described less individuated movements between the “dystonic” finger and key-striking fingers for patients compared to controls. The third coordination pattern, representing the individuation of movements between the middle and ring fingers, was evident during a sequence of strikes with these fingers in controls, which was absent in the patients. Consequently, rhythmic variability of keystrokes was more pronounced during this sequence of strikes for the patients. A stepwise multiple-regression analysis further identified greater variability of keystrokes for individuals displaying less individuated movements between the affected and striking fingers. The findings suggest that FD alters dexterous joint coordination so as to lower independent control of finger movements, and thereby degrades fine motor control. PMID:26289433

  2. [Development of spatial orientation during pilot training].

    PubMed

    Ivanov, V V; Vorob'ev, O A; Snipkov, Iu Iu

    1988-01-01

    The problem of spatial orientation of pilots flying high-altitude aircraft is in the focus of present-day aviation medicine because of a growing number of accidents in the air. One of the productive lines of research is to study spatial orientation in terms of active formation and maintenance of its imagery in a complex environment. However investigators usually emphasize the role of visual (instrumental) information in the image construction, almost ignoring the sensorimotor component of spatial orientation. The theoretical analysis of the process of spatial orientation has facilitated the development of the concept assuming that the pattern of space perception changes with growing professional experience. The concept is based on an active approach to the essence, emergence, formation and variation in the pattern of sensory perception of space in man's consciousness. This concept asserts that as pilot's professional expertise increases, the pattern of spatial orientation becomes geocentric because a new system of spatial perception evolves which is a result of the development of a new (instrumental) type of motor activity in space. This finds expression in the fact that perception of spatial position inflight occurs when man has to resolve a new motor task--movement along a complex trajectory in the three-dimensional space onboard a flying vehicle. The meaningful structure of this problem which is to be implemented through controlling movements of the pilot acts as a factor that forms this new system of perception. All this underlies the arrangement of meaningful collection of instrumental data and detection of noninstrumental signals in the comprehensive perception of changes in the spatial position of a flying vehicle.

  3. [Vojta's method as the early neurodevelopmental diagnosis and therapy concept].

    PubMed

    Banaszek, Grazyna

    2010-01-01

    Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.

  4. Switching handedness: fMRI study of hand motor control in right-handers, left-handers and converted left-handers.

    PubMed

    Grabowska, Anna; Gut, Malgorzata; Binder, Marek; Forsberg, Lars; Rymarczyk, Krystyna; Urbanik, Andrzej

    2012-01-01

    The purpose of this study was to investigate the differences in the brain organization of motor control in left- and right-handers and to study whether early left-to-right handwriting switch changes the cortical representation of finger movements in the left and right hemispheres. Echo-planar MR imaging was performed in 52 subjects: consistent right-handers (RH), consistent left-handers (LH), and subjects who had been forced at an early age to switch their left-hand preferences toward the right side. The scanning was performed during simple (flexion/extension of the index finger) and complex (successive finger-thumb opposition) tasks. Subjects performed the tasks using both the preferred and non-preferred hand. In right-handers, there was a general predominance of left-hemisphere activation relative to right hemisphere activation. In lefthanders this pattern was reversed. The switched subjects showed no such volumetric asymmetry. Increasing levels of complexity of motor activity resulted in an increase in the volume of consistently activated areas and the involvement of the ipsilateral in addition to contralateral activations. In both right- and left-handers, movements of the preferred hand activated mainly the contralateral hemisphere, whereas movements of the non-preferred hand resulted in a more balanced pattern of activation in the two hemispheres, indicating greater involvement of the ipsilateral activations. Overall, this study shows that in both left- and right-handed subjects, the preferred hand is controlled mainly by the hemisphere contralateral to that hand, whereas the non-preferred hand is controlled by both hemispheres. The switched individuals share features of both lefthanders and right-handers regarding their motor control architectures.

  5. Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska.

    PubMed

    Sprehn, C Grace; Blum, Michael J; Quinn, Thomas P; Heins, David C

    2015-01-01

    The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.

  6. Optimization and evaluation of a proportional derivative controller for planar arm movement.

    PubMed

    Jagodnik, Kathleen M; van den Bogert, Antonie J

    2010-04-19

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Optimization and evaluation of a proportional derivative controller for planar arm movement

    PubMed Central

    Jagodnik, Kathleen M.; van den Bogert, Antonie J.

    2013-01-01

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. PMID:20097345

  8. Attention and reach-to-grasp movements in Parkinson's disease.

    PubMed

    Lu, Cathy; Bharmal, Aamir; Kiss, Zelma H; Suchowersky, Oksana; Haffenden, Angela M

    2010-08-01

    The role of attention in grasping movements directed at common objects has not been examined in Parkinson's disease (PD), though these movements are critical to activities of daily living. Our primary objective was to determine whether patients with PD demonstrate automaticity in grasping movements directed toward common objects. Automaticity is assumed when tasks can be performed with little or no interference from concurrent tasks. Grasping performance in three patient groups (newly diagnosed, moderate, and advanced/surgically treated PD) on and off of their medication or deep brain stimulation was compared to performance in an age-matched control group. Automaticity was demonstrated by the absence of a decrement in grasping performance when attention was consumed by a concurrent spatial-visualization task. Only the control group and newly diagnosed PD group demonstrated automaticity in their grasping movements. The moderate and advanced PD groups did not demonstrate automaticity. Furthermore, the well-known effects of pharmacotherapy and surgical intervention on movement speed and muscle activation patterns did not appear to reduce the impact of attention-demanding tasks on grasping movements in those with moderate to advanced PD. By the moderate stage of PD, grasping is an attention-demanding process; this change is not ameliorated by dopaminergic or surgical treatments. These findings have important implications for activities of daily living, as devoting attention to the simplest of daily tasks would interfere with complex activities and potentially exacerbate fatigue.

  9. The usefulness of GPS telemetry to study wolf circadian and social activity

    USGS Publications Warehouse

    Merrill, S.B.; David, Mech L.

    2003-01-01

    This study describes circadian and social movement patterns of 9 wolves and illustrates capabilities and limitations of Global Positioning System (GPS) telemetry for analysis of animal activity patterns. Wolves were studied at the Camp Ripley National Guard Training Site in Little Falls, Minnesota, and were captured via helicopter net-gunning. All study wolves showed nocturnal movement patterns regardless of time of year. One wolf's movement pattern switched to diurnal when he conducted an extraterritorial foray from his natal territory. All data sets with GPS intervals ???1 hour (n = 4) showed crepuscular movement peaks. We identified patterns of den visitation and attendance, estimated minimum distances traveled and minimum rates of movement, and observed that GPS location intervals may affect perceived rates of wolf travel. Global Positioning System telemetry was useful in determining when pack members were traveling together or apart and how long a breeding female wolf spent near her pups (e.g., 10-month-old pups were left unattended by their mother for as long as 17 days).

  10. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.

    PubMed

    Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J; Taube, Jeffrey S

    2015-10-05

    Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is modulated by the animals' movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall head-direction (HD) cell characteristics, but abolished both velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity, which may be used as a speed signal to generate the repeating pattern of grid cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex

    PubMed Central

    Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.

    2015-01-01

    Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719

  12. Time series association learning

    DOEpatents

    Papcun, George J.

    1995-01-01

    An acoustic input is recognized from inferred articulatory movements output by a learned relationship between training acoustic waveforms and articulatory movements. The inferred movements are compared with template patterns prepared from training movements when the relationship was learned to regenerate an acoustic recognition. In a preferred embodiment, the acoustic articulatory relationships are learned by a neural network. Subsequent input acoustic patterns then generate the inferred articulatory movements for use with the templates. Articulatory movement data may be supplemented with characteristic acoustic information, e.g. relative power and high frequency data, to improve template recognition.

  13. Individual-level movement bias leads to the formation of higher-order social structure in a mobile group of baboons.

    PubMed

    Bonnell, Tyler R; Clarke, Parry M; Henzi, S Peter; Barrett, Louise

    2017-07-01

    In mobile social groups, influence patterns driving group movement can vary between democratic and despotic. The arrival at any single pattern of influence is thought to be underpinned by both environmental factors and group composition. To identify the specific patterns of influence driving travel decision-making in a chacma baboon troop, we used spatially explicit data to extract patterns of individual movement bias. We scaled these estimates of individual-level bias to the level of the group by constructing an influence network and assessing its emergent structural properties. Our results indicate that there is heterogeneity in movement bias: individual animals respond consistently to particular group members, and higher-ranking animals are more likely to influence the movement of others. This heterogeneity resulted in a group-level network structure that consisted of a single core and two outer shells. Here, the presence of a core suggests that a set of highly interdependent animals drove routine group movements. These results suggest that heterogeneity at the individual level can lead to group-level influence structures, and that movement patterns in mobile social groups can add to the exploration of both how these structures develop (i.e. mechanistic aspects) and what consequences they have for individual- and group-level outcomes (i.e. functional aspects).

  14. Individual-level movement bias leads to the formation of higher-order social structure in a mobile group of baboons

    PubMed Central

    Clarke, Parry M.; Henzi, S. Peter; Barrett, Louise

    2017-01-01

    In mobile social groups, influence patterns driving group movement can vary between democratic and despotic. The arrival at any single pattern of influence is thought to be underpinned by both environmental factors and group composition. To identify the specific patterns of influence driving travel decision-making in a chacma baboon troop, we used spatially explicit data to extract patterns of individual movement bias. We scaled these estimates of individual-level bias to the level of the group by constructing an influence network and assessing its emergent structural properties. Our results indicate that there is heterogeneity in movement bias: individual animals respond consistently to particular group members, and higher-ranking animals are more likely to influence the movement of others. This heterogeneity resulted in a group-level network structure that consisted of a single core and two outer shells. Here, the presence of a core suggests that a set of highly interdependent animals drove routine group movements. These results suggest that heterogeneity at the individual level can lead to group-level influence structures, and that movement patterns in mobile social groups can add to the exploration of both how these structures develop (i.e. mechanistic aspects) and what consequences they have for individual- and group-level outcomes (i.e. functional aspects). PMID:28791140

  15. Step selection techniques uncover the environmental predictors of space use patterns in flocks of Amazonian birds.

    PubMed

    Potts, Jonathan R; Mokross, Karl; Stouffer, Philip C; Lewis, Mark A

    2014-12-01

    Understanding the behavioral decisions behind animal movement and space use patterns is a key challenge for behavioral ecology. Tools to quantify these patterns from movement and animal-habitat interactions are vital for transforming ecology into a predictive science. This is particularly important in environments undergoing rapid anthropogenic changes, such as the Amazon rainforest, where animals face novel landscapes. Insectivorous bird flocks are key elements of avian biodiversity in the Amazonian ecosystem. Therefore, disentangling and quantifying the drivers behind their movement and space use patterns is of great importance for Amazonian conservation. We use a step selection function (SSF) approach to uncover environmental drivers behind movement choices. This is used to construct a mechanistic model, from which we derive predicted utilization distributions (home ranges) of flocks. We show that movement decisions are significantly influenced by canopy height and topography, but depletion and renewal of resources do not appear to affect movement significantly. We quantify the magnitude of these effects and demonstrate that they are helpful for understanding various heterogeneous aspects of space use. We compare our results to recent analytic derivations of space use, demonstrating that the analytic approximation is only accurate when assuming that there is no persistence in the animals' movement. Our model can be translated into other environments or hypothetical scenarios, such as those given by proposed future anthropogenic actions, to make predictions of spatial patterns in bird flocks. Furthermore, our approach is quite general, so could potentially be used to understand the drivers of movement and spatial patterns for a wide variety of animal communities.

  16. Step selection techniques uncover the environmental predictors of space use patterns in flocks of Amazonian birds

    PubMed Central

    Potts, Jonathan R; Mokross, Karl; Stouffer, Philip C; Lewis, Mark A

    2014-01-01

    Understanding the behavioral decisions behind animal movement and space use patterns is a key challenge for behavioral ecology. Tools to quantify these patterns from movement and animal–habitat interactions are vital for transforming ecology into a predictive science. This is particularly important in environments undergoing rapid anthropogenic changes, such as the Amazon rainforest, where animals face novel landscapes. Insectivorous bird flocks are key elements of avian biodiversity in the Amazonian ecosystem. Therefore, disentangling and quantifying the drivers behind their movement and space use patterns is of great importance for Amazonian conservation. We use a step selection function (SSF) approach to uncover environmental drivers behind movement choices. This is used to construct a mechanistic model, from which we derive predicted utilization distributions (home ranges) of flocks. We show that movement decisions are significantly influenced by canopy height and topography, but depletion and renewal of resources do not appear to affect movement significantly. We quantify the magnitude of these effects and demonstrate that they are helpful for understanding various heterogeneous aspects of space use. We compare our results to recent analytic derivations of space use, demonstrating that the analytic approximation is only accurate when assuming that there is no persistence in the animals' movement. Our model can be translated into other environments or hypothetical scenarios, such as those given by proposed future anthropogenic actions, to make predictions of spatial patterns in bird flocks. Furthermore, our approach is quite general, so could potentially be used to understand the drivers of movement and spatial patterns for a wide variety of animal communities. PMID:25558353

  17. Neuroleptic-induced movement disorders in a naturalistic schizophrenia population: diagnostic value of actometric movement patterns.

    PubMed

    Janno, Sven; Holi, Matti M; Tuisku, Katinka; Wahlbeck, Kristian

    2008-04-18

    Neuroleptic-induced movement disorders (NIMDs) have overlapping co-morbidity. Earlier studies have described typical clinical movement patterns for individual NIMDs. This study aimed to identify specific movement patterns for each individual NIMD using actometry. A naturalistic population of 99 schizophrenia inpatients using conventional antipsychotics and clozapine was evaluated. Subjects with NIMDs were categorized using the criteria for NIMD found in the Diagnostic and Statistical Manual for Mental Disorders - Fourth Edition (DSM-IV).Two blinded raters evaluated the actometric-controlled rest activity data for activity periods, rhythmical activity, frequencies, and highest acceleration peaks. A simple subjective question was formulated to test patient-based evaluation of NIMD. The patterns of neuroleptic-induced akathisia (NIA) and pseudoakathisia (PsA) were identifiable in actometry with excellent inter-rater reliability. The answers to the subjective question about troubles with movements distinguished NIA patients from other patients rather well. Also actometry had rather good screening performances in distinguishing akathisia from other NIMD. Actometry was not able to reliably detect patterns of neuroleptic-induced parkinsonism and tardive dyskinesia. The present study showed that pooled NIA and PsA patients had a different pattern in lower limb descriptive actometry than other patients in a non-selected sample. Careful questioning of patients is a useful method of diagnosing NIA in a clinical setting.

  18. Dissociation between facial and bodily expressions in emotion recognition: A case study.

    PubMed

    Leiva, Samanta; Margulis, Laura; Micciulli, Andrea; Ferreres, Aldo

    2017-12-21

    Existing single-case studies have reported deficit in recognizing basic emotions through facial expression and unaffected performance with body expressions, but not the opposite pattern. The aim of this paper is to present a case study with impaired emotion recognition through body expressions and intact performance with facial expressions. In this single-case study we assessed a 30-year-old patient with autism spectrum disorder, without intellectual disability, and a healthy control group (n = 30) with four tasks of basic and complex emotion recognition through face and body movements, and two non-emotional control tasks. To analyze the dissociation between facial and body expressions, we used Crawford and Garthwaite's operational criteria, and we compared the patient and the control group performance with a modified one-tailed t-test designed specifically for single-case studies. There were no statistically significant differences between the patient's and the control group's performances on the non-emotional body movement task or the facial perception task. For both kinds of emotions (basic and complex) when the patient's performance was compared to the control group's, statistically significant differences were only observed for the recognition of body expressions. There were no significant differences between the patient's and the control group's correct answers for emotional facial stimuli. Our results showed a profile of impaired emotion recognition through body expressions and intact performance with facial expressions. This is the first case study that describes the existence of this kind of dissociation pattern between facial and body expressions of basic and complex emotions.

  19. Movement characteristics of persons with prader-willi syndrome rising from supine.

    PubMed

    Belt, A B; Hertel, T A; Mante, J R; Marks, T; Rockett, V L; Wade, C; Clayton-Krasinski, D

    2001-01-01

    The purposes of this study were to: 1) determine if previously published descriptors of the supine to stand rising task in healthy individuals could be applied to the movements of persons with Prader-Willi Syndrome (PWS); and 2) assess upper extremity (UE), axial region (AX), and lower extremity (LE) movements among subjects with PWS compared with controls. Nine subjects with PWS (seven-36 years of age) and matched controls were videotaped performing 10 rising trials. The UE, AX, and LE movements were classified using published descriptors. Occurrence frequencies of movement patterns, duration of movement, and the relationships among body region movement score, BMI, and age were determined. Subjects with PWS utilized developmentally less advanced asymmetrical rising patterns, took longer to rise, and demonstrated less within subject variability than controls. Categorical descriptors, with minor modifications, can be used to describe rising movements in persons with PWS. Knowledge of successful rising patterns may assist PTs when examining or planning intervention strategies for teaching the rising task.

  20. Seasonal movement and habitat use by sub-adult bull trout in the upper Flathead River system, Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Marotz, Brian

    2005-01-01

    Despite the importance of large-scale habitat connectivity to the threatened bull trout Salvelinus confluentus, little is known about the life history characteristics and processes influencing natural dispersal of migratory populations. We used radiotelemetry to investigate the seasonal movements and habitat use by subadult bull trout (i.e., fish that emigrated from natal streams to the river system) tracked for varying durations from 1999 to 2002 in the upper Flathead River system in northwestern Montana. Telemetry data revealed migratory (N = 32 fish) and nonmigratory (N = 35 fish) behavior, indicating variable movement patterns in the subadult phase of bull trout life history. Most migrating subadults (84%) made rapid or incremental downriver movements (mean distance, 33 km; range, 6–129 km) to lower portions of the river system and to Flathead Lake during high spring flows and as temperatures declined in the fall and winter. Bull trout subadults used complex daytime habitat throughout the upper river system, including deep runs that contained unembedded boulder and cobble substrates, pools with large woody debris, and deep lake-influenced areas of the lower river system. Our results elucidate the importance of maintaining natural connections and a diversity of complex habitats over a large spatial scale to conserve the full expression of life history traits and processes influencing the natural dispersal of bull trout populations. Managers should seek to restore and enhance critical river corridor habitat and remove migration barriers, where possible, for recovery and management programs.

  1. Regional geologic framework and petroleum occurrences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, E.J.; Jewell, G.A.

    1993-02-01

    The Falcon Basin developed during the late Eocene as a result of dextral strike slip movement along the Caribbean-South American plate boundary. During the Oligocene and early Miocene as much as 16,000 ft. of sediment, predominantly sandstones and shales, accumulated within the east-west trending pull-apart basin. Localized carbonate buildups were also developing in association with the Paraguana and Dabajuro Platforms. During the middle to late Miocene, uplift of the now emergent Central Falcon Basin Anticlinorium resulted in the northward progradation of delta systems. Sandstones associated with these deltas now make up the producing reservoirs within the basin. The complex presentmore » day structural configuration is the result of continued movement along the Caribbean-South American plate boundary. Landsat imagery and field mapping indicate a basin dominated by northeast trending folds and thrust faults and fracture patterns commonly associated with dextral strike-slip movement. Commercial production is currently limited to the Tiguaje and Cumarebo areas. The former occurs as four small fields ([plus minus]52 MMBO) related to structures developed by dextral movement along the Oca fault. The latter Cumarebo Field ([plus minus]60 MMBO) is a thrusted anticline on the northern flank of the Falcon foldbelt. The tectonic complexity and sandstone-dominated nature of the onshore Falcon Basin severely limit potential field size. Significant, yet currently undeveloped, reserves have also been discovered offshore in the Gulf of La Vela. Fractured granite, carbonates and sandstones associated with tilted fault block structures have tested hydrocarbons in several wells.« less

  2. Nonexplicit change detection in complex dynamic settings: what eye movements reveal.

    PubMed

    Vachon, François; Vallières, Benoît R; Jones, Dylan M; Tremblay, Sébastien

    2012-12-01

    We employed a computer-controlled command-and-control (C2) simulation and recorded eye movements to examine the extent and nature of the inability to detect critical changes in dynamic displays when change detection is implicit (i.e., requires no explicit report) to the operator's task. Change blindness-the failure to notice significant changes to a visual scene-may have dire consequences on performance in C2 and surveillance operations. Participants performed a radar-based risk-assessment task involving multiple subtasks. Although participants were not required to explicitly report critical changes to the operational display, change detection was critical in informing decision making. Participants' eye movements were used as an index of visual attention across the display. Nonfixated (i.e., unattended) changes were more likely to be missed than were fixated (i.e., attended) changes, supporting the idea that focused attention is necessary for conscious change detection. The finding of significant pupil dilation for changes undetected but fixated suggests that attended changes can nonetheless be missed because of a failure of attentional processes. Change blindness in complex dynamic displays takes the form of failures in establishing task-appropriate patterns of attentional allocation. These findings have implications in the design of change-detection support tools for dynamic displays and work procedure in C2 and surveillance.

  3. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  4. Cattle movement patterns in Australia: an analysis of the NLIS database 2008-2012.

    PubMed

    Iglesias, R M; East, I J

    2015-11-01

    To identify patterns of cattle movement that could influence disease spread in the Australian cattle population. Records from the National Livestock Identification System database for the period January 2008 to December 2012 were accessed and analysed. Postcodes were used to allocate each individual property to one of 12 livestock production regions. National movement patterns and the characteristics of each livestock production region were quantified in terms of the number of consignments and animals moved, and seasonality of movements. The majority of cattle movements remained within a single livestock production region, while those that did not, usually remained within the same state or territory. Producers were the most common source of cattle, and abattoirs and other producers the most common destinations, with approximately 40% of animals moving via a saleyard. The northern regions generally moved larger consignments than the southern regions and were less connected to other regions. The eastern and south-eastern regions were very well connected by cattle movements. Seasonal patterns were seen for some regions, particularly the northern regions where weather patterns strongly influence the ability of producers to muster and transport stock. The movement patterns observed provide quantitative support for previous information based on surveys and expert opinion, and capture more of the variability in Australian cattle production. This information may assist with management of animal disease risks, in particular exotic diseases, and in planning surveillance programs. © 2015 2015 Commonwealth of Australia Australian Veterinary Journal © 2015 Australian Veterinary Association.

  5. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations.

    PubMed

    Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah

    2017-02-01

    Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex.

    PubMed

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.

  7. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex

    PubMed Central

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987

  8. Mutual information in the evolution of trajectories in discrete aiming movements.

    PubMed

    Lai, Shih-Chiung; Mayer-Kress, Gottfried; Newell, Karl M

    2008-07-01

    This study investigated the mutual information in the trajectories of discrete aiming movements on a computer controlled graphics tablet where movement time ( 300 - 2050 ms) was manipulated in a given distance (100 mm) and movement distance (15-240 mm) in 2 given movement times (300 ms and 800 ms ). For the distance-fixed conditions, there was higher mutual information in the slower movements in the 0 vs. 80-100% trajectory point comparisons, whereas the mutual information was higher for the faster movements when comparing within the 80 and 100% points of the movement trajectory. For the time-fixed conditions, the spatial constraints led to a decreasing pattern of the mutual information throughout the points of the trajectory, with the highest mutual information found in the 80 vs. 100% comparison. Overall, the pattern of mutual information reveals systematic modulation of the trajectories between the attractive fixed point of the target as a function of movement condition. These mutual information patterns are postulated to be the consequence of the different relative contributions of feedforward and feedback control processes in trajectory formation as a function of task constraints.

  9. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.

    PubMed

    Harrison, Thomas C; Ayling, Oliver G S; Murphy, Timothy H

    2012-04-26

    Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. How landscape dynamics link individual- to population-level movement patterns: A multispecies comparison of ungulate relocation data

    USGS Publications Warehouse

    Mueller, Thomas; Olson, K.A.; Dressler, G.; Leimgruber, Peter; Fuller, Todd K.; Nicholson, Craig; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, Stephen; Calabrese, J.M.; Fagan, William F.

    2011-01-01

    Aim  To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species.Locations  Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia.Methods  We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity.Results  Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape.Main conclusions  We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors.

  11. How landscape dynamics link individual- to population-level movement patterns: A multispecies comparison of ungulate relocation data

    USGS Publications Warehouse

    Mueller, T.; Olson, K.A.; Dressler, G.; Leimgruber, P.; Fuller, T.K.; Nicolson, C.; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, S.; Calabrese, J.M.; Fagan, W.F.

    2011-01-01

    Aim To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species. Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia. Methods We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity. Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape. Main conclusions We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors. ?? 2011 Blackwell Publishing Ltd.

  12. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement

    PubMed Central

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M. J.; van de Koppel, Johan

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern. PMID:24225464

  13. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement.

    PubMed

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J; Hengeveld, Geerten M; Nolet, Bart A; Herman, Peter M J; van de Koppel, Johan

    2014-01-07

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.

  14. Gaze training enhances laparoscopic technical skill acquisition and multi-tasking performance: a randomized, controlled study.

    PubMed

    Wilson, Mark R; Vine, Samuel J; Bright, Elizabeth; Masters, Rich S W; Defriend, David; McGrath, John S

    2011-12-01

    The operating room environment is replete with stressors and distractions that increase the attention demands of what are already complex psychomotor procedures. Contemporary research in other fields (e.g., sport) has revealed that gaze training interventions may support the development of robust movement skills. This current study was designed to examine the utility of gaze training for technical laparoscopic skills and to test performance under multitasking conditions. Thirty medical trainees with no laparoscopic experience were divided randomly into one of three treatment groups: gaze trained (GAZE), movement trained (MOVE), and discovery learning/control (DISCOVERY). Participants were fitted with a Mobile Eye gaze registration system, which measures eye-line of gaze at 25 Hz. Training consisted of ten repetitions of the "eye-hand coordination" task from the LAP Mentor VR laparoscopic surgical simulator while receiving instruction and video feedback (specific to each treatment condition). After training, all participants completed a control test (designed to assess learning) and a multitasking transfer test, in which they completed the procedure while performing a concurrent tone counting task. Not only did the GAZE group learn more quickly than the MOVE and DISCOVERY groups (faster completion times in the control test), but the performance difference was even more pronounced when multitasking. Differences in gaze control (target locking fixations), rather than tool movement measures (tool path length), underpinned this performance advantage for GAZE training. These results suggest that although the GAZE intervention focused on training gaze behavior only, there were indirect benefits for movement behaviors and performance efficiency. Additionally, focusing on a single external target when learning, rather than on complex movement patterns, may have freed-up attentional resources that could be applied to concurrent cognitive tasks.

  15. Pre-Participation Screening: The Use of Fundamental Movements as an Assessment of Function – Part 1

    PubMed Central

    Burton, Lee; Hoogenboom, Barb

    2006-01-01

    To prepare an athlete for the wide variety of activities needed to participate in their sport, the analysis of fundamental movements should be incorporated into pre-participation screening in order to determine who possesses, or lacks, the ability to perform certain essential movements. In a series of two articles, the background and rationale for the analysis of fundamental movement will be provided. In addition, one such evaluation tool that attempts to assess the fundamental movement patterns performed by an individual, the Functional Movement Screen (FMS™), will be described. Three of the seven fundamental movement patterns that comprise the FMS™ are described in detail in Part I: deep squat, hurdle step, and in-line lunge. Part II of this series, which will be published in the August issue of NAJSPT, will provide a brief review of the analysis of fundamental movements, as well a detailed description of the four additional patterns that complement those presented in Part I (to complete the total of seven fundamental movement patterns which comprise the FMS™): shoulder mobility, active straight leg raise, trunk stability push-up, and rotary stability. The intent of this two part series is to introduce the concept of the evaluation of fundamental movements, whether it is the FMS™ system or a different system devised by another clinician. Such a functional assessment should be incorporated into pre-participation screening in order to determine whether the athlete has the essential movements needed to participate in sports activities with a decreased risk of injury. PMID:21522216

  16. Neuroleptic-induced movement disorders in a naturalistic schizophrenia population: diagnostic value of actometric movement patterns

    PubMed Central

    Janno, Sven; Holi, Matti M; Tuisku, Katinka; Wahlbeck, Kristian

    2008-01-01

    Background Neuroleptic-induced movement disorders (NIMDs) have overlapping co-morbidity. Earlier studies have described typical clinical movement patterns for individual NIMDs. This study aimed to identify specific movement patterns for each individual NIMD using actometry. Methods A naturalistic population of 99 schizophrenia inpatients using conventional antipsychotics and clozapine was evaluated. Subjects with NIMDs were categorized using the criteria for NIMD found in the Diagnostic and Statistical Manual for Mental Disorders – Fourth Edition (DSM-IV). Two blinded raters evaluated the actometric-controlled rest activity data for activity periods, rhythmical activity, frequencies, and highest acceleration peaks. A simple subjective question was formulated to test patient-based evaluation of NIMD. Results The patterns of neuroleptic-induced akathisia (NIA) and pseudoakathisia (PsA) were identifiable in actometry with excellent inter-rater reliability. The answers to the subjective question about troubles with movements distinguished NIA patients from other patients rather well. Also actometry had rather good screening performances in distinguishing akathisia from other NIMD. Actometry was not able to reliably detect patterns of neuroleptic-induced parkinsonism and tardive dyskinesia. Conclusion The present study showed that pooled NIA and PsA patients had a different pattern in lower limb descriptive actometry than other patients in a non-selected sample. Careful questioning of patients is a useful method of diagnosing NIA in a clinical setting. PMID:18419829

  17. Agonal sequences in eight filmed hangings: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny; LaHarpe, Romano; Geberth, Vernon J

    2010-09-01

    It has been proposed that filmed hangings may hold the key to a better understanding of human asphyxia, and The Working Group on Human Asphyxia was formed to systematically review and compare these video recordings. This study analyzed eight filmed hangings. Considering time 0 to represent the onset of the final hanging, rapid loss of consciousness was observed (at 8-18 sec), closely followed by convulsions (at 10-19 sec). A complex pattern of decerebrate rigidity and decorticate rigidity then followed. Between 1 min 38 sec and 2 min 15 sec, muscle tone seemed to be lost, the body becoming progressively flaccid. From then on, isolated body movements were observed from time to time, the last one occurring between 1 min 2 sec and 7 min 31 sec. As for the respiratory responses, all cases presented deep rhythmic abdominal respiratory movements (last one between 1 min 2 sec and 2 min 5 sec). © 2010 American Academy of Forensic Sciences.

  18. Grip Forces During Object Manipulation: Experiment, Mathematical Model & Validation

    PubMed Central

    Slota, Gregory P.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2011-01-01

    When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz), and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf- four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration—along the normal axis and the resultant acceleration within the shear plane—on the digit normal forces are additive. PMID:21735245

  19. Characterization of iris pattern stretches and application to the measurement of roll axis eye movements.

    PubMed

    Nishiyama, Junpei; Hashimoto, Tsutomu; Sakashita, Yusuke; Fujiyoshi, Hironobu; Hirata, Yutaka

    2008-01-01

    Eye movements are utilized in many scientific studies as a probe that reflects the neural representation of 3 dimensional extrapersonal space. This study proposes a method to accurately measure the roll component of eye movements under the conditions in which the pupil diameter changes. Generally, the iris pattern matching between a reference and a test iris image is performed to estimate roll angle of the test image. However, iris patterns are subject to change when the pupil size changes, thus resulting in less accurate roll angle estimation if the pupil sizes in the test and reference images are different. We characterized non-uniform iris pattern contraction/expansion caused by pupil dilation/constriction, and developed an algorithm to convert an iris pattern with an arbitrary pupil size into that with the same pupil size as the reference iris pattern. It was demonstrated that the proposed method improved the accuracy of the measurement of roll eye movement by up to 76.9%.

  20. Restoration of movement patterns of the Hawaiian Goose

    USGS Publications Warehouse

    Hess, Steven C.; Leopold, Christina R.; Misajon, Kathleen; Hu, Darcy; Jeffrey, John J.

    2012-01-01

    We used visual observations of banded individuals and satellite telemetry from 2007 to 2011 on Hawai′i Island to document movement patterns of the Hawaiian Goose (Branta sandvicensis), commonly known as Nene. Visual observations of numbered leg bands identified >19% and ≤10% of 323 geese at one of two breeding sites and one of two distant non-breeding areas during 2007-2011. We used satellite telemetry to document movement patterns of 10 male Nene from 2009 to 2011, and log-linear models to quantify the magnitude and individual differences in altitudinal migration. Two subpopulations of Nene moved 974.4 m (95% CI ± 22.0) and 226.4 m (95% CI ± 40.7) in elevation between seasons on average, from high-elevation shrublands during the non-breeding season of May-August, to lower-elevation breeding and molting areas in September-April. Traditional movement patterns were thought to be lost until recently, but the movement pattern we documented with satellite telemetry was similar to altitudinal migration described by early naturalists in Hawai′i prior to the severe population decline of Nene in the 20th century.

  1. Human sperm pattern of movement during chemotactic re-orientation towards a progesterone source

    PubMed Central

    Blengini, Cecilia Soledad; Teves, Maria Eugenia; Uñates, Diego Rafael; Guidobaldi, Héctor Alejandro; Gatica, Laura Virginia; Giojalas, Laura Cecilia

    2011-01-01

    Human spermatozoa may chemotactically find out the egg by following an increasing gradient of attractant molecules. Although human spermatozoa have been observed to show several of the physiological characteristics of chemotaxis, the chemotactic pattern of movement has not been easy to describe. However, it is apparent that chemotactic cells may be identified while returning to the attractant source. This study characterizes the pattern of movement of human spermatozoa during chemotactic re-orientation towards a progesterone source, which is a physiological attractant candidate. By means of videomicroscopy and image analysis, a chemotactic pattern of movement was identified as the spermatozoon returned towards the source of a chemotactic concentration of progesterone (10 pmol l−1). First, as a continuation of its original path, the spermatozoon swims away from the progesterone source with linear movement and then turns back with a transitional movement that can be characterized by an increased velocity and decreased linearity. This sperm behaviour may help the spermatozoon to re-orient itself towards a progesterone source and may be used to identify the few cells that are undergoing chemotaxis at a given time. PMID:21765441

  2. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.

    PubMed

    Feldman, A G; Adamovich, S V; Levin, M F

    1995-01-01

    Two versions of the hypothesis that discrete movements are produced by shifts in the system's equilibrium point are considered. The first suggests that shifts are monotonic and end near the peak velocity of movement, and the second presumes that they are nonmonotonic ("N-shaped") and proceed until the end of movement. The first version, in contrast to the second, predicts that movement time may be significantly reduced by opposing loads without changes in the control pattern. The purpose of the present study was to test the two hypotheses about the duration and shape of the shift in the equilibrium point based on their respective predictions concerning the effects of perturbations on kinematic and EMG patterns in fast elbow flexor movements. Subjects performed unopposed flexions of about 55-70 degrees (control trials) and, in random test trials, movements were opposed by spring-like loads generated by a torque motor. Subjects had no visual feedback and were instructed not to correct arm deflections in case of perturbations. After the end of the movement, the load was removed leading to a secondary movement to the same final position as that in control trials (equifinality). When the load was varied, the static arm positions before unloading and associated joint torques (ranging from 0 to 80-90% of maximum voluntary contraction) had a monotonic relationship. Test movements opposed by a high load (80-90% of maximal voluntary contraction) ended near the peak velocity of control movements. Phasic and tonic electromyographic patterns were load-dependent. In movements opposed by high loads, the first agonist burst was significantly prolonged and displayed a high level of tonic activity for as long as the load was maintained. In the same load conditions, the antagonist burst was suppressed during the dynamic and static phases of movement. The findings of suppression of the antagonist burst does not support the hypothesis of an N-shaped control signal. Equally, the substantial reduction in movement time by the introduction of an opposing load cannot be reconciled in this model. Instead, our data indicate that the shifts in the equilibrium point underlying fast flexor movements are of short duration, ending near the peak velocity of unopposed movement. This suggests that kinematic and electromyographic patterns represent a long-lasting oscillatory response of the system to the short-duration monotonic control pattern, external forces and proprioceptive feedback.

  3. Developmental changes in facial expressions of emotions in the strange situation during the second year of life.

    PubMed

    Izard, Carroll E; Abe, Jo Ann A

    2004-09-01

    Infants' expressions of discrete emotions were coded during the more stressful episodes (4 through 8) of the Strange Situation at 13 and 18 months. The data showed a significant decrease in full-face expressions (more complex configurations of movements) and a significant increase in component expressions (simpler and more constrained patterns of movements). The authors interpreted this trend as a developmental change toward more regulated and less intense emotions. Consistent with this view, the aggregate index of infants' full-face negative emotion expressions, interpreted as reflecting relatively unregulated intense emotions, correlated significantly with maternal ratings of difficult temperament. The authors discuss alternative interpretations of the findings in terms of changes in reactivity/arousability and the emerging capacity for self-regulation. (c) 2004 APA, all rights reserved

  4. Improvisation and the self-organization of multiple musical bodies.

    PubMed

    Walton, Ashley E; Richardson, Michael J; Langland-Hassan, Peter; Chemero, Anthony

    2015-01-01

    Understanding everyday behavior relies heavily upon understanding our ability to improvise, how we are able to continuously anticipate and adapt in order to coordinate with our environment and others. Here we consider the ability of musicians to improvise, where they must spontaneously coordinate their actions with co-performers in order to produce novel musical expressions. Investigations of this behavior have traditionally focused on describing the organization of cognitive structures. The focus, here, however, is on the ability of the time-evolving patterns of inter-musician movement coordination as revealed by the mathematical tools of complex dynamical systems to provide a new understanding of what potentiates the novelty of spontaneous musical action. We demonstrate this approach through the application of cross wavelet spectral analysis, which isolates the strength and patterning of the behavioral coordination that occurs between improvising musicians across a range of nested time-scales. Revealing the sophistication of the previously unexplored dynamics of movement coordination between improvising musicians is an important step toward understanding how creative musical expressions emerge from the spontaneous coordination of multiple musical bodies.

  5. Brownian motion or Lévy walk? Stepping towards an extended statistical mechanics for animal locomotion.

    PubMed

    Gautestad, Arild O

    2012-09-07

    Animals moving under the influence of spatio-temporal scaling and long-term memory generate a kind of space-use pattern that has proved difficult to model within a coherent theoretical framework. An extended kind of statistical mechanics is needed, accounting for both the effects of spatial memory and scale-free space use, and put into a context of ecological conditions. Simulations illustrating the distinction between scale-specific and scale-free locomotion are presented. The results show how observational scale (time lag between relocations of an individual) may critically influence the interpretation of the underlying process. In this respect, a novel protocol is proposed as a method to distinguish between some main movement classes. For example, the 'power law in disguise' paradox-from a composite Brownian motion consisting of a superposition of independent movement processes at different scales-may be resolved by shifting the focus from pattern analysis at one particular temporal resolution towards a more process-oriented approach involving several scales of observation. A more explicit consideration of system complexity within a statistical mechanical framework, supplementing the more traditional mechanistic modelling approach, is advocated.

  6. Improvisation and the self-organization of multiple musical bodies

    PubMed Central

    Walton, Ashley E.; Richardson, Michael J.; Langland-Hassan, Peter; Chemero, Anthony

    2015-01-01

    Understanding everyday behavior relies heavily upon understanding our ability to improvise, how we are able to continuously anticipate and adapt in order to coordinate with our environment and others. Here we consider the ability of musicians to improvise, where they must spontaneously coordinate their actions with co-performers in order to produce novel musical expressions. Investigations of this behavior have traditionally focused on describing the organization of cognitive structures. The focus, here, however, is on the ability of the time-evolving patterns of inter-musician movement coordination as revealed by the mathematical tools of complex dynamical systems to provide a new understanding of what potentiates the novelty of spontaneous musical action. We demonstrate this approach through the application of cross wavelet spectral analysis, which isolates the strength and patterning of the behavioral coordination that occurs between improvising musicians across a range of nested time-scales. Revealing the sophistication of the previously unexplored dynamics of movement coordination between improvising musicians is an important step toward understanding how creative musical expressions emerge from the spontaneous coordination of multiple musical bodies. PMID:25941499

  7. Effect of human-robot interaction on muscular synergies on healthy people and post-stroke chronic patients.

    PubMed

    Scano, A; Chiavenna, A; Caimmi, M; Malosio, M; Tosatti, L M; Molteni, F

    2017-07-01

    Robot-assisted training is a widely used technique to promote motor re-learning on post-stroke patients that suffer from motor impairment. While it is commonly accepted that robot-based therapies are potentially helpful, strong insights about their efficacy are still lacking. The motor re-learning process may act on muscular synergies, which are groups of co-activating muscles that, being controlled as a synergic group, allow simplifying the problem of motor control. In fact, by coordinating a reduced amount of neural signals, complex motor patterns can be elicited. This paper aims at analyzing the effects of robot assistance during 3D-reaching movements in the framework of muscular synergies. 5 healthy people and 3 neurological patients performed free and robot-assisted reaching movements at 2 different speeds (slow and quasi-physiological). EMG recordings were used to extract muscular synergies. Results indicate that the interaction with the robot very slightly alters healthy people patterns but, on the contrary, it may promote the emergency of physiological-like synergies on neurological patients.

  8. Physiological Motion and Registration of Abnormalities in Liver During Focused Ultrasound Surgery

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunita; Rh, Abhilash

    Continuous deformation and dislocation of soft tissues in the abdominal and thoracic region presents a major issue for effective targeting of all non-invasive ablative modalities such as radiotherapy/surgery and Focused Ultrasound Surgery. Most significant among these is the movement of the target organs due to physiological processes such as respiration. The movement is found to be most significant for liver and kidneys. We studied movement and compensation strategies with the aim to implement them during ultrasound ablation using our robotic system for targeted FUS dose delivery. The motion pattern of the liver can be assumed to be in a single plane as it closely follows the movement of the diaphragm. However, the movement of kidneys is three dimensional and follows complicated patterns. Kidney motion is highly subject specific and has poor repeatability. In our research, we quantify the relation of liver movement and the breathing pattern so as to achieve real-time movement compensation using a prediction-correlation approach.

  9. Movements of wintering surf scoters: Predator responses to different prey landscapes

    USGS Publications Warehouse

    Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.

    2008-01-01

    The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.

  10. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  11. First passage time: Connecting random walks to functional responses in heterogeneous environments (Invited)

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; McKenzie, H.; Merrill, E.

    2010-12-01

    In this talk I will outline first passage time analysis for animals undertaking complex movement patterns, and will demonstrate how first passage time can be used to derive functional responses in predator prey systems. The result is a new approach to understanding type III functional responses based on a random walk model. I will extend the analysis to heterogeneous environments to assess the effects of linear features on functional responses in wolves and elk using GPS tracking data.

  12. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    PubMed

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  13. A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns.

    PubMed

    Osgood, Nathaniel D; Paul, Tuhin; Stanley, Kevin G; Qian, Weicheng

    2016-01-01

    Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.

  14. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis.

    PubMed

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-08-01

    Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties.

  15. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Reducing errors benefits the field-based learning of a fundamental movement skill in children.

    PubMed

    Capio, C M; Poolton, J M; Sit, C H P; Holmstrom, M; Masters, R S W

    2013-03-01

    Proficient fundamental movement skills (FMS) are believed to form the basis of more complex movement patterns in sports. This study examined the development of the FMS of overhand throwing in children through either an error-reduced (ER) or error-strewn (ES) training program. Students (n = 216), aged 8-12 years (M = 9.16, SD = 0.96), practiced overhand throwing in either a program that reduced errors during practice (ER) or one that was ES. ER program reduced errors by incrementally raising the task difficulty, while the ES program had an incremental lowering of task difficulty. Process-oriented assessment of throwing movement form (Test of Gross Motor Development-2) and product-oriented assessment of throwing accuracy (absolute error) were performed. Changes in performance were examined among children in the upper and lower quartiles of the pretest throwing accuracy scores. ER training participants showed greater gains in movement form and accuracy, and performed throwing more effectively with a concurrent secondary cognitive task. Movement form improved among girls, while throwing accuracy improved among children with low ability. Reduced performance errors in FMS training resulted in greater learning than a program that did not restrict errors. Reduced cognitive processing costs (effective dual-task performance) associated with such approach suggest its potential benefits for children with developmental conditions. © 2011 John Wiley & Sons A/S.

  17. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis

    PubMed Central

    Hemanth, M; deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. Results: It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. Conclusion: For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties. PMID:26464555

  18. Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns.

    PubMed

    Reynolds, Andy M

    2010-12-06

    For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual's trajectory through space is represented by a sequence of distinct, independent randomly oriented 'moves'. It has long been recognized that the transformation of an animal's continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.

  19. Behavioral Impact of Unisensory and Multisensory Audio-Tactile Events: Pros and Cons for Interlimb Coordination in Juggling

    PubMed Central

    Zelic, Gregory; Mottet, Denis; Lagarde, Julien

    2012-01-01

    Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler's performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception. PMID:22384211

  20. Brain oxygenation patterns during the execution of tool use demonstration, tool use pantomime, and body-part-as-object tool use.

    PubMed

    Helmich, Ingo; Holle, Henning; Rein, Robert; Lausberg, Hedda

    2015-04-01

    Divergent findings exist whether left and right hemispheric pre- and postcentral cortices contribute to the production of tool use related hand movements. In order to clarify the neural substrates of tool use demonstrations with tool in hand, tool use pantomimes without tool in hand, and body-part-as-object presentations of tool use (BPO) in a naturalistic mode of execution, we applied functional Near InfraRed Spectroscopy (fNIRS) in twenty-three right-handed participants. Functional NIRS techniques allow for the investigation of brain oxygenation during the execution of complex hand movements with an unlimited movement range. Brain oxygenation patterns were retrieved from 16 channels of measurement above pre- and postcentral cortices of each hemisphere. The results showed that tool use demonstration with tool in hand leads to increased oxygenation as compared to tool use pantomimes in the left hemispheric somatosensory gyrus. Left hand executions of the demonstration of tool use, pantomime of tool use, and BPO of tool use led to increased oxygenation in the premotor and somatosensory cortices of the left hemisphere as compared to right hand executions of either condition. The results indicate that the premotor and somatosensory cortices of the left hemisphere constitute relevant brain structures for tool related hand movement production when using the left hand, whereas the somatosensory cortex of the left hemisphere seems to provide specific mental representations when performing tool use demonstrations with the tool in hand. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    PubMed Central

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  2. Straight line foraging in yellow-eyed penguins: new insights into cascading fisheries effects and orientation capabilities of marine predators.

    PubMed

    Mattern, Thomas; Ellenberg, Ursula; Houston, David M; Lamare, Miles; Davis, Lloyd S; van Heezik, Yolanda; Seddon, Philip J

    2013-01-01

    Free-ranging marine predators rarely search for prey along straight lines because dynamic ocean processes usually require complex search strategies. If linear movement patterns occur they are usually associated with travelling events or migratory behaviour. However, recent fine scale tracking of flying seabirds has revealed straight-line movements while birds followed fishing vessels. Unlike flying seabirds, penguins are not known to target and follow fishing vessels. Yet yellow-eyed penguins from New Zealand often exhibit directed movement patterns while searching for prey at the seafloor, a behaviour that seems to contradict common movement ecology theories. While deploying GPS dive loggers on yellow-eyed penguins from the Otago Peninsula we found that the birds frequently followed straight lines for several kilometres with little horizontal deviation. In several cases individuals swam up and down the same line, while some of the lines were followed by more than one individual. Using a remote operated vehicle (ROV) we found a highly visible furrow on the seafloor most likely caused by an otter board of a demersal fish trawl, which ran in a straight line exactly matching the trajectory of a recent line identified from penguin tracks. We noted high abundances of benthic scavengers associated with fisheries-related bottom disturbance. While our data demonstrate the acute way-finding capabilities of benthic foraging yellow-eyed penguins, they also highlight how hidden cascading effects of coastal fisheries may alter behaviour and potentially even population dynamics of marine predators, an often overlooked fact in the examination of fisheries' impacts.

  3. Optimal orientation in flows: providing a benchmark for animal movement strategies.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem

    2014-10-06

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity.

  4. Optimal orientation in flows: providing a benchmark for animal movement strategies

    PubMed Central

    McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem

    2014-01-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213

  5. Segregation or aggregation? Sex-specific patterns in the seasonal occurrence of white sharks Carcharodon carcharias at the Neptune Islands, South Australia.

    PubMed

    Bruce, B; Bradford, R

    2015-12-01

    The seasonal patterns of occurrence of male and female white sharks Carcharodon carcharias at the Neptune Islands in South Australia were reviewed. Analyses of a 14 year data series indicate that females seasonally aggregate in late autumn and winter coinciding with the maximum in-water availability of lactating female long-nose fur seals and seal pups. During this period, observed male:female sex ratios were similar; whereas during late spring and summer, males continued to visit, but females were rarely recorded. There was no evidence for segregation by sex or size at the Neptunes, but the highly focused seasonal pattern of occurrence of females compared with the year-round records of males suggests that there are likely to be differences between the sexes in overall distribution and movement patterns across southern Australia. It is suggested that foraging strategies and prey selection differ between sexes in C. carcharias across the life-history stages represented and that sex-specific foraging strategies may play an important role in structuring movement patterns and the sex ratios observed at such aggregation sites. Differences between sexes in distribution, movement patterns and foraging strategies are likely to have implications for modelling the consequences of fisheries by-catch between regions or jurisdictions and other spatially or temporally discrete anthropogenic effects on C. carcharias populations. Such differences urge for caution when estimating the size of C. carcharias populations based on observations at pinniped colonies due to the likelihood of sex-specific differences in movements and patterns of residency. These differences also suggest a need to account for sex-specific movement patterns and distribution in population and movement models as well as under conservation actions. © 2015 The Fisheries Society of the British Isles.

  6. Identifying Movement Patterns and Severity of Associated Pain in Sign Language Interpreters

    ERIC Educational Resources Information Center

    Freeman, Julie K.; Rogers, Janet L.

    2010-01-01

    Our research sought to identify the most common movement patterns and postures performed by sign language interpreters and the frequency and severity of any pain that may be associated with the movements. A survey was developed and mailed to registered sign language interpreters throughout the state of Illinois. For each specific upper extremity…

  7. Winter movements of Louisiana pine snakes (Pituophis ruthveni) in Texas and Louisiana

    Treesearch

    Josh B. Pierce; D. Craig Rudolph; Shirley J. Burgdorf; Richard R. Schaefer; Richard N. Conner; John G. Himes; C. Mike Duran; Laurence M. Hardy; Robert R. Fleet

    2014-01-01

    Despite concerns that the Louisiana Pine Snake (Pituophis ruthveni) has been extirpated from large portions of its historic range, only a limited number of studies on their movement patterns have been published. Winter movement patterns are of particular interest since it has been hypothesized that impacts of management practices would be reduced during the winter....

  8. Hand Movements and Braille Reading Efficiency: Data from the Alphabetic Braille and Contracted Braille Study

    ERIC Educational Resources Information Center

    Wright, Tessa; Wormsley, Diane P.; Kamei-Hannan, Cheryl

    2009-01-01

    Using a subset of data from the Alphabetic Braille and Contracted Braille Study, researchers analyzed the patterns and characteristics of hand movements as predictors of reading performance. Statistically significant differences were found between one- and two-handed readers and between patterns of hand movements and reading rates. (Contains 6…

  9. Attention Switching during Scene Perception: How Goals Influence the Time Course of Eye Movements across Advertisements

    ERIC Educational Resources Information Center

    Wedel, Michel; Pieters, Rik; Liechty, John

    2008-01-01

    Eye movements across advertisements express a temporal pattern of bursts of respectively relatively short and long saccades, and this pattern is systematically influenced by activated scene perception goals. This was revealed by a continuous-time hidden Markov model applied to eye movements of 220 participants exposed to 17 ads under a…

  10. The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales

    PubMed Central

    Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.

    2013-01-01

    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367

  11. Asynchronous oscillations of rigid rods drive viscous fluid to swirl

    NASA Astrophysics Data System (ADS)

    Hayashi, Rintaro; Takagi, Daisuke

    2017-12-01

    We present a minimal system for generating flow at low Reynolds number by oscillating a pair of rigid rods in silicone oil. Experiments show that oscillating them in phase produces no net flow, but a phase difference alone can generate rich flow fields. Tracer particles follow complex trajectory patterns consisting of small orbital movements every cycle and then drifting or swirling in larger regions after many cycles. Observations are consistent with simulations performed using the method of regularized Stokeslets, which reveal complex three-dimensional flow structures emerging from simple oscillatory actuation. Our findings reveal the basic underlying flow structure around oscillatory protrusions such as hairs and legs as commonly featured on living and nonliving bodies.

  12. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon.

    PubMed

    Eggert, L S; Buij, R; Lee, M E; Campbell, P; Dallmeier, F; Fleischer, R C; Alonso, A; Maldonado, J E

    2014-02-01

    Conservation of wide-ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple-use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA containing energy and forestry concessions, we studied forest elephants to evaluate the importance of the MUA to wide-ranging species. We extracted DNA from elephant dung samples and used genetic information to identify over 500 individuals in the MUA and the parks. We then examined patterns of nuclear microsatellites and mitochondrial control-region sequences to infer population structure, movement patterns, and habitat use by age and sex. Population structure was weak but significant, and differentiation was more pronounced during the wet season. Within the MUA, males were more strongly associated with open habitats, such as wetlands and savannas, than females during the dry season. Many of the movements detected within and between seasons involved the wetlands and bordering lagoons. Our results suggest that the MUA provides year-round habitat for some elephants and additional habitat for others whose primary range is in the parks. With the continuing loss of roadless wilderness areas in Central Africa, well-managed MUAs will likely be important to the conservation of wide-ranging species. © 2013 Society for Conservation Biology.

  13. ‘Life is motion’: multiscale motility of molecular motors

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Klumpp, Stefan

    2005-07-01

    Life is intimately related to complex patterns of directed movement. It is quite remarkable that all of this movement is based on filaments and motor molecules which perform mechanical work on the nanometer scale. This article reviews recent theoretical work on the motility of molecular motors and motor particles that bind to cytoskeletal filaments and walk along these filaments in a directed fashion. It is emphasized that these systems exhibit several motility regimes which are well seperated in time. In their bound state, the motor particles move with a typical velocity of about 1 μm/s. The motor cycles underlying this bound motor movement can be understood in terms of driven Brownian ratchets and networks. On larger length and time scales, the motor particles unbind from the filaments and undergo peculiar motor walks consisting of many diffusional encounters with the filaments. If the mutual exclusion (or hardcore repulsion) of these motor particles is taken into account, one finds a variety of cooperative phenomena and self-organized processes: build-up of traffic jams; active structure formation leading to steady states with spatially nonuniform density and current patterns; and active phase transitions between different steady states far from equilibrium. A particularly simple active phase transition with spontaneous symmetry breaking is predicted to occur in systems with two species of motor particles which walk on the filaments in opposite directions.

  14. Automatically Characterizing Sensory-Motor Patterns Underlying Reach-to-Grasp Movements on a Physical Depth Inversion Illusion.

    PubMed

    Nguyen, Jillian; Majmudar, Ushma V; Ravaliya, Jay H; Papathomas, Thomas V; Torres, Elizabeth B

    2015-01-01

    Recently, movement variability has been of great interest to motor control physiologists as it constitutes a physical, quantifiable form of sensory feedback to aid in planning, updating, and executing complex actions. In marked contrast, the psychological and psychiatric arenas mainly rely on verbal descriptions and interpretations of behavior via observation. Consequently, a large gap exists between the body's manifestations of mental states and their descriptions, creating a disembodied approach in the psychological and neural sciences: contributions of the peripheral nervous system to central control, executive functions, and decision-making processes are poorly understood. How do we shift from a psychological, theorizing approach to characterize complex behaviors more objectively? We introduce a novel, objective, statistical framework, and visuomotor control paradigm to help characterize the stochastic signatures of minute fluctuations in overt movements during a visuomotor task. We also quantify a new class of covert movements that spontaneously occur without instruction. These are largely beneath awareness, but inevitably present in all behaviors. The inclusion of these motions in our analyses introduces a new paradigm in sensory-motor integration. As it turns out, these movements, often overlooked as motor noise, contain valuable information that contributes to the emergence of different kinesthetic percepts. We apply these new methods to help better understand perception-action loops. To investigate how perceptual inputs affect reach behavior, we use a depth inversion illusion (DII): the same physical stimulus produces two distinct depth percepts that are nearly orthogonal, enabling a robust comparison of competing percepts. We find that the moment-by-moment empirically estimated motor output variability can inform us of the participants' perceptual states, detecting physiologically relevant signals from the peripheral nervous system that reveal internal mental states evoked by the bi-stable illusion. Our work proposes a new statistical platform to objectively separate changes in visual perception by quantifying the unfolding of movement, emphasizing the importance of including in the motion analyses all overt and covert aspects of motor behavior.

  15. Thin-film Faraday patterns in three dimensions

    NASA Astrophysics Data System (ADS)

    Richter, Sebastian; Bestehorn, Michael

    2017-04-01

    We investigate the long time evolution of a thin fluid layer in three spatial dimensions located on a horizontal planar substrate. The substrate is subjected to time-periodic external vibrations in normal and in tangential direction with respect to the plane surface. The governing partial differential equation system of our model is obtained from the incompressible Navier-Stokes equations considering the limit of a thin fluid geometry and using the long wave lubrication approximation. It includes inertia and viscous friction. Numerical simulations evince the existence of persistent spatially complex surface patterns (periodic and quasiperiodic) for certain superpositions of two vertical excitations and initial conditions. Additional harmonic lateral excitations cause deformations but retain the basic structure of the patterns. Horizontal ratchet-shaped forces lead to a controllable lateral movement of the fluid. A Floquet analysis is used to determine the stability of the linearized system.

  16. Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger

    PubMed Central

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569

  17. Movement patterns of peak-dose levodopa-induced dyskinesias in patients with Parkinson's disease.

    PubMed

    Gour, Jackie; Edwards, Roderick; Lemieux, Sarah; Ghassemi, Mehrdad; Jog, Mandar; Duval, Christian

    2007-09-14

    The present study characterized involuntary movements associated with levodopa-induced dyskinesias (LID) in patients with Parkinson's disease. We used amplitude, proportional energy, frequency dispersion and sample entropy to determine whether LID movement patterns are truly random, as clinical description seems to suggest, or possess some underlying pattern that is not visible to the naked eye. LID was captured using a magnetic tracker system, which provided 3D rendering of whole-body LID. Patients were instructed to maintain a standing position, with arms extended in front of them. We compared the measurements of the dyskinetic PD group (DPD) with 10 patients without dyskinesias (NDPD) and 10 control subjects. In comparison to the other two groups, movement patterns from the DPD group had significantly higher amplitude, confirming the presence of dyskinesias. In addition, higher frequency components in the power spectrum of velocity were detected, suggestive of higher velocity in LID movement. Furthermore, there was a concentration in narrow frequency bands, which suggested stable oscillatory activity. Finally, sample entropy revealed more regularity in the DPD group. Although not statistically significant, we found that the amplitude from the NDPD group had a tendency to be smaller than those of controls. As well, the spectra were often more dispersed for the NDPD group. In conclusion, the present results suggest that LID cannot be considered as purely random movement since they possess some deterministic pattern of motion. This may provide a way for patients to adapt to these involuntary movements while performing voluntary motor acts.

  18. Influence of adequate pelvic floor muscle contraction on the movement of the coccyx during pelvic floor muscle training.

    PubMed

    Fujisaki, Akiko; Shigeta, Miwa; Shimoinaba, Misa; Yoshimura, Yasukuni

    2018-04-01

    [Purpose] Pelvic floor muscle training is a first-line therapy for female stress urinary incontinence. Previous studies have suggested that the coccyx tip moves ventrally and cranially during pelvic floor muscle contraction. The study aimed to elucidate the influence of adequate pelvic floor muscle contraction on coccyx movement. [Subjects and Methods] Sixty-three females (57 patients with stress urinary incontinence and additional 6 healthy volunteers) were enrolled. Using magnetic resonance imaging, coccyx movement was evaluated during pelvic floor muscle contraction and strain. An adequate contraction was defined as a contraction with good Oxford grading scale [≥3] and without inadequate muscle substitution patterns. [Results] Inadequate muscle substitution patterns were observed in 33 participants (52.4%). No significant difference was observed in the movement of the coccyx tip in the ventrodorsal direction between females with and without inadequate muscle substitution patterns. However, a significant increase in the movement of the coccyx tip in the cranial direction was detected in the group without inadequate muscle substitution patterns. Compared to participants with inadequate pelvic floor muscle contraction, those who had adequate pelvic floor muscle contraction exhibited significantly increased cranial movement of the coccyx. [Conclusion] Adequate pelvic floor muscle contraction can produce cranial movement of the coccyx tip.

  19. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.

    PubMed

    van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub

    2018-02-01

    The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Correlation of Blood Glucose Concentration and the Movement of Laser Secondary Speckle Pattern of the Artery

    NASA Astrophysics Data System (ADS)

    Saputra, M. A.; Prajitno, P.

    2018-04-01

    Blood glucose is the molecule needed for human life, it usually measured invasively (by taking blood). but that measurement is still very vulnerable. The alternative method namely the non-invasive method is very interesting. In addition, the article [1] explains the relationship between the movement of the arterial pulse with glucose concentration, therefore the research study to investigate the correlation between the blood glucose and the movement of laser speckle pattern resulted from the arterial movement will be promising as the non-invasive method for measuring the blood glucose concentration. In this study, the laser speckle pattern imaging method, where the microscopically movement of the object is illuminated by a laser beam and recorded by the high-speed camera in a certain interval time, are used to identify the movement patterns of the artery. From the image processing, the graphs such as electrocardiograph (ECG) can be extracted. The average of the maximum peaks of the graph can be correlated with the blood glucose concentration in the blood, as the same as shown in the article [2]. From the data that has been obtained in this research, the movement of the speckle tends to increase in accordance with the rise of blood glucose concentration.

  1. Spatial Patterns in Water Temperature in Pacific Northwest Rivers: Diversity at Multiple Scales and Potential Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.

    2016-12-01

    Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.

  2. Movement initiation-locked activity of the anterior putamen predicts future movement instability in periodic bimanual movement.

    PubMed

    Aramaki, Yu; Haruno, Masahiko; Osu, Rieko; Sadato, Norihiro

    2011-07-06

    In periodic bimanual movements, anti-phase-coordinated patterns often change into in-phase patterns suddenly and involuntarily. Because behavior in the initial period of a sequence of cycles often does not show any obvious errors, it is difficult to predict subsequent movement errors in the later period of the cyclical sequence. Here, we evaluated performance in the later period of the cyclical sequence of bimanual periodic movements using human brain activity measured with functional magnetic resonance imaging as well as using initial movement features. Eighteen subjects performed a 30 s bimanual finger-tapping task. We calculated differences in initiation-locked transient brain activity between antiphase and in-phase tapping conditions. Correlation analysis revealed that the difference in the anterior putamen activity during antiphase compared within-phase tapping conditions was strongly correlated with future instability as measured by the mean absolute deviation of the left-hand intertap interval during antiphase movements relative to in-phase movements (r = 0.81). Among the initial movement features we measured, only the number of taps to establish the antiphase movement pattern exhibited a significant correlation. However, the correlation efficient of 0.60 was not high enough to predict the characteristics of subsequent movement. There was no significant correlation between putamen activity and initial movement features. It is likely that initiating unskilled difficult movements requires increased anterior putamen activity, and this activity increase may facilitate the initiation of movement via the basal ganglia-thalamocortical circuit. Our results suggest that initiation-locked transient activity of the anterior putamen can be used to predict future motor performance.

  3. Environmental context explains Lévy and Brownian movement patterns of marine predators.

    PubMed

    Humphries, Nicolas E; Queiroz, Nuno; Dyer, Jennifer R M; Pade, Nicolas G; Musyl, Michael K; Schaefer, Kurt M; Fuller, Daniel W; Brunnschweiler, Juerg M; Doyle, Thomas K; Houghton, Jonathan D R; Hays, Graeme C; Jones, Catherine S; Noble, Leslie R; Wearmouth, Victoria J; Southall, Emily J; Sims, David W

    2010-06-24

    An optimal search theory, the so-called Lévy-flight foraging hypothesis, predicts that predators should adopt search strategies known as Lévy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey. Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Lévy behaviour has recently been questioned. Consequently, whether foragers exhibit Lévy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Lévy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Lévy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Lévy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Lévy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Lévy-flight foraging hypothesis, supporting the contention that organism search strategies naturally evolved in such a way that they exploit optimal Lévy patterns.

  4. Creating Time: Social Collaboration in Music Improvisation.

    PubMed

    Walton, Ashley E; Washburn, Auriel; Langland-Hassan, Peter; Chemero, Anthony; Kloos, Heidi; Richardson, Michael J

    2018-01-01

    Musical collaboration emerges from the complex interaction of environmental and informational constraints, including those of the instruments and the performance context. Music improvisation in particular is more like everyday interaction in that dynamics emerge spontaneously without a rehearsed score or script. We examined how the structure of the musical context affords and shapes interactions between improvising musicians. Six pairs of professional piano players improvised with two different backing tracks while we recorded both the music produced and the movements of their heads, left arms, and right arms. The backing tracks varied in rhythmic and harmonic information, from a chord progression to a continuous drone. Differences in movement coordination and playing behavior were evaluated using the mathematical tools of complex dynamical systems, with the aim of uncovering the multiscale dynamics that characterize musical collaboration. Collectively, the findings indicated that each backing track afforded the emergence of different patterns of coordination with respect to how the musicians played together, how they moved together, as well as their experience collaborating with each other. Additionally, listeners' experiences of the music when rating audio recordings of the improvised performances were related to the way the musicians coordinated both their playing behavior and their bodily movements. Accordingly, the study revealed how complex dynamical systems methods (namely recurrence analysis) can capture the turn-taking dynamics that characterized both the social exchange of the music improvisation and the sounds of collaboration more generally. The study also demonstrated how musical improvisation provides a way of understanding how social interaction emerges from the structure of the behavioral task context. Copyright © 2017 Cognitive Science Society, Inc.

  5. Masticatory path pattern during mastication of chewing gum with regard to gender difference.

    PubMed

    Kobayashi, Yoshinori; Shiga, Hiroshi; Arakawa, Ichiro; Yokoyama, Masaoki; Nakajima, Kunihisa

    2009-01-01

    To clarify the masticatory path patterns of the mandibular incisal point during mastication of softened chewing gum with regard to gender difference. One hundred healthy subjects (50 males and 50 females) were asked to chew softened chewing gum on one side at a time (right side and left side) and the movement of the mandibular incisal point was recorded using MKG K6I. After a catalog of path patterns was made, the movement path was classified into one of the pattern groups, and then the frequency of each pattern was investigated. A catalog of path patterns consisting of the three types of opening path (op1, linear or concave path; op2, path toward the chewing side after toward the non-working side; op3, convex path) and two types of closing path (cl1, convex path; cl2, concave path) was made. The movement path was classified into one of seven patterns, with six patterns being from the catalog and a final extra pattern in which the opening and closing paths crossed. The most common pattern among the subjects was Pattern I, followed by Patterns III, II, IV, V, VII, and VI, in that order. The majority of cases, 149 (74.5%) of 200 cases, showed either Pattern I (op1 and cl1) or Pattern III (op2 and cl1). There was no significant difference between the two genders in the frequency of each pattern. The movement path could be classified into seven patterns and no gender-related difference was found in the frequency of each pattern.

  6. The punctum fixum-punctum mobile model: a neuromuscular principle for efficient movement generation?

    PubMed

    von Laßberg, Christoph; Rapp, Walter

    2015-01-01

    According to the "punctum fixum-punctum mobile model" that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements.

  7. The Punctum Fixum-Punctum Mobile Model: A Neuromuscular Principle for Efficient Movement Generation?

    PubMed Central

    von Laßberg, Christoph; Rapp, Walter

    2015-01-01

    According to the “punctum fixum–punctum mobile model” that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements. PMID:25822498

  8. Winter movement dynamics of Black Brant

    USGS Publications Warehouse

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  9. Winter movement dynamics of black brant

    USGS Publications Warehouse

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  10. Application of Optical Measurement Techniques During Stages of Pregnancy: Use of Phantom High Speed Cameras for Digital Image Correlation (D.I.C.) During Baby Kicking and Abdomen Movements

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    Paired images were collected using a projected pattern instead of standard painting of the speckle pattern on her abdomen. High Speed cameras were post triggered after movements felt. Data was collected at 120 fps -limited due to 60hz frequency of projector. To ensure that kicks and movement data was real a background test was conducted with no baby movement (to correct for breathing and body motion).

  11. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics.

    PubMed

    Kojima, Yukio; Kawamura, Jun; Fukui, Hisao

    2012-10-01

    Miniscrews placed in bone have been used as orthodontic anchorage in extraction space closure with sliding mechanics. The movement patterns of the teeth depend on the force directions. To move the teeth in a desired pattern, the appropriate direction of force must be selected. The purpose of this article is to clarify the relationship between force directions and movement patterns. By using the finite element method, orthodontic movements were simulated based on the remodeling law of the alveolar bone. The power arm length and the miniscrew position were varied to change the force directions. When the power arm was lengthened, rotation of the entire maxillary dentition decreased. The posterior teeth were effective for preventing rotation of the anterior teeth through an archwire. In cases of a high position of a miniscrew, bodily tooth movement was almost achieved. The vertical component of the force produced intrusion or extrusion of the entire dentition. Within the limits of the method, the mechanical simulations demonstrated the effect of force direction on movement patterns. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  13. Movement and spatial proximity patterns of rangeland-raised Raramuri Criollo cow-calf pairs

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare movement patterns of nursing vs. nonnursing mature cows and to characterize cow-calf proximity patterns in two herds of Raramuri Criollo cattle. Herds grazed rangeland pastures in southern New Mexico (4355 ha) and west-central Chihuahua, Mexico (633 ha)'' A...

  14. Reorganization of finger coordination patterns through motor exploration in individuals after stroke.

    PubMed

    Ranganathan, Rajiv

    2017-09-11

    Impairment of hand and finger function after stroke is common and affects the ability to perform activities of daily living. Even though many of these coordination deficits such as finger individuation have been well characterized, it is critical to understand how stroke survivors learn to explore and reorganize their finger coordination patterns for optimizing rehabilitation. In this study, I examine the use of a body-machine interface to assess how participants explore their movement repertoire, and how this changes with continued practice. Ten participants with chronic stroke wore a data glove and the finger joint angles were mapped on to the position of a cursor on a screen. The task of the participants was to move the cursor back and forth between two specified targets on a screen. Critically, the map between the finger movements and cursor motion was altered so that participants sometimes had to generate coordination patterns that required finger individuation. There were two phases to the experiment - an initial assessment phase on day 1, followed by a learning phase (days 2-5) where participants trained to reorganize their coordination patterns. Participants showed difficulty in performing tasks which had maps that required finger individuation, and the degree to which they explored their movement repertoire was directly related to clinical tests of hand function. However, over four sessions of practice, participants were able to learn to reorganize their finger movement coordination pattern and improve their performance. Moreover, training also resulted in improvements in movement repertoire outside of the context of the specific task during free exploration. Stroke survivors show deficits in movement repertoire in their paretic hand, but facilitating movement exploration during training can increase the movement repertoire. This suggests that exploration may be an important element of rehabilitation to regain optimal function.

  15. Absent movement-related cortical potentials in children with primary motor stereotypies.

    PubMed

    Houdayer, Elise; Walthall, Jessica; Belluscio, Beth A; Vorbach, Sherry; Singer, Harvey S; Hallett, Mark

    2014-08-01

    The underlying pathophysiologic mechanism for complex motor stereotypies in children is unknown, with hypotheses ranging from an arousal to a motor control disorder. Movement-related cortical potentials (MRCPs), representing the activation of cerebral areas involved in the generation of movements, precede and accompany self-initiated voluntary movements. The goal of this study was to compare cerebral activity associated with stereotypies to that seen with voluntary movements in children with primary complex motor stereotypies. Electroencephalographic (EEG) activity synchronized with video recording was recorded in 10 children diagnosed with primary motor stereotypies and 7 controls. EEG activity related to stereotypies and self-paced arm movements were analyzed for presence or absence of early or late MRCP, a steep negativity beginning about 1 second before the onset of a voluntary movement. Early MRCPs preceded self-paced arm movements in 8 of 10 children with motor stereotypies and in 6 of 7 controls. Observed MRCPs did not differ between groups. No MRCP was identified before the appearance of a complex motor stereotypy. Unlike voluntary movements, stereotypies are not preceded by MRCPs. This indicates that premotor areas are likely not involved in the preparation of these complex movements and suggests that stereotypies are initiated by mechanisms different from voluntary movements. Further studies are required to determine the site of the motor control abnormality within cortico-striatal-thalamo-cortical pathways and to identify whether similar findings would be found in children with secondary stereotypies. © 2013 International Parkinson and Movement Disorder Society.

  16. Single trial detection of hand poses in human ECoG using CSP based feature extraction.

    PubMed

    Kapeller, C; Schneider, C; Kamada, K; Ogawa, H; Kunii, N; Ortner, R; Pruckl, R; Guger, C

    2014-01-01

    Decoding brain activity of corresponding highlevel tasks may lead to an independent and intuitively controlled Brain-Computer Interface (BCI). Most of today's BCI research focuses on analyzing the electroencephalogram (EEG) which provides only limited spatial and temporal resolution. Derived electrocorticographic (ECoG) signals allow the investigation of spatially highly focused task-related activation within the high-gamma frequency band, making the discrimination of individual finger movements or complex grasping tasks possible. Common spatial patterns (CSP) are commonly used for BCI systems and provide a powerful tool for feature optimization and dimensionality reduction. This work focused on the discrimination of (i) three complex hand movements, as well as (ii) hand movement and idle state. Two subjects S1 and S2 performed single `open', `peace' and `fist' hand poses in multiple trials. Signals in the high-gamma frequency range between 100 and 500 Hz were spatially filtered based on a CSP algorithm for (i) and (ii). Additionally, a manual feature selection approach was tested for (i). A multi-class linear discriminant analysis (LDA) showed for (i) an error rate of 13.89 % / 7.22 % and 18.42 % / 1.17 % for S1 and S2 using manually / CSP selected features, where for (ii) a two class LDA lead to a classification error of 13.39 % and 2.33 % for S1 and S2, respectively.

  17. Two Dimensional Movement Patterns of Juvenile Winter Run and Late Fall Run Chinook Salmon at the Fremont Weir, Sacramento River, CA

    DTIC Science & Technology

    2017-07-01

    ER D C/ EL T R- 17 -1 0 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...default. ERDC/EL TR-17-10 July 2017 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...Sacramento River, smaller winter- run Chinook and larger late-fall- run Chinook salmon were tagged and released into a 2D telemetry array dur- ing the

  18. Detection of EEG-patterns associated with real and imaginary movements using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.

    2018-02-01

    Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.

  19. The stoichiometry of peatlands

    NASA Astrophysics Data System (ADS)

    Moore, Tim

    2017-04-01

    Stoichiometric principles have been developed and successfully applied to freshwater and marine ecosystems, which are characterized by short-lived, structurally simple organisms, simple food webs and an environment which allows rapid movement of water and elements. The application has been less successful in peatlands, and other terrestrial ecosystems: not surprising given their long-lived, structurally complex organisms, slow rates of organic matter decomposition, complex food webs and low hydraulic conductivities slowing water and element movement. I examine some aspects of what we know about stoichiometry in peatlands, especially involving nutrients such as C, N, P, K, Ca and Mg. I follow the cascade of stoichiometry from peatland plants through litter and into decomposing peat, drawing upon data from the Mer Bleue peatland and peatlands in Ontario. There are consistent patterns in stoichiometries, such as C:N, N:P and C:P across diverse peatlands, whereas patterns involving K, Ca and Mg show greater variability. Most of the changes in stoichiometry occur in the early stages of decomposition, from Von Post values 1 through 4. Peatlands are affected by disturbances, such as elevated atmospheric deposition of N and P, and I look at how these changes affect stoichiometric relationships. Finally, I present data on the changes in the stoichiometry of C, H and O, from plants through peat to coal beds. I conclude that while ecological stoichiometry in peatlands is not as 'simple' as in aquatic ecosystems, it offers contributions to our understanding of how peatlands function and respond to disturbance.

  20. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    PubMed

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PRINCIPLES AND PATTERNS OF BAT MOVEMENTS: FROM AERODYNAMICS TO ECOLOGY

    PubMed Central

    Voigt, Christian C.; Frick, Winifred F.; Holderied, Marc W.; Holland, Richard; Kerth, Gerald; Mello, Marco A. R.; Plowright, Raina K.; Swartz, Sharon; Yovel, Yossi

    2018-01-01

    Movement ecology as an integrative discipline has advanced associated fields because it presents not only a conceptual framework for understanding movement principles but also helps formulate predictions about the consequences of movements for animals and their environments. Here, we synthesize recent studies on principles and patterns of bat movements in context of the movement ecology paradigm. The motion capacity of bats is defined by their highly articulated, flexible wings. Power production during flight follows a U-shaped curve in relation to speed in bats yet, in contrast to birds, bats use mostly exogenous nutrients for sustained flight. The navigation capacity of most bats is dominated by the echolocation system, yet other sensory modalities, including an iron-based magnetic sense, may contribute to navigation depending on a bat’s familiarity with the terrain. Patterns derived from these capacities relate to antagonistic and mutualistic interactions with food items. The navigation capacity of bats may influence their sociality, in particular, the extent of group foraging based on eavesdropping on conspecifics’ echolocation calls. We infer that understanding the movement ecology of bats within the framework of the movement ecology paradigm provides new insights into ecological processes mediated by bats, from ecosystem services to diseases. PMID:29861509

  2. Applying Movement Ecology to Marine Animals with Complex Life Cycles.

    PubMed

    Allen, Richard M; Metaxas, Anna; Snelgrove, Paul V R

    2018-01-03

    Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.

  3. Applying Movement Ecology to Marine Animals with Complex Life Cycles

    NASA Astrophysics Data System (ADS)

    Allen, Richard M.; Metaxas, Anna; Snelgrove, Paul V. R.

    2018-01-01

    Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.

  4. A Systematic Survey of Expression and Function of Zebrafish frizzled Genes

    PubMed Central

    Nikaido, Masataka; Law, Edward W. P.; Kelsh, Robert N.

    2013-01-01

    Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation. PMID:23349976

  5. Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement.

    PubMed

    Blanford, Justine I; Huang, Zhuojie; Savelyev, Alexander; MacEachren, Alan M

    2015-01-01

    Capturing human movement patterns across political borders is difficult and this difficulty highlights the need to investigate alternative data streams. With the advent of smart phones and the ability to attach accurate coordinates to Twitter messages, users leave a geographic digital footprint of their movement when posting tweets. In this study we analyzed 10 months of geo-located tweets for Kenya and were able to capture movement of people at different temporal (daily to periodic) and spatial (local, national to international) scales. We were also able to capture both long and short distances travelled, highlighting regional connections and cross-border movement between Kenya and the surrounding countries. The findings from this study has broad implications for studying movement patterns and mapping inter/intra-region movement dynamics.

  6. Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement

    PubMed Central

    Blanford, Justine I.; Huang, Zhuojie; Savelyev, Alexander; MacEachren, Alan M.

    2015-01-01

    Capturing human movement patterns across political borders is difficult and this difficulty highlights the need to investigate alternative data streams. With the advent of smart phones and the ability to attach accurate coordinates to Twitter messages, users leave a geographic digital footprint of their movement when posting tweets. In this study we analyzed 10 months of geo-located tweets for Kenya and were able to capture movement of people at different temporal (daily to periodic) and spatial (local, national to international) scales. We were also able to capture both long and short distances travelled, highlighting regional connections and cross-border movement between Kenya and the surrounding countries. The findings from this study has broad implications for studying movement patterns and mapping inter/intra-region movement dynamics. PMID:26086772

  7. Gaze shifts and fixations dominate gaze behavior of walking cats

    PubMed Central

    Rivers, Trevor J.; Sirota, Mikhail G.; Guttentag, Andrew I.; Ogorodnikov, Dmitri A.; Shah, Neet A.; Beloozerova, Irina N.

    2014-01-01

    Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5 m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body’s speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats’ gaze behavior during all locomotor tasks, jointly occupying 62–84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior “gaze stepping”. Each gaze shift took gaze to a site approximately 75–80 cm in front of the cat, which the cat reached in 0.7–1.2 s and 1.1–1.6 strides. Constant gaze occupied only 5–21% of the time cats spent looking at the walking surface. PMID:24973656

  8. Static hand gesture recognition from a video

    NASA Astrophysics Data System (ADS)

    Rokade, Rajeshree S.; Doye, Dharmpal

    2011-10-01

    A sign language (also signed language) is a language which, instead of acoustically conveyed sound patterns, uses visually transmitted sign patterns to convey meaning- "simultaneously combining hand shapes, orientation and movement of the hands". Sign languages commonly develop in deaf communities, which can include interpreters, friends and families of deaf people as well as people who are deaf or hard of hearing themselves. In this paper, we proposed a novel system for recognition of static hand gestures from a video, based on Kohonen neural network. We proposed algorithm to separate out key frames, which include correct gestures from a video sequence. We segment, hand images from complex and non uniform background. Features are extracted by applying Kohonen on key frames and recognition is done.

  9. Spatial and temporal movement dynamics of brook Salvelinus fontinalis and brown trout Salmo trutta

    USGS Publications Warehouse

    Davis, L.A.; Wagner, Tyler; Barton, Meredith L.

    2015-01-01

    Native eastern brook trout Salvelinus fontinalis and naturalized brown trout Salmo trutta occur sympatrically in many streams across the brook trout’s native range in the eastern United States. Understanding within- among-species variability in movement, including correlates of movement, has implications for management and conservation. We radio tracked 55 brook trout and 45 brown trout in five streams in a north-central Pennsylvania, USA watershed to quantify the movement of brook trout and brown trout during the fall and early winter to (1) evaluate the late-summer, early winter movement patterns of brook trout and brown trout, (2) determine correlates of movement and if movement patterns varied between brook trout and brown trout, and (3) evaluate genetic diversity of brook trout within and among study streams, and relate findings to telemetry-based observations of movement. Average total movement was greater for brown trout (mean ± SD = 2,924 ± 4,187 m) than for brook trout (mean ± SD = 1,769 ± 2,194 m). Although there was a large amount of among-fish variability in the movement of both species, the majority of movement coincided with the onset of the spawning season, and a threshold effect was detected between stream flow and movement: where movement increased abruptly for both species during positive flow events. Microsatellite analysis of brook trout revealed consistent findings to those found using radio-tracking, indicating a moderate to high degree of gene flow among brook trout populations. Seasonal movement patterns and the potential for relatively large movements of brook and brown trout highlight the importance of considering stream connectivity when restoring and protecting fish populations and their habitats.

  10. Agreement Between Visual Assessment and 2-Dimensional Analysis During Jump Landing Among Healthy Female Athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-04-01

      Altered movement patterns, including increased frontal-plane knee movement and decreased sagittal-plane hip and knee movement, have been associated with several knee disorders. Nevertheless, the ability of clinicians to visually detect such altered movement patterns during high-speed athletic tasks is relatively unknown.   To explore the association between visual assessment and 2-dimensional (2D) analysis of frontal-plane knee movement and sagittal-plane hip and knee movement during a jump-landing task among healthy female athletes.   Cross-sectional study.   Gymnasiums of participating volleyball teams.   A total of 39 healthy female volleyball players (age = 21.0 ± 5.2 years, height = 172.0 ± 8.6 cm, mass = 64.2 ± 7.2 kg) from Divisions I and II of the Israeli Volleyball Association.   Frontal-plane knee movement and sagittal-plane hip and knee movement during jump landing were visually rated as good, moderate, or poor based on previously established criteria. Frontal-plane knee excursion and sagittal-plane hip and knee excursions were measured using free motion-analysis software and compared among athletes with different visual ratings of the corresponding movements.   Participants with different visual ratings of frontal-plane knee movement displayed differences in 2D frontal-plane knee excursion ( P < .01), whereas participants with different visual ratings of sagittal-plane hip and knee movement displayed differences in 2D sagittal-plane hip and knee excursions ( P < .01).   Visual ratings of frontal-plane knee movement and sagittal-plane hip and knee movement were associated with differences in the corresponding 2D hip and knee excursions. Visual rating of these movements may serve as an initial screening tool for detecting altered movement patterns during jump landings.

  11. Movement and Orientation Decision Modeling of Rhyzopertha dominica (Coleoptera: Bostrichidae) in the Grain Mass.

    PubMed

    Cordeiro, Erick M G; Campbell, James F; Phillips, Thomas W

    2016-04-01

    Grain stored in bins is initially a relatively homogenous resource patch for stored-product insects, but over time, spatial pattern in insect distribution can form, due in part to insect movement patterns. However, the factors that influence stored-product insect movement patterns in grain are not well-understood. This research focused on the movement of the lesser grain borer, Rhyzopertha dominica (F.), within a simulated wheat grain mass (vertical monolayer of wheat) and the identification of factors that contribute to overall and upward movement (age since adult emergence from an infested kernel [1, 7, and 14 d], sex, strain, and different levels of environment quality). We also used the model selection approach to select the most relevant factors and determine the relationships among them. Three-week-old adults tended to stay closer to the surface compared with 1- or 2-wk-old insects. Also, females tended to be more active and to explore a larger area compared with males. Explored area and daily displacement were also significantly strain-dependent, and increasing grain infestation level decreased daily displacement and explored area. Variation in movement pattern is likely to influence the formation of spatial pattern and affect probability to disperse. Understanding movement behavior within a grain bin is crucial to designing better strategies to implement and interpret monitoring programs and to target control tactics. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  12. Movement Patterns, Social Dynamics, and the Evolution of Cooperation

    PubMed Central

    Smaldino, Paul E.; Schank, Jeffrey C.

    2012-01-01

    The structure of social interactions influences many aspects of social life, including the spread of information and behavior, and the evolution of social phenotypes. After dispersal, organisms move around throughout their lives, and the patterns of their movement influence their social encounters over the course of their lifespan. Though both space and mobility are known to influence social evolution, there is little analysis of the influence of specific movement patterns on evolutionary dynamics. We explored the effects of random movement strategies on the evolution of cooperation using an agent-based prisoner’s dilemma model with mobile agents. This is the first systematic analysis of a model in which cooperators and defectors can use different random movement strategies, which we chose to fall on a spectrum between highly exploratory and highly restricted in their search tendencies. Because limited dispersal and restrictions to local neighborhood size are known to influence the ability of cooperators to effectively assort, we also assessed the robustness of our findings with respect to dispersal and local capacity constraints. We show that differences in patterns of movement can dramatically influence the likelihood of cooperator success, and that the effects of different movement patterns are sensitive to environmental assumptions about offspring dispersal and local space constraints. Since local interactions implicitly generate dynamic social interaction networks, we also measured the average number of unique and total interactions over a lifetime and considered how these emergent network dynamics helped explain the results. This work extends what is known about mobility and the evolution of cooperation, and also has general implications for social models with randomly moving agents. PMID:22838026

  13. 24 CFR 570.456 - Ineligible activities and limitations on eligible activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... relocation of a plant or facility from one area to another, if it is demonstrated to HUD's satisfaction that... has been a significant current pattern of movement, to areas reasonably proximate, of jobs of the... significant pattern of job movement and the likelihood of continuation of such a pattern has been from a...

  14. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515

  15. Inter-rater reliability for movement pattern analysis (MPA): measuring patterning of behaviors versus discrete behavior counts as indicators of decision-making style

    PubMed Central

    Connors, Brenda L.; Rende, Richard; Colton, Timothy J.

    2014-01-01

    The unique yield of collecting observational data on human movement has received increasing attention in a number of domains, including the study of decision-making style. As such, interest has grown in the nuances of core methodological issues, including the best ways of assessing inter-rater reliability. In this paper we focus on one key topic – the distinction between establishing reliability for the patterning of behaviors as opposed to the computation of raw counts – and suggest that reliability for each be compared empirically rather than determined a priori. We illustrate by assessing inter-rater reliability for key outcome measures derived from movement pattern analysis (MPA), an observational methodology that records body movements as indicators of decision-making style with demonstrated predictive validity. While reliability ranged from moderate to good for raw counts of behaviors reflecting each of two Overall Factors generated within MPA (Assertion and Perspective), inter-rater reliability for patterning (proportional indicators of each factor) was significantly higher and excellent (ICC = 0.89). Furthermore, patterning, as compared to raw counts, provided better prediction of observable decision-making process assessed in the laboratory. These analyses support the utility of using an empirical approach to inform the consideration of measuring patterning versus discrete behavioral counts of behaviors when determining inter-rater reliability of observable behavior. They also speak to the substantial reliability that may be achieved via application of theoretically grounded observational systems such as MPA that reveal thinking and action motivations via visible movement patterns. PMID:24999336

  16. Inter-rater reliability for movement pattern analysis (MPA): measuring patterning of behaviors versus discrete behavior counts as indicators of decision-making style.

    PubMed

    Connors, Brenda L; Rende, Richard; Colton, Timothy J

    2014-01-01

    The unique yield of collecting observational data on human movement has received increasing attention in a number of domains, including the study of decision-making style. As such, interest has grown in the nuances of core methodological issues, including the best ways of assessing inter-rater reliability. In this paper we focus on one key topic - the distinction between establishing reliability for the patterning of behaviors as opposed to the computation of raw counts - and suggest that reliability for each be compared empirically rather than determined a priori. We illustrate by assessing inter-rater reliability for key outcome measures derived from movement pattern analysis (MPA), an observational methodology that records body movements as indicators of decision-making style with demonstrated predictive validity. While reliability ranged from moderate to good for raw counts of behaviors reflecting each of two Overall Factors generated within MPA (Assertion and Perspective), inter-rater reliability for patterning (proportional indicators of each factor) was significantly higher and excellent (ICC = 0.89). Furthermore, patterning, as compared to raw counts, provided better prediction of observable decision-making process assessed in the laboratory. These analyses support the utility of using an empirical approach to inform the consideration of measuring patterning versus discrete behavioral counts of behaviors when determining inter-rater reliability of observable behavior. They also speak to the substantial reliability that may be achieved via application of theoretically grounded observational systems such as MPA that reveal thinking and action motivations via visible movement patterns.

  17. Animal perception of seasonal thresholds: changes in elephant movement in relation to rainfall patterns.

    PubMed

    Birkett, Patricia J; Vanak, Abi T; Muggeo, Vito M R; Ferreira, Salamon M; Slotow, Rob

    2012-01-01

    The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal's behaviour, which contributes to an understanding of species' responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007-2009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal's perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions based on convention or common practice.

  18. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    PubMed Central

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-01-01

    Understanding the spatio-temporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well-characterized1-7 but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here, based on analyses of 9,604 hemagglutinin sequences of human seasonal influenza viruses from 2000–2012, we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses. While genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast (E-SE) Asia, genetic variants of A/H1N1 and B viruses persisted across multiple seasons and exhibited complex global dynamics with E-SE Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as likely drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology and human behavior. PMID:26053121

  19. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    NASA Astrophysics Data System (ADS)

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Klimov, Alexander; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-07-01

    Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.

  20. Absent movement-related cortical potentials in children with primary motor stereotypies

    PubMed Central

    Houdayer, Elise; Walthall, Jessica; Belluscio, Beth A.; Vorbach, Sherry; Singer, Harvey S.; Hallett, Mark

    2013-01-01

    Background The underlying pathophysiologic mechanism for complex motor stereotypies in children is unknown with hypotheses ranging from an arousal to a motor control disorder. Movement-related cortical potentials (MRCPs), representing the activation of cerebral areas involved in the generation of movements, precede and accompany self-initiated voluntary movements. The goal of this study was to compare cerebral activity associated with stereotypies to that seen with voluntary movements in children with primary complex motor stereotypies. Methods Electroencephalographic (EEG) activity synchronized with video recording was recorded in 10 children diagnosed with primary motor stereotypies and 7 controls. EEG activity related to stereotypies and self-paced arm movements were analyzed for presence or absence of early or late MRCP, a steep negativity beginning about one second before the onset of a voluntary movement. Results Early MRCPs preceded self-paced arm movements in 8 out of 10 children with motor stereotypies and in 6 out of 7 controls. Observed MRCPs did not differ between groups. No MRCP was identified before the appearance of a complex motor stereotypy. Conclusions Unlike voluntary movements, stereotypies are not preceded by MRCPs. This indicates that premotor areas are likely not involved in the preparation of these complex movements and suggests that stereotypies are initiated by mechanisms different from voluntary movements. Further studies are required to determine the site of the motor control abnormality within cortico-striatal-thalamo-cortical pathways and to identify whether similar findings would be found in children with secondary stereotypies. PMID:24259275

  1. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4

    PubMed Central

    Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso

    2009-01-01

    Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668

  2. Perception of animacy in dogs and humans.

    PubMed

    Abdai, Judit; Ferdinandy, Bence; Terencio, Cristina Baño; Pogány, Ákos; Miklósi, Ádám

    2017-06-01

    Humans have a tendency to perceive inanimate objects as animate based on simple motion cues. Although animacy is considered as a complex cognitive property, this recognition seems to be spontaneous. Researchers have found that young human infants discriminate between dependent and independent movement patterns. However, quick visual perception of animate entities may be crucial to non-human species as well. Based on general mammalian homology, dogs may possess similar skills to humans. Here, we investigated whether dogs and humans discriminate similarly between dependent and independent motion patterns performed by geometric shapes. We projected a side-by-side video display of the two patterns and measured looking times towards each side, in two trials. We found that in Trial 1, both dogs and humans were equally interested in the two patterns, but in Trial 2 of both species, looking times towards the dependent pattern decreased, whereas they increased towards the independent pattern. We argue that dogs and humans spontaneously recognized the specific pattern and habituated to it rapidly, but continued to show interest in the 'puzzling' pattern. This suggests that both species tend to recognize inanimate agents as animate relying solely on their motions. © 2017 The Author(s).

  3. Immediate Effects of a Single Session of Motor Skill Training on the Lumbar Movement Pattern During a Functional Activity in People With Low Back Pain: A Repeated-Measures Study.

    PubMed

    Marich, Andrej V; Lanier, Vanessa M; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R

    2018-04-06

    People with low back pain (LBP) may display an altered lumbar movement pattern of early lumbar motion compared to people with healthy backs. Modifying this movement pattern during a clinical test decreases pain. It is unknown whether similar effects would be seen during a functional activity. The objective of this study is was to examine the lumbar movement patterns before and after motor skill training, effects on pain, and characteristics that influenced the ability to modify movement patterns. The design consisted of a repeated-measures study examining early-phase lumbar excursion in people with LBP during a functional activity test. Twenty-six people with chronic LBP received motor skill training, and 16 people with healthy backs were recruited as a reference standard. Twenty minutes of motor skill training to decrease early-phase lumbar excursion during the performance of a functional activity were used as a treatment intervention. Early-phase lumbar excursion was measured before and after training. Participants verbally reported increased pain, decreased pain, or no change in pain during performance of the functional activity test movement in relation to their baseline pain. The characteristics of people with LBP that influenced the ability to decrease early-phase lumbar excursion were examined. People with LBP displayed greater early-phase lumbar excursion before training than people with healthy backs (LBP: mean = 11.2°, 95% CI = 9.3°-13.1°; healthy backs: mean = 7.1°, 95% CI = 5.8°-8.4°). Following training, the LBP group showed a decrease in the amount of early-phase lumbar excursion (mean change = 4.1°, 95% CI = 2.4°-5.8°); 91% of people with LBP reported that their pain decreased from baseline following training. The longer the duration of LBP (β = - 0.22) and the more early-phase lumbar excursion before training (β = - 0.82), the greater the change in early-phase lumbar excursion following training. The long-term implications of modifying the movement pattern and whether the decrease in pain attained was clinically significant are unknown. People with LBP were able to modify their lumbar movement pattern and decrease their pain with the movement pattern within a single session of motor skill training.

  4. Pain intensity attenuates movement control of the lumbar spine in low back pain.

    PubMed

    Bauer, C M; Rast, F M; Ernst, M J; Oetiker, S; Meichtry, A; Kool, J; Rissanen, S M; Suni, J H; Kankaanpää, M

    2015-12-01

    Pain intensity attenuates muscular activity, proprioception, and tactile acuity, with consequent changes of joint kinematics. People suffering from low back pain (LBP) frequently show movement control impairments of the lumbar spine in sagittal plane. This cross-sectional, observational study investigated if the intensity of LBP attenuates lumbar movement control. The hypothesis was that lumbar movement control becomes more limited with increased pain intensity. The effect of LBP intensity, measured with a numeric rating scale (NRS), on lumbar movement control was tested using three movement control tests. The lumbar range of motion (ROM), the ratio of lumbar and hip ROM as indicators of direction specific movement control, and the recurrence and determinism of repetitive lumbar movement patterns were assessed in ninety-four persons suffering from LBP of different intensity and measured with an inertial measurement unit system. Generalized linear models were fitted for each outcome. Lumbar ROM (+ 0.03°, p = 0.24) and ratio of lumbar and hip ROM (0.01, p = 0.84) were unaffected by LBP intensity. Each one point increase on the NRS resulted in a decrease of recurrence and determinism of lumbar movement patterns (-3.11 to -0.06, p ⩽ 0.05). Our results indicate changes in movement control in people suffering from LBP. Whether decreased recurrence and determinism of lumbar movement patterns are intensifiers of LBP intensity or a consequence thereof should be addressed in a future prospective study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Inhibition during response preparation is sensitive to response complexity

    PubMed Central

    Saks, Dylan; Hoang, Timothy; Ivry, Richard B.

    2015-01-01

    Motor system excitability is transiently suppressed during the preparation of movement. This preparatory inhibition is hypothesized to facilitate response selection and initiation. Given that demands on selection and initiation processes increase with movement complexity, we hypothesized that complexity would influence preparatory inhibition. To test this hypothesis, we probed corticospinal excitability during a delayed-response task in which participants were cued to prepare right- or left-hand movements of varying complexity. Single-pulse transcranial magnetic stimulation was applied over right primary motor cortex to elicit motor evoked potentials (MEPs) from the first dorsal interosseous (FDI) of the left hand. MEP suppression was greater during the preparation of responses involving coordination of the FDI and adductor digiti minimi relative to easier responses involving only the FDI, independent of which hand was cued to respond. In contrast, this increased inhibition was absent when the complex responses required sequential movements of the two muscles. Moreover, complexity did not influence the level of inhibition when the response hand was fixed for the trial block, regardless of whether the complex responses were performed simultaneously or sequentially. These results suggest that preparatory inhibition contributes to response selection, possibly by suppressing extraneous movements when responses involve the simultaneous coordination of multiple effectors. PMID:25717168

  6. Fundamental movement skills in preschoolers: a randomized controlled trial targeting object control proficiency.

    PubMed

    Donath, L; Faude, O; Hagmann, S; Roth, R; Zahner, L

    2015-11-01

    Adequately developed fundamental movement skills, particularly object control dimensions, are considered essential to learn more complex movement patterns and to increase the likelihood to successfully participate in organized and non-organized sports during later years. Thus, the present randomized controlled trial aimed at improving object control dimensions at an early state in a kindergarten setting. Catching, throwing, kicking, rolling and stationary dribbling were assessed via gross motor development 2 (TGMD-2) testing in 41 normally developed preschoolers. On a cluster-randomized basis [strata: age, sex and body mass index (BMI)], three kindergartens were randomly assigned to an intervention group (n = 22, INT, age: 4.6 ± 1.0 years; BMI: 16.2 ± 1.1 kg/m(2) ) and three to a control group (n = 19, CON: age: 4.5 ± 1.2 years; BMI: 16.8 ± 1.2 kg/m(2) ). Twelve structured training sessions were given within 6 weeks (12 sessions). The total training volume was 330 min. Moderate time × group interaction were observed for the total sum score (Δ+22%, P = 0.05) and dribbling (Δ+41%, P = 0.002). Adjusting for baseline differences analyses of covariance did not affect these results. Interestingly, likely to most likely practically worthwhile effects were detected for the total sum score, catching and dribbling. Object control dimensions such as dribbling and catching that apparently rely on rhythmical movement patterns and anticipatory eye-hand coordination seem to benefit from short-term object control training. These skills are considered important for successful team-sport participation and appropriate sportive motor development. © 2015 John Wiley & Sons Ltd.

  7. Moving Object Detection Using a Parallax Shift Vector Algorithm

    NASA Astrophysics Data System (ADS)

    Gural, Peter S.; Otto, Paul R.; Tedesco, Edward F.

    2018-07-01

    There are various algorithms currently in use to detect asteroids from ground-based observatories, but they are generally restricted to linear or mildly curved movement of the target object across the field of view. Space-based sensors in high inclination, low Earth orbits can induce significant parallax in a collected sequence of images, especially for objects at the typical distances of asteroids in the inner solar system. This results in a highly nonlinear motion pattern of the asteroid across the sensor, which requires a more sophisticated search pattern for detection processing. Both the classical pattern matching used in ground-based asteroid search and the more sensitive matched filtering and synthetic tracking techniques, can be adapted to account for highly complex parallax motion. A new shift vector generation methodology is discussed along with its impacts on commonly used detection algorithms, processing load, and responsiveness to asteroid track reporting. The matched filter, template generator, and pattern matcher source code for the software described herein are available via GitHub.

  8. Analysis of Pelvis-Thorax Coordination Patterns of Professional and Amateur Golfers during Golf Swing.

    PubMed

    Sim, Taeyong; Yoo, Hakje; Choi, Ahnryul; Lee, Ki Young; Choi, Mun-Taek; Lee, Soeun; Mun, Joung Hwan

    2017-01-01

    The aim of this research was to quantify the coordination pattern between thorax and pelvis during a golf swing. The coordination patterns were calculated using vector coding technique, which had been applied to quantify the coordination changes in coupling angle (γ) between two different segments. For this, fifteen professional and fifteen amateur golfers who had no significant history of musculoskeletal injuries. There was no significant difference in coordination patterns between the two groups for rotation motion during backswing (p = 0.333). On the other hand, during the downswing phase, there were significant differences between professional and amateur groups in all motions (flexion/extension: professional [γ] = 187.8°, amateur [γ] = 167.4°; side bending: professional [γ] = 288.4°, amateur [γ] = 245.7°; rotation: professional [γ] = 232.0°, amateur [γ] = 229.5°). These results are expected to be a discriminating measure to assess complex coordination of golfers' trunk movements and preliminary study for interesting comparison by golf skilled levels.

  9. Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles.

    PubMed

    Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle

    2018-05-01

    Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.

  10. Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry

    USGS Publications Warehouse

    Chase, Nathan M.; Caldwell, Colleen A.; Carleton, Scott A.; Gould, William R.; Hobbs, James A.

    2015-01-01

    Natal origin and dispersal potential of the federally threatened Pecos bluntnose shiner (Notropis simus pecosensis) were successfully characterized using otolith microchemistry and swimming performance trials. Strontium isotope ratios (87Sr:86Sr) of otoliths within the resident plains killifish (Fundulus zebrinus) were successfully used as a surrogate for strontium isotope ratios in water and revealed three isotopically distinct reaches throughout 297 km of the Pecos River, New Mexico, USA. Two different life history movement patterns were revealed in Pecos bluntnose shiner. Eggs and fry were either retained in upper river reaches or passively dispersed downriver followed by upriver movement during the first year of life, with some fish achieving a minimum movement of 56 km. Swimming ability of Pecos bluntnose shiner confirmed upper critical swimming speeds (Ucrit) as high as 43.8 cm·s−1 and 20.6 body lengths·s−1 in 30 days posthatch fish. Strong swimming ability early in life supports our observations of upriver movement using otolith microchemistry and confirms movement patterns that were previously unknown for the species. Understanding patterns of dispersal of this and other small-bodied fishes using otolith microchemistry may help redirect conservation and management efforts for Great Plains fishes.

  11. Understanding the spatiotemporal pattern of grazing cattle movement

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Jurdak, Raja

    2016-08-01

    Understanding the drivers of animal movement is significant for ecology and biology. Yet researchers have so far been unable to fully understand these drivers, largely due to low data resolution. In this study, we analyse a high-frequency movement dataset for a group of grazing cattle and investigate their spatiotemporal patterns using a simple two-state ‘stop-and-move’ mobility model. We find that the dispersal kernel in the moving state is best described by a mixture exponential distribution, indicating the hierarchical nature of the movement. On the other hand, the waiting time appears to be scale-invariant below a certain cut-off and is best described by a truncated power-law distribution, suggesting that the non-moving state is governed by time-varying dynamics. We explore possible explanations for the observed phenomena, covering factors that can play a role in the generation of mobility patterns, such as the context of grazing environment, the intrinsic decision-making mechanism or the energy status of different activities. In particular, we propose a new hypothesis that the underlying movement pattern can be attributed to the most probable observable energy status under the maximum entropy configuration. These results are not only valuable for modelling cattle movement but also provide new insights for understanding the underlying biological basis of grazing behaviour.

  12. Effects of practice schedule and task specificity on the adaptive process of motor learning.

    PubMed

    Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar

    2017-10-01

    This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.

    PubMed

    Shin, Henry; Watkins, Zach; Hu, Xiaogang

    2017-11-29

    Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to the elbow joint were activated transcutanously using a programmable stimulator, and the resultant finger flexion joint angles were recorded using a motion capture system. The individual finger motions averaged across the three joints were analyzed using a cluster analysis, in order to classify the different hand grasp patterns. With low current intensity (<5 mA and 100 µs pulse width) stimulation, our results show that all of our subjects demonstrated a variety of consistent hand grasp patterns including single finger movement and coordinated multi-finger movements. This study provides initial evidence on the feasibility of a proximal nerve stimulation technique in controlling a variety of finger movements and grasp patterns. Our approach could also be developed into a rehabilitative/assistive tool that can result in flexible movements of the fingers.

  14. Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors.

    PubMed

    Benz, Robin A; Boyce, Mark S; Thurfjell, Henrik; Paton, Dale G; Musiani, Marco; Dormann, Carsten F; Ciuti, Simone

    Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas' colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers' groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by creating a scenario with movement predicted as there were no roads, and mapping highways' segments impeding elk connectivity.

  15. Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors

    PubMed Central

    Benz, Robin A.; Boyce, Mark S.; Thurfjell, Henrik; Paton, Dale G.; Musiani, Marco; Dormann, Carsten F.; Ciuti, Simone

    2016-01-01

    Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas’ colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers’ groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by creating a scenario with movement predicted as there were no roads, and mapping highways’ segments impeding elk connectivity. PMID:27657496

  16. Structure-Specific Movement Patterns in Patients With Chronic Low Back Dysfunction Using Lumbar Combined Movement Examination.

    PubMed

    Monie, Aubrey P; Price, Roger I; Lind, Christopher R P; Singer, Kevin P

    2017-06-01

    A test-retest cohort study was conducted to assess the use of a novel computer-aided, combined movement examination (CME) to measure change in low back movement after pain management intervention in 17 cases of lumbar spondylosis. Additionally we desired to use a CME normal reference range (NRR) to compare and contrast movement patterns identified from 3 specific structural pathologic conditions: intervertebral disc, facet joint, and nerve root compression. Computer-aided CME was used before and after intervention, in a cohort study design, to record lumbar range of movement along with pain, disability, and health self-report questionnaires in 17 participants who received image-guided facet, epidural, and/or rhizotomy intervention. In the majority of cases, CME was reassessed after injection together with 2 serial self-reports after an average of 2 and 14 weeks. A minimal clinically important difference of 30% was used to interpret meaningful change in self-reports. A CME NRR (n = 159) was used for comparison with the 17 cases. Post hoc observation included subgrouping cases into 3 discrete pathologic conditions, intervertebral disc, facet dysfunction, and nerve root compression, in order to report intergroup differences in CME movement. Seven of the 17 participants stated that a "combined" movement was their most painful CME direction. Self-report outcome data indicated that 4 participants experienced significant improvement in health survey, 5 improved by ≥30% on low back function, and 8 reported that low back pain was more bothersome than stiffness, 6 of whom achieved the minimal clinically important difference for self-reported pain. Subgrouping of cases into structure-specific groups provided insight to different CME movement patterns. The use of CME assists in identifying atypical lumbar movement relative to an age and sex NRR. Data from this study, exemplified by representative case studies, provide preliminary evidence for distinct intervertebral disc, facet joint, and nerve root compression CME movement patterns in cases of chronic lumbar spondylosis. Copyright © 2017. Published by Elsevier Inc.

  17. Hebbian Plasticity in CPG Controllers Facilitates Self-Synchronization for Human-Robot Handshaking.

    PubMed

    Jouaiti, Melanie; Caron, Lancelot; Hénaff, Patrick

    2018-01-01

    It is well-known that human social interactions generate synchrony phenomena which are often unconscious. If the interaction between individuals is based on rhythmic movements, synchronized and coordinated movements will emerge from the social synchrony. This paper proposes a plausible model of plastic neural controllers that allows the emergence of synchronized movements in physical and rhythmical interactions. The controller is designed with central pattern generators (CPG) based on rhythmic Rowat-Selverston neurons endowed with neuronal and synaptic Hebbian plasticity. To demonstrate the interest of the proposed model, the case of handshaking is considered because it is a very common, both physically and socially, but also, a very complex act in the point of view of robotics, neuroscience and psychology. Plastic CPGs controllers are implemented in the joints of a simulated robotic arm that has to learn the frequency and amplitude of an external force applied to its effector, thus reproducing the act of handshaking with a human. Results show that the neural and synaptic Hebbian plasticity are working together leading to a natural and autonomous synchronization between the arm and the external force even if the frequency is changing during the movement. Moreover, a power consumption analysis shows that, by offering emergence of synchronized and coordinated movements, the plasticity mechanisms lead to a significant decrease in the energy spend by the robot actuators thus generating a more adaptive and natural human/robot handshake.

  18. Encounter success of free-ranging marine predator movements across a dynamic prey landscape.

    PubMed

    Sims, David W; Witt, Matthew J; Richardson, Anthony J; Southall, Emily J; Metcalfe, Julian D

    2006-05-22

    Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.

  19. Looking to Score: The Dissociation of Goal Influence on Eye Movement and Meta-Attentional Allocation in a Complex Dynamic Natural Scene

    PubMed Central

    Taya, Shuichiro; Windridge, David; Osman, Magda

    2012-01-01

    Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’ beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily correlate with eye-movement behavior. PMID:22768058

  20. Effects of instructional focus on learning a classical ballet movement, the pirouette.

    PubMed

    Denardi, Renata Alvares; Corrêa, Umberto Cesar

    2013-01-01

    This study investigated how changes in the focus of instruction might affect the learning by individuals who are not trained dancers of a complex classical ballet movement, the pirouette. Seventy-two volunteer college students were divided into six groups according to the focus of instruction: (1.) head, (2.) arms, (3.) trunk, (4.) knees, (5.) feet, and (6.) controls. In the acquisition phase, all groups performed 160 trials, over 2 consecutive days. At the beginning of each day, they received verbal instruction regarding some of the general principles involved in performance of the pirouette and viewed a video that illustrated those principles. Each group (head, arms, etc., exclusive of controls) was then given specific directions for controlling focus on its body part while performing the movement. After a week, all participants were asked to complete a retention test, with no additional instruction. The trials were videotaped with two cameras (frontally and laterally), and the results were analyzed by 10 specially trained examiners, utilizing Movement Pattern and Error of Performance measures. They revealed that all groups improved in the acquisition phase, and the improvement was maintained in the retention test. No differences were revealed between groups. It was concluded that generalized instruction in basic principles of the movement was more effective than focus on specific body parts in the teaching and learning of the pirouette.

  1. Does common prescription medication affect the rate of orthodontic tooth movement? A systematic review.

    PubMed

    Makrygiannakis, Militiadis A; Kaklamanos, Eleftherios G; Athanasiou, Athanasios E

    2018-03-06

    As the taking of any medication may theoretically affect the complex pathways responsible for periodontal tissue homeostasis and the events leading to orthodontic tooth movement, it is considered important for the orthodontist to be able to identify prospective patients' history and patterns of pharmaceutical consumption. To systematically investigate and appraise the quality of the available evidence regarding the effect of commonly prescribed medications on the rate of orthodontic tooth movement. Search without restrictions in eight databases and hand searching until June 2017. Controlled studies investigating the effect of commonly prescribed medications with emphasis on the rate of orthodontic tooth movement. Following study retrieval and selection, relevant data was extracted and the risk of bias was assessed using the SYRCLE's Risk of Bias Tool. Twenty-seven animal studies, involving various pharmacologic and orthodontic interventions, were finally identified. Most studies were assessed to be at unclear or high risk of bias. The rate of orthodontic tooth movement was shown to increase after the administration of diazepam, Vitamin C and pantoprazole, while simvastatin, atorvastatin, calcium compounds, strontium ranelate, propranolol, losartan, famotidine, cetirizine, and metformin decreased the rate of orthodontic tooth movement. No interference with the rate of orthodontic tooth movement was reported for phenytoin, phenobarbital and zinc compounds, whereas, inconsistent or conflicting effects were noted after the administration of L-thyroxine, lithium compounds, fluoxetine and insulin. The quality of the available evidence was considered at best as low. Commonly prescribed medications may exhibit variable effects on the rate of orthodontic tooth movement. Although the quality of evidence was considered at best as low, raising reservations about the strength of the relevant recommendations, the clinician should be capable of identifying patients taking medications and should take into consideration the possible implications related to the proposed treatment. PROSPERO (CRD42015029130).

  2. The right look for the job: decoding cognitive processes involved in the task from spatial eye-movement patterns.

    PubMed

    Król, Magdalena Ewa; Król, Michał

    2018-02-20

    The aim of the study was not only to demonstrate whether eye-movement-based task decoding was possible but also to investigate whether eye-movement patterns can be used to identify cognitive processes behind the tasks. We compared eye-movement patterns elicited under different task conditions, with tasks differing systematically with regard to the types of cognitive processes involved in solving them. We used four tasks, differing along two dimensions: spatial (global vs. local) processing (Navon, Cognit Psychol, 9(3):353-383 1977) and semantic (deep vs. shallow) processing (Craik and Lockhart, J Verbal Learn Verbal Behav, 11(6):671-684 1972). We used eye-movement patterns obtained from two time periods: fixation cross preceding the target stimulus and the target stimulus. We found significant effects of both spatial and semantic processing, but in case of the latter, the effect might be an artefact of insufficient task control. We found above chance task classification accuracy for both time periods: 51.4% for the period of stimulus presentation and 34.8% for the period of fixation cross presentation. Therefore, we show that task can be to some extent decoded from the preparatory eye-movements before the stimulus is displayed. This suggests that anticipatory eye-movements reflect the visual scanning strategy employed for the task at hand. Finally, this study also demonstrates that decoding is possible even from very scant eye-movement data similar to Coco and Keller, J Vis 14(3):11-11 (2014). This means that task decoding is not limited to tasks that naturally take longer to perform and yield multi-second eye-movement recordings.

  3. Current status and future directions of Lévy walk research

    PubMed Central

    2018-01-01

    ABSTRACT Lévy walks are a mathematical construction useful for describing random patterns of movement with bizarre fractal properties that seem to have no place in biology. Nonetheless, movement patterns resembling Lévy walks have been observed at scales ranging from the microscopic to the ecological. They have been seen in the molecular machinery operating within cells during intracellular trafficking, in the movement patterns of T cells within the brain, in DNA, in some molluscs, insects, fish, birds and mammals, in the airborne flights of spores and seeds, and in the collective movements of some animal groups. Lévy walks are also evident in trace fossils (ichnofossils) – the preserved form of tracks made by organisms that occupied ancient sea beds about 252-66 million years ago. And they are utilised by algae that originated around two billion years ago, and still exist today. In September of 2017, leading researchers from across the life sciences, along with mathematicians and physicists, got together at a Company of Biologists' Workshop to discuss the origins and biological significance of these movement patterns. In this Review the essence of the technical and sometimes heated discussions is distilled and made accessible for all. In just a few pages, the reader is taken from a gentle introduction to the frontiers of a very active field of scientific enquiry. What emerges is a fascinating story of a truly inter-disciplinary scientific endeavour that is seeking to better understand movement patterns occurring across all biological scales. PMID:29326297

  4. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    PubMed Central

    Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan

    2017-01-01

    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909

  5. Quantitative locomotion study of freely swimming micro-organisms using laser diffraction.

    PubMed

    Magnes, Jenny; Susman, Kathleen; Eells, Rebecca

    2012-10-25

    Soil and aquatic microscopic organisms live and behave in a complex three-dimensional environment. Most studies of microscopic organism behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field.(1) We present a novel analytical approach that provides real-time analysis of freely swimming C. elegans in a cuvette without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light through the cuvette. We measure oscillation frequencies for freely swimming nematodes. Analysis of the far-field diffraction patterns reveals clues about the waveforms of the nematodes. Diffraction is the process of light bending around an object. In this case light is diffracted by the organisms. The light waves interfere and can form a diffraction pattern. A far-field, or Fraunhofer, diffraction pattern is formed if the screen-to-object distance is much larger than the diffracting object. In this case, the diffraction pattern can be calculated (modeled) using a Fourier transform.(2) C. elegans are free-living soil-dwelling nematodes that navigate in three dimensions. They move both on a solid matrix like soil or agar in a sinusoidal locomotory pattern called crawling and in liquid in a different pattern called swimming.(3) The roles played by sensory information provided by mechanosensory, chemosensory, and thermosensory cells that govern plastic changes in locomotory patterns and switches in patterns are only beginning to be elucidated.(4) We describe an optical approach to measuring nematode locomotion in three dimensions that does not require a microscope and will enable us to begin to explore the complexities of nematode locomotion under different conditions.

  6. A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns

    PubMed Central

    2016-01-01

    Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist. PMID:27571423

  7. Influence of the Lower Jaw Position on the Running Pattern.

    PubMed

    Maurer, Christian; Stief, Felix; Jonas, Alexander; Kovac, Andrej; Groneberg, David Alexander; Meurer, Andrea; Ohlendorf, Daniela

    2015-01-01

    The effects of manipulated dental occlusion on body posture has been investigated quite often and discussed controversially in the literature. Far less attention has been paid to the influence of dental occlusion position on human movement. If human movement was analysed, it was mostly while walking and not while running. This study was therefore designed to identify the effect of lower jaw positions on running behaviour according to different dental occlusion positions. Twenty healthy young recreational runners (mean age = 33.9±5.8 years) participated in this study. Kinematic data were collected using an eight-camera Vicon motion capture system (VICON Motion Systems, Oxford, UK). Subjects were consecutively prepared with four different dental occlusion conditions in random order and performed five running trials per test condition on a level walkway with their preferred running shoes. Vector based pattern recognition methods, in particular cluster analysis and support vector machines (SVM) were used for movement pattern identification. Subjects exhibited unique movement patterns leading to 18 clusters for the 20 subjects. No overall classification of the splint condition could be observed. Within individual subjects different running patterns could be identified for the four splint conditions. The splint conditions lead to a more symmetrical running pattern than the control condition. The influence of an occlusal splint on running pattern can be confirmed in this study. Wearing a splint increases the symmetry of the running pattern. A more symmetrical running pattern might help to reduce the risk of injuries or help in performance. The change of the movement pattern between the neutral condition and any of the three splint conditions was significant within subjects but not across subjects. Therefore the dental splint has a measureable influence on the running pattern of subjects, however subjects individuality has to be considered when choosing the optimal splint condition for a specific subject.

  8. Tropical deforestation alters hummingbird movement patterns

    PubMed Central

    Hadley, Adam S.; Betts, Matthew G.

    2009-01-01

    Reduced pollination success, as a function of habitat loss and fragmentation, appears to be a global phenomenon. Disruption of pollinator movement is one hypothesis put forward to explain this pattern in pollen limitation. However, the small size of pollinators makes them very difficult to track; thus, knowledge of their movements is largely speculative. Using tiny radio transmitters (0.25 g), we translocated a generalist tropical ‘trap-lining’ hummingbird, the green hermit (Phaethornis guy), across agricultural and forested landscapes to test the hypothesis that movement is influenced by patterns of deforestation. Although, we found no difference in homing times between landscape types, return paths were on average 459±144 m (±s.e.) more direct in forested than agricultural landscapes. In addition, movement paths in agricultural landscapes contained 36±4 per cent more forest than the most direct route. Our findings suggest that this species can circumvent agricultural matrix to move among forest patches. Nevertheless, it is clear that movement of even a highly mobile species is strongly influenced by landscape disturbance. Maintaining landscape connectivity with forest corridors may be important for enhancing movement, and thus in facilitating pollen transfer. PMID:19158031

  9. A new real-time visual assessment method for faulty movement patterns during a jump-landing task.

    PubMed

    Rabin, Alon; Levi, Ran; Abramowitz, Shai; Kozol, Zvi

    2016-07-01

    Determine the interrater reliability of a new real-time assessment of faulty movement patterns during a jump-landing task. Interrater reliability study. Human movement laboratory. 50 healthy females. Assessment included 6 items which were evaluated from a front and a side view. Two Physical Therapy students used a 9-point scale (0-8) to independently rate the quality of movement as good (0-2), moderate (3-5), or poor (6-8). Interrater reliability was expressed by percent agreement and weighted kappa. One examiner rated the quality of movement of 6 subjects as good, 34 subjects as moderate, and 10 subjects as poor. The second examiner rated the quality of movement of 12 subjects as good, 23 subjects as moderate, and 15 subjects as poor. Percent agreement and weighted kappa (95% confidence interval) were 78% and 0.68 (0.51, 0.85), respectively. A new real-time assessment of faulty movement patterns during jump-landing demonstrated adequate interrater reliability. Further study is warranted to validate this method against a motion analysis system, as well as to establish its predictive validity for injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Properties of visual evoked potentials to onset of movement on a television screen.

    PubMed

    Kubová, Z; Kuba, M; Hubacek, J; Vít, F

    1990-08-01

    In 80 subjects the dependence of movement-onset visual evoked potentials on some measures of stimulation was examined, and these responses were compared with pattern-reversal visual evoked potentials to verify the effectiveness of pattern movement application for visual evoked potential acquisition. Horizontally moving vertical gratings were generated on a television screen. The typical movement-onset reactions were characterized by one marked negative peak only, with a peak time between 140 and 200 ms. In all subjects the sufficient stimulus duration for acquisition of movement-onset-related visual evoked potentials was 100 ms; in some cases it was only 20 ms. Higher velocity (5.6 degree/s) produced higher amplitudes of movement-onset visual evoked potentials than did the lower velocity (2.8 degrees/s). In 80% of subjects, the more distinct reactions were found in the leads from lateral occipital areas (in 60% from the right hemisphere), with no correlation to handedness of subjects. Unlike pattern-reversal visual evoked potentials, the movement-onset responses tended to be larger to extramacular stimulation (annular target of 5 degrees-9 degrees) than to macular stimulation (circular target of 5 degrees diameter).

  11. Development of motor speed and associated movements from 5 to 18 years.

    PubMed

    Gasser, Theo; Rousson, Valentin; Caflisch, Jon; Jenni, Oskar G

    2010-03-01

    To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.

  12. Cortical preparatory activity: representation of movement or first cog in a dynamical machine?

    PubMed Central

    Churchland, MM; Cunningham, JP; Kaufman, MT; Ryu, SI; Shenoy, KV

    2010-01-01

    Summary The motor cortices are active during both movement and movement preparation. A common assumption is that preparatory activity constitutes a sub-threshold form of movement activity: a neuron active during rightwards movements becomes modestly active during preparation of a rightwards movement. We asked whether this pattern of activity is in fact observed. We found that it was not: at the level of a single neuron, preparatory tuning was weakly correlated with movement-period tuning. Yet somewhat paradoxically, preparatory tuning could be captured by a preferred direction in an abstract ‘space’ that described the population-level pattern of movement activity. In fact, this relationship accounted for preparatory responses better than did traditional tuning models. These results are expected if preparatory activity provides the initial state of a dynamical system whose evolution produces movement activity. Our results thus suggest that preparatory activity may not represent specific factors, and may instead play a more mechanistic role. PMID:21040842

  13. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.

    PubMed

    Ranganathan, Rajiv; Wang, Rui; Dong, Bo; Biswas, Subir

    2017-11-30

    Movement impairments such as those due to stroke often result in the nervous system adopting atypical movements to compensate for movement deficits. Monitoring these compensatory patterns is critical for improving functional outcomes during rehabilitation. The purpose of this study was to test the feasibility and validity of a wearable sensor system for detecting compensatory trunk kinematics during activities of daily living. Participants with no history of neurological impairments performed reaching and manipulation tasks with their upper extremity, and their movements were recorded by a wearable sensor system and validated using a motion capture system. Compensatory movements of the trunk were induced using a brace that limited range of motion at the elbow. Our results showed that the elbow brace elicited compensatory movements of the trunk during reaching tasks but not manipulation tasks, and that a wearable sensor system with two sensors could reliably classify compensatory movements (~90% accuracy). These results show the potential of the wearable system to assess and monitor compensatory movements outside of a lab setting.

  14. Analysis of the impact of crude oil price fluctuations on China's stock market in different periods-Based on time series network model

    NASA Astrophysics Data System (ADS)

    An, Yang; Sun, Mei; Gao, Cuixia; Han, Dun; Li, Xiuming

    2018-02-01

    This paper studies the influence of Brent oil price fluctuations on the stock prices of China's two distinct blocks, namely, the petrochemical block and the electric equipment and new energy block, applying the Shannon entropy of information theory. The co-movement trend of crude oil price and stock prices is divided into different fluctuation patterns with the coarse-graining method. Then, the bivariate time series network model is established for the two blocks stock in five different periods. By joint analysis of the network-oriented metrics, the key modes and underlying evolutionary mechanisms were identified. The results show that the both networks have different fluctuation characteristics in different periods. Their co-movement patterns are clustered in some key modes and conversion intermediaries. The study not only reveals the lag effect of crude oil price fluctuations on the stock in Chinese industry blocks but also verifies the necessity of research on special periods, and suggests that the government should use different energy policies to stabilize market volatility in different periods. A new way is provided to study the unidirectional influence between multiple variables or complex time series.

  15. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice

    PubMed Central

    Hisatsune, Chihiro; Miyamoto, Hiroyuki; Hirono, Moritoshi; Yamaguchi, Naohide; Sugawara, Takeyuki; Ogawa, Naoko; Ebisui, Etsuko; Ohshima, Toshio; Yamada, Masahisa; Hensch, Takao K.; Hattori, Mitsuharu; Mikoshiba, Katsuhiko

    2013-01-01

    The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway. PMID:24109434

  16. Brownian motion or Lévy walk? Stepping towards an extended statistical mechanics for animal locomotion

    PubMed Central

    Gautestad, Arild O.

    2012-01-01

    Animals moving under the influence of spatio-temporal scaling and long-term memory generate a kind of space-use pattern that has proved difficult to model within a coherent theoretical framework. An extended kind of statistical mechanics is needed, accounting for both the effects of spatial memory and scale-free space use, and put into a context of ecological conditions. Simulations illustrating the distinction between scale-specific and scale-free locomotion are presented. The results show how observational scale (time lag between relocations of an individual) may critically influence the interpretation of the underlying process. In this respect, a novel protocol is proposed as a method to distinguish between some main movement classes. For example, the ‘power law in disguise’ paradox—from a composite Brownian motion consisting of a superposition of independent movement processes at different scales—may be resolved by shifting the focus from pattern analysis at one particular temporal resolution towards a more process-oriented approach involving several scales of observation. A more explicit consideration of system complexity within a statistical mechanical framework, supplementing the more traditional mechanistic modelling approach, is advocated. PMID:22456456

  17. The movement patterns used to rise from a supine position by children with developmental delay and age-related differences in these.

    PubMed

    Hsue, Bih-Jen; Wang, Yun-Er; Chen, Yung-Jung

    2014-09-01

    The purposes of this study were to determine (1) movement patterns and strategies of children with mild to moderate developmental delay (DD) used to rise up and how they differ from those used by age-matched children with typical development (TD), (2) whether the movement patterns differ with age in children with DD, and (3) to determine the developmental sequences for the UE, AX and LE in children with DD and whether they are different from those used by children with TD. Sixty six children with TD and 31 children with DD aged two to six years were recruited. Peabody Developmental Motor Scale II (PDMS-2) was used to determine the motor performance level. The participants were recorded during rising for at least five repetitions. Two trained pediatric physical therapists viewed each video recording and classified the movement patterns of the upper extremities (UE), trunk/axial (AX) and lower extremities (LE) regions using descriptive categories developed by previous researchers. The DD and TD groups were further divided into four subgroups each using a one-year interval. The percentage of occurrence of the each UE, AX and LE movement was determined and compared across subgroups, and between each age-matched pair of TD and DD groups. The results demonstrated that the participants in the TD group clearly followed the proposed developmental sequence and the children with DD followed the developmental sequences but with different maturation speeds and greater variability, especially at the age of three to five years. The most common movement patterns used by the children in each of the DD subgroups were at least one developmental categorical pattern behind those used by the age-matched children with TD before five years old, except for the LE region. In the DD group, the movement patterns had moderate to high correlation with the child's motor performance level, indicating that the children with better motor performances used more developmentally advanced patterns in comparison with those with lower scores. However, besides motor maturity, numerous other intrinsic/extrinsic factors may affect the child's performance of this task. The information obtained in this study would assist therapists when working with the children with DD, so that they can provide individualized treatment rather than guiding all such children toward a single, mature pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Long-Distance Wh-Movement and Long-Distance Wh-Movement Avoidance in L2 English: Evidence from French and Bulgarian Speakers

    ERIC Educational Resources Information Center

    Slavkov, Nikolay

    2015-01-01

    This article investigates spoken productions of complex questions with long-distance wh-movement in the L2 English of speakers whose first language is (Canadian) French or Bulgarian. Long-distance wh-movement is of interest as it can be argued that it poses difficulty in acquisition due to its syntactic complexity and related high processing load.…

  19. Integration of the functional movement screen into the National Hockey League Combine.

    PubMed

    Rowan, Chip P; Kuropkat, Christiane; Gumieniak, Robert J; Gledhill, Norman; Jamnik, Veronica K

    2015-05-01

    The sport of ice hockey requires coordination of complex skills involving musculoskeletal and physiological abilities while simultaneously exposing players to a high risk for injury. The Functional Movement Screen (FMS) was developed to assess fundamental movement patterns that underlie both sport performance and injury risk. The top 111 elite junior hockey players from around the world took part in the 2013 National Hockey League Entry Draft Combine (NHL Combine). The FMS was integrated into the comprehensive medical and physiological fitness evaluations at the request of strength and conditioning coaches with affiliations to NHL teams. The inclusion of the FMS aimed to help develop strategies that could maximize its utility among elite hockey players and to encourage or inform further research in this field. This study evaluated the outcomes of integrating the FMS into the NHL Combine and identified any links to other medical plus physical and physiological fitness assessment outcomes. These potential associations may provide valuable information to identify elements of future training programs that are individualized to athletes' specific needs. The results of the FMS (total score and number of asymmetries identified) were significantly correlated to various body composition measures, aerobic and anaerobic fitness, leg power, timing of recent workouts, and the presence of lingering injury at the time of the NHL Combine. Although statistically significant correlations were observed, the implications of the FMS assessment outcomes remain difficult to quantify until ongoing assessment of FMS patterns, tracking of injuries, and hockey performance are available.

  20. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    USGS Publications Warehouse

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  1. Lip movements affect infants' audiovisual speech perception.

    PubMed

    Yeung, H Henny; Werker, Janet F

    2013-05-01

    Speech is robustly audiovisual from early in infancy. Here we show that audiovisual speech perception in 4.5-month-old infants is influenced by sensorimotor information related to the lip movements they make while chewing or sucking. Experiment 1 consisted of a classic audiovisual matching procedure, in which two simultaneously displayed talking faces (visual [i] and [u]) were presented with a synchronous vowel sound (audio /i/ or /u/). Infants' looking patterns were selectively biased away from the audiovisual matching face when the infants were producing lip movements similar to those needed to produce the heard vowel. Infants' looking patterns returned to those of a baseline condition (no lip movements, looking longer at the audiovisual matching face) when they were producing lip movements that did not match the heard vowel. Experiment 2 confirmed that these sensorimotor effects interacted with the heard vowel, as looking patterns differed when infants produced these same lip movements while seeing and hearing a talking face producing an unrelated vowel (audio /a/). These findings suggest that the development of speech perception and speech production may be mutually informative.

  2. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    PubMed

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury.

  3. Consistency of a lumbar movement pattern across functional activities in people with low back pain.

    PubMed

    Marich, Andrej V; Hwang, Ching-Ting; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R

    2017-05-01

    Limitation in function is a primary reason people with low back pain seek medical treatment. Specific lumbar movement patterns, repeated throughout the day, have been proposed to contribute to the development and course of low back pain. Varying the demands of a functional activity test may provide some insight into whether people display consistent lumbar movement patterns during functional activities. Our purpose was to examine the consistency of the lumbar movement pattern during variations of a functional activity test in people with low back pain and back-healthy people. 16 back-healthy adults and 32 people with low back pain participated. Low back pain participants were classified based on the level of self-reported functional limitations. Participants performed 5 different conditions of a functional activity test. Lumbar excursion in the early phase of movement was examined. The association between functional limitations and early phase lumbar excursion for each test condition was examined. People with low back pain and high levels of functional limitation demonstrated a consistent pattern of greater early phase lumbar excursion across test conditions (p<0.05). For each test condition, the amount of early phase lumbar excursion was associated with functional limitation (r=0.28-0.62). Our research provides preliminary evidence that people with low back pain adopt consistent movement patterns during the performance of functional activities. Our findings indicate that the lumbar spine consistently moves more readily into its available range in people with low back pain and high levels of functional limitation. How the lumbar spine moves during a functional activity may contribute to functional limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Defining functional groups based on running kinematics using Self-Organizing Maps and Support Vector Machines.

    PubMed

    Hoerzer, Stefan; von Tscharner, Vinzenz; Jacob, Christian; Nigg, Benno M

    2015-07-16

    A functional group is a collection of individuals who react in a similar way to a specific intervention/product such as a sport shoe. Matching footwear features to a functional group can possibly enhance footwear-related comfort, improve running performance, and decrease the risk of movement-related injuries. To match footwear features to a functional group, one has to first define the different groups using their distinctive movement patterns. Therefore, the main objective of this study was to propose and apply a methodological approach to define functional groups with different movement patterns using Self-Organizing Maps and Support Vector Machines. Further study objectives were to identify differences in age, gender and footwear-related comfort preferences between the functional groups. Kinematic data and subjective comfort preferences of 88 subjects (16-76 years; 45 m/43 f) were analysed. Eight functional groups with distinctive movement patterns were defined. The findings revealed that most of the groups differed in age or gender. Certain functional groups differed in their comfort preferences and, therefore, had group-specific footwear requirements to enhance footwear-related comfort. Some of the groups, which had group-specific footwear requirements, did not show any differences in age or gender. This is important because when defining functional groups simply using common grouping criteria like age or gender, certain functional groups with group-specific movement patterns and footwear requirements might not be detected. This emphasises the power of the proposed pattern recognition approach to automatically define groups by their distinctive movement patterns in order to be able to address their group-specific product requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    PubMed

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  6. Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles.

    PubMed

    Jonsen, Ian D; Myers, Ransom A; James, Michael C

    2006-09-01

    1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, can also benefit from the application of modern statistical tools. 2. We develop a robust hierarchical state-space approach for analysis of multiple satellite telemetry pathways obtained via the Argos system. State-space models are time-series methods that allow unobserved states and biological parameters to be estimated from data observed with error. We show that the approach can reveal important patterns in complex, noisy data where conventional methods cannot. 3. Using the largest Atlantic satellite telemetry data set for critically endangered leatherback turtles, we show that the diel pattern in travel rates of these turtles changes over different phases of their migratory cycle. While foraging in northern waters the turtles show similar travel rates during day and night, but on their southward migration to tropical waters travel rates are markedly faster during the day. These patterns are generally consistent with diving data, and may be related to changes in foraging behaviour. Interestingly, individuals that migrate southward to breed generally show higher daytime travel rates than individuals that migrate southward in a non-breeding year. 4. Our approach is extremely flexible and can be applied to many ecological analyses that use complex, sequential data.

  7. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  8. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

    PubMed Central

    2014-01-01

    Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948

  9. A new method for discovering behavior patterns among animal movements

    USGS Publications Warehouse

    Wang, Y.; Luo, Ze; Takekawa, John Y.; Prosser, Diann J.; Xiong, Y.; Newman, S.; Xiao, X.; Batbayar, N.; Spragens, Kyle A.; Balachandran, S.; Yan, B.

    2016-01-01

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.

  10. A new method for discovering behavior patterns among animal movements.

    PubMed

    Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.

  11. A new method for discovering behavior patterns among animal movements

    PubMed Central

    Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping

    2016-01-01

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets. PMID:27217810

  12. Effects of background motion on eye-movement information.

    PubMed

    Nakamura, S

    1997-02-01

    The effect of background stimulus on eye-movement information was investigated by analyzing the underestimation of the target velocity during pursuit eye movement (Aubert-Fleishl paradox). In the experiment, a striped pattern with various brightness contrasts and spatial frequencies was used as a background stimulus, which was moved at various velocities. Analysis showed that the perceived velocity of the pursuit target, which indicated the magnitudes of eye-movement information, decreased when the background stripes moved in the same direction as eye movement at higher velocities and increased when the background moved in the opposite direction. The results suggest that the eye-movement information varied as a linear function of the velocity of the motion of the background retinal image (optic flow). In addition, the effectiveness of optic flow on eye-movement information was determined by the attributes of the background stimulus such as the brightness contrast or the spatial frequency of the striped pattern.

  13. A neural network for recognizing movement patterns during repetitive self-paced movements of the fingers in opposition to the thumb.

    PubMed

    Van Vaerenbergh, J; Vranken, R; Briers, L; Briers, H

    2001-11-01

    A data glove is a typical input device to control a virtual environment. At the same time it measures movements of wrist and fingers. The purposes of this investigation were to assess the ability of BrainMaker, a neural network, to recognize movement patterns during an opposition task that consisted of repetitive self-paced movements of the fingers in opposition to the thumb. The neural network contained 56 inputs, 3 hidden layers of 20 neurons, and one output. The 5th glove '95 (5DT), a commercial glove especially designed for virtual reality games, was used for finger motion capture. The training of the neural network was successful for recognizing the thumb, the index finger and the ring finger movements during the repetitive self-paced movements and neural network performed well during testing.

  14. Patterns and Limitations of Urban Human Mobility Resilience under the Influence of Multiple Types of Natural Disaster

    PubMed Central

    Wang, Qi; Taylor, John E.

    2016-01-01

    Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population’s vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals’ movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers. PMID:26820404

  15. Velocity-curvature patterns limit human-robot physical interaction

    PubMed Central

    Maurice, Pauline; Huber, Meghan E.; Hogan, Neville; Sternad, Dagmar

    2018-01-01

    Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration. PMID:29744380

  16. Patterns and Limitations of Urban Human Mobility Resilience under the Influence of Multiple Types of Natural Disaster.

    PubMed

    Wang, Qi; Taylor, John E

    2016-01-01

    Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population's vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals' movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers.

  17. Velocity-curvature patterns limit human-robot physical interaction.

    PubMed

    Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar

    2018-01-01

    Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.

  18. Structure, dynamics and movement patterns of the Australian pig industry.

    PubMed

    East, I J; Davis, J; Sergeant, E S G; Garner, M G

    2014-03-01

    To assess management practices and movement patterns that could influence the establishment and spread of exotic animal diseases (EAD) in pigs in Australia. A literature review of published information and a telephone survey of 370 pig producers owning >10 pigs who were registered with the PigPass national vendor declaration scheme. The movement and marketing patterns of Australian pig producers interviewed were divided into two groups based predominantly on the size of the herd. Major pig producers maintain closed herds, use artificial insemination and market direct to abattoirs. Smaller producers continue to purchase from saleyards and market to other farms, abattoirs and through saleyards in an apparently opportunistic fashion. The role of saleyards in the Australian pig industry continues to decline, with 92% of all pigs marketed directly from farm to abattoir. This survey described movement patterns that will assist in modelling the potential spread of EAD in the Australian pig industry. Continued movement towards vertical integration and closed herds in the Australian pig industry effectively divides the industry into a number of compartments that mitigate against the widespread dissemination of disease to farms adopting these practices. © 2014 Australian Veterinary Association.

  19. Use of Movement Imagery in Neurorehabilitation: Researching Effects of a Complex Intervention

    ERIC Educational Resources Information Center

    Braun, Susy M.; Wade, Derick T.; Beurskens, Anna J. H. M.

    2011-01-01

    Since the beginning of the new millennium, the use of mental practice and movement imagery within several medical professions in rehabilitation and therapy has received an increased attention. Before this introduction in healthcare, the use of movement imagery was mainly researched in sports science. Mental practice is a complex intervention. When…

  20. Everyone knows what is interesting: Salient locations which should be fixated

    PubMed Central

    Masciocchi, Christopher Michael; Mihalas, Stefan; Parkhurst, Derrick; Niebur, Ernst

    2010-01-01

    Most natural scenes are too complex to be perceived instantaneously in their entirety. Observers therefore have to select parts of them and process these parts sequentially. We study how this selection and prioritization process is performed by humans at two different levels. One is the overt attention mechanism of saccadic eye movements in a free-viewing paradigm. The second is a conscious decision process in which we asked observers which points in a scene they considered the most interesting. We find in a very large participant population (more than one thousand) that observers largely agree on which points they consider interesting. Their selections are also correlated with the eye movement pattern of different subjects. Both are correlated with predictions of a purely bottom–up saliency map model. Thus, bottom–up saliency influences cognitive processes as far removed from the sensory periphery as in the conscious choice of what an observer considers interesting. PMID:20053088

  1. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.

    PubMed

    Raghavan, Ramanujan T; Lisberger, Stephen G

    2017-08-01

    We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex. NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the oculomotor vermis during pursuit lies along a null-axis for saccades and vice versa. Thus the vermis can play independent roles in the two kinds of eye movement. Copyright © 2017 the American Physiological Society.

  2. The effects of bending speed on the lumbo-pelvic kinematics and movement pattern during forward bending in people with and without low back pain.

    PubMed

    Tsang, Sharon M H; Szeto, Grace P Y; Li, Linda M K; Wong, Dim C M; Yip, Millie M P; Lee, Raymond Y W

    2017-04-17

    Impaired lumbo-pelvic movement in people with low back pain during bending task has been reported previously. However, the regional mobility and the pattern of the lumbo-pelvic movement were found to vary across studies. The inconsistency of the findings may partly be related to variations in the speed at which the task was executed. This study examined the effects of bending speeds on the kinematics and the coordination lumbo-pelvic movement during forward bending, and to compare the performance of individuals with and without low back pain. The angular displacement, velocity and acceleration of the lumbo-pelvic movement during the repeated forward bending executed at five selected speeds were acquired using the three dimensional motion tracking system in seventeen males with low back pain and eighteen males who were asymptomatic. The regional kinematics and the degree of coordination of the lumbo-pelvic movement during bending was compared and analysed between two groups. Significantly compromised performance in velocity and acceleration of the lumbar spine and hip joint during bending task at various speed levels was shown in back pain group (p < 0.01). Both groups displayed a high degree of coordination of the lumbo-pelvic displacement during forward bending executed across the five levels of speed examined. Significant between-group difference was revealed in the coordination of the lumbo-pelvic velocity and acceleration (p < 0.01). Asymptomatic group moved with a progressively higher degree of lumbo-pelvic coordination for velocity and acceleration while the back pain group adopted a uniform lumbo-pelvic pattern across all the speed levels examined. The present findings show that bending speed imposes different levels of demand on the kinematics and pattern of the lumbo-pelvic movement. The ability to regulate the lumbo-pelvic movement pattern during the bending task that executed at various speed levels was shown only in pain-free individuals but not in those with low back pain. Individuals with low back pain moved with a stereotyped strategy at their lumbar spine and hip joints. This specific aberrant lumbo-pelvic movement pattern may have a crucial role in the maintenance of the chronicity in back pain.

  3. Algorithms of walking and stability for an anthropomorphic robot

    NASA Astrophysics Data System (ADS)

    Sirazetdinov, R. T.; Devaev, V. M.; Nikitina, D. V.; Fadeev, A. Y.; Kamalov, A. R.

    2017-09-01

    Autonomous movement of an anthropomorphic robot is considered as a superposition of a set of typical elements of movement - so-called patterns, each of which can be considered as an agent of some multi-agent system [ 1 ]. To control the AP-601 robot, an information and communication infrastructure has been created that represents some multi-agent system that allows the development of algorithms for individual patterns of moving and run them in the system as a set of independently executed and interacting agents. The algorithms of lateral movement of the anthropomorphic robot AP-601 series with active stability due to the stability pattern are presented.

  4. Regional differences in hyoid muscle activity and length-dynamics during mammalian head-shaking

    PubMed Central

    Wentzel, Sarah E.; Konow, Nicolai; German, Rebecca Z.

    2010-01-01

    The sternohyoid (SH) and geniohyoid (GH) are antagonist strap-muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the sternohyoid exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the sternohyoid and geniohyoid muscles during an unrestrained, and vigorous head-shake behavior in an animal model of human head, neck and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several head revolutions. Using sonomicrometry and intramuscular EMG we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly and posterior) of each muscle. Changes in muscle length however, were more complex. In the SH, mid-belly length-change occurred out of phase with the anterior and posterior end-regions, but with a zero-lag timing; the anterior region shortened prior to the posterior. In the GH, the anterior region shortened prior to, and out of phase with the mid-belly and posterior regions. Head-shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length-dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these ‘simple hyoid strap muscles’ are more complex than textbooks often suggest. PMID:21370479

  5. A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation

    NASA Astrophysics Data System (ADS)

    Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.

    2014-11-01

    In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).

  6. Morphology of Dbx1 respiratory neurons in the preBötzinger complex and reticular formation of neonatal mice.

    PubMed

    Akins, Victoria T; Weragalaarachchi, Krishanthi; Picardo, Maria Cristina D; Revill, Ann L; Del Negro, Christopher A

    2017-08-01

    The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-expressing precursors (Dbx1 neurons) in the preBötzinger complex (preBötC) of the ventral medulla that generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate reticular formation that influence the motor pattern of pharyngeal and lingual movements during the inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of morphologies of respiratory Dbx1 neurons from the preBötC and the intermediate reticular formation that were first recorded in vitro. These data can be analyzed comparatively to examine how morphology influences the roles of Dbx1 preBötC and Dbx1 reticular interneurons in respiration and can also be utilized to create morphologically accurate compartmental models for simulation and modeling of respiratory circuits.

  7. Method and apparatus for predicting the direction of movement in machine vision

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B. (Inventor)

    1992-01-01

    A computer-simulated cortical network is presented. The network is capable of computing the visibility of shifts in the direction of movement. Additionally, the network can compute the following: (1) the magnitude of the position difference between the test and background patterns; (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern; and (3) the direction of a test pattern moved relative to a textured background. The direction of movement of an object in the field of view of a robotic vision system is detected in accordance with nonlinear Gabor function algorithms. The movement of objects relative to their background is used to infer the 3-dimensional structure and motion of object surfaces.

  8. CURRENT CONCEPTS IN BIOMECHANICAL INTERVENTIONS FOR PATELLOFEMORAL PAIN

    PubMed Central

    Meira, Erik P.

    2016-01-01

    Patellofemoral pain (PFP) has historically been a complex and enigmatic issue. Many of the factors thought to relate to PFP remain after patients' symptoms have resolved making their clinical importance difficult to determine. The tissue homeostasis model proposed by Dye in 2005 can assist with understanding and implementing biomechanical interventions for PFP. Under this model, the goal of interventions for PFP should be to re-establish patellofemoral joint (PFJ) homeostasis through a temporary alteration of load to the offended tissue, followed by incrementally restoring the envelope of function to the baseline level or higher. High levels of PFJ loads, particularly in the presence of an altered PFJ environment, are thought to be a factor in the development of PFP. Clinical interventions often aim to alter the biomechanical patterns that are thought to result in elevated PFJ loads while concurrently increasing the load tolerance capabilities of the tissue through therapeutic exercise. Biomechanics may play a role in PFJ load modification not only when addressing proximal and distal components, but also when considering the involvement of more local factors such as the quadriceps musculature. Biomechanical considerations should consider the entire kinetic chain including the hip and the foot/ankle complex, however the beneficial effects of these interventions may not be the result of long-term biomechanical changes. Biomechanical alterations may be achieved through movement retraining, but the interventions likely need to be task-specific to alter movement patterns. The purpose of this commentary is to describe biomechanical interventions for the athlete with PFP to encourage a safe and complete return to sport. Level of Evidence 5 PMID:27904791

  9. Current status and future directions of Lévy walk research.

    PubMed

    Reynolds, Andy M

    2018-01-11

    Lévy walks are a mathematical construction useful for describing random patterns of movement with bizarre fractal properties that seem to have no place in biology. Nonetheless, movement patterns resembling Lévy walks have been observed at scales ranging from the microscopic to the ecological. They have been seen in the molecular machinery operating within cells during intracellular trafficking, in the movement patterns of T cells within the brain, in DNA, in some molluscs, insects, fish, birds and mammals, in the airborne flights of spores and seeds, and in the collective movements of some animal groups. Lévy walks are also evident in trace fossils (ichnofossils) - the preserved form of tracks made by organisms that occupied ancient sea beds about 252-66 million years ago. And they are utilised by algae that originated around two billion years ago, and still exist today. In September of 2017, leading researchers from across the life sciences, along with mathematicians and physicists, got together at a Company of Biologists' Workshop to discuss the origins and biological significance of these movement patterns. In this Review the essence of the technical and sometimes heated discussions is distilled and made accessible for all. In just a few pages, the reader is taken from a gentle introduction to the frontiers of a very active field of scientific enquiry. What emerges is a fascinating story of a truly inter-disciplinary scientific endeavour that is seeking to better understand movement patterns occurring across all biological scales. © 2018. Published by The Company of Biologists Ltd.

  10. Inter-rater Reliability of Sustained Aberrant Movement Patterns as a Clinical Assessment of Muscular Fatigue

    PubMed Central

    Aerts, Frank; Carrier, Kathy; Alwood, Becky

    2016-01-01

    Background: The assessment of clinical manifestation of muscle fatigue is an effective procedure in establishing therapeutic exercise dose. Few studies have evaluated physical therapist reliability in establishing muscle fatigue through detection of changes in quality of movement patterns in a live setting. Objective: The purpose of this study is to evaluate the inter-rater reliability of physical therapists’ ability to detect altered movement patterns due to muscle fatigue. Design: A reliability study in a live setting with multiple raters. Participants: Forty-four healthy individuals (ages 19-35) were evaluated by six physical therapists in a live setting. Methods: Participants were evaluated by physical therapists for altered movement patterns during resisted shoulder rotation. Each participant completed a total of four tests: right shoulder internal rotation, right shoulder external rotation, left shoulder internal rotation and left shoulder external rotation. Results: For all tests combined, the inter-rater reliability for a single rater scoring ICC (2,1) was .65 (95%, .60, .71) This corresponds to moderate inter-rater reliability between physical therapists. Limitations: The results of this study apply only to healthy participants and therefore cannot be generalized to a symptomatic population. Conclusion: Moderate inter-rater reliability was found between physical therapists in establishing muscle fatigue through the observation of sustained altered movement patterns during dynamic resistive shoulder internal and external rotation. PMID:27347241

  11. Quantifying cross-border movements and migrations for guiding the strategic planning of malaria control and elimination

    PubMed Central

    2014-01-01

    Background Identifying human and malaria parasite movements is important for control planning across all transmission intensities. Imported infections can reintroduce infections into areas previously free of infection, maintain ‘hotspots’ of transmission and import drug resistant strains, challenging national control programmes at a variety of temporal and spatial scales. Recent analyses based on mobile phone usage data have provided valuable insights into population and likely parasite movements within countries, but these data are restricted to sub-national analyses, leaving important cross-border movements neglected. Methods National census data were used to analyse and model cross-border migration and movement, using East Africa as an example. ‘Hotspots’ of origin-specific immigrants from neighbouring countries were identified for Kenya, Tanzania and Uganda. Populations of origin-specific migrants were compared to distance from origin country borders and population size at destination, and regression models were developed to quantify and compare differences in migration patterns. Migration data were then combined with existing spatially-referenced malaria data to compare the relative propensity for cross-border malaria movement in the region. Results The spatial patterns and processes for immigration were different between each origin and destination country pair. Hotspots of immigration, for example, were concentrated close to origin country borders for most immigrants to Tanzania, but for Kenya, a similar pattern was only seen for Tanzanian and Ugandan immigrants. Regression model fits also differed between specific migrant groups, with some migration patterns more dependent on population size at destination and distance travelled than others. With these differences between immigration patterns and processes, and heterogeneous transmission risk in East Africa and the surrounding region, propensities to import malaria infections also likely show substantial variations. Conclusion This was a first attempt to quantify and model cross-border movements relevant to malaria transmission and control. With national census available worldwide, this approach can be translated to construct a cross-border human and malaria movement evidence base for other malaria endemic countries. The outcomes of this study will feed into wider efforts to quantify and model human and malaria movements in endemic regions to facilitate improved intervention planning, resource allocation and collaborative policy decisions. PMID:24886389

  12. Fine-Scale Movements of the Broadnose Sevengill Shark and Its Main Prey, the Gummy Shark

    PubMed Central

    Barnett, Adam; Abrantes, Kátya G.; Stevens, John D.; Bruce, Barry D.; Semmens, Jayson M.

    2010-01-01

    Information on the fine-scale movement of predators and their prey is important to interpret foraging behaviours and activity patterns. An understanding of these behaviours will help determine predator-prey relationships and their effects on community dynamics. For instance understanding a predator's movement behaviour may alter pre determined expectations of prey behaviour, as almost any aspect of the prey's decisions from foraging to mating can be influenced by the risk of predation. Acoustic telemetry was used to study the fine-scale movement patterns of the Broadnose Sevengill shark Notorynchus cepedianus and its main prey, the Gummy shark Mustelus antarcticus, in a coastal bay of southeast Tasmania. Notorynchus cepedianus displayed distinct diel differences in activity patterns. During the day they stayed close to the substrate (sea floor) and were frequently inactive. At night, however, their swimming behaviour continually oscillated through the water column from the substrate to near surface. In contrast, M. antarcticus remained close to the substrate for the entire diel cycle, and showed similar movement patterns for day and night. For both species, the possibility that movement is related to foraging behaviour is discussed. For M. antarcticus, movement may possibly be linked to a diet of predominantly slow benthic prey. On several occasions, N. cepedianus carried out a sequence of burst speed events (increased rates of movement) that could be related to chasing prey. All burst speed events during the day were across the substrate, while at night these occurred in the water column. Overall, diel differences in water column use, along with the presence of oscillatory behaviour and burst speed events suggest that N. cepedianus are nocturnal foragers, but may opportunistically attack prey they happen to encounter during the day. PMID:21151925

  13. Inferring parturition and neonate survival from movement patterns of female ungulates: a case study using woodland caribou

    PubMed Central

    DeMars, Craig A; Auger-Méthé, Marie; Schlägel, Ulrike E; Boutin, Stan

    2013-01-01

    Analyses of animal movement data have primarily focused on understanding patterns of space use and the behavioural processes driving them. Here, we analyzed animal movement data to infer components of individual fitness, specifically parturition and neonate survival. We predicted that parturition and neonate loss events could be identified by sudden and marked changes in female movement patterns. Using GPS radio-telemetry data from female woodland caribou (Rangifer tarandus caribou), we developed and tested two novel movement-based methods for inferring parturition and neonate survival. The first method estimated movement thresholds indicative of parturition and neonate loss from population-level data then applied these thresholds in a moving-window analysis on individual time-series data. The second method used an individual-based approach that discriminated among three a priori models representing the movement patterns of non-parturient females, females with surviving offspring, and females losing offspring. The models assumed that step lengths (the distance between successive GPS locations) were exponentially distributed and that abrupt changes in the scale parameter of the exponential distribution were indicative of parturition and offspring loss. Both methods predicted parturition with near certainty (>97% accuracy) and produced appropriate predictions of parturition dates. Prediction of neonate survival was affected by data quality for both methods; however, when using high quality data (i.e., with few missing GPS locations), the individual-based method performed better, predicting neonate survival status with an accuracy rate of 87%. Understanding ungulate population dynamics often requires estimates of parturition and neonate survival rates. With GPS radio-collars increasingly being used in research and management of ungulates, our movement-based methods represent a viable approach for estimating rates of both parameters. PMID:24324866

  14. Inferring parturition and neonate survival from movement patterns of female ungulates: a case study using woodland caribou.

    PubMed

    Demars, Craig A; Auger-Méthé, Marie; Schlägel, Ulrike E; Boutin, Stan

    2013-10-01

    Analyses of animal movement data have primarily focused on understanding patterns of space use and the behavioural processes driving them. Here, we analyzed animal movement data to infer components of individual fitness, specifically parturition and neonate survival. We predicted that parturition and neonate loss events could be identified by sudden and marked changes in female movement patterns. Using GPS radio-telemetry data from female woodland caribou (Rangifer tarandus caribou), we developed and tested two novel movement-based methods for inferring parturition and neonate survival. The first method estimated movement thresholds indicative of parturition and neonate loss from population-level data then applied these thresholds in a moving-window analysis on individual time-series data. The second method used an individual-based approach that discriminated among three a priori models representing the movement patterns of non-parturient females, females with surviving offspring, and females losing offspring. The models assumed that step lengths (the distance between successive GPS locations) were exponentially distributed and that abrupt changes in the scale parameter of the exponential distribution were indicative of parturition and offspring loss. Both methods predicted parturition with near certainty (>97% accuracy) and produced appropriate predictions of parturition dates. Prediction of neonate survival was affected by data quality for both methods; however, when using high quality data (i.e., with few missing GPS locations), the individual-based method performed better, predicting neonate survival status with an accuracy rate of 87%. Understanding ungulate population dynamics often requires estimates of parturition and neonate survival rates. With GPS radio-collars increasingly being used in research and management of ungulates, our movement-based methods represent a viable approach for estimating rates of both parameters.

  15. Liberating Lévy walk research from the shackles of optimal foraging

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2015-09-01

    There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and provide the broadest picture yet of Lévy movement patterns. However, the process of understanding and identifying Lévy movement patterns still has a long way to go, and further reinterpretations and shifts in understanding will occur. In conclusion, Lévy walk research remains exciting precisely because so much remains to be understood, and because, even relatively small studies, are interesting discoveries in their own right.

  16. Liberating Lévy walk research from the shackles of optimal foraging.

    PubMed

    Reynolds, Andy

    2015-09-01

    There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select  for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and provide the broadest picture yet of Lévy movement patterns. However, the process of understanding and identifying Lévy movement patterns still has a long way to go, and further reinterpretations and shifts in understanding will occur. In conclusion, Lévy walk research remains exciting precisely because so much remains to be understood, and because, even relatively small studies, are interesting discoveries in their own right. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Kinematic and neuromuscular relationships between lower extremity clinical movement assessments.

    PubMed

    Mauntel, Timothy C; Cram, Tyler R; Frank, Barnett S; Begalle, Rebecca L; Norcross, Marc F; Blackburn, J Troy; Padua, Darin A

    2018-06-01

    Lower extremity injuries have immediate and long-term consequences. Lower extremity movement assessments can assist with identifying individuals at greater injury risk and guide injury prevention interventions. Movement assessments identify similar movement characteristics and evidence suggests large magnitude kinematic relationships exist between movement patterns observed across assessments; however, the magnitude of the relationships for electromyographic (EMG) measures across movement assessments remains largely unknown. This study examined relationships between lower extremity kinematic and EMG measures during jump landings and single leg squats. Lower extremity three-dimensional kinematic and EMG data were sampled from healthy adults (males = 20, females = 20) during the movement assessments. Pearson correlations examined the relationships of the kinematic and EMG measures and paired samples t-tests compared mean kinematic and EMG measures between the assessments. Overall, significant moderate correlations were observed for lower extremity kinematic (r avg  = 0.41, r range  = 0.10-0.61) and EMG (r avg  = 0.47, r range  = 0.32-0.80) measures across assessments. Kinematic and EMG measures were greater during the jump landings. Jump landings and single leg squats place different demands on the body and necessitate different kinematic and EMG patterns, such that these measures are not highly correlated between assessments. Clinicians should, therefore, use multiple assessments to identify aberrant movement and neuromuscular control patterns so that comprehensive interventions can be implemented.

  18. Skin strain patterns provide kinaesthetic information to the human central nervous system.

    PubMed Central

    Edin, B B; Johansson, N

    1995-01-01

    1. We investigated the contribution of skin strain-related sensory inputs to movement perception and execution in five normal volunteers. The dorsal and palmar skin of the middle phalanx and the proximal interphalangeal (PIP) joint were manipulated to generate specific strain patterns in the proximal part of the index finger. To mask sensations directly related to this manipulation, skin and deeper tissues were blocked distal to the mid-portion of the proximal phalanx of the index finger by local anaesthesia. 2. Subjects were asked to move their normal right index finger either to mimic any perceived movements of the anaesthetized finger or to touch the tip of the insentient finger. 3. All subjects readily reproduced actual movements induced by the experimenter at the anaesthetized PIP joint. However, all subjects also generated flexion movements when the experimenter did not induce actual movement but produced deformations in the sentient proximal skin that were similar to those observed during actual PIP joint flexion. Likewise, the subjects indicated extension movement at the PIP joint when strain patterns corresponding to extension movements were induced. 4. In contrast, when the skin strain in the proximal part of the index finger was damped by a ring applied just proximal to the PIP joint within the anaesthetized skin area, both tested subjects failed to perceive PIP movements that actually took place.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7473253

  19. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns of several identified single afferent and efferent nerve fibres (motoneuron axons) were extracted from multi-unit impulse patterns, and human CNS functions could be analyzed under physiologic and pathophysiologic conditions. With our discovery of premotor spinal oscillators it became possible to judge upon CNS neuronal network organization based on the firing patterns of these spinal oscillators and their driving afferents. Since motoneurons fire occasionally for low activation and oscillatory for high activation, the coherent organization of subnetworks to generate macroscopic function is very complex and for the time being, may be best described by the theory of coordination dynamics. Since oscillatory firing has also been observed by us in single motor unit firing patterns measured electromyographically, it seems possible to follow up therapeutic intervention in patients with spinal cord and brain lesions not only based on the activity levels and phases of motor programs during locomotion but also based on the physiologic and pathophysiologic firing patterns and recruitment of spinal oscillators. The improvement of the coordination dynamics of the CNS can be partly measured directly by rhythmicity upon the patient performing rhythmic movements coordinated up to milliseconds. Since rhythmic dynamic, coordinated, stereotyped movements are mainly located in the spinal cord and only little supraspinal drive is necessary to initiate, maintain, and terminate them, rhythmic, dynamic, coordinated movements were used in therapy to enforce reorganization of the lesioned CNS by improving the self-organization and relative coordination of spinal oscillators (and their interactions with occasionally firing motoneurons) which became pathologic in their firing following CNS lesion. Paraparetic, tetraparetic spinal cord and brain-lesioned patients re-learned running and other movements by an oscillator formation and coordination dynamic therapy. Our development in neurorehabilitation is in accordance with those of theoretical and computational neurosciences which deal with the self-organization of neuronal networks. In particular, jumping on a springboard 'in-phase' and in 'anti-phase' to re-learn phase relations of oscillator coupling can be understood in the framework of the Haken-Kelso-Bunz coordination dynamic model. By introducing broken symmetry, intention, learning and spasticity in the landscape of the potential function of the integrated CNS activity, the change in self-organization becomes understandable. Movement patterns re-learned by oscillator formation and coordination dynamic therapy evolve from reorganization and regeneration of the lesioned CNS by cooperative and competitive interplay between intrinsic coordination dynamics, extrinsic therapy related inputs with physiologic re-afferent input, including intention, motivation, supervised learning, interpersonal coordination, and genetic constraints including neurogenesis. (ABSTRACT TRUNCATED)

  20. Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.

    PubMed

    Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G

    2017-02-01

    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization.

    PubMed

    Popivanov, D; Mineva, A; Krekule, I

    1999-05-21

    In experiments with EEG accompanying continuous slow goal-directed voluntary movements we found abrupt short-term transients (STs) of the coefficients of EEG time-varying autoregressive (TVAR) model. The onset of STs indicated (i) a positive EEG wave related to an increase of 3-7 Hz oscillations in time period before the movement start, (ii) synchronization of 35-40 Hz prior to movement start and during the movement when the target is nearly reached. Both these phenomena are expressed predominantly over supplementary motor area, premotor and parietal cortices. These patterns were detected after averaging of EEG segments synchronized to the abrupt changes of the TVAR coefficients computed in the time course of EEG single records. The results are discussed regarding the cognitive aspect of organization of goal-directed movements.

  2. Home Range Use and Movement Patterns of Non-Native Feral Goats in a Tropical Island Montane Dry Landscape

    PubMed Central

    Chynoweth, Mark W.; Lepczyk, Christopher A.; Litton, Creighton M.; Hess, Steven C.; Kellner, James R.; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities. PMID:25807275

  3. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape.

    PubMed

    Chynoweth, Mark W; Lepczyk, Christopher A; Litton, Creighton M; Hess, Steven C; Kellner, James R; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world's most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  4. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    USGS Publications Warehouse

    Chynoweth, Mark W.; Lepczyk, Christopher A.; Litton, Creighton M.; Hess, Steve; Kellner, James; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  5. Evidence for intermittency and a truncated power law from highly resolved aphid movement data.

    PubMed

    Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A

    2010-01-06

    Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.

  6. Montessori and Steiner: A Pattern of Reverse Symmetries.

    ERIC Educational Resources Information Center

    Coulter, Dee Joy

    2003-01-01

    Explains the educational movements precipitated by Maria Montessori and Rudolf Steiner as comprising a pattern of reverse symmetries. Notes the influence of war on their philosophies. Discusses reverse symmetries in curriculum related to mathematics, geography, and history. Maintains that each of these two movements holds the other at its core,…

  7. Considering Valproate as a Risk Factor for Rapid Exacerbation of Complex Movement Disorder in Progressed Stages of Late-Infantile CLN2 Disease.

    PubMed

    Johannsen, Jessika; Nickel, Miriam; Schulz, Angela; Denecke, Jonas

    2016-06-01

    Neuronal ceroid lipofuscinosis type 2 (CLN2 disease, OMIM 204500) is a rare autosomal-recessive lysosomal storage disorder. It is one of the most common neurodegenerative disorders in childhood. Symptoms include epilepsy, rapid motor and language regression, dementia, visual loss, and a complex movement disorder in later stages of the disease. We report on two children with genetically confirmed late-infantile CLN2 disease who developed a severe exacerbation of their complex movement disorder leading to hyperthermia, hyper-CK-emia and decreased level of consciousness over several weeks despite different therapeutic approaches. Both patients were on long-term antiepileptic treatment with valproate and only after the withdrawal of valproate, the movement disorder disappeared and level of consciousness improved. These observations emphasize that valproate has to be considered as a possible risk factor in patients in later stages of late-infantile CLN2 disease who develop a rapidly progressive complex movement disorder. Georg Thieme Verlag KG Stuttgart · New York.

  8. Local cattle movements in response to ongoing bovine tuberculosis zonation and regulations in Michigan, USA.

    PubMed

    Grear, Daniel A; Kaneene, John B; Averill, James J; Webb, Colleen T

    2014-06-01

    Bovine tuberculosis (Mycobacterium bovis) is an ongoing management issue in the state of Michigan with eradication from livestock as the ultimate goal. Eradication has been a challenge owing to the presence of a wildlife reservoir; competing interests in managing the livestock and wildlife hosts; and many uncertainties in transmission dynamics of M. bovis. One of the cornerstones of the eradication effort has been to stop movement of infected cattle among farms by imposing strict pre-movement testing on cattle being moved within, into and out of the Modified Accredited Zone (MAZ) in northeastern Michigan. In addition to pre-movement tuberculosis testing, detailed information about the origin and destination premises of all movements within the MAZ has been recorded in Michigan. The aim of this study was to describe the farm-to-farm movements of cattle within the MAZ, report changes in the network of movements during a 6-year period when the MAZ was a constant size (2004-2009), and examine changes in cattle movement patterns when the MAZ was reduced from 11 to 5 counties in 2010. Non-slaughter cattle movement within the MAZ was characterized by predominantly local movements at a sub-county scale. Premises that shipped cattle were primarily senders or receivers, but rarely both. From 2004 to 2009, the number of cattle shipped, size of shipments, number of shipments and distance of shipments decreased; there was little change in the network patterns of interaction among individual premises; and interactions among all premises became more disconnected. After accounting for MAZ size, there were also no changes in cattle movement network patterns following the reduction of the MAZ in 2010. The movement of cattle was likely not a key risk factor in bTB spread among premises in the MAZ during the study period and the effect of zonation and movement regulations appeared to further reduce the risk of tuberculosis spread via cattle movements among farms in Michigan's MAZ. Published by Elsevier B.V.

  9. Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion.

    PubMed

    Bradley, Nina S; Solanki, Dhara; Zhao, Dawn

    2005-12-01

    New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.

  10. A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds.

    PubMed

    Revell, Christopher; Somveille, Marius

    2017-08-29

    In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (Thalassarche melanophris). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.

  11. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio.

    PubMed

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.

  12. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio

    PubMed Central

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population’s sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns. PMID:27441554

  13. Patterns of spatial distribution of golden eagles across North America: How do they fit into existing landscape-scale mapping systems?

    USGS Publications Warehouse

    Brown, Jessi L.; Bedrosian, Bryan; Bell, Douglas A.; Braham, Melissa A.; Cooper, Jeff; Crandall, Ross H.; DiDonato, Joe; Domenech, Robert; Duerr, Adam E.; Katzner, Todd; Lanzone, Michael J.; LaPlante, David W.; McIntyre, Carol L.; Miller, Tricia A.; Murphy, Robert K.; Shreading, Adam; Slater, Steven J.; Smith, Jeff P.; Smith, Brian W.; Watson, James W.; Woodbridge, Brian

    2017-01-01

    Conserving wide-ranging animals requires knowledge about their year-round movements and resource use. Golden Eagles (Aquila chrysaetos) exhibit a wide range of movement patterns across North America. We combined tracking data from 571 Golden Eagles from multiple independent satellite-telemetry projects from North America to provide a comprehensive look at the magnitude and extent of these movements on a continental scale. We compared patterns of use relative to four alternative administrative and ecological mapping systems, namely Bird Conservation Regions (BCRs), U.S. administrative migratory bird flyways, Migratory Bird Joint Ventures, and Landscape Conservation Cooperatives. Our analyses suggested that eagles initially captured in eastern North America used space differently than those captured in western North America. Other groups of eagles that exhibited distinct patterns in space use included long-distance migrants from northern latitudes, and southwestern and Californian desert residents. There were also several groupings of eagles in the Intermountain West. Using this collaborative approach, we have identified large-scale movement patterns that may not have been possible with individual studies. These results will support landscape-scale conservation measures for Golden Eagles across North America.

  14. Population Coding of Forelimb Joint Kinematics by Peripheral Afferents in Monkeys

    PubMed Central

    Umeda, Tatsuya; Seki, Kazuhiko; Sato, Masa-aki; Nishimura, Yukio; Kawato, Mitsuo; Isa, Tadashi

    2012-01-01

    Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG) neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR) algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates. PMID:23112841

  15. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    NASA Astrophysics Data System (ADS)

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  16. Eye Movement Patterns of the Elderly during Stair Descent:Effect of Illumination

    NASA Astrophysics Data System (ADS)

    Kasahara, Satoko; Okabe, Sonoko; Nakazato, Naoko; Ohno, Yuko

    The relationship between the eye movement pattern during stair descent and illumination was studied in 4 elderly people in comparison with that in 5 young people. The illumination condition was light (85.0±30.9 lx) or dark (0.7±0.3 lx), and data of eye movements were obtained using an eye mark recorder. A flight of 15 steps was used for the experiment, and data on 3 steps in the middle, on which the descent movements were stabilized, were analyzed. The elderly subjects pointed their eyes mostly directly in front in the facial direction regardless of the illumination condition, but the young subjects tended to look down under the light condition. The young subjects are considered to have confirmed the safety of the front by peripheral vision, checked the stepping surface by central vision, and still maintained the upright position without leaning forward during stair descent. The elderly subjects, in contrast, always looked at the visual target by central vision even under the light condition and leaned forward. The range of eye movements was larger vertically than horizontally in both groups, and a characteristic eye movement pattern of repeating a vertical shuttle movement synchronous with descent of each step was observed. Under the dark condition, the young subjects widened the range of vertical eye movements and reduced duration of fixation. The elderly subjects showed no change in the range of eye movements but increased duration of fixation during stair descent. These differences in the eye movements are considered to be compensatory reactions to narrowing of the vertical visual field, reduced dark adaptation, and reduced dynamic visual acuity due to aging. These characteristics of eye movements of the elderly lead to an anteriorly leaned posture and lack of attention to the front during stair descent.

  17. Using the Newly Developed Floor-Sitting Movement Analysis Proforma to Study the Effect of Age and Activity on Floor-Sitting in Indian Adults.

    PubMed

    Nagrajan, Anjana; D'Souza, Sebestina A

    2017-03-01

    Floor-sitting is culturally relevant to the Indian context. The present study aimed to examine the effect of age and activity on the movement patterns used and time taken to perform floor-sitting in Indian adults. Video-recordings of 30 young (23.30 ± 2.53 years) and 30 older (69.67 ± 6.45 years) adults performing floor-sitting without and with an activity (simulated feeding) were analyzed using the Floor-sitting Movement Analysis Proforma (FMAP) developed for the study. For inter-rater reliability of the FMAP, two raters analyzed the performance of a random sample of 20 participants. An almost perfect inter-rater agreeability (κ ≥ .8) was obtained for the FMAP. Cross-legged sitting was the most preferred (95%) floor-sitting position. Older adults used more number of movement components, asymmetrical patterns, more support, and more time (p < .001) as compared to the young adults. The activity facilitated the use of optimal movement strategies in young and older adults. The activity significantly increased time taken to rise from floor-sitting (p = .004). The study establishes the influence of age and activity on performance of floor-sitting. Older adults use lower developmental movement patterns that may be a "normal" adaptation to age-related sensorimotor changes. Retraining of floor-sitting is a "culturally" desired goal among Indian adults and should involve the practice of age-appropriate movement patterns in the context of meaningful activities.

  18. Seasonal and ontogenetic changes in movement patterns of sixgill sharks.

    PubMed

    Andrews, Kelly S; Williams, Greg D; Levin, Phillip S

    2010-09-08

    Understanding movement patterns is fundamental to population and conservation biology. The way an animal moves through its environment influences the dynamics of local populations and will determine how susceptible it is to natural or anthropogenic perturbations. It is of particular interest to understand the patterns of movement for species which are susceptible to human activities (e.g. fishing), or that exert a large influence on community structure, such as sharks. We monitored the patterns of movement of 34 sixgill sharks Hexanchus griseus using two large-scale acoustic arrays inside and outside Puget Sound, Washington, USA. Sixgill sharks were residents in Puget Sound for up to at least four years before making large movements out of the estuary. Within Puget Sound, sixgills inhabited sites for several weeks at a time and returned to the same sites annually. Across four years, sixgills had consistent seasonal movements in which they moved to the north from winter to spring and moved to the south from summer to fall. Just prior to leaving Puget Sound, sixgills altered their behavior and moved twice as fast among sites. Nineteen of the thirty-four sixgills were detected leaving Puget Sound for the outer coast. Three of these sharks returned to Puget Sound. For most large marine predators, we have a limited understanding of how they move through their environment, and this clouds our ability to successfully manage their populations and their communities. With detailed movement information, such as that being uncovered with acoustic monitoring, we can begin to quantify the spatial and temporal impacts of large predators within the framework of their ecosystems.

  19. Live cell imaging of mitochondrial movement along actin cables in budding yeast.

    PubMed

    Fehrenbacher, Kammy L; Yang, Hyeong-Cheol; Gay, Anna Card; Huckaba, Thomas M; Pon, Liza A

    2004-11-23

    Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.

  20. Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies

    PubMed Central

    Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.

    2014-01-01

    We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857

  1. A novel pattern of leaf movement: the case of Capparis spinosa L.

    PubMed

    Levizou, Efi; Kyparissis, Aris

    2016-09-01

    A novel type of heliotropic leaf movement is presented for Capparis spinosa L., a summer perennial shrub of Mediterranean and arid ecosystems. In contrast to plants that demonstrate uniform diaheliotropic and/or paraheliotropic movement for all their foliage, the alternate leaves of C. spinosa follow different movement patterns according to their stem azimuth and the side of the stem that they come from (cluster). Additionally, leaf movement for each cluster may not be uniform throughout the day, showing diaheliotropic characteristics during half of the day and paraheliotropic characteristics during the rest of the day. In an attempt to reveal the adaptive significance of this differential movement pattern, the following hypotheses were tested: (i) increase of the intercepted solar radiation and photosynthesis, (ii) avoidance of photoinhibitory conditions, (iii) amelioration of water-use efficiency and (iv) adjustment of the leaf temperature microenvironment. No evidence was found in support of the first two hypotheses. A slight difference toward a better water use was found for the moving compared with immobilized leaves, in combination with a better cooling effect. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. [Discrimination between pain-induced head movement disturbances after whiplash injuries and their simulation].

    PubMed

    Berger, M; Lechner-Steinleitner, S; Hoffmann, F; Schönegger, J

    1998-12-09

    Neck pain after whiplash injury of the cervical spine often induces typical changes in head motion patterns (amplitude, velocity). These changes of kinematics may help to recognize malingerers. We investigated the hypothesis that malingerers are not able to reproduce their simulated head movement disturbances three times. The kinematics of head movements of 23 patients with neck pain after whiplash injury and of 22 healthy subjects trying to act as malingerers were compared. The healthy subjects were informed about the symptomatology of whiplash injury and were asked to simulate painful head movements. Two different kinds of head movements were registered and analyzed by Cervicomotography: (1) the slow free axial head rotation (yaw) and (2) the axial head rotation (yaw) tracking a moving visual target. Each experimental condition was presented three times, expecting the malingerers not to be able to produce as well as to reproduce the same head movement disturbances again and again. In patients, as a consequence of their distinct pain patterns, we expected less variance between the test repetitions. The statistical analysis showed significant differences of the calculated kinematic parameters between both groups and the inability of healthy subjects to simulate and to reproduce convincingly distinct pain patterns.

  3. Diversity in migratory patterns among Neotropical fishes in a highly regulated river basin.

    PubMed

    Makrakis, M C; Miranda, L E; Makrakis, S; Fontes Júnior, H M; Morlis, W G; Dias, J H P; Garcia, J O

    2012-07-01

    Migratory behaviour of selected fish species is described in the Paraná River, Brazil-Argentina-Paraguay, to search for patterns relevant to tropical regulated river systems. In a 10 year mark-recapture study, spanning a 1425 km section of the river, 32 867 fishes composed of 18 species were released and 1083 fishes were recaptured. The fishes recaptured were at liberty an average 166 days (maximum 1548 days) and travelled an average 35 km (range 0-625 km). Cluster analysis applied to variables descriptive of movement behaviour identified four general movement patterns. Cluster 1 included species that moved long distances (mean 164 km) upstream (54%) and downstream (40%) the mainstem river and showed high incidence (27%) of passage through dams; cluster 2 also exhibited high rate of movement along the mainstem (49% upstream, 13% downstream), but moved small distances (mean 10 km); cluster 3 included the most fishes moving laterally into tributaries (45%) or not moving at all (25%), but little downstream movement (8%); fishes in cluster 4 exhibited little upstream movement (13%) and farthest downstream movements (mean 41 km). Whereas species could be numerically clustered with statistical models, a species ordination showed ample spread, suggesting that species exhibit diverse movement patterns that cannot be easily classified into just a few classes. The cluster and ordination procedures also showed that adults and juveniles of the same species exhibit similar movement patterns. Conventional concepts about Neotropical migratory fishes portray them as travelling long distances upstream. The present results broaden these concepts suggesting that migratory movements are more diverse, could be long, short or at times absent, upriver, downriver or lateral, and the diversity of movements can vary within and among species. The intense lateral migrations exhibited by a diversity of species, especially to and from large tributaries (above reservoirs) and reservoir tributaries, illustrate the importance of these habitats for the fish species life cycle. Considering that the Paraná River is highly impounded, special attention should be given to the few remaining low-impact habitats as they continue to be targets of hydropower development that will probably intensify the effects on migratory fish stocks. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Geologic events coupled with Pleistocene climatic oscillations drove genetic variation of Omei treefrog (Rhacophorus omeimontis) in southern China.

    PubMed

    Li, Jun; Zhao, Mian; Wei, Shichao; Luo, Zhenhua; Wu, Hua

    2015-12-21

    Pleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories. However, the relative contributions of climatic oscillations and geographical events to the genetic variation of these species remain undetermined. To investigate patterns of genetic variation and to test the hypotheses about the factors that shaped the distribution of this genetic variation in species of southern China, mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and nine microsatellite loci of the Omei tree frog (Rhacophorus omeimontis) were amplified in this study. The genetic diversity in the populations of R. omeimontis was high. The phylogenetic trees reconstructed from the mitochondrial DNA (mtDNA) haplotypes and the Bayesian genetic clustering analysis based on microsatellite data both revealed that all populations were divided into three lineages (SC, HG and YN). The two most recent splitting events among the lineages coincided with recent geological events (including the intense uplift of the Qinghai-Tibet Plateau, QTP and the subsequent movements of the Yun-Gui Plateau, YGP) and the Pleistocene glaciations. Significant expansion signals were not detected in mismatch analyses or neutrality tests. And the effective population size of each lineage was stable during the Pleistocene. Based on the results of this study, complex geological events (the recent dramatic uplift of the QTP and the subsequent movements of the YGP) and the Pleistocene glaciations were apparent drivers of the rapid divergence of the R. omeimontis lineages. Each diverged lineages survived in situ with limited gene exchanges, and the stable demographics of lineages indicate that the Pleistocene climatic oscillations were inconsequential for this species. The analysis of genetic variation in populations of R. omeimontis contributes to the understanding of the effects of changes in climate and of geographical events on the dynamic development of contemporary patterns of genetic variation in the species of southern China.

  5. Small reduction of neurokinin-1 receptor-expressing neurons in the pre-Bötzinger complex area induces abnormal breathing periods in awake goats.

    PubMed

    Wenninger, J M; Pan, L G; Klum, L; Leekley, T; Bastastic, J; Hodges, M R; Feroah, T; Davis, S; Forster, H V

    2004-11-01

    In awake rats, >80% bilateral reduction of neurokinin-1 receptor (NK1R)-expressing neurons in the pre-Bötzinger complex (pre-BötzC) resulted in hypoventilation and an "ataxic" breathing pattern (Gray PA, Rekling JC, Bocchiaro CM, Feldman JL, Science 286: 1566-1568, 1999). Accordingly, the present study was designed to gain further insight into the role of the pre-BötzC area NK1R-expressing neurons in the control of breathing during physiological conditions. Microtubules were chronically implanted bilaterally into the medulla of adult goats. After recovery from surgery, the neurotoxin saporin conjugated to substance P, specific for NK1R-expressing neurons, was bilaterally injected (50 pM in 10 microl) into the pre-BötzC area during the awake state (n = 8). In unoperated goats, 34 +/- 0.01% of the pre-BötzC area neurons are immunoreactive for the NK1R, but, in goats after bilateral injection of SP-SAP into the pre-BötzC area, NK1R immunoreactivity was reduced to 22.5 +/- 2.5% (29% decrease, P < 0.01). Ten to fourteen days after the injection, the frequency of abnormal breathing periods was sixfold greater than before injection (107.8 +/- 21.8/h, P < 0.001). Fifty-six percent of these periods were breaths of varying duration and volume with an altered respiratory muscle activation pattern, whereas the remaining were rapid, complete breaths with coordinated inspiratory-expiratory cycles. The rate of occurrence and characteristics of abnormal breathing periods were not altered during a CO2 inhalation-induced hyperpnea. Pathological breathing patterns were eliminated during non-rapid eye movement sleep in seven of eight goats, but they frequently occurred on arousal from non-rapid eye movement sleep. We conclude that a moderate reduction in pre-BötzC NK1R-expressing neurons results in state-dependent transient changes in respiratory rhythm and/or eupneic respiratory muscle activation patterns.

  6. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  7. A relationship between eye movement patterns and performance in a precognitive tracking task

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Hartzell, E. J.

    1977-01-01

    Eye movements made by various subjects in the performance of a precognitive tracking task are studied. The tracking task persented by an antiaircraft artillery (AAA) simulator has an input forcing function represented by a deterministic aircraft fly-by. The performance of subjects is ranked by two metrics. Good, mediocre, and poor trackers are selected for analysis based on performance during the difficult segment of the tracking task and over replications. Using phase planes to characterize both the eye movement patterns and the displayed error signal, a simple metric is developed to study these patterns. Two characterizations of eye movement strategies are defined and quantified. Using these two types of eye strategies, two conclusions are obtained about good, mediocre, and poor trackers. First, the eye tracker who used a fixed strategy will consistently perform better. Secondly, the best fixed strategy is defined as a Crosshair Fixator.

  8. Diagnosis and treatment of movement system impairment syndromes.

    PubMed

    Sahrmann, Shirley; Azevedo, Daniel C; Dillen, Linda Van

    Diagnoses and treatments based on movement system impairment syndromes were developed to guide physical therapy treatment. This masterclass aims to describe the concepts on that are the basis of the syndromes and treatment and to provide the current research on movement system impairment syndromes. The conceptual basis of the movement system impairment syndromes is that sustained alignment in a non-ideal position and repeated movements in a specific direction are thought to be associated with several musculoskeletal conditions. Classification into movement system impairment syndromes and treatment has been described for all body regions. The classification involves interpreting data from standardized tests of alignments and movements. Treatment is based on correcting the impaired alignment and movement patterns as well as correcting the tissue adaptations associated with the impaired alignment and movement patterns. The reliability and validity of movement system impairment syndromes have been partially tested. Although several case reports involving treatment using the movement system impairment syndromes concept have been published, efficacy of treatment based on movement system impairment syndromes has not been tested in randomized controlled trials, except in people with chronic low back pain. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Head and pelvic movement asymmetry during lungeing in horses with symmetrical movement on the straight.

    PubMed

    Rhodin, M; Roepstorff, L; French, A; Keegan, K G; Pfau, T; Egenvall, A

    2016-05-01

    Lungeing is commonly used as part of standard lameness examinations in horses. Knowledge of how lungeing influences motion symmetry in sound horses is needed. The aim of this study was to objectively evaluate the symmetry of vertical head and pelvic motion during lungeing in a large number of horses with symmetric motion during straight line evaluation. Cross-sectional prospective study. A pool of 201 riding horses, all functioning well and considered sound by their owners, were evaluated in trot on a straight line and during lungeing to the left and right. From this pool, horses with symmetric vertical head and pelvic movement during the straight line trot (n = 94) were retained for analysis. Vertical head and pelvic movements were measured with body mounted uniaxial accelerometers. Differences between vertical maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) heights between left and right forelimb and hindlimb stances were compared between straight line trot and lungeing in either direction. Vertical head and pelvic movements during lungeing were more asymmetric than during trot on a straight line. Common asymmetric patterns seen in the head were more upward movement during push-off of the outside forelimb and less downward movement during impact of the inside limb. Common asymmetric patterns seen in the pelvis were less upward movement during push-off of the outside hindlimb and less downward movement of the pelvis during impact of the inside hindlimb. Asymmetric patterns in one lunge direction were frequently not the same as in the opposite direction. Lungeing induces systematic asymmetries in vertical head and pelvic motion patterns in horses that may not be the same in both directions. These asymmetries may mask or mimic fore- or hindlimb lameness. © 2015 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  10. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects.

    PubMed

    Hesse, S; Sarkodie-Gyan, T; Uhlenbrock, D

    1999-01-01

    The study aimed at further development of a mechanised gait trainer which would allow non-ambulant people to practice a gait-like motion repeatedly. To simulate normal gait, discrete stance and swing phases, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. A complex gear system provided the gait-like movement of two foot plates with a ratio of 60% to 40% between the stance and swing phases. A controlled propulsion system adjusted its output according to patient's efforts. Two eccenters on the central gear controlled phase-adjusted the vertical and horizontal position of the centre of mass. The patterns of sagittal lower limb joint kinematics and of muscle activation of a normal subject were similar when using the mechanised trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists supported treadmill walking. Gait movements on the trainer were highly symmetrical, impact-free, and less spastic. The weight-bearing muscles were activated in a similar fashion during both conditions. The vertical displacement of the centre of mass was bi-instead of mono-phasic during each gait cycle on the new device. In conclusion, the gait trainer allowed wheelchair-bound subjects the repetitive practice of a gait-like movement without overstraining therapists.

  11. Observation of Simple Intransitive Actions: The Effect of Familiarity

    PubMed Central

    Plata Bello, Julio; Modroño, Cristián; Marcano, Francisco; González–Mora, José Luis

    2013-01-01

    Introduction Humans are more familiar with index – thumb than with any other finger to thumb grasping. The effect of familiarity has been previously tested with complex, specialized and/or transitive movements, but not with simple intransitive ones. The aim of this study is to evaluate brain activity patterns during the observation of simple and intransitive finger movements with differing degrees of familiarity. Methodology A functional Magnetic Resonance Imaging (fMRI) study was performed using a paradigm consisting of the observation of 4 videos showing a finger opposition task between the thumb and the other fingers (index, middle, ring and little) in a repetitive manner with a fixed frequency (1 Hz). This movement is considered as the pantomime of a precision grasping action. Results Significant activity was identified in the bilateral Inferior Parietal Lobule and premotor regions with the selected level of significance (FDR [False Discovery Rate] = 0.01). The extent of the activation in both regions tended to decrease when the finger that performed the action was further from the thumb. More specifically, this effect showed a linear trend (index>middle>ring>little) in the right parietal and premotor regions. Conclusions The observation of less familiar simple intransitive movements produces less activation of parietal and premotor areas than familiar ones. The most important implication of this study is the identification of differences in brain activity during the observation of simple intransitive movements with different degrees of familiarity. PMID:24073213

  12. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    PubMed

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  13. [Biomechanical study of internal midface distraction after different types of maxillary osteotomy in patients with cleft lip and palate].

    PubMed

    Hou, Min; Shi, Guang-Yu; Pu, Li-Chen; Song, Da-Li; Zhang, Xi-Zhong; Liu, Chun-Ming

    2009-09-01

    To investigate the biomechanical changes of internal midface distraction after different types of maxillary osteotomy in patients with cleft lip and palate (CLP). 3-D finite element (FEM) analysis was used. 3-D models of Le Fort I, II, III osteotomy and soft tissue were established. Based on the new pattern of internal midface distractor, the distraction of maxillary complex was simulated to advance 10 mm anteriorly. The mechanical change was studied. The maxillary complex in CLP were advanced after distraction. Constriction of alveolar crest and palate occurred in Le Fort I osteotomy, but not in Le Fort II and III osteotomy. The maxillary complex was moved anteriorly en bloc after Le Fort III osteotomy, but some degree of rotation of maxillary complex was observed during the distraction after Le Fort I and II osteotomy. In vertical direction, the maxillary complex had more counterclockwise rotation after Le Fort II osteotomy. 3-D FEM analysis can be used for the study of internal distraction. It can reflect the maxillary movement and provide the theory basis for preoperative design.

  14. Wireless sleep measurement: sensing sleep and breathing patterns using radio-frequency sensors.

    PubMed

    Heneghan, Conor

    2014-01-01

    Despite the fact that we spend nearly one third of our lives asleep, surprisingly little was known about sleep until the 20th century. Now, sleep medicine is firmly established as a significant branch of medical practice, taking its roots strongly from the work of Nathaniel Kleitman and colleagues at the University of Chicago in the 1950s. They were the first to show the existence of rapid eye movement (REM) sleep?commonly associated with ?dreaming?and began the process of opening our eyes to the complex physiological processes that occur during sleep.

  15. Performance assessment techniques for Doppler radar physiological sensors.

    PubMed

    Hafner, Noah; Lubecke, Victor

    2009-01-01

    This paper presents a technique for assessing the performance of continuous wave Doppler radar systems for physiological sensing. The technique includes an artificial target for testing physiological sensing radar systems with motion analogous to human heart movement and software algorithms leveraging the capabilities of this target to simply test radar system performance. The mechanical target provides simple to complex patterns of motion that are stable and repeatable. Details of radar system performance can be assessed and the effects of configuration changes that might not appear with a human target can be observed when using this mechanical target.

  16. Model for the computation of self-motion in biological systems

    NASA Technical Reports Server (NTRS)

    Perrone, John A.

    1992-01-01

    A technique is presented by which direction- and speed-tuned cells, such as those commonly found in the middle temporal region of the primate brain, can be utilized to analyze the patterns of retinal image motion that are generated during observer movement through the environment. The developed model determines heading by finding the peak response in a population of detectors or neurons each tuned to a particular heading direction. It is suggested that a complex interaction of multiple cell networks is required for the solution of the self-motion problem in the primate brain.

  17. Stability and Patterning of Speech Movement Sequences in Children and Adults.

    ERIC Educational Resources Information Center

    Smith, Anne; Goffman, Lisa

    1998-01-01

    A study of 16 children (ages 4 and 7 years) and 8 young adults used an "Optotrak" system to study patterning and stability of speech movements in developing speech motor systems. Results indicate that nonlinear and nonuniform changes occur in components of the speech motor system during development. (Author/CR)

  18. Elephants in space and time

    Treesearch

    Samuel A. Cushman; Michael Chase; Curtice Griffin

    2005-01-01

    Autocorrelation in animal movements can be both a serious nuisance to analysis and a source of valuable information about the scale and patterns of animal behavior, depending on the question and the techniques employed. In this paper we present an approach to analyzing the patterns of autocorrelation in animal movements that provides a detailed picture of seasonal...

  19. TauG-guidance of transients in expressive musical performance.

    PubMed

    Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N

    2008-08-01

    The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.

  20. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.

    PubMed

    Solouki, Saeed; Pooyan, Mohammad

    2016-06-01

    Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.

  1. Translational head movements of pigeons in response to a rotating pattern: characteristics and tool to analyse mechanisms underlying detection of rotational and translational optical flow.

    PubMed

    Nalbach, H O

    1992-01-01

    Pigeons freely standing in the centre of a two-dimensionally textured cylinder not only rotate but also laterally translate their head in response to the pattern sinusoidally oscillating or unidirectionally rotating around their vertical axis. The translational head movement dominates the response at high oscillation frequencies, whereas in a unidirectionally rotating drum head translation declines at about the same rate as the rotational response increases. It is suggested that this is a consequence of charging the 'velocity storage' in the vestibulo-ocular system. Similar to the rotational head movement (opto-collic reflex), the translational head movement is elicited via a wide-field motion sensitive system. The underlying mechanism can be described as vector integration of movement vectors tangential to the pattern rotation. Stimulation of the frontal visual field elicits largest translational responses while rotational responses can be elicited equally well from any azimuthal position of a moving pattern. Experiments where most of the pattern is occluded by a screen and the pigeon is allowed to view the stimulus through one or two windows demonstrate a short-range inhibition and long-range excitation between movement detectors that feed into the rotational system. Furthermore, the results obtained from such types of experiments suggest that the rotational system inhibits the translational system. These mechanisms may help the pigeon to decompose image flow into its translational and rotational components. Because of their translational response to a rotational stimulus, it is concluded, however, that pigeons either generally cannot perfectly perform the task or they need further visual information, like differential image motion, that was not available to them in the paradigms.

  2. MUSCLE STRENGTH AND QUALITATIVE JUMP-LANDING DIFFERENCES IN MALE AND FEMALE MILITARY CADETS: THE JUMP-ACL STUDY.

    PubMed

    Beutler, Ai; de la Motte, Sj; Marshall, Sw; Padua, DA; Boden, Bp

    2009-01-01

    Recent studies have focused on gender differences in movement patterns as risk factors for ACL injury. Understanding intrinsic and extrinsic factors which contribute to movement patterns is critical to ACL injury prevention efforts. Isometric lower-extremity muscular strength, anthropometrics, and jump-landing technique were analyzed for 2,753 cadets (1,046 female, 1,707 male) from the U.S. Air Force, Military and Naval Academies. Jump-landings were evaluated using the Landing Error Scoring System (LESS), a valid qualitative movement screening tool. We hypothesized that distinct anthropometric factors (Q-angle, navicular drop, bodyweight) and muscle strength would predict poor jump-landing technique in males versus females, and that female cadets would have higher scores (more errors) on a qualitative movement screen (LESS) than males. Mean LESS scores were significantly higher in female (5.34 ± 1.51) versus male (4.65 ± 1.69) cadets (P<.001). Qualitative movement scores were analyzed using factor analyses, yielding five factors, or "patterns", contributing to poor landing technique. Females were significantly more likely to have poor technique due to landing with less hip and knee flexion at initial contact (P<.001), more knee valgus with wider landing stance (P<.001), and less flexion displacement over the entire landing (P<.001). Males were more likely to have poor technique due to landing toe-out (P<.001), with heels first, and with an asymmetric foot landing (P<.001). Many of the identified factor patterns have been previously proposed to contribute to ACL injury risk. However, univariate and multivariate analyses of muscular strength and anthropometric factors did not strongly predict LESS scores for either gender, suggesting that changing an athlete's alignment, BMI, or muscle strength may not directly improve his or her movement patterns.

  3. Multi-hierarchical movements in self-avoiding walks

    NASA Astrophysics Data System (ADS)

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2017-07-01

    A self-avoiding walk (SAW) is a series of moves on a lattice that visit the same place only once. Several studies reported that repellent reactions of foragers to previously visited sites induced power-law tailed SAWs in animals. In this paper, we show that modelling the agent's multi-avoidance reactions to its trails enables it to show ballistic movements which result in heavy-tailed movements. There is no literature showing emergent ballistic movements in SAWs. While following SAWs, the agent in my model changed its reactions to marked patches (visited sites) by considering global trail patterns based on local trail patterns when the agent was surrounded by previously visited sites. As a result, we succeeded in producing ballistic walks by the agents which exhibited emergent power-law tailed movements.

  4. Seasonal and year-round use of the Kushiro Wetland, Hokkaido, Japan by sika deer (Cervus nippon yesoensis).

    PubMed

    Takafumi, Hino; Kamii, Tatsuya; Murai, Takunari; Yoshida, Ryoto; Sato, Atsuki; Tachiki, Yasuyuki; Akamatsu, Rika; Yoshida, Tsuyoshi

    2017-01-01

    The sika deer ( Cervus nippon yesoensis ) population in the Ramsar-listed Kushiro Wetland has increased in recent years, and the Ministry of the Environment of Japan has decided to take measures to reduce the impact of deer on the ecosystem. However, seasonal movement patterns of the deer (i.e., when and where the deer inhabit the wetland) remain unclear. We examined the seasonal movement patterns of sika deer in the Kushiro Wetland from 2013 to 2015 by analyzing GPS location data for 28 hinds captured at three sites in the wetland. Seasonal movement patterns were quantitatively classified as seasonal migration, mixed, dispersal, nomadic, resident, or atypical, and the degree of wetland utilization for each individual was estimated. The area of overlap for each individual among intra-capture sites and inter-capture sites was calculated for the entire year and for each season. Our results showed that the movement patterns of these deer were classified not only as resident but also as seasonal migration, dispersal, and atypical. Approximately one-third of the individuals moved into and out of the wetland during the year as either seasonal migrants or individuals with atypical movement. Some of the individuals migrated to farmland areas outside the wetland (the farthest being 69.9 km away). Half of the individuals inhabited the wetland all or most of the year, i.e., 81-100% of their annual home range was within the wetland area. Even among individuals captured at the same site, different seasonal movement patterns were identified. The overlap areas of the home ranges of individuals from the same capture sites were larger than those for individuals from different capture sites (e.g., mean of annual home range overlap with intra-capture sites: 47.7% vs. inter-sites: 1.3%). To achieve more effective ecosystem management including deer management in the wetland, management plans should cover inside and outside of the wetland and separate the population into multiple management units to address the different movement patterns and wetland utilization of the population.

  5. Seasonal and year-round use of the Kushiro Wetland, Hokkaido, Japan by sika deer (Cervus nippon yesoensis)

    PubMed Central

    Takafumi, Hino; Kamii, Tatsuya; Murai, Takunari; Yoshida, Ryoto; Sato, Atsuki; Tachiki, Yasuyuki; Akamatsu, Rika

    2017-01-01

    The sika deer (Cervus nippon yesoensis) population in the Ramsar-listed Kushiro Wetland has increased in recent years, and the Ministry of the Environment of Japan has decided to take measures to reduce the impact of deer on the ecosystem. However, seasonal movement patterns of the deer (i.e., when and where the deer inhabit the wetland) remain unclear. We examined the seasonal movement patterns of sika deer in the Kushiro Wetland from 2013 to 2015 by analyzing GPS location data for 28 hinds captured at three sites in the wetland. Seasonal movement patterns were quantitatively classified as seasonal migration, mixed, dispersal, nomadic, resident, or atypical, and the degree of wetland utilization for each individual was estimated. The area of overlap for each individual among intra-capture sites and inter-capture sites was calculated for the entire year and for each season. Our results showed that the movement patterns of these deer were classified not only as resident but also as seasonal migration, dispersal, and atypical. Approximately one-third of the individuals moved into and out of the wetland during the year as either seasonal migrants or individuals with atypical movement. Some of the individuals migrated to farmland areas outside the wetland (the farthest being 69.9 km away). Half of the individuals inhabited the wetland all or most of the year, i.e., 81–100% of their annual home range was within the wetland area. Even among individuals captured at the same site, different seasonal movement patterns were identified. The overlap areas of the home ranges of individuals from the same capture sites were larger than those for individuals from different capture sites (e.g., mean of annual home range overlap with intra-capture sites: 47.7% vs. inter-sites: 1.3%). To achieve more effective ecosystem management including deer management in the wetland, management plans should cover inside and outside of the wetland and separate the population into multiple management units to address the different movement patterns and wetland utilization of the population. PMID:29038752

  6. On the complexity of classical guitar playing: functional adaptations to task constraints.

    PubMed

    Heijink, Hank; Meulenbroek, Ruud G J

    2002-12-01

    The authors performed a behavioral study of the complexity of left-hand finger movements in classical guitar playing. Six professional guitarists played movement sequences in a fixed tempo. Left-hand finger movements were recorded in 3 dimensions, and the guitar sound was recorded synchronously. Assuming that performers prefer to avoid extreme joint angles when moving, the authors hypothesized 3 complexity factors. The results showed differential effects of the complexity factors on the performance measures and on participants' judgments of complexity. The results demonstrated that keeping the joints in the middle of their range is an important principle in guitar playing, and players exploit the available tolerance in timing and placement of the left-hand fingers to control the acoustic output variability.

  7. Anchoring in a novel bimanual coordination pattern.

    PubMed

    Maslovat, Dana; Lam, Melanie Y; Brunke, Kirstin M; Chua, Romeo; Franks, Ian M

    2009-02-01

    Anchoring in cyclical movements has been defined as regions of reduced spatial or temporal variability [Beek, P. J. (1989). Juggling dynamics. PhD thesis. Amsterdam: Free University Press] that are typically found at movement reversal points. For in-phase and anti-phase movements, synchronizing reversal points with a metronome pulse has resulted in decreased anchor point variability and increased pattern stability [Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3-28; Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 9-20]. The present experiment examined anchoring during acquisition, retention, and transfer of a 90 degrees phase-offset continuous bimanual coordination pattern (whereby the right limb lags the left limb by one quarter cycle), involving horizontal flexion about the elbow. Three metronome synchronization strategies were imposed: participants either synchronized maximal flexion of the right arm (i.e., single metronome), both flexion and extension of the right arm (i.e., double metronome within-limb), or flexion of each arm (i.e., double metronome between-limb) to an auditory metronome. In contrast to simpler in-phase and anti-phase movements, synchronization of additional reversal points to the metronome did not reduce reversal point variability or increase pattern stability. Furthermore, practicing under different metronome synchronization strategies did not appear to have a significant effect on the rate of acquisition of the pattern.

  8. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  9. Neural network modelling and dynamical system theory: are they relevant to study the governing dynamics of association football players?

    PubMed

    Dutt-Mazumder, Aviroop; Button, Chris; Robins, Anthony; Bartlett, Roger

    2011-12-01

    Recent studies have explored the organization of player movements in team sports using a range of statistical tools. However, the factors that best explain the performance of association football teams remain elusive. Arguably, this is due to the high-dimensional behavioural outputs that illustrate the complex, evolving configurations typical of team games. According to dynamical system analysts, movement patterns in team sports exhibit nonlinear self-organizing features. Nonlinear processing tools (i.e. Artificial Neural Networks; ANNs) are becoming increasingly popular to investigate the coordination of participants in sports competitions. ANNs are well suited to describing high-dimensional data sets with nonlinear attributes, however, limited information concerning the processes required to apply ANNs exists. This review investigates the relative value of various ANN learning approaches used in sports performance analysis of team sports focusing on potential applications for association football. Sixty-two research sources were summarized and reviewed from electronic literature search engines such as SPORTDiscus, Google Scholar, IEEE Xplore, Scirus, ScienceDirect and Elsevier. Typical ANN learning algorithms can be adapted to perform pattern recognition and pattern classification. Particularly, dimensionality reduction by a Kohonen feature map (KFM) can compress chaotic high-dimensional datasets into low-dimensional relevant information. Such information would be useful for developing effective training drills that should enhance self-organizing coordination among players. We conclude that ANN-based qualitative analysis is a promising approach to understand the dynamical attributes of association football players.

  10. Mechanisms and targets of deep brain stimulation in movement disorders.

    PubMed

    Johnson, Matthew D; Miocinovic, Svjetlana; McIntyre, Cameron C; Vitek, Jerrold L

    2008-04-01

    Chronic electrical stimulation of the brain, known as deep brain stimulation (DBS), has become a preferred surgical treatment for medication-refractory movement disorders. Despite its remarkable clinical success, the therapeutic mechanisms of DBS are still not completely understood, limiting opportunities to improve treatment efficacy and simplify selection of stimulation parameters. This review addresses three questions essential to understanding the mechanisms of DBS. 1) How does DBS affect neuronal tissue in the vicinity of the active electrode or electrodes? 2) How do these changes translate into therapeutic benefit on motor symptoms? 3) How do these effects depend on the particular site of stimulation? Early hypotheses proposed that stimulation inhibited neuronal activity at the site of stimulation, mimicking the outcome of ablative surgeries. Recent studies have challenged that view, suggesting that although somatic activity near the DBS electrode may exhibit substantial inhibition or complex modulation patterns, the output from the stimulated nucleus follows the DBS pulse train by direct axonal excitation. The intrinsic activity is thus replaced by high-frequency activity that is time-locked to the stimulus and more regular in pattern. These changes in firing pattern are thought to prevent transmission of pathologic bursting and oscillatory activity, resulting in the reduction of disease symptoms through compensatory processing of sensorimotor information. Although promising, this theory does not entirely explain why DBS improves motor symptoms at different latencies. Understanding these processes on a physiological level will be critically important if we are to reach the full potential of this powerful tool.

  11. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  12. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.

    PubMed

    Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara

    2017-02-01

    Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. EEG resolutions in detecting and decoding finger movements from spectral analysis

    PubMed Central

    Xiao, Ran; Ding, Lei

    2015-01-01

    Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720

  14. Movement analyses of wood cricket ( Nemobius sylvestris) (Orthoptera: Gryllidae).

    PubMed

    Brouwers, N C; Newton, A C

    2010-12-01

    Information on the dispersal ability of invertebrate species associated with woodland habitats is severely lacking. Therefore, a study was conducted examining the movement patterns of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae) on the Isle of Wight, UK. Juvenile (i.e. nymphs) and adult wood crickets were released and observed over time within different ground surface substrates. Their movement paths were recorded and subsequently analysed using random walk models. Nymphs were found to move more slowly than adults did; and, when given a choice, both nymphs and adults showed a preference for moving through or over leaf litter compared to bare soil or grass. A correlated random walk (CRW) model accurately described the movement pattern of adult wood crickets through leaf litter, indicating a level of directional persistence in their movements. The estimated population spread through leaf litter for adults was 17.9 cm min-1. Movements of nymphs through leaf litter could not accurately be described by a random walk model, showing a change in their movement pattern over time from directed to more random movements. The estimated population spread through leaf litter for nymphs was 10.1 cm min-1. The results indicate that wood cricket adults can be considered as more powerful dispersers than nymphs; however, further analysis of how the insects move through natural heterogeneous environments at a range of spatio-temporal scales needs to be performed to provide a complete understanding of the dispersal ability of the species.

  15. The first observations of Ischnochiton (Mollusca, Polyplacophora) movement behaviour, with comparison between habitats differing in complexity

    PubMed Central

    2017-01-01

    Most species of Ischnochiton are habitat specialists and are almost always found underneath unstable marine hard-substrata such as boulders. The difficulty of experimenting on these chitons without causing disturbance means little is known about their ecology despite their importance as a group that often contributes greatly to coastal species diversity. In the present study we measured among-boulder distributional patterns of Ischnochiton smaragdinus, and used time-lapse photography to quantify movement behaviours within different habitat types (pebble substrata and rock-platform). In intertidal rock-pools in South Australia, I. smaragdinus were significantly overdispersed among boulders, as most boulders had few individuals but a small proportion harboured large populations. I. smaragdinus individuals emerge from underneath boulders during nocturnal low-tides and move amongst the inter-boulder matrix (pebbles or rock-platform). Seventy-two percent of chitons in the pebble matrix did not move from one pebble to another within the periods of observation (55–130 min) but a small proportion moved across as many as five pebbles per hour, indicating a capacity for adults to migrate among disconnected habitat patches. Chitons moved faster and movement paths were less tortuous across rock-platform compared to pebble substrata, which included more discontinuities among substratum patches. Overall, we show that patterns of distribution at the boulder-scale, such as the observed overdispersion, must be set largely by active dispersal of adults across the substratum, and that differing substratum-types may affect the degree of adult dispersal for this and possibly other under-boulder chiton species. PMID:29302396

  16. Experimental Evaluation of UWB Indoor Positioning for Sport Postures

    PubMed Central

    Defraye, Jense; Steendam, Heidi; Gerlo, Joeri; De Clercq, Dirk; De Poorter, Eli

    2018-01-01

    Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity. To answer this question, this paper investigates the capabilities of UWB indoor localization systems for tracking athletes during their complex (and most of the time unpredictable) movements. To this end, we analyze the impact of on-body tag placement locations and human movement patterns on localization accuracy and communication reliability. Moreover, two localization algorithms (particle filter and Kalman filter) with different optimizations (bias removal, non-line-of-sight (NLoS) detection, and path determination) are implemented. It is shown that although the optimal choice of optimization depends on the type of movement patterns, some of the improvements can reduce the localization error by up to 31%. Overall, depending on the selected optimization and on-body tag placement, our algorithms show good results in terms of positioning accuracy, with average errors in position estimates of 20 cm. This makes UWB a suitable approach for tracking dynamic athletic activities. PMID:29315267

  17. Forest thinning changes movement patterns and habitat use by Pacific marten

    Treesearch

    Katie M. Moriarty; Clinton W. Epps; William J. Zielinski

    2016-01-01

    ABSTRACT Simplifying stand structure to reduce fuel density is a high priority for forest managers; however, affects to Pacific marten (Martes caurina) movement and connectivity are unknown. We evaluated whether thinning forests to reduce fuels influenced movements of Pacific marten. We collected movement paths from 22 martens using global positioning system telemetry...

  18. Foot loading characteristics during three fencing-specific movements.

    PubMed

    Trautmann, Caroline; Martinelli, Nicolo; Rosenbaum, Dieter

    2011-12-01

    Plantar pressure characteristics during fencing movements may provide more specific information about the influence of foot loading on overload injury patterns. Twenty-nine experienced fencers participated in the study. Three fencing-specific movements (lunge, advance, retreat) and normal running were performed with three different shoe models: Ballestra (Nike, USA), Adistar Fencing Lo (Adidas, Germany), and the fencers' own shoes. The Pedar system (Novel, Munich, Germany) was used to collect plantar pressures at 50 Hz. Peak pressures, force-time integrals and contact times for five foot regions were compared between four athletic tasks in the lunge leg and supporting leg. Plantar pressure analysis revealed characteristic pressure distribution patterns for the fencing movements. For the lunge leg, during the lunge and advance movements the heel is predominantly loaded; during retreat, it is the hallux. For the supporting leg, during the lunge and advance movements the forefoot is predominantly loaded; during retreat, it is the hallux. Fencing-specific movements load the plantar surface in a distinct way compared with running. An effective cushioning in the heel and hallux region would help to minimize foot loading during fencing-specific movements.

  19. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina

    PubMed Central

    Yuan, Zhi-Yong; Suwannapoom, Chatmongkon; Yan, Fang; Poyarkov, Nikolay A.; Nguyen, Sang Ngoc; Chen, Hong-man; Chomdej, Siriwadee; Murphy, Robert W.

    2016-01-01

    South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial–interglacial cycling vary among species and regions. PMID:29491943

  20. Characterization of Visual Scanning Patterns in Air Traffic Control

    PubMed Central

    McClung, Sarah N.; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

Top